Science.gov

Sample records for heavy metal atoms

  1. Novel laser atomic fluorescence spectrometer for environmental and biomedical analyses of heavy metals

    NASA Astrophysics Data System (ADS)

    Dergachev, Alex Y.; Mirov, Sergey B.; Pitt, Robert E.; Parmer, Keith D.

    1997-05-01

    We report on the development of a novel experimental set-up using laser atomic fluorescence for detection and concentration measurements of heavy metal atoms for environmental and biomedical analyses. This spectrometer is based on the application of tunable LiF:F2+** and LiF:F2- color center and alexandrite lasers with nonlinear converters for narrowband excitation of atomic fluorescence and the use of gated multichannel CCD detectors for fluorescence measurements. A standard graphite furnace module was used for sample atomization. The laser sources used provide narrowband selective laser excitation continuously tunable in the 200 - 400 nm range and are therefore suitable for resonant excitation of atomic transitions in practically all known heavy metal atoms. In the first experiments, water samples containing Cu, Pb and Fe impurities were studied and detection levels of less than 1 ppb were observed. Comparison of the results of atomic laser fluorescence analysis and traditional atomic absorption spectrometry showed good qualitative agreement between these two methods. It is projected that full optimization of our experimental set up will allow for improved detection levels of several orders of magnitude. Possible optimization and simplification of the spectrometer are discussed in the context of developing a portable instrument for field use.

  2. Determination of heavy metal contents by atomic absorption spectroscopy (AAS) in some medicinal plants from Pakistani and Malaysian origin.

    PubMed

    Akram, Sobia; Najam, Rahila; Rizwani, Ghazala H; Abbas, Syed Atif

    2015-09-01

    This study depicts a profile of existence of heavy metals (Cu, Ni, Zn, Cd, Hg, Mn, Fe, Na, Ca, and Mg) in some important herbal plants like (H. Integrifolia, D. regia, R. communis, C. equisetifolia, N. oleander, T. populnea, M. elengi, H. schizopetalus, P. pterocarpum) from Pakistan and an antidiabetic Malaysian herbal drug product containing (Punica granatum L. (Mast) Hook, Momordica charantia L., Tamarindus indica L., Lawsonia inermis L.) using atomic absorption spectrophotometer. Heavy metals in these herbal plants and Malaysian product were in the range of 0.02-0.10 ppm of Cu, 0.00-0.02 ppm of Ni, 0.02-0.29 ppm of Zn, 0.00-0.04 ppm of Cd, 0.00-1.33 ppm of Hg, 0.00-0.54 ppm of Mn, 0.22-3.16 ppm of Fe, 0.00-9.17 ppm of Na, 3.27-15.63 ppm of Ca and 1.85-2.03 ppm of Mg. All the metals under study were within the prescribed limits except mercury. Out of 10 medicinal plants/product under study 07 were beyond the limit of mercury permissible limits. Purpose of this study is to determine heavy metals contents in selected herbal plants and Malaysian product, also to highlight the health concerns related to the presence of toxic levels of heavy metals. PMID:26408897

  3. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  4. Simultaneous determination of trace heavy metals in ambient aerosols by inductively coupled plasma atomic emission spectrometry after pre-concentration with sodium diethyldithiocarbamate.

    PubMed

    Talebi, S M; Malekiha, M

    2008-07-01

    The simultaneous determination of heavy metals associated with airborne particulate matter in the atmosphere of the city Isfahan (Iran) was performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) after pre-concentration with sodium diethyldithiocarbamate. The preconcentration procedure developed found instrumental to determine the trace heavy metals associated with ambient aerosols collected at a short sampling period or collected from rural areas where the concentrations of these metals are much less than those in urban areas. Several samples were analyzed by both flame atomic absorption spectrometry (FAAS) as a conventional method and the proposed method. The results obtained by the two methods were found in good agreement. The method was applied to the determination of atmospheric level of heavy metals in rural area and also for study of variation in levels of heavy metals in urban atmosphere during the days and nights. PMID:19552073

  5. Mutagenicity of heavy metals

    SciTech Connect

    Wong, P.K.

    1988-04-01

    Certain heavy metals are required, as trace elements for normal cellular functions. However, heavy metals are toxic to cells once their levels exceed their low physiological values. The toxicity of heavy metals on microorganisms, and on animals has been well-documented. These interactions may induce the alteration of the primary as well as secondary structures of the DNA and result in mutation(s). The present communication reports the results in determining the mutagenicity and carcinogenicity of ten heavy metals commonly found in polluted areas by using the Salmonella/mammalian-microsome mutagenicity test.

  6. Mutagenicity of heavy metals

    SciTech Connect

    Wong, P.K. )

    1988-05-01

    Certain heavy metals are required, as trace elements for normal cellular functions. However, heavy metals are toxic to cells once their levels exceed their low physiological values. The toxicity of heavy metals on microorganisms, on plants and on animals has been well-documented. These interactions may induce the alteration of the primary as well as secondary structures of the DNA and result in mutation(s). Though the rec assay with Bacillus subtilis and the reversion assay with Escherichia coli were used to assess the mutagenicity of some heavy metals, the present communication reports the results in determining the mutagenicity and carcinogenicity of ten heavy metals commonly found in polluted areas by using the Salmonella/mammalian-microsome mutagenicity test.

  7. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  8. Determination of heavy metals in bee honey with connected and not connected metal wires using inductively coupled plasma atomic emission spectrometry (ICP-AES).

    PubMed

    Özcan, Mehmet Musa; Al Juhaimi, Fahad Y

    2012-04-01

    Two honey samples are taken from two parts of the same honeycomb: one that contacts to the surface of the wire and the other taken from the surface that does not contact the wires. Heavy metal contents of these two samples were determined by inductively coupled plasma atomic emission spectrometry). The Mo, Cd, Cr, Fe, Mn, Ni and Zn contents of the honey in contact with wire is higher when compared to the other. Especially, Fe and Zn contents of honey in contact with wire is much higher than the non-contact one. These values are, respectively, 190.21 and 112.76 ppm. Besides, Ni content of honey in contact with wire is approximately 50% higher. PMID:21573852

  9. Heavy Metal Stars

    NASA Astrophysics Data System (ADS)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  10. Atom-efficient route for converting incineration ashes into heavy metal sorbents.

    PubMed

    Chiang, Yi Wai; Santos, Rafael M; Vanduyfhuys, Kenneth; Meesschaert, Boudewijn; Martens, Johan A

    2014-01-01

    Bottom ashes produced from municipal solid-waste incineration are suitable for sorbent synthesis because of their inherent composition, high alkalinity, metastable mineralogy, and residual heat. This work shows that bottom ashes can be atom-efficiently converted into valuable sorbents without the need for costly and hazardous chemicals. The ashes were hydrothermally treated in rotary autoclaves at autogenic pH conditions to promote the conversion of precursor mineral phases into zeolites and layered silicate hydrates. Two main mineral phases were formed: katoite and sodium aluminum phosphate silicate hydrate. These mineral alterations are accompanied by a tenfold increase in specific surface area and a twofold reduction in average particle size. Performance evaluation of the new sorbents for Cd(2+), Zn(2+), and Pb(2+) adsorption at pH5 indicates sorption capacities of 0.06, 0.08, and 0.22 mmol g(-1), respectively, which are similar to those of natural adsorbents and synthetic materials obtained from more demanding synthesis conditions. PMID:24339229

  11. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  12. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  13. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry.

    PubMed

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-08-20

    This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3-4 solutions containing 1.0×10(-6) M of heavy metal ions at a flow rate of 5.0 mL min(-1). Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05-0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu(2+), Zn(2+), and Pb(2+) by 50-fold. This new enrichment system successfully performed the separation and determination of Cu(2+) (5.0×10(-8)M) and Zn(2+) (5.7×10(-8) M) in a river water sample and Pb(2+) (3.8×10(-9) M) in a ground water sample. PMID:25086892

  14. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  15. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  16. Biosorption of heavy metals

    SciTech Connect

    Volesky, B. |; Holan, Z.R.

    1995-05-01

    Only within the past decade has the potential of metal biosorption by biomass materials been well established. For economic reasons, of particular interest are abundant biomass types generated as a waste byproduct of large-scale industrial fermentations or certain metal-binding algae found in large quantities in the sea. These biomass types serve as a basis for newly developed metal biosorption processes foreseen particularly as a very competitive means for the detoxification of metal-bearing industrial effluents. The assessment of the metal-building capacity of some new biosorbents is discussed. Lead and cadmium, for instance, have been effectively removed from very dilute solutions by the dried biomass of some ubiquitous species of brown marine algae such as Ascophyllum and Sargassum, which accumulate more than 30% of biomass dry weight in the metal. Mycelia of the industrial steroid-transforming fungi Rhizopus and Absidia are excellent biosorbents for lead, cadmium, copper, zinc, and uranium and also bind other heavy metals up to 25% of the biomass dry weight. Biosorption isotherm curves, derived from equilibrium batch sorption experiments, are used in the evaluation of metal uptake by different biosorbents. Further studies are focusing on the assessment of biosorbent performance in dynamic continuous-flow sorption systems. In the course of this work, new methodologies are being developed that are aimed at mathematical modeling of biosorption systems and their effective optimization. 115 refs., 7 figs., 3 tabs.

  17. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    We present numerically accurate calculations of the bound-state spectrum of the highly excited valence electron in the heavy alkali-metal atoms solving the radial Schrödinger eigenvalue problem with a modern spectral collocation method that applies also for a large principal quantum number n ≫1 . As an effective single-particle potential we favor the reputable potential of Marinescu et al. [Phys. Rev. A 49, 982 (1994)], 10.1103/PhysRevA.49.982. Recent quasiclassical calculations of the quantum defect of the valence electron agree for orbital angular momentum l =0 ,1 ,2 ,... overall remarkably well with the results of the numerical calculations, but for the Rydberg states of rubidium and also cesium with l =3 this agreement is less fair. The reason for this anomaly is that in rubidium and cesium the potential acquires for l =3 deep inside the ionic core a second classical region, thus invalidating a standard Wentzel-Kramers-Brillouin (WKB) calculation with two widely spaced turning points. Comparing then our numerical solutions of the radial Schrödinger eigenvalue problem with the uniform analytic WKB approximation of Langer constructed around the remote turning point rn,j ,l (" close=")n -δ0)">+ we observe everywhere a remarkable agreement, apart from a tiny region around the inner turning point rn,j ,l (-). For s states the centrifugal barrier is absent and no inner turning point exists: rn,j ,0 (-)=0 . With the help of an ansatz proposed by Fock we obtain for the s states a second uniform analytic approximation to the radial wave function complementary to the WKB approximation of Langer, which is exact for r →0+ . From the patching condition, that is, for l =0 the Langer and Fock solutions should agree in the intermediate region 0

  18. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  19. Heavy metal variability of different municipal sludges as measured by atomic absorption and inductively coupled plasma emission spectroscopy

    SciTech Connect

    Nevissi, A.E.; DeWalle, F.B. ); Sung, J.F.C. ); Mayer, K.; Dalsey, R. )

    1988-01-01

    Six sludge streams at two sewage treatment plants were monitored for three months to determine variability, degree of magnification, and generation rates of heavy metals and nutrients. Measurements of As, Ba, B, Cd, Cr, Cu, Pb, Hg, Mo, Ni, Se, Ag, Zn, K, N, P, ammonia, total solids, and volatile solids showed that most variability was related to the type of sludge (primary sludge, waste activated sludge, digested sludge, dewatered sludge), and to a lesser extent, to the day-to-day changes of a particular sludge stream.

  20. [Use of solubilization for the preparation of samples for determination of heavy metals in biological materials using atomic absorption spectrophotometry].

    PubMed

    Pfüller, U; Fuchs, V; Golbs, S; Ebert, E; Pfeifer, D

    1980-01-01

    Solubilisation was tested for its suitability to prepare organic samples for metal determination. Flameless atomic-absorption spectrophotometry was used as test method. Copper, manganese, zinc, and chromium levels were determined from various organ systems of Wistar rat, in response to "normal" feeding of pelletised standard feed. A comparison between experimentally established concentrations, on the one hand, and literature data, on the other, suggested that solubilisation was applicable with good success to the preparation of samples from which to determine reliable values, in ppm and ppb, of the above elements. PMID:7436671

  1. Heavy water reactions with atomic transition-metal and main-group cations: gas phase room-temperature kinetics and periodicities in reactivity.

    PubMed

    Cheng, Ping; Koyanagi, Gregory K; Bohme, Diethard K

    2007-09-01

    Reactions of heavy water, D(2)O, have been measured with 46 atomic metal cations at room temperature in a helium bath gas at 0.35 Torr using an inductively coupled plasma/selected ion flow tube tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and were allowed to decay radiatively and thermalize by collisions with Ar and He atoms prior to reaction. Rate coefficients and product distributions are reported for the reactions of fourth-row atomic cations from K+ to Se+, of fifth-row atomic cations from Rb+ to Te+ (excluding Tc+), and of sixth-row atomic cations from Cs+ to Bi+. Primary reaction channels were observed leading to O-atom transfer, OD transfer, and D2O addition. O-Atom transfer occurs almost exclusively (>or=90%) in the reactions with most early transition-metal cations (Sc+, Ti+, V+, Y+, Zr+, Nb+, Mo+, Hf+, Ta+, and W+) and to a minor extent (10%) with one main-group cation (As+). OD transfer is observed to occur only with three cations (Sr+, Ba+, and La+). Other cations, including most late transition and main-group cations, were observed to react with D2O exclusively and slowly by D2O addition or not at all. O-Atom transfer proceeds with rate coefficients in the range of 8.1 x 10(-13) (As+) to 9.5 x 10(-10) (Y+) cm3 molecule(-1)(s-1) and with efficiencies below 0.1 and even below 0.01 for the fourth-row atomic cations V+ (0.0032) and As+ (0.0036). These low efficiencies can be understood in terms of the change in spin required to proceed from the reactant to the product potential energy surfaces. Higher order reactions are also measured. The primary products, NbO+, TaO+, MoO+, and WO+, are observed to react further with D(2)O by O-atom transfer, and ZrO+ and HfO+ react further through OD group abstraction. Up to five D(2)O molecules were observed to add sequentially to selected M+ and MO+ as well as MO2+ cations and four to MO(2)D+. Equilibrium measurements for sequential D(2)O addition to M+ are also reported

  2. HEAVY METAL PUMPS IN PLANTS

    EPA Science Inventory

    Plants have been proposed as a bioremediation tool to help remove toxic heavy metals from contaminated land and water. However, little is known about how plants take up heavy metals from the soil and transport them to different parts of the plant. An important long term goal is t...

  3. SULFIDE PRECIPITATION OF HEAVY METALS

    EPA Science Inventory

    The research program was initiated with the objective of evaluating a new process, the sulfide precipitation of heavy metals from industrial wastewaters. The process was expected to effect a more complete removal of heavy metals than conventional lime processing because of the mu...

  4. Heavy Metal Pumps in Plants

    SciTech Connect

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  5. Multielement determination of heavy metals in water samples by continuous powder introduction microwave-induced plasma atomic emission spectrometry after preconcentration on activated carbon

    NASA Astrophysics Data System (ADS)

    Jankowski, Krzysztof; Yao, Jun; Kasiura, Krzysztof; Jackowska, Adrianna; Sieradzka, Anna

    2005-03-01

    A novel continuous powder introduction microwave-induced plasma atomic emission spectrometry method (CPI-MIP-AES) has been developed for trace determination of metals in ground and tap water samples after preconcentration on activated carbon. The experimental setup consisted of integrated rectangular cavity TE 101 and vertically positioned plasma torch. The technical arrangement of the sample introduction system has been designed based on the fluidized bed concept. The satisfactory signal stability required for sequential analysis was attained owing to the vertical plasma configuration, as well as the plasma gas flow rate compatibility with sample introduction flow rate. The elements of interest (Cd, Cu, Cr, Fe, Mn, Pb, Zn) were preconcentrated in a batch procedure at pH 8-8.5 after addition of activated carbon and then, after filtering and drying of the activated carbon suspension, introduced to the MIP by the CPI system. An enrichment factor of about 1000-fold for a sample volume of 1 l was obtained. The detection limit values for the proposed method were 17-250 ng l -1. The proposed method was validated by analyzing the certified reference materials: SRW "Warta" Synthetic River Water and BCR CRM 399 major elements in freshwater. The method was successfully applied to the determination of the heavy metals in tap water samples.

  6. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  7. Phycoremediation of heavy metals using transgenic microalgae.

    PubMed

    Rajamani, Sathish; Siripornadulsil, Surasak; Falcao, Vanessa; Torres, Moacir; Colepicolo, Pio; Sayre, Richard

    2007-01-01

    Microalgae account for most of the biologically sequestered trace metals in aquatic environments. Their ability to adsorb and metabolize trace metals is associated with their large surface:volume ratios, the presence of high-affinity, metal-binding groups on their cell surfaces, and efficient metal uptake and storage systems. Microalgae may bind up to 10% of their biomass as metals. In addition to essential trace metals required for metabolism, microalgae can efficiently sequester toxic heavy metals. Toxic heavy metals often compete with essential trace metals for binding to and uptake into cells. Recently, transgenic approaches have been developed to further enhance the heavy metal specificity and binding capacity of microalgae with the objective of using these microalgae for the treatment of heavy metal contaminated wastewaters and sediments. These transgenic strategies have included the over expression of enzymes whose metabolic products ameliorate the effects of heavy metal-induced stress, and the expression of high-affinity, heavy metal binding proteins on the surface and in the cytoplasm of transgenic cells. The most effective strategies have substantially reduced the toxicity of heavy metals allowing transgenic cells to grow at wild-type rates in the presence of lethal concentrations of heavy metals. In addition, the metal binding capacity of transgenic algae has been increased five-fold relative to wild-type cells. Recently, fluorescent heavy metal biosensors have been developed for expression in transgenic Chlamydomonas. These fluorescent biosensor strains can be used for the detection and quantification of bioavailable heavy metals in aquatic environments. The use of transgenic microalgae to monitor and remediate heavy metals in aquatic environments is not without risk, however. Strategies to prevent the release of live microalgae having enhanced metal binding properties are described. PMID:18161494

  8. Metal Atomization (Materials Preparation Center)

    SciTech Connect

    2010-01-01

    The following video is a slow motion capture of an atomization event. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  9. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    SciTech Connect

    O'Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  10. The Heavy Metal Subculture and Suicide.

    ERIC Educational Resources Information Center

    Stack, Steven; And Others

    1994-01-01

    Assessed relationship between heavy metal music and suicide with data on heavy metal magazine subscriptions and youth suicide in 50 states. Found that, controlling for other predictors of suicide, greater strength of metal subculture, higher youth suicide rate, suggests that music perhaps nurtures suicidal tendencies already present in subculture.…

  11. Industrial hygiene of selected heavy metals

    SciTech Connect

    Woodring, J.L.

    1993-08-01

    The industrial hygiene of heavy metals consists of recognition, evaluation, and control of exposures in the occupational environment. Several of these metals have been in use since ancient times. Reports of health effects and poisonings from overexposures also have a long history. This report discusses the industrial hygiene of the heavy metals, lead, cadmium, mercury, and manganese.

  12. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications. PMID:26827218

  13. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    NASA Astrophysics Data System (ADS)

    Davis, Barry M.; McCaffrey, John G.

    2016-01-01

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ṡ RG ground state interaction potentials. The y1P←a1S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ṡ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm-1). All of the M ṡ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  14. Heavy metals in Antarctic organisms

    SciTech Connect

    Moreno, J.E.A. de; Moreno, V.J.; Gerpe, M.S.; Vodopivez, C.

    1997-02-01

    To evaluate levels of essential (zinc and copper) and non-essential (mercury and cadmium) heavy metals, 34 species of organisms from different areas close to the Antarctic Peninsula were analysed. These included algae, filter-feeders, omnivorous invertebrates and vertebrates. Mercury was not detected, while cadmium was found in the majority of organisms analysed (detection limit was 0.05 ppm for both metals). The highest cadmium concentration was observed in the starfish Odontaster validus. Anthozoans, sipunculids and nudibranchs showed maximum levels of zinc, while the highest copper level was found in the gastropod Trophon brevispira. Mercury and cadmium levels in fishes were below the detection limit. Concentrations of essential and non-essential metals in birds were highest in liver followed by muscle and eggs. Cadmium and mercury levels in muscle of southern elephant seals were above the detection limit, whereas in Antarctic fur seals they were below it. The objective of the study was to gather baseline information for metals in Antarctic Ocean biota that may be needed to detect, measure and monitor future environmental changes. 46 refs., 7 figs., 8 tabs.

  15. Plants as biomarkers for monitoring heavy metal contaminants on landfill sites using sequential extraction and inductively coupled plasma atomic emission spectrophotometry (ICP-AES).

    PubMed

    Murphy, A P; Coudert, M; Barker, J

    2000-12-01

    There have been a number of studies investigating metal uptake in plants on contaminated landfill sites, but little on their role as biomarkers to identify metal mobility for continuous monitoring purposes. Vegetation can be used as a biomonitor of site pollution, by identifying the mobilisation of heavy metals and by providing an understanding of their bioavailability. Plants selected were the common nettle (Uritica Dioica), bramble (Rubus Fruticosa) and sycamore (Acer Pseudoplatanus). A study of the soil fractionation was made to investigate the soil properties that are likely to influence metal mobility and a correlation exercise was undertaken to investigate if variations in concentration of metals in vegetation can reflect variations in concentration of the metals in soil. The soil was digested using aqua regia in a microwave closed vessel. The vegetation was digested using both microwave and a hydrogen peroxide-nitric acid mixture, refluxed on a heating block and a comparison made. The certified reference materials (CRMs) used were Standard Reference Material (SRM) 1547, peach leaves for vegetation (NIST) and for soil CRM 143R, sewage sludge-amended soil (BCR). The relative standard deviations (RSDs) were 2-6% for the analyses. Our findings show evidence of phytoextraction by some plants, (especially bramble and nettle), with certain plants, (sycamore) exhibiting signs of phytostabilisation. The evidence suggests that there is a degree of selectivity in metal uptake and partitioning within the plant compartments. It was also possible to correlate mobility phases of certain metals (Pb, Cu and Zn) using the soil and plant record. Zn and Cu exhibited the greatest potential to migrate from the roots to the leaves, with Pb found principally in the roots of ground vegetation. Our results suggest that analysis of bramble leaves, nettle leaves and roots can be used to monitor the mobility of Pb in the soil with nettle, bramble and sycamore leaves to monitor Cu and Zn

  16. Hazards of heavy metal contamination.

    PubMed

    Järup, Lars

    2003-01-01

    The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. Cadmium compounds are currently mainly used in re-chargeable nickel-cadmium batteries. Cadmium emissions have increased dramatically during the 20th century, one reason being that cadmium-containing products are rarely re-cycled, but often dumped together with household waste. Cigarette smoking is a major source of cadmium exposure. In non-smokers, food is the most important source of cadmium exposure. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. Many individuals in Europe already exceed these exposure levels and the margin is very narrow for large groups. Therefore, measures should be taken to reduce cadmium exposure in the general population in order to minimize the risk of adverse health effects. The general population is primarily exposed to mercury via food, fish being a major source of methyl mercury exposure, and dental amalgam. The general population does not face a significant health risk from methyl mercury, although certain groups with high fish consumption may attain blood levels associated with a low risk of neurological damage to adults. Since there is a risk to the fetus in particular, pregnant women should avoid a high intake of certain fish, such as shark, swordfish and

  17. Bioremoval of heavy metals by bacterial biomass.

    PubMed

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed. PMID:25471624

  18. Heavy Metal Music and Adolescent Suicidal Risk.

    ERIC Educational Resources Information Center

    Lacourse, Eric; Claes, Michel; Villeneuve, Martine

    2001-01-01

    Studied differentiating characteristics of youth who prefer heavy metal music, worship music, and use music for vicarious release. Data for 275 secondary school students suggest that heavy metal music preference and worshipping is not related to suicidal risk when controlling for other suicide factors. Discusses findings in the context of…

  19. Heavy Metal, Religiosity, and Suicide Acceptability.

    ERIC Educational Resources Information Center

    Stack, Steven

    1998-01-01

    Reports on data taken from the General Social Survey that found a link between "heavy metal" rock fanship and suicide acceptability. Finds that relationship becomes nonsignificant once level of religiosity is controlled. Heavy metal fans are low in religiosity, which contributes to greater suicide acceptability. (Author/JDM)

  20. FINAL REPORT. HEAVY METAL PUMPS IN PLANTS

    EPA Science Inventory

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of t...

  1. Effect of heavy metals on soil fungi

    NASA Astrophysics Data System (ADS)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  2. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.

    PubMed

    Lantto, Perttu; Romero, Rodolfo H; Gómez, Sergio S; Aucar, Gustavo A; Vaara, Juha

    2006-11-14

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X(2+), X(4+), XH(2), and XH(3) (-) (X=Si-Pb) as well as X(3+), XH(3), and XF(3) (X=P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH(3) (-), XH(3), and XF(3), and is equally large in XH(2) as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of approximately 1500 ppm between BiH(3) and BiF(3). The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom

  3. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    NASA Astrophysics Data System (ADS)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  4. Stabilization of heavy metals in sludge ceramsite.

    PubMed

    Xu, G R; Zou, J L; Li, G B

    2010-05-01

    This paper attempts to investigate the stabilization behaviours of heavy metals in ceramsite made from wastewater treatment sludge (WWTS) and drinking-water treatment sludge (DWTS). Leaching tests were conducted to find out the effects of sintering temperature, (Fe(2)O(3) + CaO + MgO)/(SiO(2) + Al(2)O(3)) (defined as F/SA ratios), pH, and oxidative condition. Results show that sintering exhibits good binding capacity for Cd, Cr, Cu, and Pb in ceramsite and leaching contents of heavy metals will not change above 1000 degrees C. The main crystalline phases in ceramsite sintered at 1000 degrees C are kyanite, quartz, Na-Ca feldspars, sillimanite, and enstatite. The main compounds of heavy metals are crocoite, chrome oxide, cadmium silicate, and copper oxide. Leaching contents of Cd, Cu, and Pb increase as the F/SA ratios increase. Heavy metals in ceramsite with variation of F/SA ratios are also in same steady forms, which prove that stronger chemical bonds are formed between these heavy metals and the components. Leaching contents of heavy metals decrease as pH increases and increase as H(2)O(2) concentration increases. The results indicate that when subjected to rigorous leaching conditions, the crystalline structures still exhibit good chemical binding capacity for heavy metals. In conclusion, it is environmentally safe to use ceramsite in civil and construction fields. PMID:20219229

  5. Heavy metal toxicity and the environment.

    PubMed

    Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J

    2012-01-01

    Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the US Environmental Protection Agency and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569

  6. Heavy Metals Toxicity and the Environment

    PubMed Central

    Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J

    2013-01-01

    Heavy metals are naturally occurring elements that have a high atomic weight and a density at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the U.S. Environmental Protection Agency, and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569

  7. Atomic oxygen effects on metals

    NASA Technical Reports Server (NTRS)

    Fromhold, Albert T.

    1987-01-01

    The effect of specimen geometry on the attack of metals by atomic oxygen is addressed. This is done by extending the coupled-currents approach in metal oxidation to spherical and cylindrical geometries. Kinetic laws are derived for the rates of oxidation of samples having these geometries. It is found that the burn-up time for spherical particles of a given diameter can be as much as a factor of 3 shorter than the time required to completely oxidize a planar sample of the same thickness.

  8. Heavy Metals Contamination of Table Salt Consumed in Iran

    PubMed Central

    Cheraghali, Abdol Majid; Kobarfard, Farzad; Faeizy, Noroldin

    2010-01-01

    Lead, cadmium, mercury and arsenic are the most important heavy metals which may cause health risks following consumption of contaminated foods. Table salt is one the mostly used food additive with unique place in food consumption. Although purified table salt is expected to have lower level of contamination, some Iranians still prefer to use rock salt. Use of rock salt for food purposes has been banned by Iranian health authorities. In this study, heavy metal contamination of table salt consumed in Iran has been investigated. One hundred samples of rock and refined table salts were analyzed using atomic absorption spectrophotometeric methods for the presence of toxic heavy metals. The mean concentration of tested tracer metals including Cd, Pb, Hg and As was 0.024, 0.438, 0.021 and 0.094 μg/g, respectively. The concentrations of tested heavy metals were well below the maximum levels set by Codex. However, no statistically significant difference was found between contamination of rock salt and refined salt to heavy metals. PMID:24363718

  9. Study of heavy metals in some environmental samples.

    PubMed

    Ahmad, Imtiaz; Rashid, Haroon; Rehman, Zia Ur

    2009-11-01

    Fuels like coal and rubber are frequently used for brick burning. However, both coal and rubber contain heavy metals. These heavy metals may elutriate in the wake of fly ash or may adsorb or absorb in the product. The present work deals with the analysis of heavy metals in some samples collected from brick burning industries located in the vicinity of a metropolitan city, Peshawar, Pakistan. Samples from raw clay, product, chimney scale and fossil fuel & rubber were collected and leached with acid mixture. The leachates were concentrated and analyzed by atomic absorption spectrophotometer for the determination of chromium (Cr), lead (Pb), cadmium (Cd) and antimony (Sb). It was observed that heavy metals are present in clay, brick and chimney scale. However, significant amount of these metals was observed in chimney scale. It is inferred that such emanations laden with heavy metals are accompanying the stack gases which are being dumped in to the environment. In order to avoid environmental problems, strict environmental regulations shall be enforced and a constant check on these emanations to the environment must be made to ensure clean air act. PMID:18853266

  10. Heavy metal contamination from geothermal sources.

    PubMed

    Sabadell, J E; Axtmann, R C

    1975-12-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849

  11. Removal of heavy metals from waste streams

    SciTech Connect

    Spence, M.D.; Kozaruk, J.M.; Melvin, M.; Gardocki, S.M.

    1988-07-19

    A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water, wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.

  12. Heavy metal contamination from geothermal sources.

    PubMed Central

    Sabadell, J E; Axtmann, R C

    1975-01-01

    Liquid-dominated hydrothermal reservoirs, which contain saline fluids at high temperatures and pressures, have a significant potential for contamination of the environment by heavy metals. The design of the power conversion cycle in a liquid-dominated geothermal plant is a key factor in determining the impact of the installation. Reinjection of the fluid into the reservoir minimizes heavy metal effluents but is routinely practiced at few installations. Binary power cycles with reinjection would provide even cleaner systems but are not yet ready for commercial application. Vapor-dominated systems, which contain superheated steam, have less potential for contamination but are relatively uncommon. Field data on heavy metal effluents from geothermal plants are sparse and confounded by contributions from "natural" sources such as geysers and hot springs which often exist nearby. Insofar as geothermal power supplies are destined to multiply, much work is required on their environmental effects including those caused by heavy metals. PMID:1227849

  13. Heavy metals and living systems: An overview

    PubMed Central

    Singh, Reena; Gautam, Neetu; Mishra, Anurag; Gupta, Rajiv

    2011-01-01

    Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. This results in accumulation of metals in plant parts having secondary metabolites, which is responsible for a particular pharmacological activity. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Molecular understanding of plant metal accumulation has numerous biotechnological implications also, the long term effects of which might not be yet known. PMID:21713085

  14. Heavy metal removal and recovery using microorganisms

    SciTech Connect

    Wilde, E.W. ); Benemann, J.R. , Pinole, CA )

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  15. Heavy Metals in Seafood and Farm Produce from Uyo, Nigeria

    PubMed Central

    Orisakwe, Orish E.; Mbagwu, Herbert O. C.; Ajaezi, Godwin C.; Edet, Ukeme W.; Uwana, Patrick U.

    2015-01-01

    Objectives: This study aimed to obtain representative data on the levels of heavy metals in seafood and farm produce consumed by the general population in Uyo, Akwa Ibom State, Nigeria, a region known for the exploration and exploitation of crude oil. Methods: In May 2012, 25 food items, including common types of seafood, cereals, root crops and vegetables, were purchased in Uyo or collected from farmland in the region. Dried samples were ground, digested and centrifuged. Levels of heavy metals (lead, cadmium, nickel, cobalt and chromium) were analysed using an atomic absorption spectrophotometer. Average daily intake and target hazard quotients (THQ) were estimated. Results: Eight food items (millet, maize, periwinkle, crayfish, stock fish, sabina fish, bonga fish and pumpkin leaf) had THQ values over 1.0 for cadmium, indicating a potential health risk in their consumption. All other heavy metals had THQ values below 1.0, indicating insignificant health risks. The total THQ for the heavy metals ranged from 0.389 to 2.986. There were 14 items with total THQ values greater than 1.0, indicating potential health risks in their consumption. Conclusion: The regular consumption of certain types of farm produce and seafood available in Uyo, Akwa Ibom State, Nigeria, is likely adding to the body burden of heavy metals among those living in this region. PMID:26052462

  16. Heavy Metal Risk Management: Case Analysis

    PubMed Central

    Kim, Ji Ae; Lee, Seung Ha; Choi, Seung Hyun; Jung, Ki Kyung; Park, Mi Sun; Jeong, Ji Yoon; Hwang, Myung Sil; Yoon, Hae Jung; Choi, Dal Woong

    2012-01-01

    To prepare measures for practical policy utilization and the control of heavy metals, hazard control related institutions by country, present states of control by country, and present states of control by heavy metals were examined. Hazard control cases by heavy metals in various countries were compared and analyzed. In certain countries (e.g., the U.S., the U.K., and Japan), hazardous substances found in foods (e.g., arsenic, lead, cadmium, and mercury) are controlled. In addition, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) recommends calculating the provisional tolerable weekly intake (PTWI) of individual heavy metals instead of the acceptable daily intake (ADI) to compare their pollution levels considering their toxicity accumulated in the human body. In Korea, exposure assessments have been conducted, and in other countries, hazardous substances are controlled by various governing bodies. As such, in Korea and other countries, diverse food heavy metal monitoring and human body exposure assessments are conducted, and reducing measures are prepared accordingly. To reduce the danger of hazardous substances, many countries provide leaflets and guidelines, develop hazardous heavy metal intake recommendations, and take necessary actions. Hazard control case analyses can assist in securing consumer safety by establishing systematic and reliable hazard control methods. PMID:24278603

  17. Ion Mobility Spectrometry of Heavy Metals.

    PubMed

    Ilbeigi, Vahideh; Valadbeigi, Younes; Tabrizchi, Mahmoud

    2016-07-19

    A simple, fast, and inexpensive method was developed for detecting heavy metals via the ion mobility spectrometry (IMS) in the negative mode. In this method, Cl(-) ion produced by the thermal ionization of NaCl is employed as the dopant or the ionizing reagent to ionize heavy metals. In practice, a solution of mixed heavy metals and NaCl salts was directly deposited on a Nichrome filament and electrically heated to vaporize the salts. This produced the IMS spectra of several heavy-metal salts, including CdCl2, ZnSO4, NiCl2, HgSO4, HgCl2, PbI2, and Pb(Ac)2. For each heavy metal (M), one or two major peaks were observed, which were attributed to M·Cl(-) or [M·NaCl]Cl(-)complexes. The method proved to be useful for the analysis of mixed heavy metals. The absolute detection limits measured for ZnSO4 and HgSO4 were 0.1 and 0.05 μg, respectively. PMID:27321408

  18. Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet.

    PubMed

    Behbahani, Mohammad; Tapeh, Nasim Akbari Ghareh; Mahyari, Mojtaba; Pourali, Ali Reza; Amin, Bahareh Golrokh; Shaabani, Ahmad

    2014-11-01

    We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L(-1) for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g(-1). The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8-100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes. PMID:25023747

  19. Investigation of (235)U, (226)Ra, (232)Th, (40)K, (137)Cs, and heavy metal concentrations in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy.

    PubMed

    Zare, Mohammad Reza; Kamali, Mahdi; Fallahi Kapourchali, Maryam; Bagheri, Hashem; Khoram Bagheri, Mahdi; Abedini, Ali; Pakzad, Hamid Reza

    2016-02-01

    Measurements of natural radioactivity levels and heavy metals in sediment and soil samples of the Anzali international wetland were carried out by two HPGe-gamma ray spectrometry and atomic absorption spectroscopy techniques. The concentrations of (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs in sediment samples ranged between 1.05 ± 0.51-5.81 ± 0.61, 18.06 ± 0.63-33.36 ± .0.34, 17.57 ± 0.38-45.84 ± 6.23, 371.88 ± 6.36-652.28 ± 11.60, and 0.43 ± 0.06-63.35 ± 0.94 Bq/kg, while in the soil samples they vary between 2.36-5.97, 22.71-38.37, 29.27-42.89, 472.66-533, and 1.05-9.60 Bq/kg for (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs, respectively. Present results are compared with the available literature data and also with the world average values. The radium equivalent activity was well below the defined limit of 370 Bq/kg. The external hazard indices were found to be less than 1, indicating a low dose. Heavy metal concentrations were found to decrease in order as Fe > Mn > Sr > Zn > Cu > Cr > Ni > Pb > Co > Cd. These measurements will serve as background reference levels for the Anzali wetland. PMID:26490904

  20. Bioaccumulation and toxicity of heavy metals and related trace elements

    SciTech Connect

    Murphy, C.B.; Speigel, S.J.

    1983-06-01

    A literature review of bioaccumulation and toxicity of heavy metals is presented. The most common heavy metals studied were Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Ag, Cd, Sn, Hg, and Pb. The studies dealt with heavy metals in the environment, bioconcentration, toxicity, and detoxification of heavy metals. (JMT)

  1. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Stormwater sampling for colloidal and dissolved metals and organic carbon has been initiated at six outfalls draining locally-designated, nonindustrial land uses in Monmouth County, NJ. Of the heavy metals, only Cu and Zn were found in all samples, mostly in dissolved form. Large...

  2. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina.

    PubMed

    Ghaedi, Mehrorang; Niknam, Khodabakhsh; Shokrollahi, Ardeshir; Niknam, Ebrahim; Rajabi, Hamid Reza; Soylak, Mustafa

    2008-06-30

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L(-1) nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples. PMID:18155354

  3. Enhanced Reverse Saturable Absorption and Optical Limiting in Heavy-Atom Substituted Phthalocyanines

    NASA Technical Reports Server (NTRS)

    Perry, J. W.; Mansour, K.; Marder, S. R.; Alvarez, D., Jr.; Perry, K. J.; Choong, I.

    1994-01-01

    The reverse saturable absorption and optical limiting response of metal phthalocyaninies can be enhanced by using the heavy-atom effect. Phthalocyanines containing heavy metal atoms, such as In, Sn, and Pb show nearly a factor of two enhancement in the ratio of effective excited-state to ground-state absorption cross sections compared to those containing lighter atoms, such as Al and Si. In an f/8 optical geometry, homogeneous solutions of heavy metal phthalocyanines, at 30% linear transmission, limit 8-ns, 532-nm laser pulses to less than or equal to 3 (micro)J (the energy for 50% probability of eye damage) for incident pulses up to 800 (micro)J.

  4. Quantum Electrodynamics Effects in Heavy Ions and Atoms

    SciTech Connect

    Shabaev, V. M.; Andreev, O. V.; Bondarev, A. I.; Glazov, D. A.; Kozhedub, Y. S.; Maiorova, A. V.; Tupitsyn, I. I.; Plunien, G.; Volotka, A. V.

    2011-05-11

    Quantum electrodynamics theory of heavy ions and atoms is considered. The current status of calculations of the binding energies, the hyperfine splitting and g factor values in heavy few-electron ions is reviewed. The theoretical predictions are compared with available experimental data. A special attention is focused on tests of quantum electrodynamics in strong electromagnetic fields and on determination of the fundamental constants. Recent progress in calculations of the parity nonconservation effects with heavy atoms and ions is also reported.

  5. The remediation of heavy metals contaminated sediment.

    PubMed

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research. PMID:18547718

  6. Heavy metal contaminants in yerberia shop products.

    PubMed

    Levine, Michael; Mihalic, Jason; Ruha, Anne-Michelle; French, Robert N E; Brooks, Daniel E

    2013-03-01

    Complementary and alternative medications, including the use of herbal medications, have become quite popular in the USA. Yerberias are found throughout the southwest and specialize in selling Hispanic herbal products. The products sold in these stores are not regulated by any governmental agency. Previous reports have found Ayurvedic medications contain high levels of lead, mercury, and arsenic. The primary purpose of this study is to examine the prevalence of heavy metal contaminants sold at Yerberia stores in the southwest. Yerberias in the Phoenix, Arizona area were identified via search of an on-line search engine using the words "Yerberia Phoenix." Every second store was selected, and products were purchased using a standard script. The products were subsequently analyzed for mercury, lead, and arsenic. The main outcome is the prevalence of heavy metal content in over-the-counter "cold" medications purchased at a Yerberia. Twenty-two samples were purchased. One product contained pure camphor (2-camphone) and was subsequently not further analyzed. Of the 21 samples analyzed, lead was found in 4/21 (19.4 %). Arsenic and mercury were in 1/21 (4.8 %) each. Because two samples contained two heavy metals, the total prevalence of heavy metals was 4/21 (19.4). Heavy metal contaminants are commonly encountered in over-the-counter herbal "cold" medications purchased at Yerberias in the southwest. PMID:22562238

  7. Heavy Metal Poisoning and Cardiovascular Disease

    PubMed Central

    Alissa, Eman M.; Ferns, Gordon A.

    2011-01-01

    Cardiovascular disease (CVD) is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed. PMID:21912545

  8. Heavy Metal Concentrations in Soils Downwind from Masaya Volcano (Nicaragua)

    NASA Astrophysics Data System (ADS)

    Delfosse, T.; Delmelle, P.; Iserentant, A.; Delvaux, B.

    2003-12-01

    Quiescently degassing volcanoes can significantly contribute to the global emission of heavy metals. In turn, substantial deposition of metals onto soils may result, possibly increasing the risk of phytotoxicity. In contrast to anthropogenic sources, the environmental impacts of airborne volcanic heavy metals and their accumulation in soils are poorly studied. Along with the degassing of S, Cl and F, Masaya volcano, Nicaragua, is also a strong source of heavy metals. Recent estimates indicate emission rates of e.g., 62 t As yr-1, 133 t Zn yr-1 and 306 t Cu yr-1 (Moune, 2002). Here, we report on the effects of heavy metal depositions on the total contents of As, Cr, Ni, Cu, Bi, Zn, Se, and Co in two groups of soils located 5 km and 15 km downwind from the volcano. These soils correspond to young Vitric Andosols and more weathered Eutric Andosols, respectively. As and Se were measured by Inductively Coupled Plasma-Atomic Emission Spectrometry after soil digestion in a trace metal unit, and Cr, Ni, Cu, Co, Bi and Zn were determined after alkaline fusion in Li-metaborate/Li-tetraborate. Results suggest that prolonged metal inputs in the vicinity of Masaya volcano have significantly increased the As, Se and Zn contents of the soils. For these elements, concentrations are about 3-5 times those measured in the parent rock materials. However, maximum concentrations in soils (i.e., 5.4 mg As kg-1, 183 mg Zn kg-1 and 0.9 mg Se kg-1) never exceed critical concentration levels as defined for cultivated soils in the UK (10, 300 and 3 mg kg-1 for As, Zn and Se, respectively). We did not detect significant enrichments in Cr, Ni, Cu, Bi, and Co. The relatively low accumulation of metals in the Masaya Andosols contrasts with the high retention of volcanic F and S inputs (Delmelle et al., 2003). Since Andosols typically show a high affinity for heavy metals, which can be bound to organic matter as well as to oxides, oxyhydroxide and allophane minerals present in these soils, rapid

  9. Community Heavy Metal Exposure, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Chavez, A.; Devine, M.; Ho, T.; Zapata, I.; Bissell, M.; Neiss, J.

    2008-12-01

    Heavy metals are natural elements that generally occur in minute concentrations in the earth's crust. While some of these elements, in small quantities, are vital to life, most are harmful in larger doses. Various industrial and agricultural processes can result in dangerously high concentrations of heavy metals in our environment. Consequently, humans can be exposed to unsafe levels of these elements via the air we breathe, the water and food we consume, and the many products we use. During a two week study we collected numerous samples of sediments, water, food, and household items from around the San Francisco Bay Area that represent industrial, agricultural, and urban/residential settings. We analyzed these samples for Mercury (Hg), Lead (Pb), and Arsenic (As). Our goal was to examine the extent of our exposure to heavy metals in our daily lives. We discovered that many of the common foods and materials in our lives have become contaminated with unhealthy concentrations of these metals. Of our food samples, many exceeded the EPA's Maximum Contaminant Levels (MCL) set for each metal. Meats (fish, chicken, and beef) had higher amounts of each metal than did non-meat items. Heavy metals were also prevalent in varying concentrations in the environment. While many of our samples exceeded the EPA's Sediment Screening Level (SSL) for As, only two other samples surpassed the SSL set for Pb, and zero of our samples exceeded the SSL for Hg. Because of the serious health effects that can result from over-exposure to heavy metals, the information obtained in this study should be used to influence our future dietary and recreational habits.

  10. Nutrients and heavy metals distribution in thermally treated pig manure.

    PubMed

    Kuligowski, Ksawery; Poulsen, Tjalfe G; Stoholm, Peder; Pind, Niels; Laursen, Jens

    2008-08-01

    Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations were measured using energy dispersive X-ray fluorescence analysis. Acid (HNO3, H2SO4) and water-extractable concentrations were also measured both in non-classified ash and in selected ash particle size fractions using flame atomic absorption spectrometry and colorimetric spectrometry. Results indicate that ash from gasified manure contained more water-extractable K in comparison with combusted manure whereas the opposite was the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (< 30 microm of particle diameter), whereas K, P, Zn and Cu exhibited higher concentrations in the coarser particle size fractions (> 30 microm). PMID:18727326

  11. Determination of selected heavy metals in air samples from the northern part of Jordan.

    PubMed

    Gharaibeh, Ahmad A; El-Rjoob, Abdul-Wahab O; Harb, Mohammed K

    2010-01-01

    In this work, the atmospheric concentrations of selected heavy metals including lead (Pb), iron (Fe), cadmium (Cd), copper (Cu), nickel (Ni), manganese (Mn), and zinc (Zn) were measured for two different sampling sites (urban and rural) in the northern part of Jordan (Irbid city). Samples were collected according to a certain schedule for 1 year. High volume air samplers and glass fiber filters were used to collect the samples. Collected samples were digested using a mixture of analytical grade nitric acid and analytical grade hydrochloric acid, and analyzed to evaluate the levels of heavy metals by atomic absorption spectrophotometry. Six heavy metals (Pb, Fe, Cu, Ni, Mn, and Zn) were measured in all samples; the concentrations of Cd and Co were not detected in Irbid atmosphere by atomic absorption spectroscopy. The results were used to determine the levels of heavy metal pollutants in air, possible sources, and to compare the levels of selected heavy metals in the two studied sites. Aerosols from the rural site have lower concentrations for all the metals compared to those from the urban site. The daily and monthly variations of the elements were investigated. All heavy metals in urban and rural sites reached maximum concentrations in June, July, and August. This is consistent with the increased activities leading to particulate matter emission during the summer period. The enrichment factors with respect to earth crust and correlation coefficients of heavy metals were investigated to predict the possible sources of heavy metals in air. PMID:19083108

  12. Heavy metal speciation in the composting process.

    PubMed

    Greenway, Gillian M; Song, Qi Jun

    2002-04-01

    Composting is one of the more efficient and environment friendly methods of solid waste disposal and has many advantages when compared with landfill disposal on which the UK and Ireland are currently heavily dependent. Composting is a very complicated process involving intensive microbial activity and the detailed mechanisms of the process have yet to be fully understood. Metal speciation information can provide an insight into the metal-microbial interaction and would help in the evaluation of the quality of compost. This would facilitate the exploitation of composts in remediation of heavy metal contaminated land. In this work a systematic approach to metal speciation in compost has been taken by applying the three-step method for operationally defined metal speciation of soils and sediments, developed by the European Commission's Standards, Measurement and Testing Programme to monitor the change in metal speciation with time (up to 106 days) for four different waste composting processes. The results have shown that in general metals become less available for the first extraction step as the composting process proceeds. This implies that composting tends to redistribute the metals from more labile forms to more fixed forms which may explain why the application of composts could be useful for with heavy metal contaminated land. There are exceptions to this trend and in some cases, certain metals appear to behave differently depending on the source of the compost. PMID:11993774

  13. Consequential species of heavy metals. Final report

    SciTech Connect

    Yousef, Y.A.; Harper, H.H.; Wiseman, L.; Bateman, M.

    1985-02-01

    Highway stormwater runoff contains significantly higher concentrations of trace metals, particularly Pb, Zn, Cd, Cu, Cr, Fe, and Ni than the water samples from adjacent receiving water bodies. The metals associated with highway runoff tend to be detoxified by the organic content and chemical conditions of natural waters and sediments. Most of the metals are retained by the bottom sediments on a permanent basis if aerobic conditions and high redax-potential (Eh) values are maintained. Retention/detention ponds similar to the Maitland Pond site are very effective in nutrient and heavy metal removal from highway runoff.

  14. Approaches for enhanced phytoextraction of heavy metals.

    PubMed

    Bhargava, Atul; Carmona, Francisco F; Bhargava, Meenakshi; Srivastava, Shilpi

    2012-08-30

    The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoextraction refers to the uptake of contaminants from soil or water by plant roots and their translocation to any harvestable plant part. Phytoextraction has the potential to remove contaminants and promote long-term cleanup of soil or wastewater. The success of phytoextraction as a potential environmental cleanup technology depends on factors like metal availability for uptake, as well as plants ability to absorb and accumulate metals in aerial parts. Efforts are ongoing to understand the genetics and biochemistry of metal uptake, transport and storage in hyperaccumulator plants so as to be able to develop transgenic plants with improved phytoremediation capability. Many plant species are being investigated to determine their usefulness for phytoextraction, especially high biomass crops. The present review aims to give an updated version of information available with respect to metal tolerance and accumulation mechanisms in plants, as well as on the environmental and genetic factors affecting heavy metal uptake. The genetic tools of classical breeding and genetic engineering have opened the door to creation of 'remediation' cultivars. An overview is presented on the possible strategies for developing novel genotypes with increased metal accumulation and tolerance to toxicity. PMID:22542973

  15. Heavy metal detoxification in eukaryotic microalgae.

    PubMed

    Perales-Vela, Hugo Virgilio; Peña-Castro, Julián Mario; Cañizares-Villanueva, Rosa Olivia

    2006-06-01

    Microalgae are aquatic organisms possessing molecular mechanisms that allow them to discriminate non-essential heavy metals from those essential ones for their growth. The different detoxification processes executed by algae are reviewed with special emphasis on those involving the peptides metallothioneins, mainly the post transcriptionally synthesized class III metallothioneins or phytochelatins. Also, the features that make microalgae suitable organisms technologies specially to treat water that is heavily polluted with metals is discussed. PMID:16405948

  16. Heavy metal mining using microbes.

    PubMed

    Rawlings, Douglas E

    2002-01-01

    The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed. PMID:12142493

  17. Bacterial sorption of heavy metals.

    PubMed Central

    Mullen, M D; Wolf, D C; Ferris, F G; Beveridge, T J; Flemming, C A; Bailey, G W

    1989-01-01

    Four bacteria, Bacillus cereus, B. subtilis, Escherichia coli, and Pseudomonas aeruginosa, were examined for the ability to remove Ag+, Cd2+, Cu2+, and La3+ from solution by batch equilibration methods. Cd and Cu sorption over the concentration range 0.001 to 1 mM was described by Freundlich isotherms. At 1 mM concentrations of both Cd2+ and Cu2+, P. aeruginosa and B. cereus were the most and least efficient at metal removal, respectively. Freundlich K constants indicated that E. coli was most efficient at Cd2+ removal and B. subtilis removed the most Cu2+. Removal of Ag+ from solution by bacteria was very efficient; an average of 89% of the total Ag+ was removed from the 1 mM solution, while only 12, 29, and 27% of the total Cd2+, Cu2+, and La3+, respectively, were sorbed from 1 mM solutions. Electron microscopy indicated that La3+ accumulated at the cell surface as needlelike, crystalline precipitates. Silver precipitated as discrete colloidal aggregates at the cell surface and occasionally in the cytoplasm. Neither Cd2+ nor Cu2+ provided enough electron scattering to identify the location of sorption. The affinity series for bacterial removal of these metals decreased in the order Ag greater than La greater than Cu greater than Cd. The results indicate that bacterial cells are capable of binding large quantities of different metals. Adsorption equations may be useful for describing bacterium-metal interactions with metals such as Cd and Cu; however, this approach may not be adequate when precipitation of metals occurs. Images PMID:2515800

  18. DECONTAMINATION OF HEAVY METALS WITH BACTERIA

    EPA Science Inventory



    OBJECTIVES: To discover, improve, understand the mechanisms and use naturally occurring bacteria to decontiminate in situ heavy metals from the soils, sediments and waters to protect human health and the environment.


    ABSTRACT: Our laboratory (Vesper et al. ...

  19. ANALYSIS OF HEAVY METALS IN STORMWATER

    EPA Science Inventory

    Sampling has been undertaken to determine the concentrations of heavy metals, both particle-associated and dissolved, in stormwater from several storm sewer outfalls in Monmouth County, NJ. This project is ongoing in concert with coordinated studies of pathogen and nutrient input...

  20. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  1. REMOVAL OF HEAVY METALS BY ARTIFICIAL WETLANDS

    EPA Science Inventory

    Artificial wetlands have been operated successfully for treatment of municipal wastewater for a number of years at several locations in this country. However, the capability of these systems to treat heavy metal laden municipal wastewater had not previously been investigated. The...

  2. Superoxide dismutases of heavy metal resistant streptomycetes.

    PubMed

    Schmidt, Astrid; Schmidt, André; Haferburg, Götz; Kothe, Erika

    2007-02-01

    Heavy metal tolerant and resistant strains of streptomycetes isolated from a former uranium mining site were screened for their superoxide dismutase expression. From the strains tolerating high concentrations of different heavy metals, one was selected for its tolerance of concentrations of heavy metals (Ni, Cu, Cd, Cr, Mn, Zn, Fe). This strain, Streptomyces acidiscabies E13, was chosen for the purpose of superoxide dismutase analysis. Gel electrophoresis and activity staining revealed only one each of a nickel (NiSOD) and an iron (FeZnSOD) containing superoxide dismutase as shown by differential enzymatic repression studies. The gene for nickel containing superoxide dismutase, sodN, was cloned and sequenced from this strain. The genomic sequence shows 92.7% nucleotide identity and 96.1% amino acid identity to sodN of S. coelicolor. Expression can be activated by nickel as well as other heavy metals and active enzyme is produced in media lacking nickel but containing copper, iron or zinc. Thus, the selected strain is well suited for further characterization of the enzyme encoded by sodN. PMID:17304620

  3. Heavy metals in the environment

    SciTech Connect

    Storm, G.L.; Fosmire, G.J.; Bellis, E.D.

    1994-05-01

    Concentration (Cd, Pb, Zn, and Cu) in soil and wildlife at the Palmerton zinc smelter site in eastern Pennsylvania were determined 6 yr after zinc smelting was terminated in 1980. Levels of the four metals were higher in litter (01 and 02 horizon) than in soil (A1 horizon), and the metals were at or near levels when the smelters were still in operation. Levels of metals in sod weft highest at sites close to the smelters and decreased as distances from the smelters increased. The relation of decreasing amounts of metals in body tissues with increasing distance from the smelters also held true for amphibians and mammals. An exception to this relation was higher level of Cu in red-lacked salamanders (Plethodon cinereus) captured {approx}17 km downwind than those captured {approx}12 km downwind. Levels of Zn, Pb, and Co in liver, kidney, and muscle tissue of white-footed mice (Peromyscus leucopus) were not different (P >0.05) among sites. Cadmium in kidneys in white-footed mice exceeded 10 mg&& which is reportedly considered an indication of environmental contamination. Levels of Cd in kidneys and liver of white-tailed deer (Odocoileus virginianus) at Palmerton were five times higher than those for white-tailed deer collected 180 km southwest of Palmerton in southcentral Pennsylvania. The abnormal amounts of metals in the tissues of terrestrial vertebrates, and the absence or low abundance of wildlife at Palmerton indicated that ecological processes within 5 km of the smelters were markedly influenced 6 yr after zinc smelting was discontinued. 41 refs., 5 figs., 4 tabs.

  4. Atomic Dynamics in Metallic Liquids and Glasses

    SciTech Connect

    Egami, Takeshi; Levashov, Valentin A; Aga, Rachel S; Morris, James R

    2007-01-01

    How atoms move in metallic glasses and liquids is an important question in discussing atomic transport, glass formation, structural relaxation and other properties of metallic glasses. While the concept of free-volume has long been used in describing atomic transport, computer simulations and isotope measurements have shown that atomic transport occurs by a much more collective process than assumed in the free-volume theory. We introduce a new approach to describe the atomic dynamics in metallic glasses, in terms of local energy landscapes related to fluctuations in the topology of atomic connectivity. This approach may form the basis for a new paradigm for discussing the structure-properties relationship in metallic glasses.

  5. Statistical Analysis of the Heavy Neutral Atoms Measured by IBEX

    NASA Astrophysics Data System (ADS)

    Park, Jeewoo; Kucharek, Harald; Möbius, Eberhard; Galli, André; Livadiotis, George; Fuselier, Steve A.; McComas, David J.

    2015-10-01

    We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O&Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O&Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath.

  6. Wetland plants as indicators of heavy metal contamination.

    PubMed

    Phillips, D P; Human, L R D; Adams, J B

    2015-03-15

    In this study metal accumulating abilities of three emergent macrophytes (Phragmites australis, Typha capensis and Spartina maritima) were investigated in the urbanised Swartkops Estuary. Plants and sediment samples were collected at seven sites along the banks of the main channel and in adjacent canals. Sediments and plant organs were analysed, by means of atomic absorption spectrometry, for four elements (Cd, Cu, Pb, and Zn). Metal concentrations in the sediments of adjacent canals were found to be substantially higher than those at sites along the banks of the estuary. These differences were reflected in the plant organs for Pb and Zn, but not for Cu and Cd. All three species exhibited significantly higher concentrations of metals in their roots. These species are therefore suitable for use as indicators of the presence and level of heavy metal contaminants in estuaries. PMID:25599629

  7. Minor heavy metal: A review on occupational and environmental intoxication

    PubMed Central

    Wiwanitkit, Viroj

    2008-01-01

    Heavy metal is widely used in industries and presents as a problematic environmental pollution. Some heavy metals, especially lead and mercury, are well described for their occupational and environmental intoxication whereas the other minor heavy metals are less concerned. In this article, the author will present the details of occupational and environmental minor heavy metal intoxication. This review focuses mainly on aluminum, tin, copper, manganese, chromium, cadmium and nickel. PMID:20040969

  8. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans.

    PubMed

    Dhir, B; Srivastava, S

    2013-06-01

    Metal tolerance capacity of Salvinia natans, a metal hyperaccumulator, was evaluated. Plants were exposed to 10, 30 and 50 mg L⁻¹ of Zn, Cd, Co, Cr, Fe, Cu, Pb, and Ni. Plant biomass, photosynthetic efficiency, quantum yield, photochemical quenching, electron transport rate and elemental (%C, H and N) constitution remained unaffected in Salvinia exposed to 30 mg L⁻¹ of heavy metals, except for Cu and Zn exposed plants, where significant reductions were noted in some of the measured parameters. However, a significant decline was noted in most of the measured parameters in plants exposed to 50 mg L⁻¹ of metal concentration. Results suggest that Salvinia has fairly high levels of tolerance to all the metals tested, but the level of tolerance varied from metal to metal. PMID:23553503

  9. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    ERIC Educational Resources Information Center

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  10. Heavy metals and the origin of life

    NASA Astrophysics Data System (ADS)

    Nriagu, J.

    2003-05-01

    The functional value of heavy metals in proto-cells was immense and involved critical roles in catalysis of molecular synthesis, translation, electrical neutrality and conduction, energy capture, cross-linking and precipitation (stabilizers of protective cell walls), and to a limited extent, osmotic pressure control. Metals must have modulated the evolutionary choices of the types of building blocks, such as ribose sugars as a constituent of RNA, or the the chirality and enantiopurity of many biomolecules. The formation of an enclosing membrane led to intracellular prokaryotic life (believed to have originated in an anaerobic environment) and much enhanced control over primary metabolism, the uptake and incorporation of heavy metals and the management of biomolecules (especially RNA, DNA and proteins) that were formed. Cells of the most primitive organisms (archaebacteria) reveal complex mechanisms designed specifically to deal with selective pressures from metal-containing environments including intra- and extra-cellular sequestration, exclusion by cell wall barrier, removal through active efflux pumps, enzymatic detoxification, and reduction in sensitivity of cellular targets to metal ions. Adaptation to metals using a variety of chromosomal, and transposon and plasmid-mediated systems began early in the evolution of life on Earth. Recent studies, however, show that the roles played by many heavy metals have changed over time. Divalent lead, for instance, has relinquished its unique catalytic role in the conversion of carbohydrates into ribose in the prebiotic world. The putative elements that dominated the primordial biochemistry were V, Mo, W, Co, Fe(II) and Ni; with the development of oxygenated atmosphere, these elements gave way to Zn, Cu and Fe(Ill) in their metabolic functions.

  11. Determination of absolute configuration using heavy atom based co-crystallization method: Halogen atom effects

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Rong; Fan, Xiaowu; Ding, Qiaoce; Mei, Xuefeng

    2016-09-01

    Heavy atom (chloride, bromide, and iodide) based co-crystals for determination of absolute configuration (AC) for chiral molecules were synthesized and evaluated. Co-crystals of cholestanol and L-ascorbic acid were analysed and the effects and potential benefits of varying the heavy atom are discussed. Changing the halogen atoms (chloride, bromide, or iodide) affects the co-crystal formation, X-ray absorption, and anomalous dispersion, and hence the ability to determine AC.

  12. Experimental atomic physics in heavy-ion storage rings

    SciTech Connect

    Datz, S.; Andersen, L.H.; Briand, J.P.; Liesen, D.

    1987-01-01

    This paper outlines the discussion which took place at the ''round table'' on experimental atomic physics in heavy-ion storage rings. Areas of discussion are: electron-ion interactions, ion-ion collisions, precision spectroscopy of highly charged ions, beta decay into bound final states, and atomic binding energies from spectroscopy of conversion elections. 18 refs., 1 tab. (LSP)

  13. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-11-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 Tm and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  14. Chern Insulators from Heavy Atoms on Magnetic Substrates

    NASA Astrophysics Data System (ADS)

    Garrity, Kevin

    2014-03-01

    Chern insulators, or quantum anomalous Hall insulators, would display a variety interesting and potentially useful properties; however, existing methods for constructing Chern insulators have proven challenging, and have thus far been limited to low temperatures. We propose a new method for searching for Chern insulators by depositing atomic layers of elements with large spin-orbit coupling (e.g., Bi) on the surface of a magnetic insulator. We argue that such systems will typically have isolated surface bands with nonzero Chern numbers. If these bands overlap in energy, a metallic surface with large anomalous Hall conductivity will result; if not, a Chern-insulator state will typically occur. We use first principles calculations to verify this search strategy by considering heavy atoms on the surfaces of MnTe, MnSe, and EuS, as well as more recent results on several promising oxide and nitride surfaces. We find many Chern insulators in both cases, including examples with large band gaps.

  15. PREPARATION OF OXALATES OF METALS OF ATOMIC NUMBER GREATER THAN 88

    DOEpatents

    Duffield, R.B.

    1959-02-01

    A method is presented for the preparation of oxalates of metals of atomic number greater than 88. A solid peroxide of the heavy metal is contacted with an aqueous oxalic acid solution ai a temperature of about 50 C for a period of time sufficient to form the insoluble metal oxalate which is subsequentiy recovered as a pures crystalline compound.

  16. Effect of heavy metals on bacterial transport

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  17. Heavy metal resistance in halophilic Bacteria and Archaea.

    PubMed

    Voica, Doriana Mădălina; Bartha, Laszlo; Banciu, Horia Leonard; Oren, Aharon

    2016-07-01

    Heavy metals are dense chemicals with dual biological role as micronutrients and intoxicants. A few hypersaline environmental systems are naturally enriched with heavy metals, while most metal-contaminated sites are a consequence of human activities. Numerous halotolerant and moderately halophilic Bacteria possess metal tolerance, whereas a few archaeal counterparts share similar features. The main mechanisms underlying heavy metal resistance in halophilic Bacteria and Archaea include extracellular metal sequestration by biopolymers, metal efflux mediated by specific transporters and enzymatic detoxification. Biotransformation of metals by halophiles has implications both for trace metal turnover in natural saline ecosystems and for development of novel bioremediation strategies. PMID:27279625

  18. Environmental impact of mercury and other heavy metals

    NASA Astrophysics Data System (ADS)

    Lindqvist, Oliver

    The environmental impact of heavy metals is reviewed. One significant source of emissions of heavy metals to air is waste incineration. Consumer batteries contributes significantly to this problem, as well as to heavy metal leakage to groundwater from landfill deposits. The situation in Sweden is used as an example to describe how the deposition from the atmosphere still is increasing the load of heavy metals, like mercury, cadmium and lead, in top soils and aquatic sediments. Critical factors and effect levels for Hg, Cd, Pb, Cu, Zn and As are discussed. Specific questions like mercury contents in present battery waste and heavy metal contents in new and future secondary batteries are addressed.

  19. Earthworm contamination by PCBs and heavy metals

    SciTech Connect

    Diercxsens, P.; de Weck, D.; Borsinger, N.; Rosset, B.; Tarradellas, J.

    1985-01-01

    A comparison is made of soil and earthworm contamination by PCBs and heavy metals between a nature reserve and two sites conditioned by the addition of sewage sludge and compost. The tissues and gut content of the earthworms shows a higher PCB concentration than that of the surrounding soil and also a difference in the fingerprint of some single PCB compounds. Earthworms display a selective accumulation of cadmium and zinc in their tissues and gut content.

  20. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    PubMed

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. PMID:27387415

  1. The distribution of the heavy metal accumulation rate in the biomass of three Daphnia species

    SciTech Connect

    Gajula, V.K.; Hovorka, J.; Stuchlik, E.

    1995-12-31

    The difference in the accumulation rate of a mixture of heavy metals in aquatic organisms is of considerable interest because of its importance in the prediction of the effect of pollutants in aquatic systems. In this study the authors are making an effort to evaluate the accumulation patterns of pollutants in aquatic organisms by establishing a relation between the level of an accumulated mixture of heavy metals (Cd, Zn, Pb, As, Hg) in individuals of Daphnia magna, Daphnia pulicaria and Daphnia galeata and its dry weight with respect to the form of heavy metals in the aquatic environment. One age group of Daphnia species (10 day old) were exposed to 5 ppb, 10 ppb and 20 ppb of the mixture of heavy metals for 24 hours in three different experiments. In the first experiment the mixture of heavy metals was present exclusively in labelled algae (Scendesmus actus), in the second in an aquatic medium with non labelled algae, and in the third experiment the mixture of heavy metals was dissolved in the aquatic medium only without the addition of algae. The concentration of the heavy metal mixture in individuals of D.magna; D.pulicaria and D.galeata was determined using atomic absorption spectrometry. Results were statistically evaluated and the rate of accumulation and influence of various heavy metals in the biomass of three Daphnia species is discussed.

  2. Phytoaccumulation of heavy metals by aquatic plants.

    PubMed

    Kamal, M; Ghaly, A E; Mahmoud, N; Côté, R

    2004-02-01

    Three aquatic plants were examined for their ability to remove heavy metals from contaminated water: parrot feather (Myriophylhum aquaticum), creeping primrose (Ludwigina palustris), and water mint (Mentha aquatic). The plants were obtained from a Solar Aquatic System treating municipal wastewater. All the three plants were able to remove Fe, Zn, Cu, and Hg from the contaminated water. The average removal efficiency for the three plant species was 99.8%, 76.7%, 41.62%, and 33.9% of Hg, Fe, Cu, and Zn, respectively. The removal rates of zinc and copper were constant (0.48 mg/l/day for Zn and 0.11 mg/l/day for Cu), whereas those of iron and mercury were dependent on the concentration of these elements in the contaminated water and ranged from 7.00 to 0.41 mg/l/day for Fe and 0.0787 to 0.0002 mg/l/day for Hg. Parrot feather showed greater tolerance to toxicity followed by water mint and creeping primrose. The growth of creeping primrose was significantly affected by heavy metal toxicity. The selectivity of heavy metals for the three plant species was the same (Hg>Fe>Cu>Zn). The mass balance preformed on the system showed that about 60.45-82.61% of the zinc and 38.96-60.75% of the copper were removed by precipitation as zinc phosphate and copper phosphate, respectively. PMID:14680885

  3. Modeling heavy metal removal in wetlands

    SciTech Connect

    Lung, W.S.; Light, R.N.

    1994-12-31

    Although the use of wetland ecosystems to purify water has gained increased attention only recently, it has been recognized as a wastewater treatment technique for centuries. While considerable research has occurred to quantify the nutrient (nitrogen and phosphorus) removal mechanisms of wetlands, relatively few investigators have focused on the mechanisms of heavy metal removal and uptake by wetland sediments and plants. The quantification of the assimilative capacity of heavy metals by wetland ecosystems is a critical component in the design and use of wetlands for this purpose. A computer model has been developed to simulate the fate and transport of heavy metals introduced to a wetland ecosystem. Modeled water quality variables include phytoplankton biomass and productivity; macrophyte (Nulumbo lutea) biomass; total phosphorus in the water column; dissolved copper in the water column and sediments; particulate copper in the water column and sediments; and suspended solids. These variables directly affect the calculated rate of copper uptake by macrophytes, and the rate of copper recycling as a function of the decomposition of copper-laden biomass litter. The model was calibrated using total phosphorus and chlorophyll a data from the Old Woman Creek Wetland in Ohio. Verification of the model was achieved using data on the copper content of the macrophyte Nelumbo lutea.

  4. Heavy metals in Ratnapura alluvial gem sediments, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Vithanage, M. S.; Hettiarachchi, J. K.; Rajapaksha, A. U.; Wijesekara, H.; Hewawasam, T.

    2011-12-01

    The valuable gems in Sri Lanka are found from the sedimentary gem deposits in Ratnapura District, which are found as alluvial deposits some are about >50 m deep. Gem bearing gravel layer is taken out from the mine, washed by panning to recover the gem minerals in the heavy mineral fraction, is a common practice in the gem mining area. Gem bearing sediment layer is associated with different heavy minerals in which different trace metals as Co, Cr, Cu, Al, Zr, Pb and As also can be present. During panning, the sediment is washed away and the heavy metals attached to the sediments are released into the environment. Hence we studied the lability and bioavailability of arsenic and other heavy metals from the gem sediments. Sediment samples were collected from 15 small scale gem mines (3 soil layers- top, gem mineral layer and layer below gem bearing gravel layer), air dried and sieved to obtain <63μm fraction. Bioavailable, exchangeable and residual fractions were 0.01M CaCl2, 1M NaOAc, pH 8.2 and microwave digestion using HF, HNO3 and HClO4. Filtered samples were analyzed for As, Co, Zn, Mn, Cu, Ni, Pb and Fe using atomic absorption spectrophotometer (GBC 933AA). Total digestion results in different layers indicated that heavy metals show an increasing pattern with depth. About 4 gem bearing gravel layers were consist of high concentrations of Ni (>150 mg/kg), Cu (>150 mg/kg), Pb (>400 mg/kg), Zn (>600 mg/kg) and Co ions (>100 mg/kg). Arsenite in the gem sediments were low and recorded as <5mg/kg. Total arsenic analysis is under investigation. Highest concentrations for bioavailable and exchangeable (leach to water) metals were Fe>Co>Zn>Mn>Ni>Cu>Pb. Sediments from few gem pits showed considerably high concentrations of metals analyzed. In some places Fe, Ni, Cu, Zn reported high in bioavailable fractions 70, 25, 20, 10 mg/kg respectively. Mobilization of these metals may increase due to changes in the pH and the presence of other ions in the environment. High

  5. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  6. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  7. Heavy metals in edible seaweeds commercialised for human consumption

    NASA Astrophysics Data System (ADS)

    Besada, Victoria; Andrade, José Manuel; Schultze, Fernando; González, Juan José

    2009-01-01

    Though seaweed consumption is growing steadily across Europe, relatively few studies have reported on the quantities of heavy metals they contain and/or their potential effects on the population's health. This study focuses on the first topic and analyses the concentrations of six typical heavy metals (Cd, Pb, Hg, Cu, Zn, total As and inorganic As) in 52 samples from 11 algae-based products commercialised in Spain for direct human consumption ( Gelidium spp.; Eisenia bicyclis; Himanthalia elongata; Hizikia fusiforme; Laminaria spp.; Ulva rigida; Chondrus crispus; Porphyra umbilicales and Undaria pinnatifida). Samples were ground, homogenised and quantified by atomic absorption spectrometry (Cu and Zn by flame AAS; Cd, Pb and total As by electrothermal AAS; total mercury by the cold vapour technique; and inorganic As by flame-hydride generation). Accuracy was assessed by participation in periodic QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring in Europe) and IAEA (International Atomic Energy Agency) intercalibration exercises. To detect any objective differences existing between the seaweeds' metal concentrations, univariate and multivariate studies (principal component analysis, cluster analysis and linear discriminant analysis) were performed. It is concluded that the Hizikia fusiforme samples contained the highest values of total and inorganic As and that most Cd concentrations exceeded the French Legislation. The two harvesting areas (Atlantic and Pacific oceans) were differentiated using both univariate studies (for Cu, total As, Hg and Zn) and a multivariate discriminant function (which includes Zn, Cu and Pb).

  8. Heavy Metals Concentrations in Groundwater Used for Irrigation

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad; Pourakbar, Mojtaba; Armanfar, Feridoun

    2012-01-01

    Background: The main objective of this study was characterization of selected heavy metals concentrations (Lead, cadmium, copper, zinc, nickel and chromium) in groundwater used for ir-rigation in Tabriz City's countryside. Methods: After consulting with the experts of agriculture department and site survey, 38 irriga-tion water samples were taken from different farms (34 wells) without primary coordination with farm owners. All of samples were acidified to achieve pH≈2 and then were concentrated from 10 to 1 volume. The concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the samples (totally 228) were determined with a flame atomic absorption spectrophotometer. Results: In none of 38 farms, irrigation with surface runoff and industrial wastewater was ob-served. The average concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the irrigated water were de¬termined 6.55, 0.79, 16.23, 3.41, 4.49, and 49.33µg/L, respectively. The average and even maxi¬mum concentrations of heavy metals in the irrigation water at the studied area were less than toxicity threshold limits of agricultural water. Conclusion: Currently, not using of surface runoff and industrial wastewater as irrigation water by farmers indicates that the controlling efforts by authorities have been effective in the area. Water used for irrigation of the farms and groundwater of the studied area are not polluted with heavy metals and there is no risk from this viewpoint in the region. PMID:24688935

  9. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  10. Advanced atom chips with two metal layers.

    SciTech Connect

    Stevens, James E.; Blain, Matthew Glenn; Benito, Francisco M.; Biedermann, Grant

    2010-12-01

    A design concept, device layout, and monolithic microfabrication processing sequence have been developed for a dual-metal layer atom chip for next-generation positional control of ultracold ensembles of trapped atoms. Atom chips are intriguing systems for precision metrology and quantum information that use ultracold atoms on microfabricated chips. Using magnetic fields generated by current carrying wires, atoms are confined via the Zeeman effect and controllably positioned near optical resonators. Current state-of-the-art atom chips are single-layer or hybrid-integrated multilayer devices with limited flexibility and repeatability. An attractive feature of multi-level metallization is the ability to construct more complicated conductor patterns and thereby realize the complex magnetic potentials necessary for the more precise spatial and temporal control of atoms that is required. Here, we have designed a true, monolithically integrated, planarized, multi-metal-layer atom chip for demonstrating crossed-wire conductor patterns that trap and controllably transport atoms across the chip surface to targets of interest.

  11. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  12. Magnetotactic bacteria: promising biosorbents for heavy metals.

    PubMed

    Zhou, Wei; Zhang, Yanzong; Ding, Xiaohui; Liu, Yan; Shen, Fei; Zhang, Xiaohong; Deng, Shihuai; Xiao, Hong; Yang, Gang; Peng, Hong

    2012-09-01

    Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption. PMID:22763846

  13. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  14. The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms.

    PubMed

    Maldonado, Alejandro F; Aucar, Gustavo A

    2009-07-21

    Fully relativistic calculations of NMR magnetic shielding on XYH3 (X = C, Si, Ge and Sn; Y = Br, I), XHn (n = 1-4) molecular systems and noble gases performed with a fully relativistic polarization propagator formalism at the RPA level of approach are presented. The rate of convergence (size of basis set and time involved) for calculations with both kinetic balance prescriptions, RKB and UKB, were investigated. Calculations with UKB makes it feasible to obtain reliable results for two or more heavy-atom-containing molecules. For such XYH3 systems, the influence of heavy vicinal halogen atoms on sigma(X) is such that heavy atom effects on heavy atoms (vicinal plus their own effects or HAVHA + HAHA effects) amount to 30.50% for X = Sn and Y = I; being the HAHA effect of the order of 25%. So the vicinal effect alone is of the order of 5.5%. The vicinal heavy atom effect on light atoms (HALA effect) is of the order of 28% for X = C and Y = I. A similar behaviour, but of opposite sign, is observed for sigma(Y) for which sigmaR-NR (I; X = C) (HAHA effect) is around 27% and sigmaR-NR(I; X = Sn) (HAVHA + HAHA effects) is close to 21%. Its electronic origin is paramagnetic for halogen atoms but both dia- and paramagnetic for central atoms. The effect on two bond distant hydrogen atoms is such that the largest variation of sigma(H) within the same family of XYH3 molecules appears for X = Si and Y = I: around 20%. In this case sigma(H; X = Sn, Y = I) = 33.45 ppm and sigma(H; X = Sn, Y = H) = 27.82 ppm. PMID:19842479

  15. An overview of heavy-atom derivatization of protein crystals

    PubMed Central

    Pike, Ashley C. W.; Garman, Elspeth F.; Krojer, Tobias; von Delft, Frank; Carpenter, Elisabeth P.

    2016-01-01

    Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative. PMID:26960118

  16. Cold collisions of alkali-metal atoms and chromium atoms

    NASA Astrophysics Data System (ADS)

    Jeung, G.-H.; Hagebaum-Reignier, D.; Jamieson, M. J.

    2010-12-01

    We present ab initio potentials for ground state lithium, sodium, potassium and rubidium atoms interacting with ground state chromium atoms via the 6Σ+ and 8Σ+ states of the corresponding dimers. Each potential is matched to the leading van der Waals dispersion energy -C6/R6 - C8/R8 and an exchange energy; we list the values of C6, C8 and the exchange fitting parameters. We present calculated values from quantal and semi-classical approximations for the s-wave scattering length and effective range and the p-wave scattering volume for collisions of each of the alkali-metal atoms lithium, sodium, potassium and rubidium with 52chromium atoms and comment on s-wave scattering by 53chromium atoms.

  17. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. PMID:25828952

  18. Chitosan removes toxic heavy metal ions from cigarette mainstream smoke

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Xu, Ying; Wang, Dongfeng; Zhou, Shilu

    2013-09-01

    This study investigated the removal of heavy metal ions from cigarette mainstream smoke using chitosan. Chitosan of various deacetylation degrees and molecular weights were manually added to cigarette filters in different dosages. The mainstream smoke particulate matter was collected by a Cambridge filter pad, digested by a microwave digestor, and then analyzed for contents of heavy metal ions, including As(III/V), Pb(II), Cd(II), Cr(III/VI) and Ni(II), by graphite furnace atomic absorption spectrometry (GFAAS). The results showed that chitosan had a removal effect on Pb(II), Cd(II), Cr(III/VI) and Ni(II). Of these, the percent removal of Ni(II) was elevated with an increasing dosage of chitosan. Chitosan of a high deace tylation degree exhibited good binding performance toward Cd(II), Cr(III/VI) and Ni(II), though with poor efficiency for Pb(II). Except As(III/V), all the tested metal ions showed similar tendencies in the growing contents with an increasing chitosan molecular weight. Nonetheless, the percent removal of Cr(III/VI) peaked with a chitosan molecular weight of 200 kDa, followed by a dramatic decrease with an increasing chitosan molecular weight. Generally, chitosan had different removal effects on four out of five tested metal ions, and the percent removal of Cd(II), Pb(II), Cr(III/VI) and Ni(II) was approximately 55%, 45%, 50%, and 16%, respectively. In a word, chitosan used in cigarette filter can remove toxic heavy metal ions in the mainstream smoke, improve cigarette safety, and reduce the harm to smokers.

  19. Biosorption of heavy metals by Saccharomyces cerevisiae.

    PubMed

    Volesky, B; May-Phillips, H A

    1995-01-01

    Abundant and common yeast biomass has been examined for its capacity to sequester heavy metals from dilute aqueous solutions. Live and non-living biomass of Saccharomyces cerevisiae differs in the uptake of uranium, zinc and copper at the optimum pH 4-5. Culture growth conditions can influence the biosorbent metal uptake capacity which normally was: living and non-living brewer's yeast: U > Zn > Cd > Cu; non-living baker's yeast: Zn > (Cd) > U > Cu; living baker's yeast: Zn > Cu approximately (Cd) > U. Non-living brewer's yeast biomass accumulated 0.58 mmol U/g. The best biosorbent of zinc was non-living baker's yeast (approximately 0.56 mmol Zn/g). Dead cells of S. cerevisiae removed approximately 40% more uranium or zinc than the corresponding live cultures. Biosorption of uranium by S. cerevisiae was a rapid process reaching 60% of the final uptake value within the first 15 min of contact. Its deposition differing from that of other heavy metals more associated with the cell wall, uranium was deposited as fine needle-like crystals both on the inside and outside of the S. cerevisiae cells. PMID:7765919

  20. Contamination of environment with heavy metals emitted from automotives

    SciTech Connect

    Falahi-Ardakani, A.

    1984-04-01

    Interest has arisen in heavy-metal contamination of the environment, mostly because of potential hazards to the health of animals and human (directly and/or indirectly). High levels of heavy metals in soil, plants, and the atmosphere are often related to industries, highways, chemical dumping, impure chemical fertilizers, and pesticides containing metals. An important source of heavy metals, especially lead, is from the combustion of leaded gasoline used for transportation. Other heavy metals associated with transportation include nickel, which is also added to gasoline and is contained in engine parts, zinc, and cadmium from tires, lubricating oils, and galvanized parts such as fuel tanks.

  1. Atom-atom interactions in continuous metallic nanofilms

    NASA Astrophysics Data System (ADS)

    Shirinyan, A. S.; Bilogorodskyy, Yu. S.

    2012-09-01

    Physical reasons of the existence of the nanosystem-size dependence of the potential energy of the neighboring atoms are considered, and a thermodynamic validation of this dependence is given. Solid nanofilms of monoatomic metallic systems having an fcc structure are simulated by the molecular-statics method with the Morse and Sutton-Chen potentials.

  2. Visualizing plumes of heavy metals and radionuclides

    NASA Astrophysics Data System (ADS)

    Prigiobbe, V.; Liu, T.; Bryant, S. L.; Hesse, M. A.

    2015-12-01

    The understanding of the transport behaviors in porous media resides on the ability to reproduce fundamental phenomena in a lab setting. Experiments with quasi 2D tanks filled with beads are performed to study physical phenomena induced by chemical and fluid dynamic processes. When an alkaline solution containing heavy metals or radionuclides invades a low pH region, mixing due to longitudinal dispersion induces destabilization of the front forming a fast travelling pulse [1]. When the two fluids travel in parallel, instead, mixing induced by transverse dispersion creates a continuous leakage from the alkaline region into the acidic one forming a fast travelling plume [2] (Figure 1). Impact of these phenomena are on aquifers upon leaking of alkaline fluids, rich in heavy metals and radionuclides, from waste storage sites. Here, we report the results from a study where experiments with a quasi 2D tank are performed to analyze the effect of transverse mixing on strontium (Sr2+) transport. To visualize the leaking plume, a fluorescent dye (Fura-2) is added the acidic solution, which has been widely used in biomedical applications [3]. It is the aim of this work to optimize its application under the conditions relevant to this work. Spectrometric measurements of absorption and fluorescence show sensitivity of the dye to the presence of Sr2+ throughout a broad range of pH and Sr2+ concentration (Figure 2). In the absence of Sr2+, no significant absorption and fluorescence was measured, but as Sr2+ was added the relevant peaks increase significantly and sample dilution of tenfold was required to remain within the measuring threshold. These results show a strong sensitivity of the dye to the cation opening the opportunity to use Fura-2 as a tool to visualize heavy metals and radionuclides plumes. References[1] Prigiobbe et al. (2012) GRL 39, L18401. [2] Prigiobbe and Hesse (2015) in preparation. [3] Xu-Friedman and Regehr (2000) J. Neurosci. 20(12) 4414-4422.

  3. Assessment of heavy metals in Averrhoa bilimbi and A. carambola fruit samples at two developmental stages.

    PubMed

    Soumya, S L; Nair, Bindu R

    2016-05-01

    Though the fruits of Averrhoa bilimbi and A. carambola are economically and medicinally important, they remain underutilized. The present study reports heavy metal quantitation in the fruit samples of A. bilimbi and A. carambola (Oxalidaceae), collected at two stages of maturity. Heavy metals are known to interfere with the functioning of vital cellular components. Although toxic, some elements are considered essential for human health, in trace quantities. Heavy metals such as Cr, Mn, Co, Cu, Zn, As, Se, Pb, and Cd were analyzed by atomic absorption spectroscopy (AAS). The samples under investigation included, A. bilimbi unripe (BU) and ripe (BR), A. carambola sour unripe (CSU) and ripe (CSR), and A. carambola sweet unripe (CTU) and ripe (CTR). Heavy metal analysis showed that relatively higher level of heavy metals was present in BR samples compared to the rest of the samples. The highest amount of As and Se were recorded in BU samples while Mn content was highest in CSU samples and Co in CSR. Least amounts of Cr, Zn, Se, Cd, and Pb were noted in CTU while, Mn, Cu, and As were least in CTR. Thus, the sweet types of A. carambola (CTU, CTR) had comparatively lower heavy metal content. There appears to be no reason for concern since different fruit samples of Averrhoa studied presently showed the presence of various heavy metals in trace quantities. PMID:27080855

  4. Heavy Metal Levels in Adolescent and Maternal Blood: Association with Risk of Hypospadias

    PubMed Central

    Sharma, Tusha; Banerjee, Basu Dev; Yadav, Chandra Shekhar; Gupta, Piyush; Sharma, Sunil

    2014-01-01

    Background. Hypospadias is a part of testicular digenesis syndrome (TDS) which includes infertility, cryptorchidism, and spermatogenesis. Heavy metals act as endocrine disrupting compounds. Heavy metals such as cadmium, chromium, arsenic, and lead have been associated with male infertility, cryptorchidism, spermatogenesis, cancer, reproductive disorder, and neurological disorder. However, it remains an important issue to corroborate or refute the hypothesis that the role of heavy metals in male reproductive tract disorders. Hence, the present study was designed to investigate the possible association of heavy metal and risk of hypospadias by estimating the blood heavy metal levels. Methods. In this case control study, 50 hypospadias boys diagnosed and confirmed by a pediatric urologist and 50 randomly selected age-matched (1–5 years) healthy control boys not suffering from any clinically detectible illness and their mothers have been included and heavy metal levels in the blood of these subjects have been estimated by Atomic Absorption Spectrophotometer (AAS). Result. Significantly high levels of cadmium and lead have been observed in hypospadias cases; however, all heavy metal levels were present in higher concentration. Conclusion. Higher blood levels of cadmium and lead may be associated with the increased risk of hypospadias. PMID:24729887

  5. Evaluation of the bioaccumulation of heavy metals in white shrimp (Litopenaeus vannamei) along the Persian Gulf coast.

    PubMed

    Dadar, Maryam; Peyghan, Rahim; Memari, Hamid Rajabi

    2014-09-01

    The concentrations of heavy metals in Persian Gulf are low, but petrochemical and refinery activities have caused an increase in heavy metal wastes, especially in coastal regions. The present study was done to determine the bioaccumulation of heavy metals in the muscle of white shrimp (Litopenaeus vannamei) using flame atomic absorption spectrophotometry. The experiment was conducted in four important coastal regions of the Persian Gulf: Bushehr, Deylam, Mahshahr, and Abadan. Amounts of seven heavy metals such as Copper (Cu), Iron (Fe), Lead (Pb), Zinc (Zn), Nickel (Ni), Cadmium (Cd), and Cobalt (Co), were measured as µg/g heavy metal in dry weight in the muscle of white shrimp from the afore-mentioned regions during 2011. This study revealed information that the primary risk for human health and the marine life chain was lead in the muscles of white shrimp in Mahshahr, where intense petrochemical and refinery activities are conducted. Concentrations of other heavy metals were lower than world standards. PMID:25029962

  6. Heavy metal adsorption by sulphide mineral surfaces

    NASA Astrophysics Data System (ADS)

    Jean, Gilles E.; Bancroft, G. Michael

    1986-07-01

    The adsorption of aqueous Hg 2+, Pb 2+, Zn 2+ and Cd 2+ complexes on a variety of sulphide minerals has been studied as a function of the solution pH and also as a function of the nature of the ligands in solution. Sulphide minerals are excellent scavengers for these heavy metals. The adsorption is strongly pH dependent, i.e. there is a critical pH at which the adsorption increases dramatically. The pH dependence is related to the hydrolysis of the metal ions. Indirect evidence suggests that the hydrolyzed species are adsorbed directly on the sulphide groups, probably as a monolayer. The results also suggest the presence of MCI n2- n species physisorbed on the adsorbed monolayer. A positive identification of the adsorbed species was not possible using ESCA/XPS.

  7. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-01-01

    HISTRAP is a proposed synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac. The ring will have a maximum bending power of 2.0 T.m and have a circumference of 46.8 m.

  8. Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Kamal, Rakesh Kant

    2016-06-01

    The objective of the study is to reveal the seasonal variations in the groundwater quality with respect to heavy metal contamination. To get the extent of the heavy metals contamination, groundwater samples were collected from 45 different locations in and around Goa mining area during the monsoon and post-monsoon seasons. The concentration of heavy metals, such as lead, copper, manganese, zinc, cadmium, iron, and chromium, were determined using atomic absorption spectrophotometer. Most of the samples were found within limit except for Fe content during the monsoon season at two sampling locations which is above desirable limit, i.e., 300 µg/L as per Indian drinking water standard. The data generated were used to calculate the heavy metal pollution index (HPI) for groundwater. The mean values of HPI were 1.5 in the monsoon season and 2.1 in the post-monsoon season, and these values are well below the critical index limit of 100.

  9. Atomic-Scale Imprinting into Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo; Li, Rui; Simon, Georg; Kinser, Emely; Liu, Ze; Chen, Zheng; Zhou, Chao; Singer, Jonathan; Osuji, Chinedum; Schroers, Jan

    Nanoimprinting by thermoplastic forming (TPF) has attracted significant attention in recent years due to its promise of low-cost fabrication of nanostructured devices. Usually performed using polymers, amorphous metals have been identified as a material class that might be even better suited for nanoimprinting due to a combination of mechanical properties and processing ability. Commonly referred to as metallic glasses, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material's ability to replicate a mold. To study this hypothesis, we demonstrate atomic-scale imprinting into amorphous metals by TPF under ambient conditions. Atomic step edges of a SrTiO3 (STO) single crystal used as mold were successfully imprinted into Pt-based bulk metallic glasses (BMGs) with high fidelity. Terraces on the BMG replicas possess atomic smoothness with sub-Angstrom roughness that is identical to the one measured on the STO mold. Systematic studies revealed that the quality of the replica depends on the loading rate during imprinting, that the same mold can be used multiple times without degradation of mold or replicas, and that the atomic-scale features on as-imprinted BMG surfaces has impressive long-term stability (months).

  10. Ultrahigh stability of atomically thin metallic glasses

    SciTech Connect

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L. E-mail: dzheng@iphy.ac.cn Zheng, D. N. E-mail: dzheng@iphy.ac.cn Wang, W. H. E-mail: dzheng@iphy.ac.cn

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  11. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida) Gradient study in meadow ecosystems.

    PubMed

    Skubała, Piotr; Zaleski, Tomasz

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K(av), P(av), N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. PMID:22134027

  12. Hyperfine-induced quadrupole moments of alkali-metal-atom ground states and their implications for atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2016-01-01

    Spherically symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to nonvanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for 133Cs atomic clocks, the spatial gradients of electric fields must be smaller than 30 V /cm2 to guarantee fractional inaccuracies below 10-16.

  13. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication. PMID:26350735

  14. Toxic heavy metals: materials cycle optimization.

    PubMed Central

    Ayres, R U

    1992-01-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies. PMID:11607259

  15. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    PubMed

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  16. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    PubMed Central

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments. PMID:26426011

  17. The interaction of heavy interstellar atoms with the heliosphere

    SciTech Connect

    Zank, G.P.; Lipatov, A.S.; Mueller, H.

    1999-06-01

    It is now reasonably well understood that the interaction of neutral interstellar hydrogen (H) with the heliosphere is highly nonlinear. In particular, neutral H does not stream unimpeded into the heliosphere, experiencing instead considerable {open_quotes}filtration{close_quotes} in the region upstream of the heliopause. This leads to the formation of a hydrogen wall. A recently developed 2D Boltzmann code is used to investigate the entrance of neutral helium, oxygen, carbon, and other heavy species into the heliosphere. The role of filtration for heavy interstellar neutral atoms is described and distribution functions throughout the heliosphere are presented. {copyright} {ital 1999 American Institute of Physics.}

  18. Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.

    PubMed

    Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K

    2014-11-01

    Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. PMID:23222691

  19. Heavy metals and its chemical speciation in sewage sludge at different stages of processing.

    PubMed

    Tytła, Malwina; Widziewicz, Kamila; Zielewicz, Ewa

    2016-04-01

    The analysis of heavy metal concentrations and forms in sewage sludge constitutes an important issue in terms of both health and environmental hazards the metals pose. The total heavy metals concentration enables only the assessment of its contamination. Hence the knowledge of chemical forms is required to determine their environmental mobility and sludge final disposal. Heavy metals speciation was studied by using four-stage sequential extraction BCR (Community Bureau of Reference). This study was aimed at determining the total concentration of selected heavy metals (Zn, Cu, Ni, Pb, Cd, Cr and Hg) and their chemical forms (except for Hg) in sludge collected at different stages of its processing at two municipal Wastewater Treatment Plants in southern Poland. Metals contents in sludge samples were determined by using flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). This study shows that Zn and Cu appeared to be the most abundant in sludge, while Cd and Hg were in the lowest concentrations. The sewage sludge revealed the domination of immobile fractions over the mobile ones. The oxidizable and residual forms were dominant for all the heavy metals. There was also a significant difference in metals speciation between sludges of different origin which was probably due to differences in wastewater composition and processes occurring in biological stage of wastewater treatment. The results indicate a negligible capability of metals to migrate from sludge into the environment. Our research revealed a significant impact of thickening, stabilization and hygienization on the distribution of heavy metals in sludge and their mobility. PMID:26419833

  20. Hydroponic phytoremediation of heavy metals and radionuclides

    SciTech Connect

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  1. Plant productivity and heavy metal contamination

    SciTech Connect

    Guidi, G.V.; Petruzzelli, G.; Vallini, G.; Pera, A.

    1990-06-01

    This article describes the potential for use of composts from green waste and from municipal solid wastes for agricultural use in Italy. The accumulation of heavy metals in compost-amended soils and crops was evaluated and the influence of these composts on plant productivity was studied. Green compost was obtained from vegetable organic residues; municipal solid waste derived compost was obtained from the aerobic biostabilization of a mixture of the organic biodegradable fraction of municipal solid waste and sewage sludge. The two composts had good chemical characteristics and their use caused no pollution to soil and plants. The overall fertilizing effect was higher for green compost even though green compost and municipal solid waste derived compost had similar contents of primary elements of fertility.

  2. Intrinsic Instabilities Of Heavy Metal Fluoride Glasses

    NASA Astrophysics Data System (ADS)

    Bruce, A. J.; Moynihan, C. T.; Loehr, S. R.; Opalka, S. M.; Mossadegh, R.; Perazzo, N. L.; Bansal, N. P.; Doremus, R. H.; Doremus; Drexhage, M. G.

    1985-06-01

    Heavy metal fluoride glasses (HMFG) are potentially useful as optical components in a wide range of devices. Their utilization has so far been delayed mainly because of insufficient material purity and inadequate processing conditions. However, as the result of numerous research efforts, these problems are gradually diminishing, and it now seems likely that the ultimate limitations for use of HMFG components, at least in those applications in which high optical transparency is not a prerequisite, will be imposed by more intrinsic instabilities of the glasses themselves. These include their strong tendency to crystallize on quenching and subsequent reheating, low mechanical and chemical durability, and the possibility that they will undergo significant physical aging in situ. Experimental data relating to these problems have now been obtained, and their relative importance is assessed in this paper.

  3. [Toxic heavy metals in foodstuffs (author's transl)].

    PubMed

    Käferstein, F K

    1980-09-01

    1. In the Federal Republic of Germany two staple foodstuffs, cereals and milk, are regularly checked by means of monitoring programmes for their content of heavy metals, this check being representative for the whole country. Other foodstuffs are analysed in the laboratories of the Food Control Authorities, but these inspections are carried out rather sporadically and are not yet of a "monitoring" nature. 2. The measured values from a number of laboratories are fed into a central data bank (Datenbank-ZEBS) at the Federal Health Office and are thus available for statistical and hygienic evaluation. 3. At present, information is available on the lead, cadmium and mercury content of foodstuffs which represent roughly 70 to 80 per cent of the food consumed by an average adult. The intake of lead, cadmium and mercury due to the consumption of these foodstuffs has been calculated and extrapolated to the complete food consumption. It was found that the value ascertained are clearly lower than the toxicological threshold values published by FAO/WHO. 4. Nevertheless, the intake needs to be limited, because the average heavy metal content of some foodstuffs has increased, probably because of anthropogenic reasons. This is especially likely to apply to the cadmium content of wheat. To attempt a restriction by regulation, is at present not considered in Germany to be the optimal solution. Instead, the Federal Health Office has published guidance values which contain an appeal to the foodstuff industry and food control authorities to investigate the causes, whenever these guidance values are approached or exceeded, with the objective of avoiding high levels. PMID:7456855

  4. Heavy metal retention of different roadside soils

    NASA Astrophysics Data System (ADS)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-05-01

    Emissions from major highways contain different kinds of contaminants such as heavy metals, polycyclic aromatic hydrocarbons and road salts which can occur in both particulate and dissolved form. Pollutants are transferred to the environment via aerial transport or the infiltration of road runoff and spray water. A significant rate of the road runoff infiltrates into the Embankment which is usually built during road construction and located next to the road edge. Especially in the long term development there is an increasing problem of soil contamination and groundwater pollution. According to valid German law, newly constructed hard shoulders have to provide a specific bear-ing capacity to enable trafficability in emergency cases. Therefore the applicable materials consist of accurately defined gravel-soil mixtures, which can fulfil this requirement. To determine and com-pare the total and dissolved concentrations of Pb, Cd, Zn, Cu, Ni, Cr in the road runoff and seep-age water of newly constructed embankments, we installed 6 Lysimeter along the edge of the German highway A115. Three lysimeter were filled with different materials which are recently used for embankment construction in Germany. Three further lysimeter where installed and filled with plain gravel, to observe the distribution, quantity and quality of road runoff. Fist results showed that heavy metal concentrations determined in the road runoff were compara-ble to literature values. The solute concentrations in the seepage water of the different embank-ment materials do not show considerable differences and exceed the trigger values of the German Federal Soil Protection & Contamination Ordinance (BBodSchV) only sporadically. Total concentra-tions of the seepage water are significantly higher than solute concentrations and clearly differ be-tween stable and non stable variant. In order to estimate the risk of groundwater pollution further monitoring of seepage water quality is necessary.

  5. Heavy Metal Music and Adolescent Suicidality: An Empirical Investigation.

    ERIC Educational Resources Information Center

    Scheel, Karen R.; Westefeld, John S.

    1999-01-01

    Investigates the relationship between preference for heavy metal music and vulnerability to suicide among high school students. Results indicate that preference for heavy metal music among adolescents may be sign of increased suicidal vulnerability, but also suggests that the source of the problem may lie more in personal and familial…

  6. Heavy Metal Music and Reckless Behavior among Adolescents.

    ERIC Educational Resources Information Center

    Arnett, Jeffrey

    1991-01-01

    Fifty-four male and 30 female adolescents who like heavy metal music were compared on various outcome variables to 56 male and 105 female peers who do not like it. Those who like heavy metal report a wider range of reckless behavior than those who do not like it. (SLD)

  7. Stabilization of heavy metals in ceramsite made with sewage sludge.

    PubMed

    Xu, G R; Zou, J L; Li, G B

    2008-03-21

    In order to investigate stabilization of heavy metals in ceramsite made with sewage sludge as an additive, the configuration of heavy metals in ceramsite was analysed by XRD and while leaching tests were conducted to find out the effect of sintering temperature (850 degrees C, 900 degrees C, 950 degrees C, 1000 degrees C, 1100 degrees C, and 1200 degrees C), pH (1, 3, 5, 7, 9, and 12), and H2O2 concentration (0.5molL(-1), 1molL(-1), 1.5molL(-1), 3molL(-1), and 5molL(-1)) on stabilization of heavy metals (Cd, Cr, Cu, and Pb) in ceramsite. The results indicate that leaching contents of heavy metals do not change above 1000 degrees C and sintering temperature has a significant effect on stabilization of heavy metals in ceramsite; leaching contents of heavy metals decrease as pH increases and increase as H2O2 concentration increases. XRD analysis reveals that the heavy metals exist in steady forms, mainly Pb2O(CrO(4)), CdSiO3, and CuO at 1100 degrees C. It is therefore concluded that heavy metals are properly stabilized in ceramsite and cannot be easily released into the environment again to cause secondary pollution. PMID:17692459

  8. ENZYME-MEDIATED TRANSFORMATIONS OF HEAVY METALS/METALLOIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major emphasis has been placed on the bioremediation of organic compounds and their fate and transport throughout the environment. However, another important class of chemicals polluting our environment are inorganic, particularly heavy metals and metalloids. Heavy metals are elements of the Per...

  9. Dietary heavy metal uptake by the least shrew, Cryptotis parva

    SciTech Connect

    Brueske, C.C.; Barrett, G.W. )

    1991-12-01

    Heavy metals from sewage sludge have been reported to concentrate in producers, in primary consumers, and in detritivores. Little research, however, has focused on the uptake of heavy metals from sewage sludge by secondary consumers. The Family Soricidae represents an ideal mammalian taxonomic group to investigate rates of heavy metal transfer between primary and secondary consumers. The least shrew (Cryptotis parva) was used to evaluate the accumulation of heavy metals while maintained on a diet of earthworms collected from long-term sludge-treated old-field communities. This secondary consumer is distributed widely through the eastern United States and its natural diet includes earthworms which makes it a potentially good indicator of heavy metal transfer in areas treated with municipal sludge.

  10. Characterisation of heavy metal discharge into the Ria of Huelva.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2004-06-01

    The Ria of Huelva estuary, in SW Spain, is known to be one of the most heavy metal contaminated estuaries in the world. River contribution to the estuary of dissolved Cu, Zn, Mn, Cr, Ni, Cd, and As were analysed for the period 1988-2001. The obtained mean values show that this contribution, both because of the magnitude of total metals (895.1 kg/h), composition, toxicity (8.7 kg/h of As+Cd+Pb) and persistence, is an incomparable case in heavy metal contamination of estuaries. The amount and typology of heavy metal discharge to the Ria of Huelva are related to freshwater flow (and, consequently, to rainfall); as a result, two different types of heavy metal discharge can be distinguished in the estuary: during low water (50% of the days), with only 19.3 kg/h of heavy metals, and during high water or flood (17% of the days), where daily maximum discharge of 72,475 kg of heavy metals were recorded, from which 1481 kg were of As, 470 kg of Pb, and 170 kg of Cd. In the most frequent situation (77% of the days), the Odiel River discharges from 90% to 100% of the freshwater received by the estuary. Despite this, the high concentration of heavy metals in the Tinto River water causes this river to discharge into the Ria of Huelva 12.5% of fluvial total dissolved metal load received by the estuary. PMID:15031016

  11. Reducing hazardous heavy metal ions using mangium bark waste.

    PubMed

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater. PMID:27179811

  12. Heavy metal contamination of vegetables in Isfahan, Iran

    PubMed Central

    Jafarian-Dehkordi, A.; Alehashem, M.

    2013-01-01

    Vegetables are an inevitable and important part of a healthy and balanced diet. They could be contaminated by heavy metals in many ways including irrigation by sewage water and industrial effluents sewage sludge, vehicular emissions, industrial waste and atmospheric deposition. In this study, we sought to determine if some vegetables (cucumbers, tomatoes, cabbage, lettuce, potatoes, onions, carrots, persian leeks, dill, spinach, coriander, parsley) grown locally in the suburban of Isfahan city and sold in the urban markets are contaminated with cadmium (Cd), chromium (Cr) and lead (Pb). Vegetables were sampled from August to October 2010. After washing, they were oven-dried and digested using three-acid mixture (70% HNO3, 65% HClO4 and 70% H2SO4). Analyzes of the heavy metals was performed using atomic absorption spectrophotometry. To validate the assay method, intra-day and inter-day variation studies were performed. The concentrations (μg/g) of heavy metals in the samples ranged from 0.00 to 3.66 for Cd, 0.00 to 6.00 for Cr and 0.00 to 7.14 for Pb. The highest concentration of heavy metals was for Pb. The results showed that the amount of Cd, Cr and Pb of some samples exceeded the recommended levels. The amount of Cd in cucumber, tomatoes, potatoes with skin, carrots, and spinach was significantly higher in the samples collected from Isfahanak, Dashti and Ilchi farms than those of Dorche farms. Also, the amount of Cr in onion, carrots, and spinach was significantly higher in samples collected from Isfahanak, Dashti and Ilchi farms than those of Dorche farms. However, the amount of Pb in the carrots and leek was significantly higher in the samples collected from Dorche farms than those of Isfahanak, Dashti and Ilchi farms. It can be concluded from the findings of this study that the amounts of Cd, Cr, and Pb were higher than the acceptable levels recommended by WHO/FAO. Also, higher amount of Cd and Cr in some samples collected from Isfahanak, Dashti and Ilchi

  13. Common plants as alternative analytical tools to monitor heavy metals in soil

    PubMed Central

    2012-01-01

    Background Herbaceous plants are common vegetal species generally exposed, for a limited period of time, to bioavailable environmental pollutants. Heavy metals contamination is the most common form of environmental pollution. Herbaceous plants have never been used as natural bioindicators of environmental pollution, in particular to monitor the amount of heavy metals in soil. In this study, we aimed at assessing the usefulness of using three herbaceous plants (Plantago major L., Taraxacum officinale L. and Urtica dioica L.) and one leguminous (Trifolium pratense L.) as alternative indicators to evaluate soil pollution by heavy metals. Results We employed Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) to assess the concentration of selected heavy metals (Cu, Zn, Mn, Pb, Cr and Pd) in soil and plants and we employed statistical analyses to describe the linear correlation between the accumulation of some heavy metals and selected vegetal species. We found that the leaves of Taraxacum officinale L. and Trifolium pratense L. can accumulate Cu in a linearly dependent manner with Urtica dioica L. representing the vegetal species accumulating the highest fraction of Pb. Conclusions In this study we demonstrated that common plants can be used as an alternative analytical tool for monitoring selected heavy metals in soil. PMID:22594441

  14. Content of heavy metals in the hair

    NASA Astrophysics Data System (ADS)

    Patrashkov, S. A.; Petukhov, V. L.; Korotkevich, O. S.; Petukhov, I. V.

    2003-05-01

    The aim of our investigation was to determine of HM content in the hair of people and animals. Two of the main essential elements-Zn and Cu and two of the supertoxical heavy metals- Pb and Cd were chosen. The investigations were conducted in Russian Federation and Belarus Republic in 2001-2002. About 500 hair samples of people, dogs, cats, cattle, horses, yaks, pigs, sheep goats and rabbits were studied by the stripping voltammetric analysis (SVA) method with TA- 2 analyzer to determine Zn, Cu, Pb and Cd concentrations. The hair samples were prepared according to the methods developed in Tomsk University (Russia) and improved by the authors. The essence of the methods is the multiconsecutive burning of hair samples to ashes and boiling them in concentrated acids to dissolve chemical combinations and transform their metals into ion forms. The zinc concentration was the highest in all hair samples (58.65 ... 195.15 mg/kg). The copper content was several times less (5.49 ... 22.63 mg/kg). Lead and cadmium were detected in relatively low amounts (0.32 ... 2.42 mg/kg and 0.04 ... 0.92 mg/kg respectively). The highest Pb and Cd levels were detected in cats and people hair.

  15. Heavy metals in Tuskegee Lake crayfish

    SciTech Connect

    Khan, A.T.

    1995-12-31

    The crayfish, Onconectes virifis, is a bottom dweller and eats insect larvae, worms, crustaceans, small snails, fishes, and dead animal matter. They can be used to monitor the aquatic environment such as lakes, ponds and creeks. To monitor the environmental contamination of heavy metals (Hg, Pb, Cd, Cu, Co, Ni, and Zn) in Tuskegee Lake, Tuskegee, Alabama, adult crayfish were collected and analyzed for these metals. The Pb, Cd, Cu, Ni, and Zn concentrations were 3.91, 0.22, 8.06, 1.11, and 33.37 ppm in muscle and 28.98, 1.15, 9.86, 2.1 8, and 32.62 ppm in exoskeleton of crayfish, respectively. The concentrations of Pb and Cd were significantly higher in exoskeleton than those of muscle. However, the concentrations of Cu, Ni, and Zn did not show any significant difference between the muscle and the exoskeleton of the crayfish. The concentrations of Hg and Co were undetected in both the exoskeleton and muscle of the crayfish.

  16. [Beijing common green tree leaves' accumulation capacity for heavy metals].

    PubMed

    Li, Shao-Ning; Kong, Ling-Wei; Lu, Shao-Wei; Chen, Bo; Gao, Chen; Shi, Yuan

    2014-05-01

    Seasonal variation of heavy metal contents in leaves and their relationships with soil heavy metal pollution levels were studied through measuring and analyzing the leaves of the common tree species in Beijing and soil heavy metal contents, to detect heavy metal accumulation ability of plant leaves. The results showed that: (1) the contents of Cu, Pb, Zn in plant leaves first decreased and then increased, again declined with changing the seasons (from spring to winter). Cr concentration showed the trend of first increase and then decrease from spring to winter, and the highest in the autumn; the accumulation capacities of Cu for Babylonica and Japonica were higher in the spring, summer and autumn, while Tabuliformis was in winter; the higher accumulation capacities for Cr, Pb were Japonica and Platycladus, and in winter were Platycladus and Bungeana; the higher accumulation capacities for Zn were Babylonica and Bungeana, while Platycladus in winter; (2) the pollution degree of four kinds of heavy metals (Cu, Cr, Pb, Zn) from downtown to suburbs showed that: Jingshan (C =2.48, C is contamination factor) > Olympic (C = 1.27) > Songshan (C = 1.20) > Shuiguan (C = 1. 18); (3) the heavy metals concentration of same plant leaves in the water of the Great Wall changed larger, but those in the other three areas showed that: Jingshan > Olympic > Songshan; the ability of same species leaf to absorb different sorts of heavy metals showed that: Zn >Cu >Pb >Cr; the difference between Zn content and Cr content was significant (P <0.01); (4) the relationship between heavy metal content in plant leaves and soil heavy metal pollution levels presented a quadratic polynomial relation; the significant correlation was found between other three heavy metal contents of plant samples and soil samples, but they were not the case for the Cu, and the correlation coefficients were above 0. 9. PMID:25055683

  17. Fate and effects of heavy metals on the Arkansas river

    SciTech Connect

    Clements, W.H.

    1991-12-15

    The project examined fate and effects of heavy metals on biological communities in the upper Arkansas River Basin. The principal objectives of the research were: (1) to measure the impact of heavy metals (Cd, Cu, and Zn) on benthic invertebrate communities in the Arkansas River; (2) to delineate zones of high impact, moderate impact, and recovery based on the distribution and abundance of these organisms; (3) to examine seasonal variation in effects of metals on benthic communities; (4) to examine the potential transfer of heavy metals from benthic invertebrates to brown trout, Salmo trutta.

  18. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  19. Novel thiosalicylate-based ionic liquids for heavy metal extractions.

    PubMed

    Leyma, Raphlin; Platzer, Sonja; Jirsa, Franz; Kandioller, Wolfgang; Krachler, Regina; Keppler, Bernhard K

    2016-08-15

    This study aims to develop novel ammonium and phosphonium ionic liquids (ILs) with thiosalicylate (TS) derivatives as anions and evaluate their extracting efficiencies towards heavy metals in aqueous solutions. Six ILs were synthesized, characterized, and investigated for their extracting efficacies for cadmium, copper, and zinc. Liquid-liquid extractions of Cu, Zn, or Cd with ILs after 1-24h using model solutions (pH 7; 0.1M CaCl2) were assessed using flame atomic absorption spectroscopy (F-AAS). Phosphonium-based ILs trihexyltetradecylphosphonium 2-(propylthio)benzoate [P66614][PTB] and 2-(benzylthio)benzoate [P66614][BTB] showed best extraction efficiency for copper and cadmium, respectively and zinc was extracted to a high degree by [P66614][BTB] exclusively. PMID:27131456

  20. Heavy metal levels in goats from Notasulga, Alabama

    SciTech Connect

    Khan, A.T.; Diffay, B.C.; Forester, D.M.; Thompson, S.J.; Mielke, H.W.

    1994-12-31

    Goat meat farming is increasing in popularity in southeastern region of United States. In order to monitor environmental contamination of heavy metals in goat meat, samples of liver, kidney, and muscle were collected from 20 goats on a goat farm in Notasulga, Alabama. These samples were analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy. The copper concentration was significantly higher in livers than the concentration in kidneys and muscles. Lead, cadmium, and zinc levels did not show any significant differences between liver, kidney, and muscle samples. The concentrations of lead and copper in livers and cadmium in kidneys were significantly different in males when compared to females. However, in muscle, the concentrations of lead, cadmium, copper, and zinc showed no significant difference between male and female or between young and old goats. Further, the concentrations of lead in livers and cadmium in kidneys showed a significant difference between young and old goats.

  1. Bismuth film electrodes for heavy metals determination

    NASA Astrophysics Data System (ADS)

    Rehacek, Vlastimil; Hotovy, Ivan; Vojs, Marian; Mika, Fedor

    2007-05-01

    Bismuth film electrodes (BiFEs) have a potential to replace toxic mercury used most frequently for determination of heavy metals (Cd, Pb, Zn) by anodic stripping voltammetry. We prepared a graphite disc electrode (0.5 mm in diameter) from a pencil-lead rod and developed a nitrogen doped diamond-like carbon (NDLC) microelectrode array consisting of 50 625 microdiscs with 3 μm in diameter and interelectrode distances of 20 μm on a highly conductive silicon substrate as a support for BiFEs. The disc graphite BiFE was used for simultaneous determination of Pb(II), Cd(II) and Zn(II) by square wave voltammetry (SWV) in an aqueous solution. We found the optimum bismuth-to-metal concentration ratio in the solution to be 20. The dependence of the stripping responses on the concentration of target metals was linear in the range from 1×10 -8 to 1.2×10 -7 mol/L. Detection limits 2.4×10 -9 mol/L for Pb(II), 2.9×10 -9 mol/L for Cd(II) and 1.2×10 -8 mol/L for Zn(II) were estimated. A bismuth-plated NDLC microelectrode array was used for Pb(II) determination by differential pulse voltammetry (DPV) in an aqueous solution. We found that the stripping current for bismuth-plated NDLC array was linear in the concentration range of Pb(II) from 2×10 -8 to 1.2×10 -7 mol/L. The detection limit 2.2×10 -8 mol/L was estimated from a calibration plot.

  2. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  3. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed. PMID:23915280

  4. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals.

    PubMed

    Wu, Qihang; Zhou, Haichao; Tam, Nora F Y; Tian, Yu; Tan, Yang; Zhou, Song; Li, Qing; Chen, Yongheng; Leung, Jonathan Y S

    2016-03-15

    Urban rivers are often utilized by the local residents as water source, but they can be polluted by heavy metals due to industrialization. Here, the concentrations, toxicity, speciation and vertical profiles of heavy metals in sediment were examined to evaluate their impact, dispersal and temporal variation in Dongbao River. Results showed that the sediment in the industrialized areas was seriously contaminated with Cr, Cu and Ni which posed acute toxicity. Heavy metals, except Cr and Pb, were mainly associated with non-residual fractions, indicating their high mobility and bioavailability. The non-industrialized areas were also seriously contaminated, suggesting the dispersal of heavy metals along the river. The surface sediment could be more contaminated than the deep sediment, indicating the recent pollution events. Overall, when the point sources are not properly regulated, intense industrialization can cause both serious contamination and dispersal of heavy metals, which have far-reaching consequences in public health and environment. PMID:26856647

  5. [Application of ICP-MS to determination of heavy metal content of heavy metals in two kinds of N fertilizer].

    PubMed

    Rui, Yu-kui; Shen, Jian-bo; Zhang, Fu-suo

    2008-10-01

    Environmental safety has been the focus worldwide, where involved are the pollutions of heavy metals, pesticides and persistent organic pollutants. Fertilizer has become one of the polluting sources of heavy metals, which are very deleterious to human health and environmental safety. Heavy metals are difficult to metabolize in human body and very harmful, so research on the pollution of heavy metals is considered increasingly important. The pollution sources of heavy metals include waste residue, waste water and exhaust gas from industry and automobile, and garbage from human life. The heavy metals in fertilizer can endanger the human body by the crop containing heavy metals. Two kinds of nitrogen fertilizer were analyzed in terms of the content of heavy metals by ICP-MS, and the results showed that the content of 10 kinds of heavy metals (Al, Ti, Cr, Ni, Cu, Zn, As, Cd, Hg and Pb) in (NH4)2SO4 was 1345.13, 35.12, 2539.27, 287.26, 674.05, 270.79, 42.54, 22.13, 27.20 and 123.87 ng x g(-1) respectively; and in CO(NH2)2 it is 71.59, 5.36, 1167.71, 188.60, 7.46, 64.45, 10.55, 0.00, 0.09 and 3.71 ng x g(-1) respectively. All the data showed that CO(NH2)2 contained much less heavy metals than (NH4)2SO4, so we should select CO(NH2)2 as the nitrogen fertilizer in agricultural production. PMID:19123422

  6. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  7. Ionization of Atoms by Slow Heavy Particles, Including Dark Matter

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Flambaum, V. V.; Gribakin, G. F.

    2016-01-01

    Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9 σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.

  8. Ionization of Atoms by Slow Heavy Particles, Including Dark Matter.

    PubMed

    Roberts, B M; Flambaum, V V; Gribakin, G F

    2016-01-15

    Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times. PMID:26824537

  9. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents.

    PubMed

    Ajayan, K V; Selvaraju, M; Thirugnanamoorthy, K

    2011-08-15

    Microalgae exhibit a number of heavy metal uptake process by different metabolism. In this study, the ability of microalgae for removal of heavy metal from wastewater was studied. Growth and biochemical contents of microalgae were determined by spectrophotometer. Heavy metal analysis of wastewater effluents were performed by atomic absorption spectrophotometer before and after treatment at laboratory scale. The growth of Scenedesmus bijuga and Oscillatoria quadripunctulata in sewage wastewater was higher than those grown in synthetic medium. Whereas, the growth of S. bijuga and O. quadripunctulata in sterilized petrochemical effluents was slightly lower than that grown in the standard synthetic medium. The chlorophyll, carotenoid and protein content of S. bijuga and O. quadripunctulata grown in sterilized sewage wastewater were higher than those grown in the standard medium. Similarly S. bijuga and O. quadripunctulata grown in sterilized petrochemical effluents showed lower contents of pigments and protein than those grown in sewage and synthetic medium. Heavy metals copper, cobalt, lead and zinc were removed by 37-50, 20.3-33.3, 34.6-100 and 32.1-100%, respectively from sewage wastewater and petrochemical effluent using Ocillatoria culture. The metal absorption by S. bijuga were (Cu, Co, Pb, Zn) 60-50, 29.6-66, 15.4-25 and 42.9-50%, respectively from sewage and petrochemical effluents. Both species showed high level of heavy metal removal efficiency and metal sorption efficiency of both microalgae depended on the type of biosorbent, the physiological status of the cells, availability of heavy metal, concentration of heavy metal and chemical composition of wastewater. PMID:22545355

  10. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26940747

  11. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  12. Accumulation of heavy metals in selected medicinal plants.

    PubMed

    Sarma, Hemen; Deka, Suresh; Deka, Hemen; Saikia, Rashmi Rekha

    2011-01-01

    In this review, we evaluate the reports published between 1993 and 2011 that address the heavy metal accumulation in 88 medicinal plant species. We compare the safe limits for heavy metals set by governmental agencies vs. the levels at which such metals actually exist in selected medicinal plants. We also evaluate the uses and effectiveness of medicinal plants in health care, and assess the hazards of medicinal plant uses, in view of the growing worldwide use of medicinal plants. From our extensive review of the literature, we discovered that a maximum permissible level (MPL) of Pb is exceeded in 21 plant medicine species, Cd in 44 species, and Hg in 10 species. Vetiveria zizanioides a potential candidate species for the treatment of cardiovascular diseases absorb a wide range of heavy metals from metal-contaminated soils. We believe that this species is the single most impressive example of a potentially hazardous medicinal plant. Based on our review, we endorse the hypothesis that heavy metal accumulation by medicinal plants is mainly caused by extraction of soluble metals from contaminated soil, sediments and air. One continuing problem in protecting consumers of plant-based medicines is that permissible levels of all heavy metals in herbal medicine have not yet been standardized by regulating governmental entities. Moreover, there are few limit tests that exist for heavy metal content of medicinal plants, or permissible limits for essential dietary minerals, in most medicinal plants. The dearth of such limits hamstrings development of medicinal plant research and delays the release of either new or improved versions of medicinal plants or their components. In the present review, we emphasize that medicinal plants are often subjected to heavy metal contamination and that the levels at which these heavy metals sometimes occur exceeds permissible levels for some species. Therefore, collecting medicinal plants from areas that are, or may be, contaminated should be

  13. Modeling the transport of heavy metals in soils. Monograph report

    SciTech Connect

    Selim, H.M.; Amacher, M.C.; Iskandar, I.K.

    1990-09-01

    Retention reactions in soils are important processes that govern the fate of chemical contaminants such as heavy metals in groundwaters. The ability to predict the mobility of heavy metals in the soil and the potential contamination of groundwater supplies is a prerequisite in any program aimed at protecting groundwater quality. Mathematical models that describe the potential mobility of heavy metals must include description of the retention processes in the soil matrix. Extensive research has been carried out to describe the retention-release behavior of several heavy metals in soils. Fuller, Alesii et al., Dowdy and Volk, Ellis et al., and Kabata-Pendias and Pendias, among others, have presented overviews of retention-release and leaching investigations for several heavy metals in soils. The publications also describe soil physical and chemical properties that influence the fate of heavy metals in the soil environment and their potential leaching to groundwater supplies. Over the last two decades, however, only a limited number of investigations have attempted to quantify the heavy metals in laboratory soil columns or in soil profiles under field conditions have only recently appeared in the literature.

  14. Inducibility of a molecular bioreporter system by heavy metals

    SciTech Connect

    Klimowski, L.; Rayms-Keller, A.; Olson, K.E.; Yang, R.S.H.; Tessari, J.; Carlson, J.; Beaty, B.

    1996-02-01

    The authors have developed a molecular bioreporter model for detecting an invertebrate response to heavy metals in streams. The bioreporter system, pMt2-luc, utilizes a Drosophila melanogaster metallothionein promoter to regulate luciferase expression in stably transformed mosquito cells.The LucC5 clone, which was isolated from pMt2-luc transformed, hygromycin-resistant C6/36 (Aedes albopictus) cells, demonstrated a 12-fold increase in luciferase-specific activity 48 h after exposure to 13 ppm copper (Cu). In addition to Cu, exposure of LucC5 cells to 19 ppm lead (Pb) or 3 ppm mercury (Hg) for 48 h induced luciferase expression threefold and fourfold, respectively. Exposures of up to 30 ppm arsenic (As), 8 ppm cadmium (Cd), 7 ppm chromium (Cr), or 5 ppm nickel (Ni) had no effect on luciferase induction. LucC5 cells exposed to metal mixtures of 13 ppm Cu and 19 ppm Pb yielded an additive response with a 14-fold increase in luciferase expression. When organic chemicals such as phenol (3 ppm) were mixed with 13 ppm Cu, 19 ppm Pb, or 3 ppm Hg a significant reduction in luciferase activity was noted. Additionally, atomic absorption spectroscopy suggested that two of the metals, Cu and Pb, show marked differences in accumulation within the LucC5 cell line.

  15. Studies Concerning the Accumulation of Minerals and Heavy Metals in Fruiting Bodies of Wild Mushrooms

    SciTech Connect

    Stihi, Claudia; Radulescu, Cristiana; Gheboianu, Anca; Bancuta, Iulian; Popescu, Ion V.; Busuioc, Gabriela

    2011-10-03

    The minerals and heavy metals play an important role in the metabolic processes, during the growth and development of mushrooms, when they are available in appreciable concentration. In this work the concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Se, Cd and Pb were analyzed using the Flame Atomic Absorption spectrometry (FAAS) together with Energy Dispersive X-ray Fluorescence spectrometry (EDXRF) in 3 wild mushrooms species and their growing substrate, collected from various forestry fields in Dambovita County, Romania. The analyzed mushrooms were: Amanita phalloides, Amanita rubescens and Armillariella mellea. The accumulation coefficients were calculated to assess the mobility of minerals and heavy metals from substrate to mushrooms [1].

  16. Improving crop tolerance to heavy metal stress by polyamine application.

    PubMed

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. PMID:27451175

  17. Heavy metals influence on ascorbic acid level

    NASA Astrophysics Data System (ADS)

    Kamaldinov, E. V.; Patrashkov, S. A.; Batenyeva, E. V.; Korotkevich, O. S.

    2003-05-01

    It is well known that heavy metals (HM) are extremely dangerous pollutants influencing to metabolism in animals' organisms. The vitamin C is one of the most important metabolites taking part in many biochemical processes. We studied the influence of main essential HM-Zn and Cu as well as the based supertoxical elements - Cd and Pd on ascorbic acid level in serum. The studies were carried out in Tulinskoe farm of Novosibirsk region. The objects of investigations were piglets (2 month after weaning) and 6-month pigs of Early Ripe Meat breed. The levels of HM in bristle were found by stripping voltammetric analysis using the TA-2 analyzer. Vitamin C content was determined by I.P. Kondrakhin (1985) method using 2,2-dipyridyl. The significant negative correlations between Pb, Cd content and vitamin C (-0.46 ± 0.18, -0.47 ± 0.19) in 6-month pigs were determined. The tendencies of negative correlation between all HM levels in hair and ascorbic acid level in plasma of piglets were revealed. Thus, the obtained correlations let us to suppose that all studied HM influence on 1-gulono-gamma-lactone oxidase and other vitamin C metabolism enzymes activity.

  18. Adsorption behavior of heavy metals on biomaterials.

    PubMed

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-01

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples. PMID:15373400

  19. pfmdr2 confers heavy metal resistance to Plasmodium falciparum.

    PubMed

    Rosenberg, Elli; Litus, Ilena; Schwarzfuchs, Nurit; Sinay, Rosa; Schlesinger, Pnina; Golenser, Jacob; Baumeister, Stefan; Lingelbach, Klaus; Pollack, Yaakov

    2006-09-15

    Heavy metals are required by all organisms for normal function, but high levels of heavy metals are toxic. Therefore, homeostasis of these metals is crucial. In the human malaria-causing agent Plasmodium falciparum, the mechanisms of heavy metal transport have yet to be characterized. We have developed a P. falciparum line resistant to heavy metals from a wild-type line sensitive to heavy metals. A molecular and biochemical analysis of the involvement of the P. falciparum multidrug resistance 2 (pfmdr2) gene, an ABC-type transporter, in heavy metal homeostasis was studied. Using a novel uptake assay applied on these two strains, it was demonstrated that, when exposed to heavy metals, the sensitive line accumulates metal, whereas no accumulation was observed in the resistant line. The accumulation occurs within the parasite itself and not in the cytoplasm of the red blood cell. This difference in the accumulation pattern is not a result of amplification of the pfmdr2 gene or of a change in the expression pattern of the gene in the two lines. Sequencing of the gene from both lines revealed a major difference; a stop codon is found in the sensitive line upstream of the normal termination, resulting in a truncated protein that lacks 188 amino acids that contain a portion of the essential cytoplasmatic transporter domain, thereby rendering it inactive. In contrast, the resistant line harbors a full-length, active protein. These findings strongly suggest that the PFMDR2 protein acts as an efflux pump of heavy metals. PMID:16849328

  20. Leachability of heavy metals from growth media containing source-separated municipal solid waste compost

    SciTech Connect

    Sawhney, B.L.; Bugbee, G.J.; Stilwell, D.E.

    1994-07-01

    The leaching of heavy metals in source-separated municipal solid waste (MSW) compost was determined by irrigation leaching of growth medium, admixed with varying amounts of compost, used for container grown plants. Perennial flowers (black-eyed Susan, Rudbeckia hirta L.) were grown in 2-L containers filled with the growth medium for a 10-wk period. Rainfall was supplemented with overhead irrigation to supply 2 cm of water per day. Leachates collected over each 2-wk period were analyzed for Cd, Cr, Cu, Ni, Pb, and Zn using atomic spectrometry. Concentrations of the heavy metals in the leachates increased with increasing proportions of MSW compost in the growth medium, but decreased with time of leaching. Leaching of the metals occurred at relatively high concentrations initially, followed by continued leaching at low concentrations. The initial leaching of heavy metals is attributed to their soluble or exchangeable forms and the subsequent slow leaching to the solid compounds. The concentrations of the heavy metals remained below the current drinking water standards in all treatments throughout the leaching period. The results thus suggest that contamination of groundwater with heavy metals from source-separated MSW compost applied as a soil amendment should be negligible, as the low concentrations in the leachates leaving the surface soil would be further attenuated by the subsoil. 29 refs., 6 figs., 1 tab.

  1. Data on heavy metals and selected anions in the Persian popular herbal distillates.

    PubMed

    Keshtkar, Mozhgan; Dobaradaran, Sina; Soleimani, Farshid; Karbasdehi, Vahid Noroozi; Mohammadi, Mohammad Javad; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji

    2016-09-01

    In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including [Formula: see text] , [Formula: see text], [Formula: see text] and [Formula: see text] in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain ("Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in Bushehr Port, Iran" (Dobaradaran et al., 2013) [1]; "Comparative investigation of heavy metal, trace, and macro element contents in commercially valuable fish species harvested off from the Persian Gulf" (Abadi et al., 2015) [2]) as well as some other environmental pollutions, "Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity" (Arfaeinia et al., 2016) [3]. The concentration levels of heavy metals and anions in herbal distillates samples were determined using flame atomic absorption spectrometry (FAAS, Varian AA240, Australia) and a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK) respectively. PMID:27274526

  2. Bioaccumulation of heavy metals in Mbaa River and the impact on aquatic ecosystem.

    PubMed

    Ajima, M N O; Nnodi, P C; Ogo, O A; Adaka, G S; Osuigwe, D I; Njoku, D C

    2015-12-01

    The bioaccumulation and toxic effects of heavy metals have caused ecological damage to aquatic ecosystem. In this study, concentration of heavy metals including zinc, lead, cadmium, iron, and copper were determined in the sediment and water as well as in the muscle, gill, and intestine of two fish species (Pelmatochromis guentheri and Pelmatochromis pulcher) of Mbaa River in Southeastern Nigeria. Samples were collected at three different spots from the river, and the level of heavy metals specified above were determined by atomic absorption spectroscopy (AAS) after a modified wet digestion process. The results indicated that sediment had the highest concentration of the heavy metals investigated while water had the lowest concentration. Fish tissues showed appreciable bioaccumulation of these metals as evidenced by a higher concentration profile when compared with that of water. Furthermore, the concentration of these heavy metals in water and their bioconcentration factor in the fish were above the recommended limit by WHO and FEPA, indicating that Mbaa River along Inyishi may not be suitable for drinking nor the fish safe for human consumption. The study also reveals the use of fish as bioindicator of aquatic environment. PMID:26597816

  3. Heavy metals in red crabs, Chaceon quinquedens, from the Gulf of Mexico.

    PubMed

    Perry, Harriet; Isphording, Wayne; Trigg, Christine; Riedel, Ralf

    2015-12-30

    The red crab, Chaceon quinquedens, is distributed in deep waters of the Gulf of Mexico (GOM) and is most abundant in an area associated with sediment deposition from the Mississippi River. Sediment geochemistry and biological and ecological traits of red crabs favor accumulation of contaminants. Red crabs, sediment, and bottom water samples were taken from three distinct geographic locations representing areas with differing exposure to contaminant laden effluents from the Mississippi River. Inductively coupled plasma spectrophotometry and atomic absorption spectrophotometry were employed to determine levels of heavy metals in red crab muscle tissue. Ion site partitioning was used to determine metal speciation in sediments. Red crabs showed evidence of heavy metal bioaccumulation in all sample areas with high variability in contaminant levels in individual crabs for some metals. Bioavailability of metals in sediment did not always result in accumulation in muscle tissue. PMID:26589640

  4. Heavy Metals in Marine Pollution Perspective-A Mini Review

    NASA Astrophysics Data System (ADS)

    Ansari, T. M.; Marr, I. L.; Tariq, N.

    Anthropogenic inputs of pollutants such as heavy metals into the marine environment have increased their levels to large extents within past a few decades. These pollutants tend to accumulate in the bottom sediments. As a result, ecosystems such as seaports or other industrialized coastal areas that have chronic inputs of metals have highly contaminated sediments. This characteristic has led to concerns over the ecological effects that may be associated with sediment quality. Of particular concern are toxic effects and the potential for bioaccumulation of metals in biota exposed to the sediments. The availability of heavy metals to the biomass of a polluted region is the prime concern both in terms of the prediction of the effects of metal pollution on an ecosystem and in terms of possible human health risks. With growing interest on environmental issues, several intriguing questions related to heavy metals are often raised. This review addresses the basic concepts, sources, speciation, mode of action, levels, analytical measurement, bioavailability, bioaccumulation, biological role and toxicity of heavy metals in the marine environment. Lead, Cadmium, Zinc, Copper, Manganese, Iron, Mercury, Arsenic and Barium are selected because these metals are common and are often at measurable levels in marine samples. An attempt has been made to answer the queries presented by the environmentalists working on various aspects of heavy metal pollution in the marine environment

  5. Swift heavy ion irradiation of metal containing tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Karaseov, P. A.; Protopopova, V. S.; Karabeshkin, K. V.; Shubina, E. N.; Mishin, M. V.; Koskinen, J.; Mohapatra, S.; Tripathi, A.; Avasthi, D. K.; Titov, A. I.

    2016-07-01

    Thin carbon films were grown at room temperature on (0 0 1) n-Si substrate using dual cathode filtered vacuum arc deposition system. Graphite was used as a source of carbon atoms and separate metallic electrode was simultaneously utilized to introduce Ni or Cu atoms. Films were irradiated by 100 MeV Ag7+ ions to fluences in the range 1 × 1010-3 × 1011 cm-2. Rutherford backscattering spectroscopy, Raman scattering, scanning electron microscopy and atomic force microscopy in conductive mode were used to investigate film properties and structure change under irradiation. Some conductive channels having metallic conductivity type were found in the films. Number of such channels is less than number of impinged ions. Presence of Ni and Cu atoms increases conductivity of those conductive channels. Fluence dependence of all properties studied suggests different mechanisms of swift heavy ion irradiation-induced transformation of carbon matrix due to different chemical effect of nickel and copper atoms.

  6. Heavy metals in livers and kidneys of goats in Alabama

    SciTech Connect

    Khan, A.T.; Diffay, B.C.; Datiri, B.C.

    1995-10-01

    The popularity of goat farming is increasing in the southeastern region of the United States. Baseline values of Hg, Pb, and Cd are not available in goat tissues in the United States. These values are needed when monitoring food for heavy metal contamination which may be associated with urbanization and industrialization. Due to human activities or anthropogenic sources of metals in the environment, high concentrations of these metals have been observed in herbage and animal tissues. It has also been reported that toxic heavy metals are concentrated mostly in kidneys and livers of animals. The risk of exposure of humans to heavy metals contained in edible organs of animals has received widespread concern. The objectives of this study were to (i) measure the levels of Hg,Pb, and Cd in livers and kidneys of goats; and (ii) determine whether accumulation of these metals is related to age and/or sex. 20 refs., 3 tabs.

  7. Heavy Metals and Epigenetic Alterations in Brain Tumors

    PubMed Central

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-01-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  8. Heavy-metal complexation by de novo peptide design.

    PubMed

    Farrer, Brian T; Pecoraro, Vincent L

    2002-11-01

    From poisoning caused by lead-based paint on domestic buildings to groundwater contamination by naturally occurring arsenic deposits in India, heavy-metal toxicity is a global health problem. Contaminated ground water and acute cases of heavy-metal poisoning are treated with chelators to remove the heavy metals from the contaminated site or person. This review discusses the effort to generate heavy-metal chelators through peptide de novo design. De novo design entails the design of a primary sequence that will precisely fold into a predetermined secondary and tertiary protein structure. The first-generation peptide chelator used to initiate this investigation is the three-stranded coild coil containing Cys. Cys provides a potential trigonal binding site with soft thiolate ligands, which has been proposed to provide specific interactions with heavy metals. This hypothesis derives from the observation that similar sites on natural proteins show selectivity for heavy metals over other essential metals, such as Zn or Mg. A description of two systems, the TRI series and the IZ-AC peptide, is given, highlighting the interaction of these peptides with Hg, Cd, As and Pb. Arguments are also presented for the potential use of three-helix bundles as a second-generation design. PMID:12478724

  9. Heavy metals content of municipal wastewater and sludges in Kuwait.

    PubMed

    Al Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Municipal wastewater may contain heavy metals, which are hazardous to the environment and humans. With stringent regulations concerning water reuse and sludge utilization in agriculture, there is a great need to determine levels of heavy metals in liquid wastes, sludges and agricultural crops. The state of Kuwait has programs to utilize waste sludge produced at wastewater treatment plants as soil conditioner and fertilizer for greenery and agricultural development projects and to reuse treated wastewater effluents in irrigation. The common metals found in Kuwait's raw wastewater and sludge are Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The effects of accumulation of heavy metals in soil are long lasting and even permanent. In this study, the variations in the concentration levels of heavy metals were measured in wastewater and sludge produced at Ardiya municipal wastewater treatment plant in Kuwait. A relationship was observed between the concentrations of heavy metals in treated wastewater and sludge used for agriculture and the level of accumulated heavy metals found in residual tissues of some crops. PMID:15027823

  10. Heavy metals and epigenetic alterations in brain tumors.

    PubMed

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-12-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  11. NMR microscopy of heavy metal absorption in calcium alginate beads

    SciTech Connect

    Nestle, N.; Kimmich, R.

    1996-01-01

    In recent years, heavy metal uptake by biopolymer gels, such as Cal-Alginate or chitosan, has been studied by various methods. This is of interest because such materials might be an alternative to synthetical ion-exchange resins in the treatment of industrial waste waters. Most of the work done in this field consisted of studies of equilibrium absorption of different heavy metal ions with dependence on various experimental parameters. In some publications, the kinetics of absorption were studied, too. However, no experiments on the spatial distribution of heavy metals during the absorption process are known to us. Using Cu as an example, it is demonstrated in this article that NMR microscopy is an appropriate tool for such studies. By the method presented here, it is possible to monitor the spatial distribution of heavy metal ions with a time resolution of about 5 min and a spatial resolution of 100 {mu}m or even better. 14 refs., 10 figs.

  12. DETERMINATION OF HEAVY METALS AND PESTICIDES IN GINSENG PRODUCTS

    EPA Science Inventory

    Medicinal plants may carry residuals of environmentally persistent pesticides or assimilate heavy metals in varying degrees. Several factors may influence contaminant accumulation, including species, level and duration of contaminant exposure, and topography. As part of a progra...

  13. Detection of heavy metal by paper-based microfluidics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed. PMID:27131999

  14. View of interior detail; in kitchen; builtiniron and heavy metal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of interior detail; in kitchen; built-in-iron and heavy metal clock. - Mare Island Naval Shipyard, Quarters P, Walnut Avenue, northwest corner of Walnut Avenue & Fifth Street, Vallejo, Solano County, CA

  15. Combined toxicity of heavy metal mixtures in liver cells.

    PubMed

    Lin, Xialu; Gu, Yuanliang; Zhou, Qi; Mao, Guochuan; Zou, Baobo; Zhao, Jinshun

    2016-09-01

    With rapid industrialization, China is now facing great challenges in heavy metal contamination in the environment. Human exposure to heavy metals through air, water and food commonly involves a mixture consisting of multiple heavy metals. In this study, eight common heavy metals (Pb, Cd, Hg, Cu, Zn, Mn, Cr, Ni) that cause environmental contamination were selected to investigate the combined toxicity of different heavy metal mixtures in HL7702 cells. Toxicity (24 h LC50 ) of each individual metal on the cells ranked Hg > Cr = Cd > Cu > Zn > Ni > Mn > Pb; toxicity of the different mixtures ranked: M5 > M3PbHgCd > M5+Mn > M5+Cu > M2CdNi > M4A > M8-Mn > M8 > M5+Zn > M4B > M8-Cr > M8-Zn > M8-Cu > M8-Pb > M8-Cd > M8-Hg > M8-Ni > M3PbHgNi > M3CuZnMn. The cytotoxicity data of individual metals were successfully used to build the additive models of two- to eight-component metal mixtures. The comparison between additive model and combination model or partly additive model was useful to evaluate the combined effects in mixture. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures. These results suggest that the combined effects should be considered in the risk assessment of heavy metal co-exposure, and more comprehensive investigations on the combined effects of different heavy metal mixtures are needed in the future. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26865462

  16. Developments in alkali-metal atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  17. Nuclear polarization in heavy atoms and superheavy quasiatoms

    SciTech Connect

    Plunien, G. ); Mueller, B.; Greiner, W. ); Soff, G. )

    1991-06-01

    We consider the contribution of nuclear polarization to the Lamb shift of {ital K}- and {ital L}-shell electrons in heavy atoms and quasiatoms. Our formal approach is based on the concept of effective photon propagators with nuclear-polarization insertions treating effects of nuclear polarization on the same footing as usual QED radiative corrections. We explicitly derive the modification of the photon propagator for various collective nuclear excitations and calculate the corresponding effective self-energy shift perturbatively. The energy shift of the 1{ital s}{sub 1/2} state in {sub 92}{sup 238}U due to virtual excitation of nuclear rotational states is shown to be a considerable correction for atomic high-precision experiments. In contrast to this, nuclear-polarization effects are of minor importance for Lamb-shift studies in {sub 82}{sup 208}Pb.

  18. Several methods to determine heavy metals in the human brain

    NASA Astrophysics Data System (ADS)

    Andrási, Erzsébet; Igaz, Sarolta; Szoboszlai, Norbert; Farkas, Éva; Ajtony, Zsolt

    1999-05-01

    The determination of naturally occurring heavy metals in various parts of the human brain is discussed. The patients had no diseases in their central nervous systems (five individuals, mean age 70 years). Twenty brain parts were selected from both hemispheres. The analysis was carried out by graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis methods. Accuracy and precision of the applied techniques were tested by using standard reference materials. Two digestion methods were used to dissolve the brain samples for ICP-AES and GF-AAS. One was performed in a Parr-bomb and the second in a microwave oven. The present results show a non-homogeneous distribution of the essential elements (Cu, Fe, Mn, Zn) in normal human brain. Corresponding regions in both hemispheres showed an almost identical concentration of these elements. In the case of toxic elements (Pb, Cd) an average value in different brain regions can not be established because of the high variability of individual data. This study indicates that beside differences in Pb and Cd intake with foods or cigarette smoke inhalation, the main factors of the high inter-individual variability of these element concentrations in human brain parts may be a marked difference in individual elimination or accumulation capabilities.

  19. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    SciTech Connect

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source.

  20. Heavy metal removal using peat/wetland treatment

    SciTech Connect

    Murawski, S.

    1994-12-31

    The purpose of this paper is to present an overview of the mechanisms and application of a peat/wetland treatment system for heavy metal removal from wastewater. The mechanisms involved in the removal of heavy metals are complex and difficult to predict, however, peat has been proven to be an effective medium to remove metals. The successful design of a peat/wetland treatment system for acid mine drainage is presented to emphasize the low cost and minimal maintenance involved in this passive metal removal technique.

  1. Variation in dry grassland communities along a heavy metals gradient.

    PubMed

    Woch, Marcin W; Kapusta, Paweł; Stefanowicz, Anna M

    2016-01-01

    The aim of this study was to investigate the variation in plant communities growing on metal-enriched sites created by historical Zn–Pb mining. The study sites were 65 small heaps of waste rock covered by grassland vegetation and scattered mostly over agricultural land of southern Poland. The sites were described in terms of plant coverage, species richness and composition, and the composition of plant traits. They were classified using phytosociological methods and detrended correspondence analysis. Identified plant communities were compared for vegetation parameters and habitat properties (soil characteristics, distance from the forest) by analysis of variance. The variation in plant community parameters was explained by multiple regression, in which the predictors were properties of the habitat selected on the basis of factor analysis. Grasslands that developed at low and high concentrations of heavy metals in soil were similar to some extent: they were composed on average of 17–20 species (per 4 m(2)), and their total coverage exceeded 90%. The species composition changed substantially with increasing contamination with heavy metals; metal-sensitive species withdrew, while the metal-tolerant became more abundant. Other important predictors of community structure were: proximity to the forest (responsible for the encroachment of competitive forest species and ruderals), and the thickness of the surface soil (shallow soil favored the formation of the heavy metal grassland). The heavy metal grassland was closely related to the dry calcareous grasslands. The former was an earlier succession stage of the latter at low contamination with heavy metals. PMID:26493699

  2. Successful treatment of potentially fatal heavy metal poisonings.

    PubMed

    Wang, Ernest E; Mahajan, Niraj; Wills, Brandon; Leikin, Jerrold

    2007-04-01

    Pure inorganic heavy metal ingestions for suicidal intent are a rare occurrence. Most case reports on this subject focus on the serious neurological, hepatic, or renal side effects. We describe two cases of significant heavy metal poisonings (arsenic trioxide and mercuric chloride) that were successfully managed with aggressive decontamination and combined chelation therapy. Both chemicals were obtained in pure powder form through the Internet. PMID:17394994

  3. Human health risk assessment of heavy metals in urban stormwater.

    PubMed

    Ma, Yukun; Egodawatta, Prasanna; McGree, James; Liu, An; Goonetilleke, Ashantha

    2016-07-01

    Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150μm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas. PMID:27046140

  4. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  5. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  6. Use of Complementary Cation And Anion Heavy Atom-Atom Salt Derivatives to Solve the Structure of Cytochrome P450 46a1

    SciTech Connect

    White, M.A.; Mast, N.; Bjorkhem, I.; Johnson, E.F.; Stout, C.D.; Pikuleva, I.A.

    2009-05-26

    Human cytochrome P450 46A1 (CYP46A1) is one of the key enzymes in cholesterol homeostasis in the brain. The crystallization and heavy-atom structure solution of an active truncated CYP46A1 in complex with the high-affinity substrate analogue cholesterol-3-sulfate (CH-3S) is reported. The 2.6 {angstrom} structure of CYP46A1-CH-3S was solved using both anion and cation heavy-atom salts. In addition to the native anomalous signal from the haem iron, an NaI anion halide salt derivative and a complementary CsCl alkali-metal cation salt derivative were used. The general implications of the use of halide and alkali-metal quick soaks are discussed. The importance of using isoionic strength buffers, the titration of heavy-atom salts into different ionic species and the role of concentration are considered. It was observed that cation/anion-binding sites will occasionally overlap, which could negatively impact upon mixed RbBr soaks used for multiple anomalous scatterer MAD (MMAD). The use of complementary cation and anion heavy-atom salt derivatives is a convenient and powerful tool for MIR(AS) structure solution.

  7. Heavy metal concentration in fish tissues inhabiting waters of "Busko Blato" reservoir (Bosnia and Herzegovina).

    PubMed

    Has-Schön, Elizabeta; Bogut, Ivan; Kralik, Gordana; Bogut, Stjepan; Horvatić, Janja; Cacić, Milan; Cacić, Ivan

    2008-09-01

    Heavy metals concentration (mercury, lead, cadmium, arsenic, copper, zinc and chromium) in tissues (muscles, liver, kidney and gonads) of Dalmatian barbelgudgeon, the nase, the souffie and brown trout, inhabiting waters of Busko Blato reservoir in Bosnia and Herzegovina, has been determined by atomic absorption spectrophotometry. The meat of the tested fish sorts does not contain elevated concentration of most analyzed heavy metals with exception of lead (higher than MAC in Italy, Germany and Denmark) and mercury (in muscles of brown trout higher than MAC in most countries). The lowest level of all heavy metals is always detected in gonads, with higher values in fry compared to milt for copper, zinc, chromium and arsenic. The highest copper concentration is observed in the liver from the souffie which is suggested as a suitable biomonitor for copper intoxication. In muscles of all fish sorts, lead was always present in much higher concentration than cadmium, while in kidneys of most fish sorts, lead and cadmium concentrations were similar. We showed that bioaccumulation of some heavy metals in the fish sorts analyzed is tissue and sex dependent. Also, we concluded that the small water exchange in reversible shallow reservoir does not induce elevated concentration of heavy metals in fish tissues inhabiting Busko Blato. PMID:17342437

  8. Philometra ovata (Nematoda: Philometroidea): a potential sentinel species of heavy metal accumulation.

    PubMed

    Barus, V; Jarkovský, J; Prokes, M

    2007-04-01

    To assess the bioindicator value of parasites, the concentrations of six heavy metals (Cr, Cu, Pb, Cd, Ni and Zn) were analyzed by atomic absorption spectrometry in gravid females of the nematode Philometra ovata, body cavity parasites of gudgeon (Gobio gobio) and muscle samples of infected and uninfected hosts. The concentration of heavy metals was significantly higher in specimens of P. ovata compared to the host muscle tissue. The parasite-to-muscle ratio of heavy metals varied from 3.2 to 121.7, in increasing concentrations for Cr, Cd, Cu, Pb, Ni and Zn. The presence of parasites did not influence the heavy metal content of the hosts, and no significant differences were found between muscle tissues of parasitized and non-parasitized fishes. The bioconcentration factor (BF = Cparasite/Csediment)varied between 0.4 and 25.8, in increasing order for Cd, Zn, Cu, Pb, Ni and Cr. These results indicate that P. ovata may serve as sensitive indicator species of heavy metal pollution in freshwater ecosystems. PMID:17149604

  9. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics.

    PubMed

    Duong, Trang T T; Lee, Byeong-Kyu

    2011-03-01

    This study identified the levels and sources of heavy metal contamination in road dust from busy traffic areas in a typical industrial city in Korea. This study compared the total concentrations, as determined by aqua regia digestions and atomic absorption spectroscopy, of cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn) and nickel (Ni) in the road dust from areas with different characteristics such as traffic rotaries, downtown areas, circulation roads, and asphalt and concrete highways. The contamination levels of the heavy metals in the road dust were evaluated using the contamination factor and the degree of contamination. The contamination levels of the heavy metals in the road dust were highly dependent on traffic volume and atmospheric dispersion from traffic rotaries. Industrial emissions and the frequency of brake use and vehicles coming to a complete stop were additional factors that affected the contamination levels in downtown areas. The concrete highway had higher contamination levels of the heavy metals than the asphalt highway. Vehicle speed was also a strong contributing factor to the degree of contamination of heavy metals in the road dust from the circulation roads and highways. PMID:20937547

  10. Bioaccumulation of heavy metals in crop plants grown near Almeda Textile Factory, Adwa, Ethiopia.

    PubMed

    Gitet, Hintsa; Hilawie, Masho; Muuz, Mehari; Weldegebriel, Yirgaalem; Gebremichael, Dawit; Gebremedhin, Desta

    2016-09-01

    The contents of heavy metals cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) present in water (wastewater and wetland), soils, and food crops collected from the vicinity of Almeda Textile Factory were quantified using Flame Atomic Absorption Spectrometer (FAAS) in order to assess the environmental impact of the textile factory. The contents of heavy metals determined in the wastewater were found below the recommended limit set by WHO and United States Environmental Protection Agency (US EPA) except for Cr, which was found slightly higher than WHO permissible limit. Besides, the contents of the heavy metals determined in soils were below the permissible level of FAO/WHO and Canada maximum allowable limits. Moreover, only the concentrations of Cd and Pb were found above the permissible level set by FAO/WHO in the crop plants studied. Generally, the mean concentrations of heavy metals in the plants were in the decreasing order of: Mn > Zn > Cu > Pb > Ni > Co > Cr > Cd. Nevertheless, higher bioconcentration factor (BCF) was found for Cd (0.108-1.156) followed by Zn (0.081-0.499). In conclusion, comparison of heavy metal concentrations with the permissible limits in all collected sample types i.e. water, soil, and crop plants did not show significant pollution from the factory. PMID:27485616

  11. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products.

    PubMed

    Limmatvapirat, C; Limmatvapirat, S; Charoenteeraboon, J; Wessapan, C; Kumsum, A; Jenwithayaamornwech, S; Luangthuwapranit, P

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  12. Removal and recovery of heavy metals from incinerator ash residues

    SciTech Connect

    Forrester, K.E.

    1997-12-01

    This paper presents results of a novel and state-of-the-art patent-pending processes developed jointly by Forrester Environmental Services Inc. (FESI) and Brookhaven National Laboratories (BNL) for the extraction and recovery of lead (Pb), Cadmium (Cd), Copper (Cu), Zinc (Zn) and other heavy metals from heavy metal bearing wastes including but not limited to solid waste incinerator bottom ash, flyash and combined ash. The heavy metal extraction and recovery processes were found to be capable of high percentage of heavy metals extraction and recovery at a relatively low cost under bench scale and full-scale refuse incinerator facility conditions. This paper presents empirical data from bench scale studies only, as the full-scale data is currently under review. The ash product remaining after extraction passed all TCLP regulatory limits and retained only minimal Pb, Cd, Cu, and Zn content and other water insoluble heavy metal compounds. Results of heavy metals recovery and low cost from ongoing field applications of this technology are consistent with the bench scale data presented within this paper.

  13. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    PubMed Central

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; Luangthuwapranit, P.

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  14. Heavy metal pollution assessment in various industries of Pakistan

    NASA Astrophysics Data System (ADS)

    Rehman, Wajid; Zeb, Akif; Noor, Nayyara; Nawaz, Mohsan

    2008-07-01

    Water pollution is a source of danger to the health of people living in developing countries such as Pakistan. The main industries located at various industrial zones of Pakistan cause water pollution, which ultimately result in various diseases. The aim of the present study was to study the concentrations of essential and toxic metals (Na, K, Cu, Zn, Fe, Ca, Pb and As) in the drained water of three main industrial estates of Pakistan, i.e., Industrial Estate No. 1 Peshawar, Small Industrial Estate No. 2 Gujranwala, Industrial Estate Hattar Haripur, and in Warsak Canal (industrially pure water) with the help of atomic absorption spectroscopy and flame emission spectroscopy. The study showed high Pb and As levels originating from industries. The concentrations of Pb and As ranged from 0.04 to 0.942 mg/L in all the samples. These have been extensively used for irrigation since the last five decades. The elevated concentrations of heavy metals are continuously entering into the food chain through agriculture leading to serious health hazards and a threat to the sustainability of local ecosystem.

  15. Soil reclamation by municipal sewage compost: Heavy metals migration study.

    PubMed

    Kowalkowski, Tomasz; Buszewski, Bogusław

    2009-04-01

    This paper describes sorption and transport phenomena of selected heavy metals (e.g., Pb, Zn, Ni and Cu) in the superficial layer of soil and sewage sludge compost. The main aim of the study was the investigation of possibility of heavy metals contamination in soil profile reclaimed by sewage sludge compost. The column leaching test as well as the sequential Tessier extraction procedure were applied to investigate the mitigation of heavy metals. The results revealed that distribution of metals in specific Tessier fractions was the major factor influencing their transport in the investigated soils profiles. Moreover, sorption capacity of the soil sample studied was substantially greater to prevent transportation of metals into the lower horizons and groundwater. PMID:19241267

  16. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  17. Effect of ultrasonic treatment on heavy metal decontamination in milk.

    PubMed

    Porova, Nataliya; Botvinnikova, Valentina; Krasulya, Olga; Cherepanov, Pavel; Potoroko, Irina

    2014-11-01

    Ultrasound has been found useful in increasing the efficiency and consumer safety in food processing. Removal of heavy metal (lead, mercury, and arsenic) contamination in milk is extremely important in regions of poor ecological environment - urban areas with heavy motor traffic or well established metallurgical/cement industry. In this communication, we report on the preliminary studies on the application of low frequency (20kHz) ultrasound for heavy metal decontamination of milk without affecting its physical, chemical, and microbiological properties. PMID:24746508

  18. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen. PMID:27127923

  19. Removal of Trichloroethylene and Heavy Metals by Zerovalent Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boparai, H. K.; O'Carroll, D. M.

    2009-05-01

    Heavy metals combined with chlorinated solvents are one class of mixed waste found at various hazardous waste sites in North America. Nano zerovalent iron (nZVI), an emerging technology, is being successfully used for treating chlorinated solvents and heavy metals independently, however comparatively little research has investigated the remediation of the wastes when they are present in the same mixture. The remediation of trichloroethylene (TCE)/heavy metal waste mixtures via nZVI has been investigated in the present study. Results suggest that some metals are reduced by nZVI to their zerovalent state and thus precipitate on nZVI particles. This improves the contaminant removal performance of nZVI by forming bimetallic iron nanoparticles. Other metals are directly precipitated or adsorbed on the nZVI particles in their original oxidation state and are rendered immobile. In some cases the presence of the heavy metals in the waste mixture enhanced the dechlorination of TCE while in other cases it did not. This study suggests that nano zerovalent iron particles can be effectively used for the remediation of mixed contamination of heavy metals and chlorinated solvents. Results have been supported by a variety of techniques including X-ray photoelectron spectroscopy (XPS) analysis.

  20. Body burdens of heavy metals in Lake Michigan wetland turtles.

    PubMed

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems. PMID:26832725

  1. Heavy metal content in various types of candies and their daily dietary intake by children.

    PubMed

    Devi, Parmila; Bajala, Vandana; Garg, V K; Mor, Suman; Ravindra, Khaiwal

    2016-02-01

    Children are vulnerable to heavy metal contamination through consumption of candies and chocolates. Considering this representative samples (69) of candies and chocolates based on cocoa, milk and sugar were analyzed for selected heavy metals by means of flame atomic absorption spectrometry. The average concentration of Zn, Pb, Ni, and Cd was found to be 2.52 ± 2.49, 2.0 ± 1.20, 0.84 ± 1.35, and 0.17 ± 0.22 μg/g respectively. Results indicate that cocoa-based candies have higher metal content than milk- or sugar-based candies. The daily dietary intake of metals for children eating candies and chocolates was also calculated, and results indicated highest intake of Pb and Zn followed by Ni, Cd, and Cu. Comparison of the current study results with other studies around the globe shows that the heavy metal content in candies and chocolates is lower in India than reported elsewhere. However, to reduce the further dietary exposure of heavy metals through candies and chocolates, their content should be monitored regularly and particularly for Pb as children are highly susceptible to its toxicity. PMID:26759032

  2. COUPLED TRANSPORT SYSTEMS FOR CONTROL OF HEAVY METAL POLLUTANTS

    EPA Science Inventory

    This report describes a process for separating and concentrating heavy metals from electroplating rinse waters. Metal ions can be 'chemically pumped' across a coupled transport membrane against large concentration gradients by allowing the counterflow of a coupled ion such as hyd...

  3. Biomonitoring heavy metal contaminations by moss visible parameters.

    PubMed

    Chen, Yang-Er; Cui, Jun-Mei; Yang, Jin-Chuan; Zhang, Zhong-Wei; Yuan, Ming; Song, Chun; Yang, Hui; Liu, Han-Mei; Wang, Chang-Quan; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2015-10-15

    Traditional sampling for heavy metal monitoring is a time-consuming and inconvenient method, which also does not indicate contaminants non-invasively and instantaneously. Moss is sensitive to heavy metals and is therefore considered a pollution indicator. However, it is unknown what kind physiological parameters can indicate metal contaminations quickly and non-invasively. Here, we systematically examined the effects of six heavy metals on physiological parameters and photosynthetic activities of two moss species grown in aquatic media or moist soil surface. We suggest that a phenotype with anthocyanin accumulation pattern and chlorosis pattern and two chlorophyll fluorescence parameters with their images can roughly reflect metal species groups, concentrations and differences between the two moss species. In other words, metal contaminations could be roughly estimated visually using the naked eye. Enzymatic and non-enzymatic anti-oxidative abilities and photosynthetic protein contents of Eurhynchium eustegium were higher than those of Taxiphyllum taxirameum, indicating their differential metal tolerance. Neither anti-oxidative abilities nor photosynthetic proteins were found to be ideal indicators. This study provides new ideas to monitor heavy metals rapidly and non-invasively in water or on wetland and moist soil surface. PMID:25919648

  4. SOIL MICROBIAL EFFECTS ON HEAVY METAL UPTAKE INTO HYPERACCUMULATORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uptake of heavy metals into hyperaccumulators is influenced by a number of chemical, physical and biological factors. Of these, recent evidence has shown that microbes living within the rhizosphere of hyperaccumulators may have a significant effect on metal uptake. Much is known about the role my...

  5. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.

    2003-07-22

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  6. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.

    2006-12-26

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  7. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals.

    PubMed

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity. PMID:26618004

  8. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals

    PubMed Central

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity. PMID:26618004

  9. Water hyacinth as indicator of heavy metal pollution the tropics

    SciTech Connect

    Gonzalez, H.; Otero, M. ); Lodenius, M. )

    1989-12-01

    The water hyacinth (Eichhornia crassipes) is a common aquatic plant in many tropical countries. Its ability absorb nutrients and other elements from the water has made it possible to use it for water purification purposes. Eichhornia, especially stems and leaves, have been successfully used as indicators of heavy metal pollution in tropical countries. The uptake of heavy metals in this plant is stronger in the roots than in the floating shoots. Metallothionein-like compounds have been found from roots of this species after cadmium exposure. The purpose of this investigation was to study the possibilities of using roots of water hyacinth as a biological indicator of metal pollution in tropical aquatic ecosystems.

  10. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    NASA Astrophysics Data System (ADS)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  11. Atomic layer deposition of metallic cobalt

    NASA Astrophysics Data System (ADS)

    Kwon, Jinhee; Saly, Mark; Kanjolia, Ravi; Chabal, Yves; University of Texas at Dallas Collaboration; SAFC Collaboration

    2011-03-01

    Metallic cobalt has rich catalytic, electronic and magnetic properties, which makes it critical to have a better control of Co thin film deposition for various applications. This work focuses on the atomic layer deposition (ALD) of cobalt using (tertiarybutylallyl)cobalttricarbonyl (t BuAllyl)Co(CO)3 and dimethylhydrazine (DMHy) on H-terminated Si to uncover the growth mechanisms. The first pulse of (t BuAllyl)Co(CO)3 reacts with surface H--Si bonds completely, forming one monolayer of metallic silicide. In situ infrared absorption spectra show that further deposition of Co is made possible only after linear carbonyl groups which remain after the first (t BuAllyl)Co(CO)3 pulse as the surface ligand are removed by subsequent ALD cycles. Further ALD cycles give rise to metallic Co growth through ligand exchange after a nucleation period of 8--10 cycles. The derived growth rate of cobalt is 0.6 +/- 0.1 Å/cycle. The resultant Co film shows low concentration of carbon and nitrogen impurities in the bulk according to X-ray photoemission spectroscopy.

  12. Molecular Indicators of Soil Humification and Interaction with Heavy Metals

    SciTech Connect

    Fan, Teresa W.-M.; Higashi, Richard M.; Cassel, Teresa; Green, Peter; Lane, Andrew N.

    2003-03-26

    For stabilization of heavy metals at contaminated sites, interaction of soil organic matter (SOM) with heavy metal ions is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using 13C- and 15N-labeled soil humates (HS), we investigated the turnover of five organic amendments (celluose, wheat straw, pine shavings, chitin and bone meal) in relation to heavy metal ion leaching in soil column experiments. The labeled molecular substructures in HS were examined by multinuclear 2-D NMR and pyrolysis GC-MS while the element profile in the leachates was analyzed by ICP-MS. Preliminary analysis revealed that peptidic and polysaccharidic structures were highly enriched, which suggests their microbial origin. Cd(II) leaching was significantly attenuated with humification of lignocellulosic materials. Correlation of 13C and 15N turnovers of HS substructures to metal leaching is underway.

  13. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  14. Characterisation and distribution of heavy metals at Masaya volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Hinrichs, M.; Rymer, H.; Gillman, M.; Blake, S.

    2011-12-01

    Activity at Masaya volcano, Nicaragua, is characterised by periodic cycles of intense gas emission that last years to decades. The volcano entered its current phase of degassing in 1993, which resulted in a low-level persistent gas plume. As a result of this continuous emission, the substantial deposition of heavy metals onto the surrounding soils (andosols) is thought to be occurring (Delfosse et al., 2003). The deposition of these heavy metal plume components, and their incorporation into soil, is of key interest because once discharged to the environment they accumulate throughout the food chain and may pose a serious ecological threat (Alloway, 1995). Although many studies have focused on the impacts of volcanic gases on the environment, few have addressed the fate of the metals released by persistent gas plumes. This study therefore investigates the patterns of heavy metal transport, deposition and distribution at Masaya in order to provide additional information on the processes that govern the behaviour of volcanic heavy metals. A number of agricultural and non-agricultural soils at two horizons (A: 0-10 cm and B: 20-30 cm) were collected and their trace metal content analysed. Twenty sites were sampled from the active vent to ~5 km downwind, as well as two control sites upwind of the volcano. Preliminary data suggest that a rapid deposition of metals occurs close to the source, with metal concentrations in the soil generally decreasing with distance away from the active vent. Cr and As clearly follow this trend, with maximum concentrations of 20.71 and 7.61 mg/kg respectively occurring closest to the vent. Concentration peaks for Mn, Co, Ni, Cu, and Zn (959.30, 21.57, 13.44, 152.85, and 72.73 mg/kg respectively) occur slightly further away from the vent, implying that these metals are transported further. The concentration of Cr, Co, Al, Ni and Mn was found to increase from soil horizon A to B, whereas the abundance of Zn decreases with depth. Heavy metal

  15. Heavy metals in composts of separated municipal wastes

    SciTech Connect

    Liao, W.P.; Huang, W.C.; Fan, W.H.; Hsu, C.C.

    1997-12-31

    This study is to examine the influence of the metal components on the contents of heavy metals in composts of Municipal Solid Wastes (MSW). Fresh MSW used in composting was obtained from the city landfill of Taichung in Taiwan. Compost 1 was from as-collected MSW; Compost 2 was from degradable fraction in MSW; Compost 3 was from MSW without metal. The results show that the total concentration of zinc is the highest among the five heavy metals examined. Paper wastes are main sources of lead and copper with average concentrations of 18.53 mg/kg and 26.92 mg/kg of compost on dry weight. The contents of nickel and cadmium are relatively low. The total concentrations of the five heavy metals in composts increase by typical ratios between 1.72 and 2.58 for Composts 2 and 3, but 3.16 to 4.69 for Compost 1. The increase of concentration around a ratio of 2.0 is due to the loss of degraded organic matter. For the ratios above 2.0, fractions of some heavy metals have corroded from the surfaces of metal components into the Compost 1 in the early phase of acidic fermentation.

  16. Spatial distribution of heavy metals in surface soil, plant and mushroom beside high-frequency road

    NASA Astrophysics Data System (ADS)

    Krbić, Biljana Å.; Milovac, Snežana; Stošić, Dušan; Zorić, Miroslav; Matavulj, Milan

    2010-05-01

    One of the undesirable aspects of urbanization process is the introduction of potentially harmful pollutants into environment. Urban soils are often contaminated by metals deriving from industry, transportation and other human activities. In this study, concentration of heavy metals were investigated in roadside surface soil, linden tree bark (Tilia sp.), mushroom Schizophyllum commune and dust samples collected at different distances (0.2 - 200 m) from main high-frequency road. The samples were microwave digested in accordance to US EPA 3051 method and analyzed by flame (Cd, Cu, Co, Fe, Ni, Mn, Pb and Zn), graphite furnace (Cr) and cold vapor (Hg) atomic absorption spectrometry. The results of the analysis were used to determine major sources and distribution of heavy metals pollution. The obtained results showed significant decrease of traffic-related metals (Fe, Zn, Pb, Ni, Cu and Cd) in soil samples with increasing distance from road edge. In order to assess possible pollution, heavy metal contents in soil were compared with the National legislation and Netherlands soil quality standards. Also, elevated concentrations of traffic-related metals, especially Pb and Cr in analyzed tree bark, mushroom and dust samples, indicate the obvious roadside contamination whose primary contributors appear to be vehicular local traffic. In addition, Index of Bioaccumulation (IBA) was calculated in order to estimate plant and mushroom ability of heavy metals accumulation. Assessment of statistical differences among samples was performed by one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test. Moreover, Principal Component Analysis (PCA) was performed on the heavy metals content allowed a meaningful classification of the samples according to the main sources of pollution.

  17. Studies on the indicator for heavy metal contamination in environments (1) heavy metal contents of hair, nail and moustache

    SciTech Connect

    Nishihara, T.; Watabe, K.; Ichikawa, T.; Kondo, M.; Fujii, M.

    1985-01-01

    Heavy metals (Hg, Pb, Cd, Cu, Ni, Fe, Zn, and Mn) contents of the samples from 10 males were followed throughout a year. The values were characteristic of the individuals, and some correlations between the contents of different metals were shown.

  18. The effect of plant cadmium and zinc status on root and shoot heavy metal accumulation in the heavy metal hyperaccumulator, Thlaspi caerulescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi caerulescens is a plant species capable of tolerating and accumulating extremely high concentrations of the heavy metals, Zn and Cd, in the shoot. In this study, we investigated the impact of changes in plant heavy metal status (i.e. Zn and Cd) on the accumulation of heavy metals, including...

  19. Source of atmospheric heavy metals in winter in Foshan, China.

    PubMed

    Tan, Ji-Hua; Duan, Jing-Chun; Ma, Yong-Liang; Yang, Fu-Mo; Cheng, Yuan; He, Ke-Bin; Yu, Yong-Chang; Wang, Jie-Wen

    2014-09-15

    Foshan is a ceramics manufacturing center in the world and the most polluted city in the Pearl River Delta (PRD) in southern China measured by the levels of atmospheric heavy metals. PM2.5 samples were collected in Foshan in winter 2008. Among the 22 elements and ions analyzed, 7 heavy metals (Zn, V, Mn, Cu, As, Cd and Pb) were studied in depth for their levels, spatiotemporal variations and sources. The ambient concentrations of the heavy metals were much higher than the reported average concentrations in China. The levels of Pb (675.7 ± 378.5 ng/m(3)), As (76.6 ± 49.1 ng/m(3)) and Cd (42.6 ± 45.2 ng/m(3)) exceeded the reference values of NAAQS (GB3095-2012) and the health guidelines of the World Health Organization. Generally, the levels of atmospheric heavy metals showed spatial distribution as: downtown site (CC, Chancheng District)>urban sites (NH and SD, Nanhai and Shunde Districts)>rural site (SS, Shanshui District). Two sources of heavy metals, the ceramic and aluminum industries, were identified during the sampling period. The large number of ceramic manufactures was responsible for the high levels of atmospheric Zn, Pb and As in Chancheng District. Transport from an aluminum industry park under light north-west winds contributed high levels of Cd to the SS site (Shanshui District). The average concentration of Cd under north-west wind was 220 ng/m(3), 20.5 times higher than those under other wind directions. The high daily maximum enrichment factors (EFs) of Cd, Pb, Zn, As and Cu at all four sites indicated extremely high contamination by local emissions. Back trajectory analysis showed that the heavy metals were also closely associated with the pathway of air mass. A positive matrix factorization (PMF) method was applied to determine the source apportionment of these heavy metals. Five factors (industry including the ceramic industry and coal combustion, vehicle emissions, dust, transportation and sea salt) were identified and industry was the most

  20. Atomic layer deposition of metal sulfide materials.

    PubMed

    Dasgupta, Neil P; Meng, Xiangbo; Elam, Jeffrey W; Martinson, Alex B F

    2015-02-17

    CONSPECTUS: The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application

  1. Heavy metals concentration relationship with Perna viridis physical properties in Mengkabong Lagoon, Sabah, Malaysia.

    PubMed

    Abdullah, Noraini; Tair, Rohana; Abdullah, Mohd Harun

    2014-01-01

    Perna viridis (P. viridis) has been identified as a good biological indicator in identifying environmental pollution, especially when there are various types of Heavy Metals Accumulations (HMA) inside its tissue. Based on the potential of P. viridis to accumulate heavy metals and the data on its physical properties, this study proffers to determine the relationships between both properties. The similarities of the physical properties are used to mathematical model their relationships, which included the size (length, width, height) and weight (wet and dry) of P. viridis, whilst the heavy metals are focused on concentrations of Pb, Cu, Cr, Cd and Zn. The concentrations of metal elements are detected by using Flame Atomic Adsorption Spectrometry. Results show that the mean concentration of Pb, Cu, Cr, Cd, Zn, length, width, height, wet weight and dry weight are: 1.12 +/- 1.00, 2.36 +/- 1.65, 2.12 +/- 2.74, 0.44 +/- 0.41 and 16.52 +/- 10.64 mg kg(-1) (dry weight), 105.08 +/- 14.35, 41.64 +/- 4.64, 28.75 +/- 3.92 mm, 14.56 +/- 3.30 and 2.37 +/- 0.86 g, respectively. It is also found out that the relationships between the Heavy Metals Concentrations (HMA) and the physical properties can be represented using Multiple Linear Regressions (MLR) models, relating that the HMA of Zinc has affected significantly the physical growth properties of P. viridis. PMID:24783779

  2. [Immobilization impact of different fixatives on heavy metals contaminated soil].

    PubMed

    Wu, Lie-shan; Zeng, Dong-mei; Mo, Xiao-rong; Lu, Hong-hong; Su, Cui-cui; Kong, De-chao

    2015-01-01

    Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment. The results were as follows: (1) In the single material treatment, lime worked best with the dosage of 2% compared to the control group. In the compound amendment treatments, 2% humus combined with 2% lime worked best, and the immobilization efficiency of Pb, Cu, Cd, Zn reached 98.49%, 99.40%, 95.86%, 99.21%, respectively. (2) The order of Capacity Values was lime > humus + lime > ammonium sulfate + lime > superphosphate > ammonium sulfate + superphosphate > humus + superphosphate > humus > superphosphate. (3) BCR sequential extraction procedure results indicated that 2% humus combined with 2% lime treatment were very effective in immobilizing heavy metals, better than 2% lime treatment alone. Besides, Cd was activated firstly by 2% humus treatment then it could be easily changed into the organic fraction and residual fraction after the subsequent addition of 2% lime. PMID:25898680

  3. Thermal treatment of harzardous waste for heavy metal recovery.

    PubMed

    Hoffmann, Gaston; Schirmer, Matthias; Bilitewski, Bernd; Kaszás Savos, Melania

    2007-07-16

    In this study, a new method for recovering heavy metals from hazardous waste is introduced. The process is characterized by a separation of heavy metals and residues during the thermal treatment under a sub-stoichiometric atmosphere in a rotary kiln. After leaving the rotary kiln the separated heavy metals are precipitated in a hot gas ceramic filter. Using this technology, hazardous materials, both liquids and pasty hazardous waste containing heavy metals, can be treated and a product with a quasi-raw material condition can be formed. In contrast to current methods,the harmful substances should not be immobilized and disposed. In fact, a saleable product highly concentrated with heavy metals should be formed. During preliminary investigations with a solution containing sodium chromate tetrahydrate, the process was tested in a pilot plant. Here,the separation of chromium could be demonstrated with leaching tests and characterization of the filter dust. Analysis concerning the disposability of the residues had not been carried out because only the process and the characteristic of the filter dust were in the centre of attention. PMID:17691119

  4. New trends in removing heavy metals from wastewater.

    PubMed

    Zhao, Meihua; Xu, Ying; Zhang, Chaosheng; Rong, Hongwei; Zeng, Guangming

    2016-08-01

    With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater. PMID:27318819

  5. [Concentrations and safety evaluation of heavy metals in aquatic products of Yancheng, Jiangsu Province].

    PubMed

    Liu, Yang; Fu, Qiang; Gao, Jun; Xu, Wang-Gu; Yin, Bo; Cao, Ya-Qiao; Qin, Wei-Hua

    2013-10-01

    Current status and intake risk of heavy metal pollution in aquatic products were studied in Yancheng, Jiangsu Province. Twenty-two kinds of aquatic products were sampled in May 2012, and the concentrations of Cd, Cu, Zn, Pb and Cr in muscles were measured using atomic absorption spectroscopy. Single factor pollution index (Pg) and metal pollution index (MPI) were used to evaluate the degree of pollution, and provisional tolerable weekly intake (PTWI) and carcinogenic risks were used to assess the edible safety and health risk, respectively. We found all the aquatic products were contaminated, and the pollutions by Cd, Pb and Cr were more serious, with the exceeding rates of 31.8% , 31.8% and 40.9% , respectively. Pi indices indicated the contents of Cd, Pb and Cr exceeded the allowable criteria of " Light Pollution", while Cd and Pb in freshwater fish, Pb and Cr in shellfish, and Cr in cephalopoda reached the criteria of " Heavy Pollution". The MPI results showed that heavy metal pollution in shellfish was the most severe, followed by crustacean, freshwater fish, and cephalopoda, while it was slight in marine fish. At present, the edible safety of heavy metals in aquatic products was acceptable in Yancheng, but the Cr intake of shellfish and cephalopoda was approaching PTWI and that of a minority of marine fishes even exceeded the PTWI value. The model estimation for health risk indicated that the health risk value of heavy metal ingestion was still below the maximal acceptable level (5.0 x 10(-5) a-1), recommended by International Commission on Radiation Protection (ICRP) , but the values of Cr for shellfish and cephalopoda were approaching the criterion. In summary, heavy metal pollution in aquatic products in Yancheng is rather severe, especially for Cr pollution, and more attention should be paid to the pollution status, edible safety and health risk. PMID:24364334

  6. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    PubMed Central

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  7. Magnetoresistance of heavy and light metal/ferromagnet bilayers

    SciTech Connect

    Avci, Can Onur; Garello, Kevin; Mendil, Johannes; Ghosh, Abhijit; Blasakis, Nicolas; Gabureac, Mihai; Trassin, Morgan; Fiebig, Manfred; Gambardella, Pietro

    2015-11-09

    We studied the magnetoresistance of normal metal (NM)/ferromagnet (FM) bilayers in the linear and nonlinear (current-dependent) regimes and compared it with the amplitude of the spin-orbit torques and thermally induced electric fields. Our experiments reveal that the magnetoresistance of the heavy NM/Co bilayers (NM = Ta, W, and Pt) is phenomenologically similar to the spin Hall magnetoresistance (SMR) of YIG/Pt, but has a much larger anisotropy of the order of 0.5%, which increases with the atomic number of the NM. This SMR-like behavior is absent in light NM/Co bilayers (NM = Ti and Cu), which present the standard anisotropic magnetoresistance expected from polycrystalline FM layers. In the Ta, W, and Pt/Co bilayers, we find an additional magnetoresistance directly proportional to the current and to the transverse component of the magnetization. This so-called unidirectional SMR, of the order of 0.005%, is largest in W and correlates with the amplitude of the antidamping spin-orbit torque. The unidirectional SMR is below the accuracy of our measurements in YIG/Pt.

  8. Community responses of aquatic insects to heavy metals

    SciTech Connect

    Clements, W.H.; Cherry, D.S.; Cairns, J.

    1987-07-01

    Community level toxicity tests were conducted in outdoor experimental streams to examine the responses of aquatic insects to heavy metals. Introduced substrates (plastic trays filled with small cobble) were colonized at several locations in a river impacted by heavy metals. After 30 d, 4delta trays from an upstream control site were transferred to 12 outdoor experimental streams. Each stream was randomly assigned to one of three treatments: control, low metals, and high metals. Two trays were removed from each stream after 4 and 10 d exposure. Community structure on these trays was compared to field data collected from control and impacted sites. Macroinvertebrate density and number of taxa were reduced in both treated streams and at impacted field sites. Owing to differences in relative sensitivity to metals, the percent composition of dominant taxa also varied among treatments.

  9. Beneficial effect of sesame oil on heavy metal toxicity.

    PubMed

    Chandrasekaran, Victor Raj Mohan; Hsu, Dur-Zong; Liu, Ming-Yie

    2014-02-01

    Heavy metals become toxic when they are not metabolized by the body and accumulate in the soft tissue. Chelation therapy is mainly for the management of heavy metal-induced toxicity; however, it usually causes adverse effects or completely blocks the vital function of the particular metal chelated. Much attention has been paid to the development of chelating agents from natural sources to counteract lead- and iron-induced hepatic and renal damage. Sesame oil (a natural edible oil) and sesamol (an active antioxidant) are potently beneficial for treating lead- and iron-induced hepatic and renal toxicity and have no adverse effects. Sesame oil and sesamol significantly inhibit iron-induced lipid peroxidation by inhibiting the xanthine oxidase, nitric oxide, superoxide anion, and hydroxyl radical generation. In addition, sesame oil is a potent inhibitor of proinflammatory mediators, and it attenuates lead-induced hepatic damage by inhibiting nitric oxide, tumor necrosis factor-α, and interleukin-1β levels. Because metal chelating therapy is associated with adverse effects, treating heavy metal toxicity in addition with sesame oil and sesamol may be better alternatives. This review deals with the possible use and beneficial effects of sesame oil and sesamol during heavy metal toxicity treatment. PMID:23744838

  10. Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils.

    PubMed

    Huang, Qingyun; Yu, Zhen; Pang, Ya; Wang, Yueqiang; Cai, Zhihong

    2015-04-01

    In this study, bioleaching was coupled with electrokinetics (BE) to remove heavy metals (Cu, Zn, Cr and Pb) from contaminated soil. For comparison, bioleaching (BL), electrokinetics (EK), and the chemical extraction method were also applied alone to remove the metals. The results showed that the BE method removed more heavy metals from the contaminated soil than the BL method or the EK method alone. The BE method was able to achieve metal solubilization rates of more than 70 % for Cu, Zn and Cr and of more than 40 % for Pb. Within the range of low current densities (<1 mA cm(-2)), higher current density led to more metal removal. However, the metal solubilization rates did not increase with increasing current density when the current density was higher than 1 mA cm(-2). Therefore, it is suggested that bioleaching coupled with electrokinetics can effectively remediate heavy metal-contaminated soils and that preliminary tests should be conducted before field operation to detect the lowest current density for the greatest metal removal. PMID:25680933