Science.gov

Sample records for heavy ga-doped zno

  1. Microstructure evolution of highly Ga-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Oh, S. J.; Jung, M. N.; Ha, S. Y.; Choi, S. G.; Kim, J. J.; Kobayashi, K.; Lee, S. T.; Lee, H. C.; Cho, Y. R.; Yao, T.; Chang, J. H.

    2008-10-01

    Ga-doped zinc oxide (ZnO) (ZnO:Ga) nanocrystals were synthesized by the vapor-solidification method to investigate morphological and structural evolution induced by Ga-incorporation. Ga-content was controlled in the full composition range (0-100%). As the Ga-content increased, the shape of nanocrystals changed from tetrapod- to rod-type. Hard X-ray photoemission spectroscopy (HXPES) measurement indicates that highly Ga-doped uniphase ZnO:Ga nanocrystals without a serious deterioration of morphology are achieved, which strongly suggests the feasibility of Ga as a successful n-type dopant for ZnO-based nanocrystals.

  2. Analysis of defect luminescence in Ga-doped ZnO nanoparticles.

    PubMed

    Zhu, Wenliang; Kitamura, Shoichiro; Boffelli, Marco; Marin, Elia; Gaspera, Enrico Della; Sturaro, Marco; Martucci, Alessandro; Pezzotti, Giuseppe

    2016-04-14

    We applied cathodoluminescence (CL) spectroscopy to evaluate the defect-induced luminescence within ZnO and Ga-doped ZnO (GZO) nanoparticles. The observed emissions from defect sites present in the GZO lattice exhibited a strong dependence on both dopant content and synthesis methods. The strong and broad defect-induced emissions and inhomogeneous population of intrinsic defects in nano-sized ZnO particles could effectively be suppressed by Ga doping, although large dopant amounts caused the generation of negatively-charged defects, VZn and Oi, with a subsequent increase of the luminescence. Upon deconvolution of the retrieved CL spectra into individual sub-bands, the physical origin of all the sub-bands could be clarified, and related to sample composition and synthesis protocol. This study lays the foundation of quantitative CL evaluation of defects to assess the quality of GZO optoelectronic devices. PMID:26996752

  3. Effect of Ga-doping on the properties of ZnO nanowire

    SciTech Connect

    Ishiyama, Takeshi Nakane, Takaya Fujii, Tsutomu

    2015-02-27

    Arrays of single-crystal zinc oxide (ZnO) nanowires have been synthesized on silicon substrates by vapor-liquid-solid growth techniques. The effect of growth conditions including substrate temperature and Ar gas flow rate on growth properties of ZnO nanowire arrays were studied. Structural and optical characterization was performed using scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. SEM images of the ZnO nanowire arrays grown at various Ar gas flow rates indicated that the alignment and structural features of ZnO nanowires were affected by the gas flow rate. The PL of the ZnO nanowire arrays exhibited strong ultraviolet (UV) emission at 380 nm and green emission around 510 nm. Moreover, the green emission reduced in Ga-doped sample.

  4. Ga-doped ZnO conducting antireflection coatings for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Estrich, N. A.; Hook, D. H.; Smith, A. N.; Leonard, J. T.; Laughlin, B.; Maria, J.-P.

    2013-06-01

    Transparent, conductive gallium-doped ZnO thin films are evaluated for application as conducting antireflection coatings (ARC) for crystalline silicon solar cells as a means to enhance efficiency by reducing the overall resistivity of the photovoltaic circuit. All Ga-doped ZnO thin films in this study were deposited using pulsed laser deposition. Synthesis conditions were first optimized for maximum electrical resistivity and minimal visible light absorption. The ideal combination contained 1 mol. % Ga doping and exhibited ˜90% transmission, with resistivity in the 1 × 10-3 ohm-cm range. Optimized films were prepared on reference flat silicon wafers with known dopant densities and on commercially obtained solar cell emitters without ARCs. Circular transmission line method measurements were used to measure specific contact resistivity (ρc). For n-type doped solar cell emitters, contact resistivity values of 0.1 mΩ cm2 were observed repeatedly. These values are consistent with, or lower than, contact resistivities associated with conventional silver paste metallization.

  5. Fabrication and characterization of pristine and annealed Ga doped ZnO thin films using sputtering

    NASA Astrophysics Data System (ADS)

    Mishra, Abhisek; Mohapatra, Saswat; Gouda, Himanshu Sekhar; Singh, Udai P.

    2016-05-01

    ZnO is a wide-band gap, transparent, polar semiconductor with unparalleled optoelectronic, piezoelectric, thermal and transport properties, which make it the material of choice for a wide range of applications such as blue/UV optoelectronics, energy conversion, transparent electronics, spintronic, plasmonic and sensor devices. We report, three sets of Ga doped Zinc Oxide (GZO) were fabricated in different sputtering power (100 watt, 200 watt and 300 watt). Thereafter films were annealed in nitrogen ambient for 30 minutes at 400° C. From the optical absorption spectroscopy it was found that pristine films are showing a 75% transmittance in the visible region of light and it increases after the annealing. However, for 300 W grown sample opposite trend has been achieved for the post annealed sample. X-ray diffraction pattern of all the pristine and annealed films showed a preferable growth orientation at (002) phase. Some other weak peaks were also appeared in different angle which indicates that films are polycrystalline in nature. XRD data also reveals that crystallite size increases with sputtering power up to 200 W and thereafter it decreases with the deposition power. It also noted that the crystallite size of the annealed film increases with compare to the non annealed films. At room temperature an enhancement in electrical properties of Ga doped ZnO thin films was noted for the annealed ZnO films except for the film deposited at 300 watt. More significantly, it was found that annealed thin films showed the resistivity in the range of 10-3 ˜ 10-4 ohm-cm. Such a high optical transmittance and conducting zinc-oxide thin film can be used as a window layer in solar cell.

  6. Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Chen, Hanhong; Du Pasquier, Aurelien; Saraf, Gaurav; Zhong, Jian; Lu, Yicheng

    2008-04-01

    Ga-doped ZnO (GZO) transparent conducting films and well-aligned ZnO nanotips were sequentially grown on a glass substrate using metal-organic chemical vapor deposition (MOCVD). The morphology control of ZnO from dense films to nanotips was realized through temperature-modulated growth. The ZnO nanotips/GZO structure was sensitized with dye N719 to form photoelectrochemical cells. It is found that the power conversion efficiency linearly increases with the length of ZnO nanotips. For the 1.0 cm2 dye-sensitized solar cell built from 4.8 µm ZnO nanotips, a peak incident photo-to-current conversion efficiency of 79% (at ~530 nm) and a power conversion efficiency of 0.77% under the illumination of one sun-simulated sunlight were achieved. UV light harvesting directly by ZnO was observed. The I-V characteristics of the cells were analyzed using a one-diode equivalent circuit model.

  7. Mid-infrared extraordinary transmission through Ga-doped ZnO films with 2D hole arrays

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Nader Esfahani, Nima; Vangala, Shiva; Guo, Junpeng; Hendrickson, Joshua R.; Leedy, Kevin D.; Look, David C.

    2014-03-01

    Extraordinary optical transmission (EOT), through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) on Ga-Doped ZnO films and can be tuned utilizing the physical parameters such as film thickness, period, hole size, and hole shape, as well as doping of the film. Analytical and finite-difference time-domain calculations are completed for 1 micron thick films with square, circular, and triangular hole arrays demonstrating SPP coupling and EOT. The fundamental plasmonic modes are observed in each of these hole shapes at wavelengths that correspond to strong EOT peaks. Doping tunability for these structures is also observed. Ga-doped ZnO films are grown via pulsed laser deposition (PLD) on silicon with plasma frequencies in the near-infrared. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

  8. Hot-electron energy relaxation time in Ga-doped ZnO films

    SciTech Connect

    Šermukšnis, E. Liberis, J.; Ramonas, M.; Matulionis, A.; Toporkov, M.; Liu, H. Y.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-14

    Hot-electron energy relaxation time is deduced for Ga-doped ZnO epitaxial layers from pulsed hot-electron noise measurements at room temperature. The relaxation time increases from ∼0.17 ps to ∼1.8 ps when the electron density increases from 1.4 × 10{sup 17 }cm{sup −3} to 1.3 × 10{sup 20 }cm{sup −3}. A local minimum is resolved near an electron density of 1.4 × 10{sup 19 }cm{sup −3}. The longest energy relaxation time (1.8 ps), observed at the highest electron density, is in good agreement with the published values obtained by optical time-resolved luminescence and absorption experiments. Monte Carlo simulations provide a qualitative interpretation of our observations if hot-phonon accumulation is taken into account. The local minimum of the electron energy relaxation time is explained by the ultrafast plasmon-assisted decay of hot phonons in the vicinity of the plasmon–LO-phonon resonance.

  9. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior

  10. Synthesis of nano-dimensional ZnO and Ga doped ZnO thin films by vapor phase transport and study as transparent conducting oxide.

    PubMed

    Ghosh, S; Saurav, M; Pandey, B; Srivastava, P

    2008-05-01

    We report synthesis of polycrystalline ZnO and Ga doped ZnO (ZnO:Ga) thin films (approximately 80 nm) on Si and quartz substrates in a non-vacuum muffle furnace, a simple and cost-effective route, without any catalyst/reactive carrier gases, at relatively low processing temperature of 550 degrees C. The crystalline phases of the films are identified by grazing angle X-ray diffraction (GAXRD). The growth of ZnO films is examined with scanning electron microscope (SEM) as a function of deposition time. An optical transmission of approximately 90% is observed for pure ZnO film having a resistivity of approximately 2.1 Omega-cm as measured by van der Pauw technique. Doping with Ga results in single phase ZnO:Ga films, retaining an optical transmission of about 80% and three orders of magnitude decrease in resistivity as compared to pure ZnO film. PMID:18572702

  11. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells.

    PubMed

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  12. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells

    PubMed Central

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  13. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Gabás, M.; Ramos Barrado, José R.; Torelli, P.; Barrett, N. T.

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  14. Pretreatment of polyethylene terephthalate substrate for the growth of Ga-doped ZnO thin film.

    PubMed

    Kim, D W; Kang, J H; Lim, Y S; Lee, M H; Seo, W S; Park, H H; Seo, K H; Park, M G

    2011-02-01

    The effect of the pretreatment of polyethylene terephthalate (PET) substrate on the growth of transparent conducting Ga-doped ZnO (GZO) thin film was investigated. Because of its high gas and moisture absorption and easy gas permeation, PET substrate was annealed at 100 degrees C in a vacuum chamber prior to the sputtering growth of GZO thin film for the outgassing of impurity gases. GZO thin film was deposited on the pretreated PET substrate by rf-magnetron sputtering and significantly improved electrical properties of GZO thin film was achieved. Electrical and structural characterizations of the GZO thin films were carried out by 4-point probe, Hall measurement, and scanning electron microscopy, and the effects of the pretreatment on the improved properties of GZO thin films were discussed. This result is not only useful to PET substrate, but also could be applicable to other plastic substrates which inevitably containing the moisture and impurity gases. PMID:21456250

  15. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Structural and Electrical Properties of Single Crystalline Ga-Doped ZnO Thin Films Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Zou, Wen-Qin; Xu, Ming-Xiang; Zhang, Feng-Ming; Du, You-Wei

    2009-11-01

    High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a-plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2 at.% and the lowest resistivity can reach 1.92 × 10-4 Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.

  16. Long-wavelength infrared surface plasmons on Ga-doped ZnO films excited via 2D hole arrays for extraordinary optical transmission

    NASA Astrophysics Data System (ADS)

    Cleary, Justin W.; Esfahani, Nima Nader; Vangala, Shivashankar; Guo, Junpeng; Hendrickson, Joshua R.; Leedy, Kevin D.; Thomson, Darren; Look, David C.

    2013-09-01

    Extraordinary optical transmission (EOT) through highly conductive ZnO films with sub-wavelength hole arrays is investigated in the long-wavelength infrared regime. EOT is facilitated by the excitation of surface plasmon polaritons (SPPs) and can be tuned utilizing the physical structure size such as period. Pulse laser deposited Ga-doped ZnO has been shown to have fluctuations in optical and electrical parameters based on fabrication techniques, providing a complimentary tuning means. The sub-wavelength 2D hole arrays are fabricated in the Ga-doped ZnO films via standard lithography and etching processes. Optical reflection measurements completed with a microscope coupled FTIR system contain absorption resonances that are in agreement with analytical theories for excitation of SPPs on 2D structures. EOT through Ga-doped ZnO is numerically demonstrated at wavelengths where SPPs are excited. This highly conductive ZnO EOT structure may prove useful in novel integrated components such as tunable biosensors or surface plasmon coupling mechanisms.

  17. Mechanical and transparent conductive properties of ZnO and Ga-doped ZnO films sputtered using electron-cyclotron-resonance plasma on polyethylene naphtalate substrates

    SciTech Connect

    Akazawa, Housei

    2014-03-15

    Transparent conductive ZnO and Ga-doped ZnO (GZO) films were deposited on polyethylene naphtalate (PEN) sheet substrates using electron cyclotron resonance plasma sputtering. Both ZnO and GZO films were highly adhesive to the PEN substrates without inserting an intermediate layer in the interface. When compared at the same thickness, the transparent conductive properties of GZO films on PEN substrates were only slightly inferior to those on glass substrates. However, the carrier concentration of ZnO films on PEN substrates was 1.5 times that of those on glass substrates, whereas their Hall mobility was only 60% at a thickness of 300 nm. The depth profile of elements measured by secondary ion mass spectroscopy revealed the diffusion of hydrocarbons out of the PEN substrate into the ZnO film. Hence, doped carbons may act as donors to enhance carrier concentration, and the intermixing of elements at the interface may deteriorate the crystallinity, resulting in the lower Hall mobility. When the ZnO films were thicker than 400 nm, cracks became prevalent because of the lattice mismatch strain between the film and the substrate, whereas GZO films were free of cracks. The authors investigated how rolling the films around a cylindrical pipe surface affected their conductive properties. Degraded conductivity occurred at a threshold pipe radius of 10 mm when tensile stress was applied to the film, but it occurred at a pipe radius of 5 mm when compressive stress was applied. These values are guidelines for bending actual devices fabricated on PEN substrates.

  18. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices

    NASA Astrophysics Data System (ADS)

    Yao, I.-Chuan; Lee, Dai-Ying; Tseng, Tseung-Yuen; Lin, Pang

    2012-04-01

    This study investigates the resistive switching behavior of Ga-doped ZnO (GZO) nanorod thin films with various Ga/Zn molar ratios. Vertically well-aligned and uniform GZO nanorod thin films were successfully grown on Au/Ti/SiO2/p-Si substrates using an aqueous solution method. X-ray diffraction (XRD) results indicate that GZO nanorods have [0001] highly preferred orientation. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show the formation of highly ordered and dense nanorod thin films. These compact GZO nanorod thin films can be used to make resistive switching memory devices. Such memory devices can be reversibly switched between ON and OFF states, with a stable resistance ratio of ten times, narrow dispersion of ON and OFF voltages, and good endurance performance of over 100 cycles. The resistive switching mechanism in these devices is related to the formation and rupture of conducting filaments consisting of oxygen vacancies, occurring at interfaces between GZO nanorods (grain boundaries). Results show that the resulting compact GZO nanorod thin films have a high potential for resistive memory applications.

  19. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

    PubMed Central

    2012-01-01

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated. PMID:23173885

  20. Removal of Micrometer Size Morphological Defects and Enhancement of Ultraviolet Emission by Thermal Treatment of Ga-Doped ZnO Nanostructures

    PubMed Central

    Manzoor, Umair; Kim, Do K.; Islam, Mohammad; Bhatti, Arshad S.

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures. PMID:24489725

  1. Ga-doped ZnO transparent electrodes with TiO2 blocking layer/nanoparticles for dye-sensitized solar cells

    PubMed Central

    2012-01-01

    Ga-doped ZnO [GZO] thin films were employed for the transparent electrodes in dye-sensitized solar cells [DSSCs]. The electrical property of the deposited GZO films was as good as that of commercially used fluorine-doped tin oxide [FTO]. In order to protect the GZO and enhance the photovoltaic properties, a TiO2 blocking layer was deposited on the GZO surface. Then, TiO2 nanoparticles were coated on the blocking layer, and dye was attached for the fabrication of DSSCs. The fabricated DSSCs with the GZO/TiO2 glasses showed an enhanced conversion efficiency of 4.02% compared to the devices with the normal GZO glasses (3.36%). Furthermore, they showed better characteristics even than those using the FTO glasses, which can be attributed to the reduced charge recombination and series resistance. PMID:22222148

  2. Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications

    NASA Astrophysics Data System (ADS)

    Pandey, Sushil Kumar; Awasthi, Vishnu; Sengar, Brajendra Singh; Garg, Vivek; Sharma, Pankaj; Kumar, Shailendra; Mukherjee, C.; Mukherjee, Shaibal

    2015-10-01

    Ultraviolet photoelectron spectroscopy is carried out to measure the energy discontinuity at the interface of p-type Na-doped MgZnO (NMZO)/n-type Ga-doped ZnO (GZO) heterojunction grown by dual ion beam sputtering. The offset values at valence band and conduction band of NMZO/GZO heterojunction are calculated to be 1.93 and -2.36 eV, respectively. The p-type conduction in NMZO film has been confirmed by Hall measurement and band structure. Moreover, the effect of Ar+ ion sputtering on the valence band onset values of NMZO and GZO thin films has been investigated. This asymmetric waveguide structure formed by the lower refractive index of GZO than that of NMZO indicates that easy extraction of photons generated in GZO through the NMZO layer into free space. The asymmetric waveguide structure has potential applications to produce ZnO-based light emitters with high extraction efficiency.

  3. Stress-induced anomalous shift of optical band gap in Ga-doped ZnO thin films: Experimental and first-principles study

    SciTech Connect

    Wang, Yaqin; Tang, Wu E-mail: lan.zhang@mail.xjtu.edu.cn; Liu, Jie; Zhang, Lan E-mail: lan.zhang@mail.xjtu.edu.cn

    2015-04-20

    In this work, highly c-axis oriented Ga-doped ZnO thin films have been deposited on glass substrates by RF magnetron sputtering under different sputtering times. The optical band gap is observed to shift linearly with the electron concentration and in-plane stress. The failure of fitting the shift of band gap as a function of electron concentration using the available theoretical models suggests the in-plane stress, instead of the electron concentration, be regarded as the dominant cause to this anomalous redshift of the optical band gap. And the mechanism of stress-dependent optical band gap is supported by the first-principles calculation based on density functional theory.

  4. Hydrogen induced electric conduction in undoped ZnO and Ga-doped ZnO thin films: Creating native donors via reduction, hydrogen donors, and reactivating extrinsic donors

    SciTech Connect

    Akazawa, Housei

    2014-09-01

    The manner in which hydrogen atoms contribute to the electric conduction of undoped ZnO and Ga-doped ZnO (GZO) films was investigated. Hydrogen atoms were permeated into these films through annealing in an atmospheric H{sub 2} ambient. Because the creation of hydrogen donors competes with the thermal annihilation of native donors at elevated temperatures, improvements to electric conduction from the initial state can be observed when insulating ZnO films are used as samples. While the resistivity of conductive ZnO films increases when annealing them in a vacuum, the degree of increase is mitigated when they are annealed in H{sub 2}. Hydrogenation of ZnO crystals was evidenced by the appearance of OH absorption signals around a wavelength of 2700 nm in the optical transmittance spectra. The lowest resistivity that was achieved by H{sub 2} annealing was limited to 1–2 × 10{sup −2} Ω cm, which is one order of magnitude higher than that by native donors (2–3 × 10{sup −3} Ω cm). Hence, all native donors are converted to hydrogen donors. In contrast, GZO films that have resistivities yet to be improved become more conductive after annealing in H{sub 2} ambient, which is in the opposite direction of GZO films that become more resistive after vacuum annealing. Hydrogen atoms incorporated into GZO crystals should assist in reactivating Ga{sup 3+} donors.

  5. Growth Behavior of Ga-Doped ZnO Thin Films Deposited on Au/SiN/Si(001) Substrates by Radio Frequency Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Seo, Seon Hee; Kang, Hyon Chol

    2013-11-01

    This paper reports the growth behavior of Ga-doped ZnO (ZnO:Ga) thin films deposited on Au/SiN/Si(001) substrates by radio-frequency magnetron sputtering. The microstructures of the overgrown ZnO:Ga thin films were investigated by performing X-ray diffraction, scanning electron microcopy, and transmission electron microscopy analyses. It was confirmed that the growth process proceeds through three stages. In the first stage, nano-scale ZnO:Ga islands were grown on the SiN layer, while a fairly continuous flat structure was formed on the Au nanoparticles (NPs). In the second stage of the growth process, ZnO:Ga domains with different growth orientations, depending strongly on the crystalline planes of the host Au NPs, were nucleated. These domains then grew at different rates, resulting in a change in the morphology from the initial shape reflecting that of the Au NPs to a sunflower-type shape. In the final stage, columnar growth with a preferred (0002) orientation along the surface normal direction became dominant.

  6. Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications

    SciTech Connect

    Pandey, Sushil Kumar; Awasthi, Vishnu; Sengar, Brajendra Singh; Garg, Vivek; Sharma, Pankaj; Mukherjee, Shaibal; Kumar, Shailendra; Mukherjee, C.

    2015-10-28

    Ultraviolet photoelectron spectroscopy is carried out to measure the energy discontinuity at the interface of p-type Na-doped MgZnO (NMZO)/n-type Ga-doped ZnO (GZO) heterojunction grown by dual ion beam sputtering. The offset values at valence band and conduction band of NMZO/GZO heterojunction are calculated to be 1.93 and −2.36 eV, respectively. The p-type conduction in NMZO film has been confirmed by Hall measurement and band structure. Moreover, the effect of Ar{sup +} ion sputtering on the valence band onset values of NMZO and GZO thin films has been investigated. This asymmetric waveguide structure formed by the lower refractive index of GZO than that of NMZO indicates that easy extraction of photons generated in GZO through the NMZO layer into free space. The asymmetric waveguide structure has potential applications to produce ZnO-based light emitters with high extraction efficiency.

  7. Change of scattering mechanism and annealing out of defects on Ga-doped ZnO films deposited by radio-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nulhakim, Lukman; Makino, Hisao

    2016-06-01

    This study examines the change of carrier scattering mechanism and defects states in Ga-doped ZnO (GZO) thin films deposited by radio-frequency magnetron sputtering as a function of the substrate temperature (Ts) during deposition. The GZO films deposited at room temperature exhibited a high defect density that resulted in a lower carrier concentration, lower Hall mobility, and optical absorption in visible wavelength range. Such defects were created by ion bombardment and were eliminated by increasing the Ts. The defects related to the optical absorption disappeared at a Ts of 125 °C. The defects responsible for the suppression of the carrier concentration gradually decreased with increasing Ts up to 200 °C. As a result, the carrier concentration and in-grain carrier mobility gradually increased. The Hall mobility was also influenced by film structural properties depending on the Ts. In addition to the c-axis preferred orientation, other oriented grains such as the (10 1 ¯ 1 ) plane parallel to the substrate surface appeared below 150 °C. This orientation of the (10 1 ¯ 1 ) plane significantly reduced the Hall mobility via grain boundary scattering. The films deposited at a Ts higher than 175 °C exhibited perfect c-axis orientation and grain boundary scattering was thus negligible in these films. The appearance of the 10 1 ¯ 1 peak in x-ray diffraction profile was correlated with the contribution of grain boundary scattering in heavily doped GZO films.

  8. Ga-doped ZnO grown by pulsed laser deposition in H2: the roles of Ga and H

    SciTech Connect

    Look, David; Droubay, Timothy C.; McCloy, John S.; Zhu, Zihua; Chambers, Scott A.

    2011-01-11

    Highly conductive thin films of ZnO doped with Ga were grown by pulsed-laser deposition (PLD) with 10 mTorr of H2 in the growth chamber. Compared with a more conventional method of producing conductive films of ZnO, i.e., growth in O2 followed by annealing in forming gas (5% H2 in Ar), the H2 method requires no post-growth anneal and also produces higher carrier concentrations and lower resistivities with better depth uniformity. As an example, a 65-nm-thick sample had a room-temperature mobility of 32 cm2/V-s, a concentration of 6.8 x 1020 cm-3, and a resistivity of 2.9 x 10^-4 ohm-cm. From a scattering model, the donor and acceptor concentrations were calculated as 8.9 x 1020 and 2.1 x 10^20 cm-3, respectively, as compared to the Ga and H concentrations of 11 x 10^20 and 1 x 10^20 cm-3. Thus, H does not play a significant role as a donor in this type of ZnO

  9. Degradation of transparent conductive properties of undoped ZnO and Ga-doped ZnO films left in atmospheric ambient for several years and trials to recover initial conductance

    SciTech Connect

    Akazawa, Housei

    2014-03-15

    This study evaluated the long-term stability of the transparent conductive properties of undoped ZnO and Ga-doped ZnO (GZO) films that had been left in an atmospheric ambient environment for 5 to 6 yr. When ZnO films are stored in a clean room with a controlled temperature and humidity of 23 °C and 45%, respectively, throughout the year, the increases in sheet resistance are less than 5% of their initial value. The ZnO films stored in a non-air-conditioned laboratory room, whose temperature varies between 5 and 35 °C and humidity varies between 30% and 70% per year, suffer from increases in the sheet resistance by almost 13%, which is associated with a slight rise in the near-infrared transmittance level. Postannealing of these degraded ZnO films at 150–200 °C recovers the initial conductance by removing the H{sub 2}O molecules that have penetrated the film. One hour of irradiation with electron cyclotron resonance Ar plasma effectively restores the conductive surfaces while maintaining a temperature below 70 °C. The GZO films containing a few weight percent of Ga{sub 2}O{sub 3} are stable even when stored in a non-air-conditioned laboratory room, with changes in the sheet resistance of less than 3%. The GZO films with a Ga{sub 2}O{sub 3} content larger than 10 wt. %, however, exhibit serious degradation probably due to the strong affinity of segregated Ga{sub 2}O{sub 3} domains with H{sub 2}O vapor molecules. Neither postannealing nor Ar plasma irradiation can recover the initial sheet resistance of these GZO films.

  10. Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode

    NASA Astrophysics Data System (ADS)

    Kyaw, A. K. K.; Sun, X. W.; Zhao, J. L.; Wang, J. X.; Zhao, D. W.; Wei, X. F.; Liu, X. W.; Demir, H. V.; Wu, T.

    2011-02-01

    We report on top-illuminated, fluorine tin oxide/indium tin oxide-free (FTO/ITO-free), dye-sensitized solar cells (DSCs) using room-temperature-processed ZnO layers on metal substrates as the working electrodes and Pt-coated Ga-doped ZnO layers (GZO) as the counter electrodes. These top-illuminated DSCs with GZO render comparable efficiency to those employing commercial FTO counter electrodes. Despite a lower current density, the top-illuminated DSCs result in a higher fill factor than conventional DSCs due to a low ohmic loss at the electrode/semiconductor interface. The effect of metal substrate on the performance of the resulting top-illuminated DSCs is also studied by employing various metals with different work functions. Ti is shown to be a suitable metal to be used as the working electrode in the top-illuminated device architecture owing to its low ohmic loss at the electrode/semiconductor interface, minimum catalytic activity on redox reactions and high resistance to corrosion by liquid electrolytes.

  11. Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Tien, Chuen-Lin; Yu, Kuo-Chang; Tsai, Tsung-Yo; Liu, Ming-Chung

    2015-11-01

    We present the influences of radio-frequency (RF) power on the optical, electrical, mechanical, and structural properties of Ga-doped zinc oxide (GZO) thin films by RF magnetron sputtering at room temperature. GZO thin films were grown on unheated glass and silicon substrates using radio-frequency (RF) magnetron sputtering method with different RF powers (from 60 W to 160 W). The optical properties of the GZO thin film were determined by a UV-vis spectrophotometer. The residual stress in GZO films were measured by a home-made Twyman-Green interferometer with the fast Fourier transform (FFT) method. The surface roughness of GZO films were measured by a microscopic interferometry. The microstructure, composition and crystal orientation of the GZO films were determined by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). This paper revealed that the optical, electrical, mechanical, and structural properties of GZO thin film are subject to the RF power. For the optical spectrum measurement, an average optical transmittance in the visible region of the spectra of 85% was obtained. For the characteristic measurements, all the GZO thin films deposited by RF magnetron sputtering have compressive stress at different RF powers. A minimum residual stress of 0.24 GPa is found at the RF power of 140 W. A four-point probe method was used to measure the resistivity of the GZO thin films with different powers, the results indicate that the resistivity increases with increasing of RF power. In addition, the root-mean-square (RMS) surface roughness of GZO thin films slightly increases as the RF power is increasing. We have also compared the results with the relevant literatures.

  12. Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Wong, L. M.; Chiam, S. Y.; Huang, J. Q.; Wang, S. J.; Pan, J. S.; Chim, W. K.

    2010-08-01

    Cu2O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu2O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu2O. Based on this finding, we fabricate heterojunctions of p-type Cu2O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu2O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu2O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu2O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  13. Growth of Cu{sub 2}O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    SciTech Connect

    Wong, L. M.; Chiam, S. Y.; Wang, S. J.; Pan, J. S.; Huang, J. Q.; Chim, W. K.

    2010-08-15

    Cu{sub 2}O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu{sub 2}O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu{sub 2}O. Based on this finding, we fabricate heterojunctions of p-type Cu{sub 2}O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu{sub 2}O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu{sub 2}O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu{sub 2}O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  14. Metal-semiconductor-metal UV photodetector based on Ga doped ZnO/graphene interface

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Noh, Youngwook; Polat, Kinyas; Kemal Okyay, Ali; Lee, Dongjin

    2015-12-01

    Fabrication and characterization of metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) based on Ga doped ZnO (ZnO:Ga)/graphene is presented in this work. A low dark current of 8.68 nA was demonstrated at a bias of 1 V and a large photo to dark contrast ratio of more than four orders of magnitude was observed. MSM PD exhibited a room temperature responsivity of 48.37 A/W at wavelength of 350 nm and UV-to-visible rejection ratio of about three orders of magnitude. A large photo-to-dark contrast and UV-to-visible rejection ratio suggests the enhancement in the PD performance which is attributed to the existence of a surface plasmon effect at the interface of the ZnO:Ga and underlying graphene layer.

  15. Swift heavy ion irradiation of ZnO nanoparticles embedded in silica: Radiation-induced deoxidation and shape elongation

    SciTech Connect

    Amekura, H.; Tsuya, D.; Mitsuishi, K.; Nakayama, Y.; Okubo, N.; Ishikawa, N.; Singh, U. B.; Khan, S. A.; Avasthi, D. K.; Mohapatra, S.

    2013-11-11

    ZnO nanoparticles (NPs) embedded in amorphous SiO{sub 2} were irradiated with 200 MeV Xe{sup 14+} swift heavy ions (SHIs) to a fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. Optical linear dichroism was induced in the samples by the irradiation, indicating shape transformation of the NPs from spheres to anisotropic ones. Transmission electron microscopy observations revealed that some NPs were elongated to prolate shapes; the elongated NPs consisted not of ZnO but of Zn metal. The SHI irradiation induced deoxidation of small ZnO NPs and successive shape elongation of the deoxidized metal NPs.

  16. Swift heavy ion irradiation of ZnO nanoparticles embedded in silica: Radiation-induced deoxidation and shape elongation

    NASA Astrophysics Data System (ADS)

    Amekura, H.; Okubo, N.; Ishikawa, N.; Tsuya, D.; Mitsuishi, K.; Nakayama, Y.; Singh, U. B.; Khan, S. A.; Mohapatra, S.; Avasthi, D. K.

    2013-11-01

    ZnO nanoparticles (NPs) embedded in amorphous SiO2 were irradiated with 200 MeV Xe14+ swift heavy ions (SHIs) to a fluence of 5.0 × 1013 ions/cm2. Optical linear dichroism was induced in the samples by the irradiation, indicating shape transformation of the NPs from spheres to anisotropic ones. Transmission electron microscopy observations revealed that some NPs were elongated to prolate shapes; the elongated NPs consisted not of ZnO but of Zn metal. The SHI irradiation induced deoxidation of small ZnO NPs and successive shape elongation of the deoxidized metal NPs.

  17. Magnetic properties of Ga doped cobalt ferrite: Compton scattering study

    SciTech Connect

    Sharma, Arvind Mund, H. S.; Ahuja, B. L.; Sahariya, Jagrati; Itou, M.; Sakurai, Y.

    2014-04-24

    We present the spin momentum density of Ga doped CoFe{sub 2}O{sub 4} at 100 K using magnetic Compton scattering. The measurement has been performed using circularly polarized synchrotron radiations of 182.65 keV at SPring8, Japan. The experimental profile is decomposed into its constituent profile to determine the spin moment at individual sites. Co atom has the maximum contribution (about 58%) in the total spin moment of the doped CoFe{sub 2}O{sub 4}.

  18. Transparent conductive and near-infrared reflective Ga-doped ZnO/Cu bilayer films grown at room temperature

    SciTech Connect

    Lu, J. G.; Bie, X.; Wang, Y. P.; Gong, L.; Ye, Z. Z.

    2011-05-15

    Bilayer films consisting of Ga-doped ZnO (GZO) and Cu layers were grown at room temperature by magnetron sputtering. The structural, electrical, and optical properties of GZO/Cu bilayer films were investigated in detail. The crystallinity and transparent-conductive properties of the films were correlated with the Cu layer thickness. The GZO/Cu bilayer film with the Cu layer thickness of 7.8 nm exhibited a low resistivity of 7.6x10{sup -5} {Omega} cm and an average visible transmittance of 74%. The reflectance was up to 65% in the near-infrared region for this film. The transparent conductive and near-infrared reflective GZO/Cu bilayer films could be readily deposited at room temperature. The GZO/Cu bilayer films were thermally stable when annealed at temperatures as high as 500 deg. C.

  19. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production

    NASA Astrophysics Data System (ADS)

    Tajmiri, M.; Ehsani, M. R.; Mousavi, S. M.; Roayaei, E.; Emadi, A.

    2015-07-01

    Spontaneous imbibition (SI) gets a controversial subject in oil- wet carbonate reservoirs. The new concept of nanoparticles applications in an EOR area have been recently raised by researches about oil viscosity reduction and generate emulsion without surfactant. But a lot of questions have been remained about which nanoparticles can alter wettability from oil- wet to water- wet to improve oil recovery. This study introduces the new idea of adding ZnO nanoparticles (0.2%wt concentration) by experimental work on oil recovery. The main goals of this research were to prove that ZnO nanoparticles have the ability to reduce viscosity and also alter wettability. The ultimate objective was to determine the potential of these nanoparticles to imbibe into and displace oil. Through the use of Amott- cell, laboratory tests were conducted in two experiments on four cylindrical core samples (three sandstones and one carbonate) were taken from real Iranian heavy oil reservoir. In the first experiment, core samples were saturated by crude oil and in the second experiment, nanoparticles were flooding into core samples and then saturated by crude oil for about two weeks and after that they were immersed in distilled water and the amount of recovery was monitored during 30 days for both tests. We expected that ZnO nanoparticles decreased the surface tension which reduced the capillary forces through SI and wettability alteration took place towards a more water-wet system and caused the oil relative permeability to increase which dominated the gravitational forces to pull out the oil. Our results proved this expectation from ZnO nanoparticles clearly because carbonate core was oil- wet and the capillary pressure was high and negative to push water into the core so the original oil in place (OOIP) was zero whereas by adding ZnO nanoparticles OOIP was increased to 8.89%. SI yielded recovery values from 17.3, 2 and 15 without nanoparticles to 20.68, 17.57 and 36.2 % OOIP with

  20. Enhanced Thermoelectric Properties of Cu2ZnSnSe4 with Ga-doping

    DOE PAGESBeta

    Wei, Kaya; Beauchemin, Laura; Wang, Hsin; Porter, Wallace D.; Martin, Joshua; Nolas, George S.

    2015-08-10

    Gallium doped Cu2ZnSnSe4 quaternary chalcogenides with and without excess Cu were synthesized by elemental reaction and densified using hot pressing in order to investigate their high temperature thermoelectric properties. The resistivity, , and Seebeck coefficient, S, for these materials decrease with increased Ga-doping while both mobility and effective mass increase with Ga doping. The power factor (S2/ρ) therefore increases with Ga-doping. The highest thermoelectric figure of merit (ZT = 0.39 at 700 K) was obtained for the composition that had the lowest thermal conductivity. Our results suggest an approach to achieving optimized thermoelectric properties and are part of the continuingmore » effort to explore different quaternary chalcogenide compositions and structure types, as this class of materials continues to be of interest for thermoelectrics applications.« less

  1. Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature

    NASA Astrophysics Data System (ADS)

    Jang, Cholho; Zhizhen, Ye; Jianguo, Lü

    2015-12-01

    Ga doped ZnO (GZO)/Cu grid double layer structures were prepared at room temperature (RT). We have studied the electrical and optical characteristics of the GZO/Cu grid double layer as a function of the Cu grid spacing distance. The optical transmittance and sheet resistance of the GZO/Cu grid double layer are higher than that of the GZO/Cu film double layer regardless of the Cu grid spacing distance and increase as the Cu grid spacing distance increases. The calculated values for the transmittance and sheet resistance of the GZO/Cu grid double layer well follow the trend of the experimentally observed transmittance and sheet resistance ones. For the GZO/Cu grid double layer with a Cu grid spacing distance of 1 mm, the highest figure of merit (ΦTC = 6.19 × 10-3 Ω-1) was obtained. In this case, the transmittance, resistivity and filling factor (FF) of the GZO/Cu grid double layer are 83.74%, 1.10 × 10-4 Ω·cm and 0.173, respectively. Project supported by the Key Project of the National Natural Science Foundation of China (No. 91333203), the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT13037), the National Natural Science Foundation of China (No. 51172204), and the Zhejiang Provincial Department of Science and Technology of China (No. 2010R50020).

  2. Write-once memory effects observed in Ga-doped ZnO/organic semiconductor/MoO3/Au structures

    NASA Astrophysics Data System (ADS)

    Hasegawa, Junya; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-03-01

    Electrical switching phenomena in a device configuration of inverted organic light-emitting diodes have been observed. The device structure was Ga-doped ZnO (GZO)/N,N‧-dicarbazolyl-3,5-benzene (m-CP)/MoO3 (10 nm)/Au (50 nm) fabricated by solution coating. The devices are write-once-read-many-times (WORM) memory devices with low switching voltage (<3 V) and long retention time (>700 h). Equivalent circuits in OFF and ON states are determined from the Cole-Cole plots measured by impedance spectroscopy. The switching phenomena and nonvolatile memory behavior are attributable to the formation conductive Au filaments in the m-CP layer of the ON state.

  3. First-principle study on Ag-2N heavy codoped of p-type graphene-like ZnO nanosheet

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Li, T.; He, C.; Wu, X. L.; Duan, L.; Li, H.; Xu, L.; Gong, S. B.

    2015-02-01

    In this article, two different Ag-2N heavy codoped of graphene-like ZnO nanosheets have been investigated based on first-principles density-functional theory. The geometric optimization, Density of States (DOS) and Band structure (BS) for all models are calculated, respectively. The results indicate that Ag substituted on the cation site (AgZn) exhibit a strong attractive interaction with a nitrogen acceptor located at the nearest-neighbor oxygen site, forming passive Ag-N complex. This study can be a theoretical guidance to improve the electrical conductivity of p-type graphene-like ZnO nanosheet by heavy codoping.

  4. Excellent low-field magnetoresistance effect in Ga-doped MnZn ferrites

    SciTech Connect

    Kim, Hyo-Jin; Yoo, Sang-Im

    2014-12-15

    An excellent low field magnetoresistance (LFMR) property was achieved from the Ga-doped (Mn{sub 0.8}Zn{sub 0.2})Fe{sub 2}O{sub 4} (MnZn) ferrites at room temperature (RT). For this study, undoped and Ga-doped MnZn ferrites with the nominal compositions of (Mn{sub 0.8}Zn{sub 0.2}){sub 1−x}Ga{sub x}Fe{sub 2}O{sub 4} (x = 0 ∼ 0.1) were prepared by the conventional solid state reaction at 1400°C for 2 h in air. From the magneto-transport measurements, Ga-doped MnZn ferrites were found to have not only much lower resistivity values but also greatly improved LFMR ratios in comparison with undoped sample. The highest maximum LFMR ratio of 2.5% at 290 K in 0.5 kOe was achievable from 2 mol% Ga-doped MnZn ferrite. This large LFMR effect is attributable to an increase in spin electrons by Ga{sup 3+} ion substitution for the (Mn, Zn){sup 2+} site.

  5. Low-temperature processed Ga-doped ZnO coatings from colloidal inks.

    PubMed

    Della Gaspera, Enrico; Bersani, Marco; Cittadini, Michela; Guglielmi, Massimo; Pagani, Diego; Noriega, Rodrigo; Mehra, Saahil; Salleo, Alberto; Martucci, Alessandro

    2013-03-01

    We present a new colloidal synthesis of gallium-doped zinc oxide nanocrystals that are transparent in the visible and absorb in the near-infrared. Thermal decomposition of zinc stearate and gallium nitrate after hot injection of the precursors in a mixture of organic amines leads to nanocrystals with tunable properties according to gallium amount. Substitutional Ga(3+) ions trigger a plasmonic resonance in the infrared region resulting from an increase in the free electrons concentration. These nanocrystals can be deposited by spin coating, drop casting, and spray coating resulting in homogeneous and high-quality thin films. The optical transmission of the Ga-ZnO nanoparticle assemblies in the visible is greater than 90%, and at the same time, the near-infrared absorption of the nanocrystals is maintained in the films as well. Several strategies to improve the films electrical and optical properties have been presented, such as UV treatments to remove the organic compounds responsible for the observed interparticle resistance and reducing atmosphere treatments on both colloidal solutions and thin films to increase the free carriers concentration, enhancing electrical conductivity and infrared absorption. The electrical resistance of the nanoparticle assemblies is about 30 kΩ/sq for the as-deposited, UV-exposed films, and it drops down to 300 Ω/sq after annealing in forming gas at 450 °C, comparable with state of the art tin-doped indium oxide coatings deposited from nanocrystal inks. PMID:23394063

  6. Effects of gallium doping on properties of a-plane ZnO films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Han, Seok Kyu; Lee, Hyo Sung; Lim, Dong Seok; Hong, Soon-Ku; Yoon, Nara; Oh, Dong-Cheol; Ahn, Byung Jun; Song, Jung-Hoon; Yao, Takafumi

    2011-05-15

    The authors report on the structural, optical, and electrical properties of Ga-doped a-plane (1120) ZnO films grown by plasma-assisted molecular beam epitaxy. Ga doping level was controlled by changing the Ga cell temperatures from 350 to 470 deg. C with an interval of 30 deg. C. With up to Ga cell temperatures of 440 deg. C, single crystalline Ga-doped a-plane ZnO films were grown; however, the sample with a Ga cell temperature of 470 deg. C showed polycrystalline features. The typical striated surface morphology normally observed from undoped ZnO films disappeared with Ga doping. ZnO films doped with Ga cell temperatures up to 440 deg. C did not show a significant change in full width at half maximum (FWHM) values of (1120) x-ray rocking curves by doping. The smallest FWHM values were 0.433 deg. ({phi}=90 deg.) and 0.522 deg. ({phi}=0 deg. ) for the sample with a Ga cell temperature of 350 deg. C. The polycrystalline ZnO film with excessive Ga doping at the Ga cell temperature of 470 deg. C showed significantly increased FWHM values. Hall measurements at room temperature (RT) revealed that electron concentration began to be saturated at the Ga cell temperature of 440 deg. C and electron mobility was drastically reduced at the Ga cell temperature of 470 deg. C. The carrier concentration of Ga-doped ZnO films were controlled from 7.2x10{sup 18} to 3.6x10{sup 20} cm{sup -3}. Anisotropic electrical properties (carrier concentration and Hall mobility) were observed in measurements by the van der Pauw method depending on the direction (c- or m-direction) for the undoped sample but not observed for the doped samples. RT photoluminescence (PL) spectra from the Ga-doped single crystalline ZnO films showed dominant near band edge (NBE) emissions with negligibly deep level emission. The NBE intensity in PL spectra increases with Ga doping.

  7. Enhanced Thermoelectric Properties of Cu2ZnSnSe4 with Ga-doping

    SciTech Connect

    Wei, Kaya; Beauchemin, Laura; Wang, Hsin; Porter, Wallace D.; Martin, Joshua; Nolas, George S.

    2015-08-10

    Gallium doped Cu2ZnSnSe4 quaternary chalcogenides with and without excess Cu were synthesized by elemental reaction and densified using hot pressing in order to investigate their high temperature thermoelectric properties. The resistivity, , and Seebeck coefficient, S, for these materials decrease with increased Ga-doping while both mobility and effective mass increase with Ga doping. The power factor (S2/ρ) therefore increases with Ga-doping. The highest thermoelectric figure of merit (ZT = 0.39 at 700 K) was obtained for the composition that had the lowest thermal conductivity. Our results suggest an approach to achieving optimized thermoelectric properties and are part of the continuing effort to explore different quaternary chalcogenide compositions and structure types, as this class of materials continues to be of interest for thermoelectrics applications.

  8. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  9. Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Emrah Unalan, Husnu; Turan, Rasit

    2016-04-01

    In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1 0 0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)-voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm-2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.

  10. Dye-Sensitized Solar Cells Combining ZnO Nanotip Arrays and Nonliquid Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Chen, Hanhong; Duan, Ziqing; Lu, Yicheng; Du Pasquier, Aurelien

    2009-08-01

    We present a dye-sensitized solar cell (DSSC) using a nanostructured ZnO photoelectrode and a gel electrolyte. The photoelectrode consists of well-aligned ZnO nanotips on a Ga-doped ZnO (GZO) transparent conducting film. The GZO film (400 nm, sheet resistance ~25 Ω/sq, transmittance over 85% in the visible wavelength) and ZnO nanotips (3.2 μm length) are sequentially grown on a glass substrate using metalorganic chemical vapor deposition. The ZnO photoelectrode is sensitized with dye N719 and impregnated with N-methyl pyrolidinone (NMP) gelled with poly(vinyl-difluoroethylene-hexafluoropropylene) copolymer (PVDF-HFP). The cell exhibits an open-circuit voltage of 726 mV and a power conversion efficiency of 0.89% under one sun illumination. The aging testing shows that the cell using a gel electrolyte has better stability than its liquid electrolyte counterpart.

  11. CORRIGENDUM: Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Kim, Jinwoo; Chung, Seungjun; Jeong, Jaewook; Lee, Changhee; Hong, Yongtaek

    2009-07-01

    Two corrections should be made to the previously published version of this article. On page 1, right-hand column, the radius of Zn should be read as 0.074 nm. This value is taken from Lide D R 1991 Handbook of Chemistry and Physics 71st edn (Boca Raton, FL: CRC Press). In the first paragraph of section 2, Diethanolammine and its acronym DEA should be corrected to Monoethanolamine and MEA.

  12. Single phase formation of Co-implanted ZnO thin films by swift heavy ion irradiation: Optical studies

    SciTech Connect

    Kumar, Ravi; Singh, Fouran; Angadi, Basavaraj; Choi, Ji-Won; Choi, Won-Kook; Jeong, Kwangho; Song, Jong-Han; Khan, M. Wasi; Srivastava, J. P.; Kumar, Ajay; Tandon, R. P.

    2006-12-01

    Low temperature photoluminescence and optical absorption studies on 200 MeV Ag{sup +15} ion irradiated Co-implanted ZnO thin films were studied. The Co clusters present in as implanted samples were observed to be dissolved using 200 MeV Ag{sup +15} ion irradiation with a fluence of 1x10{sup 12} ions/cm{sup 2}. The photoluminescence spectrum of pure ZnO thin film was characterized by the I{sub 4} peak due to the neutral donor bound excitons and the broad green emission. The Co-doped ZnO films show three sharp levels and two shoulders corresponding to 3t{sub 2g} and 2e{sub g} levels of crystal field splitted Co d orbitals, respectively. The ultraviolet-visible absorption spectroscopy also shows the systematic variation of band gap after 200 MeV Ag{sup +15} ion irradiation.

  13. Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films

    SciTech Connect

    Kim, Dong-Ho; Lee, Sung-Hun; Lee, Gun-Hwan; Kim, Hyun-Bum; Kim, Kwang Ho; Lee, Yoon-Gyu; Yu, Tae-Hwan

    2010-07-15

    Gallium-doped zinc oxide thin films were prepared on glass substrates by dc magnetron sputtering under various hydrogen contents in sputtering ambient. The carrier concentration of the films deposited at low-temperatures (80 and 160 deg. C) was increased due to the incorporation of hydrogen atoms, acting as shallow donors. A low resistivity of 4.0x10{sup -4} {Omega} cm was obtained for the film grown at 160 deg. C with H{sub 2} 10%, which has a carrier concentration of 8.2x10{sup 20}/cm{sup 3}. The beneficial effect of hydrogen doping was not observed for the films deposited at 270 deg. C. Both carrier concentration and mobility were decreased by the addition of hydrogen gas in the sputtering ambient. Variations in the electrical transport properties upon vacuum annealing showed that the difference is attributed to the thermal stability of interstitial hydrogen atoms in the films. The hydrogen incorporation was found to induce the lattice expansion and the free carrier absorption in near infrared range. The investigation of the structural and optical properties of the films upon annealing also revealed that the incorporated hydrogen atoms are unstable at high temperature, which is consistent with the results obtained in the electrical properties.

  14. Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films

    SciTech Connect

    Serrao, Felcy Jyothi Dharmaprakash, S. M.

    2015-06-24

    In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and show the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.

  15. Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor

    SciTech Connect

    Khalid, Faridzatul Shahira; Awang, Rozidawati

    2014-09-03

    Gallium doped zinc oxide (GZO) has good electrical property. It is widely used as transparent electrode in photovoltaic devices, and sensing element in gas and pressure sensors. GZO thin film was prepared using magnetron sputtering. Film deposition times were set at 10, 15, 20, 25 and 30 minutes to get samples of different thickness. X-ray diffraction (XRD) was used to determine the structure of GZO thin films. Structure for GZO thin film is hexagonal wurtzite structure. Morphology and thickness of GZO thin films was observed from FESEM micrographs. Grain size and thickness of thin films improved with increasing deposition times. However, increasing the thickness of thin films occur below 25 minutes only. Electrical properties of GZO thin films were studied using a four-point probe technique. The changes in the structure of the thin films lead to the changed of their electrical properties resulting in the reduction of the film resistance. These thin films properties significantly implying the potential application of the sample as a humidity sensor.

  16. Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression.

    PubMed

    Liu, Yong; Xu, Wei; Liu, Da-Bo; Yu, Meijuan; Lin, Yuan-Hua; Nan, Ce-Wen

    2015-05-01

    Ga doped In2O3-based thermoelectric materials were prepared by spark plasma sintering (SPS) using sintered powders in the low temperature solid phase. The solubility of Ga in In2O3 is about 10 at%, much larger than other elements such as Ge, Ce, etc. The larger solubility of Ga allows us to optimize the thermal and electrical transport properties of Ga doped In2O3 in a wider window. While tuning the concentration of dopants, the thermoelectric performance of Ga doped In2O3 was enhanced through a synergistic approach combining band-gap engineering and phonon suppression. The power factor increases from ∼0.5 × 10(-4) to ∼9.6 × 10(-4) W mK(-2) at 700 °C while thermal conductivity reduces from ∼4 to ∼2 W mK(-1) at 700 °C in In1.9Ga0.1O3. The maximum ZT of 0.37, increased by a factor of 4 from the pristine In2O3, is achieved in In1.9Ga0.1O3 at 700 °C. PMID:25829235

  17. The enhanced spontaneous dielectric polarization in Ga doped CuFeO{sub 2}

    SciTech Connect

    Shi, Liran; Wei, Meng; Huang, Junwei; Chen, Borong; Shang, Cui; Xia, Zhengcai Long, Zhuo; Ouyang, Zhongwen; Xia, Nianming

    2014-11-07

    The magnetic and dielectric polarization properties of the single crystal samples of CuFe{sub 1−x}Ga{sub x}O{sub 2} (x = 0 and 0.02) are investigated. Experimental results show that the magnetization and dielectric polarizations are anisotropy and coupled together. Compared with pure CuFeO{sub 2}, in the case with the magnetic field parallel to the c axis, a field-induced phase transition with a hysteresis is clearly observed between the five-sublattice (5SL) and three-sublattice (3SL) phases. Specially, an obvious spontaneous dielectric polarization is observed in CuFe{sub 0.98}Ga{sub 0.02}O{sub 2} in a lower magnetic field region, indicating that the Ga doping has an effect on the enhancement of spontaneous dielectric polarization. Based on the dilution effect, change of exchange interaction, and partial release of the spin frustration due to the structural modulation of the Ga ion dopant, the origin of the magnetization, and spontaneous polarization characteristics are discussed and the complete dielectric polarization diagrams are assumed.

  18. Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation

    SciTech Connect

    Mahajan, S. V.; Upadhye, D. S.; Bagul, S. B.; Shaikh, S. U.; Birajadar, R. B.; Siddiqui, F. Y.; Huse, N. P.; Sharma, R. B. E-mail: rps.phy@gmail.com

    2015-06-24

    Nanocrystalline Zinc Oxide (ZnO) thin film prepared by Low cost Successive Ionic Layer Adsorption and Reaction (SILAR) method. This film was irradiated by 120 MeV Ni{sup 7+} ions with the fluence of 5x10{sup 12}ions/cm{sup 2}. The X-ray diffraction study was shows polycrystalline nature with wurtzite structure. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Photo Sensor nature was calculated by I-V characteristics with different sources of light 40W, 60W and 100W.

  19. Monte-Carlo modeling of excitation of the electron subsystem of ZnO and MgO in tracks of swift heavy ions

    NASA Astrophysics Data System (ADS)

    Voronkov, R. A.; Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.

    2015-12-01

    Monte Carlo code TREKIS is applied to trace kinetics of excitation of the electron subsystem of ZnO and MgO after an impact of a swift heavy ion (SHI). The event-by-event simulations describe excitation of the electron subsystems by a penetrating SHI, spatial spreading of generated electrons and secondary electron cascades. Application of the complex dielectric function (CDF) formalism for calculation of the cross sections of charged particle interaction with a solid target allows to consider collective response of the target to perturbation, which arises from the spatial and temporal correlations in the target electrons ensemble. The method of CDF reconstruction from the experimental optical data is applied. Electron inelastic mean free paths calculated within the CDF formalism are in very good agreement with NIST database. SHI energy losses agree well with those from SRIM and CasP codes. The radial distributions of valence holes, core holes and delocalized electrons as well as their energy densities in SHI tracks are calculated. The analysis of these distributions is presented.

  20. Plasmon generation in sputtered Ga-doped MgZnO thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Awasthi, Vishnu; Pandey, Sushil Kumar; Garg, Vivek; Sengar, Brajendra S.; Sharma, Pankaj; Kumar, Shailendra; Mukherjee, C.; Mukherjee, Shaibal

    2016-06-01

    The crystalline, electrical, morphological, optical properties and plasmonic behaviour of Ga doped MgZnO (GMZO) thin films grown at different substrate temperatures (200-600 °C) by a dual ion beam sputtering (DIBS) system are investigated. Transmittance value of more than ˜94% in 400-1000 nm region is observed for all GMZO films. The particle plasmon features can be detected in the absorption coefficient spectra of GMZO grown at 500 and 600 °C in the form of a peak at ˜4.37 eV, which corresponds to a plasmon resonance peak of nanoclusters formed in GMZO. The presence of such plasmonic features is confirmed by ultraviolet photoelectron spectroscopy measurements. The values of particle plasmon resonance energy of various nanoclusters are in the range of solar spectrum, and these can easily be tuned and excited at the desirable wavelengths while optimizing the efficiency of solar cells (SCs) by simple alteration of DIBS growth temperature. These nanoclusters are extremely promising to enhance the optical scattering and trapping of the incident light, which increases the optical path length in the absorber layer of cost-effective SCs and eventually increases its efficiency.

  1. 266  nm ultraviolet light generation in Ga-doped BaAlBO3F2 crystals.

    PubMed

    Yang, Lei; Yue, Yinchao; Yang, Feng; Hu, Zhanggui; Xu, Zuyan

    2016-04-01

    BaAlBO3F2 (BABF) crystals are a recently developed and promising nonlinear optical material, notably for the third harmonic generation of ultraviolet (UV) light at 355 nm. However, the fourth harmonic generation of UV light at 266 nm has never been obtained by using a BABF crystal due to its relatively small birefringence. We demonstrate that the birefringence of BABF can be effectively increased by doping it with Ga3+. The fourth harmonic generation of UV light at 266 nm was achieved for the first time in a Ga-doped BABF crystal. PMID:27192296

  2. Characteristics of Ga-Rich Cu(In, Ga)Se2 Solar Cells Grown on Ga-Doped ZnO Back Contact.

    PubMed

    Sun, Qian; Kim, Kyoung-Bo; Jeon, Chan-Wook

    2016-05-01

    Wide bandgap Cu(In,Ga)Se2 (CIGS) thin films were deposited on Ga-rich Ga:ZnO (GZO) or MoN/GZO by single-stage co-evaporation. CIGS/TCO interface phases, such as resistive n-type Ga2O3, which are likely to have formed during the high temperature growth of Ga-rich CIGS, can deteriorate the solar cell performance. Although some Ga accumulation was observed in both of the CIGS/GZO and CIGS/MoN/GZO interfaces formed at 520 degrees C, the Ga oxide layer was absent. On the other hand, their current-voltage characteristics showed strong roll-over behavior regardless of the MoN diffusion barrier. The strong Schottky barrier formation at the CLGS/GZO junction due to the low work function of GZO, was attributed to current blocking at a high forward bias. PMID:27483870

  3. Significant mobility enhancement in extremely thin highly doped ZnO films

    SciTech Connect

    Look, David C.; Heller, Eric R.; Yao, Yu-Feng; Yang, C. C.

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  4. Stable highly conductive ZnO via reduction of Zn vacancies

    SciTech Connect

    Look, David C.; Droubay, Timothy C.; Chambers, Scott A.

    2012-09-04

    Growth of Ga-doped ZnO by pulsed laser deposition at 200 C in an ambient of Ar and H2 produces a resistivity  of ~ 1.5 x 10-4 -cm, stable to 500 C. Annealing on Zn foil reduces  to ~ 1.2 x 10-4 -cm, one of the lowest values ever reported. The key is reducing the Zn-vacancy acceptor concentration NA to 5 x 1019, only 3% of the Ga-donor concentration ND of 1.6 x 1021 cm-3, with ND and NA determined from a degenerate mobility theory. The plasmonic wavelength is 1060 nm, further bridging the gap between metals and semiconductors.

  5. 100 MeV Ni{sup +7} swift heavy ion induced magnetism in cobalt doped ZnO thin films

    SciTech Connect

    Kumar, Sunil Singh, D. P.; Kumar, Ravi

    2014-04-24

    Zn{sub 0.90}Co{sub 0.10}O thin films were prepared using Sol-Gel spin coating method. Films were irradiated with 100 MeV Ni{sub +7} Swift Heavy Ions (SHI) with fluences 1× 10{sup 13} ions/cm{sup 2} using 15 UD tandem accelerator at IUAC New Delhi and its effect were studied on the structural, optical and magnetic properties of irradiated thin films. X-ray diffraction studies show single phase films with preferred c-axis orientation after irradiation. Ultraviolet-visible absorption spectroscopy shows red shift in the band gap of irradiated thin films. Magnetic field dependence of magnetization reveals weak ferromagnetism in irradiated thin films. AFM studies shows significant increase in the grain size and the surface roughness of the films after irradiation.

  6. Ga-doped TiZnO transparent conductive oxide used as an alternative anode in blue, green, and red phosphorescent OLEDs.

    PubMed

    Chang, Chih-Hao; Liu, Wei-Sheng; Wu, Shen-Yu; Huang, Jun-Lin; Hung, Chao-Yu; Chang, Yu-Lin; Wu, Ying-Chieh; Chen, Wei-Chih; Wu, Yi-Cheng

    2014-09-28

    X-ray diffraction was used to study the optoelectronic characteristics of Ga-doped TiZnO (GTZO) thin film and revealed increased crystallinity with annealing temperatures ranging from as-grown to 450 °C. The low thin film resistivity of 6.1 × 10(-4) Ω cm and the average high optical transmittance of 93% in the wavelength range between 350 and 800 nm make GTZO an alternative candidate for application in organic light-emitting diodes (OLEDs). Both GTZO and indium-tin-oxide (ITO) anodes are employed for the successful fabrication of blue, green, and red phosphorescent OLEDs. The similar device electrical characteristics observed could be interpreted as evidence of the effectiveness of doping Ga in TiZnO. The simplified tri-layer blue, green, and red phosphorescent OLEDs demonstrated high performance with respective maximum efficiencies of 19.0%, 14.5%, and 9.1%, representing an improvement over ITO-based OLEDs. Furthermore, the OLEDs with the GTZO anode exhibited superior performance at higher current densities, demonstrating high potential for OLED display and lighting applications. PMID:25109371

  7. Influence of Ga doping on rare earth moment ordering and ferromagnetic transition in Nd0.7Sr0.3Co1-xGaxO3

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Maheswar Repaka, D. V.; Aparnadevi, M.; Tripathi, T. S.; Mahendiran, R.

    2013-05-01

    We report the impact of dilution of Co sublattice by non-magnetic Ga3+ ion on the magnetic, electrical, and magnetoresistive properties in Nd0.7Sr0.3Co1-xGaxO3 for x = 0-0.12. Field-cooled magnetization of the parent compound (x = 0) shows an anomalous maximum at T* = 54.6 K much below the onset of ferromagnetic transition (TC = 160 K) of the Co sublattice, which is attributed to the polarization of Nd-4f moments antiparallel to the Co-3d sublattice. Both TC and T* shift to low temperature with increasing x and the Nd-4f spin reverses from antiparallel to parallel with increasing strength of the magnetic field. While the value of high field magnetization is not seriously affected by Ga doping, coercive field at 10 K increases dramatically with increasing x. Ga substitution transforms ferromagnetic metallic state into ferromagnetic insulating state for x ≥ 0.03 and decreases the magnitude of magnetoresistance from 6% for x = 0% to 0.5% for x = 0.12.

  8. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-05-01

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10-3 Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  9. Effects of rapid thermal annealing on properties of Ga-doped Mg{sub x}Zn{sub 1−x}O films and Ga-doped Mg{sub x}Zn{sub 1−x}O/AlGaN heterojunction diodes

    SciTech Connect

    Hsueh, Kuang-Po E-mail: kphsueh@mail.vnu.edu.tw; Cheng, Po-Wei

    2014-08-14

    This study investigated the thermal annealing effects of Ga-doped Mg{sub x}Zn{sub 1−x}O (GMZO) films and GMZO/AlGaN heterojunction diodes. GMZO films were deposited using a radio-frequency magnetron sputtering system with a 4-in. ZnO/MgO/Ga{sub 2}O{sub 3} target. In addition, the Hall results, X-ray diffraction, transparent performance, and X-ray photoelectron spectroscopy (XPS) spectra were measured. The as-grown GMZO film deposited in this study exhibited a high transparency with transmittances over 95% in the visible region (360–700 nm) and a sharp absorption edge in the UV region (275–350 nm). The phenomenon of phase separation in the GMZO films was investigated based on the XPS spectra, revealing that an increase in the O-Zn signal accompanied a decline in the O-Ga signal after the thermal annealing. Moreover, the current-voltage (I-V) characteristics of the GMZO/AlGaN n-p junction diodes were examined at different annealing temperatures. The light emission derived from the forward-biased junction and near-ultraviolet (near-UV) light emission was evident at all p-n junctions. The n-GMZO/p-AlGaN diode annealed at 800 °C exhibited a brighter near-UV emission compared with the other diodes. In addition, the spectrum of diode annealed at 800 °C exhibited a broad peak at 474 nm (2.62 eV) and a tail of the emission spectrum extending to 850 nm. Based on these findings, the GMZO films are suitable for forming transparent contact layers in optoelectronic devices, and the n-GMZO/p-AlGaN junction diode is a feasible alternative in near-UV light emission devices.

  10. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    SciTech Connect

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2011-07-15

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10{sup -4}{Omega} cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm{sup 2}/Vs and carrier concentrations on the order of 10{sup 20} cm{sup -3}. All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10{sup -3}-10{sup -4}{Omega} cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  11. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation.

    PubMed

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-12-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility (μ H) of 50.1 cm(2)/Vs with a carrier concentration (N) of 2.55 × 10(20) cm(-3). Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm(2)/Vs with an N of 2.22 × 10(20) cm(-3). PMID:27365000

  12. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-06-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.

  13. A-site compositional effects in Ga-doped hollandite materials of the form BaxCsyGa2x+yTi8-2x-yO16: implications for Cs immobilization in crystalline ceramic waste forms.

    PubMed

    Xu, Yun; Wen, Yi; Grote, Rob; Amoroso, Jake; Shuller Nickles, Lindsay; Brinkman, Kyle S

    2016-01-01

    The hollandite structure is a promising crystalline host for Cs immobilization. A series of Ga-doped hollandite BaxCsyGa2x+yTi8-2x-yO16 (x = 0, 0.667, 1.04, 1.33; y = 1.33, 0.667, 0.24, 0) was synthesized through a solid oxide reaction method resulting in a tetragonal hollandite structure (space group I4/m). The lattice parameter associated with the tunnel dimension was found to increases as Cs substitution in the tunnel increased. A direct investigation of cation mobility in tunnels using electrochemical impedance spectroscopy was conducted to evaluate the ability of the hollandite structure to immobilize cations over a wide compositional range. Hollandite with the largest tunnel size and highest aspect ratio grain morphology resulting in rod-like microstructural features exhibited the highest ionic conductivity. The results indicate that grain size and optimized Cs stoichiometry control cation motion and by extension, the propensity for Cs release from hollandite. PMID:27273791

  14. A-site compositional effects in Ga-doped hollandite materials of the form BaxCsyGa2x+yTi8−2x−yO16: implications for Cs immobilization in crystalline ceramic waste forms

    PubMed Central

    Xu, Yun; Wen, Yi; Grote, Rob; Amoroso, Jake; Shuller Nickles, Lindsay; Brinkman, Kyle S.

    2016-01-01

    The hollandite structure is a promising crystalline host for Cs immobilization. A series of Ga-doped hollandite BaxCsyGa2x+yTi8−2x−yO16 (x = 0, 0.667, 1.04, 1.33; y = 1.33, 0.667, 0.24, 0) was synthesized through a solid oxide reaction method resulting in a tetragonal hollandite structure (space group I4/m). The lattice parameter associated with the tunnel dimension was found to increases as Cs substitution in the tunnel increased. A direct investigation of cation mobility in tunnels using electrochemical impedance spectroscopy was conducted to evaluate the ability of the hollandite structure to immobilize cations over a wide compositional range. Hollandite with the largest tunnel size and highest aspect ratio grain morphology resulting in rod-like microstructural features exhibited the highest ionic conductivity. The results indicate that grain size and optimized Cs stoichiometry control cation motion and by extension, the propensity for Cs release from hollandite. PMID:27273791

  15. A-site compositional effects in Ga-doped hollandite materials of the form BaxCsyGa2x+yTi8‑2x‑yO16: implications for Cs immobilization in crystalline ceramic waste forms

    NASA Astrophysics Data System (ADS)

    Xu, Yun; Wen, Yi; Grote, Rob; Amoroso, Jake; Shuller Nickles, Lindsay; Brinkman, Kyle S.

    2016-06-01

    The hollandite structure is a promising crystalline host for Cs immobilization. A series of Ga-doped hollandite BaxCsyGa2x+yTi8‑2x‑yO16 (x = 0, 0.667, 1.04, 1.33; y = 1.33, 0.667, 0.24, 0) was synthesized through a solid oxide reaction method resulting in a tetragonal hollandite structure (space group I4/m). The lattice parameter associated with the tunnel dimension was found to increases as Cs substitution in the tunnel increased. A direct investigation of cation mobility in tunnels using electrochemical impedance spectroscopy was conducted to evaluate the ability of the hollandite structure to immobilize cations over a wide compositional range. Hollandite with the largest tunnel size and highest aspect ratio grain morphology resulting in rod-like microstructural features exhibited the highest ionic conductivity. The results indicate that grain size and optimized Cs stoichiometry control cation motion and by extension, the propensity for Cs release from hollandite.

  16. Properties of double-layered Ga-doped Al-zinc-oxide/titanium-doped indium-tin-oxide thin films prepared by dc magnetron sputtering applied for Si-based thin film solar cells

    SciTech Connect

    Wang, Chao-Chun; Wuu, Dong-Sing; Lin, Yang-Shih; Lien, Shui-Yang; Huang, Yung-Chuan; Liu, Chueh-Yang; Chen, Chia-Fu; Nautiyal, Asheesh; Lee, Shuo-Jen

    2011-11-15

    In this article, Ga-doped Al-zinc-oxide (GAZO)/titanium-doped indium-tin-oxide (ITIO) bi-layer films were deposited onto glass substrates by direct current (dc) magnetron sputtering. The bottom ITIO film, with a thickness of 200 nm, was sputtered onto the glass substrate. The ITIO film was post-annealed at 350 deg. C for 10-120 min as a seed layer. The effect of post-annealing conditions on the morphologies, electrical, and optical properties of ITIO films was investigated. A GAZO layer with a thickness of 1200 nm was continuously sputtered onto the ITIO bottom layer. The results show that the properties of the GAZO/ITIO films were strongly dependent on the post-annealed conditions. The spectral haze (T{sub diffuse}/T{sub total}) of the GAZO/ITIO bi-layer films increases upon increasing the post-annealing time. The haze and resistivity of the GAZO/ITIO bi-layer films were improved with the post-annealed process. After optimizing the deposition and annealing parameters, the GAZO/ITIO bi-layer film has an average transmittance of 83.20% at the 400-800 nm wavelengths, a maximum haze of 16%, and the lowest resistivity of 1.04 x 10{sup -3}{Omega} cm. Finally, the GAZO/ITIO bi-layer films, as a front electrode for silicon-based thin film solar cells, obtained a maximum efficiency of 7.10%. These encouraging experimental results have potential applications in GAZO/ITIO bi-layer film deposition by in-line sputtering without the wet-etching process and enable the production of highly efficient, low-cost thin film solar cells.

  17. Defects in ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.; Jokela, S. J.

    2009-10-01

    Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zn interstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the n-type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable p-type conductivity has not been achieved. Ferromagnetism is complicated by the presence of secondary phases, grain boundaries, and native defects. The famous green luminescence has several possible origins, including Cu impurities and Zn vacancies. The properties of group-I (Cu, Li, and Na) and group-V (N, P, As, and Sb) acceptors, and their complexes with H, are discussed. In the future, doping of ZnO nanocrystals will rely on an understanding of these fundamental properties.

  18. Al-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kadam, Pratibha; Agashe, Chitra; Mahamuni, Shailaja

    2008-11-01

    Al3+-doped ZnO nanocrystals were differently obtained by wet chemical and an electrochemical route. An increase in forbidden gap due to change in crystal size and also due to Al3+ doping in ZnO is critically analyzed. The Moss-Burstein type shift in Al3+-doped ZnO nanocrystals provides an evidence of successful Al3+ doping in ZnO nanocrystals. The possibility of varying the carrier concentration in ZnO nanocrystals is the indirect implication of the present investigations.

  19. A Comparison of ZnO and ZnO(-)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  20. Highly Conducting Gallium-Doped ZnO Thin Film as Transparent Schottky Contact for Organic- Semiconductor-Based Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Ghosh, Subhasis

    2015-08-01

    Highly conducting and transparent Ga-doped ZnO (GZO) thin films have been grown on transparent substrates at different growth temperatures with Ga content varying from 0.01% to 10%. All films showed pronounced c-axis orientation corresponding to hexagonal wurtzite structure. The minimum resistivity of 4.3 × 10-4 Ω cm was reproducibly obtained in GZO thin film doped with 2% Ga and grown at 600°C. We have further shown that highly conducting transparent GZO thin film can be used as a Schottky contact in copper phthalocyanine (CuPc)-based Schottky diodes. The capacitance-voltage characteristics of the Al/CuPc/Au and GZO/CuPc/Au Schottky diodes show similar built-in potential ( V bi) of 0.98 V, which is close to the difference in work function between Au (5.2 eV) and Al or GZO (4.2 eV), establishing that GZO behaves as a metal electrode with work function similar to Al. Similar values of acceptor concentration (˜1015 cm-3) in CuPc were obtained from the capacitance-voltage characteristics of the Al/CuPc/Au and GZO/CuPc/Au Schottky diodes. These observations indicate the absence of interface states at the metal/organic interface in CuPc-based Schottky diodes.

  1. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  2. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  3. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  4. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect

    Chelouche, A.; Djouadi, D.; Aksas, A.

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  5. The impact of morphology upon the radiation hardness of ZnO layers.

    PubMed

    Burlacu, A; Ursaki, V V; Skuratov, V A; Lincot, D; Pauporte, T; Elbelghiti, H; Rusu, E V; Tiginyanu, I M

    2008-05-28

    It is shown that ZnO nanorods and nanodots grown by MOCVD exhibit enhanced radiation hardness against high energy heavy ion irradiation as compared to bulk layers. The decrease of the luminescence intensity induced by 130 MeV Xe(23+) irradiation at a dose of 1.5 × 10(14) cm(-2) in ZnO nanorods is nearly identical to that induced by a dose of 6 × 10(12) cm(-2) in bulk layers. The damage introduced by irradiation is shown to change the nature of electronic transitions responsible for luminescence. The change of excitonic luminescence to the luminescence related to the tailing of the density of states caused by potential fluctuations occurs at an irradiation dose around 1 × 10(14) cm(-2) and 5 × 10(12) cm(-2) in nanorods and bulk layers, respectively. More than one order of magnitude enhancement of radiation hardness of ZnO nanorods grown by MOCVD as compared to bulk layers is also confirmed by the analysis of the near-bandgap photoluminescence band broadening and the behavior of resonant Raman scattering lines. The resonant Raman scattering analysis demonstrates that ZnO nanostructures are more radiation-hard as compared to nanostructured GaN layers. High energy heavy ion irradiation followed by thermal annealing is shown to be a way for the improvement of the quality of ZnO nanorods grown by electrodeposition and chemical bath deposition. PMID:21730593

  6. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  7. Heavy flavors

    SciTech Connect

    Cox, B.; Gilman, F.J.; Gottschalk, T.D.

    1986-11-01

    A range of issues pertaining to heavy flavors at the SSC is examined including heavy flavor production by gluon-gluon fusion and by shower evolution of gluon jets, flavor tagging, reconstruction of Higgs and W bosons, and the study of rare decays and CP violation in the B meson system. A specific detector for doing heavy flavor physics and tuned to this latter study at the SSC, the TASTER, is described. 36 refs., 10 figs.

  8. Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater

    NASA Astrophysics Data System (ADS)

    Chaúque, E. F. C.; Zvimba, J. N.; Ngila, J. C.; Musee, N.

    Most wastewater treatment plants (WWTPs) employ activated sludge processes to treat wastewater. The bacteria found in these systems degrade organic matter but are very sensitive to toxic compounds such as heavy metals, among others. The impact of emerging contaminants, such as engineered nanoparticles (ENPs) on the treatment efficiency of WWTPs is yet to be fully elucidated. The effects of physicochemical parameters; the pH and ionic strength on ZnO ENPs in domestic wastewater were investigated to establish their fate and behavior in wastewater treatment systems, as well as potential release into the environment if they pass untreated. Our findings showed a decrease in zinc concentration in the filtrate as pH and ionic strength increased which indicated its possible removal through the abiotic, biosorption, and biosolid settling mechanisms. This phenomenon was further confirmed by transmission electron microscopy (TEM) images which showed agglomerates of ZnO ENPs in wastewater compared with de-ionized water. The dynamic light scattering (DLS) analysis of ZnO ENPs suspension in the wastewater showed their stability over a period of 2 h, with energy dispersive X-ray (EDS) analysis showing the presence of zinc on the sludge surface, while X-ray diffraction (XRD) analysis confirmed the presence of ZnO ENPs in the sludge over typical wastewater pH ranges. The results of this study will inform the integrated water management on the impact of nanotechnology based industries and the best approach in handling wastewater treatment products.

  9. The nitridation of ZnO nanowires

    PubMed Central

    2012-01-01

    ZnO nanowires (NWs) with diameters of 50 to 250 nm and lengths of several micrometres have been grown by reactive vapour transport via the reaction of Zn with oxygen on 1 nm Au/Si(001) at 550°C under an inert flow of Ar. These exhibited clear peaks in the X-ray diffraction corresponding to the hexagonal wurtzite crystal structure of ZnO and a photoluminescence spectrum with a peak at 3.3 eV corresponding to band edge emission close to 3.2 eV determined from the abrupt onset in the absorption-transmission through ZnO NWs grown on 0.5 nm Au/quartz. We find that the post growth nitridation of ZnO NWs under a steady flow of NH3 at temperatures ≤600°C promotes the formation of a ZnO/Zn3N2 core-shell structure as suggested by the suppression of the peaks related to ZnO and the emergence of new ones corresponding to the cubic crystal structure of Zn3N2 while maintaining their integrity. Higher temperatures lead to the complete elimination of the ZnO NWs. We discuss the effect of nitridation time, flow of NH3, ramp rate and hydrogen on the conversion and propose a mechanism for the nitridation. PMID:22397754

  10. Fabrication of ZnO nanoparticles by laser ablation of sintered ZnO in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kawabata, Keisuke; Nanai, Yasushi; Kimura, Seiji; Okuno, Tsuyoshi

    2012-04-01

    Fabrication of ZnO nanoparticles by laser ablation in liquid medium is reported. The possibility of using a sintered ZnO target for the ablation as well as a Zn plate is demonstrated. The appropriate aqueous solution of sodium dodecyl sulfate is found to be 1 mM for ZnO growing. The shape of ZnO nanoparticles is sphere and its diameter is 30˜60 nm. Fourier transform infrared spectra, Raman scattering spectra, and photoluminescence spectra reveal the optical properties of ZnO nanoparticles. Nanoparticles obtained by using ZnO targets show a smaller defect density compared with those by using Zn targets.

  11. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  12. Single ZnO nanocactus gas sensor formed by etching of ZnO nanorod

    NASA Astrophysics Data System (ADS)

    Ryong Ryu, Sung; Ram, S. D. Gopal; Cho, Hak-Dong; Lee, Dong Jin; Won Kang, Tae; Woo, Yongdeuk

    2015-06-01

    Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four-fold. When compared with a single ZnO NR gas sensor, the sensitivity of a ZnO NC was found to increase four-fold. This increase in sensitivity is attributed to the increase in surface area of the ZnO NC. The formed single ZnO NC gas sensor has good stability, response and recovery time.Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four

  13. Synthesis and antibacterial properties of ZnO brush pens

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Rong; Li, Yilin; Weng, Yuan; Liang, Weiquan; Zhang, Wenfeng; Zheng, Weitao; Hu, Haimei

    2015-12-01

    In this paper, ZnO with a novel hierarchical nanostructure has been synthesized by a new solution method. The novel hierarchical structure is named a ‘brush pen’. The biocompatibility and antibacterial properties of ZnO brush pens have been evaluated. The results demonstrate that ZnO brush pens show good antibacterial activity against Staphylococcus aureus.

  14. ZnO nanolasers on graphene films

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Park, Jun Beom; Park, Jong-woo; Hyun, Jerome K.; Yoon, Hosang; Oh, Hongseok; Yoon, Jiyoung

    2016-06-01

    We grew and characterized zinc oxide (ZnO) nanolasers on graphene films. By using graphene as a growth medium, we were able to prepare position-controlled and vertically aligned ZnO nanotube lasers. The ZnO nanolasers grown on graphene films showed good optical characteristics, evidenced by a low lasing threshold. Furthermore, the nanolaser/graphene system was easily lifted off the original substrate and transferred onto foreign substrates. The lasing performance was observed to be significantly enhanced by depositing a layer of silver on the back of the graphene film during this transfer process, which was quantitatively investigated using finite-difference time-domain simulations. Due to the wide selection of substrates enabled by the use of graphene films, our results suggest promising strategies for preparing practical nanolasers with improved performance.

  15. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of ˜20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  16. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  17. NEXAFS and XMCD studies of single-phase Co doped ZnO thin films.

    PubMed

    Singh, Abhinav Pratap; Kumar, Ravi; Thakur, P; Brookes, N B; Chae, K H; Choi, W K

    2009-05-01

    A study of the electronic structure and magnetic properties of Co doped ZnO thin films synthesized by ion implantation followed by swift heavy ion irradiation is presented using near-edge x-ray absorption fine structure (NEXAFS) and x-ray magnetic circular dichroism (XMCD) measurements. The spectral features of NEXAFS at the Co L(3,2)-edge show entirely different features than that of metallic Co clusters and other Co oxide phases. The atomic multiplet calculations are performed to determine the valence state, symmetry and the crystal field splitting, which show that in the present system Co is in the 2+ state and substituted at the Zn site in tetrahedral symmetry with 10Dq = -0.6 eV. The ferromagnetic character of these materials is confirmed through XMCD spectra. To rule out the possibilities of defect induced magnetism, the results are compared with Ar annealed and Ar-ion implanted pure ZnO thin films. The presented results confirm the substitution of Co at the Zn site in the ZnO matrix, which is responsible for room temperature ferromagnetism. PMID:21825451

  18. Characterization of reaction between ZnO and COS

    SciTech Connect

    Sasaoka, Eiji; Taniguchi, Kazuo; Uddin, M.A.; Hirano, Shigeru; Kasaoka, Shigeaki; Sakata, Yusaku

    1996-07-01

    In order to understand the behavior of COS in a ZnO desulfurization reactor, the reaction between ZnO and COS was studied in the presence of gases which compose a coal-derived gas. The behavior of COS in the reaction zone of a ZnO packed bed can be predicted as follows: H{sub 2}S in coal-derived gas reacts more easily with ZnO than COS; most of COS is converted to H{sub 2}S by catalytic hydrolysis and then reacts with ZnO, although a part of COS may react directly with ZnO; H{sub 2} accelerates the conversion of COS to H{sub 2}S; the water-gas shift reaction accelerates the reaction between ZnO and COS; and CO{sub 2} does not affect the reaction.

  19. Controlled doping of graphene using ZnO substrates

    NASA Astrophysics Data System (ADS)

    Si, Misuk; Choi, Won Jin; Jeong, Yoon Jang; Lee, Young Kuk; Kim, Ju-Jin; Lee, Jeong-O.

    2016-06-01

    We show that graphene device could be controllably doped by the bottom substrate by inserting atomic layer deposition grown ZnO between graphene and SiO2 substrate. To clarify the effect of bottom ZnO, length of the graphene transistor channel was varied from 20 to 200 μm, while that of ZnO was fixed to 10 μm. Graphene devices supported on ZnO film show marked difference from those supported on SiO2 substrates; bottom ZnO layer behave as an electron donor. UV illumination experiment on hybrid graphene-ZnO device reveals that the effect of doping from ZnO becomes negligible when the graphene channel length made about four times larger than that of ZnO stripe.

  20. Heavy loads

    SciTech Connect

    Metz, D.

    1982-01-01

    The extreme pressures on the roof and walls of an earth-sheltered residential home are discussed and the need for careful planning is stressed. Pertinent terms are defined. Footings and wall structure (reinforced concrete walls and concrete block walls) are described. Roofing systems are discussed in detail and illustrated: (1) poured-in-place concrete roof slabs; (2) pre-cast concrete planks; and (3) heavy timber roofs. Insulation of earth-sheltered homes is reviewed in terms of using: (1) urethanes; (2) extruded polystyrene; and (3) expanded polystyrene. Advantages, disadvantages, R-factors, costs, and installation are discussed. (MJJ)

  1. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin

    NASA Astrophysics Data System (ADS)

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-11-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality.

  2. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin.

    PubMed

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-12-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality. PMID:26573932

  3. ZnO quantum dots-decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-10-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3-5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O-H bond and Zn2+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn2+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions.

  4. Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol-gel derived ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kitazawa, Nobuaki; Aono, Masami; Watanabe, Yoshihisa

    2014-11-01

    Vertically aligned one-dimensional ZnO nanowire arrays have been synthesized by a hydrothermal method on sol-gel derived ZnO films. Sol-gel derived ZnO films and corresponding ZnO nanowire arrays have been characterized by X-ray diffraction and field-emission scanning electron microscopy. The effect of sol-gel derived ZnO film surface on the morphology of ZnO nanowire arrays has been investigated. The authors suggest from our investigation that sol-gel derived ZnO films affect the growth of one-dimensional ZnO nanostructures. Not only crystalline ZnO films but also amorphous ones can act as a scaffold for ZnO nucleus. Tilted ZnO micro-rods are grown on ZnO gel films, whereas vertically aligned ZnO nanowire arrays are grown on nanometer-sized ZnO grains. The average diameter of ZnO nanowire arrays are correlated strongly with the grain size of sol-gel derived ZnO films.

  5. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  6. Physical vapor transport crystal growth of ZnO

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Jianping, Ma; Fuli, Liu; Yuan, Zang; Yantao, Liu

    2014-03-01

    Zinc oxide (ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes (LEDs) and laser diodes, photodiodes, power diodes and other semiconductor devices. Recently, a new crystal growth for producing ZnO crystal boules was developed, which was physical vapor transport (PVT), at temperatures exceeding 1500 °C under a certain system pressure. ZnO crystal wafers in sizes up to 50 mm in diameter were produced. The conditions of ZnO crystal growth, growth rate and the quality of ZnO crystal were analyzed. Results from crystal growth and material characterization are presented and discussed. Our research results suggest that the novel crystal growth technique is a viable production technique for producing ZnO crystals and substrates for semiconductor device applications.

  7. Homoepitaxial regrowth habits of ZnO nanowire arrays

    PubMed Central

    2011-01-01

    Synthetic regrowth of ZnO nanowires [NWs] under a similar chemical vapor transport and condensation [CVTC] process can produce abundant ZnO nanostructures which are not possible by a single CVTC step. In this work, we report three different regrowth modes of ZnO NWs: axial growth, radial growth, and both directions. The different growth modes seem to be determined by the properties of initial ZnO NW templates. By varying the growth parameters in the first-step CVTC process, ZnO nanostructures (e.g., nanoantenna) with drastically different morphologies can be obtained with distinct photoluminescence properties. The results have implications in guiding the rational synthesis of various ZnO NW heterostructures. PMID:22151820

  8. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  9. Photophysics and photochemistry of quantized ZnO colloids

    SciTech Connect

    Kamat, P.V.; Patrick, B.

    1992-08-06

    The photophysical and photochemical behavior of quantized ZnO colloids in ethanol has been investigated by time-resolved transient absorption and emission measurements. Trapping of electrons at the ZnO surface resulted in broad absorption in the red region. The green emission of ZnO colloids was readily quenched by hole scavengers such as SCN{sup -} and I{sup -}. The photoinduced charge transfer to these hole scavengers was studied by laser flash photolysis. The yield of oxidized product increased considerably when ZnO colloids were coupled with ZnSe. 36 refs., 11 figs., 1 tab.

  10. Buffer layer effect on ZnO nanorods growth alignment

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal; Ma, Jiangang; Liu, Yichun; Shen, Dezhen

    2005-06-01

    Vertical aligned ZnO nanorods array was fabricated on Si with introducing a ZnO thin film as a buffer layer. Two different nucleation mechanisms were found in growth process. With using Au catalyst, Zn vapor could diffuse into Au nanoclusters with forming a solid solution. Then the ZnO nucleation site is mainly on the catalyst by oxidation of Au/Zn alloy. Without catalyst, nucleation could occur directly on the surface of buffer layer by homoepitaxy. The density and the size of ZnO nanorods could be governed by morphological character of catalyst and buffer layer. The nanorods growth is followed by vapor-solid mechanism.

  11. Sodium doping in ZnO crystals

    SciTech Connect

    Parmar, N. S. Lynn, K. G.

    2015-01-12

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1–3.5) × 10{sup 17 }cm{sup −3}. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a Na{sub Zn} level at ∼(220–270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4–5) orders of magnitude at room temperature.

  12. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  13. Spin noise spectroscopy of ZnO

    SciTech Connect

    Horn, H.; Berski, F.; Hübner, J.; Oestreich, M.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.

    2013-12-04

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  14. Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Bandekar, Gauri; Rajurkar, N. S.; Mulla, I. S.; Mulik, U. P.; Amalnerkar, D. P.; Adhyapak, P. V.

    2013-01-01

    In the present study, ZnO nanostructures have been successfully synthesized by hydrothermal, sonochemical and precipitation methods using polyvinyl pyrrolidone (PVP) as the capping agent. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-Visible spectroscopy and photoluminescence (PL) techniques. The XRD results revealed the hexagonal wurtzite structure of the ZnO nanostructures for all the samples. Furthermore, the morphology of the ZnO particles was obtained from FESEM micrographs. Particles prepared by hydrothermal method were found to be rice grain shaped and that prepared by precipitation and sonochemical methods were spherical shaped. Sunlight driven photocatalytic degradation of methylene blue (MB) was studied for ZnO nanostructures synthesized by various methods. The ZnO nanostructures were further decorated with Ag nanoparticles to enhance its dye degradation efficiency. The Ag decorated ZnO nanoparticles exhibited a higher degradation rate as compared to pure ZnO nanoparticles which was independent of pH. Since this process of dye degradation relies on the degradation of dye due to oxidation by highly reactive hydroxyl radicals, there are many factors which affect the efficiency of this process. Hence a study was conducted on the effect of various parameters on ZnO viz amount of catalyst, reaction pH and concentration of MB dye.

  15. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  16. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. PMID:26611814

  17. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Qing Lan; Xiong, Rui; Zhai, Bao-gai; Huang, Yuan Ming

    2015-01-01

    Two-dimensional fern-like ZnO nanoleaves were synthesized by ultrasonicating zinc microcrystals in water. The morphology, crystal structure, optical property and photocatalytic activity of the fern-like ZnO nanoleaves were characterized with scanning electron microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy and ultraviolet-visible spectroscopy, respectively. It is found that one fern-like ZnO nanoleaf is composed of one ZnO nanorod as the central trunk and a number of ZnO nanoplates as the side branches in opposite pairs along the central ZnO nanorod. The central ZnO nanorod in the fern-like nanoleaves is about 1 μm long while the side-branching ZnO nanoplates are about 100 nm long and 20 nm wide. Further analysis has revealed that ZnO nanocrystals are the building blocks of the central ZnO nanorod and the side-branching ZnO nanoplates. Under identical conditions, fern-like ZnO nanoleaves exhibit higher photocatalytic activity in photodegrading methyl orange in aqueous solution than spherical ZnO nanocrystals. The first-order photocatalytic rate constant of the fern-like ZnO nanoleaves is about four times as large as that of the ZnO nanoparticles. The branched architecture of the hierarchical nanoleaves is suggested be responsible for the enhanced photocatalytic activity of the fern-like ZnO nanoleaves.

  18. Fabrication of a ZnO Pyroelectric Sensor

    PubMed Central

    Hsiao, Chun-Ching; Huang, Kuo-Yi; Hu, Yuh-Chung

    2008-01-01

    This paper proposes a two-step radio frequency (RF) sputtering process to form a ZnO film for pyroelectric sensors. It is shown that the two-step sputtering process with a lower power step followed by a higher power step can significantly improve the voltage responsivity of the ZnO pyroelectric sensor. The improvement is attributed mainly to the formation of ZnO film with a strongly preferred orientation towards the c-axis. Furthermore, a nickel film deposited onto the uncovered parts of the ZnO film can effectively improve the voltage responsivity at higher modulating frequencies since the nickel film can enhance the incident energy absorption of the ZnO layer.

  19. A Novel Way for Synthesizing Phosphorus-Doped Zno Nanowires

    PubMed Central

    2011-01-01

    We developed a novel approach to synthesize phosphorus (P)-doped ZnO nanowires by directly decomposing zinc phosphate powder. The samples were demonstrated to be P-doped ZnO nanowires by using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction spectra, X-ray photoelectron spectroscopy, energy dispersive spectrum, Raman spectra and photoluminescence measurements. The chemical state of P was investigated by electron energy loss spectroscopy (EELS) analyses in individual ZnO nanowires. P was found to substitute at oxygen sites (PO), with the presence of anti-site P on Zn sites (PZn). P-doped ZnO nanowires were high resistance and the related P-doping mechanism was discussed by combining EELS results with electrical measurements, structure characterization and photoluminescence measurements. Our method provides an efficient way of synthesizing P-doped ZnO nanowires and the results help to understand the P-doping mechanism.

  20. Review of zincblende ZnO: Stability of metastable ZnO phases

    NASA Astrophysics Data System (ADS)

    Ashrafi, A.; Jagadish, C.

    2007-10-01

    Common II-VI compound semiconducting materials are stable thermodynamically with zincblende phase, while the II-O materials such as zinc oxide (ZnO) and beryllium oxide (BeO) are stable with wurtzite phase, and cadmium oxide (CdO) and magnesium oxide (MgO) are stable in rocksalt phase. This phase disharmony in the same material family laid a challenge for the basic physics and in practical applications in optoelectronic devices, where ternary and quaternary compounds are employed. Thermodynamically the zincblende ZnO is a metastable phase which is free from the giant internal electric fields in the [001] directions and has an easy cleavage facet in the ⟨110⟩ directions for laser cavity fabrication that combined with evidence for the higher optical gain. The zincblende materials also have lower ionicity that leads to the lower carrier scattering and higher doping efficiencies. Even with these outstanding features in the zincblende materials, the growth of zincblende ZnO and its fundamental properties are still limited. In this paper, recent progress in growth and fundamental properties of zincblende ZnO material has been reviewed.

  1. Synthesis and spectroscopic characterization of water-soluble Mn-doped ZnO xS 1- x quantum dots

    NASA Astrophysics Data System (ADS)

    Xue, Fangfang; Liang, Jiangong; Han, Heyou

    2011-12-01

    A non-cadmium and water-soluble Mn-doped ZnO xS 1- x QDs was synthesized with denatured bovine serum albumin (dBSA) as stabilizer under nitrogen atmosphere, and the as-prepared products were characterized by X-ray powder diffraction (XRD), UV-vis absorption spectroscopy, fluorescence (FL) emission spectroscopy, high resolution transmission electronmicroscopy (HRTEM) and Raman spectrum. XRD patterns indicate that the Mn-doped ZnO xS 1- x QDs have a zinc-blende structure, and that manganese emerges in the form of divalent manganese (Mn 2+) and trivalent manganese (Mn 3+) (the intermediate of the reaction). The size of Mn-doped ZnO xS 1- x QDs is about 3.2 ± 0.7 nm according to HRTEM imaging. The FL spectra reveal that the Mn-doped ZnO xS 1- x QDs have two distinct emission bands: the defect-related emission and the Mn 2+-related emission, which exhibit a competing process. A good FL signal of the transition of Mn 2+ ( 4T 1- 6A 1) is observed when the doping amounts are 1.0% and 20% respectively, and the as-prepared solutions are stable for more than 6 months at 4 °C. This method has the advantages of good stability and environment-friendly stabilizer, for involving no heavy metal ions or toxic reagents.

  2. Gold as an intruder in ZnO nanowires.

    PubMed

    Méndez-Reyes, José M; Monroy, B Marel; Bizarro, Monserrat; Güell, Frank; Martínez, Ana; Ramos, Estrella

    2015-09-01

    Several techniques for obtaining ZnO nanowires (ZnO NWs) have been reported in the literature. In particular, vapour-liquid-solid (VLS) with Au as a catalyst is widely used. During this process, Au impurities in the ZnO NWs can be incorporated accidentally, and for this reason we named these impurities as intruders. It is thought that these intruders may produce interesting alterations in the electronic characteristics of nanowires. In the experiment, it is not easy to detect either Au atoms in these nanowires, or the modification that intruders produce in different electrical, optical and other properties. For this reason, in this density functional theory investigation, the effect of Au intruders on ZnO NWs is analysed. Au extended (thread) and point defects (atoms replacing Zn or O, or Au interstitials) are used to simulate the presence of gold atoms. Optimised geometries, band-gaps and density of states indicate that the presence of small amounts of Au drastically modifies the electronic states of ZnO NWs. The results reported here clearly indicate that small amounts of Au have a strong impact on the electronic properties of ZnO NWs, introducing states in the band edges that may promote transitions in the visible spectral region. The presence of Au as an intruder in ZnO NWs enhances the potential use of this system for photonic and photovoltaic applications. PMID:26219752

  3. Synthesis and characterization of ZnO tetrapods

    NASA Astrophysics Data System (ADS)

    Zahran, H. Y.; Yahia, I. S.

    2015-06-01

    ZnO was prepared by direct combustion method of pure zinc metal at 1000 °C for 30 min. After combustion, ZnO was formed as a fumed powder. The as-synthesized ZnO was characterized by means of different techniques such as: X-ray diffraction (XRD), scanning electron microscope (SEM), diffused reflectance and the electrical conductivity measurements. XRD showed that ZnO has a nanocrystalline hexagonal phase with lattice constants a = 3.24982 Å and c = 5.20661 Å as compared to JCDPS card. From the analysis of the diffused reflectance spectra, the optical band gap was calculated and equals 3.2 eV which is in the same range for commercial ZnO and the reported ZnO prepared by other techniques. SEM micrographs showed the nanotetrapods structure of ZnO with highly uniform distribution of tetrapods. The DC electrical conductivity measurement was carried out in the temperature range 293-473 K, and it was found to be increased with increasing temperature forming three different conduction mechanisms associated with three activation energies.

  4. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Harris, M. T.; George, Michael A.; McCarty, P.

    1999-01-01

    As a high temperature semiconductor, ZnO has been used for many applications such as wave-guide, solar cells, and surface acoustic wave devices. Since the ZnO material has an energy gap of 3.3 eV at room temperature and an excitonic binding energy (60 meV) that is possible to make excitonic lasering at room temperature a recent surge of interest is to synthesize ZnO films for electro-optical devices. These applications require films with a smooth surface, good crystal quality, and low defect density. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystals are grown by the hydrothermal method. Substrates are mechanically polished and annealed in air for four hours before deposited films. The annealing temperature-dependence of ZnO substrates is studied. Films are synthesized by the off-axis reactive sputtering deposition. The films have very smooth surface with a roughness ZnO films grown of (0001) ZnO and (0001) sapphire substrates will be also compared and discussed in the presentation.

  5. Superhydrophobic ZnO networks with high water adhesion

    PubMed Central

    2014-01-01

    ZnO structures were deposited using a simple chemical bath deposition technique onto interdigitated electrodes fabricated by a conventional photolithography method on SiO2/Si substrates. The X-ray diffraction studies show that the ZnO samples have a hexagonal wurtzite crystalline structure. The scanning electron microscopy observations prove that the substrates are uniformly covered by ZnO networks formed by monodisperse rods. The ZnO rod average diameter and length were tuned by controlling reactants' concentration and reaction time. Optical spectroscopy measurements demonstrate that all the samples display bandgap values and emission bands typical for ZnO. The electrical measurements reveal percolating networks which are highly sensitive when the samples are exposed to ammonia vapors, a variation in their resistance with the exposure time being evidenced. Other important characteristics are that the ZnO rod networks exhibit superhydrophobicity, with water contact angles exceeding 150° and a high water droplet adhesion. Reproducible, easily scalable, and low-cost chemical bath deposition and photolithography techniques could provide a facile approach to fabricate such ZnO networks and devices based on them for a wide range of applications where multifunctionality, i.e., sensing and superhydrophobicity, properties are required. PACS 81.07.-b; 81.05.Dz; 68.08.Bc PMID:25136286

  6. Polarized Raman scattering of single ZnO nanorod

    SciTech Connect

    Yu, J. L. Lai, Y. F. Wang, Y. Z.; Cheng, S. Y.

    2014-01-21

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup high} in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A{sub 1}(TO) and E{sub 1}(TO) phonon modes normalized to that of the E{sub 2}{sup high} phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer.

  7. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  8. Green emission in carbon doped ZnO films

    SciTech Connect

    Tseng, L. T.; Yi, J. B. Zhang, X. Y.; Xing, G. Z.; Luo, X.; Li, S.; Fan, H. M.; Herng, T. S.; Ding, J.; Ionescu, M.

    2014-06-15

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  9. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  10. PAC studies on impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Deubler, S.; Meier, J.; Schütz, R.; Witthuhn, W.

    1992-01-01

    Acceptor-donor pairs in ZnO are studied by the perturbed angular correlation spectroscopy (PAC) using radioactive 111In/ 111Cd probe atoms. In undoped ZnO the trapping of O-vacancies as well as the trapping of Zn-interstitials at the probe atoms which are located at substitutional Zn sites is observed after different sample treatments. In Cu-, Li-, and Na-doped ZnO the acceptor impurities form complexes with the In donors. The structure of these complexes is given and compared with theoretical calculations.

  11. Green emission in carbon doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tseng, L. T.; Yi, J. B.; Zhang, X. Y.; Xing, G. Z.; Fan, H. M.; Herng, T. S.; Luo, X.; Ionescu, M.; Ding, J.; Li, S.

    2014-06-01

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60-100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  12. ZnO Nanocoral Structures for Photoelectrochemical Cells

    SciTech Connect

    Ahn, K. S.; Yan, Y.; Shet, S.; Jones, K.; Deutsch, T.; Turner, J.; Al-Jassim, M.

    2008-01-01

    We report on synthesis of a uniform and large area of a new form of ZnO nanocorals. These nanostructures can provide suitable electrical pathways for efficient carrier collection as well as large surface areas for the photoelectrochemical (PEC) cells. PEC devices made from these ZnO nanocoral structures demonstrate significantly enhanced photoresponse as compared to ZnO compact and nanorod films. Our results suggest that the nanocoral structures could be an excellent choice for nanomaterial-based applications such as dye-sensitized solar cells, electrochromic windows, and batteries.

  13. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  14. Novel ZnO microballs synthesized via pyrolysis of zinc-acetate in oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Xia, Xianhui; Zhu, Liping; Ye, Zhizhen; Yuan, Guodong; Zhao, Binghui; Qian, Qing

    2005-09-01

    Novel micrometer-sized ZnO balls have been synthesized on (1 1 1)-Si substrates via pyrolysis of zinc acetate in oxygen atmosphere. The ZnO microballs exhibit unique geometrical shapes with partly porous or hollow structures and their walls are composed of large size textured ZnO microcrystals. The growth mechanism of the ZnO microballs is proposed to be a process following the formation of ZnO film layer, ZnO branches and then ZnO microballs. The phase structure and crystalline structure of the as-grown ZnO microballs were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM), respectively. The room-temperature photoluminescence (PL) spectrum shows prominent UV emission around 394 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microballs.

  15. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation. PMID:26807679

  16. Synthesis and Optical Properties of ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Duo-Fa; Liao, Lei; Li, Jin-Chai; Fu, Qiang; Peng, Ming-Zeng; Zhou, Jun-Ming

    2005-08-01

    ZnO nanostructures with different morphologies were fabricated by changing the partial oxygen pressure. The structures, morphologies and optical properties of ZnO nanostructures were investigated by x-ray diffraction, field emission scanning electron microscopy and photoluminescence (PL) spectra at room temperature. All the samples show preferred orientation along the c-axis. The oxygen partial pressure and the annealing atmosphere have important effect on the PL property of ZnO nanostructures. The high oxygen partial pressure during growth of samples and high-temperature annealing of the ZnO samples in oxygen can increase oxygen vacancies and can especially increase antisite oxygen (Ozn) defects, which degraded the near band-edge emission. However, the annealing in H2 can significantly modify the NBE emission.

  17. Li doped ZnO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-01

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  18. Direct observation of voltage barriers in ZnO varistors

    NASA Technical Reports Server (NTRS)

    Krivanek, O. L.; Williams, P.; Lin, Y.-C.

    1979-01-01

    Voltage barriers in a ZnO varistor have been imaged by voltage-contrast scanning electron microscopy. They are due to grain boundaries and are capable of supporting voltage differences of up to about 4 V.

  19. Photoluminescence of polycrystalline ZnO under different annealing conditions

    NASA Astrophysics Data System (ADS)

    Hur, Tae-Bong; Jeen, Gwang Soo; Hwang, Yoon-Hwae; Kim, Hyung-Kook

    2003-11-01

    We investigated polycrystalline zinc oxide (ZnO) with different annealing conditions in air by x-ray photoelectron spectroscopy and photoluminescence. We found that the concentration of antisite oxide (OZn) increases when ZnO ceramics were in an O-rich condition. As the concentration of antisite oxide (OZn) increased, the photoluminescence intensity of the green band emission increased. The crossover temperature of the free and bound excitons was roughly estimated as 100 K.

  20. Anodized ZnO nanostructures for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Huang, Mao-Chia; Wang, TsingHai; Wu, Bin-Jui; Lin, Jing-Chie; Wu, Ching-Chen

    2016-01-01

    Zinc oxide (ZnO) nanostructures were fabricated on the polished zinc foil by anodic deposition in an alkaline solution containing 1.0 M NaOH and 0.25 M Zn(NO3)2. Potentiostatic anodization was conducted at two potentials (-0.7 V in the passive region and -1.0 V in the active region vs. SCE) which are higher than the open circuit potential (-1.03 V vs. SCE) and as-obtained ZnO nanostrcutures were investigated focusing on their structural, optical, electrical and photoelectrochemical (PEC) characteristics. All samples were confirmed ZnO by X-ray photoelectron spectroscopy and Raman spectra. Observations in the SEM images clearly showed that ZnO nanostructures prepared at -0.7 V vs. SCE were composed of nanowires at while those obtained at -1.0 V vs. SCE possessed nanosheets morphology. Result from transmission electron microscope and X-ray diffraction patterns suggested that the ZnO nanowires belonged to single crystalline with a preferred orientation of (0 0 2) whereas the ZnO nanosheets were polycrystalline. Following PEC experiments indicated that ZnO nanowires had higher photocurrent density of 0.32 mA/cm2 at 0.5 V vs. SCE under 100 mW/cm2 illumination. This value was about 1.9 times higher than that of ZnO nanosheets. Observed higher photocurrent was likely due to the single crystalline, preferred (0 0 2) orientation, higher carrier concentration and lower charge transfer resistance.

  1. Vapor Transport of ZnO in Closed Ampoules

    NASA Technical Reports Server (NTRS)

    Palosz, Witold

    2005-01-01

    Vapor transport of ZnO by PVT and CVT using carbon, carbon monoxide, and hydrogen as the transport agents was studied. Theoretical calculations of the mass flux were based on equilibrium thermodynamics and 1-D diffusional mass transport. Experimental results were found to be consistent with theoretical predictions. NO apparent kinetic limitations to sublimation were observed. Slow reaction of carbon with ZnO source was found.

  2. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.

    PubMed

    Janaki, A Chinnammal; Sailatha, E; Gunasekaran, S

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity. PMID:25748589

  3. Light emission from electrically stressed ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Lucera, Luca; Adnane, Lhacene; Cil, Kadir; Manthina, Venkata; Agrios, Alexander; Silva, Helena; Gokirmak, Ali

    2012-02-01

    Zinc oxide (ZnO) nanorods were grown on various substrates by a chemical growth process based on a ZnO seed solution, and starting from Zinc acetate (ZnAc) material. The nanorods were grown on insulating silicon (low doped) and oxidized silicon substrates, and also over patterned conducting (highly-doped) nanocrystalline silicon microwires. When high voltage is applied directly to the ZnO film using tungsten needles (˜ 50-60 V across ˜ 5-10 μm), high intensity blue and white light emission is observed, both in air and under high vacuum (10-4 - 10-5 Torr). Blue light appears as broad bright flashes covering a large area whereas white light is more localized and appears to come from individual nanostructures. The results suggest a combination of electroluminescence and photoluminescence processes that take place after an electrical breakdown (possibly across individual ZnO nanorods) that is observed as an exponential increase in current. Percolative conduction and light paths are also observed during the measurements. Measurements of the ZnO films of rods on conducting silicon substrate give more repeatable results, likely due to the higher probability of conducting paths between the two probes. The electrical stress results in significant self-heating and modification of the ZnO nanostructures and the contacts.[4pt] [1] Greene L. E. et al. Solution-Grown Zinc oxide nanowires. Innorganic Chemistry. Vol 45. 7535-7543. (2006)

  4. High efficient ZnO nanowalnuts photocatalyst: A case study

    SciTech Connect

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  5. Luminescence mechanisms of defective ZnO nanoparticles.

    PubMed

    Camarda, Pietro; Messina, Fabrizio; Vaccaro, Lavinia; Agnello, Simonpietro; Buscarino, Gianpiero; Schneider, Reinhard; Popescu, Radian; Gerthsen, Dagmar; Lorenzi, Roberto; Gelardi, Franco Mario; Cannas, Marco

    2016-06-28

    ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Raman mode at 565 cm(-1) associated with oxygen vacancies, accompanied by a decrease of defect-related emission at 2.2 eV. Based on our experimental results the emission at 2.2 eV is proposed to originate from a photo-generated hole in the valence band recombining with an electron deeply trapped in a singly ionized oxygen vacancy. This investigation clarifies important aspects of the photophysics of ZnO NPs and indicates that ZnO emission can be controlled by thermal annealing, which is important in view of optoelectronic applications. PMID:27251452

  6. Growth mechanism of ZnO low-temperature homoepitaxy

    SciTech Connect

    Park, S. H.; Minegishi, T.; Lee, H. J.; Chang, J. H.; Yao, T.; Oh, D. C.; Ko, H. J.

    2011-09-01

    The authors report on the growth mechanism of ZnO homoepitaxy at the low-temperature range of 500 deg. C, which is unavailable to obtain high-quality ZnO films in heteroepitaxy. One typical set of ZnO films were grown on (0001) ZnO substrates by molecular-beam epitaxy: a standard structure without buffer and two buffered structures with high-temperature (HT) homobuffer and low-temperature (LT) homobuffer. As a result, the LT homobuffered structure had the outstanding material properties: the surface roughness is 0.9 nm, the full width at half maximum of x-ray rocking curve is 13 arcsec, and the emission linewidth of donor-bound excitons is 2.4 meV. In terms of the theoretical interpretation of the experimentally obtained electron mobilities, it was found that the LT homobuffered structure suffers less from the dislocation scattering and the ionized-impurity scattering compared to the HT homobuffered structure. It is proposed that, in the ZnO low-temperature homoepitaxy, the LT homobuffer plays a key role in inducing the complete termination of dislocations in the homointerface and suppressing the outdiffusion of contaminants and point defects on the ZnO surface, which results in the formation of smooth wetting layer on the homointerface.

  7. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  8. Applicability check of ZnO crystals for device applications

    NASA Astrophysics Data System (ADS)

    Bhowmick, Mithun; Ullrich, Bruno; Ariza, David; Xi, Haowen

    2014-03-01

    There has always been vital interest in wide-band gap semiconductors for their applicability in short-wavelength photonic devices and in electronic devices operating in high frequency regime. Historically, ZnO was never favored as a potential material for the above applications primarily because of difficulty in growing it. This situation, however, has improved drastically in the past decade thereby renewing the attention on this material system. Hence, ZnO is being proposed for potential light emitting devices in the blue and UV regions of electromagnetic spectrum. ZnO single crystals are also being considered for high power transistors. In this work, we present investigations of optical properties of pure (99.99%) ZnO performing transmittance, reflectance, Raman, and photoluminescence measurements. The ZnO single crystals employed in this work, were obtained commercially. We present detailed analysis of the measured data through theoretical calculations. Our results identify the state-of-the-art application potential of commercially available ZnO, revealing its advantages and limitations when compared to similar materials such as GaN.

  9. Controlled modification of multiwalled carbon nanotubes with Zno nanostructures

    SciTech Connect

    Wang Xiuying; Xia Baiying; Zhu Xingfu; Chen Jiesheng; Qiu Shilun; Li Jixue

    2008-04-15

    Multiwalled carbon nanotubes (MWNTs) have been successfully modified with ZnO nanostructures by zinc-ammonitum complex ion covalently attached to the MWNTs through the C-N bonds. Flower-like ZnO on the tips of MWNTs and ZnO nanoparticles on the surface of MWNTs have been obtained, respectively, via adjusting the reaction time. The modified MWNTs have been characterized with X-ray diffraction, scanning electron and transmission electron microscopy. A growth mechanism has been proposed in which the soaking time plays a key role in controlling the size, morphology, and site of ZnO nanostructures. Photoluminescence properties of the as-synthesized products have also been investigated. - Multiwalled carbon nanotube (MWNT)/flower-like ZnO heterojunctions and MWNT/ZnO nanoparticle composites were prepared by zinc-ammonitum complex ion covalently attached to the MWNTs through the C-N bonds via adjusting the reaction time. A growth mechanism has been proposed in which the soaking time plays a key role in controlling the size, morphology, and site of ZnO nanostructures.

  10. Effect of silver doping on ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Gawai, U. P.; Khawal, H. A.; Bodke, M. R.; Dole, B. N.

    2016-05-01

    Ag doped ZnO nanocrystals were synthesized by co-precipitation method with the nominal compositions (x=0.00, 0.02, 0.04, 0.06). The as-synthesized Ag doped ZnO nanocrystals were characterized by X-ray diffraction (XRD), FTIR and UV-Vis. From XRD patterns samples shows hexagonal structure. The average crystallite size is in the range of 41-47 nm. All as synthesized Zn1-xAgxO nanocrystals are highly textured, with wurtzite structure along the (101) growth direction. The energy band gap of pure and Ag doped ZnO were calculated from UV-Vis spectra. FTIR spectra were confirmed that Ag substituted into ZnO. Chemical species of the samples were detected using FTIR spectra An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Ag concentration. An optical absorption study shows an increment in the band gap with increasing Ag content. From optical study the samples determines blue shift. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. It confirms the formation of ZnO with the stretching vibrational mode around at 506 to 510 cm-1.

  11. ZnO based potentiometric and amperometric nanosensors.

    PubMed

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-09-01

    The existence of nanomaterials provides the solid platform for sensing applications due to owing of high sensitivity and a low concentration limit of detection. More likely used nanomaterials for sensing applications includes gold nanoparticles, carbon nanotubes, magnetic nanoparticles such as Fe3O4, quantum dots and metal oxides etc. Recently nanomaterial and biological detection becomes an interdisciplinary field and is very much focussed by the researchers. Among metal oxides ZnO is largely considered due to its less toxic nature, biocompatible, cheap and easy to synthesis. ZnO nanomaterial is highly used for the chemical sensing, especially electrochemical sensing due to its fascinating properties such as high surface to volume ratio, atoxic, biosafe and biocompatible. Moreover, ZnO nanostructures exhibit unique features which could expose a suitable nanoenviroment for the immobilization of proteineous material such as enzymes, DNA, antibodies, etc. and in doing so it retains the biological efficiency of the immobilized bio sensitive material. The following review describes the two different coatings (i.e., ionophore and enzyme) on the surface of ZnO nanorods for the chemical sensing of zinc ion detection, thallium (I) ion detection, and L-lactic acid and the measurement of galactose molecules. ZnO nanorods provide the excellent transducing properties in the generation of strong electrical signals. Moreover, this review is very much focused on the applications of ZnO nanostructures in the sensing field. PMID:25924295

  12. Electrochemical growth of ZnO nanoplates

    NASA Astrophysics Data System (ADS)

    Illy, B.; Shollock, B. A.; MacManus-Driscoll, J. L.; Ryan, M. P.

    2005-02-01

    ZnO films were grown on polycrystalline Zn foil by cathodic electrodeposition in an aqueous zinc chloride/calcium chloride solution at 80 °C. Variation in the electrochemical parameters resulted in a variation in growth morphology from 1D (nanorods), 2D ('nanoplates') to 3D crystal growth. An as-received or mechanically polished substrate proved the most suitable substrate finish and allowed more highly aligned, dense structures to be grown; in contrast, electropolished substrates formed inhomogeneous deposits. Substrate annealing gave rise to large homogenous areas of nanorod deposition. Two-dimensional sheet growth was found to occur in conjunction with nanorods under specific electrochemical conditions. Hexagonal 'plates' approximately 50 nm in thickness and several microns in diameter were formed normal to the substrate.

  13. Excitonic transport in ZnO

    NASA Astrophysics Data System (ADS)

    Noltemeyer, Martin; Bertram, Frank; Hempel, Thomas; Bastek, Barbara; Christen, Juergen; Brandt, Matthias; Lorenz, Michael; Grundmann, Marius

    2012-02-01

    The temperature dependence of diffusion length and lifetime or diffusivity of the free exciton is measured in a commercial ZnO-substrate and in an epitaxial ZnO quantum well using nm-spatially and ps-time resolved cathodoluminescence (CL) spectroscopy. The characteristic temperature dependence of the exciton mobility is a fingerprint of the underlying excitonic scattering processes. Since excitons are neutral particles scattering at ionized impurities should be not effective. With decreasing temperature diffusion lengths and lifetimes give rise to a monotonous increase of the excitonic mobility. Two different methods for determining the excitonic transport parameters will be presented. On the one hand we are able to perform completely pulsed excitation experiments and on the other hand a combination of cw- and pulsed excitation in two independent measurements are needed.

  14. Lateral arrays of vertical ZnO nanowalls on a periodically polarity-inverted ZnO template.

    PubMed

    Lee, Sang Hyun; Minegishi, Tsutomu; Ha, Jun-Seok; Park, Jin-sub; Lee, Hyo-Jong; Lee, Hyun Jung; Shiku, Hitoshi; Matsue, Tomokazu; Hong, Soon-Ku; Jeon, Heonsu; Yao, Takafumi

    2009-06-10

    Well aligned ZnO nanowall arrays with submicron pitch were grown on a periodically polarity-inverted ZnO template using a carbothermal reduction process. Under the conditions of a highly dense Au catalyst for increasing nucleation sites, ZnO nanowalls with a thickness of 126 +/- 10 nm, an average height of 3.4 microm, and a length of about 10 mm were formed on the template. The nanowalls were only grown on a Zn-polar surface due to a different growth mode with an O-polar surface. The results of x-ray diffraction and photoluminescence (PL) measurements revealed a single crystalline, vertical alignment on the template, and a large surface to volume ratio of the ZnO nanowalls. PMID:19448285

  15. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  16. Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Khatei, Jayakrishna; Sunkara, S.; Lo, K.-Y.; Shivashankar, S. A.

    2015-06-01

    We report on the tunable photoluminescence characteristics of porous ZnO microsheets fabricated within 1-5 min of microwave irradiation in the presence of a capping agent such as citric acid, and mixture of citric acid with polyvinylpyrrolidone (PVP). The UV emission intensity reduces to 60% and visible emission increases tenfold when the molar concentration of citric acid is doubled. Further diminution of the intensity of UV emission (25%) is observed when PVP is mixed with citric acid. The addition of nitrogen donor ligands to the parent precursor leads to a red shift in the visible luminescence. The deep level emission covers the entire visible spectrum and gives an impression of white light emission from these ZnO samples. The detailed luminescence mechanism of our ZnO samples is described with the help of a band diagram constructed by using the theoretical models that describe the formation energy of the defect energy levels within the energy band structure. Oxygen vacancies play the key role in the variation of the green luminescence in the ZnO microsheets. Our research findings provide an insight that it is possible to retain the microstructure and simultaneously introduce defects into ZnO. The growth of the ZnO microsheets may be due to the self assembly of the fine sheets formed during the initial stage of nucleation.

  17. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    PubMed

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy. PMID:24205635

  18. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi; Fujimoto, Kazuya; Suzuki, Atsushi; Balachandran, Jeyadevan; Oku, Takeo

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH3NH3PbI3 solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH3NH3PbI3 with the longest ZnO nanorods.

  19. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; George, M. A.; McCarty, P.

    1999-01-01

    As a high temperature wide-band-gap (3.3 eV at room temperature) semiconductor, ZnO has been used for many applications such as wave-guides, solar cells, and surface acoustic wave devices, Since ZnO has a 60 meV excitonic binding energy that makes it possible to produce excitonic lasing at room temperature, a recent surge of interest is to synthesize ZnO films for UV/blue/green laser diodes. These applications require films with a smooth surface, good crystal quality, and low defect density. Thus, homoepitaxial film growth is the best choice. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystal substrates grown by the hydrothermal method are mechanically polished and annealed in air for four hours before the films are deposited. The annealing temperature-dependence on ZnO substrate morphology and electrical properties is investigated. Films are synthesized by off-axis reactive sputtering deposition. This produces films that have very smooth surfaces with roughness less than or equal to 5 nm on a 5 microns x 5 microns area. The full width at half maximum of film theta rocking curves measured by the x-ray diffraction is slightly larger than that of the crystal substrate. Films are also characterized by measuring resistivity, optical transmittance, and photoluminescence. The properties of ZnO films grown on (0001) ZnO and (0001) sapphire substrates will also be compared and discussed.

  20. Solution precursor plasma deposition of nanostructured ZnO coatings

    SciTech Connect

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  1. Heavy quark masses

    NASA Technical Reports Server (NTRS)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  2. Role of morphology in the aggregation kinetics of ZnO nanoparticles.

    PubMed

    Zhou, Dongxu; Keller, Arturo A

    2010-05-01

    The aggregation kinetics of two types of ZnO nanoparticles were investigated under various conditions. Distinct differences in aggregation kinetics were observed between the two ZnO particles. The aggregation of the nearly spherical ZnO (denoted as Me ZnO) exhibited strong dependence on the ionic strength (IS) of the solution; while minimal influence of IS was seen on the irregularly shaped ZnO (mixture of slab-like and rod-shaped particles, denoted as Mk ZnO) in the IS ranged tested. It is postulated that Mk ZnO possesses a critical coagulation concentration (CCC) below the lowest electrolyte concentration tested (1 mM NaCl) due to the interactions between various surfaces. The CCC of ZnO was found to be a function of pH; the CCC increased significantly as the pH was further away from the point of zero charge. Natural organic matter (NOM) was found to substantially hinder the aggregation of both types of ZnO particles (above 10 mg/L for Me ZnO and above 1 mg/L for Mk ZnO). A Langmuir adsorption model was used to describe the NOM to ZnO nanoparticle adsorption isotherms. To our knowledge, this is the first study to report the effect of particle morphology on nanoparticle aggregation, which outlines the importance of accounting morphology into environmental transport assessment of nanoparticles. PMID:20227744

  3. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    SciTech Connect

    Kumar, Surender Sahare, P.D.

    2014-03-01

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} doped ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.

  4. Mutagenicity of heavy metals

    SciTech Connect

    Wong, P.K.

    1988-04-01

    Certain heavy metals are required, as trace elements for normal cellular functions. However, heavy metals are toxic to cells once their levels exceed their low physiological values. The toxicity of heavy metals on microorganisms, and on animals has been well-documented. These interactions may induce the alteration of the primary as well as secondary structures of the DNA and result in mutation(s). The present communication reports the results in determining the mutagenicity and carcinogenicity of ten heavy metals commonly found in polluted areas by using the Salmonella/mammalian-microsome mutagenicity test.

  5. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  6. Controlling Au Photodeposition on Large ZnO Nanoparticles.

    PubMed

    Fernando, Joseph F S; Shortell, Matthew P; Noble, Christopher J; Harmer, Jeffrey R; Jaatinen, Esa A; Waclawik, Eric R

    2016-06-01

    This study investigated how to control the rate of photoreduction of metastable AuCl2(-) at the solid-solution interface of large ZnO nanoparticles (NPs) (50-100 nm size). Band-gap photoexcitation of electronic charge in ZnO by 370 nm UV light yielded Au NP deposition and the formation of ZnO-Au NP hybrids. Au NP growth was observed to be nonepitaxial, and the patterns of Au photodeposition onto ZnO NPs observed by high-resolution transmission electron microscopy were consistent with reduction of AuCl2(-) at ZnO facet edges and corner sites. Au NP photodeposition was effective in the presence of labile oleylamine ligands attached to the ZnO surface; however, when a strong-binding dodecanethiol ligand coated the surface, photodeposition was quenched. Rates of interfacial electron transfer at the ZnO-solution interface were adjusted by changing the solvent, and these rates were observed to strongly depend on the solvent's permittivity (ε) and viscosity. From measurements of electron transfer from ZnO to the organic dye toluidine blue at the ZnO-solution interface, it was confirmed that low ε solvent mixtures (ε ≈ 9.5) possessed markedly higher rates of photocatalytic interfacial electron transfer (∼3.2 × 10(4) electrons·particle(-1)·s(-1)) compared to solvent mixtures with high ε (ε = 29.9, ∼1.9 × 10(4) electrons·particle(-1)·s(-1)). Dissolved oxygen content in the solvent and the exposure time of ZnO to band-gap, near-UV photoexcitation were also identified as factors that strongly affected Au photodeposition behavior. Production of Au clusters was favored under conditions that caused electron accumulation in the ZnO-Au NP hybrid. Under conditions where electron discharge was rapid (such as in low ε solvents), AuCl2(-) precursor ions photoreduced at ZnO surfaces in less than 5 s, leading to deposition of several small, isolated ∼6 nm Au NP on the ZnO host instead. PMID:27196721

  7. Efficient nitrogen incorporation in ZnO nanowires

    PubMed Central

    Stehr, Jan E.; Chen, Weimin M.; Reddy, Nandanapalli Koteeswara; Tu, Charles W.; Buyanova, Irina A.

    2015-01-01

    One-dimensional ZnO nanowires (NWs) are a promising materials system for a variety of applications. Utilization of ZnO, however, requires a good understanding and control of material properties that are largely affected by intrinsic defects and contaminants. In this work we provide experimental evidence for unintentional incorporation of nitrogen in ZnO NWs grown by rapid thermal chemical vapor deposition, from electron paramagnetic resonance spectroscopy. The incorporated nitrogen atoms are concluded to mainly reside at oxygen sites (NO). The NO centers are suggested to be located in proximity to the NW surface, based on their reduced optical ionization energy as compared with that in bulk. This implies a lower defect formation energy at the NW surface as compared with its bulk value, consistent with theoretical predictions. The revealed facilitated incorporation of nitrogen in ZnO nanostructures may be advantageous for realizing p-type conducting ZnO via N doping. The awareness of this process can also help to prevent such unintentional doping in structures with desired n-type conductivity. PMID:26299157

  8. Hydrogen-Induced Plastic Deformation in ZnO

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  9. Genomic DNA binding to ZnO microrods

    NASA Astrophysics Data System (ADS)

    Guzmán-Embús, D. A.; Cardozo, M. Orrego; Vargas-Hernández, C.

    2015-08-01

    In this work, ZnO microrods were produced by hydrothermal synthesis. DNA was extracted from pork spleen cells by cellular lysis, deproteinization and precipitation. The analysis of the DNA binding to the ZnO was performed using Raman spectroscopy a technique that allowed for the evaluation of the effect that the presence of the ZnO in the complex has on the DNA structure. Vibrational spectral bands from the DNA molecule and hexagonal wurtzite ZnO were observed and classified as E2(M), A1(TO), E2(High), E1(LO) and 2LO. The Raman signals from the vibrational bands corresponding to the phosphodiester bond 5‧-C-O-P-O-C-3‧ and bond stretching of the PO2- group, as well as ring vibrations of the nitrogenous bases of the DNA, were enhanced by the presence of the ZnO microrods. The bands from the modes corresponding to the C-O and Odbnd Psbnd O- molecules of the DNA backbone were observed to exhibit larger spectral shifts due to the compression and tensile stresses generated at the ZnO/DNA interface, respectively. In addition, the relative vibrational mode intensities of the nitrogenous bases increased.

  10. Efficient nitrogen incorporation in ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Stehr, Jan E.; Chen, Weimin M.; Reddy, Nandanapalli Koteeswara; Tu, Charles W.; Buyanova, Irina A.

    2015-08-01

    One-dimensional ZnO nanowires (NWs) are a promising materials system for a variety of applications. Utilization of ZnO, however, requires a good understanding and control of material properties that are largely affected by intrinsic defects and contaminants. In this work we provide experimental evidence for unintentional incorporation of nitrogen in ZnO NWs grown by rapid thermal chemical vapor deposition, from electron paramagnetic resonance spectroscopy. The incorporated nitrogen atoms are concluded to mainly reside at oxygen sites (NO). The NO centers are suggested to be located in proximity to the NW surface, based on their reduced optical ionization energy as compared with that in bulk. This implies a lower defect formation energy at the NW surface as compared with its bulk value, consistent with theoretical predictions. The revealed facilitated incorporation of nitrogen in ZnO nanostructures may be advantageous for realizing p-type conducting ZnO via N doping. The awareness of this process can also help to prevent such unintentional doping in structures with desired n-type conductivity.

  11. Fluorescent security markers on ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Warren, Kristy; Tzolov, Marian

    2012-02-01

    Zink oxide is an efficient emitter of light thanks to the large exciton binding energy of 60 meV. The narrow emission lines from ZnO nanowires can be used as an enhanced security feature in documents and can be easily recognized from the background originating from the paper itself. We have studied the emission properties of ZnO nanowires in the UV range and how they can be implemented into paper products for document security. The zinc oxide nanowires were synthesized by chemical vapor transport and postprocessed in solution. The nanowires were dispersed using a sonicator into nitric acid water solutions with a pH of 2 and 4, and ammonium hydroxide water solution with a pH of 5 and 7. The morphology of the dispersed ZnO nanowires was imaged under a scanning electron microscope. Fluorescence measurements have shown better light emission from the nanoparticles dispersed in the basic pH solution. This material was then implemented into crafted paper and viewed under UV lamps and with a spectrometer. We have studied the loading of the paper with ZnO nanoparticles. A comparison was done with equivalently processed material of ZnO in powder form. The implementation of zinc oxide nanowires into paper products can advance document security at a relatively low cost.

  12. Sodium enrichment on glass surface during heating of heavy-metal-containing glasses under a reductive atmosphere

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Nishimura, Fumihiro; Yonezawa, Susumu

    Sodium enrichment occurs on the surface of the glass that is in contact with the gas phase during the heat treatment of lead-containing glass under a reductive atmosphere. This technique was previously found to promote lead recovery in waste-glass treatment, and may be potentially applied to glasses containing other heavy metal oxides. Thus, the efficiencies of sodium enrichment were compared among glasses with different heavy metal species (PbO, CuO, and ZnO) in the heat-treatment under a CO-containing atmosphere. The sodium enrichment efficiencies in the treatment of the PbO- and CuO-containing glasses were higher than that in the treatment of the ZnO containing glass. This was because the efficiencies were related to the reduction of the heavy metal oxides. The mass ratio of Na to Si on the glass surface increased as the PbO concentration decreased via reduction of PbO. The sodium-rich phase was separated together with a copper-concentrated phase that was generated via the reduction of CuO. However, ZnO in the glass is thermodynamically more difficult to reduce in the CO-containing atmosphere used in the study, resulting in the lower efficiency of the sodium enrichment.

  13. Fabrication of ZnO and doped ZnO waveguides deposited by Spin Coating

    NASA Astrophysics Data System (ADS)

    Mohan, Rosmin Elsa; R, Neha P.; T, Shalu; C, Darshana K.; Sreelatha, K. S.

    2015-02-01

    In this paper, the synthesis of ZnO and doped Zn1-xAgxO (where x=0.03) nanoparticles by co- precipitation is reported. The precursors used were Zinc Nitrate and Potassium hydroxide pellets. For doping, 3% AgNO3 in ZnNO3 was considered as a separate buffer solution. The prepared nanoparticles were subsequently spin coated onto silica glass substrates at a constant chuck rate of 3000 rpm. The substrate acts as the lower cladding of a waveguide structure. The upper cladding is assumed to be air in the present investigation. The nanostructures of the ZnO powders in the doped and undoped cases were studied using X-ray Diffraction patterns. There was a decrease in the grain size with doping which increase the tunability of the powders to be used as photoluminescent devices. The optical characteristics of the sample were also investigated using UV-Visible spectrophotometer at 200-900 nm wavelengths. The photoluminescence peaks also report a dramatic increase in intensity at the same wavelength for the doped case compared to the undoped one.

  14. Structural and optical properties of ZnO rods hydrothermally formed on polyethersulfone substrates

    NASA Astrophysics Data System (ADS)

    Shin, Chang Mi; Jang, Jin-Tak; Kim, Chang-Yong; Ryu, Hyukhyun; Lee, Won-Jae; Chang, Ji-Ho; Son, Chang-Sik; Choi, Heelack

    2012-06-01

    Various unique ZnO morphologies, such as cigar-like and belt-like structures and microrod and nanorod structures, were formed on flexible polyethersulfone (PES) substrates by using a low temperature hydrothermal route. The structural properties of ZnO depended highly on the precursor concentration. The effect of a thin ZnO seed layer deposited the on PES substrate by using atomic layer deposition on the structural and the optical properties of ZnO hydrothermally grown on the ZnO seed layer/PES substrates was studied. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements were employed to analyze the characteristics of hydrothermally-grown ZnO. The diameter of the ZnO nanorods grown on the ZnO seed layer/PES substrates increased with increasing precursor concentration from 0.025 to 0.125 M due to the Ostwald ripening process. ZnO hydrothermally-grown on the ZnO seed layer/PES substrates at a low precursor concentration showed better structural properties than ZnO formed without a seed layer. Well-formed ZnO nanorods deposited on the ZnO seed layer/PES substrates showed two PL peaks, one in the ultraviolet and the other in the visible region, whereas horizontally positioned ZnO formed on the PES substrate in the absence of a seed layer emitted only one broad PL peak in the violet region. The ZnO grown on PES substrates in this work can be used as high-quality transparent electrodes for solar cells fabricated on flexible substrates.

  15. Heavy-electron materials

    SciTech Connect

    Fisk, Z.; Ott, H.R.; Smith, J.L.

    1986-01-01

    De Haas-van Alphen results demonstrated the existence of a Fermi surface at sufficiently low temperature and show that the entire Fermi surface involves heavy electrons. The phase transitions in their heavy-electron state are discussed. These are either magnetic or superconducting. 38 refs., 6 figs., 2 tabs. (WRF)

  16. High mobility ZnO nanowires for terahertz detection applications

    NASA Astrophysics Data System (ADS)

    Liu, Huiqiang; Peng, Rufang; Chu, Sheng; Chu, Shijin

    2014-07-01

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (˜0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  17. Nitrogen is a deep acceptor in ZnO

    DOE PAGESBeta

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  18. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  19. Electrical Property of Conventionally Sintered ZnO

    NASA Astrophysics Data System (ADS)

    Tak, S. K.; Shekhwat, M. S.; Mangal, R.

    ZnO powder was synthesized by solid state reaction method. The synthesized powder was granulated and pressed using uni-axial press for preparing the pallets. The prepared pellets were sintered in conventional furnace at different temperatures (900-1300° C). The phase study was done by powder X-ray diffraction and it was found that the there is no other phase present in the synthesized material but the peak intensity is increasing with temperature. The crystallite size of the synthesized ZnO powder was found to be increase with temperature. The effect of sintering on grain growth is investigated by scanning electron microscopy (SEM). SEM revels that the average grain size is increases with increase in sintering temperature. AC impedance of these samples was decreased markedly with increased sintering temperature. In present work the effect of sintering temperatures and hold time on micro structural and electrical properties of ZnO ceramics is carried out.

  20. Nanodamage and Nanofailure of 1d Zno Nanomaterials and Nanodevices

    NASA Astrophysics Data System (ADS)

    Li, Peifeng; Yang, Ya; Huang, Yunhua; Zhang, Yue

    2012-08-01

    One-dimensional (1D) ZnO nanomaterials include nanowires, nanobelts, and nanorods etc. The extensive applied fields and excellent properties of 1D ZnO nanomaterials can meet the requests of the electronic and electromechanical devices for "smaller, faster and colder", and would be applied in new energy convention, environmental protection, information science and technology, biomedical, security and defense fields. While micro porous, etching pits nanodamage and brittle fracture, dissolving, functional failure nanofailure phenomena of 1D ZnO nanomaterials and nanodevices are observed in some practical working environments like illumination, currents or electric fields, external forces, and some chemical gases or solvents. The more important thing is to discuss the mechanism and reduce or prohibit their generation.

  1. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  2. Excellent acetone sensing properties of porous ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Bai; Liu, Xing-Yi; Wang, Sheng-Lei

    2015-01-01

    Porous ZnO was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous ZnO show that porous ZnO possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320 °C to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone. Projected supported by the Project of Challenge Cup for College Students, China (Grant No. 450060497053).

  3. Mobility of indium on the ZnO(0001) surface

    NASA Astrophysics Data System (ADS)

    Heinhold, R.; Reeves, R. J.; Williams, G. T.; Evans, D. A.; Allen, M. W.

    2015-02-01

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ˜520 °C, with indium migrating from the ( 000 1 ¯ ) underside of the wafer, around the non-polar ( 1 1 ¯ 00 ) and ( 11 2 ¯ 0 ) sidewalls, to form a uniform self-organized (˜20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In2O3 precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  4. Structural and optical properties of ZnO and ZnO:Fe nanoparticles under dense electronic excitations

    SciTech Connect

    Kumar, Shiv; Singh, Ranjan Kr.; Ghosh, Anup K.; Asokan, K.; Kanjilal, D.; Chatterjee, S.

    2013-10-28

    We report on the changes in structural, morphological, and optical properties of sol-gel derived ZnO and ZnO:Fe nanoparticles due to dense electronic excitations produced by heavy ion irradiations using 200 MeV Ag{sup +15} ion beams. X-ray diffraction studies with Rietveld refinement show that the samples are single phase and tensile strain has been developed in the ion-irradiated samples. The Raman spectroscopy measurements show that ion-irradiation results in microscopic structural disorders and breaking of translational symmetry giving rise to local distortions in the lattice. Atomic force microscopy studies show that roughness of the pellets increases strongly for pure ZnO as compared with Fe-doped ZnO due to ion-irradiation. Fourier transform infrared analysis confirms tetrahedral coordination of O ions surrounding the Zn-ions and surface modification of the nanoparticles. The UV-Vis spectroscopy measurements show that the band gap increases on Fe doping which may be due to 4s–3d and 2p–3d interactions and the Burstein-Moss band filling effect. The band gap decreases after irradiation which can be interpreted on the basis of creation of some new localized energy states above the valence band. Photoluminescence (PL) intensity is enhanced and two new emission bands viz. a blue band at ∼480 nm (related to surface defects) and a green band at ∼525 nm (related to O vacancies) are observed in ion-irradiated nanoparticles. The enhancement of PL-intensity in irradiated samples is attributed to the increase of different defect states and Zn−O bonds on the surfaces of the irradiated nanoparticles arising from surface modification.

  5. Growth and characterization of periodically polarity-inverted ZnO structures on sapphire substrates

    SciTech Connect

    Park, Jinsub; Yao, Takafumi

    2012-10-15

    We report on the fabrication and characterization of periodically polarity inverted (PPI) ZnO heterostructures on (0 0 0 1) Al{sub 2}O{sub 3} substrates. For the periodically inverted array of ZnO polarity, CrN and Cr{sub 2}O{sub 3} polarity selection buffer layers are used for the Zn- and O-polar ZnO films, respectively. The change of polarity and period in fabricated ZnO structures is evaluated by diffraction patterns and polarity sensitive piezo-response microscopy. Finally, PPI ZnO structures with subnanometer scale period are demonstrated by using holographic lithography and regrowth techniques.

  6. Structural and electrical properties of electric field assisted spray deposited pea structured ZnO film

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2016-05-01

    Spray deposition of ZnO film was carried out. The uneven growth of ZnO nanostructures is resulted for spray deposited ZnO film. Application of DC voltage (1000V) during spray deposition provides formation of pea like structures with uniform coverage over the substrate. Electric field assisted spray deposition provides increased crystallinity with reduced resistivity and improved mobility of the ZnO film as compared to spray deposited ZnO film without electric field. This with large area deposition makes the process more efficient than other techniques.

  7. Evolution of tetrapod structure in sonochemically synthesized ZnO: B nanopowders

    NASA Astrophysics Data System (ADS)

    Panda, N. R.; Acharya, B. S.; Nayak, P.

    2012-06-01

    Sonochemical synthesis of ZnO and ZnO doped with boron has been carried out in a conventional sonicator and the presence of boron has been confirmed from ICP-OES measurement. PXRD indicates the formation of hexagonal wurzite structure of ZnO with larger crystallite size in the doped samples. TEM studies show the formation of tetrapod like structures for ZnO: B samples which is not seen in ZnO as prepared. The evolution of tetrapods has been explained on the base of impurity adsorption and carbo-thermal reduction taking place during the process of sonication.

  8. Ferromagnetism in Sm doped ZnO nanorods by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Piao, Jingyuan; Tseng, Li-Ting; Yi, Jiabao

    2016-04-01

    Sm doped ZnO nanorods with various concentrations have been successfully synthesized using a hydrothermal method. XRD analysis indicates that there are no impurities or secondary phases in all the samples. The continuous expansion of d-spacing from XRD and TEM analysis suggests the effective corporation of Sm ions in ZnO. It is found that pure ZnO is paramagnetic. Both 1% and 5% Sm doped ZnO nanorods are ferromagnetic at room temperature. 5% Sm doped ZnO has a large paramagnetic signal at low temperature, suggesting the formation of the precipitation or clusters of samarium oxide.

  9. Characterization of the quality of ZnO thin films using reflective second harmonic generation

    SciTech Connect

    Huang, Y.-J.; Chu, S.-Y.; Lo, K.-Y.; Liu, C.-W.; Liu, C.-C.

    2009-08-31

    A polar mirror symmetrical contribution originated from the arrangement of grain boundaries existing in the ZnO film is detected by reflective second harmonic generation pattern. The ordering of ZnO grain boundary is dependent on the kinetic energy of deposited atoms and affects the quality of ZnO films. The net direction of the grain boundary in ZnO film trends toward the [110] direction of Si(111) to reach the minimum grain energy for better quality ZnO film. The polar structure of the mirrorlike boundaries under the optically macroscopic viewpoint presents a correlation with film quality.

  10. Design of Shallow p-type Dopants in ZnO (Presentation)

    SciTech Connect

    Wei, S.H.; Li, J.; Yan. Y.

    2008-05-01

    ZnO is a promising material for short wave-length opto-electronic devices such as UV lasers and LEDs due to its large exciton binding energy and low material cost. ZnO can be doped easily n-type, but the realization of stable p-type ZnO is rather difficult. Using first-principles band structure methods the authors address what causes the p-type doping difficulty in ZnO and how to overcome the p-type doping difficulty in ZnO.

  11. Effect of gamma irradiation on DC electrical conductivity of ZnO nanoparticles

    SciTech Connect

    Swaroop, K.; Somashekarappa, H. M.; Naveen, C. S.; Jayanna, H. S.

    2015-06-24

    The temperature dependent dc electrical conductivity of gamma irradiated Zinc oxide (ZnO) nanoparticles is presented in this paper. The X-ray diffraction (XRD) pattern shows hexagonal wurtzite structure of ZnO. Fourier Transform Infrared Spectroscopy (FTIR) confirms Zn-O stretching vibrations. UV-Visible spectroscopy studies show that the energy band gap (E{sub g}) of the prepared ZnO nanoparticles increases with respect to gamma irradiation dose, which can be related to room temperature dc electrical conductivity. The result shows significant variation in the high temperature dc electrical conductivity of ZnO nanoparticles due to gamma irradiation.

  12. Effect of bath temperature on surface morphology and photocatalytic activity of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Sriharan, N.; Muthukumarasamy, N.; Senthil, T. S.

    2016-05-01

    ZnO nanorods were prepared by using simple hydrothermal method using four different bath temperatures. All the prepared ZnO nanorods are annealed at 450°C and are characterized by using various techniques such as X-ray diffraction, UV spectra and scanning electron microscopy. Photocatalytic activity of the prepared ZnO nanorods is analyzed. A novel photocatalytic reactor designed with ZnO nanorods prepared at 90°C shows enhanced catalytic efficiency. The role of light irradiation time, bath temperature and surface morphology of the ZnO nanorods on the performance of photocatalytic reaction is analyzed.

  13. Resistive switching characteristics of a compact ZnO nanorod array grown directly on an Al-doped ZnO substrate

    NASA Astrophysics Data System (ADS)

    Yoo, E. J.; Shin, J. Y.; Yoon, T. S.; Kang, C. J.; Choi, Y. J.

    2016-07-01

    ZnO’s resistive switching properties have drawn much attention because ZnO has a simple chemical composition and is easy to manipulate. The propulsion mechanism for resistive switching in ZnO is based on a conducting filament that consists of oxygen vacancies. In the case of film structure, the random formation of the conducting filaments occasionally leads to unstable switching characteristics. Limiting the direction in which the conducting filaments are formed is one way to solve this problem. In this study, we demonstrate reliable resistive switching behavior in a device with an Au/compact ZnO nanorod array/Al-doped ZnO structure with stable resistive switching over 105 cycles and a long retention time of 104 s by confining conducting filaments along the boundaries between ZnO nanorods. The restrictive formation of conducting filaments along the boundaries between ZnO nanorods is observed directly using conductive atomic force microscopy.

  14. Mutagenicity of heavy metals

    SciTech Connect

    Wong, P.K. )

    1988-05-01

    Certain heavy metals are required, as trace elements for normal cellular functions. However, heavy metals are toxic to cells once their levels exceed their low physiological values. The toxicity of heavy metals on microorganisms, on plants and on animals has been well-documented. These interactions may induce the alteration of the primary as well as secondary structures of the DNA and result in mutation(s). Though the rec assay with Bacillus subtilis and the reversion assay with Escherichia coli were used to assess the mutagenicity of some heavy metals, the present communication reports the results in determining the mutagenicity and carcinogenicity of ten heavy metals commonly found in polluted areas by using the Salmonella/mammalian-microsome mutagenicity test.

  15. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  16. Photoluminescence of Sequential Infiltration Synthesized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas; Gosztola, David; Yanguas-Gil, Angel; Connolly, Aine

    We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside polymethylmethacrylate (PMMA) and other polymers. Energy dispersive spectroscopy (EDS) results show that we synthesize ZnO up to 300 nm inside a PMMA film. Photoluminescence data on a PMMA film shows that we achieve a factor of 400X increase in photoluminescence (PL) intensity when comparing a blank Si sample and a 270 nm thick PMMA film, where both were treated with the same 12 alternating cycles of H2O and diethyl zinc (DEZ). PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid polymer-oxide material. We show that patterning does indeed affect the photoluminescence signature of native ZnO. We demonstrate we can track the growth of the ZnO inside the PMMA polymer using both photoluminescence and Raman spectroscopy and determine the point in the process where ZnO is first photoluminescent and also at which point ZnO first exhibits long range order in the polymer. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  17. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  18. Growth modes of ZnO nanostructures from laser ablation

    SciTech Connect

    Amarilio-Burshtein, I.; Tamir, S.; Lifshitz, Y.

    2010-03-08

    ZnO nanowires (NWs) and other nanostructures were grown by laser ablation of a ZnO containing target onto different substrates with and without the presence of an Au catalyst. The morphology and structure of the NWs were studied using high resolution scanning and transmission electron microscopes [including imaging, selected area electron diffraction (SAED), and energy dispersive x-ray spectroscopy (EDS)]. The different growth modes obtainable could be tuned by varying the Zn concentration in the vapor phase keeping other growth parameters intact. Possible growth mechanisms of these nanowires are suggested and discussed.

  19. Electron-hole quantum physics in ZnO

    NASA Astrophysics Data System (ADS)

    Versteegh, M. A. M.

    2011-09-01

    This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on bulk ZnO and on ZnO nanowires. Chapter 2 presents a new technique for an ultrafast all-optical shutter, based on two-photon absorption in a ZnO crystal. This shutter can be used for luminescence experiments requiring extremely high time-resolution. Chapter 3 describes a time-resolved study on the electron-hole many-body effects in highly excited ZnO at room temperature, in particular band-filling, band-gap renormalization, and the disappearance of the exciton resonance due to screening. In Chapter 4, the quantum many-body theory developed and experimentally verified in Chapter 3, is used to explain laser action in ZnO nanowires, and compared with experimental results. In contrast to current opinion, the results indicate that excitons are not involved in the laser action. The measured emission wavelength, the laser threshold, and the spectral distance between the laser modes are shown to be excellently explained by our quantum many-body theory. Multiple scattering of light in a forest of nanowires can be employed to enhance light absorption in solar cells. Optimization of this technique requires better understanding of light diffusion in such a nanowire forest. In Chapter 5 we demonstrate a method, based on two-photon absorption, to directly measure the residence time of light in a nanowire forest, and we show that scanning electron microscope (SEM) images can be used to predict the photon mean free path. In Chapter 6 we present a new ultrafast all-optical transistor, consisting of a forest of ZnO nanowires. After excitation, laser action in this forest causes rapid recombination of the majority of the electrons and holes, limiting the amplification to 1.2 picoseconds only

  20. Single photon emission from ZnO nanoparticles

    SciTech Connect

    Choi, Sumin; Ton-That, Cuong; Phillips, Matthew R.; Aharonovich, Igor; Johnson, Brett C.; Castelletto, Stefania

    2014-06-30

    Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work, we study single photon emission from defect centers in 20 nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm with polarized excitation and emission. The studied emitters showed continuous blinking; however, bleaching can be suppressed using a polymethyl methacrylate coating. Furthermore, hydrogen termination increased the density of single photon emitters. Our results will contribute to the identification of quantum systems in ZnO.

  1. Optical characterization of ZnO nanomaterial with praseodymium ions

    NASA Astrophysics Data System (ADS)

    Sharma, Y. K.; Pal, Sudha; Goyal, Priyanka; Bind, Umesh Chandra

    2016-05-01

    ZnO nanomaterial with praseodymium ions was prepared by chemical synthesis method. The ZnO nanomaterial was characterized by XRD, SEM and TEM. Their absorption in UV-VIS/NIR regions was measured at room temperature. The experimental oscillator strengths were calculated from the areas under the absorption bands. Eight absorption bands have been observed. From these spectral data various energy interaction parameters like Slater-Condon, Lande, Racah, Nephelauxetic ratio and bonding parameters have been computed. Judd-Ofelt analysis has been carried out using the absorption spectra to evaluate the radiative properties for luminescent levels of the praseodymium ion and discussed. The observed nano particle size is 2nm.

  2. Kinetics of Congruent Vaporization of ZnO Islands

    SciTech Connect

    Kim, B.J.; Stach, E.; Garcia, R.E.

    2011-09-28

    We examine the congruent vaporization of ZnO islands using in situ transmission electron microscopy. Correlating quantitative measurements with a theoretical model offers a comprehensive understanding of the equilibrium conditions of the system, including equilibrium vapor pressure and surface free energy. Interestingly, the surface energy depends on temperature, presumably due to a charged surface at our specific condition of low P and high T. We find that the vaporization temperature decreases with decreasing system size, a trend that is more pronounced at higher T. Applying our results of island decay towards the growth of the ZnO provides new insights into the cooperative facet growth of anisotropic nanocrystals.

  3. Improved Response of ZnO Films for Pyroelectric Devices

    PubMed Central

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Increasing the temperature variation rate is a useful method for enhancing the response of pyroelectric devices. A three-dimensional ZnO film was fabricated by the aerosol deposition (AD) rapid process using the shadow mask method, which induces lateral temperature gradients on the sidewalls of the responsive element, thereby increasing the temperature variation rate. To enhance the quality of the film and reduce the concentration of defects, the film was further treated by laser annealing, and the integration of a comb-like top electrode enhanced the voltage response and reduced the response time of the resulting ZnO pyroelectric devices. PMID:23235444

  4. Structure of graphene oxide dispersed with ZnO nanoparticles

    SciTech Connect

    Yadav, Rishikesh Pandey, Devendra K.; Khare, P. S.

    2014-10-15

    Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8μm to 0.41μm.

  5. Reducing ZnO nanoparticle cytotoxicity by surface modification

    NASA Astrophysics Data System (ADS)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N.; Martin, Lisandra L.; Hughes, Anthony E.; Wright, Paul F. A.; Turney, Terence W.

    2014-05-01

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than

  6. Light Confinement-Induced Antireflection of ZnO Nanocones

    SciTech Connect

    Lee, Sang Hyun; Jellison Jr, Gerald Earle; Duty, Chad E; Xu, Jun

    2011-01-01

    The antireflective features of aperiodic vertical aligned ZnO nanocones on Si wafer were studied both experimentally and theoretically through comparison with planar ZnO films on Si substrates and bare Si substrates. The measured diffuse reflectance spectra show that the nanocone-based texture reduces the light reflection in a broad spectral range, and is much more effective than the planar textures. The numerical simulations exhibit a good agreement with the experimental data and suggest that the light confinement inside nanocones by controlling the diameters can bring further improvement of light absorption into Si.

  7. Noise in ZnO nanowire field effect transistors.

    PubMed

    Xiong, Hao D; Wang, Wenyong; Suehle, John S; Richter, Curt A; Hong, Woong-Ki; Lee, Takhee

    2009-02-01

    The noise power spectra in ZnO nanowire field effect transistors (FETs) were experimentally investigated and showed a classical 1/f dependence. A Hooge's constant of 5 x 10(-3) was estimated. This value is within the range reported for CMOS FETs with high-k dielectrics, supporting the concept that nanowires can be utilized for future beyond-CMOS electronic applications from the point of view of device noise properties. ZnO FETs measured in a dry O2 environment displayed elevated noise levels compared to in vacuum. At low temperature, random telegraph signals are observed in the drain current. PMID:19441450

  8. Nonvolatile resistive switching in single crystalline ZnO nanowires.

    PubMed

    Yang, Yuchao; Zhang, Xiaoxian; Gao, Min; Zeng, Fei; Zhou, Weiya; Xie, Sishen; Pan, Feng

    2011-04-01

    We demonstrate nonvolatile resistive switching in single crystalline ZnO nanowires with high ON/OFF ratios and low threshold voltages. Unlike the mechanism of continuous metal filament formation along grain boundaries in polycrystalline films, the resistive switching in single crystalline ZnO nanowires is speculated to be induced by the formation of a metal island chain on the nanowire surface. Resistive memories based on bottom-up semiconductor nanowires hold potential for next generation ultra-dense nonvolatile memories. PMID:21394361

  9. Growth modes of ZnO nanostructures from laser ablation

    NASA Astrophysics Data System (ADS)

    Amarilio-Burshtein, I.; Tamir, S.; Lifshitz, Y.

    2010-03-01

    ZnO nanowires (NWs) and other nanostructures were grown by laser ablation of a ZnO containing target onto different substrates with and without the presence of an Au catalyst. The morphology and structure of the NWs were studied using high resolution scanning and transmission electron microscopes [including imaging, selected area electron diffraction (SAED), and energy dispersive x-ray spectroscopy (EDS)]. The different growth modes obtainable could be tuned by varying the Zn concentration in the vapor phase keeping other growth parameters intact. Possible growth mechanisms of these nanowires are suggested and discussed.

  10. Tunable Lattice Constant and Band Gap of Single- and Few-Layer ZnO.

    PubMed

    Lee, Junseok; Sorescu, Dan C; Deng, Xingyi

    2016-04-01

    Single and few-layer ZnO(0001) (ZnO(nL), n = 1-4) grown on Au(111) have been characterized via scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations. We find that the in-plane lattice constants of the ZnO(nL, n ≤ 3) are expanded compared to that of the bulk wurtzite ZnO(0001). The lattice constant reaches a maximum expansion of 3% in the ZnO(2L) and decreases to the bulk wurtzite ZnO value in the ZnO(4L). The band gap decreases monotonically with increasing number of ZnO layers from 4.48 eV (ZnO(1L)) to 3.42 eV (ZnO(4L)). These results suggest that a transition from a planar to the bulk-like ZnO structure occurs around the thickness of ZnO(4L). The work also demonstrates that the lattice constant and the band gap in ultrathin ZnO can be tuned by controlling the number of layers, providing a basis for further investigation of this material. PMID:27003692

  11. Control of optical and electrical properties of ZnO nanocrystals by nanosecond-laser annealing

    NASA Astrophysics Data System (ADS)

    Shimogaki, T.; Ofuji, T.; Tetsuyama, N.; Kawahara, H.; Higashihata, M.; Ikenoue, H.; Nakamura, D.; Okada, T.

    2014-03-01

    Effects of laser annealing on electrical and optical properties of Zinc oxide (ZnO) nanocrystals, which are expected as building blocks for optoelectronic devices, have been investigated in this study. In the case of fabricating p-n junction in single one-dimensional ZnO nanocrystal, phosphorus-ions implanted p-type ZnO nanocrystals were recrystallized and recovered in the optical properties by nanosecond-laser annealing using a KrF excimer laser. Antimony-doped p-type ZnO nanocrystals were synthesized by irradiating laminated structure which antimony thin film were deposited on ZnO nanocrystals with the laser beam. Additionally, it is possible to control the growth rate of ZnO nanowires by using laser annealing. Irradiating with pulsed laser a part of ZnO buffer layer deposited on the a-cut sapphire substrate, then ZnO nanowires were grown on the ZnO buffer layer by the nanoparticle assisted pulsed laser deposition method. As a result, the clear boundary of the laser annealed and non-laser annealed area was appeared. It was observed that ZnO nanowires were grown densely at non-laser annealed area, on the other hand, sparse ones were grown at the laser-annealed region. In this report, the possibility of laser annealing techniques to establish the stable and reliable fabrication process of ZnO nanowires-based LD and LED are discussed on the basis of experimental results.

  12. Tunable Surface Wettability of ZnO Nanoparticle Arrays for Controlling the Alignment of Liquid Crystals.

    PubMed

    Chung, Yueh-Feng; Chen, Mu-Zhe; Yang, Sheng-Hsiung; Jeng, Shie-Chang

    2015-05-13

    The control of the liquid crystal (LC) alignment is very important for both academic research and practical applications. LC molecules aligned on the ZnO nanoparticle arrays (ZnO NPAs) are demonstrated and the pretilt angles of LCs can be controlled by using ZnO NPAs with different surface wettability. The wettability of ZnO NPAs fabricated by the solution-based hydrothermal method can be controlled by changing the annealing temperature of the as-prepared ZnO NPAs. The measurements of the energy-dispersive spectra and photoluminescence have shown that the chemical properties of ZnO NPAs have been changed with the annealing temperature. Our results show that the pretilt angle of LCs can be tuned continuously from ∼0 to ∼90° as the contact angle of water on ZnO NPAs changes from 33 to 108°. PMID:25895105

  13. Fluorescence property of ZnO nanoparticles and the interaction with bromothymol blue.

    PubMed

    Yue, Qiaoli; Cheng, Jinmei; Li, Guang; Zhang, Ke; Zhai, Yanling; Wang, Lei; Liu, Jifeng

    2011-05-01

    We synthesized ZnO quantum dots (QDs) simply in alcoholic solution, and investigated the interaction between ZnO QDs and bromothymol blue. The structural, morphological, size and spectral properties of ZnO QDs were studied. It was found that ZnO QDs were spherical nanoparticles in the crystal structure, and the average diameter of ZnO QDs was about 4.8 nm. The excitation and emission peaks were located at 346 nm and 520 nm, respectively, which were obtained on a common fluorophotometer. The quantum yield of ZnO QDs was obtained by using quinine sulfate as a reference reagent. In addition, the fluorescence of ZnO QDs can be quenched by bromothymol blue, and the quenching mechanism was proposed in a dynamic quenching mode. PMID:21170671

  14. Opto-electrical properties of Sb-doped p-type ZnO nanowires

    SciTech Connect

    Kao, Tzu-Hsuan; Chen, Jui-Yuan; Chiu, Chung-Hua; Huang, Chun-Wei; Wu, Wen-Wei

    2014-03-17

    P-type ZnO nanowires (NWs) have attracted much attention in the past years due to the potential applications for optoelectronics and piezotronics. In this study, we have synthesized Sb-doped p-type ZnO NWs on Si (100) substrates by chemical vapor deposition with Aucatalyst. The Sb-doped ZnO NWs are single crystalline with high density, grown along [1-1-2] direction. The doping percentage of Sb is about 2.49%, which has been confirmed by X-ray photoelectron spectroscopy. The ZnO NW field effect transistor demonstrated its p-type characteristics. A high responsivity to ultraviolet photodetection was also observed. In addition, compared to intrinsic ZnO NWs, the conductivity of the Sb-doped ZnO NWs exhibited ∼2 orders of magnitude higher. These properties make the p-type ZnO NWs a promising candidate for electronic and optoelectronic devices.

  15. Dynamics of ZnO nanoparticles formed in the high-pressure phase during growth of ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Nakamura, D.; Shimogaki, T.; Takao, S.; Nakao, S.; Harada, K.; Higashihata, M.; Okada, T.

    2015-03-01

    The dynamics of zinc oxide (ZnO) nanoparticles formed in Ar gas of 200 Torr by laser ablation are visualized by ultraviolet Rayleigh scattering imaging. The time-resolved imaging of the ZnO nanoparticles are presented for several conditions of single-pulse ablation and 10 Hz ablation at room temperature. Scattering light from the nanoparticles appeared at 1-2 ms after ablation, and the spatial distribution was a mushroom like swirling cloud. The cloud propagates forward about 2.6 m/s without lateral expansion. In addition, nanoparticle distribution at a substrate heating condition, which is growth condition of ZnO nanocrystals is investigated. The nanoparticles under heating condition formed almost the same spatial distribution as that of room temperature and their speed was increased to 3.2 m/s at 750 °C.

  16. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    SciTech Connect

    Ansari, Mohd Meenhaz Arshad, Mohd; Tripathi, Pushpendra

    2015-06-24

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorption spectra was obtained and the band gap of the samples calculated.

  17. Built-in electric field in ZnO based semipolar quantum wells grown on (1012) ZnO substrates

    SciTech Connect

    Chauveau, J.-M.; Xia, Y.; Roland, B.; Vinter, B.; University of Nice Sophia Antipolis, Parc Valrose, F-06102 Nice Cedex 2 ; Ben Taazaet-Belgacem, I.; Teisseire, M.; Nemoz, M.; Brault, J.; Damilano, B.; Leroux, M.

    2013-12-23

    We report on the properties of semipolar (Zn,Mg)O/ZnO quantum wells homoepitaxially grown by molecular beam epitaxy on (1012) R-plane ZnO substrates. We demonstrate that atomically flat interfaces can be achieved with fully relaxed quantum wells because the mismatch between (Zn,Mg)O and ZnO is minimal for this growth orientation. The photoluminescence properties evidence a quantum confined Stark effect with an internal electric field estimated to 430 kV/cm for a 17% Mg content in the barriers. The quantum well emission is strongly polarized along the 1210 direction and a comparison with the semipolar bulk ZnO luminescence polarization points to the effect of the confinement.

  18. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae.

    PubMed

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-01-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm(-1) for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls. PMID:27071382

  19. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    PubMed Central

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-01-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm−1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls. PMID:27071382

  20. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    NASA Astrophysics Data System (ADS)

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm‑1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  1. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  2. Characterization of heavy metal particles embedded in tire dust.

    PubMed

    Adachi, Kouji; Tainosho, Yoshiaki

    2004-10-01

    Tire dust is a significant pollutant, especially as a source of zinc in the urban environment. This study characterizes the morphology and chemical composition of heavy metal particles embedded in tire dust and traffic-related materials (brake dust, yellow paint, and tire tread) as measured by a field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer (FESEM/EDX). In 60 samples of tire dust, we detected 2288 heavy metal particles, which we classified into four groups using cluster analysis according to the following typical elements: cluster 1: Fe, cluster 2: Cr/Pb, cluster 3: multiple elements (Ti, Cr, Fe, Cu, Zn, Sr, Y, Zr, Sn, Sb, Ba, La, Ce, Pb), cluster 4: ZnO. According to their morphologies and chemical compositions, the possible sources of each cluster were as follows: (1) brake dust (particles rich in Fe and with trace Cu, Sb, and Ba), (2) yellow paint (CrPbO(4) particles), (3) brake dust (particulate Ti, Fe, Cu, Sb, Zr, and Ba) and heavy minerals (Y, Zr, La, and Ce), (4) tire tread (zinc oxide). When the chemical composition of tire dust was compared to that of tire tread, the tire dust was found to have greater concentrations of heavy metal elements as well as mineral or asphalt pavement material characterized by Al, Si, and Ca. We conclude that tire dust consists not only of the debris from tire wear but also of assimilated heavy metal particles emitted from road traffic materials such as brake lining and road paint. PMID:15337346

  3. ZnO nanowire-based CO sensor

    NASA Astrophysics Data System (ADS)

    Ho, Mon-Shu; Chen, Wei-Hao; Chen, Yu-Lin; Chang, Meng-Fan

    This study applied ZnO nanowires to the fabrication of a CO gas sensor operable at room temperature. Following the deposition of a seed layer by spin coating, an aqueous solution method was used to grow ZnO nanowires. This was followed by the self-assembly of an electrode array via dielectrophoresis prior to the fabrication of the CO sensing device. The material characteristics were analyzed using FE-SEM, EDS, GIXRD, FE-TEM, and the measurement of photoluminescence (PL). Our results identified the ZnO nanowires as a single crystalline wurtzite structure. Extending the growth period from 30 min to 360 min led to an increase in the length and diameter of the nanowires. After two hours, the ZnO presented a preferred crystal orientation of [002]. Sensor chips were assembled using 60 pairs of electrodes with gaps of 2 μm, over which were lain nanowires to complete the sensing devices. The average sensing response was 48.37 s and the average recovery time was 65.61 s, with a sensing response magnitude of approximately 6.8% at room temperature.

  4. Memristive switching of ZnO nanorod mesh

    NASA Astrophysics Data System (ADS)

    Yevgeniy, Puzyrev; Shen, Xiao; Ni, Kai; Zhang, Xuan; Hachtel, Jordan; Choi, Bo; Chisholm, Matthew; Fleetwood, Daniel; Schrimpf, Ronald; Pantelides, Sokrates

    We present a combined experimental and theoretical study of memristive switching in a self-assembled mesh of ZnO nanorods. A ZnO nanorod mesh spans the area between Ag contacts in a device that exhibits hysteresis with large ON/OFF ratio, reaching ION/IOFF values of 104. We show that switching behavior depends critically on the geometry of the nanorod mesh. We employ density functional theory (DFT) calculations to deduce the mechanism for resistive switching for the nanorod mesh. Redistribution of Ag atoms, driven by an electrical field, leads to the formation and evolution of a conducting path through nanorods. Field-induced migration of Ag atoms changes the doping level of nanorods and modulates their conductivity. Using static DFT and nudged-elastic-band calculations, we investigate the energy of interaction between Ag clusters and a ZnO surface, including migration barriers of Ag atoms. Current-voltage (I-V) characteristics are modeled using percolation theory in a nanorod mesh. To describe the dynamics of SET/RESET phenomena, model parameters include the experimentally observed nanorod geometry and the energetics of Ag on ZnO surfaces, obtained from DFT calculations. This work was supported by NSF Grant DMR-1207241, DOE Grant DE-FG02-09ER46554, and the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant #DMR TG-DMR130121.

  5. Growth of ZnO and GaN Films

    NASA Astrophysics Data System (ADS)

    Chang, J.; Hong, S.-K.; Matsumoto, K.; Tokunaga, H.; Tachibana, A.; Lee, S. W.; Cho, M.-W.

    . Zinc oxide (ZnO) and gallium nitride (GaN) are wide bandgap semi conductors applicable to light emitting diodes (LEDs) and laser diodes (LDs) with wavelengths ranging from ultraviolet to blue light. Now ZnO and GaN are key ma terials for optoelectronic device applications and their applications are being rapidly expanded to lots of other technology including electronics, biotechnology, nanotech-nology, and fusion technology among all these. As a fundamental starting point for the development of this new technique, epitaxy of ZnO and GaN films is one of the most important key technology. Hence, development of the growth technique for high quality epitaxial films is highly necessary. Among the various kinds of epi taxy technique for semiconductor films developed so far, physical vapor deposition (PVD)-based epitaxy technique has been revealed to be the appropriate way for the high quality ZnO film and related alloy growths, while chemical vapor deposition (CVD)-based epitaxy technique has been proved to be the best method for the high quality GaN film and related alloy growths.

  6. ZnO Nanostructure-Based Intracellular Sensor.

    PubMed

    Asif, Muhammad H; Danielsson, Bengt; Willander, Magnus

    2015-01-01

    Recently ZnO has attracted much interest because of its usefulness for intracellular measurements of biochemical species by using its semiconducting, electrochemical, catalytic properties and for being biosafe and biocompatible. ZnO thus has a wide range of applications in optoelectronics, intracellular nanosensors, transducers, energy conversion and medical sciences. This review relates specifically to intracellular electrochemical (glucose and free metal ion) biosensors based on functionalized zinc oxide nanowires/nanorods. For intracellular measurements, the ZnO nanowires/nanorods were grown on the tip of a borosilicate glass capillary (0.7 µm in diameter) and functionalized with membranes or enzymes to produce intracellular selective metal ion or glucose sensors. Successful intracellular measurements were carried out using ZnO nanowires/nanorods grown on small tips for glucose and free metal ions using two types of cells, human fat cells and frog oocytes. The sensors in this study were used to detect real-time changes of metal ions and glucose across human fat cells and frog cells using changes in the electrochemical potential at the interface of the intracellular micro-environment. Such devices are helpful in explaining various intracellular processes involving ions and glucose. PMID:26007730

  7. Self-focused ZnO transducers for ultrasonic biomicroscopy

    PubMed Central

    Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.

    2008-01-01

    A simple fabrication technique was developed to produce high frequency (100 MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18 μm thick ZnO layer on 2 mm diameter aluminum rods with ends shaped and polished to produce a 2 mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4 μm Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101 MHz with a -6 dB bandwidth of 49%. The measured two way insertion loss was 44 dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers. PMID:18596925

  8. Ecotoxicity of Manufactured ZnO Nanoparticles - A Review

    EPA Science Inventory

    This report presents an exhaustive literature review on the toxicity of manufactured ZnO nanoparticles (NPs) to ecological receptors across different phylum: bacteria, algae and plants, aquatic and terrestrial invertebrates and freshwater fish. Results show that the majority of s...

  9. Co doped ZnO nanowires as visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Šutka, Andris; Käämbre, Tanel; Pärna, Rainer; Juhnevica, Inna; Maiorov, Mihael; Joost, Urmas; Kisand, Vambola

    2016-06-01

    High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV-visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10-3 min-1 in case of nanoparticles and 4.2·10-3 min-1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.

  10. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    PubMed Central

    2011-01-01

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km PMID:21711895

  11. Perovskite enhanced solid state ZnO solar cells

    NASA Astrophysics Data System (ADS)

    Loh, L.; Briscoe, J.; Dunn, S.

    2013-12-01

    This paper will report on the design, fabrication and testing of a solid-state perovskite enhanced ZnO solar cell. The p-type perovskite material used is bismuth ferrite (BFO) which has an absorption range within the blue range of the visible light spectrum. The solid state solar cell, was sensitized with N719 dye and used a CuSCN hole conductor. A disadvantage of ZnO is its poor chemical stability in acidic and corrosive environments. As chemical solution techniques were used in depositing BFO, a buffer method using an aminosilane ((3-aminopropyltrimethoxysilane or H2N(CH2)3Si(OCH3)3)) coating was used to provide a protective coating on the ZnO nanorods before the BFO film was spin coated onto the ZnO nanorods. The photovoltaic performance of the solar cells were tested using a Keithley 2400 source meter under 100mW/cm2, AM 1.5G simulated sunlight, where improvements in Jsc and efficiency were observed. The BFO was able to harness more electrons and also acted as a buffer from electron recombination.

  12. Rapid synthesis of flower-like ZnO nanostructures.

    PubMed

    Movahedi, Maryam; Mahjoub, Ali Reza; Yavari, Issa; Kowsari, Elaheh

    2010-09-01

    Flower-like ZnO nanostructures were prepared via microwave assisted heating in the presence and absence of ionic liquid (IL). X-ray diffraction analysis (XRD), Scanning electron microscopy SEM and room temperature photoluminescence (PL) spectra have been employed for characterization of the products. The SEM image illustrates the surface of flower-like ZnO prepared in the presence of IL is not smooth and consists of nanoparticles with grain size of about 48 nm. PL spectra of flower-like ZnO in absence and presence IL reveal similar photoluminescence features: a strong UV, weak blue and green-yellow emissions peak at a bout 393 nm, 448 nm and 583 nm respectively. The strong UV photoluminescence and the weak green emission indicate the good crystallization quality of the flower-like nanostructure. The results show that imidazolium-based IL can be used as template for achieving very high level control over the size and shape of nanostructures. The approach developed in this work can potentially be used as a viable method for making various other uniform nanostructures in the presence of IL. This method is simple, fast, low-cost and suitable for large-scale production of ZnO nanostructures. PMID:21133168

  13. Aerogel tempelated ZnO dye-sensitized solar cells.

    SciTech Connect

    Hamann, T. W.; Martinson , A. B. E.; Elam, J. W.; Pellin, M. J.; Hupp, J. T.; Materials Science Division; Northwestern Univ.

    2008-01-01

    Atomic layer deposition is employed to conformally coat low density, high surface area aerogel films with ZnO. The ZnO/aerogel membranes are incorporated as photoanodes in dye-sensitized solar cells, which exhibit excellent power efficiencies of up to 2.4% under 100 mW cm{sup -2} light intensity.

  14. Photoluminescence of He-implanted ZnO

    SciTech Connect

    Hamby, D. W.; Lucca, D. A.; Lee, J.-K.; Nastasi, Michael Anthony,

    2004-01-01

    A study of the effects of ion-implanted He{sup +} on the 4.2 K photoluminescence (PL) of ZnO is presented. This investigation is motivated by the need to further understand the effects of damage resulting from the implantation process on the PL of ZnO. For this study, 10 keV He{sup +} ions were implanted at a dose of 2.5 x 10{sup 13}/cm{sup 2} in the (0001) Zn-terminated surface. The implantation process is seen to reduce the overall luminescence efficiency, although the number and relative intensities of the bound-exciton peaks are observed to be similar to that of unimplanted ZnO. The 4.2 K PL of the implanted surface exhibits a broad orange/red peak near 1.86 eV nm and is attributed to damage introduced during the implantation process. This peak is identified as donor-acceptor pair (DAP) luminescence with a thermal activation energy of 11 meV. The 1.86 eV peak is not observed for H-implanted ZnO suggesting that H passivates the implantation-induced defects responsible for this luminescence.

  15. ZnO Nanostructure-Based Intracellular Sensor

    PubMed Central

    Asif, Muhammad H.; Danielsson, Bengt; Willander, Magnus

    2015-01-01

    Recently ZnO has attracted much interest because of its usefulness for intracellular measurements of biochemical species by using its semiconducting, electrochemical, catalytic properties and for being biosafe and biocompatible. ZnO thus has a wide range of applications in optoelectronics, intracellular nanosensors, transducers, energy conversion and medical sciences. This review relates specifically to intracellular electrochemical (glucose and free metal ion) biosensors based on functionalized zinc oxide nanowires/nanorods. For intracellular measurements, the ZnO nanowires/nanorods were grown on the tip of a borosilicate glass capillary (0.7 µm in diameter) and functionalized with membranes or enzymes to produce intracellular selective metal ion or glucose sensors. Successful intracellular measurements were carried out using ZnO nanowires/nanorods grown on small tips for glucose and free metal ions using two types of cells, human fat cells and frog oocytes. The sensors in this study were used to detect real-time changes of metal ions and glucose across human fat cells and frog cells using changes in the electrochemical potential at the interface of the intracellular micro-environment. Such devices are helpful in explaining various intracellular processes involving ions and glucose. PMID:26007730

  16. Synthesis of ZnO flowers and their photoluminescence properties

    SciTech Connect

    Wu Changle; Qiao Xueliang Luo Langli; Li Haijun

    2008-07-01

    Flower-like ZnO nano/microstructures have been synthesized by thermal treatment of Zn(NH{sub 3}){sub 4}{sup 2+} precursor in aqueous solvent, using ammonia as the structure directing agent. A number of techniques, including X-ray diffraction (XRD), field emission scan electron microscopy (FESEM), transmission electron microscopy (TEM), thermal analysis, and photoluminescence (PL) were used to characterize the obtained ZnO structures. The photoluminescence (PL) measurements indicated that the as-synthesized ZnO structures showed UV ({approx}375 nm), blue ({approx}465 nm), and yellow ({approx}585 nm) emission bands when they were excited by a He-Gd laser using 320 nm as the excitation source. Furthermore, it has been interestingly found that the intensity of light emission at {approx}585 nm remarkably decreased when the obtained ZnO nanocrystals were annealed at 600 deg. C for 3 h in air. The reason might be the possible oxygen vacancies and interstitials in the sample decreased at high temperature.

  17. ZnO for photocatalytic air purification applications

    NASA Astrophysics Data System (ADS)

    Tudose, I. V.; Suchea, M.

    2016-06-01

    Nano and micro-structured ZnO coatings onto various substrates were grown by chemical methods and optimized with respect to their photocatalytic activity against in-doors common air pollutants. Excellent quality coatings with high stability and photocatalytic efficiency were obtained with the scope to be integrated in a novel air-purification system.

  18. Self-focused ZnO transducers for ultrasonic biomicroscopy

    SciTech Connect

    Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.

    2008-04-15

    A simple fabrication technique was developed to produce high frequency (100 MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18 {mu}m thick ZnO layer on 2 mm diameter aluminum rods with ends shaped and polished to produce a 2 mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4 {mu}m Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101 MHz with a -6 dB bandwidth of 49%. The measured two way insertion loss was 44 dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.

  19. Ferromagnetism in Co- and Mn-doped ZnO

    NASA Astrophysics Data System (ADS)

    Theodoropoulou, N. A.; Hebard, A. F.; Norton, D. P.; Budai, J. D.; Boatner, L. A.; Lee, J. S.; Khim, Z. G.; Park, Y. D.; Overberg, M. E.; Pearton, S. J.; Wilson, R. G.

    2003-12-01

    Bulk single crystals of Sn-doped ZnO were implanted with Co or Mn at doses designed to produce transition metal concentrations of 3-5 at.% in the near-surface (˜2000 Å) region. The implantation was performed at ˜350 °C to promote dynamic annealing of ion-induced damage. Following annealing at 700 °C, temperature-dependent magnetization measurements showed ordering temperatures of ˜300 K for Co- and ˜250 K for Mn-implanted ZnO. Clear hysteresis loops were obtained at these temperatures. The coercive fields were ⩽100 Oe for all measurement temperatures. X-ray diffraction showed no detectable second phases in the Mn-implanted material. One plausible origin for the ferromagnetism in this case is a carrier-induced mechanism. By sharp contrast, the Co-implanted material showed evidence for the presence of Co precipitates with hexagonal symmetry, which is the cause of the room temperature ferromagnetism. Our results are consistent with the stabilization of ferromagnetic states by electron doping in transition metal-doped ZnO predicted by Sato and Katayama-Yoshida [Jpn. J. Appl. Phys. 40 (2001) L334]. This work shows the excellent promise of Mn-doped ZnO for potential room temperature spintronic applications.

  20. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  1. Piezotronically modified double Schottky barriers in ZnO varistors.

    PubMed

    Raidl, Nadine; Supancic, Peter; Danzer, Robert; Hofstätter, Michael

    2015-03-25

    Double Schottky barriers in ZnO are modified piezotronically by the application of mechanical stresses. New effects such as the enhancement of the potential barrier height and the increase or decrease of the natural barrier asymmetry are presented. Also, an extended model for the piezotronic modification of double Schottky barriers is given. PMID:25655302

  2. Aerodynamics of Heavy Vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Lee, Jungil; Park, Hyungmin

    2014-01-01

    We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

  3. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  4. Influence of homo buffer layer thickness on the quality of ZnO epilayers.

    PubMed

    Eid, E A; Fouda, A N

    2015-10-01

    ZnO buffer layers with different thicknesses were deposited on a-plane sapphire substrates at 300 °C. ZnO epilayers were grown on ZnO buffers at 600 °C by radio-frequency magnetron sputtering and vacuum annealed at 900 °C for an hour. Influence of nucleation layer thickness on the structural and quality of ZnO thin films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and Raman spectroscopy. The best ZnO film quality was obtained with the ZnO buffer layer of 45 nm thick which provided the smoothest surface with RMS value of 0.3 nm. X-ray diffraction measurements reveal that the films have a single phase wurtzite structure with (0001) preferred crystal orientation. As evident from narrow FWHM of ZnO (0002) rocking curve, ZnO buffer can serve as a good template for the growth of high-quality ZnO films with little tilt. In addition, the micro-Raman scattering measurements at room temperature revealed the existence of Raman active phonon modes of ZnO; A1(TO), A1(LO) and E2(high). The latter two modes were not observed in thin buffer layer beside the dis-appearance of E2(low) mode in all films. PMID:25950638

  5. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. PMID:26478403

  6. Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60.

    PubMed

    Fu, Hongbo; Xu, Tongguang; Zhu, Shengbao; Zhu, Yongfa

    2008-11-01

    C60 molecules with monomolecular layer state dispersed on the surface of ZnO and formed the hybridized interaction between ZnO and C60. C60-hybridized ZnO photocatalyst showed enhanced photocatalytic activity for the degradation of the organic dye and the photocorrosion of ZnO was successfully inhibited bythe hybridization of C60 molecules. The photocorrosion inhibition of ZnO by C60 molecule could be attributed to the reduced activation of surface oxygen atom. The enhanced photocatalytic activity for C60-hybridized ZnO was originated from the high migration efficiency of photoinduced electrons on the interface of C60 and ZnO, which was produced by the interaction of C60 and ZnO with a conjugative pi-system. The enhancement degree of photocatalytic activity was strongly depended on the coverage of C60 molecules on the surface of ZnO nanoparticles, and the optimum hybridization effect was found at a weight ratio of 1.5% (C60/ZnO). The hybridization of C60 with semiconductors could be used to improve the photocatalytic activity as well as the photostability. PMID:19031903

  7. The growth of porous ZnO nanowires by thermal oxidation of ZnS nanowires.

    PubMed

    Hung, Chih-Cheng; Lin, Wen-Tai; Wu, Kuen-Hsien

    2011-12-01

    The growth of porous ZnO nanowires (NWs) via phase transformation of ZnS NWs at 500-850 degrees C in air was studied. The ZnS NWs were first synthesized by thermal evaporation of ZnS powder at 1100 degrees C in Ar. On subsequent annealing at 500 degrees C in air, discrete ZnO epilayers formed on the surface of ZnS NWs. At 600 degrees C, polycrystalline ZnO and the crack along the (0001) interface between the ZnO epilayer and ZnS NW were observed. At 700-750 degrees C ZnS NWs transformed to ZnO NWs, meanwhile nanopores and interfacial cracks were observed in the ZnO NWs. Two factors, the evaporation of SO2 and SO3 and the stress induced by the incompatible structure at the interface of ZnO epilayer and ZnS NW, can be responsible for the formation of porous ZnO NWs from ZnS NW templates on annealing at 700-750 degrees C in air. Rapid growth of ZnO at 850 degrees C could heal the pores and cracks and thus resulted in the well-crystallized ZnO NWs. PMID:22409083

  8. The Antibacterial Activity of Ta-doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-08-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis ( B. subtilis) and Staphylococcus aureus ( S. aureus) and Gram-negative Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta5+ ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta5+ ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  9. Electronic structure of Co-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Neffati, Ahmed; Souissi, Hajer; Kammoun, Souha

    2012-10-01

    The optical transmission spectra, the photoluminescence (PL), and the photoluminescence excitation (PLE) spectra of the cobalt doped zinc oxide nanorods Zn1-xCoxO (x = 0.01, 0.10) were measured by Loan et al. [J. Phys. D: Appl. Phys. 42, 065412 (2009)] in the region 1.5-4 eV. These spectra exhibit a group of ultraviolet narrow lines in the region of 3.0-3.4 eV related to the near-band-edge emission of the host ZnO materials and a group of emission lines in the red region of 1.8-1.9 eV assigned to the radiative transitions within the tetrahedral Co2+ ions in the ZnO host crystal. The group of lines in the visible region provides important information about the electronic structure of the cobalt doped zinc oxide nanorods. This work investigates a theoretical crystal-field analysis of the visible lines associated to the Co2+ ion transition occupying a Td site symmetry in ZnO host crystal. A satisfactory correlations were obtained between experimental and calculated energy levels. The electronic structure was compared with the reported for cobalt transition ion doped in ZnO nanoparticles and bulk crystals [Volbers et al., Appl. Phys. A 88, 153 (2007) and H. J. Schulz and M. Thiede, Phys. Rev. B 35, 18 (1987)]. In order to explain the existence of excitation peaks observed near the band edge of the ZnO host, an energy transfer mechanism is proposed.

  10. Zn2NF and Related Analogues of ZnO.

    PubMed

    Lingampalli, Srinivasa Rao; Manjunath, Krishnappa; Shenoy, Sandhya; Waghmare, Umesh V; Rao, C N R

    2016-07-01

    Substitution of aliovalent N(3-) and F(-) anions in place of O(2-) in ZnO brings about major changes in the electronic structure and properties, the composition, even with 10 atomic percent or less of the two anions, rendering the material yellow colored with a much smaller band gap. We have examined the variation of band gap of ZnO with progressive substitution of N and F and more importantly prepared Zn2NF which is the composition one obtains ultimately upon complete replacement of O(2-) ions. In this article, we present the results of a first complete study of the crystal and electronic structures as well as of properties of a stable metal nitride fluoride, Zn2NF. This material occurs in two crystal forms, tetragonal and orthorhombic, both with a band gap much smaller than that of ZnO. Electronic structures of Zn2NF as well as ZnO0.2N0.5F0.3 investigated by first-principles calculations show that the valence bands of these are dominated by the N (2p) states lying at the top. Interestingly, the latter is a p-type material, a property that has been anticipated for long time. The calculations predict conduction and valence band edges in Zn2NF to be favorable for water splitting. Zn2NF does indeed exhibit good visible-light-induced hydrogen evolution activity unlike ZnO. The present study demonstrates how aliovalent anion substitution can be employed for tuning band gaps of materials. PMID:27299368

  11. Ohmic-Rectifying Conversion of Ni Contacts on ZnO and the Possible Determination of ZnO Thin Film Surface Polarity

    PubMed Central

    Saw, Kim Guan; Tneh, Sau Siong; Tan, Gaik Leng; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah

    2014-01-01

    The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films. PMID:24466144

  12. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method

    NASA Astrophysics Data System (ADS)

    Devi, P. Geetha; Velu, A. Sakthi

    2016-09-01

    Pure ZnO and Cobalt (Co) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure, which was confirmed by X-ray diffraction studies. From FESEM studies, ZnO and Co doped ZnO NPs showed Spherical and nanorod mixed phase and Spherical like morphology, respectively. The amount of dopant (Co2+) incorporated into ZnO sample was determined by EDAX. The FT-IR spectra confirmed the Zn-O stretching bands at 438 and 427 cm-1 for ZnO and Co doped ZnO NPs. From the UV-VIS spectroscopic measurements, the excitonic pecks were found around 376 and 370 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of seven different bands due to zinc vacancies, oxygen vacancies and surface defects. The dynamic light scattering (DLS) and Zeta potential measurements were used to find out the size and surface charges.

  13. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method

    NASA Astrophysics Data System (ADS)

    Devi, P. Geetha; Velu, A. Sakthi

    2016-05-01

    Pure ZnO and Cobalt (Co) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure, which was confirmed by X-ray diffraction studies. From FESEM studies, ZnO and Co doped ZnO NPs showed Spherical and nanorod mixed phase and Spherical like morphology, respectively. The amount of dopant (Co2+) incorporated into ZnO sample was determined by EDAX. The FT-IR spectra confirmed the Zn-O stretching bands at 438 and 427 cm-1 for ZnO and Co doped ZnO NPs. From the UV-VIS spectroscopic measurements, the excitonic pecks were found around 376 and 370 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of seven different bands due to zinc vacancies, oxygen vacancies and surface defects. The dynamic light scattering (DLS) and Zeta potential measurements were used to find out the size and surface charges.

  14. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  15. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  16. Synthesis and characterization of Mn-doped ZnO column arrays

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Guo, Zhixing; Qiu, Kehui; Long, Jianping; Yin, Guangfu; Guan, Denggao; Liu, Sutian; Zhou, Shijie

    2010-04-01

    Mn-doped ZnO column arrays were successfully synthesized by conventional sol-gel process. Effect of Mn/Zn atomic ratio and reaction time were investigated, and the morphology, tropism and optical properties of Mn-doped ZnO column arrays were characterized by SEM, XRD and photoluminescence (PL) spectroscopy. The result shows that a Mn/Zn atomic ratio of 0.1 and growth time of 12 h are the optimal condition for the preparation of densely distributed ZnO column arrays. XRD analysis shows that Mn-doped ZnO column arrays are highly c-axis oriented. As for Mn-doped ZnO column arrays, obvious increase of photoluminescence intensity is observed at the wavelength of ˜395 nm and ˜413 nm, compared to pure ZnO column arrays.

  17. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  18. Application of Eu2O3/ZnO nanoparticles in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Kaur, Manveen; Verma, N. K.

    2013-06-01

    The synthesis of ZnO, Eu2O3 coated ZnO nanoparticles and their application in dye sensitized solar cells (DSSCs) has been reported. The synthesized samples have been characterized by XRD and the diffraction of crystal plane (222) of Eu2O3 was detected, demonstrating the existence of Eu2O3 on the surface of ZnO3, which has also been verified through EDAX. Compared to ZnO electrodes, Eu2O3 coated ZnO electrodes adsorbed more dye. Eu2O3 coating on ZnO forms an energy barrier, which suppresses the charge recombination. Consequently, the photoelectrochemical properties of the modified electrodes improved and the overall energy conversion efficiency η increased from 0.21% to 0.61% under the illumination of simulated light of 100mW/cm2.

  19. Atomic layer deposition of ZnO on Cu-nanoclusters for methanol synthesis

    SciTech Connect

    Zhang Ziyu; Patterson, Matthew; Ren Maoming; Wang Ying; Flake, John C.; Sprunger, Phillip T.; Kurtz, Richard L.

    2013-01-15

    The properties of ALD-grown ZnO thin films on Cu clusters supported on ZnO(1010) have been studied with scanning tunneling and scanning electron microscopy in combination with angle-resolved x-ray photoelectron spectroscopy. Deposition at room temperature of two monolayers of Cu on ZnO(1010) results in metallic Cu{sup 0} clusters {approx}8 nm wide by 1.4 nm high. Higher coverages of 15 ML results in a similar morphology, with slightly larger cluster sizes. Following air-exposure and ALD-growth of two cycles of ZnO, the Cu exhibits Cu{sup +} species characteristic of Cu{sub 2}O and the thin ZnO coating is hydroxylated. Electrochemical studies of ALD ZnO coatings on Cu suggest that they are more active for CO{sub 2} reduction.

  20. Hydrothermal synthesis and dielectric properties of chrysanthemum-like ZnO particles

    NASA Astrophysics Data System (ADS)

    Yan, Jun-Feng; Zhang, Zhi-Yong; You, Tian-Gui; Zhao, Wu; Yun, Jiang-Ni

    2009-09-01

    By orthogonal design theory, technological parameters of chrysanthemum-like ZnO particles prepared in a hydrothermal process are optimized. This paper reports a set of technological parameters for growing chrysanthemum-like ZnO particles on a large scale. It investigates the morphologies and crystalline structures of the as-synthesized three-dimensional ZnO particles with a scanning electron microscope, x-ray diffractometer and transmission electron microscope, and the possible growth mechanism on the three-dimensional ZnO particles. The experimental results indicate that the values of in', in″ and tan δe gradually increase in the X band with the improvement of the developmental level of chrysanthemum-like ZnO particles, implying that the electromagnetic wave absorbing property depends on the morphologies of three-dimensional ZnO particles.

  1. Ab inito study of Ag-related defects in ZnO

    NASA Astrophysics Data System (ADS)

    Wan, Qixin; Xiong, Zhihua; Li, Dongmei; Liu, Guodong

    2008-12-01

    Using first-principles calculations, we investigated the structure and electronic properties of Ag-related defects in ZnO. The calculation results indicate that AgZn behaves as acceptor. Simultaneously, by comparing the formation energy and electronic structure of Ag-related defects in ZnO, Oi-AgZn behaves as acceptor in Ag-doped ZnO and it is better to gain p-type ZnO. However, Hi-AgZn complex has the lowest formation energy. Thus, the formation of the other point defects is greatly suppressed by the formation of Hi in Ag-doped ZnO. Moreover, the H atoms can be easily dissociated from hydrogen-passivated complexes by post-annealing at moderate temperatures, thus, codoping Ag with H may be a good method to achieve p-type in Ag-doped ZnO.

  2. Fabrication and gas-sensing properties of hierarchical ZnO replica using down as template

    NASA Astrophysics Data System (ADS)

    Bai, Zikui; Li, Songzhan; Xu, Jie; Zhou, Yingshan; Gu, Shaojin; Tao, Yongzhen; Liu, Li; Fang, Dong; Xu, Weilin

    2016-06-01

    Hierarchical ZnO replica using down as template fabricated by a combination of low-temperature plasma treatment and sonochemical method was used in gas sensor for the detection of ethanol and formaldehyde. The morphologies and crystal structures of the hierarchical ZnO replica were characterized by field-emission scanning electron microscopy and X-ray diffraction, respectively. Results showed that the hierarchical ZnO replica retained the initial down morphology and consisted of hexagonal wurtzite structure ZnO nanocrystals. The results of resistance-temperature characteristics and responses to ethanol and formaldehyde indicated that the hierarchical ZnO film had low activation energy (0.1118 eV) and a low optimum operating temperature and that the response time was longer than recovery time. These behaviors were well explained in relation to three-dimensional network structures and the high specific surface area of the hierarchical ZnO replica.

  3. Application of ZnO nanopillars and nanoflowers to field-emission luminescent tubes

    NASA Astrophysics Data System (ADS)

    Yun, Ye; Tailiang, Guo; Yadong, Jiang

    2012-04-01

    Zinc oxide (ZnO) nanopillars on a ZnO seed layer and ZnO nanoflowers were synthesized by electrochemical deposition on linear wires. The morphologies and crystal orientation of the ZnO nanostructures were investigated by a scanning electron microscopy and an X-ray diffraction pattern, respectively. Detailed study on the field-emission properties of ZnO nanostructures indicates that nanopillars with a high aspect ratio show good performance with a low turn-on field of 0.16 V/μm and a high field enhancement factor of 2.86 × 104. A luminescent tube with ZnO nanopillars on a linear wire cathode and a transparent anode could reach a luminance of about 1.5 × 104 cd/m2 under an applied voltage of 4 kV.

  4. Effect of Intrinsic Point Defect on the Magnetic Properties of ZnO Nanowire

    PubMed Central

    Yun, Jiangni; Zhang, Zhiyong; Yin, Tieen

    2013-01-01

    The effect of intrinsic point defect on the magnetic properties of ZnO nanowire is investigated by the first-principles calculation based on the density functional theory (DFT). The calculated results reveal that the pure ZnO nanowire without intrinsic point defect is nonmagnetic and ZnO nanowire with VO, Zni, Oi, OZn, or ZnO point defect also is nonmagnetic. However, a strong spin splitting phenomenon is observed in ZnO nanowire with VZn defect sitting on the surface site. The Mulliken population analysis reveals that the oxygen atoms which are close to the VZn defect do major contribution to the magnetic moment. Partial density states calculation further suggests that the appearance of the half-metallic ferromagnetism in ZnO nanorod with VZn originates from the hybridization of the O2p states with Zn 3d states. PMID:24396300

  5. Synthesis and characterization of ZnO nanowires for nanosensor applications

    SciTech Connect

    Lupan, O.; Emelchenko, G.A.; Ursaki, V.V.; Chai, G.; Redkin, A.N.; Gruzintsev, A.N.; Tiginyanu, I.M.; Chow, L.; Ono, L.K.; and others

    2010-08-15

    In this paper we report the synthesis of ZnO nanowires via chemical vapor deposition (CVD) at 650 {sup o}C. It will be shown that these nanowires are suitable for sensing applications. ZnO nanowires were grown with diameters ranging from 50 to 200 nm depending on the substrate position in a CVD synthesis reactor and the growth regimes. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Raman spectroscopy (RS) have been used to characterize the ZnO nanowires. To investigate the suitability of the CVD synthesized ZnO nanowires for gas sensing applications, a single ZnO nanowire device (50 nm in diameter) was fabricated using a focused ion beam (FIB). The response to H{sub 2} of a gas nanosensor based on an individual ZnO nanowire is also reported.

  6. The effects of addition of citric acid on the morphologies of ZnO nanorods

    SciTech Connect

    Yang Zao . E-mail: yangzao888@tom.com; Liu Quanhui; Yang Lei

    2007-02-15

    ZnO nanorods of 25-100 nm in diameter and 0.2-1 {mu}m in length were fabricated through citric acid assisted annealing process. The microstructure of ZnO nanorods was characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and field-emission scanning electron microscopy, respectively. As a result, it was found that ZnO nanorods were single crystalline and pure. The effects of the growth conditions such as addition of citric acid, annealing temperature on the morphologies of ZnO nanostructures have also been investigated. At the given temperature the length decreased but the diameter increased with addition of the mass of citric acid. With the rising of the calcining heat, the shape of ZnO changed from rod to granule for a given amount of citric acid. Finally, the mechanism for citric acid assisted annealing synthesis of the ZnO nanostructure is discussed.

  7. Nanoantenna-like properties of sea-urchin shaped ZnO as a nanolight filter

    NASA Astrophysics Data System (ADS)

    Husn Su, Yen; Chen, Wei-Yu

    2012-09-01

    A light scattering peak of ZnO rods is presented at 543.2 nm. The radiation peaks of ZnO nanospines correspond to 496.6 nm and 630.6 nm due to the breaking of the symmetry of the ZnO rods. The radiation peaks of sea-urchin shaped ZnO was observed and confirmed by utilizing the dipole approximation. Sea-urchin shaped ZnO can tune and then filter different frequencies of light by utilizing incident light to illuminate at the different positions of sea-urchin shaped ZnO which works like a nanolight filter device and has potential applications in photonic computers, bio-light emission device, and solar cells.

  8. Controllable Growth of Ultrathin P-doped ZnO Nanosheets

    NASA Astrophysics Data System (ADS)

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-04-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures.

  9. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Tseng, Zong-Liang; Chiang, Chien-Hung; Wu, Chun-Guey

    2015-09-01

    Sputtering made ZnO thin film was used as an electron-transport layer in a regular planar perovskite solar cell based on high quality CH3NH3PbI3 absorber prepared with a two-step spin-coating. An efficiency up to 15.9% under AM 1.5G irradiation is achieved for the cell based on ZnO film fabricated under Ar working gas. The atmosphere of the sputtering chamber can tune the surface electronic properties (band structure) of the resulting ZnO thin film and therefore the photovoltaic performance of the corresponding perovskite solar cell. Precise surface engineering of ZnO thin film was found to be one of the key steps to fabricate ZnO based regular planar perovskite solar cell with high power conversion efficiency. Sputtering method is proved to be one of the excellent techniques to prepare ZnO thin film with controllable properties.

  10. Controllable Growth of Ultrathin P-doped ZnO Nanosheets.

    PubMed

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-12-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures. PMID:27033851

  11. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C. S.; de Moura, Ana P.; Freire, Poliana G.; da Silva, Luis F.; Longo, Elson; Munoz, Rodrigo A. A.; Lima, Renata C.

    2015-10-01

    We report for the first time a rapid preparation of Zn1-2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO.

  12. Temperature dependence of the growth of ZnO nanorod arrays by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hyunghoon; Moon, Jin Young; Lee, Ho Seong

    2011-03-01

    ZnO nanorod arrays were prepared by the electrochemical deposition route on conductive Au/Si substrates. The effect of the bath temperature on the growth of the ZnO nanorod arrays was investigated. With an increase in bath temperature from 30°C to 80°C, the deposited ZnO changed from an amorphous structure to a hexagonal crystal structure. The ZnO nanorod arrays grown above 50°C were dense and vertically well-aligned. Scanning and transmission electron microscopy results showed that the diameter of the hexagon-shaped ZnO nanorod arrays ranged from 100 nm to 180 nm and the length was about 500 nm. On the basis of the characteristics of the ZnO crystal structure and the effect of the bath temperature, the growth mechanism is described.

  13. Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination.

    PubMed

    Yao, Ke Xin; Liu, Xin; Zhao, Lan; Zeng, Hua Chun; Han, Yu

    2011-10-01

    In this work, wurtzite ZnO nanocrystals with unique "pyramid" morphology were firstly prepared via solvothermal synthesis. It was determined that the ZnO nanopyramids are grown along the polar c-axis with the vertexes pointing to the [001] direction. When the mixture of ZnO nanopyramids and Au precursor (HAuCl(4)) was exposed to ultraviolet (UV) illumination, Au particles were site-specifically formed on the vertexes of ZnO nanopyramids. The obtained Au/ZnO nanocomposite showed significantly enhanced photocatalytic activity as compared to the bare ZnO nanopyramids. First-principles based calculations well explained the formation of ZnO nanopyramids as well as the site-specific growth of Au, and revealed that during the photocatalysis process the Au particles can accommodate photoelectrons and thus facilitate the charge separation. PMID:21870000

  14. Orientation-Dependent Structural Properties and Growth Mechanism of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Yu, H.-J.; Jeong, E.-S.; Park, S.-H.; Seo, S.-Y.; Kim, S.-H.; Han, S.-W.

    2007-01-01

    We present the local structural properties of ZnO nanorods studied by using extended x-ray absorption fine structure (EXAFS). Vertically aligned ZnO nanorods were fabricated on Al2O3 substrates by a catalyst free metal organic chemical vapor deposition (MOCVD). The polarized EXAFS measurements on the ZnO nanorods were performed at Zn K-edge. The polarized EXAFS study revealed that the nanorods had a wurtzite structure, and that there were substantial amount of structural disorders in Zn-O pairs in the beginning of the nanorod growth. The EXAFS measurements revealed that the orientation-dependent disorders of the Zn-O pairs were directly related to the growth mechanism and crystal quality of the ZnO nanorods.

  15. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.

    PubMed

    Ruiz, Oscar; Clemente, Carmen; Alonso, Manuel; Alguacil, Francisco Jose

    2007-03-01

    The production of steel in electric arc furnace (EAF) generates a by-product called EAF dusts. These steelmaking flue dusts are classified in most industrialized countries as hazardous residues because the heavy metals contained in them, tend to leach under slightly acidic rainfall conditions. However, and at the same time they contain zinc species which can be used as a source to obtain valuable by-products. The present investigation shows results on the processing of an EAF flue dust using ammonium carbonate solutions. Once zinc is dissolved: ZnO + 4NH3 + H2O --> Zn(NH3)4(2+) + 2OH- with other impurities (i.e. cadmium and copper), these are eliminated from the zinc solution via cementation with metallic zinc. The purified zinc solution was evaporated (distilled) until precipitation of a zinc carbonate species, which then was calcined to yield a zinc oxide of a high grade. For the unattacked dust residue from the leaching operation, mainly composed of zinc ferrite, several options can be considered: back-recycling to the furnace, further treatment by sodium hydroxide processing or a more safely dumping due to its relatively inertness. PMID:16876937

  16. Acceptors in bulk and nanoscale ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.

    2012-02-01

    Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, theoretical and experimental work indicates that nitrogen is a deep acceptor and will not lead to p-type conductivity. This talk will highlight recent experiments on ZnO:N at low temperatures. A red/near-IR photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. Magnetic resonance experiments provide further evidence for this assignment. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. If these acceptors do not work as advertised, is there a viable alternative? Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the ˜ 1.3 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. Specifically, electron-hole recombination at the surface give rises to a red luminescence band. From our PL and IR experiments, we have developed a ``unified'' model that attempts to explain acceptor and surface states in ZnO nanocrystals. This model could provide a useful framework for designing future nanoscale ZnO devices.

  17. The effect of ZnO nanoparticles on liver function in rats

    PubMed Central

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    2016-01-01

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621

  18. Direct growth of densely aligned ZnO nanorods on graphene

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiro; Okumura, Ryuji; Ichikawa, Yo

    2016-08-01

    Densely aligned ZnO nanorods were directly grown on graphene sheets. On graphene prepared via a chemical vapor deposition technique, ZnO nanorods were synthesized by a hydrothermal method. The rod density was ∼1.4 × 109/cm2 and the nanorods were observed to be well aligned on graphene by scanning electron microscopy. The formation of such ZnO structures is considered to be induced by carbon vacancies in graphene in accordance with Raman spectroscopic results.

  19. Synthesis, characterization, UV and dielectric properties of hexagonal disklike ZnO particles embedded in polyimides

    SciTech Connect

    Vural, Sema; Koeytepe, Sueleyman; Seckin, Turgay; Adiguezel, Ibrahim

    2011-10-15

    Graphical abstract: The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. ZnO/polyimide composite films with different ZnO contents was prepared. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology and thermal behavior. Composites with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties. Highlights: {yields} A series of novel ZnO/polyimide composite films with different ZnO contents was prepared. {yields} The ZnO was homogeneously dispersed in the PI matrix. {yields} The composites showed the low dielectric constant of 50 at 10{sup 6} Hz. {yields} Homogenous dispersion and the amount of ZnO particles contributed to the dielectric properties of composites. -- Abstract: A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.

  20. Effect of ZnO nanoparticles on structural and mechanical properties of HPMC polymer films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Mahadeviah, Asha, S.; Somashekar, R.; Sangappa

    2013-02-01

    The Zinc Oxide (ZnO) nano-particles were synthesized by electrochemical method. The HPMC films were prepared by solution casting method and ZnO concentration was varied from 0.01 to 0.04%. The films were examined for structural and mechanical properties verifying how the addition of ZnO nano-particles affected the properties using X-ray diffraction (XRD) and Universal Testing Machine (UTM).

  1. Crystallographically oriented Zn nanocrystals formed in ZnO by Mn{sup +}-implantation

    SciTech Connect

    Li, Y. J.; Zhang, B.; Lu, W.; Wang, Y.; Zou, J.

    2008-09-29

    The nanostructural characteristics of ZnO implanted with Mn{sup +} to doses ranging from 1x10{sup 15} to 1x10{sup 17} cm{sup -2} are systematically studied for both as-implanted and postannealed cases. The detailed structural characterizations confirmed that the Mn{sup +} implantation and postannealing result in (1) the formation of crystallographically orientated Zn nanocrystals in the ZnO matrix and (2) Mn atoms occupy the Zn sites in ZnO.

  2. Growth and characterization of Cl-doped ZnO hexagonal nanodisks

    SciTech Connect

    Yousefi, Ramin; Zak, A.K.; Mahmoudian, M.R.

    2011-10-15

    Cl-doped ZnO nanodisks were grown on a Si(111) substrate using a thermal evaporation method. The prepared nanodisks exhibited a hexagonal shape with an average thickness of 50 nm and average diagonal of 270 nm. In addition, undoped ZnO disks with hexagonal shape were grown under the same conditions, but the sizes of these undoped ZnO disks were on the micrometer order. A possible mechanism was proposed for the growth of the Cl-doped ZnO nanodisks, and it was shown that the Cl{sup 1-} anions play a crucial role in controlling the size. X-ray diffraction and Raman spectroscopy clearly showed an extension in the crystal lattice of ZnO because of the presence of chlorine. In addition, these nanodisks produced a strong photoluminescence emission peak in the ultraviolet (UV) region and a weak peak in the green region of the electromagnetic spectrum. Furthermore, the UV peak of the Cl-doped ZnO nanodisks was blueshifted with respect to that of the undoped ZnO disks. - Graphical abstract: Cl-doped ZnO nanodisks and undoped ZnO microdisks have been grown using a thermal evaporation method. Highlights: > Cl-doped ZnO nanodisks with hexagonal shape are grown using a thermal evaporation method. > It is shown that the Cl{sup 1-} anions play a crucial role in controlling the size of the nanodisks. > XRD and Raman results showed that the Cl-doped ZnO nanodisks structure is under a biaxial stress. > UV peak of the PL spectrum is blueshifted for the Cl-doped ZnO nanodisks.

  3. The effect of ZnO nanoparticles on liver function in rats.

    PubMed

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    2016-01-01

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300-600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621

  4. The mechanical reliability of transparent ZnO TFT transfer printed on the flexible substrate

    NASA Astrophysics Data System (ADS)

    Hwang, W. J.; Eun, K. T.; Park, K. Y.; Ahn, J. H.; Choa, S. H.

    2011-12-01

    In this study, we investigated the bendablity and reliability of transparent ZnO TFTs. Transfer printing method was used to make flexible ZnO TFTs. The PET was used as the transparent and flexible plastic substrate which thickness was 188 μm. The bending test and fatigue test were performed to evaluate the mechanical reliability. After reliability tests, the failure mode of ZnO TFTs was analyzed and its results were also confirmed by stress/strain simulation analysis.

  5. Studies of heavy hadron physics

    SciTech Connect

    Guo Xinheng

    2011-12-14

    In the diquark picture, we establish Bethe-Salpeter equations for ground states of heavy baryons containing one heavy quark and two heavy quarks in the heavy quark limit, respectively. The Bethe-Salpeter equations for both heavy and light diquarks are also established. Assuming kernels to consist of a scalar confinement term and a one-gluon-exchange term we solve Bethe-Salpeter wave functions numerically in the covariant instantaneous approximation and give some applications including semileptonic and nonleptonic decay widths of heavy baryons, the average kinetic energy of the heavy quark in {Lambda}{sub Q}, {Sigma}{sub Q}{sup (*)}{yields}{Lambda}{sub Q}+{pi} decay widths, and heavy quark distribution functions. We also study possible molecular heavy bound states in the Bethe-Salpeter approach. Proof of QCD factorization for {Lambda}{sub b}{yields}{Lambda}{sub c}{pi} is presented in the framework of QCD factorization.

  6. Relativistic Heavy Ion Collider

    SciTech Connect

    Willen, E.H.

    1986-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a proposed research facility at Brookhaven National Laboratory to study the collision of beams of heavy ions, up to gold in mass and at beam energies up to 100 GeV/nucleon. The physics to be explored by this collider is an overlap between the traditional disciplines of nuclear physics and high energy physics and is a continuation of the planned program of light and heavy ion physics at BNL. The machine is to be constructed in the now-empty tunnel built for the former CBA project. Various other facilities to support the collider are either in place or under construction at BNL. The collider itself, including the magnets, is in an advanced state of design, and a construction start is anticipated in the next several years.

  7. Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets

    NASA Astrophysics Data System (ADS)

    Chen, Ziwei; Lin, Zhidong; Xu, Mengying; Hong, Yuyuan; Li, Na; Fu, Ping; Chen, Ze

    2016-05-01

    The hierarchically porous Sn-Rh codoped ZnO, Sn-doped ZnO and pure ZnO nanosheets have been successfully synthesized through a simple hydrothermal reaction process without any surfactant or template at 180°C. The morphology and composition were carefully characterized by X-ray diffraction, energy dispersive X-ray spectrometer, field emission scanning electronic microscopy and BET. The gas-sensing testing results indicated that the Sn-Rh codoped ZnO nanosheets, with the specific surface area was 26.9 m2/g, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Sn-doped ZnO. The high sensitivity of the sensor based on Sn-Rh codoped ZnO was 149.38 to 100 ppm ethanol and the detection limit was less than 5 ppm (5.8). The response and recovery times were measured to be ˜3 s and ˜10 s when exposed to 100 ppm ethanol at the test temperature of 300°C. The good sensing performance of the Sn-Rh codoped ZnO sensor indicated that hierarchically porous Sn-Rh codoped ZnO could be a promising candidate for highly sensitive gas sensors. [Figure not available: see fulltext.

  8. Synchrotron radiation assistant MOCVD deposition of ZnO films on Si substrate

    NASA Astrophysics Data System (ADS)

    Guangtao, Yang; Guobin, Zhang; Hongjun, Zhou; Zeming, Qi

    2009-06-01

    The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO 2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.

  9. Electron trapping on Fe(3+) sites in photodoped ZnO colloidal nanocrystals.

    PubMed

    Zhou, Dongming; Kittilstved, Kevin R

    2016-07-12

    The effects of photodoping on the electronic structure of Fe(3+)-doped ZnO colloidal nanocrystals are presented. We observe disappearance of the spectroscopic signatures attributed to both substitutional Fe(3+) and interstitial Fe(3+) in the ZnO host as a function of photodoping time, which precede the appearance of the well-known localized surface plasmon resonance from conduction band electrons in ZnO nanocrystals. These results suggest that the oxidation state of Fe(3+) defects can be reversibly switched in ZnO nanocrystals. PMID:26948027

  10. The study of light waveguide effects on ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Un; Gang, Myeng-Gil; Kim, Jin-A.; Moon, Jong-Ha; Kim, Doo-Gun; Kim, Seon-Hoon; Ki, Hyun-Chul; Choi, Ju-hyeon; Kim, Jin-Hyeok

    2016-03-01

    Two different types of ZnO nanorods (hexagonal pyramid-shaped nanorod and hexagonal prism-shaped nanorod) were integrated on light emitting diodes (LEDs) for the investigation of light waveguide effects, which were evaluated using electroluminescence (EL) and current-voltage ( I- V) characteristics. EL intensity in LEDs with hexagonal prism-shaped ZnO nanorod arrays were improved by 18% while EL intensity in LEDs with hexagonal pyramid-shaped ZnO nanorods were reduced by 25% compared to bare LEDs. 3D-finite dimension time domain (3D-FDTD) programs were used to simulate the light waveguide effect on the two different shapes of ZnO nanorods. In addition, photonic crystals (PCs) effects in ZnO nanorod arrays were simulated to verify the light waveguide effect. It was found that light in a hexagonal prism-shaped ZnO nanorod propagated from the bottom to the top end. However, the light in a hexagonal pyramid-shaped ZnO nanorod was dissipated on the lateral face. The light extraction efficiency in ZnO nanorod arrays was dominated by the top end shape and planar density of ZnO nanorods. [Figure not available: see fulltext.

  11. Localized ultraviolet photoresponse in single bent ZnO micro/nanowires

    SciTech Connect

    Guo Wen; Yang Ya; Qi Junjie; Zhao Jing; Zhang Yue

    2010-09-27

    The localized ultraviolet photoresponse in single bent ZnO micro/nanowires bridging two Ohmic contacts has been investigated. The ZnO micro/nanowire has a higher photoresponse sensitivity of about 190% at the bent region (bending strain: about 4%) than that at the straight region (about 50%). The rise and decay time constants are almost the same in the straight and bent regions of the ZnO micro/nanowire. A possible mechanism has been proposed and discussed. The bent ZnO micro/nanowires could be potentially useful for fabricating the coupled piezoelectric and optoelectronic nanodevices.

  12. Luminescence properties of mechanically milled and laser irradiated ZnO

    NASA Astrophysics Data System (ADS)

    Radoi, R.; Fernández, P.; Piqueras, J.; Wiggins, M. S.; Solis, J.

    2003-07-01

    The effect of mechanical milling on the luminescence properties of ZnO microcrystalline samples has been studied by means of cathodoluminescence in a scanning electron microscope. The samples consisted of pressed pellets of commercially available ZnO powder which were ball milled to investigate the possibility of nanocrystalline ZnO formation. Changes observed in the relative intensities of the characteristic ultraviolet and green band of ZnO are discussed in terms of defects generated during milling. The effect of nano- and picosecond pulsed laser irradiation on the particle size and luminescence of the milled samples has been also investigated.

  13. Amine-Functionalized ZnO Nanosheets for Efficient CO₂ Capture and Photoreduction.

    PubMed

    Liao, Yusen; Hu, Zhaoning; Gu, Quan; Xue, Can

    2015-01-01

    Amine-functionalized ZnO nanosheets were prepared through a one-step hydrothermal method by using monoethanolamine, which has a hydroxyl group, for covalent attachment on ZnO and a primary amine group to supply the amine-functionalization. We demonstrate that the terminal amine groups on ZnO surfaces substantially increase the capability of CO₂ capture via chemisorption, resulting in effective CO₂ activation. As a result, the photogenerated electrons from excited ZnO can more readily reduce the surface-activated CO₂, which thereby enhances the activity for photocatalytic CO₂ reduction. PMID:26501249

  14. Controllable growth of ZnO nanorods via electrodeposition technique: towards UV photo-detection

    NASA Astrophysics Data System (ADS)

    Sarangi, S. N.

    2016-09-01

    An electro-chemical approach for controlled growth of seedless ZnO nanorods was investigated. Field emission scanning electron microscopy confirms ZnO nanorod morphology can be controlled by varying the electrodeposition duration. Increased growth time enhances the crystallinity of ZnO nanorods and releases the strain on ZnO nanorods, as revealed by x-ray diffraction analysis. A significant change in the near band gap and the defect level luminescence were observed for different growth time ZnO nanorods. The variation in zone-centre E 2 (high) optical phonon mode of ZnO nanorods was studied using micro-Raman measurements. The I–V characteristics of the ZnO nanorods potentially enable applications in UV photodetection even at very low voltage range. Photodetectors based on ZnO nanorods have a faster response time (~29 s) and exhibited high photosensitivity, approximately 28 at 1 V forward bias, as compared to recent reported values. The results obtained are exciting in view of using a low cost electrodeposition technique at low temperature for achieving high-quality electrodeposited ZnO nanorods and its possible use in optoelectronic devices.

  15. Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Kyoung; Gopi, Chandu V. V. M.; Srinivasa Rao, S.; Punnoose, Dinah; Kim, Hee-Je

    2016-03-01

    Yttrium-doped ZnO nanorod arrays were applied to photoanodes of quantum dot-sensitized solar cells (QDSCs). The introduction of yttrium to ZnO nanostructures facilitates the growth of ZnO nanorods and increases the amount of QD deposition with a large surface area. Furthermore, lower electrical resistance and longer electron lifetime were achieved with yttrium-doping owing to fewer defects and trap sites on the surface of yttrium-doped ZnO nanorods. As a result, the conversion efficiency of 3.3% was achieved with the optimized concentration of yttrium.

  16. Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles

    SciTech Connect

    Siddiquey, Iqbal Ahmed; Furusawa, Takeshi; Sato, Masahide; Suzuki, Noboru

    2008-12-01

    A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO{sub 2}. The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency.

  17. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current-voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  18. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam'an Malik; Mohamad, Dasmawati

    2015-04-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  19. Stable fluorescence conjugation of ZnO nanoparticles and their size dependent cellular uptake.

    PubMed

    Kim, Kyoung-Min; Kim, Min-Kyu; Paek, Hee-Jeong; Choi, Soo-Jin; Oh, Jae-Min

    2016-09-01

    We evaluated size dependent cellular uptake of ZnO nanoparticles utilizing stably introduced Cy5.5, which emits long-wavelength fluorescence. Through (3-aminopropyl)triethoxysilane modification, ZnO nanoparticles of different sizes (20 and 70nm) were functionalized with amine moiety, which was further reacted with Cy5.5-N-hydroxylsuccinimide ester to make covalently conjugated Cy5.5 dye on ZnO nanoparticles. Field emission-scanning electron microscopic images revealed that average particle size as well as particle morphology of ZnO nanoparticles were not altered by Cy5.5 conjugation. Zeta potential measurement confirmed that the positive surface charge of ZnO nanoparticles was well preserved after successive conjugation reactions. Based on infrared, ultraviolet-visible light and photoluminescence spectroscopies, we verify that the Cy5.5 was stably introduced to ZnO nanoparticles without serious aggregation. Surface conjugated Cy5.5 showed high stability in deionized water, phosphate buffered saline and cell culture medium, showing less than 2% of release during 85h. Confocal microscopy and fluorescence-activated cell sorting analysis demonstrated that smaller ZnO nanoparticles were more taken up in greater quantities by HaCaT cells. Moreover, systematic study on cellular uptake pathway showed that smaller ZnO nanoparticles were internalized into cells mainly by clathrin-mediated endocytosis, while larger ZnO nanoparticles entered cells via several pathways. PMID:27323344

  20. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    SciTech Connect

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam’an Malik; Mohamad, Dasmawati

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  1. Structural, mechanical, and electronic properties of ultrathin ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Baolin; Zhao, Jijun; Jia, Jianming; Shi, Daning; Wan, Jianguo; Wang, Guanghou

    2008-07-01

    We report a structural transformation between the regular wurtzite and the unbuckled wurtzite (hexagonal) structure for ultrathin single-crystalline [0001] ZnO nanowires under uniaxial elongation and compression. Our density functional calculations show that hexagonal structure corresponds to a distinct minimum on the transformation path. Young's moduli of the ZnO nanowires with the hexagonal structures are larger than those with the wurtzite structures at the same size. Within the nanowire size range considered, Young's moduli of the ZnO nanowires decrease with increasing wire diameter. The electronic properties of these two types of ZnO nanowires exhibit distinctly different behaviors.

  2. Synthesis of nitrogen-doped ZnO nanoparticles by RF thermal plasma

    NASA Astrophysics Data System (ADS)

    Hiragino, Yuto; Tanaka, Toshimi; Takeuchi, Hiroshi; Takeuchi, Akira; Lin, Jie; Yoshida, Toshiyuki; Fujita, Yasuhisa

    2016-04-01

    The nitrogen-doped ZnO nanoparticles (NPs) were successfully synthesized by using an RF thermal plasma process which would be a promising technique to the massive production. XRD measurements revealed that the formation of the hexagonal ZnO wurtzite structure. The synthesized nitrogen-doped ZnO NPs showed the nitrogen and carbon concentrations of 3.1-4.6 × 1020 cm-3 and 1.1-1.2 × 1020 cm-3. The hole injection was confirmed by evaluating band edge electroluminescence from the LED structures using nitrogen doped ZnO NPs as a p-type layer.

  3. In situ probing electrical response on bending of ZnO nanowires inside transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Gao, P.; Xu, Z.; Bai, X. D.; Wang, E. G.

    2008-05-01

    In situ electrical transport measurements on individual bent ZnO nanowires have been performed inside a high-resolution transmission electron microscope, where the crystal structures of ZnO nanowires were simultaneously imaged. A series of consecutively recorded current-voltage (I-V) curves along with an increase in nanowire bending show the striking effect of bending on their electrical behavior. The bending-induced changes of resistivity, electron concentration, and carrier mobility of ZnO nanowires have been retrieved based on the experimental I-V data, which suggests the applications of ZnO nanowires as nanoelectromechanical sensors.

  4. Au-coated ZnO nanostructures for surface enhanced Raman spectroscopy applications

    SciTech Connect

    Dikovska, A O; Nedyalkov, N N; Imamova, S E; Atanasova, G B; Atanasov, P A

    2012-03-31

    Thin ZnO nanostructured films were produced by pulsed laser deposition (PLD) for surface enhanced Raman spectroscopy (SERS) studies. The experimental conditions used for preparation of the samples were chosen to obtain different types of ZnO nanostructures. The Raman spectra of rhodamine 6G (R6G) were measured at an excitation wavelength of 785 nm after coating the ZnO nanostructures with a thin Au layer. The influence of the surface morphology on the Raman signal obtained from the samples was investigated. High SERS signal enhancement was observed from all Au-coated ZnO nanostructures.

  5. Enhanced ultraviolet emission of ZnO microrods array based on Au surface plasmon

    NASA Astrophysics Data System (ADS)

    Feng, Wen-po; Jing, Ai-hua; Li, Jing-hua; Liang, Gao-feng

    2016-05-01

    In this work, the Au/ZnO hybrid microstructure was fabricated by assembling Au nanoparticles (NPs) onto the surface of ZnO microrods, and an obviously improved ultraviolet (UV) emission of ZnO is observed in the hybrid microstructure. About 27-fold enhancement ratio of the UV emission to the green band emission of ZnO is achieved. The underlying enhanced mechanism of the UV emission intensities can be ascribed to the charge transfer and the efficient coupling between ZnO excitons and Au surface plasmon (SP).

  6. Improving the ethanol gas-sensing properties of porous ZnO microspheres by Co doping

    SciTech Connect

    Xiao, Qi Wang, Tao

    2013-08-01

    Graphical abstract: - Highlights: • Co-doped porous ZnO microspheres were synthesized. • 3 mol% Co-doped ZnO sensor showed the highest response to ethanol. • 3 mol% Co-doped ZnO sensor exhibited fast recovery property. • 3 mol% Co-doped ZnO sensor exhibited good selectivity and long-term stability. - Abstract: Porous Co-doped ZnO microspheres were prepared by a simple hydrothermal method combined with post-annealing. Co species existed as a form of divalent state in the sample and substituted Zn{sup 2+} sites in ZnO crystal lattice, which was affirmed by X-ray diffraction, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The gas-sensing measurements demonstrated that the 3 mol% Co-doped ZnO sample showed the highest response value to 100 ppm ethanol at 350 °C, which were 5 folds higher than that of the pure ZnO sample. In addition, the 3 mol% Co-doped ZnO sensor exhibited fast recovery property, good quantitative determination, good selectivity and long-term stability. The superior sensing properties were contributed to high specific surface area combined with the large amount of oxygen vacancies originating from Co doping.

  7. Enhanced photocatalytic performance of Ga{sup 3+}-doped ZnO

    SciTech Connect

    Zhong, Jun Bo; Li, Jian Zhang; Zeng, Jun; He, Xi Yang; Hu, Wei; Shen, Yue Cheng

    2012-11-15

    Graphical abstract: In general, the strong SPS response corresponds to the high separation rate of photoinduced charge carriers on the basis of the SPS principle. The photovoltage of Ga{sup 3+}-doped ZnO is higher than that of ZnO, thus it can be confirmed that the Ga{sup 3+}-doped ZnO has a higher charge separation rate than the ZnO sample. Among these samples, 1%Ga has highest charge separation rate. Display Omitted Highlights: ► Ga{sup 3+} has been employed to dope ZnO photocatalyst. ► Ga{sup 3+} increases the BET surface area and changes the morphology of ZnO. ► The photoinduced charge separation rate has been enhanced. ► The photocatalytic activity has been greatly promoted. -- Abstract: ZnO and Ga{sup 3+}-doped ZnO with different molar ratio of Ga/Zn (1%, 2% and 3%) were prepared by a parallel flow precipitation method. The photocatalysts prepared were characterized by BET surface area, X-ray diffraction (XRD), UV/vis diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM) and surface photovoltage spectroscopy (SPS), respectively. The results show that doping Ga{sup 3+} into ZnO increases the BET surface area. The XRD spectra of the photocatalysts calcined at 573 K show only the characteristic peaks of wurtzite-type. Ga{sup 3+}-doped ZnO absorbs much more light than ZnO in the visible light region. Doping Ga{sup 3+} into ZnO greatly changes the morphology of ZnO and enhances the photoinduced charge separation rate. The photocatalytic activity of ZnO and Ga{sup 3+}-doped ZnO for decolorization of methyl orange (MO) solution was evaluated, of all the photocatalysts prepared, the Ga{sup 3+}-doped ZnO with 1% possesses the best photocatalytic activity and the possible reason was discussed.

  8. Shape controlled Sn doped ZnO nanostructures for tunable optical emission and transport properties

    SciTech Connect

    Rakshit, T.; Manna, I.; Ray, S. K.

    2013-11-15

    Pure and Sn doped ZnO nanostructures have been grown on SiO{sub 2}/Si substrates by vapor-solid technique without using any catalysts. It has been found that the morphology of the nanostructures depend strongly on the growth temperature and doping concentration. By proper tuning of the growth temperature, morphology of pure ZnO can be changed from tetrapods to multipods. On the other hand, by varying the doping concentration of Sn in ZnO, the morphology can be tuned from tetrapods to flower-like multipods to nanowires. X-ray diffraction pattern reveals that the nanostructures have a preferred (0002) growth orientation, and they are tensile strained with the increase of Sn doping in ZnO. Temperature-dependent photoluminescence characteristics of these nanostructures have been investigated in the range from 10 to 300 K. Pure ZnO tetrapods exhibited less defect state emissions than that of pure ZnO multipods. The defect emission is reduced with low concentration of Sn doping, but again increases at higher concentration of doping because of increased defects. Transport properties of pure and Sn doped ZnO tetrapods have been studied using complex-plane impedance spectroscopy. The contribution from the arms and junctions of a tetrapod could be distinguished. Sn doped ZnO samples showed lower conductivity but higher relaxation time than that of pure ZnO tetrapods.

  9. Effect of Li doping on the magnetic properties of ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Rajamanickam, N.; Rajashabala, S.; Ramachandran, K.

    2013-06-01

    Zn1-xLixO (0 ≤ x ≥ 0.05) nanomaterials were synthesized by the solvothermal method and the influence of Li doping on the structural, optical, and magnetic properties was investigated. Morphological analysis by SEM revealed the formation of ZnO nanorods (NR) and Li-doped ZnO nanoparticles (NP), which indicate that doping of Li ions affects the morphology of ZnO. The magnetization curve of undoped ZnO indicates the co-existence of dia and antiferromagnetism, which changes to dia and ferrimagnetism with the addition of Li.

  10. Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper

    SciTech Connect

    Deng, Xingyi; Yao, Kun; Sun, Keju; Li, Wei-Xue; Lee, Junseok; Matranga, Christopher

    2013-05-02

    The stoichiometric single- and bi-layer ZnO(0001) have been prepared by reactive deposition of Zn on Au(111) and studied in detail with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations. Both single- and bi-layer ZnO(0001) adopt a planar, graphite-like structure similar to freestanding ZnO(0001) due to the weak van der Waals interactions dominating their adhesion with the Au(111) substrate. At higher temperature, the single-layer ZnO(0001) converts gradually to bi-layer ZnO(0001) due to the twice stronger interaction between two ZnO layers than the interfacial adhesion of ZnO with Au substrate. It is found that Cu atoms on the surface of bi-layer ZnO(0001) are mobile with a diffusion barrier of 0.31 eV, and likely to agglomerate and form nanosized particles at low coverages; while Cu atoms tend to penetrate a single layer of ZnO(0001) with a barrier of 0.10 eV, resulting in a Cu free surface.

  11. Photovoltaic properties of graphene oxide sheets beaded with ZnO nanoparticles

    SciTech Connect

    Wang, Huan; Wang, Li; Qu, Chaoqun; Su, Yadong; Yu, Shansheng; Zheng, Weitao; Liu, Yichun

    2011-04-15

    A hybrid material of graphene oxide (GO) sheets beaded with ZnO nanoparticles was prepared. The material extends over a few hundred square nanometers, in which the ZnO nanoparticles (average diameter ({approx}5 nm)) are dispersed evenly on the GO sheet. Both the surface photovoltage or surface photocurrent intensity for the material are much stronger than for pure ZnO nanoparticles, meaning that the free charge carriers can effectively be transferred from ZnO nanoparticles to GO sheets, which can serve as a probe to monitor the electron transfer from excited ZnO to GO. Anchoring ZnO nanoparticles on two dimensional carbon nanostructures such as GO can pave a way towards the design of ordered nanostructure assemblies that can harvest light energy efficiently. -- Graphical Abstract: Upon irradiating the GO-ZnO sample with a light having an energy equalizing the band gap energy, the photogenerated charge-hole pairs are produced, and have been separated effectively. Display Omitted Research highlights: > A hybrid material of graphene oxide (GO) sheets beaded with ZnO nanoparticles was prepared. > The ordered nanostructure assemblies can harvest light energy efficiently and the free charge carriers can effectively be transferred from ZnO nanoparticles to GO sheet. > A hybrid material can serve as a probe to monitor the electron transfer from excited ZnO to GO.

  12. Reliable thermal processing of organic perovskite films deposited on ZnO

    NASA Astrophysics Data System (ADS)

    Zakhidov, Alex; Manspeaker, Chris; Lyashenko, Dmitry; Alex Zakhidov Team

    Zinc oxide (ZnO) is a promising semiconducting material to serve as an electron transport layer (ETL) for solar cell devices based on organo-halide lead perovskites. ZnO ETL for perovskite photovoltaics has a combination of attractive electronic and optical properties: i) the electron affinity of ZnO is well aligned with valence band edge of the CH3NH3PbI3, ii) electron mobility of ZnO is >1 cm2/(Vs), which is a few orders of magnitude higher than that of TiO2 (another popular choice of ETL for perovskite photovoltaic devices), and iii) ZnO has a large of band gap of 3.3 eV, which ensures optical transparency and large barrier for the hole injection. Moreover, ZnO nanostructures can be printed on flexible substrates at room temperatures in cost effective manner. However, it was recently found that organic perovskites deposited on ZnO are unstable and readily decompose at >90°C. In this work, we further investigate the mechanism of decomposition of CH3NH3PbI3 film deposited on ZnO and reveal the role of the solvent in the film during the annealing process. We also develop a restricted volume solvent annealing (RVSA) process for post annealing of the perovskite film on ZnO without decomposition. We demonstrate that RVSA enables reliable perovskite solar cell fabrication.

  13. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  14. Selective growth of ZnO thin film nanostructures: Structure, morphology and tunable optical properties

    NASA Astrophysics Data System (ADS)

    Krishnakanth, Katturi Naga; Rajesh, Desapogu; Sunandana, C. S.

    2016-05-01

    The ZnO nanostructures (spherical, rod shape) have been successfully fabricated via a thermal evaporation followed by dip coating method. The pure, doped ZnO thin films were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy, respectively. A possible growth mechanism of the spherical, rod shape ZnO nanostructures are discussed. XRD patterns revealed that all films consist of pure ZnO phase and were well crystallized with preferential orientation towards (002) direction. Doping by PVA, PVA+Cu has effective role in the enhancement of the crystalline quality and increases in the band gap.

  15. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  16. Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles.

    PubMed

    Dutta, Raj Kumar; Nenavathu, Bhavani Prasad; Talukdar, Soumita

    2014-02-01

    Selenium doped ZnO nanoparticles synthesized by mechanochemical method were spherically shaped of size distribution of 10.2±3.4 nm measured by transmission electron microscopy. Diffused reflectance spectroscopy revealed increase in the band gap, ranging between 3.47 eV and 3.63 eV due to Se doping in ZnO nanoparticles. The antibacterial activity of pristine and Se doped ZnO nanoparticles was attributed to ROS (reactive oxygen species) generation in culture media confirmed by TBARS assay. Compared to complete inhibition of growth by 0.45 mg/mL of pristine ZnO nanoparticles, the batches of 0.45 mg/mL of selenium doped ZnO nanoparticles exhibited only 51% inhibition of growth of Escherichia coli. The reduced antibacterial activity of selenium doped ZnO nanoparticles was attributed to two opposing factors, e.g., ROS generation for inhibition of growth, countered by sustaining growth of E. coli due to availability of Se micronutrients in culture media, confirmed by inductively coupled plasma mass spectrometer measurement. Higher ROS generation by selenium doped ZnO nanoparticles was attributed to creation of oxygen vacancies, confirmed from green emission peak observed at 565 nm. The impact of higher ROS generation by selenium doped ZnO nanoparticles was evident from enhanced photocatalytic degradation of trypan blue dye, than pristine ZnO nanoparticles. PMID:24200949

  17. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO.

    PubMed

    Wang, Zhihua; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-01

    ZnO is an important n-type semiconductor sensing material. Currently, much attention has been attracted to finding an effective method to prepare ZnO nanomaterials with high sensing sensitivity and excellent selectivity. A three-dimensionally ordered macroporous (3DOM) ZnO nanostructure with a large surface area is beneficial to gas and electron transfer, which can enhance the gas sensitivity of ZnO. Indium (In) doping is an effective way to improve the sensing properties of ZnO. In this paper, In-doped 3DOM ZnO with enhanced sensitivity and selectivity has been synthesized by using a colloidal crystal templating method. The 3DOM ZnO with 5 at. % of In-doping exhibits the highest sensitivity (∼88) to 100 ppm ethanol at 250 °C, which is approximately 3 times higher than that of pure 3DOM ZnO. The huge improvement to the sensitivity to ethanol was attributed to the increase in the surface area and the electron carrier concentration. The doping by In introduces more electrons into the matrix, which is helpful for increasing the amount of adsorbed oxygen, leading to high sensitivity. The In-doped 3DOM ZnO is a promising material for a new type of ethanol sensor. PMID:26844815

  18. Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence

    NASA Astrophysics Data System (ADS)

    Chu, Sheng; Ren, Jingjian; Yan, Dong; Huang, Jian; Liu, Jianlin

    2012-07-01

    Triangular and hexagonal shaped noble metal (Au, Ag, Pt, Pd) nanodisks were synthesized on the top facets of ZnO nanorods via simple deposition-annealing method. Other metals (Ni, Cu, Cr, Pb, Al) only formed irregular shaped nanostructures on ZnO nanorods. The morphology, elemental composition, as well as growth mechanism of the metal nanodisks/ZnO nanorod composite materials were studied. The localized surface plasmon resonant effects from different metal nanodisks on the photoluminescence of ZnO nanorods were investigated. It was demonstrated that the carriers transfer between the metal nanodisks and ZnO can efficiently manipulate the photoluminescence intensities from the nanorods.

  19. Effects of Au on the Growth of ZnO Nanostructures on Si by MOCVD

    NASA Astrophysics Data System (ADS)

    Cong, Chen; Fan, Lu Yang; Ping, He Hai; Wei, Wu Ke; Zhen, Ye Zhi

    2013-08-01

    The effects of Au on the growth of ZnO nanostructures on Si by metal organic chemical vapor deposition (MOCVD) at a relatively low temperature (450°C) were investigated. The experimental results showed that Au nanoparticles played a critical role during the growth of the ZnO nanostructures and affected their morphology and optical properties. It was found that Au nanoparticles particularly affected the nucleation of ZnO nanostructures during the growth process and the Au-assisted growth mechanism of ZnO nanostructures should be ascribed to the vapor-solid (VS) mechanism. The formation of a nanoneedle may be attributed to a more reactive interface between Au and ZnO, which leads to more zinc gaseous species absorbed near the interface. Different nucleation sites on ZnO nuclei resulted in the disorder of ZnO nanoneedles. Moreover, the crystalline quality of nano-ZnO was improved due to the presence of Au, according to the smaller full width at half maximum (FWHM) of the low-temperature exciton emission. We confirmed that ZnO nanoneedles showed better crystalline quality than ZnO nanorods through the HRTEM images and the SAED patterns. The reason for the improvement of the crystalline quality of nano-ZnO may be due to the less lattice mismatch.

  20. (Relativistic heavy ion research)

    SciTech Connect

    Not Available

    1990-01-01

    At Brookhaven National Laboratory, participation in the E802 Experiment, which is the first major heavy-ion experiment at the BNL-AGS, was the main focus of the group during the past four years. The emphases of the E802 experiment were on (a) accurate particle identification and measurements of spectra over a wide kinematical domain (5{degree} < {theta}{sub LAB} < 55{degree}, p < 20 GeV/c); and (b) measurements of small-angle two-particle correlations, with event characterization tools: multiplicity array, forward and large-angle calorimeters. This experiment and other heavy ion collision experiments are discussed in this report.

  1. Multimode resistive switching in single ZnO nanoisland system.

    PubMed

    Qi, Jing; Olmedo, Mario; Zheng, Jian-Guo; Liu, Jianlin

    2013-01-01

    Resistive memory has attracted a great deal of attention as an alternative to contemporary flash memory. Here we demonstrate an interesting phenomenon that multimode resistive switching, i.e. threshold-like, self-rectifying and ordinary bipolar switching, can be observed in one self-assembled single-crystalline ZnO nanoisland with base diameter and height ranging around 30 and 40 nm on Si at different levels of current compliance. Current-voltage characteristics, conductive atomic force microscopy (C-AFM), and piezoresponse force microscopy results show that the threshold-like and self-rectifying types of switching are controlled by the movement of oxygen vacancies in ZnO nanoisland between the C-AFM tip and Si substrate while ordinary bipolar switching is controlled by formation and rupture of conducting nano-filaments. Threshold-like switching leads to a very small switching power density of 1 × 10(3) W/cm(2). PMID:23934276

  2. Pulsed laser deposition and characterization of ZnO nanopores

    NASA Astrophysics Data System (ADS)

    Ghosh, Poulami; Sharma, Ashwini K.

    2016-04-01

    We report on the deposition and characterization of ZnO nanopore structures by pulsed laser deposition technique at a fixed substrate temperature and at different deposition times on a silicon (100) substrate. X-ray diffraction shows that ZnO nanopore structures are highly oriented along c-axis. Morphological analysis of the nanostructures studied by FESEM and AFM confirms the pores nature of the structures. The morphological evolution of the nanostructures as a function of deposition time is discussed on the basis of Stranski-Krastanov growth model. Optical properties of the nanostructures studied by photoluminescence spectra indicate that the observed transitions are from near band edge as well as from defect-related states.

  3. Evidence for photogenerated intermediate hole polarons in ZnO.

    PubMed

    Sezen, Hikmet; Shang, Honghui; Bebensee, Fabian; Yang, Chengwu; Buchholz, Maria; Nefedov, Alexei; Heissler, Stefan; Carbogno, Christian; Scheffler, Matthias; Rinke, Patrick; Wöll, Christof

    2015-01-01

    Despite their pronounced importance for oxide-based photochemistry, optoelectronics and photovoltaics, only fairly little is known about the polaron lifetimes and binding energies. Polarons represent a crucial intermediate step populated immediately after dissociation of the excitons formed in the primary photoabsorption process. Here we present a novel approach to studying photoexcited polarons in an important photoactive oxide, ZnO, using infrared (IR) reflection-absorption spectroscopy (IRRAS) with a time resolution of 100 ms. For well-defined (10-10) oriented ZnO single-crystal substrates, we observe intense IR absorption bands at around 200 meV exhibiting a pronounced temperature dependence. On the basis of first-principles-based electronic structure calculations, we assign these features to hole polarons of intermediate coupling strength. PMID:25902307

  4. Vertically Aligned ZnO Nanorods: Effect of Synthesis Parameters.

    PubMed

    Rehman, Zeeshan Ur; Heo, Si-Nae; Cho, Hyeon Ji; Koo, Bon Heun

    2016-06-01

    This report is devoted to the synthesis of high quality nanorods using spin coating technique for seed layer growth. Effect of different parameter i.e., spins coating counts, spin coating speed, and the effect of temperature during the drying process was analyzed. Hot plate and furnace technique was used for heating purpose and the difference in the morphology was carefully observed. It is worthy to mention here that there is a substantial effect of all the above mentioned parameters on the growth and morphology of the ZnO nanostructure. The ZnO nanorods were finally synthesized using wet chemical method. The morphological properties of the obtained nanostructures were analyzed by using FESEM technique. PMID:27427752

  5. Enhanced electromechanical behaviors of cellulose ZnO hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Mun, Seongchoel; Min, Seung-Ki; Kim, Hyun Chan; Im, Jongbeom; Geddis, Demetris L.; Kim, Jaehwan

    2015-04-01

    Inorganic-organic hybrid composite has attracted as its combined synergistic properties. Cellulose based inorganicorganic hybrid composite was fabricated with semiconductive nanomaterials which has functionality of nanomaterial and biocompatibility piezoelectricity, high transparency and flexibility of cellulose electro active paper namely EAPap. ZnO is providing semiconductive functionality to EAPap for hybrid nanocomposite by simple chemical reaction. Cellulose- ZnO hybrid nanocomposite (CEZOHN) demonstrates novel electrical, photoelectrical and electromechanical behaviors. This paper deals with methods to improve electromechanical property of CEZOHN. The fabrication process is introduced briefly, charging mechanism and evaluation is studied with measured piezoelectric constant. And its candidate application will be discussed such as artificial muscle, energy harvester, strain sensor, flexible electrical device.

  6. Photoconductive Detection of Tetrahedrally Coordinated Hydrogen in ZnO

    NASA Astrophysics Data System (ADS)

    Koch, S. G.; Lavrov, E. V.; Weber, J.

    2012-04-01

    In this Letter we apply an innovative experimental approach, which allows us to improve the sensitivity of detecting local vibrational modes (LVMs) even in highly absorbing spectral regions. This photoconductive technique allowed us to confirm a recent suggestion of a new multicenter bond for hydrogen in ZnO [A. Janotti and C. G. Van de Walle, Nature Mater.NMAACR1476-1122 6, 44 (2007)10.1038/nmat1795]. The two LVMs of the hydrogen substituting oxygen in ZnO are identified at 742 and 792cm-1. The modes belong to a nondegenerated A1 and a twofold degenerated E representations of the C3v point group. The tetrahedral coordination of the hydrogen atom is the result of a newly detected multicenter bond for defects in solids.

  7. Thermal stability of ion-implanted ZnO

    SciTech Connect

    Coleman, V; Tan, H; Jagadish, C; Kucheyev, S; Zou, J

    2005-06-16

    Zinc oxide single crystals implanted at room temperature with high-dose (1.4 x 10{sup 17} cm{sup -2}) 300 keV As{sup +} ions are annealed at 1000-1200 C. Damage recovery is studied by a combination of Rutherford backscattering/ channeling spectrometry (RBS/C), cross-sectional transmission electron microscopy (XTEM), and atomic force microscopy (AFM). Results show that such a thermal treatment leads to the decomposition and evaporation of the heavily-damaged layer instead of apparent defect recovery and recrystallization that could be inferred from RBS/C and XTEM data alone. Such a relatively poor thermal stability of heavily-damaged ZnO has significant implications for understanding results on thermal annealing of ion-implanted ZnO.

  8. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2010-10-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  9. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2011-02-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  10. Emission enhancement from metallodielectric-capped ZnO films

    NASA Astrophysics Data System (ADS)

    Ni, W. H.; An, J.; Lai, C. W.; Ong, H. C.; Xu, J. B.

    2006-07-01

    Emission enhancement from ZnO thin films coated with Al /AlOx has been studied by photoluminescence spectroscopy. While Al exhibits a moderate enhancement on ZnO, the introduction of an ultrathin AlOx spacer can increase the luminescence significantly. By examining the dependence of light emission of Al /AlOx/ZnO on AlOx thickness, we found, other than the surface plasmon mediation, a short-ranged nonradiative channel that plays a crucial role in determining that the overall emission enhancement is also present. Based on a simple analytical model, it is found that the nonradiative process is strongly dependent on (AlOxthickness)-6 and therefore its origin is suggested to be of Förster type. Finally, an AlOx spacer with thickness of 5nm is found to be adequate to eliminate the unwanted quenching effect.

  11. Lattice sites of Na dopants in ZnO

    NASA Astrophysics Data System (ADS)

    Wahl, U.; Correia, J. G.; Amorim, L.; Decoster, S.; da Silva, M. R.; Pereira, L. M. C.

    2016-09-01

    The angular distribution of β ‑ particles emitted by the radioactive isotope 24Na was monitored following implantation into ZnO single crystals at fluences above 5 × 1012 cm‑2 at CERN’s ISOLDE facility. We identified sodium on two distinct sites: on substitutional Zn sites and on interstitial sites that are close to the so-called octahedral site. The interstitial Na was to a large extent already converted to substitutional Na for annealing at 200 °C, from which an activation energy of 0.8–1.3 eV, most likely around 1.2 eV, is estimated for the migration of interstitial Na in ZnO.

  12. ZnO Coated Nanospring-Based Gas Sensors

    NASA Astrophysics Data System (ADS)

    Bakharev, Pavel Viktorovich

    The current research demonstrates new techniques for characterization of electrical transport properties of the metal oxide polycrystalline structures, gas and vapor phase kinetics, surface processes such as gas-surface, vapor-surface interactions and redox processes by applying novel gas sensing devices. Real-time sensor electrical response characteristics obtained under highly controlled laboratory conditions have been used to characterize corresponding surface interactions and electrical properties of the gas sensitive structures. Novel redox chemical sensors (chemiresistors) have been fabricated with 3-D and 1-D ZnO coated nanospring (NS) structures. Silica NSs served as insulating scaffolding for a ZnO gas sensitive layer and has been grown via a vapor-liquid-solid (VLS) mechanism by using a chemical vapor deposition (CVD) technique. The NSs have been coated with polycrystalline ZnO by atomic layer deposition (ALD). The chemiresistor devices have been thoroughly characterized in terms of their crystal structures (by XRD, FESEM, TEM, and ellipsometry) and their electrical response properties. A 3-D gas sensor has been constructed from a xenon light bulb by coating it with a 3-D zinc oxide coated silica nanospring mat, where the xenon light bulb served as a sensor heater. This inexpensive sensor platform has been used to characterize gas-solid, vapor-solid, and redox processes. The optimal temperature of the gas sensitive ZnO layer, the temperature of the vapor-gas mixture and the crystal structure of the gas sensitive layer have been determined to reach the highest sensitivity of the gas sensors. The activation energy of toluene oxidation (Ed) on the ZnO surface and the activation energy of oxidation (Ea) of the depleted ZnO surface have been determined and analyzed. A 1-D chemiresistor has been fabricated with a single ZnO coated silica nanospring by photolithography. The question of sensor sensitivity of MOS nanomaterials and MOS thin films has been addressed

  13. Aluminum doping studies on high field ZnO varistors

    SciTech Connect

    Kimball, K.M.; Doughty, D.H.

    1987-08-01

    We have investigated the effect of Al doping on the physical and electronic properties of high field ZnO varistors. For this study, varistors containing 98.94 m/o ZnO, 0.25 m/o CoO, 0.25 m/o MnO, 0.56 m/o Bi/sub 2/O/sub 3/ and 0 to 200 ppM Al were prepared from powders obtained from solution precipitation techniques. Because of the amphoteric nature of aluminum oxides, precise control of pH and metal concentrations was necessary to assure complete incorporation of dopants. We observed inhibition of grain growth during sintering of varistor pellets at aluminum concentrations of 50 ppM and above. The measured electrical properties show increased switching fields and increased nonlinearity coefficients for Al doping levels of 50 to 200 ppM.

  14. Semiconducting and piezoelectric nanoarchitectures of ZnO

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    2005-03-01

    ZnO is a semiconducting and piezoelectric material. The structure of ZnO can be described as a number of alternating planes composed of tetrahedrally coordinated O^2- and Zn^2+ ions, stacked alternatively along the c-axis. The oppositely charged ions produce positively charged (0001)-Zn and negatively charged (000-1)-O polar surfaces, resulting in a normal dipole moment and spontaneous polarization along the c-axis. We have synthesized a series of novel nanostructures of ZnO utilizing the effect from the polar surface [1-4]e. The piezoelectric coefficient of a piezoelectric nanobelt has been found to be almost tripled compared to the value of the bulk [5], clearly indicating the exciting applications of piezoelectric ZnO nanobelts for nano-scale electromechanical coupled sensors, transducers, switches and resonators. This presentation will focus on the growth mechanisms and potential applications of piezoelectric nanobelts, nanorings and nanosprings. [1] Z.W. Pan, Z.R. Dai and Z.L. Wang, Science, 209 (2001) 1947. [2] X.Y. Kong and Z.L. Wang, Nano Letters, 2 (2003) 1625 + cover. [3] Z.L. Wang, X.Y. Kong and J.M. Zuo, Phys. Rev. Letts. 91 (2003) 185502. [4] X.Y. Kong, Y. Ding, R.S. Yang, Z.L. Wang, Science, 303 (2004) 1348. [5] M. Zhao, Z.L. Wang^, S. X.Mao, Nano Letters, 4 (2004) 587. [6] For details please visit http://www.nanoscience.gatech.edu/zlwang/

  15. Structural, morphological and electroluminescence studies of Zno:Co nanophosphor

    NASA Astrophysics Data System (ADS)

    Singh, Anju; Vishwakarma, H. L.

    2016-09-01

    The nanoparticles of zinc oxide (ZnO) doped with various concentrations of cobalt (Co) were synthesized by chemical precipitation method in the presence of capping agent polyvinylpyrrolidone (PVP). The effect of doping concentration on structural and morphological properties has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). Cell volume, bond length, texture coefficient, lattice constants and dislocation density are also studied. Here, we also compared the interplaner spacing and relative peak intensities from their standard values with different angles. Crystallite sizes have been calculated by Debye-Scherrer's formula whose values are decreasing with increase in cobalt content up to 3 %. It has been seen that the growth orientation of the prepared ZnO nanorods was (101). The XRD analysis also ensures that ZnO has a hexagonal (wurtzite) crystal structure. The electroluminescence (EL) cells were prepared by placing pure and cobalt-doped ZnO nanoparticles between ITO-coated conducting glass plate and aluminium foil. Alternating voltage of various frequencies was applied, and EL brightness at different voltages was measured and corresponding current was also recorded. The voltage dependence of electroluminescence (EL) brightness of the ZnO:Co shows exponential increase. The linear voltage-current characteristic indicates ohmic nature. The EL brightness at a particular voltage is found to increase by increasing Co doping, but for higher percentage of Co the EL brightness is reduced. It is also seen that Co does not influence the threshold voltage. The brightness is also affected by increasing the frequency of AC signal.

  16. Photoluminescence Spectra of thin Zno films grown by ALD technology

    NASA Astrophysics Data System (ADS)

    Akopyan, I. Kh.; Davydov, V. Yu.; Labzovskaya, M. E.; Lisachenko, A. A.; Mogunov, Ya. A.; Nazarov, D. V.; Novikov, B. V.; Romanychev, A. I.; Serov, A. Yu.; Smirnov, A. N.; Titov, V. V.; Filosofov, N. G.

    2015-09-01

    The photoluminescence of ZnO films grown by atomic layer deposition (ALD) on silicon substrates has been investigated. A new broad photoluminescence band has been revealed in the exciton region of the spectrum. The properties of the band in the spectra of the films with different crystallographic orientations of substrates have been studied in a wide temperature range at different excitation levels. A model describing the origin of the new band has been proposed.

  17. Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties

    PubMed Central

    2013-01-01

    We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of −2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density. PMID:23316935

  18. Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties.

    PubMed

    Ko, Yeong Hwan; Kim, Myung Sub; Park, Wook; Yu, Jae Su

    2013-01-01

    We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of -2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density. PMID:23316935

  19. Spatially controlled growth of highly crystalline ZnO nanowires by an inkjet-printing catalyst-free method

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Khachadorian, Sevak; Zamani, Reza R.; Franke, Alexander; Hoffmann, Axel; Wagner, Markus R.; Santana, Guillermo

    2016-02-01

    High-density arrays of uniform ZnO nanowires with a high-crystal quality have been synthesized by a catalyst-free vapor-transport method. First, a thin ZnO film was deposited on a Si substrate as nucleation layer for the ZnO nanowires. Second, spatially selective and mask-less growth of ZnO nanowires was achieved using inkjet-printed patterned islands as the nucleation sites on a SiO2/Si substrate. Raman scattering and low temperature photoluminescence measurements were applied to characterize the structural and optical properties of the ZnO nanowires. The results reveal negligible amounts of strain and defects in the mask-less ZnO nanowires as compared to the ones grown on the ZnO thin film, which underlines the potential of the inkjet-printing approach for the growth of high-crystal quality ZnO nanowires.

  20. Enhanced photovoltaic performance of quantum dot-sensitized solar cell fabricated using Al-doped ZnO nanorod electrode

    NASA Astrophysics Data System (ADS)

    Raja, M.; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Balasundrapraphu, R.; Senthil, T. S.; Agilan, S.

    2015-04-01

    ZnO and Al doped ZnO nanorods have been successfully synthesized on ITO substrate via solgel dip coating method without using any catalyst. The X-ray diffraction studies showed that the Al doped ZnO samples are of hexagonal wurtzite structure. The Al ions were successfully incorporated into the ZnO lattice. Scanning electron microscopy images reveal that the average diameter of ZnO nanorods and Al doped ZnO nanorods are ∼300 nm and ∼200 nm respectively. The energy dispersive X-ray (EDS) analysis confirmed the presence Al in the ZnO thin films. The CdS quantum dot sensitized Al doped ZnO solar cell exhibited a power conversion efficiency of 1.5%.

  1. Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties

    NASA Astrophysics Data System (ADS)

    Ko, Yeong Hwan; Kim, Myung Sub; Park, Wook; Yu, Jae Su

    2013-01-01

    We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of -2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density.

  2. Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application

    SciTech Connect

    Saravanan, R.; Santhi, Kalavathy; Sivakumar, N.; Narayanan, V.; Stephen, A.

    2012-05-15

    Zinc oxide nanorods and diluted magnetic semiconducting Ni doped ZnO nanorods were prepared by thermal decomposition method. This method is simple and cost effective. The decomposition temperature of acetate and formation of oxide were determined by TGA before the actual synthesis process. The X-ray diffraction result indicates the single phase hexagonal structure of zinc oxide. The transmission electron microscopy and scanning electron microscopy images show rod like structure of ZnO and Ni doped ZnO samples with the diameter {approx} 35 nm and the length in few micrometers. The surface analysis was performed using X-ray photoelectron spectroscopic studies. The Ni doped ZnO exhibits room temperature ferromagnetism. This diluted magnetic semiconducting Ni doped ZnO nanorods finds its application in spintronics. - Highlights: Black-Right-Pointing-Pointer The method used is very simple and cost effective compared to all other methods for the preparation DMS materials. Black-Right-Pointing-Pointer ZnO and Ni doped ZnO nanorods Black-Right-Pointing-Pointer Ferromagnetism at room temperature.

  3. Control of charge dynamics by blending ZnO nanoparticles with poly(3-hexylthiophene) for efficient hybrid ZnO nanorods/polymer solar cells

    NASA Astrophysics Data System (ADS)

    Ruankham, Pipat; Choopun, Supab; Sagawa, Takashi

    2015-10-01

    Photovoltaic performances of hybrid ZnO nanorods/polymer solar cells have been improved by controlling their charge dynamics through addition of ZnO nanoparticles into poly(3-hexylthiophene) (P3HT) photoactive layer. The inter-rod space of ZnO nanorod substrates is completely filled with the solution-processed ZnO nanoparticles/P3HT blends, forming homogeneous junction among the components. The optimum PCE of 1.020 % has been achieved from the device with 13 vol % ZnO nanoparticles loaded. The enhancement in external quantum efficiency has been also observed, indicating the improved excitons separation at the ZnO/P3HT interface. The information on charge dynamics in the system has been investigated by electrochemical impedance spectroscopy. It has been found that the additional space-charge layer formed at the ZnO nanoparticles-contact electrode interface is a reason behind the improvement of open-circuit voltage. Moreover, the formation of ZnO nanoparticles domain extending across the active layer and the percolation path for charge carriers promotes charge transport by reducing transit time of the carriers, extending charge carrier lifetime and enhancing the charge transfer at the ZnO/P3HT interface. Interestingly, it has been found that charge transport in the devices does not limit the device performances, even for the 400-nm-thick active layer.

  4. STAR heavy flavor tracker

    NASA Astrophysics Data System (ADS)

    Qiu, Hao

    2014-11-01

    Hadrons containing heavy quarks are a clean probe of the early dynamic evolution of the dense and hot medium created in high-energy nuclear collisions. To explore heavy quark production at RHIC, the Heavy Flavor Tracker (HFT) for the STAR experiment was built and installed in time for RHIC Run 14. The HFT consists of four layers of silicon detectors. The two outermost layers are silicon strip detectors and the two innermost layers are made from state-of-the-art ultra-thin CMOS Monolithic Active Pixel Sensors (MAPS). This is the first application of a CMOS MAPS detector in a collider experiment. The use of thin pixel sensors plus the use of carbon fiber supporting material limits the material budget to be only 0.4% radiation length per pixel detector layer, enabling the reconstruction of low pT heavy flavor hadrons. The status and performance of the HFT in the RHIC 200 GeV Au + Au run in 2014 are reported. Very good detector efficiency, hit residuals and track resolution (DCAs) were observed in the cosmic ray data and in the Au + Au data.

  5. Resonances in heavy systems

    SciTech Connect

    Betts, R.R.

    1983-01-01

    The experimental situation for the study of resonances in heavy-ion collisions is reviewed, with emphasis on the heaviest systems. New data are presented which show some of the systematics of this phenomenon. The narrow resonance structures are established as a feature of the nuclear structure of the composite system rather than a purely entrance channel effect.

  6. Heavy Chain Diseases

    MedlinePlus

    ... cells often prevents proper absorption of nutrients from food (malabsorption), resulting in severe diarrhea and weight loss. A rare form that affects the respiratory tract also exists. Blood tests are done when alpha heavy chain disease is suspected. Serum protein electrophoresis, measurement of ...

  7. Detection of heavy Higgs

    SciTech Connect

    Gordon, H.A.

    1984-01-01

    The prospects for detecting heavy Higgs are discussed. In particular a general procedure is developed which includes studying first the characteristics of producing the signal, estimating the most important background, simulating both types of events via Monte Carlo techniques in an appropriate detector and concluding with the prospects for detection. 20 references.

  8. Heavy Vehicle Systems

    SciTech Connect

    Sid Diamond; Richard Wares; Jules Routbort

    2000-04-11

    Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

  9. Electrodeposited ZnO films with high UV emission properties

    SciTech Connect

    Matei, Elena; Enculescu, Ionut

    2011-11-15

    Highlights: {yields} Electrodeposition of ZnO from nitrate baths is investigated. {yields} The influence of process parameters on morphological and optical properties is studied. {yields} Experimental conditions to fabricate ZnO films with high UV emission were found. -- Abstract: We report here our results in the preparation of ZnO films with high UV band to band characteristic luminescence emission by potentiostatic electrodeposition. Zinc nitrate aqueous baths with different concentration and additives were employed for the preparation of the films on platinum substrates. We focused our research in determining how the electrodeposition bath composition, i.e. zinc nitrate concentration and addition of KCl or polyvinyl pyrolidone and applied overpotential influence the morphological and optical properties of the oxide films. Scanning electron microscopy was employed for characterizing the films in terms of morphology. Optical reflection, photoluminescence spectroscopy and cathodoluminescence were used for determining the optical characteristics of the samples. The morphology of the deposit varies from hexagonal prisms to platelets as a function of the deposition rate. This experimental parameter also influences the luminescence properties. We found that at low deposition rates high UV luminescent material is obtained.

  10. Conductivity fluctuations in proton-implanted ZnO microwires.

    PubMed

    Dolgin, B; Lorite, I; Kumar, Y; Esquinazi, P; Jung, G; Straube, B; Heluani, S Perez de

    2016-07-29

    Electric noise can be an important limitation for applications of conducting elements in the nanometer size range. The intrinsic electrical noise of prospective materials for opto-spintronics applications like ZnO has not yet been characterized. In this study, we have investigated the conductivity fluctuations in 10 nm thick current paths produced by proton implantation of ZnO microwires at room temperature. The voltage noise under a constant dc current bias in undoped, as well as in Li-doped microwires, is characterized by [Formula: see text] power spectra with [Formula: see text]. The noise intensity scales with the square of the bias current pointing to bias-independent resistivity fluctuations as a source of the observed noise. The normalized power spectral density appears inversely proportional to the number of carriers in the probed sample volume, in agreement with the phenomenological Hooge law. For the proton-implanted ZnO microwire and at 1 Hz we obtain a normalized power spectral density as low as [Formula: see text] Hz(-1). PMID:27306486

  11. Conductivity fluctuations in proton-implanted ZnO microwires

    NASA Astrophysics Data System (ADS)

    Dolgin, B.; Lorite, I.; Kumar, Y.; Esquinazi, P.; Jung, G.; Straube, B.; Perez de Heluani, S.

    2016-07-01

    Electric noise can be an important limitation for applications of conducting elements in the nanometer size range. The intrinsic electrical noise of prospective materials for opto-spintronics applications like ZnO has not yet been characterized. In this study, we have investigated the conductivity fluctuations in 10 nm thick current paths produced by proton implantation of ZnO microwires at room temperature. The voltage noise under a constant dc current bias in undoped, as well as in Li-doped microwires, is characterized by 1/{f}a power spectra with a∼ 1. The noise intensity scales with the square of the bias current pointing to bias-independent resistivity fluctuations as a source of the observed noise. The normalized power spectral density appears inversely proportional to the number of carriers in the probed sample volume, in agreement with the phenomenological Hooge law. For the proton-implanted ZnO microwire and at 1 Hz we obtain a normalized power spectral density as low as ∼ {10}-11 Hz‑1.

  12. Earthworm coelomocytes as nanoscavenger of ZnO NPs

    NASA Astrophysics Data System (ADS)

    Gupta, Shruti; Kushwah, Tanuja; Yadav, Shweta

    2014-05-01

    Earthworms can `biotransform' or `biodegrade' chemical contaminants, rendering them harmless in their bodies, and can bioaccumulate them in their tissues. They `absorb' the dissolved chemicals through their moist `body wall' due to the interstitial water and also ingest by `mouth' while soil passes through the gut. Since the advent of the nanotechnology era, the environmental sink has been continuously receiving engineered nanomaterials as well as their derivatives. Our current understanding of the potential impact of nanomaterials and their natural scavenger is limited. In the present investigation, we studied the cellular uptake of ZnO nanoparticles (NPs) by coelomocytes especially by chloragocytes of Eisenia fetida and their role as nanoscavenger. Results from exposure to 100- and 50-nm ZnO NPs indicate that coelomocytes of the earthworm E. fetida show no significant DNA damage at a dose lower than 3 mg/l and have the potential ability to uptake ZnO NPs from the soil ecosystem and transform them into microparticles.

  13. Field emission properties of ZnO nanosheet arrays

    SciTech Connect

    Naik, Kusha Kumar; Rout, Chandra Sekhar E-mail: dj.late@ncl.res.in E-mail: csrout@iitbbs.ac.in; Khare, Ruchita; More, Mahendra A.; Chakravarty, Disha; Late, Dattatray J. E-mail: dj.late@ncl.res.in E-mail: csrout@iitbbs.ac.in; Thapa, Ranjit E-mail: dj.late@ncl.res.in E-mail: csrout@iitbbs.ac.in

    2014-12-08

    Electron emission properties of electrodeposited ZnO nanosheet arrays grown on Indium tin oxide coated glass substrates have been studied. Influence of oxygen vacancies on electronic structures and field emission properties of ZnO nanosheets are investigated using density functional theory. The oxygen vacancies produce unshared d electrons which form an impurity energy state; this causes shifting of Fermi level towards the vacuum, and so the barrier energy for electron extraction reduces. The ZnO nanosheet arrays exhibit a low turn-on field of 2.4 V/μm at 0.1 μA/cm{sup 2} and current density of 50.1 μA/cm{sup 2} at an applied field of 6.4 V/μm with field enhancement factor, β = 5812 and good field emission current stability. The nanosheet arrays grown by a facile electrodeposition process have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications.

  14. Nanocluster formation in Co/Fe implanted ZnO

    NASA Astrophysics Data System (ADS)

    Bharuth-Ram, K.; Masenda, H.; Doyle, T. B.; Geburt, S.; Ronning, C.

    2015-04-01

    Conversion electron Mössbauer Spectroscopy (CEMS) measurements were made on a ZnO single crystal sample implanted at room temperature (RT) with of 145 and 345 keV 59Co ions with respective fluences of 1.15×1016 ions/cm 2 and 4.17×1016 ions/cm 2, followed by implantation of 60 keV 57Fe to a fluence of 0.50×1016/cm 2 to yield a `box-shaped' implantation profile with a Co + Fe concentration of about 3.2 at. %. CEM spectra were collected after annealing the sample up to 973 K. The spectra after annealing up to 973 K are similar to spectra observed in other CEMS studies on Fe implanted ZnO, but show a dramatic change after the 973 K annealing step; it is dominated by a doublet component with fit parameters typical of Fe 3+. Magnetization curves of the sample after the 973 K anneal show hysteresis, with a small residual magnetization at RT that increases at 4 K. The saturation magnetization at 4 K was approximately 0.33 μ B/CoFe ion, in good agreement with observations for 5-8 nm sized Co nanoclusters in ZnO.

  15. Optical behavior of native defects in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, John L.; Steiauf, Daniel; Alkauskas, Audrius; Janotti, Anderson; van de Walle, Chris G.

    2013-03-01

    The behavior of native defects in ZnO has been fiercely debated for years, yet questions still remain regarding their fundamental properties. Once blamed for causing unintentional n-type conductivity, it is now well-established that native donors are highly unlikely to act as shallow donors in as-grown material. Still, both native donors and acceptors may be present in some samples, acting as either compensating acceptors or deep donors that may inhibit attempts to obtain high-conductivity n-type ZnO. In this work, we re-examine the properties of native donors and acceptors in ZnO using hybrid density functional calculations, which allow for the quantitative prediction of defect transition levels and formation energies. We focus on the optical and electrical properties of these defects, and calculate both their optical and thermodynamic transition levels. Most of the defects give rise to deep, broad luminescence signals that can serve as a means of experimentally verifying the nature of the center. We also examine how interactions with hydrogen interstitials affect the properties of these defects. This work was supported by the NSF.

  16. ZnO light-emitting nanoprobes for tumor detection

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Tsan; Shen, Yi-Chun; Yang, Sheng-Chieh; Yang, Tsung-Lin; Huang, Jian-Jang

    2013-02-01

    Tumor detection is a significant health issue, but it is still a limit to identify cancer cells during tumor resection by using traditional methods such as fluorescence. In this study, zinc oxide (ZnO) nanorods bonded to antibodies was investigated as nanoprobes for sensing cancer cells. The result shows that antibodies toward epidermal growth factor receptor (EGFR) can be connected to ZnO nanorods and EGFR receptors of squamous cell carcinoma (SCC). The cancer cells can be recognized via the observation of purple light emission from these probes by using naked eye or an optical microscope. By contrast, the HS68 cells with less EGFR expression had no purple light emission as the probes were washed off. Besides, from the photoluminescent spectra, the intensity ratio between the purple light (from ZnO nanorods) and green band (from the autofluorescence of cells) is much higher in SCC than in HS68 cells, which suggest that the cancer cells can be detected by comparing the peak intensity ratio. The probes have the potential clinical application for real-time tumor detection, and the cancer cells can be excised more precisely with the help of purple light emission.

  17. Nanophotoactivity of Porphyrin Functionalized Polycrystalline ZnO Films.

    PubMed

    Rogero, Celia; Pickup, David F; Colchero, Jaime; Azaceta, Eneko; Tena-Zaera, Ramón; Palacios-Lidón, Elisa

    2016-07-01

    Kelvin probe force microscopy in darkness and under illumination is reported to provide nanoscale-resolved surface photovoltage maps of hybrid materials. In particular, nanoscale charge injection and charge recombination mechanisms occurring in ZnO polycrystalline surfaces functionalized with Protoporphyrin IX (H2PPIX) are analyzed. Local surface potential and surface photovoltage maps not only reveal that upon molecular adsorption the bare ZnO work function increases, but also they allow study of its local dependence. Nanometer-sized regions not correlated with apparent topographic features were identified, presenting values significantly different from the average work function. Depending on the region, the response to the light excitation is different, distinguishing two relaxation processes, one faster than the other. This behavior can be explained in terms of electrons trapped closed to the molecule-semiconductor interface or electrons pushed into the ZnO bulk, respectively. Moreover, the origin of these differences is correlated with the H2PPIX-ZnO bonding and molecules configuration and aggregation. The chenodeoxycholic acid (CDCA) coadsorption leads to a more homogeneous surface potential distribution, confirming the antiaggregate effect of this additive, while the surface photovoltage is mostly dominated by the slow relaxation component. This work reveals the complexity of real device architectures with ill-defined surfaces even in a relatively simple system with only one type of dye molecule and hightlights the importance of nanoscale characterization with appropriate tools. PMID:27303943

  18. Electron paramagnetic resonance in Cu-doped ZnO

    NASA Astrophysics Data System (ADS)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1‑xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  19. Charging gold nanoparticles in ZnO by electric fields.

    PubMed

    Obradovic, M; Di Vece, M; Grandjean, D; Houben, K; Lievens, P

    2016-01-27

    Controlling the plasmon resonance frequency of metal nanostructures holds promise for both fundamental and applied research in optics. The plasmon resonance frequency depends on the number of free electrons in the metal. By adding or removing electrons to a metal nano-object, the plasmon resonance frequency shifts. In this study we indirectly change the number of free electrons in gold nanoparticles by applying an electrical potential difference over a heterostructure consisting of a ZnO layer with embedded gold nanoparticles. The potential difference induces shifts of defect energy levels in the ZnO by the electric field. This results in an exchange of electrons between particles and matrix which in turn modifies the gold nanoparticle plasmon properties. The positive charge shifts the ZnO optical absorption peak from 377 nm to 386 nm and shifts the nanoparticle plasmon from 549 nm to 542 nm. This electro-optical effect is a promising way to obtain fast optical switching in a solid state composition. PMID:26732742

  20. Study of the wettability of ZnO nanofilms

    NASA Astrophysics Data System (ADS)

    Subedi, Deepak Prasad; Madhup, Dinesh Kumar; Sharma, Ashish; Joshi, Ujjwal Man; Huczko, Andrzej

    2012-04-01

    Al-doped and un-doped ZnO thin films deposited on quartz substrates by the nebulized spray pyrolysis method were studied to investigate the wettability of the surface. The main objective of the present study was to investigate the wettability of ZnO thin film by changing the concentration of Al doping. Microstructure and water contact angles of the films were measured by scanning electron microscopy (SEM) and using a contact angle goniometer. SEM studies revealed that the grain size within the film increases with the doping concentration. The contact angles were studied to see the effect of aluminum doping on the hydrophilicity of the film. ZnO films were found to be hydrophobic in nature. A good correlation was observed between the SEM micrographs and contact angle results. The nature of the film was found to change from being hydrophobic to hydrophilic after the treatment in low-pressure DC glow discharge plasma, which, however, was reversible with the storage time.

  1. Earthworm coelomocytes as nanoscavenger of ZnO NPs

    PubMed Central

    2014-01-01

    Earthworms can ‘biotransform’ or ‘biodegrade’ chemical contaminants, rendering them harmless in their bodies, and can bioaccumulate them in their tissues. They ‘absorb’ the dissolved chemicals through their moist ‘body wall’ due to the interstitial water and also ingest by ‘mouth’ while soil passes through the gut. Since the advent of the nanotechnology era, the environmental sink has been continuously receiving engineered nanomaterials as well as their derivatives. Our current understanding of the potential impact of nanomaterials and their natural scavenger is limited. In the present investigation, we studied the cellular uptake of ZnO nanoparticles (NPs) by coelomocytes especially by chloragocytes of Eisenia fetida and their role as nanoscavenger. Results from exposure to 100- and 50-nm ZnO NPs indicate that coelomocytes of the earthworm E. fetida show no significant DNA damage at a dose lower than 3 mg/l and have the potential ability to uptake ZnO NPs from the soil ecosystem and transform them into microparticles. PMID:24959107

  2. Heavy Flavor Dynamics in Relativistic Heavy-ion Collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan

    Heavy flavor hadrons serve as valuable probes of the transport properties of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dissertation, we introduce a comprehensive framework that describes the full-time evolution of heavy flavor in heavy-ion collisions, including its initial production, in-medium evolution inside the QGP matter, hadronization process from heavy quarks to their respective mesonic bound states and the subsequent interactions between heavy mesons and the hadron gas. The in-medium energy loss of heavy quarks is studied within the framework of a Langevin equation coupled to hydrodynamic models that simulate the space-time evolution of the hot and dense QGP matter. We improve the classical Langevin approach such that, apart from quasi-elastic scatterings between heavy quarks and the medium background, radiative energy loss is incorporated as well by treating gluon radiation as a recoil force term. The subsequent hadronization of emitted heavy quarks is simulated via a hybrid fragmentation plus recombination model. The propagation of produced heavy mesons in the hadronic phase is described using the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation shows that while collisional energy loss dominates the heavy quark motion inside the QGP in the low transverse momentum (p T) regime, contributions from gluon radiation are found to be significant at high pT. The recombination mechanism is important for the heavy flavor meson production at intermediate energies. The hadronic final state interactions further enhance the suppression and the collective flow of heavy mesons we observe. Within our newly developed framework, we present numerical results for the nuclear modification and the elliptic flow of D mesons, which are consistent with measurements at both the CERN Large Hadron Collider (LHC) and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are also provided. In

  3. Structural and Morphology of ZnO Nanorods Synthesized Using ZnO Seeded Growth Hydrothermal Method and Its Properties as UV Sensing

    PubMed Central

    Ridhuan, Nur Syafinaz; Abdul Razak, Khairunisak; Lockman, Zainovia; Abdul Aziz, Azlan

    2012-01-01

    In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias. PMID:23189199

  4. Impact of high-oxygen thermal annealing on the structural, optical and electrical properties of ZnO discs made from 20-nm ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sendi, Rabab Khalid; Mahmud, Shahrom

    2012-09-01

    20-nm nanoparticles of zinc oxide (ZnO) were used to make high-density ZnO discs by uniaxial pressing at 4 ton/cm2 pressure and sintering at 1200 °C for 1 hour. High-oxygen thermal annealing performed on the ZnO discs was found to have a profound impact especially enhanced grain growth even at a low annealing temperature of only 400 °C. Moreover, we observed a unique secondary growth of ZnO nanoparticles and growth of multilayer grains that have not been reported elsewhere. The strong solid state reaction during annealing was probably attributed to the high surface area of the 20-nm ZnO nanoparticles that promoted strong surface reaction even at low annealing temperatures. The ZnO discs have been found to contain a very high concentration of structural defects (oxygen vacancies and zinc/oxygen interstitials) that was indicated by the dominant and broad visible photoluminescence (PL) emission in the green band with peaks at (519 - 533) nm, and it was found that this visible emission was greatly increased after annealing treatment especially at 800 °C. Annealing treatment also was found to improved the grain crystallinity as illustrated by the lowering of intrinsic compressive stress based on the XRD lattice constant and full-wave half-maximum (FWHM) data. The electrical properties of the ZnO discs were also greatly influenced by the annealing treatment especially a big drop in the breakdown voltage from 362 V (as-grown sample) to 170 V (800 °C sample). The resistivity also experienced a dramatic drop from 267 kΩ.cm (as-grown sample) to 74.6 kΩ.cm (800 °C sample). High-oxygen thermal annealing can be employed as a new technique in controlling the breakdown voltage of ZnO discs made from ZnO nanoparticles with improved structural properties.

  5. Heavy quarks and lattice QCD

    SciTech Connect

    Andreas S. Kronfeld

    2003-11-05

    This paper is a review of heavy quarks in lattice gauge theory, focusing on methodology. It includes a status report on some of the calculations that are relevant to heavy-quark spectroscopy and to flavor physics.

  6. Heavy quark physics in CMS

    NASA Astrophysics Data System (ADS)

    Fedi, G.; CMS Collaboration

    2016-07-01

    The most recent results which concern the heavy quark hadrons done in the CMS experiment are reported. The searching area spans over the heavy quark spectroscopy, production cross sections, beauty meson decay properties, rare decays, and CP violation.

  7. Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO

    SciTech Connect

    Varghese, Neenu; Panchakarla, L.S.; Hanapi, M.; Govindaraj, A.; Rao, C.N.R.

    2007-12-04

    ZnO nanorods with diameters in the 80-800 nm range are readily synthesized by the reaction of zinc acetate, ethanol and ethylenediamine under solvothermal conditions. The best products are obtained at 330 deg. C with a slow heating rate. Addition of the surfactant Triton -X 100 gave nanorods of uniform (300 nm) diameter. By adding a small amount of liquid NH{sub 3} to the reaction mixture, N-doped ZnO nanorods, with distinct spectroscopic features are obtained. CdO nanorods of 80 nm diameter have been prepared under solvothermal conditions using a mixture of cadmium cupferronate, ethylenediamine and ethanol at 330 deg. C. Similarly, Zn{sub 1-x}Cd{sub x}O nanorods of a 70 nm diameter are obtained under solvothermal conditions starting with a mixture of zinc acetate, cadmium cupferronate, ethanol and ethylenediamine.

  8. Synthesis of high surface area ZnO powder by continuous precipitation

    SciTech Connect

    Boz, Ismail; Kaluza, Stefan; Boroglu, Mehtap Safak; Muhler, Martin

    2012-05-15

    Graphical abstract: High surface area ZnO powders are synthesized by a low temperature continuous precipitation under ultrasonication. Urea is used as precipitating agent so that no contamination of ZnO powder emanating from precipitating agent, such as, alkalis, is observed. pH and type of precursor greatly affects the surface area and other properties. In this manuscript, we report a very simple and effective continuous precipitation to synthesize high surface area ZnO powder. Highlights: Black-Right-Pointing-Pointer The synthesis of high surface area ZnO powder was achieved at 90 Degree-Sign C in a continuous precipitation unit. Black-Right-Pointing-Pointer Continuous precipitation unit was ultrasonicated to improve final product homogeneity. Black-Right-Pointing-Pointer Precipitation intermediate, hydrozincite, was led to high surface area ZnO powder. Black-Right-Pointing-Pointer The synthesized ZnO nanoparticles had a rather uniform mesoporous structure. -- Abstract: Synthesis of high surface area ZnO powder was achieved by continuous precipitation using zinc ions and urea at low temperature of 90 Degree-Sign C. The powder precipitated resulted in high-purity single-phase ZnO powder when calcined at 280 Degree-Sign C for 3 h in air. The solution pH and the precipitation duration strongly affected the surface area of the calcined ZnO powder. Detailed structural characterizations demonstrated that the synthesized ZnO powder were single crystalline with wurtzite hexagonal phase. The powdered samples precipitated by homogeneous precipitation crystallized directly to hydrozincite without any intermediate phase formation. The phase structures, morphologies and properties of the final ZnO powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering particle size analysis (DLS), and nitrogen physisorption in order to determine the specific surface area (BET) and the pore size distribution (BJH).

  9. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method.

    PubMed

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-06-17

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 microm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 degrees C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10(-10) to 1.0 x 10(-6) A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10(11) Omega in dry air (7% RH) to about 4.95 x 10(6) Omega in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors. PMID:19468159

  10. Arrays of nanorods composed of ZnO nanodots exhibiting enhanced UV emission and stability

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Sun, Y.; Yu, M.; Liu, X.; Yang, B.; Liu, D.; Liu, S.; Cao, W.; Ashfold, Michael N. R.

    2014-08-01

    A novel one-step coating and assembly approach for fabricating well-defined ZnO nanodot/SiO2 nanorod arrays by hydrolysis-recrystallization growth from 1-D ZnO nanorods is described. The resultant composite nanorod arrays exhibit much enhanced UV emission efficiencies and excellent stability, and thus offer particular promise for application in UV emission devices operating in harsh environments.A novel one-step coating and assembly approach for fabricating well-defined ZnO nanodot/SiO2 nanorod arrays by hydrolysis-recrystallization growth from 1-D ZnO nanorods is described. The resultant composite nanorod arrays exhibit much enhanced UV emission efficiencies and excellent stability, and thus offer particular promise for application in UV emission devices operating in harsh environments. Electronic supplementary information (ESI) available: Suggested reaction scheme for the chemical processes occurring in this work; TEM images of ZnO NRs treated with 50 μL of TEOS; the diameter distribution of the ZnO NDs inside the ZnO/SiO2 NRs; PL spectra of as-grown ZnO NRs and of NRs after O2 and Ar plasma treatment; PL spectra of as-grown ZnO NRs and of NRs after annealing in O2 and in Ar; plot showing the time dependence of the relative UV emission intensity of the as-grown ZnO NRs and the TEOS-treated ZnO NRs immersed in an aqueous buffer solution at pH = 9.18; PL spectra of as-grown ZnO NRs and of the silica powders formed by hydrolysis and condensation reactions of TEOS; PL spectra of SiO2 powder after annealing in O2 at 300, 600 and 900 °C. See DOI: 10.1039/c4nr01558d

  11. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  12. Fabrication and Characterization of ZnO Nanorods on Multiple Substrates.

    PubMed

    Rana, Abu ul Hassan Sarwar; Ko, Kyul; Hong, Sejun; Kang, Mingi; Kim, Hyun-Seok

    2015-11-01

    In this study, we present the fabrication and characterization of ZnO nanorods (NRs) grown on p-Si, gold (Au) and nickel (Ni) coated on Si wafer, indium tin oxide (ITO), and quartz substrates. The aqueous chemical growth method is used for the vertical growth of ZnO NRs on multiple substrates. The samples are characterized with scanning electron microscope and energy dispersive X-ray spectroscopy to probe into the growth, alignment, density, diameter, and length of ZnO NRs on multiple substrates. It is found that under same conditions, like growth temperature, growth time, and solution concentration, ZnO NRs on ITO and quartz have same length but comparatively larger diameter than on other samples. The effects of growth time on the diameter and length of ZnO NRs are also explored. All the samples are characterized with probe station to look at the current-voltage (I-V) behavior of ZnO NRs on multiple substrates. It is found that ZnO NRs on p-Si show a simple p-n heterojunction diode like behavior. ZnO NRs grown on Au- and Ni-coated Si wafers show Schottky I-V characteristic behaviors while ZnO NRs on ITO show a simple ohmic I-V response with comparatively higher level of current. Finally, the I-V response of ZnO NRs on p-Si is also studied under ultraviolet illumination. Because of the photo-generated carriers in ZnO, the sample shows higher level of current upon illumination. PMID:26726520

  13. Investigation of Li-doped ferroelectric and piezoelectric ZnO films by electric force microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ni, H. Q.; Lu, Y. F.; Liu, Z. Y.; Qiu, H.; Wang, W. J.; Ren, Z. M.; Chow, S. K.; Jie, Y. X.

    2001-08-01

    We have grown Li-doped ZnO films on silicon (100) using the rf planar magnetron sputtering method. The surface charges induced piezoelectrically by defect and by polarization can be observed by electric force microscopy. The Li-doped ZnO films have been proven to be ferroelectric. The Raman spectra of ZnO and Li-doped ZnO films have been measured.

  14. Room-temperature chemical integration of ZnO nanoarchitectures on plastic substrates for flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Geng-Jia; Lin, Shou-Yen; Wu, Jih-Jen

    2014-01-01

    ZnO nanoarchitectured anodes composed of the ZnO nanocactus array and the top ZnO particle layer are chemically integrated on ITO-PET substrates using a facile room-temperature chemical bath deposition method for dye-sensitized solar cells (DSSCs). In the absence of high-temperature post-treatment and mechanical compression, a notable efficiency of 5.24% is simply achieved in the flexible ZnO DSSC.ZnO nanoarchitectured anodes composed of the ZnO nanocactus array and the top ZnO particle layer are chemically integrated on ITO-PET substrates using a facile room-temperature chemical bath deposition method for dye-sensitized solar cells (DSSCs). In the absence of high-temperature post-treatment and mechanical compression, a notable efficiency of 5.24% is simply achieved in the flexible ZnO DSSC. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images of ZnO NP seed layer, XRD pattern of ZnO TP film, photographs of the flexible ZnO NC-TP anode and the corresponding DSSC, influences of array length on density of primary NW array as well as Jsc and efficiency of the ZnO NC DSSCs, photovoltaic performances of flexible D149-sensitized ZnO NC-TP DSSCs fabricated using 10 μm thick ZnO NC arrays and ZnO TP films with various thicknesses, J-V curve of ZnO NC-TP-g DSSC, transmittance spectra of ITO-PET and ITO-glass substrates, and bending test results of the unsealed ZnO NC-TP DSSC cells. See DOI: 10.1039/c3nr05267b

  15. pH-dependent phosphatization of ZnO nanoparticles and its influence on subsequent lead sorption.

    PubMed

    Xu, Huacheng; Li, Lina; Lv, Hua; Liu, Xin; Jiang, Helong

    2016-01-01

    Phosphatization of ZnO nanoparticles (ZNPs) at various pHs and its influence on subsequent lead sorption were investigated. Results showed that, in presence of phosphate, both the chemical speciation and crystalline phase of ZNPs were pH dependent that most of them were converted to crystalline Zn3(PO4)2 at acidic pHs, but only little amorphous hopeites can be formed under alkaline condition. Phosphatization process significantly enhanced subsequent lead sorption with the order of acidic process > alkaline > pristine ZNPs. Spectroscopic analysis including ATR-FTIR and XPS revealed main mechanisms of lead phosphate precipitation and inner-sphere complexes for lead sorption on acidic and alkaline treatment products, respectively. The potential toxicity of ZNPs and heavy metals in eutrophic aquatic ecosystems would thus be reduced due to the ubiquitous phosphatization process. This study highlights the importance of environmental variables in exploring the environmental behavior and fate of heavy metals as well as nanoparticles in natural waters. PMID:26561448

  16. Polar semiconductor ZnO under inplane tensile strain

    NASA Astrophysics Data System (ADS)

    Alahmed, Zeyad; Fu, Huaxiang

    2008-01-01

    Zinc oxide under biaxial inplane tensile strains is studied theoretically by first-principles density functional calculations. Different material properties (including structural response of cell shape, chemical bonding, total-energy curvature, electrical polarization, Born effective charge, electronic band dispersion, optical interband transitions, and effective masses) are examined. We found that (1) the c/a ratio decreases in a rather linear fashion with the increasing tensile strain when the inplane lattice constant (denoted as a ) of ZnO is varied below a critical transition value of atr=1.067a0 ( a0 is the equilibrium inplane cell length). However, at a=atr , ZnO exhibits a pronounced structural discontinuity in c/a ratio, as well as in cell volume. (2) The structural discontinuity results from the existence of two energy minima (labeled as A and B), both being metastable. Minimum A is energetically favorable when a is below atr , while minimum B is more stable when a exceeds atr . (3) As the inplane lattice constant approaches atr from below, ZnO becomes markedly soft along the polar c axis, promising a large electromechanical response. (4) At a=atr , spontaneous polarization in ZnO collapses, leading to a polar-nonpolar phase transformation. (5) Despite that the spontaneous polarization vanishes when a=atr , Born effective charge of Zn atom nevertheless increases, demonstrating an interesting anticorrelation. (6) Above atr , covalent overlapping charge largely disappears between those polar Zn-O bonds collinear with the c axis, indicating that the bonds are predominantly ionic. (7) The polar-nonpolar structural transformation simultaneously gives rise to a direct-indirect band gap transition. When a is above atr , the valence band maximum is no longer at zone center Γ but at zone-edge H point. Occurrence of indirect band gap originates from the fact that the orbital energy of the top valence state at H shows a sensitive dependence on the inplane strain. (8

  17. Heavy Stars Thrive among Heavy Elements

    NASA Astrophysics Data System (ADS)

    2002-08-01

    VLT Observes Wolf-Rayet Stars in Virgo Cluster Galaxies [1] Summary Do very massive stars form in metal-rich regions of the Universe and in the nuclei of galaxies ? Or does "heavy element poisoning" stop stellar growth at an early stage, before young stars reach the "heavyweight class"? What may at the first glance appear as a question for specialists actually has profound implications for our understanding of the evolution of galaxies, those systems of billions of stars - the main building blocks of the Universe. With an enormous output of electromagnetic radiation and energetic elementary particles, massive stars exert a decisive influence on the surrounding (interstellar) gas and dust clouds . They also eject large amounts of processed elements, thereby participating in the gradual build-up of the many elements we see today. Thus the presence or absence of such stars at the centres of galaxies can significantly change the overall development of those regions and hence, presumably, that of the entire galaxy. A team of European astronomers [2] has now directly observed the presence of so-called Wolf-Rayet stars (born with masses of 60 - 90 times that of the Sun or more) within metal-rich regions in some galaxies in the Virgo cluster, some 50 million light-years away. This is the first unambiguous detection of such massive stellar objects in metal-rich regions . PR Photo 20a/02 : H II regions in the Virgo cluster galaxy NGC 4254 . PR Photo 20b/02 : Multi-object-slit observation of galaxy NGC 4303 . PR Photo 20c/02 : Spectrum of H II region in NGC 4254 with Wolf-Rayet signatures. Production of heavy elements in the Universe Most scientists agree that the Universe in which we live underwent a dramatic event, known as the Big Bang , approximately 15,000 million years ago. During the early moments, elementary particles were formed which after some time united into more complex nuclei and in turn resulted in the production of hydrogen and helium atoms and their isotopes

  18. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V. PMID:26367556

  19. Selective growth of ZnO nanowires on substrates patterned by photolithography and inkjet printing

    NASA Astrophysics Data System (ADS)

    Laurenti, M.; Verna, A.; Fontana, M.; Quaglio, M.; Porro, S.

    2014-05-01

    Zinc oxide nanowires (ZnO NWs) were grown by a two-step growth method, involving the deposition of a patterned ZnO thin seeding layer and the chemical vapor deposition (CVD) of ZnO NWs. Two ways of patterning the seed layer were performed. The seeding solution containing ZnO precursors was deposited by sol-gel/spin-coating technique and patterned by photolithography. In the other case, the seeding solution was directly printed by inkjet printing only on selected portion of the substrate areas. In both cases, crystallization of the seed layer was achieved by thermal annealing in ambient air. Vertically aligned ZnO NWs were then grown by CVD on patterned, seeded substrates. The structure and morphology of ZnO NWs was analyzed by means of X-ray diffraction and field emission scanning electron microscopy measurements, respectively, while the vibrational properties were evaluated through Raman spectroscopy. Results showed that less-defective, vertically aligned, c-axis oriented ZnO NWs were grown on substrates patterned by photolithography while more defective nanostructures were grown on printed seed layer. A feature size of 30 µm was transferred into the patterned seed layer, and a good selectivity in growing ZnO NWs was obtained.

  20. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. PMID:27245962

  1. Optical characteristics of ZnO single crystal grown by the hydrothermal method

    NASA Astrophysics Data System (ADS)

    Chen, G. Z.; Yin, J. G.; Zhang, L. H.; Zhang, P. X.; Wang, X. Y.; Liu, Y. C.; Zhang, C. L.; Gu, S. L.; Hang, Y.

    2015-12-01

    ZnO single crystals have been grown by the hydrothermal method. Raman scattering and Photoluminescence spectroscopy (PL) have been used to study samples of ZnO that were unannealed or annealed in different ambient gases. It is suggested that the green emission may originate from defects related to copper in our samples.

  2. Metal nanoparticle-loaded hierarchically assembled ZnO nanoflakes for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Ong, Wei Li; Natarajan, Srinivasan; Kloostra, Bradley; Ho, Ghim Wei

    2013-05-01

    We have demonstrated an environmentally friendly and template-free aqueous synthesis of hierarchically assembled 3D ZnO nanoflakes. The ZnO nanoflakes self-assembled to expose highly interconnected networks of well-defined catalytic active {0001} facets. Well dispersed Pt, Ag and Au metal nanoparticles were loaded to form hybrid ZnO nanoflakes for enhanced photocatalytic activity. The enhanced photocatalytic activity may be attributed to the synergetic effects of well-structured ZnO crystal facets, high metal nanoparticles dispersity, enhanced light absorption and charge-transfer kinetics which leads to high photocatalytic degradation.We have demonstrated an environmentally friendly and template-free aqueous synthesis of hierarchically assembled 3D ZnO nanoflakes. The ZnO nanoflakes self-assembled to expose highly interconnected networks of well-defined catalytic active {0001} facets. Well dispersed Pt, Ag and Au metal nanoparticles were loaded to form hybrid ZnO nanoflakes for enhanced photocatalytic activity. The enhanced photocatalytic activity may be attributed to the synergetic effects of well-structured ZnO crystal facets, high metal nanoparticles dispersity, enhanced light absorption and charge-transfer kinetics which leads to high photocatalytic degradation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00043e

  3. ZnO nanostructures growth with silver catalyst—Effect of annealing

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Jacob, C.

    2009-03-01

    Zinc oxide (ZnO) nanostructures have been grown on both the as-deposited silver thin-film templates over silicon substrates and annealed silver thin-film templates on silicon substrates. ZnO was grown by evaporation of metallic zinc over the silver templates followed by thermal annealing in air. Sword-like ZnO nanostructures grew densely throughout the surface of the annealed silver template sample. A small number of ZnO swords embedded in a porous surface were found for the as-deposited silver template sample. It is observed that the annealing treatment of the Ag thin-film is the key factor in controlling the formation of ZnO nanostructures. XRD study shows that the nanostructures have very good crystallinity and have the hexagonal wurtzite ZnO structure. The room-temperature photoluminescence spectrum indicates that the nanostructures grown on annealed Ag template are less defective and have high optical quality. On the other hand, a very weak UV emission peak and the blue emission doublet band reveal that the ZnO sample grown on the as-deposited silver template are highly defective. The micro-Raman spectra of the ZnO nanostructures grown on both types of Ag templates show enhanced Raman scattering which is related to surface enhanced Raman scattering (SERS).

  4. Well-ordered ZnO nanotube arrays and networks grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Ye, Zuo-Guang

    2015-06-01

    Semiconductor ZnO, possessing a large exciton binding energy and wide band gap, has received a great deal of attention because it shows great potential for applications in optoelectronics. Precisely controlling the growth of three-dimensional ZnO nanotube structures with a uniform morphology constitutes an important step forward toward integrating ZnO nanostructures into microelectronic devices. Atomic layer deposition (ALD) technique, featured with self-limiting surface reactions, is an ideal approach to the fabrication of ZnO nanostructures, because it allows for accurate control of the thickness at atomic level and conformal coverage in complex 3D structures. In this work, well-ordered ZnO nanotube arrays and networks are prepared by ALD. The morphology, crystallinity and wall thickness of these nanotube structures are examined for different growth conditions. The microstructure of the ZnO nanotubes is investigated by transmission electron microscopy and X-ray diffraction. The high aspect ratio of ZnO nanotubes provides a large specific area which could enhance the kinetics of chemical reactions taking place between the ZnO and its surroundings, making the potential devices more efficient and compact.

  5. Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and Their Methane Sensing Properties

    PubMed Central

    Zhou, Qu; Chen, Weigen; Xu, Lingna; Peng, Shudi

    2013-01-01

    Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. Gas sensors based on the as-prepared ZnO nanostructures were fabricated by screen-printing on a flat ceramic substrate. Furthermore, their gas sensing characteristics towards methane were systematically investigated. Methane is an important characteristic hydrocarbon contaminant found dissolved in power transformer oil as a result of faults. We find that the hierarchical flower-like ZnO nanorods and net-like ZnO nanofibers samples show higher gas response and lower operating temperature with rapid response-recovery time compared to those of sensors based on ZnO nanobulks. These results present a feasible way of exploring high performance sensing materials for on-site detection of characteristic fault gases dissolved in transformer oil. PMID:23666136

  6. Polystyrene-microsphere-assisted patterning of ZnO nanostructures: growth and characterization.

    PubMed

    Dong, J J; Zhang, X W; Zhang, S G; Tan, H R; Yin, Z G; Gao, Y; Wang, J X

    2013-02-01

    In this work, periodic arrays of various ZnO nanostructures were fabricated on both Si and GaN substrates via a facile hydrothermal process. To realize the site-specific growth, two kinds of masks were introduced. The polystyrene (PS) microsphere self-assembled monolayer (SAM) was employed as the mask to create a patterned seed layer to guide the growth of ZnO nanostructures. However, the resulting ZnO nanostructures are non-equidistant, and the diameter of the ZnO nanostructures is uncontrollable. As an alternative, TiO2 sol was used to replicate the PS microsphere SAM, and the inverted SAM (ISAM) mask was obtained by extracting the PS microspheres with toluene. By using the ISAM mask, the hexagonal periodic array of ZnO nanostructures with high uniformity were readily produced. Furthermore, the effect of the underlying substrates on the morphology of ZnO nanostructures has been investigated. It is found that the highly ordered and vertically aligned ZnO nanorods epitaxially grow on the GaN substrate, while the ZnO nanoflowers on Si substrates are random oriented. PMID:23646580

  7. Direct formation of ZnO nanostructures by chemical solution deposition and EUV exposure.

    PubMed

    Auzelyte, V; Sigg, H; Schmitt, B; Solak, H H

    2010-05-28

    The development of effective methods for the fabrication of ZnO nanostructures is important for the use of this semiconductor material with interesting optical and electronic properties. Chemical solution deposition methods have been demonstrated for creating ZnO films and electron beam exposure of a precursor film, zinc naphthenate, has been shown to yield ZnO nanostructures. Here, we report on the fabrication of ZnO nanostructures with photon beam exposure of a precursor film in the extreme ultraviolet range followed by a high temperature anneal in air. Interference lithography at this wavelength (13.5 nm) led to the production of extremely smooth line/space and dot array type periodic nanostructures with sizes as small as 10 nm. ZnO films obtained through EUV exposure exhibit markedly improved PL spectra with a sharp emission line in the UV range and much suppressed green emission. Electron microscopy and x-ray diffraction measurements also show strong effects of the EUV exposure step in ZnO formation as a function of precursor film thickness, EUV exposure dose and anneal temperature. The use of energetic photons for direct formation of ZnO nanostructures is found to be a method that warrants more investigation for the fabrication of patterned ZnO films with controlled properties. PMID:20431188

  8. Photoexcited ZnO nanoparticles with controlled defects as a highly sensitive oxygen sensor

    NASA Astrophysics Data System (ADS)

    Goto, Taku; Shimizu, Yoshiki; Yasuda, Hidehiro; Ito, Tsuyohito

    2016-07-01

    Conductance of photoexcited ZnO nanoparticles with various defects has been investigated in oxygen. ZnO nanoparticles, which show strong photoluminescence peaks originating from interstitial zinc atom (Zni) and singly charged oxygen vacancy (VO+), show oxygen-pressure-dependent conductance changes caused by photoexcitation. Herein, a model is proposed to simulate the conductance changes.

  9. Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties.

    PubMed

    Zhou, Qu; Chen, Weigen; Xu, Lingna; Peng, Shudi

    2013-01-01

    Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. Gas sensors based on the as-prepared ZnO nanostructures were fabricated by screen-printing on a flat ceramic substrate. Furthermore, their gas sensing characteristics towards methane were systematically investigated. Methane is an important characteristic hydrocarbon contaminant found dissolved in power transformer oil as a result of faults. We find that the hierarchical flower-like ZnO nanorods and net-like ZnO nanofibers samples show higher gas response and lower operating temperature with rapid response-recovery time compared to those of sensors based on ZnO nanobulks. These results present a feasible way of exploring high performance sensing materials for on-site detection of characteristic fault gases dissolved in transformer oil. PMID:23666136

  10. [Optical Properties of ZnO Films Fabricated by Atomic Layer Deposition].

    PubMed

    Zhang, Chun-mei; Wang, Dong-dong; Fang, Ming; Zhang, Ao; Wang, Xiao-yu; Chen, Qiang; Meng, Tao

    2016-01-01

    The ZnO films were deposited by atomic layer deposition method using water and diethylzinc as precursors at different temperatures (110 and 190 degrees C). X-ray photoelectron spectroscopy, spectroscopic ellipsometry and photoluminescence spectra (PL) were used to investigate the elemental composition and optical properties of ZnO films. Our results showed that with the increasing of the growth temperature, the amount of -OH groups in the ZnO film decreased, which indicated that the reactions went to completion at high processing temperatures. The PL spectra of the ZnO film deposited at 110 degrees C exhibited two emission bands, one in the UV region and the other in the visible region. When the deposition temperature increased to 190 degrees C, the emission bands in the visible region disappeared, which indicated that the deep level defect in ZnO became less. The carrier mobility improved from 25 to 32 cm2 x (V x S)(-1) with the reduction of the defects in the ZnO film. The refractive index of the ZnO films decreased from 2.33 to 1.9 in the 375-800 nm region. The optical absorption edge (E(g)) values of the ZnO films deposited at different temperature were about 3.27 eV. PMID:27228734

  11. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    DOE PAGESBeta

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; Joo, Taiha; Wang, Zhehui

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures havemore » been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.« less

  12. Tribological characteristics of ZnO nanowires investigated by atomic force microscope

    NASA Astrophysics Data System (ADS)

    Chung, Koo-Hyun; Kim, Hyun-Joon; Lin, Li-Yu; Kim, Dae-Eun

    2008-08-01

    Zinc oxide (ZnO) nanowires have attracted great interest in nanodevices. In this work, the tribological characteristics of vertically grown ZnO nanowires obtained by metalorganic chemical vapor deposition were investigated by using an atomic force microscope (AFM). The ZnO nanowires were slid against flattened silicon and diamond-coated AFM probes under 50 150 nN normal force while monitoring the frictional force. The wear of the ZnO nanowires was observed by a scanning electron microscope and quantified based on Archard’s wear law. Also, the wear debris accumulated on the silicon probe was analyzed by using a transmission electron microscope (TEM). The results showed that the wear of ZnO nanowires slid against the silicon probe was extremely small. However, when the ZnO nanowires were slid against the diamond-coated probe, the wear coefficients ranged from 0.006 to 0.162, which correspond to the range of severe wear at the macroscale. It was also shown that the friction coefficient decreased from 0.30 to 0.25 as the sliding cycles increased. From TEM observation, it was found that the ZnO wear debris was mainly amorphous in structure. Also, crystalline ZnO nanoparticles were observed among the wear debris.

  13. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    NASA Astrophysics Data System (ADS)

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-07-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles.

  14. Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Luo, L.; Huang, F. Y.; Dong, G. S.; Fan, H. H.; Li, K. F.; Cheah, K. W.; Chen, J.

    2014-11-01

    Single crystalline Eu3+/Tb3+-codoped ZnO nanocrystals have been synthesized by using a simple co-precipitation method. Successful doping is realized so that strong green and red luminescence can be efficiently excited by ultraviolet and near ultraviolet radiation, demonstrating an efficient energy transfer from ZnO host to rare earth ions. The energy transfer from the ZnO host to Tb3+ in ZnO: Tb3+ samples and ZnO host to Eu3+ in the ZnO: Eu3+ samples under UV excitation are investigated. It is found that the red 5D0 → 7F2 emission of Eu3+ ions decreases with increasing temperature but the green 5D4 → 7F5 emission of Tb3+ ions increases with increasing temperature, implying a different energy transfer processes in the two samples. Moreover, energy transfer from Tb3+ ions to Eu3+ ions in ZnO nanocrystals is also observed by analyzing luminescence spectra and the decay curves. By adjusting the doping concentration, the Eu3+/Tb3+-codoped ZnO phosphors emit green and red luminescence with chromaticity coordinates near white light region, high color purity and high intensity, indicating that they are promising light-conversion materials and have potential in field emission display devices and liquid crystal display backlights.

  15. Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation.

    PubMed

    Lin, Chin Jung; Liao, Shu-Jun; Kao, Li-Cheng; Liou, Sofia Ya Hsuan

    2015-06-30

    Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives. PMID:25748997

  16. Optical and electrical properties of p-type Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Sáaedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Khorsand Zak, A.; Huang, Nay Ming

    2013-09-01

    Undoped and Li-doped ZnO nanowires were grown on Si(1 1 1) substrates using a thermal evaporation method. Undoped and Li-doped ZnO nanoparticles, which were prepared using a sol-gel method, were used as material sources to grow the undoped and Li-doped ZnO nanowires, respectively. X-ray diffraction patterns clearly indicated hexagonal structures for all of the products. The nanowires were completely straight, with non-aligned arrays, and were tapered. Field emission Auger spectrometer indicated lithium element in the nanowires structures. Photoluminescence (PL) studies showed lower optical properties for the Li-doped ZnO nanowires compared to the undoped ZnO nanowires. Furthermore, the UV peak of the Li-doped ZnO nanowires was red-shifted compared to the undoped ZnO nanowires. Two probe method results proved that the Li-doped ZnO nanowires exhibited p-type properties.

  17. Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury

    NASA Astrophysics Data System (ADS)

    Lipovsky, Anat; Nitzan, Yeshayahu; Gedanken, Aharon; Lubart, Rachel

    2011-03-01

    Metal oxide nanoparticles have marked antibacterial activity. The toxic effect of these nanoparticles, such as those comprised of ZnO, has been found to occur due to an interaction of the nanoparticle surface with water, and to increase with a decrease in particle size. In the present study, we tested the ability of ZnO nanoparticles to affect the viability of the pathogenic yeast, Candida albicans (C. albicans). A concentration-dependent effect of ZnO on the viability of C. albicans was observed. The minimal fungicidal concentration of ZnO was found to be 0.1 mg ml - 1 ZnO; this concentration caused an inhibition of over 95% in the growth of C. albicans. ZnO nanoparticles also inhibited the growth of C. albicans when it was added at the logarithmic phase of growth. Addition of histidine (a quencher of hydroxyl radicals and singlet oxygen) caused reduction in the effect of ZnO on C. albicans depending on its concentration. An almost complete elimination of the antimycotic effect was achieved following addition of 5 mM of histidine. Exciting the ZnO by visible light increased the yeast cell death. The effects of histidine suggest the involvement of reactive oxygen species, including hydroxyl radicals and singlet oxygen, in cell death. In light of the above results it appears that metal oxide nanoparticles may provide a novel family of fungicidal compounds.

  18. Antifungal activity of ZnO nanoparticles--the role of ROS mediated cell injury.

    PubMed

    Lipovsky, Anat; Nitzan, Yeshayahu; Gedanken, Aharon; Lubart, Rachel

    2011-03-11

    Metal oxide nanoparticles have marked antibacterial activity. The toxic effect of these nanoparticles, such as those comprised of ZnO, has been found to occur due to an interaction of the nanoparticle surface with water, and to increase with a decrease in particle size. In the present study, we tested the ability of ZnO nanoparticles to affect the viability of the pathogenic yeast, Candida albicans (C. albicans). A concentration-dependent effect of ZnO on the viability of C. albicans was observed. The minimal fungicidal concentration of ZnO was found to be 0.1 mg ml(-1) ZnO; this concentration caused an inhibition of over 95% in the growth of C. albicans. ZnO nanoparticles also inhibited the growth of C. albicans when it was added at the logarithmic phase of growth. Addition of histidine (a quencher of hydroxyl radicals and singlet oxygen) caused reduction in the effect of ZnO on C. albicans depending on its concentration. An almost complete elimination of the antimycotic effect was achieved following addition of 5 mM of histidine. Exciting the ZnO by visible light increased the yeast cell death. The effects of histidine suggest the involvement of reactive oxygen species, including hydroxyl radicals and singlet oxygen, in cell death. In light of the above results it appears that metal oxide nanoparticles may provide a novel family of fungicidal compounds. PMID:21289395

  19. Optical characteristics of ZnO single crystal grown by the hydrothermal method

    SciTech Connect

    Chen, G. Z.; Yin, J. G. E-mail: yjg@siom.ac.cn; Zhang, L. H.; Zhang, P. X.; Wang, X. Y.; Liu, Y. C.; Zhang, C. L.; Gu, S. L.; Hang, Y.

    2015-12-15

    ZnO single crystals have been grown by the hydrothermal method. Raman scattering and Photoluminescence spectroscopy (PL) have been used to study samples of ZnO that were unannealed or annealed in different ambient gases. It is suggested that the green emission may originate from defects related to copper in our samples.

  20. Microwave assisted synthesis of ZnO nanoparticles for lighting and dye removal application

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Gohain, M.; Som, S.; Kumar, Vinod; Bezuindenhoudt, B. C. B.; Swart, Hendrik C.

    2016-01-01

    In this study, we report on the synthesis of ZnO nanoparticles (NPs) via the microwave-assisted technique. The as-synthesized ZnO nanoparticles were annealed at 500 °C for three hours. The ZnO NPs were characterized by X-ray diffraction (XRD) and scanning electron microscopic techniques. XRD results confirmed the formation of as-synthesized ZnO powder oriented along the (101) direction. The Kubelka-Munk function has been employed to determine the band gap of the ZnO powder. ZnO powder has been studied by photoluminescence (PL) before and after annealing to identify the emission of defects in the visible range. The intensity of the PL emission has decreased after annealing. The synthesized ZnO samples were also studied for methyl orange dye removal from waste water. It has been found that the as-synthesized ZnO shows better adsorption behaviour as compared to the annealed sample.

  1. Synthesis of ZnO nanowires and their applications as an ultraviolet photodetector.

    PubMed

    Lin, Chih-Cheng; Lin, Wang-Hua; Li, Yuan-Yao

    2009-05-01

    High purity ZnO nanowire arrays were synthesized uniformly on a 1.5 cm x 2 cm tin-doped indium oxide (ITO) glass substrate. The ZnO nanowire arrays were formed with a uniform diameter distribution of 30-50 nm and a length of about 5 microm, synthesized via thermal decomposition of zinc acetate at 300 degrees C in air. Analysis by X-ray diffraction and transmission electron microscopy showed that the ZnO nanowires are of single crystal structure with a preferred growth orientation of [001]. A study of the growth mechanism showed that it is a vapor-solid (VS) growth process. The synthesis of these nanowires begins with the processes of dehydration, vaporization, decomposition, and oxidation of the zinc acetate. Next, the ZnO clusters are deposited to form seeds that give rise to selective epitaxial growth of the ZnO nanowires. Optical analysis of ZnO nanowires was performed by UV-visible and fluorescence spectrophotometry, investigating both the photocurrent characteristics and UV photoresponse of the ZnO nanowire photodetectors. A study of optical properties showed that the as-produced ZnO nanowires have great potential as UV photodetectors/sensors. PMID:19452935

  2. Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates.

    PubMed

    Lu, Ming-Yen; Tseng, Yen-Ti; Chiu, Cheng-Yao

    2014-01-01

    In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s(-1) for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556

  3. Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles

    PubMed Central

    Bayroodi, Elnaz; Jalal, Razieh

    2016-01-01

    Background and Objectives: Bacterial resistance to conventional antibiotics has become a widespread public health problem. The aim of this study was to investigate the influence of zinc oxide nanoparticles (ZnO NPs) on the antibacterial activity of several conventional antibiotics against Pseudomonas aeruginosa. Materials and Methods: ZnO NPs were prepared by solvothermal method and dispersed in glycerol with the help of ammonium citrate as a dispersant. The antibacterial effects of the resulting ZnO nanofluid, ceftazidime, tobramycin, and ciprofloxacin were investigated against two P. aeruginosa strains, including one clinical isolate and P. aeruginosa ATCC 9027 using microdilution method. For the evaluation of the combined effect of ZnO nanofluid and antibiotics, the fractional inhibitory concentration indices were calculated and isobolograms were plotted. Results: Clinical strain in comparison to standard strain of P. aeruginosa showed more resistance to ZnO nanofluid and the antibiotics. ZnO nanofluid acted synergistically with ceftazidime and tobramycin against both strains. Combination of ZnO nanofluid and ciprofloxacin displayed synergistic and partial synergistic activity against clinical and standard strains of P. aeruginosa, respectively. Conclusion: The results suggest that bacterial resistance to antimicrobials could be reduced by the synergistic action of ZnO NPs. PMID:27307973

  4. Thermo-electrochemical selective growth of ZnO nanorods on any noble metal electrodes

    NASA Astrophysics Data System (ADS)

    You, Xueqiu; Park, Jungil; Choi, Jae-hoon; Pak, James Jungho

    2010-10-01

    Selective growth of ZnO nanorods has been successfully performed on the patterned Au/Ti metal electrode regions on a glass substrate by using a seeded thermo-electrochemical method in an acidic growth solution. The selective growth mechanism of the thermo-electrochemical method was proposed by using a series of chemical reactions for the first time. The thermo-electrochemical selective ZnO growth was performed on the cathode electrode at a temperature below 90 °C. A ZnO seed layer was precoated and selectively etched away from the non-metal regions in order to create the patterned selective nucleation sites on which the precursors are transferred and crystallized into ZnO nanorods. Both the dimensions and the placements of the ZnO nanorods have been simultaneously controlled. Energy dispersive X-ray spectrometry showed that the selectively grown ZnO nanorods consist of only Zn and O, indicating that the selectively grown ZnO nanorods are pure and contamination free. XRD and electron diffraction patterns revealed that the obtained ZnO nanorods have a wurtzite single-crystal structure.

  5. Visible WGM emissions from rare earth ion doped ZnO microspheres

    NASA Astrophysics Data System (ADS)

    K, Fabitha; Rao, M. S. Ramachandra

    ZnO is known to be an ideal candidate for short wavelength range opto-electronic device applications due to its wide and direct bandgap (3.37 eV) and high excitonic binding energy (60 meV). Apart from the UV emission at ~380 nm (free exciton emission) ZnO also possesses a broad emission band centered at ~530 nm which is expected to be originated from the oxygen vacancy (Vo) defects. In rare earth (RE) ion doped ZnO, emissions originate from the 4f levels of RE ions will be obtained in addition to the characteristic emissions of ZnO. Small micro/nanostructures made of ZnO with high crystalline quality show unique characteristics in light emission, especially in lasing applications. A micro/ nanostructured ZnO crystal generally has a wurtzite structure with a natural hexagonal cross section, which serves as a WGM lasing micro cavity owing to its high reflective index (~2). However, there exists a potential optical loss at corners of hexagons; therefore, an isotropic structure like spheres may be a better candidate to achieve efficient light confinement. In our work, highly smooth micro spheres with different diameters were grown. Raman spectroscopy measurements confirm the hexagonal wurtzite structure of ZnO, SEM and AFM studies shows the smooth surfaced spheres. WGM lasing characteristics of ZnO spheres have been investigated using optical pumping with 488 nm laser in a micro-PL system. Details of the results will be presented.

  6. Heavy Vehicle Propulsion Materials

    SciTech Connect

    Ray Johnson

    2000-01-31

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  7. Detecting heavy quarks

    SciTech Connect

    Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.

    1983-01-01

    In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)

  8. Utah Heavy Oil Program

    SciTech Connect

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  9. Heavy rain field measurements

    NASA Technical Reports Server (NTRS)

    Melson, ED

    1991-01-01

    A weight-measuring rain gauge was developed to collect rain data and configured to operate at a high sample rate (one sample pre second). Instead of averaging the rain rate in minutes, hours, and sometime days as normally performed, the rain data collected are examined in seconds. The results of six field sites are compiled. Rain rate levels, duration of downpours, and frequency of heavy rainfall events are presented.

  10. Effect of humic acid on photocatalytic activity of ZnO nanoparticles.

    PubMed

    Chandran, Preethy; Netha, Suhas; Sudheer Khan, S

    2014-09-01

    Zinc oxide nanoparticles (ZnO NPs) are widely used in consumer products including sunscreens, textiles and paints. The indiscriminate use of such materials may leads to its release into the environment. The present study evaluated the photocatalytic effect of ZnO NPs in presence of humic acid (HA), which is an important factor present largely in the environment. ZnO NPs were characterized by using UV-visible spectrophotometer, scanning electron microscopy, particle size analyzer and X-ray diffraction analysis. The mean diameter of the particles was found to be 55±2.1 nm. The XRD patterns exhibited hexagonal structure for ZnO NPs. The photocatalytic activity of ZnO NPs was evaluated based on the change in UV-visible absorption spectra of the methylene blue solution as a function of reaction time under visible light source. The rate of photocatalytic degradation of methylene blue was decreased with increase in HA concentration. PMID:24935416

  11. UV light sensing properties of Sm doped vertically aligned ZnO nanorod arrays

    SciTech Connect

    Kumar, D. Ranjith; Ranjith, K. S.; Rajendrakumar, R. T.

    2015-06-24

    Samarium doped ZnO nanorods were grown on silicon substrate by using vapor phase transport method (VPT) with the growth temperature of 950°C. The synthesized nanorods were characterized by XRD, field emission scanning electron microscopy, Raman spectra, and photocurrent measurements. The XRD result revealed that Sm was successfully doped into lattice plane of hexagonal ZnO nanorods. The FESEM result confirms the pure ZnO has nanorod like morphology with an average diameter and length of 130nm and 10µm respectively. The above observation is supported by the Micro-Raman spectroscopy result. The photocurrent in the visible region has been significantly enhanced due to deposition of Sm on the surface of the ZnO nanorods. Sm acts as a visible sensitizer because of its lower band gap compared to ZnO.

  12. Emission Properties from ZnO Quantum Dots Dispersed in SiO{sub 2} Matrix

    SciTech Connect

    Panigrahi, Shrabani; Basak, Durga

    2011-07-15

    Dispersion of ZnO quantum dots in SiO{sub 2} matrix has been achieved in two techniques based on StOeber method to form ZnO QDs-SiO{sub 2} nanocomposites. Sample A is formed with random dispersion by adding tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles and sample B is formed with a chain-like ordered dispersion by adding ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO{sub 2} composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications.

  13. Fabrication of tunable hydrophobic surface of ZnO nanorods with Cu doping

    SciTech Connect

    Chakraborty, Mohua; Thangavel, R.

    2015-08-28

    In this work, tunable wettability of the Zinc Oxide (ZnO) nanorod surface with Cu doping prepared by a hydrothermal method. These grown samples were characterized by XRD, FESEM, AFM and water contact angle measurements. The wettability of the ZnO nanorods surface area was controlled and tuned by different concentration of copper doping. It was found that the hydrophobic surface of doped ZnO Nanorods shows a maximum and minimum contact angle of about 156.60° and 136.36° was achieved with doping concentration of 10 and 20 M % respectively. Further, the surface properties such as surface energy and work of adhesion were calculated for undoped and Cu doped ZnO nanostructure surfaces. These nanosructures can be potentially applicable to enlarge time honoured application of ZnO based electronic devices.

  14. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  15. Investigation of thin ZnO layers in view of laser desorption-ionization

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Georgieva, V. B.; Alimpiev, S. S.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Dimova-Malinovska, D.; Angelov, O. I.

    2010-04-01

    Thin zinc oxide films (ZnO) were developed as a matrix-free platform for surface assisted laser desorption-ionization (SALDI) time-of-flight mass spectrometry. The ZnO films were deposited by RF magnetron sputtering of ZnO ceramic targets in Ar atmospheres on monocrystalline silicon. The generation under UV (355 nm) laser irradiation of positive ions of atenolol, reserpine and gramicidin S from the ZnO layers deposited was studied. All analytes tested were detected as protonated molecules with no or very structure-specific fragmentation. The mass spectra obtained showed low levels of chemical background noise. All ZnO films studied exhibited high stability and good reproducibility. The detection limits for test analytes are in the 10 femtomol range.

  16. Electrochemically grown ZnO nanorods for hybrid solar cell applications

    SciTech Connect

    Hames, Yakup; Alpaslan, Zuehal; Koesemen, Arif; San, Sait Eren; Yerli, Yusuf

    2010-03-15

    A hybrid solar cell is designed and proposed as a feasible and reasonable alternative, according to acquired efficiency with the employment of zinc oxide (ZnO) nanorods and ZnO thin films at the same time. Both of these ZnO structures were grown electrochemically and poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester; (P3HT:PCBM) was used as an active polymer blend, which was found to be compatible to prepared indium-tin-oxide (ITO) substrate base. This ITO base was introduced with mentioned ZnO structure in such a way that, the most efficient configuration was optimized to be ITO/ZnO film/ZnO nanorod/P3HT: PCBM/Ag. Efficiency of this optimized device is found to be 2.44%. All ZnO works were carried out electrochemically, that is indeed for the first time and at relatively lower temperatures. (author)

  17. Effect of Corrosion by Diluted HCL Solution on the Zno:. AL Texture

    NASA Astrophysics Data System (ADS)

    Shi, Mingji; Wang, Ping; Chen, Lanli

    2012-08-01

    High quality textured ZnO: Al electrode can improve the energy conversion efficiency of silicon based thin film solar cells. ZnO: Al films were deposited under 200W. Different textured surfaces were got when etching ZnO: Al films with diluted HCl solutions of 0.5% for different times. The transmission spectrum, square resistance and atomic force microscopy (AFM) images of the samples were measured. The dependence of corrosion time on the resistivity, transmittance and surface texture of the samples were studied. With the increasing of the corrosion time, the resistivity increased, the transmittance decreased, the root-mean-square roughness first increases, then decreases. High quality textured ZnO: Al electrode was obtained when etching the ZnO: Al film deposited under 200W of sputtering power with diluted HCl solution of 0.5%.

  18. Enhancing the numerical aperture of lenses using ZnO nanostructure-based turbid media

    NASA Astrophysics Data System (ADS)

    Khokhra, Richa; Kumar, Manoj; Rawat, Nitin; Bir Barman, Partha; Jang, Hwanchol; Kumar, Rajesh; Lee, Heung-No

    2013-12-01

    Nanosheets, nanoparticles, and microstructures of ZnO were synthesized via a wet chemical method. ZnO films with a thickness of 44-46 μm were fabricated by spray coating, and these have been investigated for their potential use in turbid lens applications. A morphology-dependent comparative study of the transmittance of ZnO turbid films was conducted. Furthermore, these ZnO turbid films were used to enhance the numerical aperture (NA) of a Nikon objective lens. The variation in NA with different morphologies was explained using size-dependent scattering by the fabricated films. A maximum NA of around 1.971 of the objective lens with a turbid film of ZnO nanosheets was achieved.

  19. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays.

    PubMed

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-09-01

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. PMID:20681617

  20. Solvothermal synthesis, photoluminescence and photocatalytic properties of pencil-like ZnO microrods

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2012-05-01

    Pencil-like ZnO microrods was synthesized via a simple solvothermal process in an aqueous solution of ethylenediamine and ethanolamine. The as-prepared ZnO was characterized by X-ray powder diffraction, field-emission scanning electron microscopy, room temperature photoluminescence spectra and UV-vis absorption spectra. The results indicated that ZnO microrods had the length in the range of 1.3-25 μm. The photocatalytic activity was studied by degradation of methylene blue (MB) aqueous solution, which showed that the as-prepared ZnO microrods possessed a high photocatalytic activity. The formation mechanism of the pencil-like ZnO was also investigated based on the experimental results.

  1. Manipulation of exciton and photon lasing in a membrane-type ZnO microcavity

    SciTech Connect

    Lai, Ying-Yu; Chen, Jee-Wei; Chang, Tsu-Chi; Lu, Tien-Chang; Chou, Yu-Hsun

    2015-03-30

    We report on the fabrication and characterization of a membrane-type ZnO microcavity (MC). The ZnO membrane was cut from a single crystalline ZnO substrate by using focused ion beam milling, and was then placed onto a SiO{sub 2} substrate by using glass microtweezers. Through changing the pumping regime, manipulation of P-band exciton lasing and whispering-gallery mode (WGM) photon lasing could be easily achieved. P-band exciton lasing was observed only when the pumping laser was focused at the center of the ZnO MC with a small pumping size because of the innate ring-shaped WGM distribution. Furthermore, the lasing threshold of the ZnO MC could be reduced to an order lower by using a larger pumping spot because of the more favorable spatial overlap between the optical gain and WGM.

  2. Preparation and properties of ZnO nanostructures by electrochemical anodization method

    NASA Astrophysics Data System (ADS)

    He, Shuanghu; Zheng, Maojun; Yao, Lujun; Yuan, Xiaoliang; Li, Mei; Ma, Li; Shen, Wenzhong

    2010-02-01

    ZnO thin films with diverse nanostructures, including nanodot, nanowire and nanoflower, have been fabricated on zinc foils by a simple and rapid electrochemical anodization method. The ZnO thin films reveal very strong visible emission that is ascribed to the transition between V OZn i and valence band. Under the dc or ac electric field, the electroinduced surface wettability conversion from the superhydrophobic to hydrophilic state was observed and the generation of surface defective sites on ZnO films under electric field was used to explain the transition mechanism. This work provides a simple and rapid method for synthesizing different ZnO nanostructures in large scale, and electric field can be used to modulate the wettability of ZnO nanostructures.

  3. Fabrication and properties of ZnO nanorods within silicon nanostructures for solar cell application

    NASA Astrophysics Data System (ADS)

    Feng, Zezeng; Jia, Rui; Dou, Bingfei; Li, Haofeng; Jin, Zhi; Liu, Xinyu; Li, Feng; Zhang, Wei; Wu, Chenyang

    2015-02-01

    ZnO nanorods (NRs) were synthesized via a two-step hydrothermal method on silicon (Si) nano-textured solar cells. The optical and photovoltaic properties of silicon nanostructures coated with ZnO NRs were measured and discussed. It was found that silicon nanostructures combined with ZnO NRs can maximize the light absorption and significantly enhance the electrode contact and carrier transport ability. The series resistance was reduced from 0.98 Ω to 0.45 Ω, and short circuit current density was dramatically increased from 22.5 mA/cm2 to 27.9 mA/cm2 due to the incorporation of the ZnO NRs. The experimental results show the potential of ZnO NRs' application to the enhancement of the performance of nano-textured solar cells.

  4. Influence of substrates in ZnO devices on the surface plasmon enhanced light emission.

    PubMed

    Cheng, Peihong; Li, Dongsheng; Yang, Deren

    2008-06-01

    The substrates in emitting structure were found to have an influence on the surface plasmon mediated light emission of ZnO films. Ag film mediated photoluminescence was quenched for ZnO on silicon substrate but enhanced for ZnO on quartz or sapphire substrate. Through a theoretical simulation, the quenching for ZnO on silicon substrate is ascribed to the power lost to the substrate mode nonradiatively at the expense of the power coupled to the SP mode. The substrate with a high refractive index may capture and dissipate the emitting power which limits the efficiency of SP mediated light extraction. Therefore, a proper arrangement of the refractive index of the substrate and emitting layers in the device structure is decisive for the SP coupled light emission enhancement. Base on the theoretical analysis, a four-layered structure was advanced to recover SP mediated emission enhancement from ZnO film on silicon substrate. PMID:18545602

  5. Surface Morphological and Nanomechanical Properties of PLD-Derived ZnO Thin Films

    PubMed Central

    2008-01-01

    This study reports the surface roughness and nanomechanical characteristics of ZnO thin films deposited on the various substrates, obtained by means of atomic force microscopy (AFM), nanoindentation and nanoscratch techniques. ZnO thin films are deposited on (a- and c-axis) sapphires and (0001) 6H-SiC substrates by using the pulsed-laser depositions (PLD) system. Continuous stiffness measurements (CSM) technique is used in the nanoindentation tests to determine the hardness and Young’s modulus of ZnO thin films. The importance of the ratio (H/Efilm) of elastic to plastic deformation during nanoindentation of ZnO thin films on their behaviors in contact-induced damage during fabrication of ZnO-based devices is considered. In addition, the friction coefficient of ZnO thin films is also presented here.

  6. Synthesis and characterization of flowerlike ZnO nanostructures via an ethylenediamine-meditated solution route

    SciTech Connect

    Gao Xiangdong . E-mail: xdgao@mail.sic.ac.cn; Li Xiaomin; Yu Weidong

    2005-04-15

    Flowerlike ZnO nanostructures were deposited on Si substrate by choosing hexamethylenetetramine as the nucleation control reagent and ethylenediamine as the chelating and capping reagent. Structural and optical measurements reveal that obtained ZnO exhibits well-defined flowerlike morphology, hexagonal wurtzite structure, uniform distribution on substrate, and strong photoluminescence in ultraviolet band. The well-arrayed pedals of each ZnO flower possess the typical tapering feature, and are built up by many well-aligned ZnO nanorods. Moreover, each single nanorod building up the pedal exhibits the single crystal nature and the growth direction along c-axis. Effects of the precursor composition on the morphology of ZnO were discussed.

  7. Electric Characteristics of the Carbon Nanotube Network Transistor with Directly Grown ZnO Nanoparticles.

    PubMed

    Kim, Un Jeong; Bae, Gi Yoon; Suh, Dong Ik; Park, Wanjun

    2016-03-01

    We report on the electrical characteristics of field effect transistors fabricated with random networks of single-walled carbon nanotubes with surfaces modified by ZnO nanoparticles. ZnO nanoparticles are directly grown on single-walled carbon nanotubes by atomic layer deposition using diethylzinc (DEZ) and water. Electrical observations show that ZnO nanoparticles act as charge transfer sources that provide electrons to the nanotube channel. The valley position in ambipolar transport of nanotube transistors is negatively shifted for 3V due to the electronic n-typed property of ZnO nanoparticles. However, the Raman resonance remains invariant despite the charge transfer effect produced by ZnO nanoparticles. PMID:27455727

  8. Nano ZnO structures synthesized in presence of anionic and cationic surfactant under hydrothermal process

    NASA Astrophysics Data System (ADS)

    Thilagavathi, T.; Geetha, D.

    2012-12-01

    Uniform ZnO nano structures are synthesized in the presence of anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) and cationic surfactant, cetyl tri methyl ammonium bromide (CTAB) at 100 °C using NaOH as the reactant. The particle size, morphology and structure of the nano ZnO particles are collected by X-ray diffraction, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectra. Rod and cone shaped ZnO nano structure is observed. It may vary in morphology from pure ZnO structure due to the presence of surfactants. The results show that there is an extrinsic relation between the morphology of the samples. Based on the relation, we proposed that there might be two kinds of interactions between SDBS and CTAB with ZnO particles, i.e., inter- and intra-interactions.

  9. Fabrication of ZnO photonic amorphous diamond nanostructure from parrot feathers for modulated photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengli; Yu, Ke; Liao, Na; Yin, Haihong; Lou, Lei; Yu, Qian; Liao, Yuanyuan; Zhu, Ziqiang

    2011-12-01

    A ZnO photonic amorphous diamond nanostructure was successfully synthesised using a feather barb of the Rosy-Faced Lovebird as supporting template via a facile sol-gel process. Different from ordered structures, an isotropic PBG around 500 nm was evidenced from reflectance spectra and an optical metallurgical microscopy image, which overlaps with the visible emission peak of ZnO. As a result, the inhibition of visible emission inside the PBG and the enhancement of UV emission at the PBG edges have both been observed, which is independent from the incident angle. Moreover, the rapid thermal annealing can also help improve the crystallinity of ZnO and raise the UV/visible emission ratio without affecting the structure. These results can be very useful for the study of the modification of the optical emission properties of ZnO and other semiconductor materials as well as research on ZnO random lasing.

  10. Luminescence properties of ZnO layers grown on Si-on-insulator substrates

    SciTech Connect

    Kumar, Bhupendra; Gong, Hao; Vicknesh, S.; Chua, S. J.; Tripathy, S.

    2006-10-02

    The authors report on the photoluminescence properties of polycrystalline ZnO thin films grown on compliant silicon-on-insulator (SOI) substrates by radio frequency magnetron sputtering. The ZnO thin films on SOI were characterized by micro-Raman and photoluminescence (PL) spectroscopy. The observation of E{sub 2}{sup high} optical phonon mode near 438 cm{sup -1} in the Raman spectra of the ZnO samples represents the wurtzite crystal structure. Apart from the near-band-edge free exciton (FX) transition around 3.35 eV at 77 K, the PL spectra of such ZnO films also showed a strong defect-induced violet emission peak in the range of 3.05-3.09 eV. Realization of such ZnO layers on SOI would be useful for heterointegration with SOI-based microelectronics and microelectromechanical systems.

  11. Data on the growth of ZnO nanorods on Nylon 6 and photocatalytic activity.

    PubMed

    Ummartyotin, S; Tangnorawich, B

    2016-09-01

    ZnO was successfully synthesized by a conventional synthetic route using zinc nitrate as a source for ZnO formation. X-ray diffraction and thermogravimetric analysis revealed a crystal size of 66 nm of ZnO and a thermal stability of 500 °C. A small amount of ZnO particles was employed as the source for ZnO-rod growth on nylon 6 surfaces. Scanning electron microscope images were taken to evaluate the morphological properties of ZnO, which presented as a hexagonal needle-like shape. Preliminary evaluation of photocatalytic activity was performed through measurement of the degradation of methylene blue solution over 4 h. PMID:27437437

  12. Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications.

    PubMed

    Madhumitha, Gunabalan; Elango, Ganesh; Roopan, Selvaraj Mohana

    2016-01-01

    The physicochemical methods of the synthesis of zinc nanoparticles (ZnO NPs) and some detailed studies on ZnO toxicity mechanism and biokinetics have been reported. However, some of these physical and chemical methods of synthesis are expensive and can also have toxic substances absorbed onto them. Hence, eco-friendly synthesis of nanoparticles due to their easier process, cheaper availability, and high stability is dominating new research. In particular, ZnO NPs which are now being synthesized through major biological systems involved in this are bacteria, fungi, and plant extracts; this has increased studies in various applications in the biological field. In this review, we have elaborated on various natural source-mediated syntheses of ZnO NPs and their role in various biological activities like antimicrobial, anticandidal, larvicidal, cytotoxic, and photocatalytic activities. Apart from these applications, ZnO NPs are also reported to help to prevent dust formation, for several years, on oil paintings. PMID:26541334

  13. Buffer-enhanced room-temperature growth and characterization of epitaxial ZnO thin films

    SciTech Connect

    Sasaki, Atsushi; Hara, Wakana; Matsuda, Akifumi; Tateda, Norihiro; Otaka, Sei; Akiba, Shusaku; Saito, Keisuke; Yodo, Tokuo; Yoshimoto, Mamoru

    2005-06-06

    The room-temperature epitaxial growth of ZnO thin films on NiO buffered sapphire (0001) substrate was achieved by using the laser molecular-beam-epitaxy method. The obtained ZnO films had the ultrasmooth surface reflecting the nanostepped structure of the sapphire substrate. The crystal structure at the surface was investigated in situ by means of coaxial impact-collision ion scattering spectroscopy. It was proved that the buffer-enhanced epitaxial ZnO thin films grown at room temperature had +c polarity, while the polarity of high-temperature grown ZnO thin films on the sapphire was -c. Photoluminescence spectra at room temperature were measured for the epitaxial ZnO films, showing only the strong ultraviolet emission near 380 nm.

  14. Photoinduced p-Type Conductivity in n-Type ZnO

    NASA Astrophysics Data System (ADS)

    Zhao, W. X.; Sun, B.; Shen, Z.; Liu, Y. H.; Chen, P.

    2015-03-01

    Ag/[BaTiO3/γ-Fe2O3]/ZnO composite films were grown on an n-type silicon (100) single-crystal substrate by magnetron sputtering, and annealed at various temperatures. Capacitance-voltage ( C- V) curves show that the capacitance gradually increases with increasing annealed temperature. In addition, ZnO exhibits n-type conductivity in the dark but p-type conductivity under incandescent lamp illumination. The photoinduced p-type conductivity in n-type ZnO should be related to a special n-type ZnO layer originating from high-temperature annealing. The current-voltage ( I- V) curves of the [BaTiO3/γ-Fe2O3]/ZnO thin films display a strong photoconductivity effect.

  15. Epitaxial growth of ZnO nanowall networks on GaN/sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Park, Hyun-Kyu; Yi, Min-Su; Park, Nae-Man; Park, Jong-Hyurk; Kim, Sang-Hyeob; Maeng, Sung-Lyul; Choi, Chel-Jong; Moon, Seung-Eon

    2007-01-01

    Heteroepitaxy of vertically well-aligned ZnO nanowall networks with a honeycomblike pattern on GaN /c-Al2O3 substrates by the help of a Au catalyst was realized. The ZnO nanowall networks with wall thicknesses of 80-140nm and an average height of about 2μm were grown on a self-formed ZnO thin film during the growth on the GaN /c-Al2O3 substrates. It was found that both single-crystalline ZnO nanowalls and catalytic Au have an epitaxial relation to the GaN thin film in synchrotron x-ray scattering experiments. Hydrogen-sensing properties of the ZnO nanowall networks have also been investigated.

  16. Photochemical performance of ZnO nanostructures in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Das, Partha Pratim; Mukhopadhyay, Soumita; Agarkar, Shruti A.; Jana, Arpita; Devi, P. Sujatha

    2015-10-01

    In this work, the photoconversion efficiencies of ZnO having diverse microstructures and structural defects have been investigated. A conversion efficiency of 1.38% was achieved for the DSSCs fabricated with as prepared ZnO nanorods having minimum vacancy defects and a favourable one dimensional directional pathway for electron conduction. The DSSCs fabricated with ZnO nanoparticles exhibited relatively low conversion efficiency of 1.004% probably due to multiple trapping/detrapping phenomena within the grain boundaries and ZnO flowers though exhibited a high dye adsorption capability exhibited the lowest conversion efficiency of 0.59% due to a high concentration of structural defects. Based on the experimental evidences, we believe that the type of defects and their concentrations are more important than shape in controlling the overall performance of ZnO based DSSCs.

  17. Zn(O, S) layers for chalcoyprite solar cells sputtered from a single target

    NASA Astrophysics Data System (ADS)

    Grimm, A.; Kieven, D.; Lauermann, I.; Lux-Steiner, M. Ch.; Hergert, F.; Schwieger, R.; Klenk, R.

    2012-09-01

    A simplified Cu(In, Ga)(S, Se)2/Zn(O, S)/ZnO:Al stack for chalcopyrite thin-film solar cells is proposed. In this stack the Zn(O, S) layer combines the roles of the traditional CdS buffer and undoped ZnO layers. It will be shown that Zn(O, S) films can be sputtered in argon atmosphere from a single mixed target without substrate heating. The photovoltaic performance of the simplified stack matches that of the conventional approach. Replacing the ZnO target with a ZnO/ZnS target may therefore be sufficient to omit the CdS buffer layer and avoid the associated complexity, safety and recycling issues, and to lower production cost.

  18. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    SciTech Connect

    Pathak, Trilok Kumar Kumar, R.; Purohit, L. P.

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  19. Synthesis and photoluminescence properties of aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs

    SciTech Connect

    Su Yong; Meng Xia Chen Yiqing; Li Sen; Zhou Qingtao; Liang Xuemei; Feng Yi

    2008-07-01

    Aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs were synthesized on a silicon substrate by a simple thermal evaporation method. The structure and morphology of the as-synthesized nanostructure were characterized using scanning electron microscopy and transmission electron microscopy. The growth of aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs follows a vapor-solid (VS) process. Photoluminescence properties were also investigated at room temperature. The photoluminescence spectrum reveals the nanostructures have a sharp ultraviolet luminescence peak centered at 382 nm and a broad green luminescence peak centered at about 494 nm.

  20. Synthesis, characterization and optical properties of sheet-like ZnO

    SciTech Connect

    Liu, Changzhen; Meng, Dawei; Wu, Xiuling; Wang, Yongqian; Yu, Xiaohong; Zhang, Zhengjie; Liu, Xiaoyang

    2011-09-15

    Highlights: {yields} Sheet-like ZnO with regular hexagon shape was synthesized with a two-step method. {yields} Sheet-like ZnO predecessor was synthesized at low temperature in open system. {yields} The diameter and thickness of ZnO sheet can be controlled conveniently. {yields} This low-cost and environmentally benign approach is controllable and reproducible. {yields} Sheet-like ZnO may have potential application in optical and electrical devices. -- Abstract: Sheet-like ZnO with regular hexagon shape and uniform diameter has been successfully synthesized through a two-step method without any metal catalyst. First, the sheet-like ZnO precursor was synthesized in a weak alkaline carbamide environment with stirring in a constant temperature water-bath by the homogeneous precipitation method, then sheet-like ZnO was obtained by calcining at 600 {sup o}C for 2 h. The structures and optical properties of sheet-like ZnO have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and UV-vis-NIR spectrophotometer. The results reveal that the product is highly crystalline with hexagonal wurtzite phase and has appearance of hexagon at (0 0 0 1) plane. The HRTEM images confirm that the individual sheet-like ZnO is single crystal. The PL spectrum exhibits a narrow ultraviolet emission at 397 nm and a broad visible emission centering at 502 nm. The band gap of sheet-like ZnO is about 3.15 eV.

  1. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    SciTech Connect

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.; Moura, Ana P. de; Freire, Poliana G.; Silva, Luis F. da; Longo, Elson; Munoz, Rodrigo A.A.; Lima, Renata C.

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  2. Facilitating ZnO nanostructure growths by making seeds for self-catalytic reactions

    SciTech Connect

    Yin Liang; Yu, Choongho

    2012-03-15

    Long and straight single-crystalline ZnO nanowires were successfully synthesized on ZnCl{sub 2}-coated Zn foils in oxygen environment by using simple thermal annealing processes. With relatively low reaction temperatures (410 and 700 Degree-Sign C), nanowires whose lengths and diameters are up to {approx}50 {mu}m and 10-100 nm were obtained. We found that ZnO seeds created from ZnCl{sub 2} played an important role in facilitating the ZnO nanowire growth via self-catalytic reactions. Systematic studies by altering critical synthesis factors that determine shape, length, diameter, and density of the nanowires were performed in order to unveil the growth mechanisms. We also compared the nanowires synthesized from Zn foils with tetrapod ZnO nanostructures synthesized from Zn powders at various temperatures. - Graphical abstract: (Left panel) ZnO seeds from ZnCl{sub 2} after thermal annealing at 500 Degree-Sign C for 5 min, (right panel) dense ZnO nanowires grown from Zn foils with ZnCl{sub 2} coating after thermal annealing at 700 Degree-Sign C for 60 min. Highlights: Black-Right-Pointing-Pointer ZnCl{sub 2} facilitated ZnO nanowire growth by creating ZnO seeds. Black-Right-Pointing-Pointer ZnO nanowires were synthesized via self-catalytic reactions. Black-Right-Pointing-Pointer Long and straight single-crystalline ZnO nanowires were synthesized. Black-Right-Pointing-Pointer Key parameters in thermal annealing processes were identified.

  3. Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods: Microwave-assisted synthesis

    SciTech Connect

    Limaye, Mukta V.; Singh, Shashi B.; Das, Raja; Poddar, Pankaj; Kulkarni, Sulabha K.

    2011-02-15

    One-dimensional (1D) undoped and Fe doped ZnO nanorods of average length {approx}1 {mu}m and diameter {approx}50 nm have been obtained using a microwave-assisted synthesis. The magnetization (M) and coercivity (H{sub c}) value obtained for undoped ZnO nanorods at room temperature is {approx}5x10{sup -3} emu/g and {approx}150 Oe, respectively. The Fe doped ZnO samples show significant changes in M -H loop with increasing doping concentration. Both undoped and Fe doped ZnO nanorods exhibit a Curie transition temperature (T{sub c}) above 390 K. Electron spin resonance and Moessbauer spectra indicate the presence of ferric ions. The origin of ferromagnetism in undoped ZnO nanorods is attributed to localized electron spin moments resulting from surface defects/vacancies, where as in Fe doped samples is explained by F center exchange mechanism. -- Graphical abstract: Room temperature ferromagnetism has been reported in undoped and Fe doped ZnO nanorods of average length {approx}1 {mu}m and diameter {approx}50 nm. Display Omitted Research Highlights: {yields} Microwave-assisted synthesis of undoped and Fe doped ZnO nanorods. {yields} Observation of room temperature ferromagnetism in undoped and Fe doped ZnO nanorods. {yields} Transition temperature (T{sub c}) obtained in undoped and doped samples is above 390 K. {yields} In undoped ZnO origin of ferromagnetism is explained in terms of defects/vacancies. {yields} Ferromagnetism in Fe doped ZnO is explained by F-center exchange mechanism.

  4. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  5. Residual and intentional n-type doping of ZnO thin films grown by metal-organic vapor phase epitaxy on sapphire and ZnO substrates

    NASA Astrophysics Data System (ADS)

    Brochen, Stéphane; Lafossas, Matthieu; Robin, Ivan-Christophe; Ferret, Pierre; Gemain, Frédérique; Pernot, Julien; Feuillet, Guy

    2014-03-01

    ZnO epilayers usually exhibit high n-type residual doping which is one of the reasons behind the difficulties to dope this material p-type. In this work, we aimed at determining the nature of the involved impurities and their potential role as dopant in ZnO thin films grown by metalorganic vapor phase epitaxy (MOVPE) on sapphire and ZnO substrates. In both cases, secondary ion mass spectroscopy (SIMS) measurements give evidence for a strong diffusion of impurities from the substrate to the epilayer, especially for silicon and aluminum. In the case of samples grown on sapphire substrates, aluminum follows Fick's diffusion law on a wide growth temperature range (800-1000°C). Thus, the saturation solubility and the diffusion coefficient of aluminum in ZnO single crystals have been determined. Furthermore, the comparison between SIMS impurity and effective dopant concentrations determined by capacitance-voltage measurements highlights, on one hand a substitutional mechanism for aluminum diffusion, and on the other hand that silicon acts as a donor in ZnO and not as an amphoteric impurity. In addition, photoluminescence spectra exhibit excitonic recombinations at the same energy for aluminum and silicon, indicating that silicon behaves as an hydrogenic donor in ZnO. Based on these experimental observations, ZnO thin films with a controlled n-type doping in the 1016-1019cm-3 range have been carried out. These results show that MOVPE growth is fully compatible with the achievement of highly Al-doped n-type thin films, but also with the growth of materials with low residual doping, which is a crucial parameter to address ZnO p-type doping issues.

  6. Synergistic effect of dual interfacial modifications with room-temperature-grown epitaxial ZnO and adsorbed indoline dye for ZnO nanorod array/P3HT hybrid solar cell.

    PubMed

    Chen, Dian-Wei; Wang, Ting-Chung; Liao, Wen-Pin; Wu, Jih-Jen

    2013-09-11

    ZnO nanorod (NR)/poly(3-hexylthiophene) (P3HT) hybrid solar cells with interfacial modifications are investigated in this work. The ZnO NR arrays are modified with room-temperature (RT)-grown epitaxial ZnO shells or/and D149 dye molecules prior to the P3HT infiltration. A synergistic effect of the dual modifications on the efficiency of the ZnO NR/P3HT solar cell is observed. The open-circuit voltage and fill factor are considerable improved through the RT-grown ZnO and D149 modifications in sequence on the ZnO NR array, which brings about a 2-fold enhancement of the efficiency of the ZnO NR/P3HT solar cell. We suggested that the more suitable surface of RT-grown ZnO for D149 adsorption, the chemical compatibility of D149 and P3HT, and the elevated conduction band edge of the RT-grown ZnO/D149-modified ZnO NR array construct the superior interfacial morphology and energetics in the RT-grown ZnO/D149-modified ZnO NR/P3HT hybrid solar cell, resulting in the synergistic effect on the cell efficiency. An efficiency of 1.16% is obtained in the RT-grown ZnO/D149-modified ZnO NR/P3HT solar cell. PMID:23937447

  7. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    SciTech Connect

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th.; Schoenhalz, A. L.; Dalpian, G. M.; Rocha, A. R.

    2014-05-28

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  8. Heavy Stars Thrive among Heavy Elements

    NASA Astrophysics Data System (ADS)

    2002-08-01

    VLT Observes Wolf-Rayet Stars in Virgo Cluster Galaxies [1] Summary Do very massive stars form in metal-rich regions of the Universe and in the nuclei of galaxies ? Or does "heavy element poisoning" stop stellar growth at an early stage, before young stars reach the "heavyweight class"? What may at the first glance appear as a question for specialists actually has profound implications for our understanding of the evolution of galaxies, those systems of billions of stars - the main building blocks of the Universe. With an enormous output of electromagnetic radiation and energetic elementary particles, massive stars exert a decisive influence on the surrounding (interstellar) gas and dust clouds . They also eject large amounts of processed elements, thereby participating in the gradual build-up of the many elements we see today. Thus the presence or absence of such stars at the centres of galaxies can significantly change the overall development of those regions and hence, presumably, that of the entire galaxy. A team of European astronomers [2] has now directly observed the presence of so-called Wolf-Rayet stars (born with masses of 60 - 90 times that of the Sun or more) within metal-rich regions in some galaxies in the Virgo cluster, some 50 million light-years away. This is the first unambiguous detection of such massive stellar objects in metal-rich regions . PR Photo 20a/02 : H II regions in the Virgo cluster galaxy NGC 4254 . PR Photo 20b/02 : Multi-object-slit observation of galaxy NGC 4303 . PR Photo 20c/02 : Spectrum of H II region in NGC 4254 with Wolf-Rayet signatures. Production of heavy elements in the Universe Most scientists agree that the Universe in which we live underwent a dramatic event, known as the Big Bang , approximately 15,000 million years ago. During the early moments, elementary particles were formed which after some time united into more complex nuclei and in turn resulted in the production of hydrogen and helium atoms and their isotopes

  9. Improved UV photoresponse properties of high-quality ZnO thin films through the use of a ZnO buffer layer on flexible polyimide substrates

    NASA Astrophysics Data System (ADS)

    Kim, Mincheol; Leem, Jae-Young; Son, Jeong-Sik

    2016-03-01

    An oxidized ZnO buffer layer was prepared by using thermal oxidation of a Zn buffer layer on a polyimide (PI) substrate; then, ZnO thin films with (sample 1) and without (sample 2) an oxidized ZnO buffer layer were grown by using the sol-gel spin-coating method. The intensities of the ZnO (002) diffraction peaks observed in sample 1 were stronger than those observed in sample 2, implying that the crystal quality was enhanced by the oxidized ZnO buffer layer. Moreover, the residual stress of sample 1 was reduced compared to that of sample 2 due to the decreased number of defects. Sample 2 exhibited defect-related deep-level orange-yellow emissions, which almost disappeared with the introduction of the ZnO buffer layer (sample 1). The values of the responsivity were 0.733 (sample 1) and 0.066 (sample 2) mA/W; therefore, the proposed method could provide a pathway to the easy fabrication of fast-response UV sensors.

  10. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer

    PubMed Central

    2012-01-01

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it. PMID:22222067

  11. Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, Xue-Yong; Li, Hong-Jian; Wang, Zhi-Jun; Xia, Hui; Xiong, Zhi-Yong; Wang, Jun-Xi; Yang, Bing-Chu

    2009-01-01

    ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al 2O 3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap ( Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.

  12. Defect induced ferromagnetism in undoped ZnO nanoparticles

    SciTech Connect

    Rainey, K.; Chess, J.; Eixenberger, J.; Tenne, D. A.; Hanna, C. B.; Punnoose, A.

    2014-05-07

    Undoped ZnO nanoparticles (NPs) with size ∼12 nm were produced using forced hydrolysis methods using diethylene glycol (DEG) [called ZnO-I] or denatured ethanol [called ZnO-II] as the reaction solvent; both using Zn acetate dehydrate as precursor. Both samples showed weak ferromagnetic behavior at 300 K with saturation magnetization M{sub s} = 0.077 ± 0.002 memu/g and 0.088 ± 0.013 memu/g for ZnO-I and ZnO-II samples, respectively. Fourier transform infrared (FTIR) spectra showed that ZnO-I nanocrystals had DEG fragments linked to their surface. Photoluminescence (PL) data showed a broad emission near 500 nm for ZnO-II which is absent in the ZnO-I samples, presumably due to the blocking of surface traps by the capping molecules. Intentional oxygen vacancies created in the ZnO-I NPs by annealing at 450 °C in flowing Ar gas gradually increased M{sub s} up to 90 min and x-ray photoelectron spectra (XPS) suggested that oxygen vacancies may have a key role in the observed changes in M{sub s}. Finally, PL spectra of ZnO showed the appearance of a blue/violet emission, attributed to Zn interstitials, whose intensity changes with annealing time, similar to the trend seen for M{sub s}. The observed variation in the magnetization of ZnO NP with increasing Ar annealing time seems to depend on the changes in the number of Zn interstitials and oxygen vacancies.

  13. The Hg isoelectronic defect in ZnO

    NASA Astrophysics Data System (ADS)

    Cullen, J.; Johnston, K.; Dunker, D.; McGlynn, E.; Yakovlev, D. R.; Bayer, M.; Henry, M. O.

    2013-11-01

    We report a study of the luminescence due to Hg in ZnO, concentrating on the main zero phonon line (ZPL) at 3.2766(1) eV and its associated phonon sidebands. For a sample implanted with radioactive 192Hg, the ZPL intensity, normalised to that of shallow bound exciton emission, is observed to decrease with an equivalent half-life of 4.5(1) h, very close to the 4.85(20) h half-life of 192Hg. ZnO implanted with stable Hg impurities produces the same luminescence spectrum. Temperature dependent measurements confirm that the zero phonon line is a thermalizing doublet involving one allowed and one largely forbidden transition from excited states separated by 0.91(1) meV to a common ground state. Uniaxial stress measurements show that the allowed transition takes place from an orbitally degenerate excited state to a non-degenerate ground state in a centre of trigonal (C3v) symmetry while the magneto-optical properties are characteristic of electron-hole pair recombination at an isoelectronic defect. The doublet luminescence is assigned to bound exciton recombination involving exchange-split Γ5 and Γ1,2 excited states (using C6v symmetry labels; Γ3 and Γ1,2 using C3v labels) at isoelectronic Hg impurities substituting for Zn in the crystal. The electron and hole g values deduced from the magneto-optical data indicate that this Hg impurity centre in ZnO is hole-attractive.

  14. The Hg isoelectronic defect in ZnO

    SciTech Connect

    Cullen, J.; McGlynn, E. Henry, M. O.; Johnston, K.; Dunker, D.; Bayer, M.; Yakovlev, D. R.

    2013-11-21

    We report a study of the luminescence due to Hg in ZnO, concentrating on the main zero phonon line (ZPL) at 3.2766(1) eV and its associated phonon sidebands. For a sample implanted with radioactive {sup 192}Hg, the ZPL intensity, normalised to that of shallow bound exciton emission, is observed to decrease with an equivalent half-life of 4.5(1) h, very close to the 4.85(20) h half-life of {sup 192}Hg. ZnO implanted with stable Hg impurities produces the same luminescence spectrum. Temperature dependent measurements confirm that the zero phonon line is a thermalizing doublet involving one allowed and one largely forbidden transition from excited states separated by 0.91(1) meV to a common ground state. Uniaxial stress measurements show that the allowed transition takes place from an orbitally degenerate excited state to a non-degenerate ground state in a centre of trigonal (C{sub 3v}) symmetry while the magneto-optical properties are characteristic of electron-hole pair recombination at an isoelectronic defect. The doublet luminescence is assigned to bound exciton recombination involving exchange-split Γ{sub 5} and Γ{sub 1,2} excited states (using C{sub 6v} symmetry labels; Γ{sub 3} and Γ{sub 1,2} using C{sub 3v} labels) at isoelectronic Hg impurities substituting for Zn in the crystal. The electron and hole g values deduced from the magneto-optical data indicate that this Hg impurity centre in ZnO is hole-attractive.

  15. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    PubMed Central

    2012-01-01

    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices. PMID:22502639

  16. Electronic nose based on multipatterns of ZnO nanorods on a quartz resonator with remote electrodes.

    PubMed

    Ko, Wooree; Jung, Namchul; Lee, Moonchan; Yun, Minhyuk; Jeon, Sangmin

    2013-08-27

    An electrodeless monolithic multichannel quartz crystal microbalance (MQCM) sensor was developed via the direct growth of ZnO nanorod patterns of various sizes onto an electrodeless quartz crystal plate. The patterned ZnO nanorods acted as independent resonators with different frequencies upon exposure to an electric field. The added mass of ZnO nanostructures was found to significantly enhance the quality factor (QF) of the resonator in electrodeless QCM configuration. The QF increased with the length of the ZnO nanorods; ZnO nanorods 5 μm in length yielded a 7-fold higher QF compared to the QF of a quartz plate without ZnO nanorods. In addition, the ZnO nanorods offered enhanced sensitivity due to the enlarged sensing area. The developed sensor was used as an electronic nose for detection of vapor mixtures with impurities. PMID:23883314

  17. First-principles study on the physical properties of a layered ZnO with hexagonal α-BN structure

    NASA Astrophysics Data System (ADS)

    Su, Y. L.; Zhang, Q. Y.; Zhao, J. J.

    2016-05-01

    A layered ZnO with α-BN structure has been studied using first-principles calculations based on density functional theory. The physical properties of the layered ZnO are calculated in terms of dielectric function, infrared reflectance, elastic coefficients, modulus, hardness, and heat capacity. The layered ZnO exhibits a good infrared reflectance with a broad reststrahlen band covering the infrared band below 600 cm-1. The layered ZnO is predicted to be a material behaving in a brittle manner, with a microhardness ~3.6 times higher than that of the wurtzite ZnO. The temperature-dependent thermodynamic functions suggest that the layered ZnO has the thermal properties similar to those of wurtzite ZnO, but having a little higher Debye temperature above room temperature.

  18. Enhanced photocatalytic activity of ultra-high aspect ratio ZnO nanowires due to Cu induced defects

    NASA Astrophysics Data System (ADS)

    Pasupathi Sugavaneshwar, Ramu; Duy Dao, Thang; Nanda, Karuna Kar; Nagao, Tadaaki; Hishita, Shunichi; Sakaguchi, Isao

    2015-12-01

    We report the synthesis of ZnO nanowires in ambient air at 650°C by a single-step vapor transport method using two different sources Zn (ZnO nanowires-I) and Zn:Cu (ZnO nanowires-II). The Zn:Cu mixed source co-vaporize Zn with a small amount of Cu at temperatures where elemental Cu source does not vaporize. This method provides us a facile route for Cu doping into ZnO. The aspect ratio of the grown ZnO nanowires-II was found to be higher by more than five times compared ZnO nanowires-I. Photocatalytic activity was measured by using a solar simulator and its ultraviolet-filtered light. The ZnO nanowires-II shows higher catalytic activity due to increased aspect ratio and higher content of surface defects because of incorporation of Cu impurities.

  19. Unipolarity of ZnO with a wide-band gap and its solution using codoping method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya; Katayama-Yoshida, Hiroshi

    2000-06-01

    We have investigated the electronic structures of p- or n-type-doped ZnO based on ab initio electronic band structure calculations. We find unipolarity in ZnO; p-type doping using Li or N increases the Madelung energy while n-type doping using Al, Ga, In or F species decreases the Madelung energy. We find a very weak repulsive interaction between Li acceptors in Li-doped ZnO (ZnO : Li) with a remarkable increase in the Madelung energy, in contrast with the case of ZnO : N. For ZnO : (2Li, F), total energy calculations show that the formation of the complex with Li Zn-F O-Li Zn which occupy the nearest-neighbor sites is energetically favorable with a decrease in the Madelung energy, which produces low-resistivity p-type ZnO crystals.

  20. Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination

    NASA Astrophysics Data System (ADS)

    Yao, Ke Xin; Liu, Xin; Zhao, Lan; Zeng, Hua Chun; Han, Yu

    2011-10-01

    In this work, wurtzite ZnO nanocrystals with unique ``pyramid'' morphology were firstly prepared via solvothermal synthesis. It was determined that the ZnO nanopyramids are grown along the polar c-axis with the vertexes pointing to the [001] direction. When the mixture of ZnO nanopyramids and Au precursor (HAuCl4) was exposed to ultraviolet (UV) illumination, Au particles were site-specifically formed on the vertexes of ZnO nanopyramids. The obtained Au/ZnO nanocomposite showed significantly enhanced photocatalytic activity as compared to the bare ZnO nanopyramids. First-principles based calculations well explained the formation of ZnO nanopyramids as well as the site-specific growth of Au, and revealed that during the photocatalysis process the Au particles can accommodate photoelectrons and thus facilitate the charge separation.In this work, wurtzite ZnO nanocrystals with unique ``pyramid'' morphology were firstly prepared via solvothermal synthesis. It was determined that the ZnO nanopyramids are grown along the polar c-axis with the vertexes pointing to the [001] direction. When the mixture of ZnO nanopyramids and Au precursor (HAuCl4) was exposed to ultraviolet (UV) illumination, Au particles were site-specifically formed on the vertexes of ZnO nanopyramids. The obtained Au/ZnO nanocomposite showed significantly enhanced photocatalytic activity as compared to the bare ZnO nanopyramids. First-principles based calculations well explained the formation of ZnO nanopyramids as well as the site-specific growth of Au, and revealed that during the photocatalysis process the Au particles can accommodate photoelectrons and thus facilitate the charge separation. Electronic supplementary information (ESI) available: TEM images of Au/ZnO nanocomposites with Au nanoparticles in different sizes, density of states of Au55 and Au20 deposited on ZnO (001) surface, and the first-principles calculation details. See DOI: 10.1039/c1nr10685f

  1. Exciton recombination dynamics in single ZnO tetrapods

    SciTech Connect

    Fernandes-Silva, Lígia C.; Martín, Maria D.; Meulen, Herko P. van der; Calleja, José M.; Viña, Luis; Klopotowski, Lukasz

    2013-12-04

    We present the optical properties of individual ZnO tetrapods as a function of excitation power and temperature by time-integrated and time-resolved spectroscopy. At 10K, we identify the different excitonic transitions by both their characteristic energy and their excitation power dependence. When we increase the tetrapod temperature we observe that the emission intensity decrease and occur a red shift of the emission energies. Our time-resolved studies confirm the predominance of the radiative recombination at low temperatures (< 45 K). Increasing the temperature opens up the non-radiative channels, which are evidenced by a much faster decay time.

  2. Optical modulation of persistent photoconductivity in ZnO nanowires

    SciTech Connect

    Wang Yao; Liao Zhaoliang; Chen Dongmin; She Guangwei; Mu Lixuan; Shi Wensheng

    2011-05-16

    In this study, ZnO nanowires (ZNWs)-based optoelectric devices are found to exhibit strong persistent photoconductivity (PPC) effect. An optical modulation on the PPC effect of the ZNWs with 980 nm infrared (IR) laser has been investigated. It was found that the decay time for the PPC can be significantly shortened by IR irradiation. The modulation mechanism related with the oxygen vacancies and the subband gap excitation is proposed. Based on this mechanism, the modulation behavior of the IR can be well explained. The present optical modulation on the PPC is suggested to have potential applications in enhancing the performance of ZnO-based photodetectors.

  3. Piezospectroscopic study of substitutional Ni in ZnO

    SciTech Connect

    Lavrov, E. V.; Herklotz, F.; Kutin, Y. S.

    2014-02-21

    The effect of uniaxial stress on the electronic {sup 3}T{sub 1}(F)→{sup 3}T{sub 2}(F) transitions of Ni{sup 2+} in ZnO at 4216, 4240, and 4247 cm{sup −1} is investigated by means of Fourier transform IR absorption spectroscopy. A stress Hamiltonian is constructed which accounts for the behavior of these transitions under uniaxial stress. It is shown that the split pattern and polarization properties of these IR absorption lines are consistent with a dynamic Jahn-Teller effect in the {sup 3}T{sub 2}(F) state of Ni.

  4. Minority anion substitution by Ni in ZnO

    SciTech Connect

    Pereira, L. M. C.; Amorim, L. M.; Decoster, S.; Temst, K.; Vantomme, A.; Wahl, U.; Correia, J. G.; Silva, D. J.; Bosne, E.; Silva, M. R. da

    2013-08-26

    We report on the lattice location of implanted Ni in ZnO using the β{sup −} emission channeling technique. In addition to the majority substituting for the cation (Zn), a significant fraction of the Ni atoms occupy anion (O) sites. Since Ni is chemically more similar to Zn than it is to O, the observed O substitution is rather puzzling. We discuss these findings with respect to the general understanding of lattice location of dopants in compound semiconductors. In particular, we discuss potential implications on the magnetic behavior of transition metal doped dilute magnetic semiconductors.

  5. Incorporation of Cu Acceptors in ZnO Nanocrystals

    SciTech Connect

    Oo, W.M.H.; Mccluskey, Matthew D.; Huso, Jesse; Morrison, J.; Bergman, Leah; Engelhard, Mark H.; Saraf, Laxmikant V.

    2010-09-16

    Doping of semiconductor nanocrystals is an important problem in nanomaterials research. Using infrared (IR) and x-ray photoelectron spectroscopy (XPS), we have observed Cu acceptor dopants that were intentionally introduced into ZnO nanocrystals. The incorporation of Cu2+ dopants increased as the diameter of the nanocrystals was increased from ~3 to 5 nm. Etching the nanocrystals with acetic acid revealed a core-shell structure, where a 2-nm lightly doped core is surrounded by a heavily doped shell. These observations are consistent with the trapped dopant model, in which dopant atoms stick to the surface of the core and are overgrown by the nanocrystal material.

  6. Spatially resolved photoluminescence study of single ZnO tetrapods.

    PubMed

    Feng, L; Cheng, C; Lei, M; Wang, N; Loy, M M T

    2008-10-01

    ZnO tetrapods and nanowires were fabricated by a simple method of thermal evaporation of pure Zn powder in the air. These nanostructures, formed in different temperature regions of the same apparatus, displayed distinct photoluminescence (PL) characteristics. Spatially resolved PL measurements on legs of individual tetrapods show that the green luminescence (GL) decreases with decreasing leg diameter, and there was no detectable GL from nanowires grown simultaneously. These PL properties suggest that the green luminescence may not come from surface states, but rather from bulk defects. PMID:21832631

  7. Cu-Doping of ZnO by Nuclear Transmutation

    SciTech Connect

    Selim, F. A.; Tarun, M. C.; Wall, D. E.; Boatner, Lynn A; McCluskey, M. D.

    2011-01-01

    Zinc oxide single crystals were doped with copper acceptors by means of the nuclear transmutation doping (NTD) method, which gives highly uniform dopant distributions and has a much higher probability of controlling the dopant locations in the lattice. The Cu doping was confirmed by the infrared absorption signature of Cu2+ at 5780 cm-1. Hall-effect measurements were performed to study the effect of CuZn on the electrical properties of ZnO. These measurements indicated that the Cu acceptor level lies 0.126 eV below the conduction-band minimum.

  8. Sodium acceptor doping of ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Joni, I. Made; Lynn, Kelvin G.

    2016-02-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion using sodium dispensers. Secondary-ion mass spectrometry measurement shows the diffusion of sodium with concentration ˜1×1018 cm-3 in near surface region. Photoluminescence (PL) measurements show donor acceptor pair (DAP) emission at 408 nm at room temperature which exhibits a blue-shift to 404 nm at 9 K. DC Hall measurements show the mixed conduction due to low Hall voltage in these samples. PL measurements and variable temperature resistivity measurements suggest that the sodium acceptor activation energy is ˜0.300 eV.

  9. Nature of room-temperature photoluminescence in ZnO

    SciTech Connect

    Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Yuan, H.B.; Xin, H.P.; Cantwell, G.; Song, J.J.

    2004-11-11

    The temperature dependence of the photoluminescence (PL) transitions associated with various excitons and their phonon replicas in high-purity bulk ZnO has been studied at temperatures from 12 K to above room temperature (320 K). Several strong PL emission lines associated with LO phonon replicas of free and bound excitons are clearly observed. The room temperature PL spectrum is dominated by the phonon replicas of the free exciton transition with the maximum at the first LO phonon replica. The results explain the discrepancy between the transition energy of free exciton determined by reflection measurement and the peak position obtained by the PL measurement.

  10. Optical attenuation coefficient in individual ZnO nanowires.

    PubMed

    Little, Anree; Hoffman, Abigail; Haegel, Nancy M

    2013-03-11

    Attenuation coefficient measurements for the propagation of bandedge luminescence are made on individual ZnO nanowires by combining the localized excitation capability of a scanning electron microscope (SEM) with near-field scanning optical microscopy (NSOM) to record the distribution and intensity of wave-guided emission. Measurements were made for individual nanostructures with triangular cross-sections ranging in diameter from 680 to 2300 nm. The effective attenuation coefficient shows an inverse dependence on nanowire diameter (d(-1)), indicating scattering losses due to non-ideal waveguiding behavior. PMID:23482201

  11. Effect of implanted species on thermal evolution of ion-induced defects in ZnO

    SciTech Connect

    Azarov, A. Yu.; Rauwel, P.; Kuznetsov, A. Yu.; Svensson, B. G.; Hallén, A.; Du, X. L.

    2014-02-21

    Implanted atoms can affect the evolution of ion-induced defects in radiation hard materials exhibiting a high dynamic annealing and these processes are poorly understood. Here, we study the thermal evolution of structural defects in wurtzite ZnO samples implanted at room temperature with a wide range of ion species (from {sup 11}B to {sup 209}Bi) to ion doses up to 2 × 10{sup 16} cm{sup −2}. The structural disorder was characterized by a combination of Rutherford backscattering spectrometry, nuclear reaction analysis, and transmission electron microscopy, while secondary ion mass spectrometry was used to monitor the behavior of both the implanted elements and residual impurities, such as Li. The results show that the damage formation and its thermal evolution strongly depend on the ion species. In particular, for F implanted samples, a strong out-diffusion of the implanted ions results in an efficient crystal recovery already at 600 °C, while co-implantation with B (via BF{sub 2}) ions suppresses both the F out-diffusion and the lattice recovery at such low temperatures. The damage produced by heavy ions (such as Cd, Au, and Bi) exhibits a two-stage annealing behavior where efficient removal of point defects and small defect clusters occurs at temperatures ∼500 °C, while the second stage is characterized by a gradual and partial annealing of extended defects. These defects can persist even after treatment at 900 °C. In contrast, the defects produced by light and medium mass ions (O, B, and Zn) exhibit a more gradual annealing with increasing temperature without distinct stages. In addition, effects of the implanted species may lead to a nontrivial defect evolution during the annealing, with N, Ag, and Er as prime examples. In general, the obtained results are interpreted in terms of formation of different dopant-defect complexes and their thermal stability.

  12. Effect of implanted species on thermal evolution of ion-induced defects in ZnO

    NASA Astrophysics Data System (ADS)

    Azarov, A. Yu.; Hallén, A.; Du, X. L.; Rauwel, P.; Kuznetsov, A. Yu.; Svensson, B. G.

    2014-02-01

    Implanted atoms can affect the evolution of ion-induced defects in radiation hard materials exhibiting a high dynamic annealing and these processes are poorly understood. Here, we study the thermal evolution of structural defects in wurtzite ZnO samples implanted at room temperature with a wide range of ion species (from 11B to 209Bi) to ion doses up to 2 × 1016 cm-2. The structural disorder was characterized by a combination of Rutherford backscattering spectrometry, nuclear reaction analysis, and transmission electron microscopy, while secondary ion mass spectrometry was used to monitor the behavior of both the implanted elements and residual impurities, such as Li. The results show that the damage formation and its thermal evolution strongly depend on the ion species. In particular, for F implanted samples, a strong out-diffusion of the implanted ions results in an efficient crystal recovery already at 600 °C, while co-implantation with B (via BF2) ions suppresses both the F out-diffusion and the lattice recovery at such low temperatures. The damage produced by heavy ions (such as Cd, Au, and Bi) exhibits a two-stage annealing behavior where efficient removal of point defects and small defect clusters occurs at temperatures ˜500 °C, while the second stage is characterized by a gradual and partial annealing of extended defects. These defects can persist even after treatment at 900 °C. In contrast, the defects produced by light and medium mass ions (O, B, and Zn) exhibit a more gradual annealing with increasing temperature without distinct stages. In addition, effects of the implanted species may lead to a nontrivial defect evolution during the annealing, with N, Ag, and Er as prime examples. In general, the obtained results are interpreted in terms of formation of different dopant-defect complexes and their thermal stability.

  13. Heavy Truck Engine Program

    SciTech Connect

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  14. Surface chemistry and surface electronic properties of ZnO single crystals and nanorods

    SciTech Connect

    Uhlrich, J. J.; Olson, D. C.; Hsu, J. W. P.; Kuech, T. F.

    2009-03-15

    The surface chemistry of ZnO single crystals of (0001) and (1010) orientations and ZnO nanorods was studied using x-ray and ultraviolet photoelectron spectroscopies. Air drying and UV-ozone preparations were studied in particular as chemical treatments that could be applied to poly(3-hexylthiophene) (P3HT)-ZnO solar cells to enhance performance. The UV-ozone treatment showed negligible effect by photoelectron spectroscopy on the ZnO single crystal surfaces, but brought about electronic shifts consistent with increased upward band bending by {approx}0.25 eV on the ZnO nanorod surface. Modest interface dipoles of {approx}0.15 and {approx}0.25 eV were measured between P3HT and the (1010) and (0001) single crystal orientations, respectively, with the dipole moment pointing from ZnO to the P3HT layer. The sol-gel films showed evidence of forming a small interface dipole in the opposite direction, which illustrates the difference in surface chemistry between the solution-grown ZnO and the ZnO single crystals.

  15. Selective growth of hierarchical ZnO nanorod arrays on the graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Li, Lan; Li, Jinliang; Mo, Zhaojun

    2016-01-01

    We report directly selective-area grown (SAG) high-quality hierarchical ZnO nanorod arrays on the graphene nanosheets without invoking damage or introducing a catalyst. The SAG behavior in the non-catalytic growth mechanism is attributed to dangling bonds on the boundary edges of graphene nanosheets, which serve as the preferential adsorption and nucleation sites of ZnO nanorod. High densities of hierarchical ZnO nanorods show single-crystalline hexagonal wurtzite structure and are vertically well-aligned on the graphene nanosheets, with the diameter and the density strongly dependent on the growth temperature. Furthermore, no carbon impurity can be seen in the tips of the ZnO nanorods and also no carbon-related defect peak in the 10 K PL spectrum of ZnO nanorods. Our approach using a graphene-nanosheet substrate provides an efficient route for the growth of high-quality ZnO with a one-dimensional (1D) hierarchical nanostructure, which is highly desirable for fabricating 1D ZnO hybrid optoelectronic devices, particularly for a fast-response UV photodetector and highly-sensitive gas sensor.

  16. The Strategy to Control the Morphology of ZnO Nanostructure UV Sensor

    NASA Astrophysics Data System (ADS)

    Humayun, Q.; Hashim, U.; Ruzaidi, C. M.; Loong Foo, Kai

    2015-11-01

    The control morphology of ZnO nanostructures at specific area of electrodes by implemented a cost effective fabrication process, is extremely a challenging task. Rapid sensing, fast response and fast detection capability of the electronics devices is nowadays hot subject of keen interest. Our research is one of the successful attempts to achieve the desired goal at certain levels. Therefore in the current research article the ZnO thin film and ZnO nanorods were selectively deposited by low cost sol-gel and hydrothermal growth process at the selective area of microgap electrodes spacing and further the comparative study of ZnO thin film and ZnO nanorods were conducted electrically, for ultraviolet (UV) sensing application. On exposure to ultraviolet (UV) light the current gains, response/recovery times, repeatability, of the ZnO nanorods compared with ZnO thin film was improved probably due to the role of large surface area covered by the deposited nanostructures, and the most important is the bridging nanorods at the microgap electrodes tips. All the characterization including, surface, electrical and structural of the deposited nanostructures were completed by using SEM, sourcemeter and XRD respectively.

  17. Study of NiO cathode modified by ZnO additive for MCFC

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Li, Fei; Yu, Qing-chun; Chen, Gang; Zhao, Bin-yuan; Hu, Ke-ao

    The preparation and subsequent oxidation of nickel cathodes modified by impregnation with zinc oxide (ZnO) were evaluated by surface and bulk analysis. The electrochemical behaviors of ZnO impregnated NiO cathodes was also evaluated in a molten 62 mol% Li 2CO 3 + 38 mol% K 2CO 3 eutectic at 650 °C by electrochemical impedance spectroscopy (EIS) as a function of ZnO content and immersion time. The ZnO impregnated nickel cathodes showed the similar porosity, pore size distribution and morphology to the reference nickel cathode. The stability tests of ZnO impregnated NiO cathodes showed that the ZnO additive could dramatically reduce the solubility of NiO in a eutectic carbonate mixture under the standard cathode gas condition. The impedance spectra for cathode materials show important variations during the 100 h of immersion. The incorporation of lithium in its structure and the low dissolution of nickel oxide and zinc oxide are responsible of these changes. After that, the structure reaches a stable state. The cathode material having 2 mol% of ZnO showed a very low dissolution and a good catalytic efficiency close to the NiO value. We thought that 2 mol% ZnO/NiO materials would be able to adapt as alternative cathode materials for MCFCs.

  18. Thermoelectric properties of rocksalt ZnO from first-principles calculations

    SciTech Connect

    Alvarado, Andrew; Attapattu, Jeevake; Zhang, Yi; Chen, Changfeng

    2015-10-28

    Zinc oxide (ZnO) undergoes a pressure-induced structural transition from its normal ambient-pressure wurtzite (WZ) phase to a rocksalt (RS) phase around 10 GPa. A recent experiment shows that the high-pressure RS ZnO phase can be recovered and stabilized at ambient conditions, which raises exciting prospects of expanding the range of properties of ZnO. For a fundamental understanding of the RS ZnO phase, we have performed first-principles calculations to determine its electronic, phonon, and thermodynamic properties at high (20 GPa) and ambient (0 GPa) pressure. Furthermore, we have calculated its electrical and thermal transport properties, which allow an evaluation of its thermoelectric figure of merit ZT at different temperature and doping levels. Our calculations show that the ambient-pressure RS ZnO phase can reach ZT values of 0.25 to 0.3 under both n-type and p-type doping in a large temperature range of 400 K to 800 K, which is considerably lower than the temperature range of 1400 K to 1600 K where WZ ZnO reaches similar ZT values. These results establish RS ZnO as a promising material for thermoelectric devices designed to operate at temperatures desirable for many heat recovery applications.

  19. Synthesis and characterization of sodium doped ZnO nanocrystals and its application to photocatalysis

    NASA Astrophysics Data System (ADS)

    Elangovan, S. V.; Chandramohan, V.; Sivakumar, N.; Senthil, T. S.

    2015-09-01

    Pure and Na-doped ZnO photocatalysts (Na-ZnO) were synthesized by simple wet chemical method using zinc acetate dehydrate as starting material and samples were annealed at 350 °C. The results of characterization techniques like XRD, SEM, EDXA and UV reveals that the prepared samples were nanometer in size and Na ions successfully doped into the ZnO lattice without change its wurtzite structure. The effect of addition of different concentration of sodium dopant on structural property, optical property, surface morphology and photo-catalytic activity of ZnO nanocrystals were analyzed. By using methylene blue as a model dye the photo-catalytic decolourisation was studied and the results shows that the sodium doped ZnO proves higher photo-catalytic decolourisation than the pure ZnO. This increase is possible as a result of sodium doping in the crystal structure of ZnO. A possible mechanism of the photocatalytic decolourisation of methylene blue on the sodium doped ZnO is suggested.

  20. Photoconductivity and trap-related decay in porous TiO2/ZnO nanocomposites

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Li, Huayao; Liu, Yuan; Xie, Changsheng

    2011-12-01

    Photoconductivity and trap-related decay were investigated in porous TiO2/ZnO nanocomposites. Photoconductivity responses of TiO2 and ZnO were completely different, which were attributed to electron-scavenging effect and hole trapping effect, respectively. When the mole ratio of TiO2:ZnO was from 9:1 to 6:4, the photoconductivity responses were consistent with TiO2. On the contrary, when the mole ratio of TiO2:ZnO was from 4:6 to 1:9, the photoconductivity responses were controlled by ZnO. Time constants were obtained by fitting the experiment data with an exponential function. We found that they tended to get larger with the percentage of ZnO while a turning point appeared at TiO2:ZnO = 1:9. The pattern was assigned to different carrier trapping mechanisms as well as carrier separation. Composition effect was defined by a quantitative formula to evaluate the recombination processes of composite materials. A mechanism was proposed to explain this phenomenon.

  1. Atmospheric pressure microplasmas in ZnO nanoforests under high voltage stress

    NASA Astrophysics Data System (ADS)

    Noor, Nafisa; Manthina, Venkata; Cil, Kadir; Adnane, Lhacene; Agrios, Alexander G.; Gokirmak, Ali; Silva, Helena

    2015-09-01

    Atmospheric pressure ZnO microplasmas have been generated by high amplitude single pulses and DC voltages applied using micrometer-separated probes on ZnO nanoforests. The high voltage stress triggers plasma breakdown and breakdown in the surrounding air followed by sublimation of ZnO resulting in strong blue and white light emission with sharp spectral lines and non-linear current-voltage characteristics. The nanoforests are made of ZnO nanorods (NRs) grown on fluorine doped tin oxide (FTO) glass, poly-crystalline silicon and bulk p-type silicon substrates. The characteristics of the microplasmas depend strongly on the substrate and voltage parameters. Plasmas can be obtained with pulse durations as short as ˜1 μs for FTO glass substrate and ˜100 ms for the silicon substrates. Besides enabling plasma generation with shorter pulses, NRs on FTO glass substrate also lead to better tunability of the operating gas temperature. Hot and cold ZnO microplasmas have been observed with these NRs on FTO glass substrate. Sputtering of nanomaterials during plasma generation in the regions surrounding the test area has also been noticed and result in interesting ZnO nanostructures (`nano-flowers' and `nano-cauliflowers'). A practical way of generating atmospheric pressure ZnO microplasmas may lead to various lighting, biomedical and material processing applications.

  2. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    PubMed Central

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  3. Synthesis and field emission properties of different ZnO nanostructure arrays

    PubMed Central

    2012-01-01

    In this article, zinc oxide (ZnO) nanostructures of different shapes were fabricated on silicon substrate. Well-aligned and long ZnO nanowire (NW) arrays, as well as leaf-like ZnO nanostructures (which consist of modulated and single-phase structures), were fabricated by a chemical vapor deposition (CVD) method without the assistance of a catalyst. On the other hand, needle-like ZnO NW arrays were first fabricated with the CVD process followed by chemical etching of the NW arrays. The use of chemical etching provides a low-cost and convenient method of obtaining the needle-like arrays. In addition, the field emission properties of the different ZnO NW arrays were also investigated where some differences in the turn-on field and the field-enhancement factors were observed for the ZnO nanostructures of different lengths and shapes. It was experimentally observed that the leaf-like ZnO nanostructure is most suitable for field emission due to its lowest turn-on and threshold field as well as its high field-enhancement factor among the different synthesized nanostructures. PMID:22444723

  4. Formation of ST12 phase Ge nanoparticles in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Ceylan, Abdullah; Gumrukcu, Emre; Ozcan, Sadan

    2015-03-01

    In this work, we investigate the effects of reactive and nonreactive growth of ZnO on the rapid thermal annealing (RTA) induced formation of Ge nanoparticles (Ge-np) in ZnO: Ge nanocomposite thin films. The samples were deposited by sequential sputtering of ZnO and Ge thin film layers with a total thickness of about 600 nm on Si substrates followed by an ex-situ (RTA) at 600°C for 30, 60, 90, 120, 150, 180, and 210 s under forming gas atmosphere. In order for the reactive sputtering of ZnO layer, 5 mTorr Oxygen was introduced to the growth chamber. XRD and Raman analyses were utilized to investigate the effect of RTA time on the structural evolution of the samples. It has been realized that crystal structure of Ge nanoparticles is significantly affected by the growth method of the embedding ZnO layer. While reactive deposition of ZnO layers results in a mixture of diamond cubic (DC) and simple tetragonal (ST12) Ge-np, nonreactive deposition of ZnO layers leads to the formation of pure DC Ge-np upon RTA process. Formation of these two phases has been discussed based on the existence of native point defects such as oxygen vacancies and Zn interstitials.

  5. Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Lin; Xia, Xiao-Zhi; Li, Qing-Xia

    2015-06-01

    The development of solution strategies for Zinc oxide (ZnO) quantum dots provides a pathway to utilizing ZnO nanocrystal thin films in optoelectronic devices. In this work, quasi-spherical ZnO quantum dots with a diameter of 5 nm are synthesized by using ethanol as a solvent. ZnO nanocrystal thin film is obtained by spin-coating ZnO quantum dots on a Au interdigital electrode (IDE)/Al2O3 substrate and annealing at different temperatures in order to yield the optimal photosensitive on/off ratio of ZnO. For further enhancing the responsivity, ion sputtering is utilized to deposit Pt nanoparticles on the surface of ZnO nanocrystal thin film, the responsivity of the ZnO/Pt bilayer nanostructure increases from 0.07 A/W to 54 A/W, showing that the metal/inorganic nanocrystal bilayer nanostructure can be used to improve the performance of optoelectronic devices. The excellent properties of ZnO/Pt bilayer nanostructure have important applications in future electronic and optoelectronic devices. Project supported by the National Natural Science Foundation of China (Grant No. 41176156).

  6. Hexagonal ZnO nanorods assembled flowers for photocatalytic dye degradation: Growth, structural and optical properties

    NASA Astrophysics Data System (ADS)

    Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi B.

    2013-12-01

    A facile hydrothermal method was used to synthesize highly crystalline hexagonal ZnO nanorods assembled flowers by the reaction of zinc acetate and hexamethylenetetraamine (HMTA) at 105 °C. The morphological characterizations revealed that well defined ZnO nanorods were assembled into flowers morphology. X-rays diffraction patterns showed the highly crystalline nature of ZnO with hexagonal wurtzite structure. The structural and optical properties of hexagonal ZnO nanorods assembled flowers were measured by Fourier transform infra-red (FT-IR) and ultraviolet-visible (UV-Vis) measurements. The as-synthesized hexagonal ZnO nanorods assembled flowers were applied as an efficient photocatalyst for the photodegradation of organic dyes under UV-light irradiation. The methylene blue (MB) and rhodamine B (RhB) over the surface of hexagonal ZnO nanorods assembled flowers considerably degraded by ∼91% and ∼80% within 140 min respectively. The degradation rate constants were found to be kapp (0.01313 mint-1) and kapp(0.0104 mint-1) for MB and RhB dye respectively. The enhanced dye degradation might be attributed to the efficient charge separation and the large number of oxyradicals generation on the surface of the hexagonal ZnO nanorods assembled flowers.

  7. Morphological properties of Al-doped ZnO nano/microstructures

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Ho; Umakoshi, Tomoyuki; Abe, Yoshio; Kawamura, Midori; Kiba, Takayuki

    2016-03-01

    We discussed the morphological properties of Al-doped zinc oxide (Al-ZnO) microrods grown on a ZnO seed layer and precipitation particles and compared them with undoped ZnO samples. The ZnO nanorods grown on a ZnO seed layer were dense and perpendicular to the surface of the substrate, i.e., fluorine-doped tin oxide (FTO). In contrast the Al-ZnO grew as larger microrods, and the rods were sparsely and obliquely arranged. Precipitation particles synthesized in the ZnO solution through homogeneous nucleation had flower-like structures assembled from the rods and individual rods with lengths of several micrometers. Al-ZnO precipitation particles consisted of rods with length of several micrometers and hexagonal nanoplates. Fourier transform infrared (FTIR) analysis results showed that the rods and precipitation particles had the good chemical properties of ZnO. Both size and morphology of the rods could be effectively controlled by adding aluminum nitrate (Al(NO3)3) as dopant in the ZnO rod solution.

  8. Effects of interfacial layer structures on crystal structural properties of ZnO films

    SciTech Connect

    Park, J. S.; Minegishi, T.; Lee, S. H.; Im, I. H.; Park, S. H.; Hanada, T.; Goto, T.; Cho, M. W.; Yao, T.; Hong, S. K.; Chang, J. H.

    2008-01-15

    Single crystalline ZnO films were grown on Cr compound buffer layers on (0001) Al{sub 2}O{sub 3} substrates by plasma assisted molecular beam epitaxy. In terms of lattice misfit reduction between ZnO and substrate, the CrN and Cr{sub 2}O{sub 3}/CrN buffers are investigated. The structural and optical qualities of ZnO films suggest the feasibility of Cr compound buffers for high-quality ZnO films growth on (0001) Al{sub 2}O{sub 3} substrates. Moreover, the effects of interfacial structures on selective growth of different polar ZnO films are investigated. Zn-polar ZnO films are grown on the rocksalt CrN buffer and the formation of rhombohedral Cr{sub 2}O{sub 3} results in the growth of O-polar films. The possible mechanism of polarity conversion is proposed. By employing the simple patterning and regrowth procedures, a periodical polarity converted structure in lateral is fabricated. The periodical change of the polarity is clearly confirmed by the polarity sensitive piezo response microscope images and the opposite hysteretic characteristic of the piezo response curves, which are strict evidences for the validity of the polarity controlling method as well as the successful fabrication of the periodical polarity controlled ZnO structure.

  9. ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells.

    PubMed

    Condello, Maria; De Berardis, Barbara; Ammendolia, Maria Grazia; Barone, Flavia; Condello, Giancarlo; Degan, Paolo; Meschini, Stefania

    2016-09-01

    Zinc Oxide (ZnO) nanoparticles are widely used both in the industry and in biomedical applications for their chemical and physical nanomaterial properties. It is therefore essential to go in depth into the cytotoxicity mechanisms and interactions between nanomaterials and cells. The aim of this work was to evaluate the dissolution of ZnO nanoparticles and their uptake, from a few minutes after treatments up to 24h. ZnO nanoparticles routes of entry into the human colon carcinoma cells (LoVo) were followed at different times by a thorough ultrastructural investigation and semiquantitative analysis. The intracellular release of Zn(2+) ions by Zinquin fluorescent dye, and phosphorylated histone H2AX (γ-H2AX) expression were evaluated. The genotoxic potential of ZnO nanoparticles was also investigated by determining the levels of 8-hydroxyl-2'-deoxyguanosine (8-oxodG). The experimental data show that ZnO nanoparticles entered LoVo cells by either passive diffusion or endocytosis or both, depending on the agglomeration state of the nanomaterial. ZnO nanoparticles coming into contact with acid pH of lysosomes altered organelles structure, resulting in the release of Zn(2+) ions. The simultaneous presence of ZnO nanoparticles and Zn(2+) ions in the LoVo cells determined the formation of reactive oxygen species at the mitochondrial and nuclear level, inducing severe DNA damage. PMID:27317967

  10. ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability

    NASA Astrophysics Data System (ADS)

    Beaini, Sara S.; Kronawitter, Coleman X.; Carey, Van P.; Mao, Samuel S.

    2013-05-01

    It is not common practice to deposit thin films on metal substrates, especially copper, which is a common heat exchanger metal and practical engineering material known for its heat transfer properties. While single crystal substrates offer ideal surfaces with uniform structure for compatibility with oxide deposition, metallic surfaces needed for industrial applications exhibit non-idealities that complicate the fabrication of oxide nanostructure arrays. The following study explored different ZnO fabrication techniques to deposit a (super)hydrophobic thin film of ZnO on a metal substrate, specifically copper, in order to explore its feasibility as an enhanced condensing surface. ZnO was selected for its non-toxicity, ability to be made (super)hydrophobic with hierarchical roughness, and its photoinduced hydrophilicity characteristic, which could be utilized to pattern it to have both hydrophobic-hydrophilic regions. We investigated the variation of ZnO's morphology and wetting state, using SEMs and sessile drop contact angle measurements, as a function of different fabrication techniques: sputtering, pulsed laser deposition (PLD), electrodeposition and annealing Zn. We successfully fabricated (super)hydrophobic ZnO on a mirror finish, commercially available copper substrate using the scalable electrodeposition technique. PLD for ZnO deposition did not prove viable, as the ZnO samples on metal substrates were hydrophilic and the process does not lend itself to scalability. The annealed Zn sheets did not exhibit consistent wetting state results.

  11. Modified Combustion Synthesis and Characterization of ZnO Nanoparticles Using Various Dispersants

    NASA Astrophysics Data System (ADS)

    Razak, N. A. A.; >H Misran, N. N. H.; Salim, M. A.; Othman, S. Z.

    2013-06-01

    Zinc oxide (ZnO) nanoparticles with hexagonal wurtize structure were successfully synthesized via simple, cost-effective and environmental friendly modified combustion synthesis route. Three different type of dispersants namely glycerol, palm oil derived fatty alcohol (C8) and fatty ester (C12) were employed to produce the nanoparticles. X-ray diffraction patterns of calcined ZnO nanoparticles indicated the successful formation of ZnO. The crystallite sizes were at ca. 39.42 nm, 27.62 nm and 30.27 nm for ZnO produced using glycerol, fatty alcohol (C8) and fatty ester (C12). The morphology was of spindle-like shape for ZnO produced using glycerol and pseudo-spherical shape for ZnO produced using palm oil derived fatty alcohol (C8) and fatty ester (C12). Energy dispersive X-ray analyses showed the existence of zinc and oxygen peak suggesting successful formation of ZnO using various renewable dispersant.

  12. ZnO nanorod growth by plasma-enhanced vapor phase transport with different growth durations

    SciTech Connect

    Kim, Chang-Yong; Oh, Hee-bong; Ryu, Hyukhyun; Yun, Jondo; Lee, Won-Jae

    2014-09-01

    In this study, the structural properties of ZnO nanostructures grown by plasma-enhanced vapor phase transport (PEVPT) were investigated. Plasma-treated oxygen gas was used as the oxygen source for the ZnO growth. The structural properties of ZnO nanostructures grown for different durations were measured by scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The authors comprehensively analyzed the growth of the ZnO nanostructures with different growth durations both with and without the use of plasma-treated oxygen gas. It was found that PEVPT has a significant influence on the growth of the ZnO nanorods. PEVPT with plasma-treated oxygen gas facilitated the generation of nucleation sites, and the resulting ZnO nanorod structures were more vertical than those prepared by conventional VPT without plasma-treated oxygen gas. As a result, the ZnO nanostructures grown using PEVPT showed improved structural properties compared to those prepared by the conventional VPT method.

  13. Photoconductivity and photoluminescence of ZnO nanoparticles synthesized via co-precipitation method.

    PubMed

    Kripal, Ram; Gupta, Atul K; Srivastava, Rajneesh K; Mishra, Sheo K

    2011-09-01

    Photoconductivity and photoluminescence studies of ZnO nanoparticles (NPs) synthesized by co-precipitation method capped with thioglycerol are carried out. The effect of annealing at 300°C is also studied. The transmission electron micrograph (TEM) and X-ray diffraction (XRD) pattern confirm the hexagonal wurtzite structure of ZnO nanoparticles. The UV-vis absorption spectrum of ZnO NPs shows blue shift of absorption peak as compared to bulk ZnO. The photoluminescence (PL) spectra of as-synthesized ZnO NPs show band edge emission as well as blue-green emission. After annealing band edge emission is quenched. Photocurrent is found to vary super linearly at high voltage for both as-synthesized as well as annealed ZnO NPs. Time resolved rise and decay photocurrent spectra are found to exhibit anomalous photoconductivity for as-synthesized as well as annealed ZnO NPs wherein the photocurrent decreases even during steady illumination. PMID:21697003

  14. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  15. Enhancing blue luminescence from Ce-doped ZnO nanophosphor by Li doping

    PubMed Central

    2014-01-01

    Undoped ZnO, Ce-doped ZnO, and (Li, Ce)-codoped ZnO nanophosphors were prepared by a sol-gel process. The effects of the additional doping with Li ions on the crystal structure, particle morphology, and luminescence properties of Ce-doped ZnO were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and photoluminescence spectroscopy. The results indicate that the obtained samples are single phase, and a nanorod shaped morphology is observed for (Li, Ce)-codoping. Under excitation with 325 nm light, Ce-doped ZnO phosphors show an ultraviolet emission, a green emission, and a blue emission caused by Zn interstitials. The spectrum of the sample codoped with a proper Li concentration features two additional emissions that can be attributed to the Ce3+ ions. With the increase of the Li doping concentration, the Ce3+ blue luminescence of (Li, Ce)-codoped ZnO is obviously enhanced, which results not only from the increase of the Ce3+ ion concentration itself but also from the energy transfer from the ZnO host material to the Ce3+ ions. This enhancement reaches a maximum at a Li content of 0.02, and then decreases sharply due to the concentration quench. These nanophosphors may promise for application to the visible-light-emitting devices. PACS 78.55.Et; 81.07.Wx; 81.20.Fw PMID:25258604

  16. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    SciTech Connect

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng; Ma, Xiangyang; Yang, Deren

    2013-10-07

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, the photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.

  17. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films.

    PubMed

    Shahmohammadi Jebel, Fereshteh; Almasi, Hadi

    2016-09-20

    Bacterial cellulose (BC) monolayer and multilayer films, incorporating 5wt.% ZnO nanoparticles (NPs) have been obtained. Ultrasound (US) irradiation (40kHz) was applied during ZnO-BC nanocomposites preparation. X-ray diffraction (XRD) patterns showed that ZnO NPs were crystallized in their pure phase. SEM scanning electron microscopy (SEM) results indicated that US treatment causes to decrease ZnO particle size, forming a stable hybrid nanostructure and evenly distributed ZnO NPs coated BC nanofibers. ZnO NPs enhanced the mechanical properties and diminished water vapor permeability and moisture absorption of BC films. Antibacterial activity of ZnO-BC films against Staphylococcus aureus was more than Escherichia coli. The antibacterial activity was enhanced with the utilization of US irradiation. The ZnO release was influenced by films composition; the multilayer and US treated films being promising in order to achieve controlled release of ZnO. Results suggest that ZnO-BC films may be used as controlled release antimicrobial food active packaging. PMID:27261725

  18. Impurity induced crystallinity and optical emissions in ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Panda, N. R.; Acharya, B. S.

    2015-01-01

    We report the growth of ZnO nanocrystallites doped with impurities such as B, N and S by green chemistry route using ultrasound. The effect of intrinsic defects and impurity doping on the structural and optical properties of ZnO nanostructures has been studied and discussed. Characterization studies carried out using x-ray diffraction (XRD) reveal the change in lattice parameters and crystallinity of ZnO in the presence of dopant. This has been explained on the basis of the dopant substitution at regular anion and interstitial sites. Study on surface morphology by field emission scanning electron microscopy (FESEM) shows a change from particle-like structure to aligned nanorods nucleated at definite sites. Elemental analysis such as x-ray photon electron spectroscopy (XPS) has been carried out to ascertain the dopant configuration in ZnO. This has been corroborated by the results obtained from FTIR and Raman studies. UV-vis light absorption and PL studies show an expansion of the band gap which has been explained on the basis of Moss-Burstein shift in the electronic band gap of ZnO by impurity incorporation. The optical emissions corresponding to excitonic transition and defect centres present in the band gap of ZnO is found to shift towards lower/higher wavelength sides. New PL bands observed have been assigned to the transitions related to the impurity states present in the band gap of ZnO along with intrinsic defects.

  19. Thermoelectric properties of rocksalt ZnO from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Alvarado, Andrew; Attapattu, Jeevake; Zhang, Yi; Chen, Changfeng

    2015-10-01

    Zinc oxide (ZnO) undergoes a pressure-induced structural transition from its normal ambient-pressure wurtzite (WZ) phase to a rocksalt (RS) phase around 10 GPa. A recent experiment shows that the high-pressure RS ZnO phase can be recovered and stabilized at ambient conditions, which raises exciting prospects of expanding the range of properties of ZnO. For a fundamental understanding of the RS ZnO phase, we have performed first-principles calculations to determine its electronic, phonon, and thermodynamic properties at high (20 GPa) and ambient (0 GPa) pressure. Furthermore, we have calculated its electrical and thermal transport properties, which allow an evaluation of its thermoelectric figure of merit ZT at different temperature and doping levels. Our calculations show that the ambient-pressure RS ZnO phase can reach ZT values of 0.25 to 0.3 under both n-type and p-type doping in a large temperature range of 400 K to 800 K, which is considerably lower than the temperature range of 1400 K to 1600 K where WZ ZnO reaches similar ZT values. These results establish RS ZnO as a promising material for thermoelectric devices designed to operate at temperatures desirable for many heat recovery applications.

  20. Surface Structure Modification of ZnO and the Impact on Electronic Properties.

    PubMed

    Hewlett, Robert M; McLachlan, Martyn A

    2016-05-01

    Zinc oxide (ZnO) is a widely utilized, versatile material implemented in a diverse range of technological applications, particularly in optoelectronic devices, where its inherent transparency, tunable electronic properties, and accessible nanostructures can be combined to confer superior device properties. ZnO is a complex material with a rich and intricate defect chemistry, and its properties can be extremely sensitive to processing methods and conditions; consequently, surface modification of ZnO using both inorganic and organic species has been explored to control and regulate its surface properties, particularly at heterointerfaces in electronic devices. Here, the properties of ZnO are described in detail, particularly its surface chemistry, along with the role of defects in governing its electronic properties, and methods employed to modulate the behavior of as-grown ZnO. An outline is also given on how the native and modified oxide interact with molecular materials. To illustrate the diverse range of surface modification methods and their subsequent influence on electronic properties, a comprehensive review of the modification of ZnO surfaces at molecular interfaces in hybrid photovoltaic (hPV) and organic photovoltaic (OPV) devices is presented. This is a case study rather than a progress report, aiming to highlight the progress made toward controlling and altering the surface properties of ZnO, and to bring attention to the ways in which this may be achieved by using various interfacial modifiers (IMs). PMID:26936217