Science.gov

Sample records for helen orav-kotta velda

  1. Helen Keller: A Remembrance.

    ERIC Educational Resources Information Center

    Lowenfeld, Berthold

    1980-01-01

    A well-known educator and author in the field of work with the blind recalls times he spent with Helen Keller, including her visit to the California School for the Blind, where he was superintendent, for the consecration of the Helen Keller Building. (Author/SBH)

  2. The Helen of Geometry

    ERIC Educational Resources Information Center

    Martin, John

    2010-01-01

    The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.

  3. Mt. St. Helens Memories.

    ERIC Educational Resources Information Center

    Sharp, Len

    1992-01-01

    Provides a personal account of one science teacher's participation in a teacher workshop in which teachers learned about volcanic development, types of eruption, geomorphology, plate tectonics, volcano monitoring, and hazards created by volcanoes by examining Mt. St. Helens. Provides a graphic identifying volcanoes active since 1975. (MDH)

  4. Who's Helen Keller?

    ERIC Educational Resources Information Center

    Hubbard, Ruth Shagoury

    2003-01-01

    Helen Keller was someone who worked throughout her long life to achieve social change; she was an integral part of many important social movements in the 20th century. Her life story could serve as a fascinating example for children, but most picture books about Keller are silent about her life's work. In this article, the author examines the…

  5. Mount St. Helens Flyover

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  6. Mount St. Helens Rebirth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The catastrophic eruption of Mt. St. Helens 20 years ago today (on May 18, 1980), ranks among the most important natural events of the twentieth century in the United States. Because Mt. St. Helens is in a remote area of the Cascades Mountains, only a few people were killed by the eruption, but property damage and destruction totaled in the billions of dollars. Mount St. Helens is an example of a composite or stratovolcano. These are explosive volcanoes that are generally steep-sided, symmetrical cones built up by the accumulation of debris from previous eruptions and consist of alternating layers of lava flows, volcanic ash and cinder. Some of the most photographed mountains in the world are stratovolcanoes, including Mount Fuji in Japan, Mount Cotopaxi in Ecuador, Mount Hood in Oregon, and Mount Rainier in Washington. The recently erupting Mount Usu on the island of Hokkaido in Japan is also a stratovolcano. Stratovolcanoes are characterized by having plumbing systems that move magma from a chamber deep within the Earth's crust to vents at the surface. The height of Mt. St. Helens was reduced from about 2950 m (9677 ft) to about 2550 m (8364 ft) as a result of the explosive eruption on the morning of May 18. The eruption sent a column of dust and ash upwards more than 25 km into the atmosphere, and shock waves from the blast knocked down almost every tree within 10 km of the central crater. Massive avalanches and mudflows, generated by the near-instantaneous melting of deep snowpacks on the flanks of the mountain, devastated an area more than 20 km to the north and east of the former summit, and rivers choked with all sorts of debris were flooded more than 100 km away. The area of almost total destruction was about 600 sq. km. Ash from the eruption cloud was rapidly blown to the northeast and east producing lightning which started many small forest fires. An erie darkness caused by the cloud enveloped the landscape more than 200 km from the blast area, and ash

  7. Mt. St. Helens

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Movie

    This 3-D anaglyph image of Mt. St. Helens volcano combines the nadir-looking and back-looking band 3 images of ASTER. To view the image in stereo, you will need blue-red glasses. Make sure to look through the red lens with your left eye. Figure 1: This ASTER image of Mt. St. Helens volcano in Washington was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The image is centered at 46.2 degrees north latitude, 122.2 degrees west longitude.

    Movie: The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a natural color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  8. Helene: A Plastic Model

    NASA Astrophysics Data System (ADS)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (<5mm/s2), it hard to imagine how such transport features can come about with such low grades and surface gravities. Preliminary examinations of classical linear and nonlinear mass wasting mechanisms do not appear to reproduce these curious features. A suite of hypothesis that we examine is the possibility that the fine grain material on the surface has been either (i) accreted or (ii) generated as refractory detritus resulting from sublimation of the icy bedrock, and that these materials subsequently mass-waste like a non-Newtonian highly non-linear creeping flow. Modifying the landform evolution model MARSSIM to handle two new mass-wasting mechanism, the first due to glacial-like flow via Glen's Law and the second due to plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  9. Mount St. Helens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution

  10. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  11. Helen Coupland 1920-2015.

    PubMed

    Coupland, Terry

    2015-07-22

    Practice nurse Helen Coupland (née Irons) was born in the Rhondda Valley in South Wales, and shared a happy childhood there with her younger brother, Ted. At 17 she became a nursing student at Llwynypia Hospital, Pontypridd, where she excelled in her studies and found her calling. PMID:26198524

  12. Mount St. Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Fong, W.; Snetsinger, K. G.; Ferry, G. V.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  13. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  14. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  15. Continuous monitoring of Mount St. Helens Volcano

    USGS Publications Warehouse

    Spall, H.

    1980-01-01

    Day by day monitoring of the Mount St. Helens Volcano. These are four scenarios, very different scenarios, that can occur in a average week at Mount St. Helens. Ranging from eruptions of gas and to steam to eruptions of ash and pyroclastic flows to even calm days. This example of monitoring illustrates the differences from day to day volcanic activities at Mount St. Helens

  16. Mount St. Helens: the aftermath

    SciTech Connect

    Flaherty, D.C.

    1983-01-01

    During the May 18, 1980 eruption of Mount St. Helens, ash fell over a 100,000 sq mile area to the east. The Idaho studies showed that, although the ashfall altered the food chains of some forest streams, within a year they fully recovered. The effects of ashfall on lake benthic organisms are still being assessed by sediment sampling. The Montana studies reported on snow avalanche models adapted to mudflows, trophic impact of ash deposits on Montana lakes, and the volcanic ash as nutrient subsidy to sub-alpine lakes. The Oregon studies reported herring and smelt egg and larvae damage due to suspended ash. The drainage patterns in eruption debris were studied along with the filling of Columbia River berths with ash.

  17. Mt. St. Helens and Spirit Lake

    NASA Technical Reports Server (NTRS)

    2002-01-01

    high resolution 1000 pixel-wide image Snow still covered the peaks of the Cascade Ranges in mid-June when the STS-111 crew photographed Mt. St. Helens from the Space Shuttle Endeavour. From their vantage point, the crew observed blast zone from the 1980 eruption of the volcano, the mud-choked North Fork of the Toutle River, and fallen timber that still floats in rafts of logs on Spirit Lake. Continued imagery of the region will document the slow regrowth of the forests. Today, the volcano and surrounding region comprise the Mt. St. Helens National Volcanic Monument which is dedicated to research, education and recreation. For more information visit: Mount St. Helens National Volcanic Monument. Astronaut photograph STS111-371-3 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  18. Reports from Science Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Pollack, James B.

    1981-01-01

    The following reports describe extensive measurements of the properties of the gases and aerosols (particles) in the volcanic clouds produced by the eruptions of Mount St. Helens from March through August 1980. Volcanic material was first injected into the atmosphere on 27 March 1980. This material, as well as that introduced by subsequent eruptions during the next 2 months, was confined to the troposphere. On 18 May the first of several major explosions occurred in which some of the volcanic cloud penetrated well into the stratosphere. The nature of the volcanic activity at Mount St. Helens from the end of March through June was described.

  19. Landsat observations of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Bohn, C. G.; Bly, B. G.

    1981-01-01

    The eruption of Mount St. Helens on May 18, 1980, and subsequent destruction of approximately 593 square kilometers (229 square miles) of vegetation, clearly provided a unique opportunity for earth-oriented satellite remote sensing systems. Landsat, a relatively high resolution Multispectral Scanner (MSS) system, imaged Mount St. Helens both before and after its major eruption. Digital data have been used to create a damage assessment map and a change detection image. Several classes of timber damage and land cover modification have been developed. Acreages for each class have been tabulated.

  20. Mount St. Helens Volcano, WA, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mount St. Helens Volcano (46.0N, 122.0W) and its blast zone can be seen in this northeast looking infrared view. Mt. Rainier and Mt. Adams can also be seen in the near area. The Columbia River can be seen at the bottom of the view. When Mt. St. Helens erupted on 18 May 80, the top 1300 ft. disappeared within minutes. The blast area covered an area of more than 150 sq. miles and sent thousands of tons of ash into the upper atmosphere.

  1. Mount St. Helens Classroom Activities: Secondary.

    ERIC Educational Resources Information Center

    Washington State Educational Service District 112, Vancouver.

    This teacher's guide is designed to provide secondary teachers with an assortment of classroom activities dealing with the Mt. St. Helens eruption of May 18, 1980, in the areas of science, social studies, math, language arts and school newspaper activities. Copy masters and teacher versions of all activities are contained within this guide,…

  2. Mount St. Helens Classroom Activities: Elementary.

    ERIC Educational Resources Information Center

    Washington State Educational Service District 112, Vancouver.

    This teacher's guide is designed to provide elementary teachers with an assortment of classroom activities dealing with the Mt. St. Helens eruption of May 18, 1980, in the areas of science, social studies, math, language arts, and school newspaper activities. Copy masters and teacher versions of all activities are contained with this guide,…

  3. Mount St. Helens and Kilauea volcanoes

    SciTech Connect

    Barrat, J. )

    1989-01-01

    Mount St. Helens' eruption has taught geologists invaluable lessons about how volcanoes work. Such information will be crucial in saving lives and property when other dormant volcanoes in the northwestern United States--and around the world--reawaken, as geologists predict they someday will. Since 1912, scientists at the U.S. Geological Survey's Hawaiian Volcano Observatory have pioneered the study of volcanoes through work on Mauna Loa and Kilauea volcanoes on the island of Hawaii. In Vancouver, Wash., scientists at the Survey's Cascades Volcano Observatory are studying the after-effects of Mount St. Helens' catalysmic eruption as well as monitoring a number of other now-dormant volcanoes in the western United States. This paper briefly reviews the similarities and differences between the Hawaiian and Washington volcanoes and what these volcanoes are teaching the volcanologists.

  4. 30 Cool Facts about Mount St. Helens

    USGS Publications Warehouse

    Driedger, Carolyn; Liz, Westby; Faust, Lisa; Frenzen, Peter; Bennett, Jeanne; Clynne, Michael

    2010-01-01

    Commemorating the 30th anniversary of the 1980 eruptions of Mount St. Helens 1-During the past 4,000 years, Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range. 2-Most of Mount St. Helens is younger than 3,000 years old (younger than the pyramids of Egypt). 3-Some Native American names that refer to smoke at the volcano include- Lawala Clough, Low-We- Lat-Klah, Low-We-Not- Thlat, Loowit, Loo-wit, Loo-wit Lat-kla, and Louwala-Clough. 4-3,600 years ago-Native Americans abandoned hunting grounds devastated by an enormous eruption four times larger than the May 18, 1980 eruption. 5-1792-Captain George Vancouver named the volcano for Britain's ambassador to Spain, Alleyne Fitzherbert, also known as Baron St. Helens. 6-1975-U.S. Geological Survey geologists forecasted that Mount St. Helens would erupt again, 'possibly before the end of the century.' 7-March 20, 1980-A magnitude 4.2 earthquake signaled the reawakening of the volcano after 123 years. 8-Spring 1980-Rising magma pushed the volcano's north flank outward 5 feet per day. 9-Morning of May 18, 1980- The largest terrestrial landslide in recorded history reduced the summit by 1,300 feet and triggered a lateral blast. 10-Within 3 minutes, the lateral blast, traveling at more than 300 miles per hour, blew down and scorched 230 square miles of forest. 11-Within 15 minutes, a vertical plume of volcanic ash rose over 80,000 feet. 12-Afternoon of May 18, 1980-The dense ash cloud turned daylight into darkness in eastern Washington, causing streetlights to turn on in Yakima and Ritzville. 13-The volcanic ash cloud drifted east across the United States in 3 days and encircled Earth in 15 days. 14-Lahars (volcanic mudflows) filled rivers with rocks, sand, and mud, damaging 27 bridges and 200 homes and forcing 31 ships to remain in ports upstream. 15-The May 18, 1980 eruption was the most economically destructive volcanic event in U.S. history. 16-Small plants and trees beneath winter snow

  5. Crossing the Divide: Helen Keller and Yvonne Pitrois Dialogue on Diversity

    ERIC Educational Resources Information Center

    Hartig, Rachel

    2007-01-01

    How do those who are living with a difference most effectively cross the cultural divide and explain themselves to mainstream society? This is a central question raised by Yvonne Pitrois in her biography of Helen Keller, titled "Une nuit rayonnante: Helen Keller" [A Shining Night: Helen Keller]. Helen Keller responded to Pitrois' book in a…

  6. Electrical impact of Mt. St. Helens

    SciTech Connect

    Stemler, G.E.; Batiste, A.R.

    1981-08-01

    Ash fallout from the Mount Saint Helens eruptions affected high-voltage transmission in a four-state area as volatile gases caused conductivity changes and corrosion. The Bonneville Power Authority (BPA) found that it was possible to maintain electric service except for a few short, localized outages. Cleaning ash from transformers and substations was the first priority. Tests were underway within 48 hours to determine ash characteristics and cleaning procedures. A summary to what happened and what was learned is presented in two lists. (DCK)

  7. Obituary: Helen Dodson Prince, 1905-2002

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi Paul

    2009-01-01

    Helen Dodson Prince, a pioneer in the observation of solar flares, a pioneer in women's rise in the profession of astronomy, and a respected and revered educator of future astronomers, died on 4 February 2002 in Arlington, Virginia. Helen Dodson was born in Baltimore, Maryland, on 31 December 1905. Her parents were Helen Walter and Henry Clay Dodson. Helen went to Goucher College in nearby Towson with a full scholarship in mathematics. She turned to astronomy under the influence of a legendary teacher, Professor Florence P. Lewis, and she graduated in 1927. Funded by grants and private charity, she earned the Ph.D. in astronomy at the University of Michigan under the direction of Heber Doust Curtis in 1933. Dodson taught at Wellesley College from 1933 until 1943, when she went on leave to spend the last three years of World War II at the MIT Radiation Laboratory. She returned to Goucher after the war as professor of astronomy and mathematics, and in 1947 she came back to Michigan both as professor of astronomy and staff member of the McMath-Hulbert Observatory, of which she became associate director. In 1976 she retired from Michigan and spent her later years in Alexandria, Virginia. In 1932 Dodson held the Dean Van Meter fellowship from Goucher; in 1954 she received the Annie Jump Cannon Prize from the AAS; and in 1974 The University of Michigan honored her with its Faculty Distinguished Achievement Award. She published over 130 articles, mostly on her research specialty, solar flares. Dodson's interest in the Sun began at Michigan, although her dissertation was, like so many Michigan dissertations of the era, on stellar spectroscopy, "A Study of the Spectrum of 25 Orionis." She came to Michigan during the establishment and growth of the solar observatory at Lake Angelus, the creation of three gifted and industrious amateurs. Heber Curtis fostered the growth of the McMath-Hulbert enterprise and brought it into the University. Dodson's solar activity grew as a

  8. Helen Keller Centers for Deaf-Blind Youth and Adults.

    ERIC Educational Resources Information Center

    American Annals of the Deaf, 2003

    2003-01-01

    This listing provides directory information for the national Helen Keller Center and its 10 regional offices. The centers provide extensive evaluative and rehabilitation services to people who are deaf and blind. (CR)

  9. Lidar measurements of Mount St. Helens effluents

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1982-01-01

    Lidar measurements of the worldwide movement of stratospheric aerosols produced by the 18 May 1980 eruption of Mount St. Helens are described. Ground-based and airborne measurements show that the layers below 20 km produced by this eruption moved in an easterly direction while those above 20 km moved in a westerly direction. The effluent at jet stream altitudes of 10 to 12 km circled the globe in about 16 days and the effluent at 23 km (the highest altitude recorded) circled the globe in about 56 days. Mass calculations, using backscatter-to-mass conversion models, indicate that approximately half a million metric tons of new stratospheric material were produced by this eruption. Even though this represents a 200% increase in Northern Hemispheric aerosol, no significant long-term atmospheric temperature change should occur.

  10. In the wake of Mount St Helens

    SciTech Connect

    Nania, J.; Bruya, T.E.

    1982-04-01

    On May 18, 1980, Mount St Helens, Washington State's most active volcano, erupted violently. Volcanic eruptions in recent geologic history have demonstrated tremendous environmental impact and caused significant loss of human life. Volcanic ash expelled during the eruption was deposited on much of eastern Washington and had a profound effect on local air quality. Although ash is relatively inert, analysis revealed a small but significant amount of free crystalline silica, the causative agent of silicosis. The fine particles of ash were of respirable size, and there was a remarkable increase in the volume of respiratory cases seen in emergency departments during the period of high airborne particulate levels. Numerous cases of injury indirectly related to the fall of ash were also seen. The long-term effect of exposure to this volcanic ash is unknown. A prompt, coordinated community medical response is necessary to protect the general population from the potential hazard of exposure to volcanic ash.

  11. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans. PMID:6832120

  12. A visit to Mount St. Helens

    SciTech Connect

    Meadows, D.G.

    1994-04-01

    The May 18, 1980, eruption displaced roughly 2.6 km[sup 3] of rock and devastated more than 500 km[sup 2] of forest, mostly to the north of the mountain. Trees within 10--15 km of the mountain peak were burned and uprooted. Beyond that, high winds and flying debris created a blowdown zone. Up to 150 m of rock and ice covered some areas. Accumulations of ash were measured as much as 330 km from the volcano. Mud flows choked nearby rivers and streams. Two years later, the US Congress established the 44,000-hectare Mount St. Helens National Volcanic Monument. The Act essentially directed the USDA Forest Service to allow the area to recover naturally. The paper reviews what changes the ecosystem has been going through since the eruption and the lessons learned that suggest some new resource management techniques.

  13. In the wake of Mount St Helens.

    PubMed

    Nania, J; Bruya, T E

    1982-04-01

    On May 18, 1980, Mount St Helens, Washington State's most active volcano, erupted violently. Volcanic eruptions in recent geologic history have demonstrated tremendous environmental impact and caused significant loss of human life. Volcanic ash expelled during the eruption was deposited on much of eastern Washington and had a profound effect on local air quality. Although ash is relatively inert, analysis revealed a small but significant amount of free crystalline silica, the causative agent of silicosis. The fine particles of ash were of respirable size, and there was a remarkable increase in the volume of respiratory cases seen in emergency departments during the period of high airborne particulate levels. Numerous cases of injury indirectly related to the fall of ash were also seen. The long-term effect of exposure to this volcanic ash is unknown. A prompt, coordinated community medical response is necessary to protect the general population from the potential hazard of exposure to volcanic ash. PMID:7073033

  14. Helen (Lena) Stavridou Astin (1932-2015).

    PubMed

    Harway, Michele

    2016-09-01

    This article memorializes Helen (Lena) Stavridou Astin, who died at her home October 27, 2015 after a long illness. As only the second woman to earn a doctorate in psychology at the University of Maryland, Lena opened the door for other women. Her 1969 classic book, , was the first to provide data to counteract the belief that highly educated women drop out of the labor force to concentrate on family. Within the American Psychological Association, Lena was the first chair of what became the Committee on Women in Psychology and the second president of the Division on the Psychology of Women (Division 35). She also served on several American Psychological Association governance boards. During her early years, she worked at the National Academy of Science, the Bureau of Social Science Research, and University Research Associates. (PsycINFO Database Record PMID:27571532

  15. Overview Of Mount St. Helens Volcanic Eruption

    NASA Astrophysics Data System (ADS)

    Tilling, Robert I.

    Dormant since 1857, Mount St. Helens Volcano in southwestern Washington stirred from its repose to erupt on March 27, 1980, following a week of premonitory earthquake activity. The eruption was the first in the conterminous United States since the 1914-1921 activity of Lassen Peak, California. The eruptive activity through May 17 was intermittent and relatively mild, but the accompanying seismic activity remained intense. On May 18, a catastrophic eruption, triggered by a magnitude 5.0 earthquake, produced a massive landslide/debris avalanche, a devastating lateral "blast," pyroclastic flows, mudflows, and an ash column that rose more than 20 km into the stratosphere. Winds carried the ash easterly, and more than 7 cm of ash was deposited locally in parts of eastern Washington. The landslide/debris avalanche and associated mudflows caused flooding of the Toutle and Cowlitz River valleys, which carried sediment as far as the confluence with the Columbia, where it choked off the channel to navigation. Smaller but significant explosive eruptions followed in May, June, July, August, and October, 1980, with lava domes being extruded in the crater following the June, August, and October eruptions. Subsequently in December 1980 and February 1981, lava domes were extruded without significant preceding explosive activity. Except for the latter two, each dome was partly or wholly destroyed by succeeding explosive events. Scientists expect similar activity to continue for months or years--possibly even decades. The Mount St. Helens eruptions severely tested the ability of scientists to respond swiftly and effectively in assisting public officials during a geologic disaster. At the same time, they shall continue to provide an unprecedented opportunity for the systematic investigation of volcanic phenomena, and hopefully, the insight to meet possible future eruptions there and elsewhere in the Cascade Range with equal success.

  16. Psychiatric reactions to disaster: the Mount St. Helens experience.

    PubMed

    Shore, J H; Tatum, E L; Vollmer, W M

    1986-05-01

    Following the 1980 Mount St. Helens volcanic eruption, psychiatric reactions were studied in the disaster area and in a control community. Using the new criterion-based diagnostic method for psychiatric epidemiologic research, the Diagnostic Interview Schedule, the authors found a significant prevalence of disaster-related psychiatric disorders. These Mount St. Helens disorders included depression, generalized anxiety, and posttraumatic stress reaction. There was a progressive "dose-response" relationship in the comparison of control, low-exposure, and high-exposure groups. The dose-response pattern occurred among both the bereaved and the property-loss victims. PMID:3963245

  17. Mineral dust transport toward Hurricane Helene (2006)

    NASA Astrophysics Data System (ADS)

    Schwendike, Juliane; Jones, Sarah C.; Vogel, Bernhard; Vogel, Heike

    2016-05-01

    This study investigates the transport of mineral dust from its source regions in West Africa toward the developing tropical cyclone Helene (2006) and diagnoses the resulting properties of the air influencing the tropical cyclonegenesis. The model system COSMO-ART (Consortium for Small-Scale Modelling-Aerosols and Reactive Trace gases) in which the emission and transport of mineral dust as well as the radiation feedback are taken into account, was used. The emission of mineral dust between 9 and 14 September 2006 occurred in association with the relatively strong monsoon flow and northeasterly trade winds, with gust fronts of convective systems over land, and with the Atlantic inflow. Additionally, increased surface wind speed was linked to orographical effects at the Algerian Mountains, Atlas Mountains, and the Hoggar. The dust, as part of the Saharan air layer, is transported at low levels by the monsoon flow, the Harmattan, the northeasterly trade winds, and the monsoon trough, and is transported upward in the convergence zone between Harmattan and monsoon flow, in the baroclinic zone along the West African coastline, and by convection. At around 700 hPa the dust is transported by the African easterly jet. Dry and dust-free air is found to the north-northwest of the developing tropical depression due to descent in an anticyclone. Based on the model data, it was possible to distinguish between dry (from the anticyclone), dry and dusty (from the Harmattan and northeasterly trade winds), and dusty and moist air (from the monsoon flow and in the tropical depression due to convection).

  18. Learning Center Guide; Helene Fuld School of Nursing.

    ERIC Educational Resources Information Center

    Rabkin, Frieda H.

    For students at the Helene Fuld School of Nursing, Brooklyn, New York, a guide is provided to services of the school Learning Center. Noncirculating materials are listed and described, including reference books, reserve materials, magazines, the vertical file, and audiovisuals. Borrowing rules and fines are discussed. A guide is provided to the…

  19. Mt. St. Helens Seen Close Up on May 18.

    ERIC Educational Resources Information Center

    Stoffel, Dorothy B.; Stoffel, Keith L.

    1980-01-01

    Describes eruption steps in Mt. St. Helens' top surface deformation: constant shaking of earthquakes, minor steaming from vents, and sudden catastrophic eruption. Explosions caused black projectile-laden ash clouds, vertical white steam clouds, and vertical gray ash-laden clouds. (SK)

  20. Blind Rage: An Open Letter to Helen Keller

    ERIC Educational Resources Information Center

    Kleege, Georgina

    2007-01-01

    In a letter addressed to Helen Keller, the author discusses the frustrations of being blind in the modern-day world. She reflects on the seeming pettiness of her complaints next to the difficulties Keller would have faced, especially given all of the new technologies and accommodations available to the blind. She wonders how Keller dealt with her…

  1. Eruptions of Mount St. Helens : Past, present, and future

    USGS Publications Warehouse

    Tilling, Robert I.; Topinka, Lyn J.; Swanson, Donald A.

    1990-01-01

    Mount St. Helens, located in southwestern Washington about 50 miles northeast of Portland, Oregon, is one of several lofty volcanic peaks that dominate the Cascade Range of the Pacific Northwest; the range extends from Mount Garibaldi in British Columbia, Canada, to Lassen Peak in northern California. Geologists call Mount St. Helens a composite volcano (or stratovolcano), a term for steepsided, often symmetrical cones constructed of alternating layers of lava flows, ash, and other volcanic debris. Composite volcanoes tend to erupt explosively and pose considerable danger to nearby life and property. In contrast, the gently sloping shield volcanoes, such as those in Hawaii, typically erupt nonexplosively, producing fluid lavas that can flow great distances from the active vents. Although Hawaiian-type eruptions may destroy property, they rarely cause death or injury. Before 1980, snow-capped, gracefully symmetrical Mount St. Helens was known as the "Fujiyama of America." Mount St. Helens, other active Cascade volcanoes, and those of Alaska form the North American segment of the circum-Pacific "Ring of Fire," a notorious zone that produces frequent, often destructive, earthquake and volcanic activity.

  2. Pulmonary toxicity of Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Gelman, A.; Conklin, A.; Adee, R.R.

    1980-01-01

    The distribution, clearance, translocation and pathobiology of intratracheally instilled (IT) Mount St. Helens volcanic ash samples are discussed and compared with NIOSH quartz and Ritzville sandy loam samples as positive controls and saline as a negative control. Comparisons are also made with similar studies in rats using chrysotile asbestos, beryllium oxide and cadmium oxide.

  3. Learning from Mount St. Helens: Catastrophic Events as Educational Opportunities.

    ERIC Educational Resources Information Center

    Anderson, Jeremy

    1987-01-01

    Maintains that the study of catastrophic events should be given temporary precedence over the normal curriculum in order to help students understand the causes, consequences, and recovery alternatives, deal with trauma, and allay fear of recurrence and feelings of helplessness. Uses the May 1980 eruption of Mount St. Helens to demonstrate how…

  4. Mount St. Helens related aerosol properties from solar extinction measurements

    SciTech Connect

    Michalsky, J.J.; Kleckner, E.W.; Stokes, G.M.

    1980-11-01

    The optical extinction due to the introduction of aerosols and aerosol-precursors into the troposphere and stratosphere during the major eruptive phase of Mount St. Helens, Washington, is quantified. The concentration is on the two-week period centered on the major eruption of 22 July 1980. (ACR)

  5. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings

    SciTech Connect

    Not Available

    2008-05-01

    This case study describes how the Boise Inc. paper mill in St. Helens, Oregon, achieved annual savings of approximately 154,000 MMBtu and more than $1 million after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

  6. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings

    SciTech Connect

    2008-05-01

    This case study describes how the Boise Inc. paper mill in St. Helens, Oregon, achieved annual savings of approximately 154,000 MMBtu and more than $1 million. This was accomplished after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

  7. Stereo Pair, Mount St Helens, Washington State

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 18, 1980, Mount St. Helens catastrophically erupted, causing the worst volcanic disaster in the recorded history of the United States. An earthquake shook loose the northern flank of the volcano, and about 2.8 cubic kilometers (0.67 cubic miles) of rock slid downslope in the world's largest recorded landslide. The avalanche released pressure on the volcano and unleashed a huge explosion, which was directed generally northward. The mountain ultimately lost 227 meters (1314 feet) of its height and devastated about 600 square kilometers (230 square miles) of forest.

    This stereoscopic view combines a Landsat satellite image with a Shuttle Radar Topography Mission elevation model to show the volcanic crater and most of the zone of devastation. Areas now relatively devoid of vegetation appear bright. Note the landslide debris clogging the northern drainages and forming natural dams (or enlarging previously existing ones). Also note the volcanic dome built up within the crater, and the extensive floating debris still present on Spirit Lake (northeast of the crater) 12 years after the eruption.

    This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was

  8. Anaglyph, Mount St Helens, Washington State

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 18, 1980, Mount St. Helens catastrophically erupted, causing the worst volcanic disaster in the recorded history of the United States. An earthquake shook loose the northern flank of the volcano, and about 2.8 cubic kilometers (0.67 cubic miles) of rock slid downslope in the world's largest recorded landslide. The avalanche released pressure on the volcano and unleashed a huge explosion, which was directed generally northward. The mountain ultimately lost 227 meters (1314 feet) of its height and devastated about 600 square kilometers (230 square miles) of forest.

    This anaglyph combines a Landsat satellite image with a Shuttle Radar Topography Mission elevation model to show the volcanic crater and most of the zone of devastation. Areas now relatively devoid of vegetation appear bright. Note the landslide debris clogging the northern drainages and forming natural dams (or enlarging previously existing ones). Also note the volcanic dome built up within the crater, and the extensive floating debris still present on Spirit Lake (northeast of the crater) 12 years after the eruption.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a digital elevation data from the Shuttle Radar Topography Mission (SRTM), and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot)resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space

  9. Effects of volcanism on the glaciers of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Brugman, M. M.; Post, A.

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 sq/km of glacier snow and ice including a large part of Shoestring Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystallization of snow and ice surviving on Mount St. Helens could cause and lubricate mud flows and generate outburst floods.

  10. Effects of volcanism on the glaciers of Mount St. Helens

    USGS Publications Warehouse

    Brugman, Melinda M.; Post, Austin

    1981-01-01

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 km2 (about 0.13 km3) of glacier snow and ice including a large part of Shoestring, Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystalization of snow and ice surviving on Mount St. Helens could cause and lubricate mudflows and generate outburst floods. Study of glaciers that remain on this active volcano may assist in recognizing potential hazards on other volcanoes and lead to new contributions to knowledge of the transient response of glaciers to changes in mass balance or geometry.

  11. Small particles in plumes of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Rose, W. I.; Chuan, R. L.; Woods, D. C.

    1982-01-01

    Particles in the size range 0.1-25 microns were sampled by aircraft carrying a quartz crystal microcascade in the Mount St. Helens plume on three dates in August and September 1980. Two of the sampling dates represented 'typical' emissions of the volcano between plinian eruptions. One sampling flight was made 1-4 hours before the small plinian eruption of August 7, 1980 when the plume had become discontinuous and visibly darker. The plume sampled on August 7, before the eruption, contained mainly approximately 2-micron diameter silicic glass particles, fragments of the Mount St. Helens magma. The typical plumes sampled on September 22 and August 6 had much smaller concentrations of particles, trimodal size distributions with peaks at 10, 0.4, and 0.1 microns. The particles were largely nonsilicate and apparently represented Cu-Zn oxide (10 micron peak), Al sulfate, chloride, and oxide, and sulfuric acid (smallest size peak).

  12. Deformation monitoring at mount st. Helens in 1981 and 1982.

    PubMed

    Chadwick, W W; Swanson, D A; Iwatsubo, E Y; Heliker, C C; Leighley, T A

    1983-09-30

    For several weeks before each eruption of Mount St. Helens in 1981 and 1982, viscous magma rising in the feeder conduit inflated the lava dome and shoved the crater floor laterally against the immobile crater walls, producing ground cracks and thrust faults. The rates of deformation accelerated before eruptions, and thus it was possible to predict eruptions 3 to 19 days in advance. Lack of deformation outside the crater showed that intrusion of magma during 1981 and 1982 was not voluminous. PMID:17759008

  13. Deformation monitoring at Mount St. Helens in 1981 and 1982

    USGS Publications Warehouse

    Chadwick, W.W., Jr.; Swanson, D.A.; Iwatsubo, E.Y.; Heliker, C.C.; Leighley, T.A.

    1983-01-01

    For several weeks before each eruption of Mount St. Helens in 1981 and 1982, viscous magma rising in the feeder conduit inflated the lava dome and shoved the crater floor laterally against the immobile crater walls, producing ground cracks and thrust faults. The rates of deformation accelerated before eruptions, and thus it was possible to predict eruptions 3 to 19 days in advance. Lack of deformation outside the crater showed that intrusion of magma during 1981 and 1982 was not voluminous.

  14. Friendly Letters on the Correspondence of Helen Keller, Anne Sullivan, and Alexander Graham Bell.

    ERIC Educational Resources Information Center

    Blatt, Burton

    1985-01-01

    Excerpts from the letters between Alexander Graham Bell and Anne Sullivan and Helen Keller are given to illustrate the educational and personal growth of Helen Keller as well as the educational philosophy of Bell regarding the education of the deaf blind. (DB)

  15. The Challenge of Advocacy: The Different Voices of Helen Keller and Burton Blatt.

    ERIC Educational Resources Information Center

    Smith, J. David

    1997-01-01

    Comparison of the different advocacy roles of Helen Keller and Burton Blatt finds that Helen Keller's role supports the belief in miracles resulting from unconditional and sustained commitments, whereas Burton Blatt's role illustrates the value of a commitment to human rights and human dignity regardless of any expectation of productivity or…

  16. Isolation and Analysis of Bacteria in Recreational Waters of the Chattahoochee River, Helen, GA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Helen is a tourism destination in the Appalachian Mountains. A popular activity during warm weather is tubing in the Chattahoochee River. This study was to determine the variety of bacteria in the Chattahoochee River in Helen, GA. Eight samples were collected during a 5km tubing trip down the Chatta...

  17. Helene: The Face that Launched a Thousand Slips

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Howard, A. D.; Schenk, P.; Thomas, P. C.

    2013-12-01

    Helene, (~17.6 km mean radius) is a L4 Trojan co-orbital of Saturn's moon Dione. Its hemisphere features an unusual morphology consisting of broad depressions and a generally smooth surface patterned with streaks and grooves. The streaks appear to be oriented down-gradient, as are the grooves. This pattern suggests intensive mass-wasting as a dominant process on the leading hemisphere. Kilometer-scale impact craters are very sparse on the leading hemisphere other than the degraded km-scale basins defining the overall satellite shape, and many small craters have a diffuse appearance suggesting ongoing mass wasting. Thus mass wasting must dominate surface-modifying processes at present. In fact, the mass wasting appears to have been sufficient in magnitude to narrow the divides between adjacent basins to narrow septa, similar, but in lower relief, to the honeycomb pattern of Hyperion. The prominent groves occur primarily near topographic divides and appear have cut into a broad, slightly lower albedo surface largely conforming to the present topography but elevated a few meters above the smooth surfaces undergoing mass wasting flow. Low ridges and albedo markings on the surface suggest surface flow of materials traveling up to several kilometers. Diffusive mass wasting produces smooth surfaces - such a pattern characterizes most of the low-lying surfaces. The grooves, however, imply that the transport process is advective at those locations where they occur, that is, erosion tends to concentrate along linear pathways separated by divides. In fact, in many places grooves have a fairly regular spacing of 125-160 m, defining a characteristic erosional scale. Several questions are prompted by the unusual morphology of Helene: 1) What is the nature of the surface materials? 2) Are the transport processes gradual or catastrophic motion from one or a few events? 3) What mechanisms drive mass wasting and groove development? 4) Have the formative processes been active in the

  18. Observations of volcanic tremor at Mount St. Helens volcano

    SciTech Connect

    Fehler, M.

    1983-04-10

    Digital recordings of ground motion during tremor episodes accompanying eruptions at Mount St. Helens Volcano in the state of Washington on August 7 and October 16-18, 1980, are studied. The spectra of the vertical component waveforms contain at least two dominant peaks at 1.0 and 1.3 Hz for all events recorded during both eruptions that were studied. Spectra of horizontal ground motion show peaks at 0.9 and 1.1 Hz. The relative amplitude of the two peaks changes between tremor episodes and during single tremor episodes and shows no consistent relation to amplitude of ground motion. Spectra of long-period earthquakes are very similar to those of tremor events, suggesting that tremor is composed of many long-period earthquakes that occur over a period of time. The unique waveform of tremor events observed at Mount St. Helens must be due to a source effect, since the relative amplitude of the two dominant peaks changes during tremor episodes. The path effect on tremor waveforms is small since there are no peaks in the spectra of waveforms recorded during tectonic earthquakes occurring in the vicinity of Mount S. Helens. The consistency of the location of the spectral peaks for the wide range of tremor amplitudes means that there must be a physical length at the source that is constant, independent of the amplitude of motion at the source. Amplitude of ground motion varies between 0.11 and 4.7 ..mu..m. Seismic moment rates during the two eruptions are found to vary between 6 x 10/sup 18/ and 1 x 10/sup 20/ dynes cm/s. Study of tremor amplitudes recorded at Corvallis, Oregon, leads to the conclusion that tremor accompanying the cataclysmic May 18, 1980, eruption was at least one order of magnitude larger in amplitude than tremor during August and October.

  19. The Face of Women's Health: Helen Rodriguez-Trias

    PubMed Central

    Wilcox, Joyce

    2002-01-01

    The American Public Health Association has announced that it will establish an award in the name of Helen Rodriguez-Trias, MD, its first Latina president, who died of lung cancer on December 27, 2002. Rodriguez-Trias, a nationally known advocate for underserved communities, was awarded the Presidential Citizens Medal by President Clinton in January 2001 for her work on behalf of children, women, people with AIDS, and the poor. This article is based on a dialogue with Rodriguez-Trias that began in September 2001 and ended December 12, 2001. PMID:11919054

  20. Aspects of child labor in Tonna's "Helen Fleetwood".

    PubMed

    Benziman, Galia

    2011-01-01

    This article explores the unique role of Charlotte Elizabeth Tonna's "Helen Fleetwood" (1841), one of the first social-problem novels, in shaping the concerns and strategies of the genre. Writing at a moment of cultural change in the attitude toward children, Tonna's Blakean vision of child labor as diabolical allows her to offer a daring critique of social institutions. Yet her political vision is inconsistent: although she redeems the working-class child's point of view and rehumanizes this figure, Tonna's staging of child labor as originating in a metaphysical, divine plan leads her to construct children's suffering as a justifiable and even desirable ethos. PMID:22213890

  1. Ocular effects following the volcanic eruptions of Mount St Helens.

    PubMed

    Fraunfelder, F T; Kalina, R E; Buist, A S; Bernstein, R S; Johnson, D S

    1983-03-01

    Three hundred thirty-two ophthalmologists examined 1,523 patients with immediate ocular complaints following the 1980 eruptions of Mount St Helens. Loggers working up to 18 months in environments with high concentrations of volcanic ash were compared with a control group of loggers without volcanic ash contact. Although the ash particles acted as ocular foreign bodies, the small particles were apparently well tolerated for the most part, except for acute irritation. Patients with contact lenses or sicca syndrome had the most frequent ocular complaints. To date, no long-term ocular effects have been noted secondary to volcanic ash exposure. PMID:6830486

  2. Regenerating the blast zone of Mount St. Helens

    SciTech Connect

    Winjum, J.K.; Keatley, J.E.; Stevens, R.G.; Gutzwiler, J.R.

    1986-05-01

    On May 18, 1980 an earthquake beneath the north side of Mt. St. Helens triggered the eruption of this volcano. This eruption caused damage to 160,000 acres of forests, meadows, lakes and streams. This paper discussed the reforestation of approximately 68,000 acres of commercial forest lands owned by Weyerhaeuser Company. This five year operation was the result of the cooperation of a team of research and operations foresters. The progress was reassuring but some areas will require more time before regeneration will be complete.

  3. Geochemical precursors to volcanic activity at Mount St. Helens, USA.

    PubMed

    Berlo, Kim; Blundy, Jon; Turner, Simon; Cashman, Kathy; Hawkesworth, Chris; Black, Stuart

    2004-11-12

    The importance of the interplay between degassing and crystallization before and after the eruption of Mount St. Helens (Washington, USA) in 1980 is well established. Here, we show that degassing occurred over a period of decades to days before eruptions and that the manner of degassing, as deduced from geochemical signatures within the magma, was characteristic of the eruptive style. Trace element (lithium) and short-lived radioactive isotope (lead-210 and radium-226) data show that ascending magma stalled within the conduit, leading to the accumulation of volatiles and the formation of lead-210 excesses, which signals the presence of degassing magma at depth. PMID:15486253

  4. Long-wave stratospheric transmission of Mount St. Helens ejecta

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Haughney, L. C.; Innis, R. C.

    1981-01-01

    The NASA/Ames Research C-141 aircraft underflew the Mount St. Helens ejecta plume in Utah three days after the eruption. Upward-looking 20-40-microns on-board radiometry provided data resulting in a calculated long-wave transmission of 0.93. From this value, an optical depth of 0.073 is inferred. This value is compared with an accepted background, stratospheric infrared optical depth of 0.06. Assumptions on particle size, shortwave albedo, and thermal warming imply little surface temperature change caused by the ejecta on the third day immediately following the eruption.

  5. Long-wave stratospheric transmission of Mount St. Helens ejecta

    SciTech Connect

    Kuhn, P.M.; Haughney, L.C.; Innis, R.C.

    1981-01-01

    The NASA/Ames Research C-141 aircraft underflew the Mount St. Helens ejecta plume in Utah three days after the eruption. Upward-looking 20--40-..mu..m on-board radiometry provided data resulting in a calculated long-wave transmission of 0.93. From this value, an optical depth of 0.073 is inferred. This value is compared with an accepted background, stratospheric infrared optical depth of 0.06. Assumptions on particle size, shortwave albedo, and thermal warming imply little surface temperature change caused by the ejecta on the third day immediately following the eruption.

  6. Fluvial sedimentation following Quaternary eruptions of Mount St. Helens, Washington

    SciTech Connect

    Janda, R.J.; Meyer, D.F

    1985-01-01

    Depositional records of convulsive volcanic events at Mount St. Helens are in many places obscured by rapid fluvial erosion and deposition close to the volcano. Some major eruptions are recorded primarily by lahars and alluvium deposited tens of kilometers away. About 35 percent of the distinctive hummocky topography of the 1980 North Fork Toutle debris avalanche deposit now resembles an alluvial fan or a braided glacial outwash plain covered with 10 m or more of alluvium. Deposits of small (20 x 10/sup 6/m/sup 3/) but damaging lahars, such as those generated in the afternoon of 18 May 1980 and on 19 March 1982, have been largely eroded away. Rivers draining rapidly eroding areas surrounding Mount St. Helens presently have sediment yields that are among the highest in the world for nonglaciated streams of comparable size. These sediment loads are capable of causing aggradation-induced flooding in populated areas along the lower Toutle and Cowlitz Rivers. Sediment retention structures and dredging have prevented such flooding. Immediately following prehistoric eruptions, however, coarse-grained volcanic alluvium was deposited in the Cowlitz River to levels more than 1 m above the 1980 mud flow inundation level. Post-1980 rapid landscape modifications and high sediment yields are noteworthy because the eruption-impact area has not yet had a major regional storm and potentially catastrophic breachings of avalanche-impounded lakes have been prevented through engineering measures.

  7. Morphologic Evolution of the Mount St. Helens Crater Area, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1985-01-01

    The large rockslide-avalanche that preceded the eruption of Mount St. Helens on 18 May 1980 removed approximately 2.8 cubic km of material from the summit and north flank of the volcano, forming a horseshoe-shaped crater 2.0 km wide and 3.9 km long. A variety of erosional and depositional processes, notably mass wasting and gully development, acted to modify the topographic configuration of the crater area. To document this morphologic evolution, a series of annual large-scale topographic maps is being produced as a base for comparitive geomorphic analysis. Four topographic maps of the Mount St. Helens crater area at a scale of 1:4000 were produced by the National Mapping Division of the U. S. Geological Survey. Stereo aerial photography for the maps was obtained on 23 October 1980, 10 September 1981, 1 September 1982, and 17 August 1983. To quantify topographic changes in the study area, each topographic map is being digitized and corresponding X, Y, and Z values from successive maps are being computer-compared.

  8. CARBON AND NITROGEN ACCUMULATION AND MICROBIAL ACTIVITY IN MOUNT ST. HELENS PYROCLASTIC SUBSTRATES AFTER 25 YEARS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lupines are important ecosystem engineers, linking above and belowground recovery of Mount St. Helens pyroclastic substrates by increasing soil organic matter and microbial activity and by influencing other biotic processes. Various soil properties were measured in samples collected from locations ...

  9. [Helen of Troy and medicine, a picture of the "Salle des Actes"].

    PubMed

    Lafont, Olivier

    2012-05-01

    The picture of the 17th century, placed upon the great chimney in the "Salle des Actes", is attributed to the painter Simon Vouet or to his co-workers. It depicts a scene extracted from Odyssey by Homer. During their way-back to Greece, after the fall and the fire of Troia, Helen and Menelaus received in Egypt the famous nepenthes from the hands of Polydamna. An inventory of the possessions of the College of Pharmacy mentioned also helenium and moly. Nepenthes was really cited by Homer as a medicine used by Helen, but helenium was only related to Helen by euphony and moly referred to a totally different part of Odyssey and was not linked at all to Helen. This study points out the importance of mythology so far as origins of Pharmacy are concerned. PMID:23045808

  10. Road guide to volcanic deposits of Mount St. Helens and vicinity, Washington

    SciTech Connect

    Doukas, M.P.

    1990-01-01

    Mount St. Helens, the most recently active and most intensively studied Cascade volcano, is located in southwestern Washington. The volcano is a superb outdoor laboratory for studying volcanic processes, deposits of observed events, and deposits whose origins are inferred by classic geologic techniques, including analogy to Recent deposits. This road log is a guide to Mount St. Helens Volcano, with emphasis on effects and deposits of the 1980 eruption.

  11. Mount St. Helens: A 30-year legacy of volcanism

    USGS Publications Warehouse

    Vallance, James W.; Gardner, Cynthia A.; Scott, William E.; Iverson, Richard M.; Pierson, Thomas C.

    2010-01-01

    The spectacular eruption of Mount St. Helens on 18 May 1980 electrified scientists and the public. Photodocumentation of the colossal landslide, directed blast, and ensuing eruption column—which reached as high as 25 kilometers in altitude and lasted for nearly 9 hours—made news worldwide. Reconnaissance of the devastation spurred efforts to understand the power and awe of those moments (Figure 1). The eruption remains a seminal historical event—studying it and its aftermath revolutionized the way scientists approach the field of volcanology. Not only was the eruption spectacular, but also it occurred in daytime, at an accessible volcano, in a country with the resources to transform disaster into scientific opportunity, amid a transformation in digital technology. Lives lost and the impact of the eruption on people and infrastructure downstream and downwind made it imperative for scientists to investigate events and work with communities to lessen losses from future eruptions.

  12. Mount St. Helens: A 30-Year Legacy of Volcanism

    NASA Astrophysics Data System (ADS)

    Vallance, James W.; Gardner, Cynthia A.; Scott, William E.; Iverson, Richard M.; Pierson, Thomas C.

    2010-05-01

    The spectacular eruption of Mount St. Helens on 18 May 1980 electrified scientists and the public. Photodocumentation of the colossal landslide, directed blast, and ensuing eruption column—which reached as high as 25 kilometers in altitude and lasted for nearly 9 hours—made news worldwide. Reconnaissance of the devastation spurred efforts to understand the power and awe of those moments (Figure 1). The eruption remains a seminal historical event—studying it and its aftermath revolutionized the way scientists approach the field of volcanology. Not only was the eruption spectacular, but also it occurred in daytime, at an accessible volcano, in a country with the resources to transform disaster into scientific opportunity, amid a transformation in digital technology. Lives lost and the impact of the eruption on people and infrastructure downstream and downwind made it imperative for scientists to investigate events and work with communities to lessen losses from future eruptions.

  13. Patterns in Seismicity at Mt St Helens and Mt Unzen

    NASA Astrophysics Data System (ADS)

    Lamb, Oliver; De Angelis, Silvio; Lavallee, Yan

    2014-05-01

    Cyclic behaviour on a range of timescales is a well-documented feature of many dome-forming volcanoes. Previous work on Soufrière Hills volcano (Montserrat) and Volcán de Colima (Mexico) revealed broad-scale similarities in behaviour implying the potential to develop general physical models of sub-surface processes [1]. Using volcano-seismic data from Mt St Helens (USA) and Mt Unzen (Japan) this study explores parallels in long-term behaviour of seismicity at two dome-forming systems. Within the last twenty years both systems underwent extended dome-forming episodes accompanied by large Vulcanian explosions or dome collapses. This study uses a suite of quantitative and analytical techniques which can highlight differences or similarities in volcano seismic behaviour, and compare the behaviour to changes in activity during the eruptive episodes. Seismic events were automatically detected and characterized on a single short-period seismometer station located 1.5km from the 2004-2008 vent at Mt St Helens. A total of 714 826 individual events were identified from continuous recording of seismic data from 22 October 2004 to 28 February 2006 (average 60.2 events per hour) using a short-term/long-term average algorithm. An equivalent count will be produced from seismometer recordings over the later stages of the 1991-1995 eruption at MT Unzen. The event count time-series from Mt St Helens is then analysed using Multi-taper Method and the Short-Term Fourier Transform to explore temporal variations in activity. Preliminary analysis of seismicity from Mt St Helens suggests cyclic behaviour of subannual timescale, similar to that described at Volcán de Colima and Soufrière Hills volcano [1]. Frequency Index and waveform correlation tools will be implemented to analyse changes in the frequency content of the seismicity and to explore their relations to different phases of activity at the volcano. A single station approach is used to gain a fine-scale view of variations in

  14. Evaluation of mental effects of disaster, Mount St. Helens eruption.

    PubMed Central

    Shore, J H; Tatum, E L; Vollmer, W M

    1986-01-01

    This psychiatric epidemiology study following the Mount St. Helens volcanic disaster revealed a significant morbidity for psychiatric disorders. The increased prevalence showed a dose response pattern in three population groups. The findings are reported as relative and attributable risk for the two exposed populations as compared to a control group. Patterns of significant risk are presented for sex, age, and for victims with pre-existing physical illness. The research utilized a new criteria-based interview schedule for the identification of psychiatric disorders. The methodology is reviewed in the context of the controversies and assumptions within the field of behavioral response to disaster stress. There are important implications for public health planning and intervention. PMID:3946730

  15. Pyroclastic flow injury. Mount St. Helens, May 18, 1980.

    PubMed

    Parshley, P F; Kiessling, P J; Antonius, J A; Connell, R S; Miller, S H; Green, F H

    1982-05-01

    Three patients who were on the periphery of the pyroclastic flow of the Mount St. Helens eruption on May 18, 1980 were treated for severe thermal and inhalation injuries. Although exposed in identical manner, two patients arrived with heavily colonized burn wounds and developed adult respiratory distress syndrome leading directly to their death, whereas the third patient, with a noncolonized burn wound and little evidence of adult respiratory distress syndrome, survived. Evidence of inhaled ash complicating various stages of adult respiratory distress syndrome was confirmed by energy dispersive roentgenographic analysis. In the Pacific Northwest, Alaska, and the Aleutian Islands, potential for further injuries of this type in even larger numbers exists. Should these occur, those who treat the victims should be aware of the potential for severe inhalation problems in addition to the obvious burns. PMID:7081562

  16. Characterization of aerosols from eruptions of Mount St. Helens

    SciTech Connect

    Chuan, R.L.; Woods, D.C.; McCormick, M.P.

    1981-01-01

    Measurements of mass concentration and size distribution of aerosols from eruptions of Mount St. Helens as well as morphological and elemental analyses were obtained between 7 April and 7 August 1980. In situ measurements were made in early phreatic and later, minor phreatomagmatic eruption clouds near the vent of the volcano and in plumes injected into the stratosphere from the major eruptions of 18 and 25 May. The phreatic aerosol was characterized by an essentially monomodal size distribution dominated by silicate particles larger than 10 micrometers in diameter. The phreatomagmatic eruption cloud was multimodal; the large size mode consisted of silicate particles and the small size modes were made up of mixtures of sulfuric acid and silicate particles. The stratospheric aerosol from the main eruption exhibited a characteristic narrow single mode with particles less than 1 micrometer in diameter and nearly all of the mass made up of sulfuric acid droplets.

  17. Evaluation of mental effects of disaster, Mount St. Helens eruption.

    PubMed

    Shore, J H; Tatum, E L; Vollmer, W M

    1986-03-01

    This psychiatric epidemiology study following the Mount St. Helens volcanic disaster revealed a significant morbidity for psychiatric disorders. The increased prevalence showed a dose response pattern in three population groups. The findings are reported as relative and attributable risk for the two exposed populations as compared to a control group. Patterns of significant risk are presented for sex, age, and for victims with pre-existing physical illness. The research utilized a new criteria-based interview schedule for the identification of psychiatric disorders. The methodology is reviewed in the context of the controversies and assumptions within the field of behavioral response to disaster stress. There are important implications for public health planning and intervention. PMID:3946730

  18. Mount St. Helens related aerosol properties from solar extinction measurements

    NASA Technical Reports Server (NTRS)

    Michalsky, J. J.; Kleckner, E. W.; Stokes, G. M.

    1982-01-01

    A network of solar radiometers, operated on the North American Continent for an average of 2 years before the first major eruption of Mount St. Helens, Washington, continues to collect direct solar data through the eruptive phase of this volcano. The radiometers collect spectral data through 12 interference filters spanning the sensitivity of the photodiode used as detector. The data are collected every 5 minutes in seven filters and every 15 minutes in five additional filters. A variant of the classical Langley method has been used to measure the optical depth of the aerosols as a function of wavelength. The network, which is the nearest station, is located some 180 kilometers east of the volcano, well within range of noticeable effects during much of the minor as well as major activity. The wavelength dependence of the aerosol-optical depth before and after the 22 July 1980 major eruption, which was well characterized because of favorable meteorological conditions is discussed.

  19. Pyroclastic flow injury. Mount St. Helens, May 18, 1980

    SciTech Connect

    Parshley, P.F.; Kiessling, P.J.; Antonius, J.A.; Connell, R.S.; Miller, S.H.; Green, F.H.

    1982-05-01

    Three patients who were on the periphery of the pyroclastic flow of the Mount St. Helens eruption on May 18, 1980 were treated for severe thermal and inhalation injuries. Although exposed in identical manner, two patients arrived with heavily colonized burn wounds and developed adult respiratory distress syndrome leading directly to their death, whereas the third patient, with a noncolonized burn wound and little evidence of adult respiratory distress syndrome, survived. Evidence of inhaled ash complicating various stages of adult respiratory distress syndrome was confirmed by energy dispersive roentgenographic analysis. In the Pacific Northwest, Alaska, and the Aleutian Islands, potential for further injuries of this type in even larger numbers exists. Should these occur, those who treat the victims should be aware of the potential for severe inhalation problems in addition to the obvious burns.

  20. Trajectories of the Mount St. Helens eruption plume

    NASA Technical Reports Server (NTRS)

    Danielsen, E. F.

    1981-01-01

    The plume of the major eruption of Mount St. Helens on May 18, 1980 penetrated 10 to 11 km into the stratosphere, attaining heights of 22 to 23 km. Wind shears rapidly converted the plume from an expanding vertical cone to a thin, slightly inclined lamina. The lamina was extruded zonally in the stratosphere as the lower part moved eastward at jet stream velocities, while the upper part slowly moved westward in the region of nonsteady transition from the westerlies to the summer stratospheric easterlies. Trajectories computed to position the NASA U-2 aircraft for sampling in the plume are described. Plume volume after 8 hours of strong volcanic emission is estimated at 2,000,000 cu km. Only about 1% of this volume is attributed to the volcano; the rest was entrained from the environment.

  1. Trajectories of the Mount St. Helens eruption plume

    SciTech Connect

    Danielsen, E.F.

    1981-01-01

    The plume of the major eruption of Mount St. Helens on 18 May 1980 penetrated 10 to 11 kilometers into the stratosphere, attaining heights of 22 to 23 kilometers. Wind shears rapidly converted the plume from expanding vertical cone to a thin, slightly inclined lamina. The lamina was extruded zonally in the stratosphere as the lower part moved eastward at jet stream velocities, while the upper part slowly moved westward in the region of nonsteady transition from the westerlies to the summer stratospheric easterlies. Trajectories computed to position the NASA U-2 aircraft for sampling in the plume are described. Plume volume after 8 hours of strong volcanic emission is estimated at 2 x 10/sup +6/ cubic kilometers. Only about 1 percent of this volume is attributed to the volcano; the rest was entrained from the environment.

  2. Inbreeding, eugenics, and Helen Dean King (1869-1955).

    PubMed

    Ogilvie, Marilyn Bailey

    2007-01-01

    Helen Dean King's scientific work focused on inbreeding using experimental data collected from standardized laboratory rats to elucidate problems in human heredity. The meticulous care with which she carried on her inbreeding experiments assured that her results were dependable and her theoretical explanations credible. By using her nearly homozygous rats as desired commodities, she also was granted access to venues and people otherwise unavailable to her as a woman. King's scientific career was made possible through her life experiences. She earned a doctorate from Bryn Mawr College under Thomas Hunt Morgan and spent a productive career at the Wistar Institute of Anatomy and Biology in Philadelphia where she had access to the experimental subjects which made her career possible. In this paper I examine King's work on inbreeding, her participation in the debates over eugenics, her position at the Wistar Institute, her status as a woman working with mostly male scientists, and her involvement with popular science. PMID:18348398

  3. The isotopic and chemical evolution of Mount St. Helens

    USGS Publications Warehouse

    Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.

    1983-01-01

    Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.

  4. Linking community and ecosystem development on Mount St. Helens.

    PubMed

    Gill, Richard A; Boie, Jennifer A; Bishop, John G; Larsen, Lindsay; Apple, Jennifer L; Evans, R David

    2006-06-01

    In the two decades following the 1980 eruption of Mount St. Helens in Washington State, the N2-fixing colonizer Lupinus lepidus is associated with striking heterogeneity in plant community and soil development. We report on differences in nutrient availability and plant tissue chemistry between older, dense patches (core) of L. lepidus and more recently established low density patches (edge). In addition, we conducted a factorial nitrogen and phosphorus fertilization experiment in core patches to examine the degree of N and P limitation in early primary succession. We found that there were no significant differences in N or P availability between core and edge L. lepidus patches during the dry summer months, although nutrient availability is very low across the landscape. In the high density patches we found lower tissue N content and higher fiber content in L. lepidus tissue than in the younger edge patches. The addition of nutrients substantially altered plant community composition, with N addition causing an increase in other forb biomass and a corresponding competition-induced decline in L. lepidus biomass. The majority of the positive biomass response came from Hypochaeris radicata. In the second year of the fertilization experiment, the addition of N significantly increased total community biomass while L. lepidus biomass declined by more than 50%. The response of every species other than L. lepidus to N additions suggests that N may be the macronutrient most limiting plant production on Mount St. Helens but that the gains in productivity were somewhat offset by a decline of the dominant species. By the third year of the experiment, L. lepidus began to increase in abundance with P addition. This result suggests co-limitation of the community by N and P. PMID:16463176

  5. Catastrophic eruptions of the directed-blast type at Mount St. Helens, bezymianny and Shiveluch volcanoes

    USGS Publications Warehouse

    Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.

    1985-01-01

    This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for

  6. Surtsey and Mount St. Helens: a comparison of early succession rates

    NASA Astrophysics Data System (ADS)

    del Moral, R.; Magnússon, B.

    2013-12-01

    Surtsey and Mount St. Helens are celebrated, but very different volcanoes. Permanent plots allow comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, common themes were revealed. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.

  7. Surtsey and Mount St. Helens: a comparison of early succession rates

    NASA Astrophysics Data System (ADS)

    del Moral, R.; Magnússon, B.

    2014-04-01

    Surtsey and Mount St. Helens are celebrated but very different volcanoes. Permanent plots allow for comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors, and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, we found several common themes. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.

  8. Inclusions in Mount St. Helens dacite erupted from 1980 through 1983

    USGS Publications Warehouse

    Heliker, C.

    1995-01-01

    Inclusions of plutonic, metavolcanic and volcanic rocks are abundant in dacite pumice and lava from the 1980-1986 eruption sequence at Mount St. Helens. Point counts of inclusions exposed in talus blocks from the dome from 1980 through 1983 show that inclusions form approximately 3.5 vol.% of the lava. Eighty-five percent of the inclusions are medium-grained gabbros. The gabbroic inclusions are of four distinct type. The most abundant type is laminated gabbronorite. Various types of gabbroic inclusions, including the laminated gabbronorite, are common in Mount St. Helens lavas of approximately the last 3000 years. This coincides with the interval in which Mount St. Helens first erupted basalt and basaltic andesite lavas. These observations, together with the fact that the gabbroic inclusions are compositionally unlike any of the Tertiary intrusive rocks in the Mount St. Helens area, strongly suggest that the inclusions are related to the introduction of basalt to the Mount St. Helens magmatic system. -from Author

  9. The "Unsavory Researches" of Helen Campbell: A 19th-Century Journalist's Investigation of Urban Women's Poverty.

    ERIC Educational Resources Information Center

    Henry, Susan

    In 1886, the New York "Tribune" ran a series of articles by Helen Campbell, "The Prisoners of Poverty," which investigated the sufferings of working women in New York's slums. Initially a fiction and housekeeping writer, Helen Campbell's home economics orientation first pointed her toward the problems of the poor. In the late 1870s, she wrote a…

  10. Analysis of Mount St. Helens ash from optical photoelectric photometry

    NASA Technical Reports Server (NTRS)

    Cardelli, J. A.; Ackerman, T. P.

    1983-01-01

    The optical properties of suspended dust particles from the eruption of Mt. St. Helens on July 23, 1980 are investigated using photoelectric observations of standard stars obtained on the 0.76-m telescope at the University of Washington 48 hours after the eruption. Measurements were made with five broad-band filters centered at 3910, 5085, 5480, 6330, and 8050 A on stars of varying color and over a wide range of air masses. Anomalous extinction effects due to the volcanic ash were detected, and a significant change in the wavelength-dependent extinction parameter during the course of the observations was established by statistical analysis. Mean particle size (a) and column density (N) are estimated using the Mie theory, assuming a log-normal particle-size distribution: a = 0.18 micron throughout; N = 1.02 x 10 to the 9th/sq cm before 7:00 UT and 2.33 x 10 to the 9th/sq cm after 8:30 UT on July 25, 1980. The extinction is attributed to low-level, slowly migrating ash, possibly combined with products of gas-to-particle conversion and coagulation.

  11. Reestablishment of endogonaceae on Mount St. Helens: survival of residuals

    SciTech Connect

    Allen, M.F.; MacMahon, J.A.; Andersen, D.C.

    1984-01-01

    The 18 May 1980 eruption of Mount St. Helens resulted in the burial of relatively well developed soils under variable depths of sterile tephra and ash. During summer 1982, we examined a series of sites and estimated the numbers of spores of Endogonaceae that had been transported from the buried soil to the new ground surface by either abiotic or biotic vectors. There was no difference between spore counts of Endogone spp. or Glomus spp. in the buried soils of forests and clear-cuts; spores were rare in the tephra at any site. In areas featuring less than or equal to 50 cm of tephra, spores were transported to the surface by gophers (in previous clear-cut areas) and by ants (in previous forest and clear-cut habitats). In the Pumice Plain, an area devoid of gophers and ants, erosion exposed spores to the surface. We found no evidence to suggest that endogonaceous fungi grow back up root systems from buried horizons. We hypothesize that small-scale perturbations (erosion, gopher and ant mounds) following the major volcanic disturbance may drive succession by exposing buried mycorrhizal and decomposer fungi. 26 references, 2 figures, 3 tables.

  12. Improving the intensity of the HELEN Laser at AWE

    NASA Astrophysics Data System (ADS)

    Hopps, Nicholas; Nolan, Jonathan; Girling, Mark; Kopec, Maria; Harvey, Ewan

    2005-04-01

    The HELEN laser is a three-beam, large aperture Nd:glass laser, used for plasma physics studies at the Atomic Weapons Establishment in the UK. Two of the beams nominally deliver 500 J each in 1 ns at the second harmonic (527 nm). The third beam, the "backlighter", has recently been upgraded to operate as a chirped pulse amplification system and it now routinely delivers 70 J to target in 500 fs. Optimal focal spot performance is achieved using a closed-loop adaptive optics system, which ensures good wavefront characteristics, irrespective of whether previous firing of the amplifiers has induced refractive index variations in the laser glass. The system uses a 32 element bimorph mirror with 98 mm aperture, roughly half way through the laser chain. A Shack-Hartman wavefront sensor, positioned at the output of the laser is the diagnostic used to provide feedback to the deformable mirror. Correction of the static and slowly varying aberrations on the beam has been demonstrated. The fast aberrations induced during the flashlamp discharge have been evaluated. The improved focal spot characteristics result in an intensity on target of significantly greater than 1019 Wcm-2.

  13. High accuracy EOS experiments using the AWE HELEN laser

    NASA Astrophysics Data System (ADS)

    Rothman, S. D.; Evans, A. M.

    1998-07-01

    A knowledge of a material's equation-of-state (EOS) is essential for hydrodynamic calculations. Although laser experiments investigate the pressure range between those attainable by gas guns (10Mbar) where no other data exist, it is still advantageous to obtain high accuracy data to discriminate between EOS models which have been compared with gas gun and UGT data to a few percent in pressure. The AWE HELEN laser is being used to obtain high pressure Hugoniot data by the impedance match method. Indirect drive generates pressures up to 10Mbar in the aluminium reference material. Shock velocities are obtained by observing the visible light emitted on break-out from the surface of the target using optical streak cameras. Experiments have been performed on copper and brominated plastic. Attention to target fabrication and metrology, diagnostic calibration, shock uniformity and attenuation and data analysis have enabled us to measure shock velocities to an accuracy of ˜1%.

  14. High Accuracy EOS Experiments Using the AWE HELEN Laser.

    NASA Astrophysics Data System (ADS)

    Rothman, S. D.; Evans, A. M.

    1997-07-01

    A knowledge of a material's equation-of-state (EOS) is essential for hydrodynamic calculations. Although laser experiments investigate the pressure range between those attainable by gas guns (10Mbar) where no other data exist, it is still advantageous to obtain high accuracy data to discriminate between EOS models which have been compared with gas gun and UGT data to a few percent in pressure. The AWE HELEN laser is being used to obtain high pressure Hugoniot data by the impedance match method. Indirect drive generates pressures up to 10Mbar in the aluminium reference material. Shock velocities are obtained by observing the visible light emitted on break-out from the surface of the target using optical streak cameras.Experiments have been performed on copper and brominated plastic.Attention to target fabrication and metrology, diagnostic calibration, shock uniformity and attenuation and data analysis have enabled us to measure shock velocities to an accuracy of 1it intact.

  15. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    USGS Publications Warehouse

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  16. Airborne radiological sampling of Mount St. Helens plumes

    SciTech Connect

    Andrews, V.E.

    1981-04-01

    Particulate and gaseous samples for radiologial analyses were collected from the plumes created by eruptions of Mount St. Helens. The sampling aircraft and equipment used are routinely employed in aerial radiological surveillance at the Nevada Test Site by the Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, Nevada. An initial sample set was collected on April 4, 1980, during the period of recurring minor eruptions. Samples were collected again on May 19 and 20 following the major eruption of May 18. The Environmental Protection Agency's Office of Radiation Programs analyzed the samples for uranium and thorium isotopes, radium-226, lead-210, polonium-210, and radon-222. Other laboratories analyzed samples to determine particle size distribution and elemental composition. The only samples containing radioactivity above normal ambient levels were collected on May 20. Polonium-210 concentrations in the plume, determined from a sample collected between 5 and 30 km from the crater, were approximately an order of magnitude above background. Radon-222 concentrations in samples collected from the plume centerline at a distance of 15 km averaged approximately four times the average surface concentrations. The small increases in radioactivity would cause no observable adverse health effects.

  17. Pulmonary response to Mount St. Helens' volcanic ash.

    PubMed

    Vallyathan, V; Mentnech, M S; Tucker, J H; Green, F H

    1983-04-01

    The pulmonary response to a sedimented sample of Mount St. Helens' volcanic ash from the first eruption was studied at 1, 7, 28, 90, and 180 days postintratracheal administration of 1 or 10 mg of ash in specific-pathogen-free rats. One day administration of volcanic ash all animals exhibited a marked inflammatory cell response centered on respiratory bronchioles in which polymorphonuclear leukocytes predominated. At 7 days the reaction was characterized by mononuclear cellular infiltrates. The macrophages within the respiratory bronchioles and alveoli contained intracytoplasmic ash particles. At 28 days the intraalveolar aggregates of mononuclear cells had condensed to form granulomas. Most of the granulomas contained foreign body-type giant cells and some showed central necrosis. The granulomas enlarged in size from 28 days until the termination of the experiment at 180 days with progressive increase in the amount of collagenous tissue. The results of these studies suggest that the volcanic ash may pose a risk for pneumoconiosis in heavily exposed human populations. PMID:6219872

  18. Mount St. Helens plume dispersion based on trajectory analyses

    NASA Technical Reports Server (NTRS)

    Danielsen, E. F.

    1982-01-01

    The major eruption of Mount St. Helens on 18 May 1980, had sufficient energy to traverse the troposphere (9 km above the mountain top) and to penetrate an additional 10 km into the stratosphere. This plume, initially quasi-vertical, rapidly acquired the horizontal momentum of the environmental winds and suffered differential rotation due to a positive speed shear in the troposphere and a negative shear in the stratosphere. Advected rapidly eastward by the undulating jet stream, the lower stratospheric portion of the plume circled the globe at an average speed of approx. 25 m s/l, reentering North America over California in early June. During the same period, the uppermost portion slowly looped over the northwestern United States and then moved westward over the northern Pacific Ocean. Thus, plume dispersion was initiated by the vertical shears of the horizontal winds which converted a nearly vertical plume to a thin, quasi-horizontal, quasi-zonal lamina. Horizontal shears then dispersed the lamina meridionally while small-scale, wave turbulent motions spread it slowly vertically.

  19. Pulmonary toxicity of Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Conklin, A.W.; Gelman, R.A.; Adee, R.R.; Rhoads, K.

    1982-02-01

    The effects of Mount St. Helens volcanic ash, a sandy loam soil, and quartz particles on the lung and mediastinal lymph nodes of Fischer rats were studied at time intervals of up to 109 days after in tratracheal instillation of 40 mg ash, soil, or quartz in a single dose or after multiple doses of ash instilled in seven consecutive weekly doses for a total deposition of 77 mg. Quartz caused early granuloma formation, later fibrosis was also seen in lymph nodes. Volcanic ash caused an ill-defined inflammatory reaction with a few rats showing granuloma formulation, a very limited linear fibrosis, and a moderate lipoproteinosis, and lymph nodes were enlarged with numerous microgranulomas but without reticulin and collagen formation. Pulmonary reactions to soil particles were less intense but similar to those in ash- exposed animals; lymph nodes were not enlarged. No significant clearance of ash was found at 3 months after instillation. Volcanic ash produced a simple pneumoconiosis similar to what has been described for animals and humans living for prolonged periods of time in dusty desert areas of the United States.

  20. Pressure wave generated by the Mount St. Helens eruption

    SciTech Connect

    Banister, J.B.

    1984-06-20

    Histories of the air pressure wave radiated from the eruption of Mount St. Helens on May 18, 1980, were calculated for two models of the eruption cloud expansion. The first considered the wave radiated from an accelerated plane surface, while the second examined the wave radiated from an expanding hemisphere. Two histories of eruption cloud motion based on photographs were used. Peak positive overpressures were about the same for these cloud motion histories of expansion into a hemisphere was assumed. If an accelerated planar source model was used, the peak positive pressures have again about the same value in east and west direction, but values are about half in the north and south direction. Observed peak overpressures at microbarograph stations are somewhat higher than the calculated with the most marked departures at the greater surface ranges. These observed overpressures may have been about half the correct values, however. Microbarograph records show a weaker rarefaction than calculated histories or none at all. This can be explained, in part, by a lack of a real motion coherence in the slowing eruption cloud. If it is also possible the net ash cloud volume increased considerably after its vertical growth ceased and weakened the negative phase as well as lengthening the positive phase.

  1. Measurements of SO2 in the Mount St. Helens debris

    NASA Technical Reports Server (NTRS)

    Kerr, J. B.; Evans, F. J.; Mateer, C. L.

    1982-01-01

    Routine measurements of ozone and SO2 are made with the Dobson and Brewer spectrophotometers at the Atmospheric Environment Service in Downsview Ontario. On May 20 and 21, 1980, large values of column SO2 were observed with both spectrophotometers at the time of passage of the Mount St. Helens debris. Enhanced SO2 values were first observed at 1800Z on May 20. The maximum column amount of SO2 measured was 0.06 cm at 2200 Z. On May 21, SO2 values slowly decreased from 0.03 cm at 1100 Z cm to 0.01 cm at 2000Z. Typical SO2 amounts due to pollution at the Downsview site are approximately 0.003 to 0.005 cm. At the same time of maximum SO2 enhancement, both Dobson and Brewer spectrophotometers measured a 0.040 cm decrease of total ozone. It is not clear whether the decrease of total ozone was caused by the volcanic cloud or natural ozone variability. Air mass trajectories indicate that the altitude of the debris cloud, which passed over Downsview at the time, was between 10 km and 12 km.

  2. Physical and chemical characteristics of Mount St. Helens airborne debris

    NASA Technical Reports Server (NTRS)

    Sedlacek, W. A.; Heiken, G. H.; Mroz, E. J.; Gladney, E. S.; Perrin, D. R.; Leifer, R.; Fisenne, I.; Hinchliffe, L.; Chuan, R. L.

    1982-01-01

    Tephra and aerosols from the May 18, 1980 eruption of Mount St. Helens, Washington were sampled in the lower stratosphere with a WB-57F aircraft. The main body of the plume was intercepted over western Kansas on May 20, 48 hours after the eruption, at an altitude of 15.2 km. Concentrations on filter samples were 26 ng of SO4(-2) of air and 579 ng of ash/g of air. Angular glass pyroclasts ranged in size from 0.5 to 10 microns, with a mean grain of 2 microns. Samples collected at altitudes of 16.7 and 12.5 km had only traces of SO4(-2) and ash. A second flight was flown, 72 hours after the eruption, on May 21. From north Texas to central Wyoming, at an altitude of 15.2 km less than 0.5 to 38 ng of ash/g of air and 1.0 to 2.2 ng of SO4(-2)/g of air were sampled. At an altitude of 18.3 km, from central Wyoming to NW New Mexico, the plume density and character were variable.

  3. Early succession on lahars spawned by Mount St. Helens.

    PubMed

    Del Moral, R

    1998-06-01

    The effects of isolation on primary succession are poorly documented. I monitored vegetation recovery on two Mount St. Helens lahars (mud flows) with different degrees of isolation using contiguous plots. Seventeen years after the eruption, species richness was stable, but cover continued to increase. That isolation affects community structure was confirmed in several ways. The dominance hierarchies of the lahars differed sharply. Detrended correspondence analysis on Lahar I showed a trend related to distance from an adjacent woodland, whereas vegetation on Lahar II was relatively homogeneous. Spectra of growth forms and dispersal types also differed. Lahar I was dominated by species with modest dispersal ability, while Lahar II was dominated by species with better dispersal. Variation between plots should decline through time, a prediction confirmed on Lahar II. Lahar I remained heterogeneous despite having developed significantly higher cover. Here, the increasing distance from the forest has prevented plots from becoming more homogeneous. At this stage of early primary succession, neither lahar is converging towards the species composition of adjacent vegetation. This study shows that isolation and differential dispersal ability combine to determine initial vegetation structure. Stochastic effects resulting from dispersal limitations may resist the more deterministic effects of competition that could lead to floristic convergence. PMID:21684966

  4. Ice Nucleus Characteristics of Mount St. Helens Effluents

    SciTech Connect

    Schnell, R.C.; Pueschel, R.F.; Wellman, D.L.

    1982-12-20

    Aerosols were studied in situ and captured on membrane filters from an aircraft flown around Mount St. Helens during its phreatic period in April 1980. Bulk samples of volcanic ash were collected at ground level 120 km downwind on May 19, 1980 and reaerosolized in a laboratory in ash cloud simulation studies. The aerosol and/or ash samples were tested for ice nucleus (IN) activity using four different IN measurement systems (NCAR acoustical counter, bulk drop freezing, NCAR dynamic thermal diffusion chamber, and filter drop freezing). Although threshold IN activity was observed at -8/sup 0/C in bulk ash, in aerosols there were few IN active at temperatures warmer than -12/sup 0/C. At -12/sup 0/C, IN concentrations were less than 0.4 l/sup -1/ (400 m/sup -3/) even when the aerosol concentrations were as high as 3000 ..mu..g m/sup -3/. At aerosol concentrations of 500 ..mu..g m/sup -3/ and less, the IN content of the ash was below background threshold temperatures of -18/sup 0/C.

  5. SAGE measurements of Mount St. Helens volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Kent, G. S.

    1982-01-01

    The SAGE satellite system was used to make measurements on the optical extinction produced by stratospheric aerosols from the Mount St. Helens eruption. Two periods of observation were analyzed. In the first period (May 21 to 31, 1980), SAGE moved southward from latitude 60 N, and crossed the United States approximately one week after the May 18th eruption. Enhancements in stratospheric extinction were confined to latitudes between about 55 N and 25 N and longitudes between 10 W and 140 W. Individual layers were observed up to altitudes of 23 km. The geographical location of these layers corresponded closely to that expected on the basis of high-altitude meteorological data. During June and much of July, SAGE was, by reason of its geographical position and other orbital characteristics, unable to make further measurements on the northern hemisphere. Between July 19th and August 12th a second southward pass over the northern hemisphere occurred and further observations were made. The volcanic aerosol in the stratosphere was now found to be widely distributed over the hemisphere, the maximum concentrations being north of 50 N. The aerosol showed considerable inhomogeneity and had reached as far south as 15 N but little, if any, had crossed the equator into the southern hemisphere. Individual layers at different heights were still distinguishable. The total stratospheric aerosol loading on this occasion appeared to be greater than in May and corresponded to an increase in global stratospheric mass of between 50 and 100 percent.

  6. A new tree-ring date for the ``floating island'' lava flow, Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Yamaguchi, David K.; Hoblitt, Richard P.; Lawrence, Donald B.

    1990-09-01

    Anomalously narrow and missing rings in trees 12 m from Mount St. Helens' “floating island” lava flow, and synchronous growth increases in trees farther from the flow margin, are evidence that this andesitic flow was extruded between late summer 1799 and spring 1800 a.d., within a few months after the eruption of Mount St. Helens' dacitic layer T tephra. For ease of reference, we assign here an 1800 a.d. date to this flow. The new date shows that the start of Mount St. Helens' Goat Rocks eruptive period (1800 1857 a.d.) resembled the recent (1980 1986) activity in both petrochemical trends and timing. In both cases, an initial explosive eruption of dacite was quickly succeeded by the eruption of more mafic lavas; dacite lavas then reappeared during an extended concluding phase of activity. This behavior is consistent with a recently proposed fluid-dynamic model of magma withdrawal from a compositionally zoned magma chamber.

  7. Comparative physiographic diagrams of Mount St. Helens, Washington, and Crater Lake, Oregon

    USGS Publications Warehouse

    Alpha, Tau Rho; Morley, Jim M.

    1983-01-01

    These physiographic diagrams provide a visual comparison of two Cascade Range volcanoes which have had their tops destroyed in different ways -- Mount St. Helens in 1980, Mount Mazama (whose site is now occupied by Crater Lake) about 6,800 years ago. Both volcanoes are viewed from the north from 30 degrees above the horizon, with no vertical exaggeration. The ground area portrayed in each diagram is equal; the south edge of the Mount St. Helens drawing is lower than that of Crater Lake drawing because elevations drop away toward the south, whereas elevations are more constant at the north and south edges of the Crater Lake diagram. 

  8. A comparison of constituents of Mount St. Helens eruption clouds with those of some other volcanoes

    NASA Technical Reports Server (NTRS)

    Cadle, R. D.; Heidt, L.

    1982-01-01

    Gases from Mount St. Helens were collected from the eruption clouds using an airplane during the period April 2 to April 8, 1980, and were analyzed for CO2, H2, CH4, and COS. The results were of similar magnitude to those obtained from magmatic eruptions in Central America. Thus, although the eruptions were evidently largely phreatic, magmatic gases may have played a larger role in these early small eruptions than has generally been believed. Electron micrographs of ash particles collected from the Mount St. Helens eruption clouds showed that the particles were for the most part much larger than those from the Central American eruptions.

  9. Counting, accounting, and accountability: Helen Verran's relational empiricism.

    PubMed

    Kenney, Martha

    2015-10-01

    Helen Verran uses the term 'relational empiricism' to describe situated empirical inquiry that is attentive to the relations that constitute its objects of study, including the investigator's own practices. Relational empiricism draws on and reconfigures Science and Technology Studies' traditional concerns with reflexivity and relationality, casting empirical inquiry as an important and non-innocent world-making practice. Through a reading of Verran's postcolonial projects in Nigeria and Australia, this article develops a concept of empirical and political 'accountability' to complement her relational empiricism. In Science and an African Logic, Verran provides accounts of the relations that materialize her empirical objects. These accounts work to decompose her original objects, generating new objects that are more promising for the specific postcolonial contexts of her work. The process of decomposition is part of remaining accountable for her research methods and accountable to the worlds she is working in and writing about. This is a practice of narrating relations and learning to tell better technoscientific stories. What counts as better, however, is not given, but is always contextual and at stake. In this way, Verran acts not as participant-observer, but as participant-storyteller, telling stories to facilitate epistemic flourishing within and as part of a historically located community of practice. The understanding of accountability that emerges from this discussion is designed as a contribution, both practical and evocative, to the theoretical toolkit of Science and Technology Studies scholars who are interested in thinking concretely about how we can be more accountable to the worlds we study. PMID:26630820

  10. Physical and chemical characteristics of Mt. St. Helens airborne debris

    SciTech Connect

    Sedlacek, W.A.; Heiken, G.H.; Mroz, E.J.; Gladney, E.S.; Perrin, D.R.; Leifer, R.; Fisenne, I.; Hinchliffe, L.; Chuan, R.L.

    1980-01-01

    Tephra and aerosols from the May 18, 1980 eruption of Mt. St. Helens, Washington were sampled in the lower stratosphere with a WB-57F aircraft. The main body of the plume was intercepted over western Kansas on May 20, 48 hours after the eruption, at an altitude of 15.2 km. Concentrations on filter samples were 26 ng of SO/sub 4//g of air and 579 ng of ash/g of air. Angular glass pyroclasts ranged in size from 0.5 to 10 ..mu..m, with a mean grain size of 2 ..mu..m. Samples collected at altitudes of 16.7 and 12.5 km had only traces of SO/sub 4/ and ash. A second flight was flown, 72 hours after the eruption, on May 21. From north Texas to central Wyoming, at an altitude of 15.2 km, < 0.5 to 38 ng of ash/g of air and 1.0 to 2.2 ng of SO/sub 4//g of air were sampled. At an altitude of 18.3 km, from central Wyoming to NW New Mexico, the plume density and character were variable. Glassy pyroclasts similar to those sampled on the first flight range in size from 0.5 to 4 ..mu..m dia. Trace element analysis revealed some volatile element enrichment, but far less than previously observed in the plume from St. Augustine Volcano, 1976. Values of /sup 210/Po//sup 210/Pb were 0.7 to 1.32 comparable to the secular equilibrium value of 1.0 and far less than ratios previously reported by Lambert.

  11. Air pressure waves from Mount St. Helens eruptions

    SciTech Connect

    Reed, J.W.

    1987-10-20

    Weather station barograph records as well as infrasonic recordings of the pressure wave from the Mount St. Helens eruption of May 18, 1980, have been used to estimate an equivalent explosion airblast yield for this event. Pressure amplitude versus distance patterns in various directions compared with patterns from other large explosions, such as atmospheric nuclear tests, the Krakatoa eruption, and the Tunguska comet impact, indicate that the wave came from an explosion equivalent of a few megatons of TNT. The extent of tree blowdown is considerably greater than could be expected from such an explosion, and the observed forest damage is attributed to outflow of volcanic material. The pressure-time signature obtained at Toledo, Washington, showed a long, 13-min duration negative phase as well as a second, hour-long compression phase, both probably caused by ejacta dynamics rather than standard explosion wave phenomenology. The peculiar audibility pattern, with the blast being heard only at ranges beyond about 100 km, is explicable by finite amplitude propagation effects. Near the source, compression was slow, taking more than a second but probably less than 5 s, so that it went unnoticed by human ears and susceptible buildings were not damaged. There was no damage as Toledo (54 km), where the recorded amplitude would have broken windows with a fast compression. An explanation is that wave emissions at high elevation angles traveled to the upper stratosphere, where low ambient air pressures caused this energetic pressure oscillation to form a shock wave with rapid, nearly instantaneous compression. Atmospheric refraction then returned part of this wave to ground level at long ranges, where the fast compressions were clearly audible. copyright American Geophysical Union 1987

  12. INHALATION STUDIES OF MT. ST. HELENS VOLCANIC ASH IN ANIMALS. 1. INTRODUCTION AND EXPOSURE SYSTEM

    EPA Science Inventory

    Due to the lack of information on the effects of inhaled Mt. St. Helens volcanic ash and its potential interaction with sulfur dioxide (SO2), animal studies were performed to determine the acute and chronic health effects of a short-term exposure. This paper describes the inhalat...

  13. Deposits of large volcanic debris avalanches at Mount St. Helens and Mount Shasta volcanoes

    SciTech Connect

    Glicken, H.

    1985-01-01

    Large volcanic debris avalanches are among the world's largest mass movements. The rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens produced a 2.8 km/sup 3/ deposit and is the largest historic mass movement. A Pleistocene debris avalanche at Mount Shasta produced a 26 km/sup 3/ deposit that may be the largest Quaternary mass movement. The hummocky deposits at both volcanoes consist of rubble divided into (1) block facies that comprises unconsolidated pieces of the old edifice transported relatively intact, and (2) matrix facies that comprises a mixture of rocks from the old mountain and material picked up from the surrounding terrain. At Mount St. Helens, the juvenile dacite is found in the matrix facies, indicating that matrix facies formed from explosions of the erupting magma as well as from disaggregation and mixing of blocks. The block facies forms both hummocks and interhummock areas in the proximal part of the St. Helens avalanche deposit. At Mount St. Helens, the density of the old cone is 21% greater than the density of the avalanche deposit. Block size decreases with distance. Clast size, measured in the field and by sieving, coverages about a mean with distance, which suggests that blocks disaggregated and mixed together during transport.

  14. AIRBORNE STUDIES OF THE EMISSIONS FROM THE VOLCANIC ERUPTIONS OF MOUNT ST. HELENS

    EPA Science Inventory

    The concentrations of particles less than 10 micrometers in diameter in the ash emissions from Mount St. Helens have been more than 1000 times greater than those in the ambient air. Mass loadings of particles less than 2 micrometers in diameter were generally several hundred micr...

  15. Atmospheric Effects and Potential Climatic Impact of the 1980 Eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Deepak, A. (Editor)

    1982-01-01

    Measurements and studies of the 1980 Mount St. Helens volcanic eruptions and their atmospheric effects and climatic impact are addressed. Specific areas discussed include: (1) nature and impact of volcanic eruptions; (2) in situ measurements of effluents; (3) remote sensing measurements; (4) transport and dispersion of volcanic effluents; (5) chemistry of volcanic effluents; and (6) weather and potential climate impact.

  16. Meet Helen J. Post-Brown, Director: Sunbeam Child Care Center, Fairmont, West Virginia

    ERIC Educational Resources Information Center

    Exchange: The Early Childhood Leaders' Magazine Since 1978, 2005

    2005-01-01

    This article profiles Helen J. Post-Brown, director of Sunbeam Child Care Center in Fairmont and president of West Virginia Childcare Centers United, and explains how Post-Brown faced the obstacles when managing a child care business. In the fall of 1980, Post-Brown started Sunbeam as a small preschool with 12 children. Over the years, Sunbeam has…

  17. The structure, dynamics, and chemical composition of noneruptive plumes from Mount St. Helens, 1980-1988

    USGS Publications Warehouse

    McGee, K.A.

    1992-01-01

    From May 1980 to September 1988, more than 1000 fixed-wing aircraft flights were made with a correlation spectrometer to measure the sulfur dioxide flux from Mount St. Helens volcano. These flights also provided valuable data on the structure and dynamics of noneruptive plumes emanating from Mount St. Helens. During 1980 and part of 1981, an infrared spectrometer was also used to measure carbon dioxide emission rates. At distances up to 25 km from Mount St. Helens, plume widths can range up to 20 km or more, with width/thickness ratios from 3 to about 30. Maximum sulfur dioxide concentrations in these plumes depend on wind speed and are typically under 5 ppm and usually 1 ppm or less. Close examination of the plume data reveals that the characteristics of quiescent plumes from Mount St. Helens are strongly affected by certain meteorological conditions such as thermal and wind stratification in the troposphere, as well as by the topography of the volcano. ?? 1992.

  18. Multipass reconfiguration of the HELEN Nd:glass laser at the Atomic Weapons Establishment.

    PubMed

    Norman, Michael J; Andrew, James E; Bett, Thomas H; Clifford, Roger K; England, John E; Hopps, Nicholas W; Parker, Kenneth W; Porter, Kenneth; Stevenson, Mark

    2002-06-20

    The HELEN high-power Nd:glass laser has been rebuilt in a new multipass configuration that requires fewer components to maintain existing performance. This is expected to lead to greater system availability and reduced running costs. We describe the new design, discuss some of the key issues that had to be addressed, and present operational results. PMID:12078672

  19. Contingency Planning for Natural Disasters: The Mount St. Helens Experience. AIR Forum 1981 Paper.

    ERIC Educational Resources Information Center

    Burns, James A.; Concordia, Louis R.

    The effectiveness of existing contingency planning efforts at five community colleges, three colleges, and five universities during the Mount St. Helens eruptions in 1980 in Washington state was assessed. Planning efforts in the areas of institutional policy, academic policy, business office, physical plant, residence halls, financial aid, and…

  20. Mount st. Helens eruption of 18 may 1980: air waves and explosive yield.

    PubMed

    Donn, W L; Balachandran, N K

    1981-07-31

    Strong atmospheric acoustic-gravity waves were recorded by sensitive microbarographs and seismographs at large distances from the Mount St. Helens eruption of 18 May 1980. Wave signatures were similar to those of waves from large nuclear explosions. Independent theoretical and empirical analyses indicate that the explosive yield of the eruption was approximately 35 megatons. PMID:17794840

  1. Effects on the Mount St. Helens volcanic cloud on turbidity at Ann Arbor, Michigan

    SciTech Connect

    Ryznar, E.; Weber, M.R.; Hallaron, T.S.

    1981-11-01

    Measurements of turbidity were made at the University of Michigan irradiance and metorlogical measurement facility just prior to, during and after the passage of the volcanic cloud from the 18 May 1980 eruption of Mount St. Helens. They were made with a Volz sunphotometer at wavelengths of 500 and 880 nm.

  2. Evolution of Crater Glacier, Mount St. Helens, Washington, September 2006-November 2009

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steven P.; Sherrod, David R.; Vallance, James W.

    2010-01-01

    Lava-dome emplacement through a glacier was observed for the first time during the 2004-08 eruption of Mount St. Helens and documented using photography, photogrammetry, and geodetic measurements. Previously published reports present such documentation through September 2006; this report extends that documentation until November 2009.

  3. Geothermal exploration philosophy for Mount St. Helens (and other cascade volcanoes)

    SciTech Connect

    Schuster, J.E.; Ruscetta, C.A.; Foley, D.

    1981-05-01

    Factors which hampered geothermal exploration of Cascade stratovolcanoes are listed. What was known about geothermal energy in the Mount Saint Helen's area prior to 1980 and what has been learned as a result of the 1980 eruptions are reviewed. An exploration philosophy is presented. (MHR)

  4. 78 FR 43064 - Safety Zone; Maritime Heritage Festival Fireworks, St. Helens, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Maritime Heritage Festival Fireworks, St... establishing a safety zone in St. Helens, OR. This safety zone is necessary to help ensure the safety of...

  5. Large-N Nodal Seismic Deployment at Mount St Helens

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.; Vidale, J. E.; Creager, K. C.; Levander, A.; Kiser, E.; Barklage, M.; Hollis, D.

    2014-12-01

    In late July of 2014 over 900 autonomous short period seismometers were deployed within 12 km of the summit crater at Mount St Helens. In concert with the larger iMUSH experiment, these data constitute the largest seismic interrogation of an active volcano ever conducted. The array was deployed along the road and trail system of the national volcanic monument and adjacent regions with an average station spacing of 250 meters and included several station clusters with increased sampling density. The 10 Hz phones recorded the vertical component wavefield continuously at 250 Hz sampling rate over a period of approximately two weeks. During the recording time, the Pacific Northwest Seismic Network detected ~65 earthquakes within the array footprint ranging in magnitude from -0.9 to 1.1, the majority of which were located beneath the crater at less than 10 km depth. In addition to the natural seismicity, 23 explosion sources from the iMUSH active source experiment were recorded, several of which exceeded magnitude 2. Preliminary results for this project will include an expanded event catalog as the array should significantly reduce the detection threshold. The sheer number of instruments allows for stacking of station clusters producing high signal-to-noise beam traces which can be used for event triggering and for creating waveform templates to measure relative travel-times across the array via cross-correlation. The ability of the array to estimate focal mechanisms from event radiation patterns and delineate complex path effects will also be investigated. The density and azimuthal coverage provide by this array offers an excellent opportunity to investigate short-wavelength variations of the seismic wavefield in a complex geologic environment. Previous seismic tomography results suggest the presence of a shallow magma chamber at 1-3 km depth near the region of shallow seismicity as evidenced by a P wave low-velocity anomaly of at least -5.5% [Waite and Moran, 2009

  6. Blast dynamics at Mount St Helens on 18 May 1980

    USGS Publications Warehouse

    Kieffer, S.W.

    1981-01-01

    At 8.32 a.m. on 18 May 1980, failure of the upper part of the north slope of Mount St Helens triggered a lateral eruption ('the blast') that devastated the conifer forests in a sector covering ???500 km2 north of the volcano. I present here a steady flow model for the blast dynamics and propose that through much of the devastated area the blast was a supersonic flow of a complex multiphase (solid, liquid, vapour) mixture. The shape of the blast zone; pressure, temperature, velocity (Mach number) and density distributions within the flow; positions of weak and strong internal shocks; and mass flux, energy flux, and total energy are calculated. The shape of blast zone was determined by the initial areal expansion from the reservoir, by internal expansion and compression waves (including shocks), and by the density of the expanding mixture. The pressure within the flow dropped rapidly away from the source of the blast until, at a distance of ???11 km, the flow became underpressured relative to the surrounding atmosphere. Weak shocks within the flow subparallel to the east and west margins coalesced at about this distance into a strong Mach disk shock, across which the flow velocities would have dropped from supersonic to subsonic as the pressure rose back towards ambient. The positions of the shocks may be reflected in differences in the patterns of felled trees. At the limits of the devastated area, the temperature had dropped only 20% from the reservoir temperature because the entrained solids thermally buffered the flow (the dynamic and thermodynamic effects of the admixture of the surrounding atmosphere and the uprooted forest and soils into the flow are not considered). The density of the flow decreased with distance until, at the limits of the blast zone, 20-25 km from the volcano, the density became comparable with that of the surrounding (dirty) atmosphere and the flow became buoyant and ramped up into the atmosphere. According to the model, the mass flux per

  7. Lateral blasts at Mount St. Helens and hazard zonation

    USGS Publications Warehouse

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano

  8. Clast comminution during pyroclastic density current transport: Mt St Helens

    NASA Astrophysics Data System (ADS)

    Dawson, B.; Brand, B. D.; Dufek, J.

    2011-12-01

    Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC

  9. Double-Difference Earthquake Locations Using imaging Magma Under St. Helens (iMUSH) Data

    NASA Astrophysics Data System (ADS)

    Williams, M. C. B.; Ulberg, C. W.; Creager, K. C.

    2015-12-01

    The imaging Magma Under St. Helens (iMUSH) project deployed a magnetotelluric survey, high-resolution active-source experiment, two-year passive-source experiment, and gathered geochemical-petrological data to better understand the magmatic architecture of Mount St. Helens. A primary goal of the passive source experiment is to create 3-D P-wave and S-wave velocity models under the volcano from the surface to the slab. We use hypoDD, a double-difference algorithm, to gain high-precision relative earthquake locations for several hundred events within tens of kilometers of the Mount St. Helens crater. We use data from the first half (2014 June- 2015 July) of the two-year passive-source component of the iMUSH array recording six hundred useable earthquakes with a high-event density near the volcanic crater. The array includes seventy evenly-spaced broadband seismometers continuously sampling at 50 Hz within a 50 km radius of Mount St. Helens, and is augmented by dozens of permanent network stations. Precise relative earthquake locations are determined for spatially clustered hypocenters using a combination of hand picked P-wave arrivals and high-precision relative times determined by cross correlation of waveforms recorded at a common station for event pairs using a 1-D velocity structure. These high-quality relative times will be used to help constrain seismic tomography models as well. We will interrupt earthquake clusters in the context of emerging 3-D wave-speed models from the active-source and passive-source observations. We are examining the relationship between hypocentral locations and regions of partial melt, as well as the relationship between hypocentral locations and the NNW-SSE trending Saint Helens seismic Zone.

  10. A Gentle Frost: Poet Helen Frost Talks about the Healing Power of Poetry and Her Latest Novel

    ERIC Educational Resources Information Center

    Margolis, Rick

    2006-01-01

    This article presents an interview with poet Helen Frost. Frost talked about how poetry can help at-risk children. She also related the challenges she faced when she wrote her latest book titled "The Braid."

  11. Mount St. Helens Lava Domes, Then and Now

    NASA Astrophysics Data System (ADS)

    Fink, J.; Anderson, S. W.

    2004-12-01

    When the Mount St. Helens (MSH) lava dome grew from 1980-1986, little was known about how volatiles, vesicularity or crystallinity were distributed in domes, or about overall patterns of growth. Six years of MSH observations, coupled with comparative petrologic, structural, and analog laboratory studies of domes at Soufriere of St. Vincent, Augustine, Redoubt, Merapi, Montserrat, Santiaguito, and elsewhere have provided a much better foundation for evaluating the 2004 eruptive activity. One of the main goals of the earlier studies was to differentiate intrusive processes from those operating when magma ascends near and onto the volcano's surface. Here we use some of our earlier isotopic, petrographic and remote sensing observations of textures and volatiles to speculate about the processes operating in 2004. We earlier linked variations in lava textures to degassing processes operating during ascent and emplacement. MSH lava was extruded in a relatively dense state. When the water content was high enough, hot, ductile lava beneath the quenched outer rind of the dome vesiculated during surface flow, creating a 1 to 2 meter thick scoriaceous carapace. Post-1983 lavas lacked this scoria because the dome had reached a critical size and strength, resulting in lower short-term eruption rates and extensive degassing of lava en route to the surface. Observations of a dense "fin" in October 2004 suggest that this initial dome-building magma experienced thorough degassing as it broke a new path to the crater floor. We also used hydrogen isotope analyses of water in 1980-86 dome samples to infer degassing processes occurring in the source magma chamber and conduit system. Water content and hydrogen isotopic values of dome samples varied according to texture, position on the flow, and repose period prior to eruption. We saw two trends: (1) lava from lobes emplaced after longer repose intervals were deuterium-enriched, and (2) within individual lobes, relatively dry, smooth

  12. Cataclastic production of volcanic ash at Mount Saint Helens

    NASA Astrophysics Data System (ADS)

    Kennedy, Lori A.; Russell, James K.

    2012-01-01

    The 2004-2008 eruption of Mt. St. Helens (MSH) produced a series of lava domes and spines distinguished by the occurrence of an enveloping carapace of finely comminuted, weakly indurated fault gouge. The fault gouge results from fracture and shear strain, causing comminution of dacite along the conduit walls during ascent. The faulting associated with the formation of gouge is assumed to be the origin of a repetitive microseismicity (i.e., “drumbeat” seismicity) sourced at ∼0.5-1 km depth. The early phases of dome extrusion were attended by several small explosive events producing plumes of volcanic ash derived largely from the fault gouge. Here we present experimental results that establish the requisite conditions for this cataclastic production of volcanic ash at MSH. The experiments are low temperature rock deformation experiments performed on MSH dacite under confining pressures consistent with conduit pressures (0.1, 25, 50, 75 MPa). The first set of experiments ended once a through-going shear fracture was formed; these produced a highly localized fault surface and associated fault gouge. A second set of experiments allowed frictional sliding along the fault surface after failure thereby exploring the role of shear strain on grain size reduction of the gouge. Rock strength increases with confining pressure (from 139 to 722 MPa at 0.1 to 75 MPa). Unconfined loading of the MSH dacite produced several longitudinal fractures with little gouge and a small stress drop (∼120 MPa), whereas 75 MPa experiments produced a near-linear shear fracture, with a stress drop of ∼300 MPa. The amount of gouge and the grain size distribution of the gouge are only weakly affected by the confining pressure. Continued sliding (i.e., shear strain) causes a substantial increase in the amount of gouge but does not increase the number abundance of the finest (<10 μm) particles. Thus, the finest particles are an expression only of the magnitude of the stress drop event

  13. Cataclastic Production of Volcanic Ash at Mount Saint Helens

    NASA Astrophysics Data System (ADS)

    Kennedy, L.; Russell, K.; CentreExperimental Studies of the Lithosphere

    2011-12-01

    The 2004-2008 eruption of Mt. St. Helens (MSH) produced a series of lava domes and spines distinguished by the occurrence of an enveloping carapace of finely comminuted, weakly indurated fault gouge. The fault gouge results from fracture and shear strain, causing comminution of dacite along the conduit walls during ascent. The faulting associated with the formation of gouge is assumed to be the origin of a repetitive microseismicity (i.e., "drumbeat" seismicity) sourced at ~ 0.5 - 1 km depth. The early phases of dome extrusion were attended by several small explosive events producing plumes of volcanic ash derived largely from the fault gouge. Here we present experimental results that establish the requisite conditions for this cataclastic production of volcanic ash at MSH. The experiments are low temperature rock deformation experiments performed on MSH dacite under confining pressures consistent with conduit pressures (0.1, 25, 50, 75 MPa). The first set of experiments ended once a through-going shear fracture was formed; these produced a highly localized fault surface and associated fault gouge. A second set of experiments allowed frictional sliding along the fault surface after failure thereby exploring the role of shear strain on grain size reduction of the gouge. Rock strength increases with confining pressure (from 139-722 MPa at 0.1 to 75 MPa). Unconfined loading of the MSH dacite produced several longitudinal fractures with little gouge and a small stress drop (~120 MPa), whereas 75 MPa experiments produced a near-linear shear fracture, with a stress drop of ~300 MPa. The amount of gouge and the grain size distribution of the gouge are only weakly affected by the confining pressure. Continued sliding (i.e., shear strain) causes a substantial increase in the amount of gouge but does not increase the number abundance of the finest (<10 mm) particles. Thus, the finest particles are an expression only of the magnitude of the stress drop event (fracture) and

  14. Twins Across the Pacific: A Comparison of Bezymianny Volcano, Russia and Mount St. Helens, USA

    NASA Astrophysics Data System (ADS)

    Thelen, W.

    2006-12-01

    Triggered sector collapse is a common event in the lifetime of a stratovolcano. Classic triggered edifice failures were observed in historic time both at Bezymianny Volcano, Russia and at Mount St. Helens, Washington providing an ideal opportunity for comparison. The volcanic behaviors associated with these eruptions and subsequent dome growth share many striking similarities, including morphology of the dome, despite compositional variations. Bezymianny volcano experienced a sector collapse and associated lateral blast on March 30, 1956. Immediately following, voluminous dome extrusion commenced, punctuated by minor explosive eruptions. Dome growth originated with the extrusion of intact blocks of andesite, forming a structure called the "Nautilus". Beginning in 1977, strong explosive eruptions were occasionally accompanied by lava flows near the top of the dome. Recently, dome growth has been accompanied by powerful plinian and sub-plinian eruptions occurring nearly bi-annually, the most recent having occurred on May 9, 2006. Compositions have become increasingly more mafic over time. A lateral blast and plinian eruption occurred at Mount St. Helens on May 18, 1980, approximately equivalent in landslide and tephra volume to the 1956 eruption of Bezymianny. Like Bezymianny, Mount St. Helens began dome extrusion coupled with minor eruptive activity immediately after the decompression event, but on a smaller volume scale. In addition, the dome at Mount St. Helens exhibited features called "Whalebacks" beginning in 2004, similar to the "Nautilus" seen at Bezymianny. Unlike Bezymianny, the dacitic composition of erupted materials has remained nearly constant or grown slightly more silicic with time and, as of August 2006, Mount St. Helens has not exhibited plinian or sub-plinian eruptions since 1980. Both volcanoes currently exhibit only very shallow seismicity, despite evidence that the magma is coming from much deeper sources. During the summer of 2006, two

  15. Inclusions in Mount St. Helens dacite erupted from 1980 through 1983

    NASA Astrophysics Data System (ADS)

    Heliker, Christina

    1995-07-01

    Inclusions of plutonic, metavolcanic and volcanic rocks are abundant in dacite pumice and lava from the 1980-1986 eruption sequence at Mount St. Helens. Point counts of inclusions exposed in talus blocks from the dome from 1980 through 1983 show that inclusions form approximately 3.5 vol% of the lava. Eighty-five percent of the inclusions are medium-grained gabbros with an average diameter of 6 cm. Additional rock types include quartz diorite, hornfelsic basalt, dacite, andesite and vein quartz. Disaggregated inclusions are common and define shear planes within the dome. These fragmented inclusions may significantly contaminate analyses of the dacite. The gabbroic inclusions are of four distinct types, all with mineral assemblages consistent with crystallization pressures of less than 9 kb. Textures and major-element compositions indicate that most of the gabbroic inclusions are cumulates. The most abundant inclusion type is laminated gabbronorite, which contains up to 9% interstitial glass, derived from partial melting. The presence of quartz veins and hornblende-bearing veins within sheared zones in the laminated gabbronorite indicates that the source of these inclusions was holocrystalline rock that had been penetrated by water-rich fluids. The gabbronorite contained sufficient water to be susceptible to partial melting when the magma that fed the 1980-1986 eruption sequence was emplaced nearby. Various types of gabbroic inclusions, including the laminated gabbronorite, are common in Mount St. Helens lavas of approximately the last 3000 years. This coincides with the interval in which Mount St. Helens first erupted basalt and basaltic andesite lavas. These observations, together with the fact that the gabbroic inclusions are compositionally unlike any of the Tertiary intrusive rocks in the Mount St. Helens area, strongly suggest that the inclusions are related to the introduction of basalt to the Mount St. Helens magmatic system. The source of the gabbros could

  16. Processing and interpretation of microbarograph signals generated by the explosion of Mount St. Helens

    SciTech Connect

    Delclos, C.; Blanc, E. ); Broche, P. ); Glangeaud, F.; Lacoume, J.L. )

    1990-04-20

    Following the eruption of the Mount St. Helens volcano on May 18, 1980, atmospheric waves were recorded by a network of micrographs located over 7,000 km from the source. Analysis of these data requires the use of complex processing techniques based on a high-resolution method to extract the signals produced by the St. Helens source from spurious waves or noise in each record. This facilitates interpretation of the wave trains in terms of propagation modes. It is thus shown that Lamb mode L{sub 0} is present in the low-frequency part of all signals, whereas acoustic modes (more probably A{prime}{sub 2}) are needed to explain all the properties of the high-frequency part, which is clearly observed for a westward and a southward propagation.

  17. Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Roberts, D. H.; Rogers, A. E. E.; Allen, B. R.; Bennett, C. L.; Burke, B. F.; Greenfield, P. E.; Lawrence, C. R.; Clark, T. A.

    1982-08-01

    A large-amplitude traveling ionospheric disturbance (TID) was detected over Owens Valley, California, on May 18, 1980, by a highly sensitive very long baseline interferometry (VLBI) radio astronomy experiment. This TID is interpreted as the response of the ionosphere to a gravity wave excited in the neutral atmosphere by the explosion of Mount St. Helens that took place at 1532 UT on that day. A model, invoking the point-excitation of internal gravity waves in an isothermal atmosphere, which fits observations of the TID at several other stations, leads to identification of the features observed in the VLBI data. Small-amplitude higher-frequency changes in the ionosphere were detected for several hours after the passage of the large-amplitude Mount St. Helens TID, but it is not clear whether these were excited by the passage of the gravity wave or were background fluctuations.

  18. Airborne aerosol measurements in the quiescent plume of Mount Saint Helens September, 1980

    NASA Technical Reports Server (NTRS)

    Phelan, J. M.; Finnegan, D. L.; Ballantine, D. S.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1982-01-01

    A study of the emissions from the Mt. St. Helens volcano was conducted to obtain data for an assessment of the importance of volcanoes as a global source of volatile trace elements to the atmosphere and to the global biochemical cycles of these elements. Sampling was done on board an Orion P-3 turboprop aircraft modified for tropospheric aerosol and gas sampling. Two filter collection systems were used. Samples were collected on a single flight on September 22, 1980, at which time the volcano was emitting a stable plume to an altitude of between 2 and 3 km. The results regarding the concentrations of aerosols obtained for this mission are presented in a table. Attention is also given to data concerning particulate vs. gas phase sulfur in the Mt. Saint Helens plume, and the estimated volcanic particle flux of selected volatile elements.

  19. The 19 March 1982 Eruption and Lahar at Mount Saint Helens: Implications for Martian Outlfow Channels?

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1984-01-01

    A small explosive eruption of Mount St. Helens set into motion an unusually complex series of geomorphic and hydrologic processes that had not previously been described in the literature. This event was unusual in that a laterally-directed eruption dislodged and mobilized a thick snowpack from the surrounding crater floor and walls, resulting in the formation of a temporary lake. Catastrophic release of this self-impounded lake spawned a series of destructive debris avalanches and debris flows that moved rapidly down the volcano's north flank and into the North Toutle River valley. Catastrophic release of volatiles mobilized by volcanic activity has been discussed as a possible mechanism to explain a class of outflow channels on Mars. The eruption of Mount St. Helens provides a unique opportunity to study the deposits and landforms created by such an event; a more detailed field study and examination of Viking photographs of martian outflow channels is underway.

  20. Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Roberts, D. H.; Rogers, A. E. E.; Allen, B. R.; Bennett, C. L.; Burke, B. F.; Greenfield, P. E.; Lawrence, C. R.; Clark, T. A.

    1982-01-01

    A large-amplitude traveling ionospheric disturbance (TID) was detected over Owens Valley, California, on May 18, 1980, by a highly sensitive very long baseline interferometry (VLBI) radio astronomy experiment. This TID is interpreted as the response of the ionosphere to a gravity wave excited in the neutral atmosphere by the explosion of Mount St. Helens that took place at 1532 UT on that day. A model, invoking the point-excitation of internal gravity waves in an isothermal atmosphere, which fits observations of the TID at several other stations, leads to identification of the features observed in the VLBI data. Small-amplitude higher-frequency changes in the ionosphere were detected for several hours after the passage of the large-amplitude Mount St. Helens TID, but it is not clear whether these were excited by the passage of the gravity wave or were background fluctuations.

  1. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    NASA Technical Reports Server (NTRS)

    Langran, Kenneth J.

    1986-01-01

    The Mount St. Helens 1980 eruption offers an opportunity to study vegetation recovery rates and patterns in a perturbed ecosystem. The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. It was observed that during maximum daytime solar heating, surface temperatures of vegetated areas are cooler than surrounding nonvegetated areas, and that surface temperature varies with percent vegetation cover. A method of measuring the relationship between effective radiant temperature (ERT) and percent vegetation cover in the thermal infrared (8 to 12 microns) region of the electromagnetic spectrum was investigated.

  2. Eruption-triggered avalanche, flood, and lahar at Mount St. Helens - Effects of winter snowpack

    USGS Publications Warehouse

    Waitt, R.B., Jr.; Pierson, T.C.; MacLeod, N.S.; Janda, R.J.; Voight, B.; Holcomb, R.T.

    1983-01-01

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.

  3. The Evolution and Role of the Saharan Air Layer During Hurricane Helene (2006)

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Shie, Chung-Lin; Boller, Ryan A.

    2013-01-01

    The Saharan air layer (SAL) has received considerable attention in recent years as a potential negative influence on the formation and development of Atlantic tropical cyclones. Observations of substantial Saharan dust in the near environment of Hurricane Helene (2006) during the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Activities (AMMA) Experiment (NAMMA) field campaign led to suggestions about the suppressing influence of the SAL in this case. In this study, a suite of satellite remote sensing data, global meteorological analyses, and airborne data are used to characterize the evolution of the SAL in the environment of Helene and assess its possible impact on the intensity of the storm. The influence of the SAL on Helene appears to be limited to the earliest stages of development, although the magnitude of that impact is difficult to determine observationally. Saharan dust was observed on the periphery of the storm during the first two days of development after genesis when intensification was slow. Much of the dust was observed to move well westward of the storm thereafter, with little SAL air present during the remainder of the storm's lifetime and with the storm gradually becoming a category-3 strength storm four days later. Dry air observed to wrap around the periphery of Helene was diagnosed to be primarily non-Saharan in origin (the result of subsidence) and appeared to have little impact on storm intensity. The eventual weakening of the storm is suggested to result from an eyewall replacement cycle and substantial reduction of the sea surface temperatures beneath the hurricane as its forward motion decreased.

  4. Pre-1980 tephra-fall deposits erupted from Mount St. Helens, Washington

    USGS Publications Warehouse

    Mullineaux, Donal R.

    1996-01-01

    More than 100 tephra-fall deposits erupted from Mount St. Helens within about the last 40,000 years are grouped into tephra sets and layers distinguished from each other chiefly by differences in mineral composition and age. The tephra deposits record a complex history of the volcano, form important time-stratigraphic markers, and provide information about probable kinds, frequencies, and magnitudes of future eruptions.

  5. Impact of Mount St. Helens eruption on hydrology and water quality

    NASA Technical Reports Server (NTRS)

    Bonelli, J. E.; Taylor, H. E.; Klein, J. M.

    1982-01-01

    The 1980 eruptions of Mount St. Helens in southeast Washington resulted in a pronounced effect on the surface and ground water resources of the state. In response to the volcanic activity, the U.S. Geological Survey intensified statewide surface and ground water sampling programs to determine the nature and magnitude of the volcanic-induced variations. Streams to the east of Mount St. Helens received the major ash fallout. Chemical effects were best noted in smaller streams sampled 60 to 70 miles northeast of Mount St. Helens. The chemical variations observed were pronounced but short lived. Sulfate and chloride increases in anionic composition were prevalent immediately following the eruption; however, the original bicarbonate predominance was again attained within several days. Suspended iron and aluminum concentrations were similarly elevated during the period of greatest ash deposition (highest turbidity); however, the dissolved concentrations remained relatively constant. Depressions of pH were minor and short lived. Streams draining to the south, tributaries to the Columbia river, showed little observable changes in water chemistry. Streams draining to the west (Toutle river and its tributaries) were compositionally affected by the various volcanic activities. Chloride and sulfate anion percentage exceeded the bicarbonate percentage up to one month following the eruption period. Streams and lakes sampled in the immediate vicinity of Mount St. Helens, in addition to trace metals, contained organic compounds derived from decomposing wood buried in the debris deposits. This organic material may constitute a significant source of organic compounds to surface and ground water for some time to come.

  6. Absorption of visible radiation by aerosols in the volcanic plume of mount st. Helens.

    PubMed

    Ogren, J A; Charlson, R J; Radke, L F; Domonkos, S K

    1981-02-20

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10(-7) per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter. PMID:17740397

  7. Multi-scale roughness spectra of Mount St. Helens debris flows

    NASA Technical Reports Server (NTRS)

    Austin, Richard T.; England, Anthony W.

    1993-01-01

    A roughness spectrum allows surface structure to be interpreted as a sum of sinusoidal components with differing wavelengths. Knowledge of the roughness spectrum gives insight into the mechanisms responsible for electromagnetic scattering at a given wavelength. Measured spectra from 10-year-old primary debris flow surfaces at Mount St. Helens conform to a power-law spectral model, suggesting that these surfaces are scaling over the measured range of spatial frequencies. Measured spectra from water-deposited surfaces deviate from this model.

  8. Atmospheric Effects and Potential Climatic Impact of the 1980 Eruptions of Mount St. Helens

    SciTech Connect

    Deepak, A.

    1982-10-01

    Measurements and studies of the 1980 Mount St. Helens volcanic eruptions and their atmospheric effects and climatic impact are addressed. Specific areas discussed include: (1) nature and impact of volcanic eruptions, (2) in situ measurements of effluents, (3) remote sensing measurements, (4) transport and dispersion of volcanic effluents, (5) chemistry of volcanic effluents, and (6) weather and potential climate impact. For individual titles, see N83-11535 through N83-11562.

  9. Size distributions and mineralogy of ash particles in the stratosphere from eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Farlow, N. H.; Oberbeck, V. R.; Snetsinger, K. G.; Ferry, G. V.; Polkowski, G.; Hayes, D. M.

    1981-01-01

    Samples from the stratosphere obtained by U-2 aircraft after the first three major eruptions of Mount St. Helens contained large globules of liquid acid and ash. Because of their large size, these globules had disappeared from the lower stratosphere by late June 1980, leaving behind only smaller acid droplets. Particle size distributions and mineralogy of the stratospheric ash grains demonstrate inhomogeneity in the eruption clouds.

  10. Filter measurements of stratospheric sulfate and chloride in the eruption plume of Mount St. Helens

    SciTech Connect

    Gandrud, B.W.; Lazrus, A.L.

    1981-01-01

    Five flights of the U-2 aircraft with a filter sampler aboard were flown in the Mount St. Helens debris from 19 May to 17 June 1980. Sulfate concentrations as large as 216 times the expected background were observed. The enhancements of acid chloride vapor were considerably smaller, suggesting an insignificant increase of background values of hydrogen chloride once the plume is well mixed throughout the lower stratosphere.

  11. Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens

    SciTech Connect

    Rasmussen, R.A.; Khalil, M.A.K.; Dalluge, R.W.; Penkett, S.A.; Jones, B.

    1982-01-01

    Ash from the massive 18 May 1980 eruption of Mount St. Helens readily gave off large amounts of carbonyl sulfide and carbon disulfide gases at room temperature. These findings suggest that the sulfur that enhances the Junge sulfate layer in the stratosphere after volcanic eruptions could be carried directly to the upper atmosphere as carbonyl sulfide and carbon disulfide adsorbed on ash particles from major volcanic eruptions.

  12. Trace element composition of the Mount St. Helens plume - Stratospheric samples from the 18 May eruption

    NASA Technical Reports Server (NTRS)

    Vossler, T.; Anderson, D. L.; Aras, N. K.; Phelan, J. M.; Zoller, W. H.

    1981-01-01

    Atmospheric particulate material collected from the stratosphere in the plume of the 18 May 1980 eruption of the Mount St. Helens volcano was quite similar in composition to that of ash that fell to the ground in western Washington. However, there were small but significant differences in concentrations of some elements with altitude, indicating that the stratospheric material was primarily produced from fresh magma, not fragments of the mountain.

  13. Eruption-triggered avalanche, flood, and lahar at mount st. Helens--effects of winter snowpack.

    PubMed

    Waitt, R B; Pierson, T C; Macleod, N S; Janda, R J; Voight, B; Holcomb, R T

    1983-09-30

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River. PMID:17759014

  14. A gravity current model for the May 18, 1980 Mount St. Helens plume

    NASA Technical Reports Server (NTRS)

    Bursik, M. I.; Carey, S. N.; Sparks, R. S. J.

    1992-01-01

    Observations of the stratospheric plume from the May 18, 1980 Mount St. Helens eruption suggest that it spread in the crosswind direction as an intrusive gravity current, as it was transported downwind. Grain size analyses of the plinian tephra are consistent with this model, suggesting that to distances of many hundreds of kilometers, turbulent atmospheric diffusion played a secondary role in plume spreading and tephra dispersal.

  15. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Charlson, R. J.; Radke, L. F.; Domonkos, S. K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10 to the minus 7 per meter at a wavelength of 0.55 micron, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter

  16. Measurements of cloud condensation nuclei in the stratosphere around the plume of Mount St. Helens

    SciTech Connect

    Rogers, C.F.; Hudson, J.G.; Kocmond, W.C.

    1981-01-01

    Measurements of cloud condensation nuclei were made from small samples of stratospheric air taken from a U-2 aircraft at altitudes ranging from 13 to 19 kilometers. The measured concentrations of nuclei both in and outside the plume from the May and June 1980 eruptions of Mount St. Helens were higher than expected, ranging from about 100 to about 1000 per cubic centimeter active at 1 percent supersaturation.

  17. Histopathological reaction of the lung to Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.

    1987-06-01

    The pulmonary toxicity of respirable particle size (count median diameter, 0.5 to 1.6 ..mu..m) Mount St. Helens volcanic ash was studied. Total particulate doses of 22 to 77 mg suspended in sterile 0.9% sodium chloride solution were given in 1 to 7 consecutive weekly intratracheal instillations. The lungs and mediastinal lymph nodes were histologically examined at intervals up to 400 days after instillation.

  18. Impact of Mount St. Helens eruption on hydrology and water quality

    SciTech Connect

    Bonelli, J.E.; Taylor, H.E.; Klein, J.M.

    1982-10-01

    The 1980 eruptions of Mount St. Helens in southeast Washington resulted in a pronounced effect on the surface and ground water resources of the state. In response to the volcanic activity, the U.S. Geological Survey intensified statewide surface and ground water sampling programs to determine the nature and magnitude of the volcanic-induced variations. Streams to the east of Mount St. Helens received the major ash fallout. Chemical effects were best noted in smaller streams sampled 60 to 70 miles northeast of Mount St. Helens. The chemical variations observed were pronounced but short lived. Sulfate and chloride increases in anionic composition were prevalent immediately following the eruption however, the original bicarbonate predominance was again attained within several days. Suspended iron and aluminum concentrations were similarly elevated during the period of greatest ash deposition (highest turbidity) however, the dissolved concentrations remained relatively constant. Depressions of pH were minor and short lived. Streams draining to the south, tributaries to the Columbia river, showed little observable changes in water chemistry. Streams draining to the west (Toutle river and its tributaries) were compositionally affected by the various volcanic activities. Chloride and sulfate anion percentage exceeded the bicarbonate percentage up to one month following the eruption period. Streams and lakes sampled in the immediate vicinity of Mount St. Helens, in addition to trace metals, contained organic compounds derived from decomposing wood buried in the debris deposits. This organic material may constitute a significant source of organic compounds to surface and ground water for some time to come.

  19. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    SciTech Connect

    Ogren, J.A.; Charlson, R.J.; Radke, L.F.; Domonkos, S.K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposhere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10-7 per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.

  20. Initial effects of ashfall from mount st. Helens on vegetation in eastern washington and adjacent idaho.

    PubMed

    Mack, R N

    1981-07-31

    Extensive plant damage from the 18 May 1980 eruption of Mount St. Helens was largely restricted to acaulescent andprostrate dicot species in the ashfall area east of the Cascade Range (more than 150 kilometersfrom the vent). Veratrum californicum, a large monocot, displayed widespread stem death through mechanical overloading of the plant's clasping leaves. The ash surface in this area presents new opportunities for both seeds and seed predators. PMID:17794839

  1. Mercury content of equisetum plants around mount st. Helens one year after the major eruption.

    PubMed

    Siegel, B Z; Siegel, S M

    1982-04-16

    The mercury content of young Equisetum plants collected around Mount St. Helens was higher in the direction of Yakima and Toppenish, Washington (northeast to east-northeast), than at any other compass heading and was about 20 times that measured around Portland, Oregon. The increase in substratum mercury was not as pronounced as that in plants but was also higher toward the northeast, the direction taken by the May 1980 volcanic plume. PMID:17832743

  2. Mount St. Helens, Washington, 1980 volcanic eruption: magmatic gas component during the first 16 days

    SciTech Connect

    Stoiber, R.E.; Williams, S.N.; Malinconico, L.L.

    1980-01-01

    Eruption plumes of Mount St. Helens, Washington, showed low rates of sulfur dioxide emission, and ash leachates had low ratios of sulfur to chlorine. These data and the nonvesicularity of ash fragments are indicative of only a small eruptive magmatic component. The low amounts of soluble fluorine on the ashes pose no health problems. Violent magmatic activity is possible, and thus continued geochemical monitoring is advised.

  3. Trace element composition of the Mount St. Helens plume: stratospheric samples from the 18 May eruption

    SciTech Connect

    Vossler, T.; Anderson, D.L.; Aras, N.K.; Phelan, J.M.; Zoller, W.H.

    1981-01-01

    Atmospheric particulate material collected from the stratosphere in plume of the 18 May 1980 eruption of the Mount St. Helens volcano was quite similar in composition to that of ash that fell to the ground in western Washington. However, there were small but significant differences in concentrations of some elements with altitude, indicating that the statospheric material was primarily produced from fresh magma, but fragments of the mountain.

  4. Temporal change in coda wave attenuation observed during an eruption of Mount St. Helens

    SciTech Connect

    Fehler, M.; Roberts, P.; Fairbanks, T.

    1988-05-10

    During the past few years there have been numerous reports of changes in coda wave attenuation occurring before major earthquakes. These observations are important because they may provide insight into stress-related structural changes taking place in the focal region prior to the occurrence of large earthquakes. The results of these studies led us to suspect that temporal changes in coda wave attenuation might also accompany volcanic eruptions. By measuring power decay envelopes for earthquakes at Mount St. Helens recorded before, during, and after an eruption that took place during September 3--6, 1981, we found that coda Q/sup -1/ for frequencies between 6 and 30 Hz was 20--30% higher before the eruption than after. The change is attributed to an increase in the density of open microcracks in the rock associated with inflation of the volcano prior to the eruption. Q/sup -1/ was found to be only weakly dependent on frequency and displayed a slight peak near 10 Hz. The weak frequency dependence is attributed to the dominance of intrinsic attenuation over scattering attenuation, since it is generally accepted that intrinsic attenuation is constant with frequency, whereas scattering attenuation decreases strongly at higher frequencies. The weak frequency dependence of Q/sup -1/ at Mount St. Helens contrasts with results reported for studies in nonvolcanic regions. The peak in Q/sup -1/ near 10 Hz at Mount St. Helens is attributed to the scale length of heterogeneity responsible for generating backscattered waves. Results for nonvolcanic regions have shown this peak to occur near 0.5 Hz. Thus a smaller scale length of heterogeneity is required to explain the 10-Hz peak at Mount St. Helens. copyright American Geophysical Union 1988

  5. Carbonyl sulfide and carbon disulfide from the eruptions of mount st. Helens.

    PubMed

    Rasmussen, R A; Khalil, M A; Dalluge, R W; Penkett, S A; Jones, B

    1982-02-01

    Ash from the massive 18 May 1980 eruption of Mount St. Helens readily gave off large amounts of carbonyl sulfide and carbon disulfide gases at room temperature. These findings suggest that the sulfur that enhances the Junge sulfate layer in the stratosphere after volcanic eruptions could be carried directly to the upper atmosphere as carbonyl sulfide and carbon disulfide adsorbed on ash particles from major volcanic eruptions. PMID:17842402

  6. Size distributions and mineralogy of ash particles in the stratosphere from eruptions of Mount St. Helens

    SciTech Connect

    Farlow, N.H.; Oberbeck, V.R.; Snetsinger, K.G.; Ferry, G.V.; Polkowski, G.; Hayes, D.M.

    1981-01-01

    Samples from the stratosphere obtained by U-2 aircraft after the first three major eruptions of Mount St. Helens contained large globules of liquid acid and ash. Because of their large size, these globules had disappeared from the lower stratosphere by late June 1980, leaving behind only smaller acid droplets. Particle-size distributions and mineralogy of the stratospheric ash grains demonstrate inhomogeneity in the eruption clouds.

  7. Preliminary Shear Velocity Tomography of Mt St Helens, Washington from iMUSH Array

    NASA Astrophysics Data System (ADS)

    Crosbie, K.; Abers, G. A.; Creager, K. C.; Moran, S. C.; Denlinger, R. P.; Ulberg, C. W.

    2015-12-01

    The imaging Magma Under Mount St Helens (iMUSH) experiment will illuminate the crust beneath Mt St Helens volcano. The ambient noise tomography (ANT) component of this experiment measures shear velocity structure, which is more sensitive than P velocity to the presence of melt and other pore fluids. Seventy passive-source broadband seismometers for iMUSH were deployed in the summer of 2014 in a dense array of 100 Km diameter with a 10 km station spacing. We cross correlated ambient noise in 120 s windows and summed the result over many months for pairs of stations. Then frequency-domain methods on these cross correlations are employed to measure the phase velocities (Ekström et al. Geophys Rev Lett, 2009). Unlike velocities attained by group velocity methods, velocities for path lengths as small as one wavelength can be measured, enabling analysis of higher frequency signals and increasing spatial resolution. The minimum station spacing from which signals can be recovered ranges from 12 km at 0.18 Hz, a frequency that dominantly samples the upper crust to 20 km, to 37 km at 0.04 Hz, a frequency sensitive to structure through the crust and uppermost mantle, with lower spacing at higher frequencies. These phase velocities are tomographically inverted to obtain shear velocity maps for each frequency, assuming ray theory. Initial shear velocity maps for frequencies between 0.04-0.18 Hz reveal low-velocity sediments in the Puget Lowland west of Mount St Helens at 0.16-0.18 Hz, and a low velocity zone near 0.10 Hz between Mt Rainier and Mt Adams, east of Mount St Helens. The latter may reflect large-scale crustal plumbing of the arc between volcanic centers. In subsequent analyses these ANT results will be jointly inverted with receiver functions in order to further resolve crustal and upper mantle structure.

  8. A decade of dome growth at Mount St. Helens, 1980-90

    USGS Publications Warehouse

    Swanson, D.A.

    1990-01-01

    The growth of the dacite dome at Mount St. Helens between 1980 and 1986 has been more intensively studied than that of any other dome-building eruption. The growth has been complex in detail, but remarkably regular overall. This paper summarizes some of what has been learned and provides many references to additional information. Whether dome building has ended is an open question, particularly in view of the renewed, though minor, explosive activity of late 1989 and early 1990. -Author

  9. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data

    USGS Publications Warehouse

    Hill, G.J.; Caldwell, T.G.; Heise, W.; Chertkoff, D.G.; Bibby, H.M.; Burgess, M.K.; Cull, J.P.; Cas, Ray A.F.

    2009-01-01

    Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)Mounts StHelens, Adams and Rainierare located on the margins of a mid-crustal zone of high electrical conductivity1,5. Interconnected melt can increase the bulk conductivity of the region containing the melt6,7, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath thisvolcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens8, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs9, 10). ?? 2009 Macmillan Publishers Limited. All rights reserved.

  10. Proximal ecological effects of the 1980 eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Swanson, F. J.

    1988-01-01

    The diversity of ecosystems and volcanic processes involved in the 1980 eruptions of Mount St. Helens, southwest Washington, provide an excellent setting for examining effects of volcanic events on ecosystems. These eruptions included a lateral blast, debris avalanche, mudflows, pyroclastic flows, and airfall tephra. Affected ecosystems within 30 km of the vent were lakes, streams, upland and riparian forest, and meadows. Ecological disturbances imposed by the Mount St. Helens events were predominantly physical, rather than climatic or chemical which are the dominant classes of disturbances considered in analysis of global catastrophes. Analysis of ecosystem response to disturbance should be based on consideration of composition and structure of the predisturbance system in terms that represent potential survivability of organisms, mechanisms in the primary disturbance, initial survivors, secondary disturbances arising from the primary disturbance and the biological responses to secondary disturbances, invasion of the site by new propagules, interactions among secondary disturbance processes and surviving and invading organisms. Predicting ecosystem response to disturbance is enchanced by considering the mechanisms of disturbance rather than type of disturbance. In the 1980 Mount St. Helens events, the disturbance types, involved primarily the mechanisms of sedimentation, heating, and shear stress. Each disturbance type involved one or more mechanisms. Ecosystem response varied greatly across the landscape. Analysis of ecosystem response to disturbance, regardless of type, should include detailed consideration of the properties of individual species, primary and secondary disturbance mechanisms, and their distributions across landscapes.

  11. The dust environment surrounding the E-ring moons Dione, Helene and Polydeuce

    NASA Astrophysics Data System (ADS)

    Moldenhawer, T.; Hoffmann, H.; Seiß, M.; Sachse, M.; Spahn, F.

    2015-10-01

    Compared to the dust clouds around three of the Galilean satellites of Jupiter, no clear Saturnian pendants have been found yet by the CDA detector aboardthe Cassini spacecraft. However, three dust tori and arcs have been detected along the orbits of Pallene, Methone and Anthe in ISS images [1] and the Pallene dust torus was confirmed by in situ CDA measurements [4]. These observations have sparked interest whether the small co-orbital companions to E-ring moons like Dione or Thetys are efficient dust sources. We simulate the motion of dust particles, which originate from hypervelocity impacts of micrometeoroids onto Dione, Helene and Polydeuce [2]. Gravity, Lorentz force, solar radiation pressure and plasma drag are considered for the dynamic evolution of small dust particles. Assuming a steady state distribution, we scale the phase space data with dust production rates based on recent IDP measurements at Saturn [3]. We will present dust particle number densities along the orbits of Dione, Helene and Polydeuce and we will make predictions for the Cassini flybys of Helene and Polydeuce, which take place in the summer and fall this year.

  12. Eruptive activity at Mount St Helens, Washington, USA, 1984-1988: a gas geochemistry perspective

    USGS Publications Warehouse

    McGee, K.A.; Sutton, A.J.

    1994-01-01

    The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava. ?? 1994 Springer-Verlag.

  13. A new tree-ring date for the "floating island" lava flow, Mount St. Helens, Washington

    USGS Publications Warehouse

    Yamaguchi, D.K.; Hoblitt, R.P.; Lawrence, D.B.

    1990-01-01

    Anomalously narrow and missing rings in trees 12 m from Mount St. Helens' "floating island" lava flow, and synchronous growth increases in trees farther from the flow margin, are evidence that this andesitic flow was extruded between late summer 1799 and spring 1800 a.d., within a few months after the eruption of Mount St. Helens' dacitic layer T tephra. For ease of reference, we assign here an 1800 a.d. date to this flow. The new date shows that the start of Mount St. Helens' Goat Rocks eruptive period (1800-1857 a.d.) resembled the recent (1980-1986) activity in both petrochemical trends and timing. In both cases, an initial explosive eruption of dacite was quickly succeeded by the eruption of more mafic lavas; dacite lavas then reappeared during an extended concluding phase of activity. This behavior is consistent with a recently proposed fluid-dynamic model of magma withdrawal from a compositionally zoned magma chamber. ?? 1990 Springer-Verlag.

  14. Deposition and dose from the May 18, 1980 eruption of Mount St. Helens

    SciTech Connect

    Peterson, K.R.

    1980-11-01

    The downwind deposition and radiation dose have been calculated for the tropospheric part of the ash cloud from the May 18, 1980 eruption of Mount St. Helens, using a large-cloud diffusion model. At that time the naturally occurring radionuclides of radium and thorium, whose radon daughters normally seep very slowly from the rocks and soil, were violently released to the atmosphere. The largest dose to an individual from these nuclides is small (in the microrem range), but the population dose to those affected by the radioactivity in the ash is about 100 person-rem. This population dose from Mount St. Helens is much greater than the annual person-rem routinely released by a typical large nuclear power plant. It is estimated that subsequent eruptions of Mount St. Helens have doubled or tripled the person-rem calculated for the initial large eruption; this total population dose is about the same as the lower-bound estimate of the population dose from the 1979 accident at the Three Mile Island nuclear power plant. The long-range global ash deposition of the May 18 eruption has been estimated through 1984, using a global deposition model. The maximum deposition is nearly 1000 kg/km/sup 2/ and occurs in the spring of 1981 over middle latitudes of the Northern Hemisphere.

  15. Mount St. Helens, 1980 to now—what’s going on?

    USGS Publications Warehouse

    Dzurisin, Daniel; Driedger, Carolyn L.; Faust, Lisa M.

    2013-01-01

    Mount St. Helens seized the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosive eruption reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. An enormous lava dome grew episodically in the crater until 1986, when the volcano became relatively quiet. A new glacier grew in the crater, wrapping around and partly burying the lava dome. From 1987 to 2003, sporadic earthquake swarms and small steam explosions indicated that magma (molten rock) was being replenished deep underground. In 2004, steam-and-ash explosions heralded the start of another eruption. A quieter phase of continuous lava extrusion followed and lasted until 2008, building a new dome and doubling the volume of lava on the crater floor. Scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network maintain constant watch for signs of renewed activity at Mount St. Helens and other Cascade volcanoes. Now is an ideal time for both actual and virtual visitors to Mount St. Helens to learn more about dramatic changes taking place on and beneath this active volcano.

  16. Deposition and dose from the 18 May 1980 eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Peterson, K. R.

    1982-01-01

    The downwind deposition and radiation doses was calculated for the tropospheric part of the ash cloud from the May 18, 1980 eruption of Mount St. Helens, by using a large cloud diffusion model. The naturally occurring radionnuclides of radium and thorium, whose radon daughters normally seep very slowly from the rocks and soil, were violently released to the atmosphere. The largest dose to an individual from these nuclides is small, but the population dose to those affected by the radioactivity in the ash is about 100 person rem. This population dose from Mount St. Helens is much greater than the annual person rem routinely released by a typical large nuclear power plant. It is estimated that subsequent eruptions of Mount St. Helens have doubled or tripled the person rem calculated from the initial large eruption. The long range global ash deposition of the May 18 eruption is estimated through 1984, by use of a global deposition model. The maximum deposition is nearly 1000 kg square km and occurs in the spring of 1981 over middle latitudes of the Northern Hemisphere.

  17. Forecasts and predictions of eruptive activity at Mount St. Helens, USA: 1975-1984

    USGS Publications Warehouse

    Swanson, D.A.; Casadevall, T.J.; Dzurisin, D.; Holcomb, R.T.; Newhall, C.G.; Malone, S.D.; Weaver, C.S.

    1985-01-01

    Public statements about volcanic activity at Mount St. Helens include factual statements, forecasts, and predictions. A factual statement describes current conditions but does not anticipate future events. A forecast is a comparatively imprecise statement of the time, place, and nature of expected activity. A prediction is a comparatively precise statement of the time, place, and ideally, the nature and size of impending activity. A prediction usually covers a shorter time period than a forecast and is generally based dominantly on interpretations and measurements of ongoing processes and secondarily on a projection of past history. The three types of statements grade from one to another, and distinctions are sometimes arbitrary. Forecasts and predictions at Mount St. Helens became increasingly precise from 1975 to 1982. Stratigraphic studies led to a long-range forecast in 1975 of renewed eruptive activity at Mount St. Helens, possibly before the end of the century. On the basis of seismic, geodetic and geologic data, general forecasts for a landslide and eruption were issued in April 1980, before the catastrophic blast and landslide on 18 May 1980. All extrusions except two from June 1980 to the end of 1984 were predicted on the basis of integrated geophysical, geochemical, and geologic monitoring. The two extrusions that were not predicted were preceded by explosions that removed a substantial part of the dome, reducing confining pressure and essentially short-circuiting the normal precursors. ?? 1985.

  18. Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry

    USGS Publications Warehouse

    Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.

    2008-01-01

    This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32

  19. Effects of the 1980 eruption of Mount St Helens on the limnological characteristics of selected lakes in western Washington

    USGS Publications Warehouse

    Embrey, S.S.; Dion, N.P.

    1988-01-01

    The 1980 eruption of Mount St. Helens provided the opportunity to study its effect on the physical, chemical, and biological characteristics of lakes near the volcano, and to describe two newly created lakes. Concentrations of dissolved solids and organic carbon, measured in June 1980, had increased from 2 to 30 times those observed in the 1970 's in Spirit, St. Helens, and Venus Lakes. Water in the lakes was altered from preeruption calcium-bicarbonate types to calcium-sulfate, calcium sulfate-chloride, or lake surface, as in St. Helens Lake; transparency in Venus Lake had improved to a depth of 24 ft by 1982. Spirit Lake was anoxic into fall 1980, but had reaerated to 5.2 mg/L of dissolved oxygen by May 1981. Phytoplankton communities in existing lakes in the blast zone in 1980 were primarily green and bluegreen algae; diatoms were sparse until summer 1982. Small numbers of zooplankton in Spirit, St. Helens, and Venus Lakes, compared to numbers in Walupt and Fawn Lakes, may indicate some post-eruption mortality. Rotifers were absent from lakes in the blast zone, but by 1981 were observed in all the lakes. The recovery of the physical, chemical, and biological characteristics of the lakes will depend on stabilization of the surrounding environment and biological processes within each lake. Excluding Spirit Lake, it is estimated that St. Helens Lake would be the slowest to recover and Venus Lake the fastest. (USGS)

  20. Frictional properties of the Mount St. Helens gouge: Chapter 20 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Moore, Peter L.; Iverson, Neal R.; Iverson, Richard M.

    2008-01-01

    Rate-weakening friction is a requirement for stick-slip behavior that is satisfied by the Mount St. Helens gouge. Indeed, regular stick-slip oscillations were observed in two experiments performed at the highest normal stress and lowest rates of shear. The conditions under which this stick-slip motion occurred indicate that the gouge also satisfies a second criterion for stick-slip behavior of materials exhibiting rateand-state dependent friction-gouge stiffness exceeds that of the ascending magma that drives upward motion of the plug. The presence of highly compliant magma as a driving element may be crucial for generating stick-slip instabilities at the shallow earthquake focal depths observed during the eruption.

  1. Large-amplitude traveling ionospheric distrubance produced by the May 18, 1980, explosion of Mount St. Helens

    SciTech Connect

    Roberts, D.H.; Klobuchar, J.A.; Fougere, P.F.; Hendrickson, D.H.

    1982-08-01

    A remarkable long-lived, large-scale traveling ionospheric disturbance (TID), excited by the May 18, 1980, explosion of Mount St. Helens, has been detected in total electron content monitor data. Oscillatory perturbations in the electron column density of the ionosphere with amplitudes about 10% of the nominal daytime content were detected at three stations whose ionospheric penetration points lie between 1610 and 1890 km from Mount St. Helens. Smaller perturbations were detected at five of six additional stations between 3760 and 4950 km away. The period of the TID increased linearly with great-circle distance from Mount St. Helens, ranging from roughly-equal37 min at the nearest station to roughly-equal116 min at the most distant one. The TID persisted for at least four cycles at the three close stations and three cycles at the more distant stations and was qualitatively similar to TID's produced by the low-altitude thermonuclear detonations of the 1960's. The disturbance front of this TID accelerated from an average velocity of roughly-equal350 m/s between Mt. St. Helens and the close stations to an average velocity of roughly-equal550 m/s to the more distant ones.A model based on the free wave response of an isothermal atmosphere to a point disturbance provides a good fit to the data at the three closest stations, but no such model can account for all of the data. Modeling of the long-distance behavior of the Mount St. Helens TID in terms of upper-atmosphere guided gravity waves is complicated by the requirement of exciting them by a ground-level explosion. There was no evidence for a strong supersonic shock wave in the ionosphere. As a result, the Mount St. Helens disturbance may prove to be a cleaner test of detailed theories of the point excitation and propagation of gravity waves in a realistic atmosphere than were TID's excited by thermonuclear weapons.

  2. VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography

    USGS Publications Warehouse

    Waite, G.P.; Moran, S.C.

    2009-01-01

    We present a new P-wave velocity model for Mount St. Helens using local earthquake data recorded by the Pacific Northwest Seismograph Stations and Cascades Volcano Observatory since the 18 May 1980 eruption. These data were augmented with records from a dense array of 19 temporary stations deployed during the second half of 2005. Because the distribution of earthquakes in the study area is concentrated beneath the volcano and within two nearly linear trends, we used a graded inversion scheme to compute a coarse-grid model that focused on the regional structure, followed by a fine-grid inversion to improve spatial resolution directly beneath the volcanic edifice. The coarse-grid model results are largely consistent with earlier geophysical studies of the area; we find high-velocity anomalies NW and NE of the edifice that correspond with igneous intrusions and a prominent low-velocity zone NNW of the edifice that corresponds with the linear zone of high seismicity known as the St. Helens Seismic Zone. This low-velocity zone may continue past Mount St. Helens to the south at depths below 5??km. Directly beneath the edifice, the fine-grid model images a low-velocity zone between about 2 and 3.5??km below sea level that may correspond to a shallow magma storage zone. And although the model resolution is poor below about 6??km, we found low velocities that correspond with the aseismic zone between about 5.5 and 8??km that has previously been modeled as the location of a large magma storage volume. ?? 2009 Elsevier B.V.

  3. Terpenoid marker compounds derived from biogenic precursors in volcanic ash from Mount St. Helens, Washington

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.

    1983-01-01

    A volcanic-ash sample obtained after the 1980 eruption of Mount St. Helens, Washington, was analyzed for cyclic terpenoid organic compounds and polycyclic aromatic hydrocarbons using capillary gas chromatography-mass spectrometry-computer techniques. Various tricyclic diterpenoid acids and hydrocarbons were identified including dehydroabietic acid, dehydroabietin, dehydroabietane, simonellite, and retene. Preliminary evidence indicates that these compounds were derived from forest soils or atmospheric aerosols or both in the vicinity of coniferous forests. A diagenetic scheme involving three possible pathways for the conversion of abietic acid to retene is presented. ?? 1983.

  4. The Stars Belong to Everyone: Astronomer and Science Writer Helen Sawyer Hogg (1905-1993)

    NASA Astrophysics Data System (ADS)

    Cahill, Maria J.

    2012-06-01

    As a scientist and science educator, Helen Sawyer Hogg served astronomy, and especially variable star astronomy, in diverse ways while raising a family. Her long interest in and support of the AAVSO over many years took place in the context of not only that busy scientific and writing career, but also one of personal struggle to achieve parity as a female in a largely male profession. This biographical sketch demonstrates that her path to eventual status as “the Canadian face of astronomy” was both difficult and filled with uncertainty.

  5. Helen Flanders Dunbar, John Dewey, and clinical pragmatism: reflections on method in psychosomatic medicine and bioethics.

    PubMed

    Hart, Curtis W

    2002-01-01

    This article outlines the method utilized by physicians and major figures in the founding of Clinical Pastoral Education, Helen Flanders Dunbar, in her work of 1943, Psychosomatic Diagnosis, and relates it to the currently evolving approach in bioethics known as clinical pragmatism. It assesses Dewey's influence on both Dunbar in psychosomatic medicine and clinical pragmatism in bioethics, and illustrates the breadth of influence of the school of philosophical thought known as pragmatism with which Dewey's name and those of William James and Charles Sanders Pierce are most often identified. PMID:12385140

  6. The Stars Belong to Everyone: Astronomer and Science Writer Dr. Helen Sawyer Hogg (1905-1993)

    NASA Astrophysics Data System (ADS)

    Cahill, Maria J.

    2011-05-01

    University of Toronto astronomer and science writer Helen Sawyer Hogg (President of the AAVSO 1939-41) served her field through research, teaching, and administrative leadership. Additionally, she reached out to students and the public through her Toronto Star newspaper column entitled "With the Stars" for thirty years; she wrote The Stars Belong to Everyone, a book that speaks to a lay audience; she hosted a successful television series entitled Ideas; and she delivered numerous speeches at scientific conferences, professional women's associations, school programs, libraries, and other venues. This paper will illumine her life and the personal and professional forces that influenced her work.

  7. Eruption prediction aided by electronic tiltmeter data at Mount St. Helens

    USGS Publications Warehouse

    Dzurisin, D.; Westphal, J.A.; Johnson, Daniel J.

    1983-01-01

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion.

  8. Distribution of Mount St. Helens dust inferred from satellites and meteorological data

    NASA Technical Reports Server (NTRS)

    Laver, J. D.

    1982-01-01

    Visible and infrared pictures from two Geostationary Operational Environmental Satellite Systems satellites, in circular orbits at about 19,000 nautical miles, are available continuously at approximately 30 minute intervals. Still pictures and film loops from this system vividly depict the events associated with the May 18, 1980 eruption of Mount St. Helens. The initial explosion, shock wave, and visible horizontal dust distribution during the following week are readily apparent. Meteorological wind and height fields permit the inference of the vertical distribution of volcanic dust as well as explain the atmospheric behavior which caused the visible and nonvisible dust distribution.

  9. Eruption prediction aided by electronic tiltmeter data at mount st. Helens.

    PubMed

    Dzurisin, D; Westphal, J A; Johnson, D J

    1983-09-30

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion. PMID:17759009

  10. Characterization of organic contaminants in environmental samples associated with mount St. Helens 1980 volcanic eruption

    USGS Publications Warehouse

    Pereira, W.E.

    1982-01-01

    Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.

  11. Direct temperature measurements of deposits, Mount St. Helens, Washington, 1980-1981

    USGS Publications Warehouse

    Banks, N.G.; Hoblitt, R.P.

    1996-01-01

    A program of temperature studies of the eruptive products of Mount St. Helens was established May 20, 1980, just 2 days after the catastrophic eruption of May 18. In general, the more recent deposits were emplaced at higher temperatures than the earlier ones. Emplacement temperatures of deposits of the debris avalanche of May 18 ranged from about 70 to 100 deg C, of the directed blast of May 18 from about 100 to 325 deg C (depending on azimuth from the vent), and of the subsequent pumiceous pyroclastic flows from about 300 to 850 deg C. Temperatures of the summit domes were as high as 897 deg C.

  12. Rheological properties of mudflows associated with the spring 1980 eruptions of Mount St. Helens volcano, Washington

    SciTech Connect

    Fink, J.H.; Malin, M.C.; D'Alli, R.E.; Greeley, R.

    1981-01-01

    Rhelogoical properties of three recent mudflows at Mount St. Helens were estimated using technique developed for deterimining the properties of debris flows based on the geometry of their deposits. Calculated yield strengths of 1100, 1000, and 400 Pa, maximum flow velocities of 10 to 31 m/s, volumetric flow rates of 300 to 3400 m/sup 3//s, and plastic viscosities of 20 to 320 Ps-s all compare favorably with measured and estimated values cited in the literature. A method for determining likely sites of future mudflow initiation based on these data is outlined.

  13. Correlation between atmospheric precipitation and recent explosions at Mount St. Helens, Washington

    USGS Publications Warehouse

    Mastin, L.

    1992-01-01

    Scientists attribute the recent small explosion-like seismic signals at Mount St. Helens to either the geyser-like flashing of superheated groundwater to steam or the release of magmatic gas from the cooling magma system, or both. The contribution of magmaic gas in these events is not currently known. If meteoric water from rain or melting snow is the source, however, we might expect these events to occur most frequently during the rainy season, perhaps even during or immediately following individual storms. 

  14. Predicting eruptions at mount st. Helens, june 1980 through december 1982.

    PubMed

    Swanson, D A; Casadevall, T J; Dzurisin, D; Malone, S D; Newhall, C G; Weaver, C S

    1983-09-30

    Thirteen eruptions of Mount St. Helens between June 1980 and December 1982 were predicted tens of minutes to, more generally, a few hours in advance. The last seven of these eruptions, starting with that of mid-April 1981, were predicted between 3 days and 3 weeks in advance. Precursory seismicity, deformation of the crater floor and the lava dome, and, to a lesser extent, gas emissions provided telltale evidence of forthcoming eruptions. The newly developed capability for prediction reduced risk to life and property and influenced land-use decisions. PMID:17759006

  15. Biological responses of lakes in the mount st. Helens blast zone.

    PubMed

    Wissmar, R C; Devol, A H; Staley, J T; Sedell, J R

    1982-04-01

    Loadings of dissolved organics and suspended particulates from destroyed forests and volcanic debris produced by the 18 May 1980 eruption of Mount St. Helens altered the trophic structure of many blast zone lakes to the extent that anoxic conditions and chemoorganotrophic and chemolithotrophic microorganisms prevailed. High bacterial counts and high adenosine triphosphate concentrations were directly related to enhanced concentrations of dissolved organic carbon, and plankton chlorophyll a was inversely related to light extinction. The recovery of these lakes to the preeruption state appears dependent upon the oxidation of organics and the stabilization of watersheds. PMID:17736249

  16. Problems in the climatology of the 1980 Mount St. Helens eruptions. [surface heat and water budgets

    NASA Technical Reports Server (NTRS)

    Critchfield, H. J.

    1982-01-01

    A brief review of the effects of climate and weather on the 1980 Mount St. Helens eruptions and the subsequent dispersion of ash and gases and the reciprocal influences of the eruptions on climate and climatology is presented. The effects of mesoscale destruction of snow fields and vegetation, a revised mountain profile, and ash deposits are addressed along with impacts on hemispheric climate and disruption of normal climatological observations, in the areas directly affected by the explosions and ashfall. Environmental and economic consequences are also considered.

  17. Chemical changes of lakes within the Mount St. Helens blast zone

    SciTech Connect

    Wissmar, R.C.; Devol, A.H.; Nevissi, A.E.; Sedell, J.R.

    1982-01-01

    Differences in the dissolved chemistry of lakes devastated by the 18 May 1980 eruption of Mount St. Helens are attributable to location relative to the lateral blast trajectory of the eruption and to the emplacement of mineral deposits. Elemental enrichment ratios of pre- and posteruption measurements for Spirit Lake and comparisons of the chemical concentrations and elemental ratios for lakes inside and outside the blast zone reflect the influences of the dissolution of magmatic and lithic deposits. The pH changes were minor because of buffering by carbonic acid and reactions involving mineral alteration, dissolved organics, and biological processes.

  18. Airborne studies of the emissions from the volcanic eruptions of Mount St. Helens

    SciTech Connect

    Hobbs, P.V.; Radke, L.F.; Eltgroth, M.W.; Hegg, D.A.

    1981-01-01

    The concentrations of particles less than 10 micrometers in diameter in the ash emissions from Mount St. Helens have been more than 1000 times greater than those in the ambient air. Mass loadings of particles less than 2 micrometers in diameter were generally several hundred micrograms per cubic meter. In the ash clouds, produced by the large eruption on 18 May 1980, the concentrations of several trace gases generally were low. In other emissions, significant, but variable, concentrations of sulfur gases were measured. The 18 May eruption produced nuees ardentes, lightning flashes, and volcanic hail.

  19. Evaluation of radon progeny from Mount St. Helens eruptions. Final report

    SciTech Connect

    Lepel, E.A.; Olsen, K.B.; Thomas, V.W.; Eichner, F.N.

    1982-09-01

    A network of twelve monitoring sites around Mount St. Helens was established to evaluate possible short-lived radioactivity in the fallen ash. Seven sites were located near major population centers of Washington and Oregon, and five sites were located within 80 km of the volcano. Each site monitored the radioactivity present by the use of thermoluminescent dosimeters which recorded the total exposure to radioactivity over the exposure period. Eruptions occurring on July 22, August 7, and October 16 to 18, 1980 were monitored. No statistically significant quantities of measurable radon daughters were observed.

  20. Chemical changes of lakes within the mount st. Helens blast zone.

    PubMed

    Wissmar, R C; Devol, A H; Nevissi, A E; Sedell, J R

    1982-04-01

    Differences in the dissolved chemistry of lakes devastated by the 18 May 1980 eruption of Mount St. Helens are attributable to location relative to the lateral blast trajectory of the eruption and to the emplacement of mineral deposits. Elemental enrichment ratios of pre- and posteruption measurements for Spirit Lake and comparisons of the chemical concentrations and elemental ratios for lakes inside and outside the blast zone reflect the influences of the dissolution of magmatic and lithic deposits. The pH changes were minor because of buffering by carbonic acid and reactions involving mineral alteration, dissolved organics, and biological processes. PMID:17736248

  1. Measurements of the stratospheric plume from the Mount St. Helens eruption: radioactivity and chemical composition

    SciTech Connect

    Leifer, R.; Hinchliffe, L.; Fisenne, I.; Franklin, H.; Knutson, E.; Olden, M.; Sedlacek, W.; Mroz, E.; Cahill, T.

    1981-11-20

    Gas measurements made in the stratospheric plume from the eruption of Mount St. Helens on 18 May 1980 were not consistent with a reported large injection of radon-222 into the atmosphere. No enrichment in the volatile element polonium was found in filter samples, and the ratio of polonium-210 to lead-210 was not different from background values. Data obtained with an experimental impactor, flown shortly after the eruption, showed an increase of 10/sup 3/ in the stratospheric number concentration of submicrometer sulfate particles compared to concentrations before the eruption.

  2. Remanent magnetization of ash from the 18 May 1980 eruption of Mount St. Helens

    SciTech Connect

    Steele, W.K.

    1981-03-01

    Ash from the May 1980 eruption of Mount St. Helens deposited from air faithfully records the direction of the local geomagnetic field in eastern Washington, whereas ash settled from suspension in water in fluvial environments exhibits significant inclination and current-rotation errors in magnetic direction similar to those reported in other subaqueously deposited sediments. The current-rotation errors are associated with partial alignment of the major axes of magnetic susceptibility in the direction of water currents. Subaerial deposition produces strong stable remanent magnetization in ash with or without postdepositional wetting by rain.

  3. Changes in stratospheric water vapor associated with the Mount St. Helens eruption

    SciTech Connect

    Murcray, D.G.; Murcray, F.J.; Barker, D.B.; Mastenbrook, H.J.

    1981-01-01

    A frost point hygrometer designed for aircraft operation was included in the complement of instruments assembled for the NASA U-2 flights through the plume of Mount St. Helens. Measurements made on the 22 May flight showed the water vapor to be closely associated with the aerosol plume. The water vapor mixing ratio by mass in the plume was as high as 40 x 10/sup -6/. This compares with values of 2 x 10/sup -6/ to 3 x 10/sup -6/ outside of the plume.

  4. Measurements of the stratospheric plume from the mount st. Helens eruption: radioactivity and chemical composition.

    PubMed

    Leifer, R; Hinchliffe, L; Fisenne, I; Franklin, H; Knutson, E; Olden, M; Sedlacek, W; Mroz, E; Cahill, T

    1981-11-20

    Gas measurements made in the stratospheric plume from the eruption of Mount St. Helens on 18 May 1980 were not consistent with a reported large injection of radon-222 into the atmosphere. No enrichment in the volatile element polonium was found in filter samples, and the ratio of polonium-210 to lead-210 was not different from background values. Data obtained with an experimental impactor, flown shortly after the eruption, showed an increase of 10(3) in the stratospheric number concentration of submicrometer sulfate particles compared to concentrations before the eruption. PMID:17782443

  5. Sediment data for streams near Mount St. Helens, Washington; Volume 1, 1980 water year

    USGS Publications Warehouse

    Dinehart, Randal L.; Ritter, John R.; Knott, J.M.

    1981-01-01

    This report presents fluvial sediment data collected primarily in response to the eruption of Mount St. Helens. To monitor the sediment transported by streams in the Mount St. Helens area and the particle-size distributions of the sediment, the Water Resources Division of the U.S. Geological Survey initially established 18 fluvial sediment stations. In this report, concentrations and discharges of suspended sediment are given for 16 fluvial-sediment stations (5 are in the Toutle River basin) and for 11 miscellaneous sampling sites. Also included are particle-size distributions of suspended sediment and bed material, water discharge, and water temperature for many of the sediment samples. Daily sediment discharges for the period May 18 to September 30 were calculated for Toutle River at Highway 99 near Castle Rock and Cowlitz River at Castel Rock. Over 150 million tons of sediment are estimated to have passed the Toutle River at Highway 99 station on May 18-19, 1980. High concentrations of suspended sediment persisted at several stations throughout the spring and summer of 1980. (USGS)

  6. Posteruption glacier development within the crater of Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Schilling, S.P.; Carrara, P.E.; Thompson, R.A.; Iwatsubo, E.Y.

    2004-01-01

    The cataclysmic eruption of Mount St. Helens on May 18, 1980, resulted in a large, north-facing amphitheater, with a steep headwall rising 700 m above the crater floor. In this deeply shaded niche a glacier, here named the Amphitheater glacier, has formed. Tongues of ice-containing crevasses extend from the main ice mass around both the east and the west sides of the lava dome that occupies the center of the crater floor. Aerial photographs taken in September 1996 reveal a small glacier in the southwest portion of the amphitheater containing several crevasses and a bergschrund-like feature at its head. The extent of the glacier at this time is probably about 0.1 km2. By September 2001, the debris-laden glacier had grown to about 1 km2 in area, with a maximum thickness of about 200 m, and contained an estimated 120,000,000 m3 of ice and rock debris. Approximately one-third of the volume of the glacier is thought to be rock debris derived mainly from rock avalanches from the surrounding amphitheater walls. The newly formed Amphitheater glacier is not only the largest glacier on Mount St. Helens but its aerial extent exceeds that of all other remaining glaciers combined. Published by University of Washington.

  7. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    USGS Publications Warehouse

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  8. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    NASA Technical Reports Server (NTRS)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  9. Comparison of Mount Saint Helens volcanic eruption to a nuclear explosion. Technical note

    SciTech Connect

    Gould, K.E.

    1981-01-01

    The phenomena and effects of airblast, ground shock, thermal radiation, cratering and ejecta, and debris cloud and deposition from the eruption of Mt. St. Helens were compared to those that would result from a nuclear explosion to determine if phenomena or effects were analogous and thus might provide useful data for military nuclear weapon effects studies. It is concluded that the phenomena are not analogous. In particular, airblast destruction was caused by clouds of ash driven by subsonic winds, rather than by a supersonic shock wave that would be the damage mechanism of a nuclear explosion. Because of the lack of analogy between the eruption and nuclear explosion phenomena, it appears questionable that any of the effects are analogous; therefore, it is unlikely that anything more of military interest can be gained from studying the effects of the eruption. However, key contacts for further information on the eruption and the associated research studies are given. The comparison of the eruption of Mt. St. Helens to the explosion of a 10- to 20-megaton nuclear weapon is misleading. Such comparisons serve no useful purpose and should be avoided.

  10. Recovery of lakes in the 1980 blast zone of Mount St. Helens

    SciTech Connect

    Wissmar, R.C. )

    1990-11-01

    Over the past 10 years, following the catastrophic 1980 eruption of Mount St. Helens, considerable research has been conducted on altered and newly created lake ecosystems in different depositional regions of the blast zone. Impact and recovery characteristics have been followed for the altered Spirit Lake and two newly created lakes S. F. Castle and Coldwater Lakes. During the 1980 eruption, Spirit Lake was directly impacted by debris avalanches and pyroclastic flows. The unique characteristics of the Mount St. Helens volcanic eruption and geochemistry, such as low inputs of sulfate and high loadings of organics from devastated forests to lakes, combined to form chemical environments favorable to biological activity. Even though weathering, organic and microbial reactions were evidently the important processes regulating alkalinity of these lakes, patterns of changes in pH, total alkalinity, and dissolved organic carbon and changes in microbial assemblages and processes also suggested a sequence of biological reactions that occurred during the early recovery period of 1980 and 1981. The biological recovery of the lakes via succession of microbial reactions suggests a tendency for the higher energy producing reactions to dominate lesser energy producing reactions. As turbid and high suspended particulate matter levels decreased, phytoplankton primary production increased to produce mixed bacteria-phytoplankton-zooplankton communities.

  11. Trioctahedral vermiculite in a 1980 pyroclastic flow, Mt. St. Helens, Washington

    SciTech Connect

    LaManna, J.M.; Ugolini, F.C.

    1987-03-01

    Trioctahedral vermiculite, previously unreported, is an abundant phyllosilicate in a Mt. St. Helens pyroclastic flow that was emplaced during the 18 May 1980 eruption. The response of this mineral to various treatments suggests its layer charge is approximately 0.6 per O/sub 10/(OH)/sub 2/. In the pyroclastic flow, vermiculite is present in samples collected in 1981 from the surface-to-90-cm depth, but it is present only from 5 to 90 cm deep in samples collected in 1983. The apparent depletion in trioctahedral vermiculite of the 1983 surface (0-1.5 cm) is believed to be caused by weathering due to the prevailing acidic rainfall (pH = 4.0-4.6). One crucial problem in tephritic soils is to establish the origin of the 2:1 phyllosilicates. The authors findings show that these layer silicates, possessing different layer charges, were most likely present with the lithic fragments of the ejecta. Consequently trioctahedral vermiculite and the previously reported saponite present in Mt. St. Helens tephra should be considered detrital minerals.

  12. Towards a Transactional View of Rhetorical and Feminist Theory: Rereading Helen Cixous's "The Laugh of the Medusa."

    ERIC Educational Resources Information Center

    Biesecker, Barbara A.

    1992-01-01

    Argues that by rereading Helene Cixous's "The Laugh of Medusa" as a rhetoric--that is, an essay which posits what can and must be done by women if they are to intervene effectively in the public sphere through written or oral discourse--both rhetorical and feminist theory and criticism are enriched. (SR)

  13. Democracy and Schooling in California: The Legacy of Helen Heffernan and Corinne Seeds. Historical Studies in Education

    ERIC Educational Resources Information Center

    Weiler, Kathleen

    2011-01-01

    Helen Heffernan and Corinne Seeds were nationally recognized as leaders of the progressive education movement and were key figures in what was probably the most concerted attempt to put the ideals of progressive education into practice in a state-wide system of public education in the United States. This book examines the struggle over public…

  14. Impossible Practice and Theories of the Impossible: A Response to Helene Illeris's "Potentials of Togetherness"

    ERIC Educational Resources Information Center

    Kallio-Tavin, Mira

    2014-01-01

    In a recent commentary in "Studies in Art Education," Helene Illeris (2013) discussed the idea of "performative experimental communities" via a critique of visual culture pedagogy and the romanticism of community-oriented art education in Nordic countries. Illeris underpinned her arguments with Jean-Luc Nancy's (1997)…

  15. An investigation of pre-eruptive deformation for the 2004 eruption of Mount St. Helens using persistent scatterer interferometry

    NASA Astrophysics Data System (ADS)

    Welch, M.; Schmidt, D. A.

    2014-12-01

    The volcanoes of the Cascade Range pose a legitimate threat to people living in the Pacific Northwest. Mt St Helens, which erupted in 2004 as a part of a dome building event, is a notable example of this danger. Deformation and seismicity are known indicators of volcanic activity and can provide warning of an imminent eruption. In the weeks leading up to the 2004 eruption, a shallow earthquake swarm was detected under St. Helens, suggesting ongoing deformation with its source beneath the edifice. A campaign GPS survey conducted in 2000 found no evidence of deformation. The sole continuous GPS station that was operational prior to the eruption (located ~9 km away from the crater) began moving only with the onset of the earthquake swarm. Because of the lack of ground based geodetic instruments in the near-field of Mt St Helens at the time of the 2004 eruption, it is unknown whether pre-eruptive deformation occurred on the edifice or solely within crater. InSAR is the only method available to conclusively determine whether the 2004 eruption was preceded by deformation of the edifice. Previous work explored this question using standard 2-pass interferometry, but the results were inconclusive. The main obstacle to implementing InSAR methods in the Cascades region is phase decorrelation due to the presence of both dense forest and snow for most of the year. We revisit the available InSAR data for St. Helens by experimenting with the application of the Persistent Scatterers and Distributed Scatterers processing techniques in order to overcome the decorrelation problem. By using these techniques on the question of Mt St Helens pre-eruptive deformation, we will demonstrate the viability of their application to the entire Northwest region as a low cost, low maintenance, monitoring tool.

  16. Solitary Waves, Magma Migration and Dome Building Eruptions at Mt. St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Ryan, M. P.; Stanley, B.; Plasker, M.

    2007-12-01

    Solitary waves have first-order attributes that include shape and volume conserving packets of fluid that migrate with characteristic wavelengths, amplitudes, wave numbers, and pulse durations. To ascend through dike-like, magma-filled fractures or sub-circular conduits, the solitary wave pulse duration is directly proportional to the conduit wall region viscosity and inversely proportional to the density contrast that drives the flow. Solitary waves are produced by the collapse of conduit wall rocks following the passage of a magma batch. The 1980-current eruptions at Mt. St. Helens display a variable time-series in their erupted volumes, as well as lava dome \\(or spine\\) heights / volumes and vent flow rates. Inter-eruption repose periods, however, have often shown broad regularity over extended periods. The rhythmic 'beat' of eruptive episodes within a long-lived series and their roughly regular repose periods arises directly from the solitary wave migration mechanism. Composite domes are suggested to be the products of solitary wave incremental additions of dacite, as in the 1980-1983 composite dome resulting from at least 9 such solitary wave-controlled additions. The 18 May 1980 dacite cryptodome may now be interpreted as a composite of several solitary wave-based intrusions leading to the climatic eruption volume. Domes may be either solitary or composite but are built up of one or several batches of evolving magma that ascend individually from the 8 to 1 km depth storage reservoir as solitary waves. Analytical calculations of wave speed, wave length, batch volume, parcel shapes and repose periods reveal the dependence on material properties appropriate for Mt. St. Helens intrusions and dome-building eruptions. Predicted solitary wave volumes and flow rates are in good agreement with observed values for dacitic dome and spine-building eruptions from 1980-1986 and from 2004-2007. Conduit dimensions are inferred to vary over the range R=2 to R=20 m. Magma

  17. In the path of destruction - eyewitness chronicles of Mount St. Helens

    USGS Publications Warehouse

    Waitt, Richard B.

    2015-01-01

    “The air had no oxygen, like being trapped underwater…I was being cremated, the pain unbearable.”-- Jim Scymanky“I was on my knees, my back to the hot wind. It blew me along, lifting my rear so I was up on my hands…It was hot but I didn’t feel burned—until I felt my ears curl.”—Mike HubbardA napping volcano blinked awake in March 1980. Two months later, the mountain roared. Author Richard Waitt was one of the first to arrive following the mountain’s early rumblings. A geologist with intimate knowledge of Mount St. Helens, Waitt delivers a detailed and accurate chronicle of events. The eruption story unfolds through unforgettable, riveting narratives—the heart of a masterful chronology that also delivers engrossing science, history, and journalism.

  18. Gas emissions and the eruptions of Mount St. Helens through 1982

    USGS Publications Warehouse

    Casadevall, T.; Rose, W.; Gerlach, T.; Greenland, L.P.; Ewert, J.; Wunderman, R.; Symonds, R.

    1983-01-01

    The monitoring of gas emissions from Mount St. Helens includes daily airborne measurements of sulfur dioxide in the volcanic plume and monthly sampling of gases from crater fumaroles. The composition of the fumarolic gases has changed slightly since 1980: the water content increased from 90 to 98 percent, and the carbon dioxide concentrations decreased from about 10 to 1 percent. The emission rates of sulfur dioxide and carbon dioxide were at their peak during July and August 1980, decreased rapidly in late 1980, and have remained low and decreased slightly through 1981 and 1982. These patterns suggest steady outgassing of a single batch of magma (with a volume of not less than 0.3 cubic kilometer) to which no significant new magma has been added since mid-1980. The gas data were useful in predicting eruptions in August 1980 and June 1981.

  19. Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-05

    USGS Publications Warehouse

    Iverson, R.M.; Dzurisin, D.; Gardner, C.A.; Gerlach, T.M.; LaHusen, R.G.; Lisowski, M.; Major, J.J.; Malone, S.D.; Messerich, J.A.; Moran, S.C.; Pallister, J.S.; Qamar, A.I.; Schilling, S.P.; Vallance, J.W.

    2006-01-01

    The 2004-05 eruption of Mount St Helens exhibited sustained, near-equilibrium behaviour characterized by relatively steady extrusion of a solid dacite plug and nearly periodic shallow earthquakes. Here we present a diverse data set to support our hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upwards by ascending, solidifying, gas-poor magma. We formalize this hypothesis with a dynamical model that reveals a strong analogy between behaviour of the magma-plug system and that of a variably damped oscillator. Modelled stick-slip oscillations have properties that help constrain the balance of forces governing the earthquakes and eruption, and they imply that magma pressure never deviated much from the steady equilibrium pressure. We infer that the volcano was probably poised in a near-eruptive equilibrium state long before the onset of the 2004-05 eruption. ??2006 Nature Publishing Group.

  20. Seismic and acoustic recordings of an unusually large rockfall at Mount St. Helens, Washington

    USGS Publications Warehouse

    Moran, S.C.; Matoza, R.S.; Garces, M.A.; Hedlin, M.A.H.; Bowers, D.; Scott, W.E.; Sherrod, D.R.; Vallance, J.W.

    2008-01-01

    On 29 May 2006 a large rockfall off the Mount St. Helens lava dome produced an atmospheric plume that was reported by airplane pilots to have risen to 6,000 m above sea level and interpreted to be a result of an explosive event. However, subsequent field reconnaissance found no evidence of a ballistic field, indicating that there was no explosive component. The rockfall produced complex seismic and infrasonic signals, with the latter recorded at sites 0.6 and 13.4 km from the source. An unusual, very long-period (50 s) infrasonic signal was recorded, a signal we model as the result of air displacement. Two high-frequency infrasonic signals are inferred to result from the initial contact of a rock slab with the ground and from interaction of displaced air with a depression at the base of the active lava dome. Copyright 2008 by the American Geophysical Union.

  1. Magmatic model for the Mount St. Helens blast of May 18, 1980

    SciTech Connect

    Eichelberger, J.C.; Hayes, D.B.

    1982-09-10

    Analytical and numerical solutions to the hydrodynamic equations of motion, constrained by physical properties of juvenile ejecta in the Mount St. Helens blast deposit, were used to investigate magmatic conditions required to produce the initial devastating blast phase of the eruption of May 18, 1980. Evidence that the blast was magmatic includes equivalence in volume of juvenile blast ejecta to preeruption inflation of the cone, substantial vesicularity of this ejecta, and continued vesiculation of large juvenile clasts after eruption. Observed or inferred ejecta velocities of 100 to 250 m/s are shown to require 0.2 to 0.7 wt% water vapor preexisting in magma unloaded by a landslide 200 to 900 m thick. These conditions imply total magmatic water contents of 0.7 to 1.7 wt%, respectively. Such low required water content suggests that volcanic blasts may be regarded as a normal consequence of magma intrusion into an unstable edifice.

  2. Health-hazard-evaluation report MHETA 89-362-2027, Helen Mining Company, Homer City, Pennsylvania

    SciTech Connect

    Ferguson, R.P.

    1990-03-01

    In response to a request from the United Mine Workers of America, an investigation was made of possible hazardous working conditions at the Helen Mining Company, Homer City, Pennsylvania. One of the tipple operators had complained of headaches, dizziness and skin rashes from working with a mixture of solvents used in the float/sink test operation. The solvents included perchloroethylene and dibromomethane. A week prior to receiving the request, the use of dibromomethane had been discontinued. Consequently, on the visit to the site, no traces of dibromomethane were found. After engineering controls were installed, only one of seven personal breathing zone samples detected any perchloroethylene, and that sample was 0.12 parts per million, at the limit of detection. The author concludes that a hazard from perchloroethylene did not exist at the time of the evaluation. The author recommends replacing the rubber/cloth type glove being used with either a Teflon or Viton glove, and enclosing the work table.

  3. Gaseous constituents in the plume from eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1981-01-01

    Measurements in the stratosphere of gaseous constituents in the plume of Mount St. Helens were obtained during five flights of the NASA U-2 aircraft between 19 May and 17 June 1980. Mixing ratios from gas chromatographic measurements on samples acquired about 24 hours after the initial eruption show considerable enhancement over nonvolcanic concentrations for sulfur dioxide (more than 1000 times), methyl chloride (about 10 times), and carbon disulfide (more than 3 times). The mixing ratio of carbonyl sulfide was comparable to nonvolcanic mixing ratios although 3 days later it was enhanced two to three times. Ion chromatography measurements on water-soluble constituents are also reported. Very large concentrations of chloride, nitrate, and sulfate ions were measured, implying large mixing ratios for the water-soluble gaseous constituents from which the anions are derived. Measurements of radon-222 present in the plume are also reported.

  4. Seismic precursors to the Mount St. Helens: Eruptions in 1981 and 1982

    USGS Publications Warehouse

    Malone, S.D.; Boyko, C.; Weaver, C.S.

    1983-01-01

    Six categories of seismic events are recognized on the seismograms from stations in the vicinity of Mount St. Helens. Two types of high-frequency earthquakes occur near the volcano and under the volcano at depths of more than 4 kilometers. Medium- and low-frequency earthquakes occur at shallow depths (less than 3 kilometers) within the volcano and increase in number and size before eruptions. Temporal changes in the energy release of the low-frequency earthquakes have been used in predicting all the eruptions since October 1980. During and after eruptions, two types of low-frequency emergent surface events occur, including rockfalls and steam or gas bursts from the lava dome.

  5. Deep earthquakes beneath Mount St. Helens: Evidence for magmatic gas transport?

    USGS Publications Warehouse

    Weaver, C.S.; Zollweg, J.E.; Malone, S.D.

    1983-01-01

    Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir.

  6. Forward scattering and backscattering of solar radiation by the stratospheric limb after Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Ackerman, M.; Lippens, C.

    1982-01-01

    Stratospheric limb radiance profiles versus altitude of closest approach of the line of sight to the Earth's surface have been measured before and after the Mount St. Helens eruptions by means of photographs taken from a Sun-oriented balloon gondola floating above 35 km altitude over France. Preliminary data were reported for flights in October 1979 and in May and June 1980. The radiance integrated along the line of sight as in-situ radiance (R) can be derived taking into account absorption by ozone and air. The onion peeling inversion method was used to derive the vertical radiance (R) profiles respectively. The values of R were determined in the solar azimuth. The solar elevation angles are chosen larger for the backscattering observation than for the forward scattering observation to deal with as similar illumination conditions as possible despite the Earth's sphericity.

  7. Evaluation of heat flow and its geological implications on Mt. St. Helens

    SciTech Connect

    Grady, T.; Adams, E.; Brown, R.L.; Sato, A.

    1982-04-01

    A study to determine the heat flux pattern in the vicinity of Mt. St. Helens was undertaken as part of a program to evaluate the effects of the eruption on future snowpack conditions in the area. Subsurface temperature and low energy refraction seismic studies were made during the early spring in 1981 to determine both the heat flux in the area of pyroclastic deposition and its potential source. In addition, samples were collected for later laboratory determination of thermal conductivity and diffusivity. Results indicate that the heat flow values in the area of pyroclastic deposition are as large as forty times greater than the heat flow values measured on Mt. Adams and Mt. Hood during the same period. The highest heat flow values appear to coincide with a pumice flow unit on the north side of the mountain.. Comparison with work done on the eruption of Mt. Komagatake indicates that the large heat flow values continue for several years.

  8. Thermal property measurements in a fresh pumice flow at Mt. St. Helens

    SciTech Connect

    Hardee, H.C.

    1981-03-01

    A thermal penetrator that was air dropped into a freshly emplaced pumice flow at Mt. St. Helens yielded information on the in-situ thermal properties of the pumice. The in-situ conductivity-density-specific heat product at a depth of 60 cm was found to be 7.24 x 10/sup -5/ cal/sup 2/cm//sup 4/ s- /sup 0/C/sup 2/ at an average pumice temperature of 200 /sup 0/C. Using this data, values for the average in-situ thermal conductivity (2.9 x 10/sup -4/ cal/cm-s-/sup 0/C) and thermal diffusivity (1.2 x 10/sup -3/ cm/sup 2//s) were estimated. These thermal properties are of use in studies of pumice cooling and in the interpretation of infrared remote sensing data.

  9. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    NASA Astrophysics Data System (ADS)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.; Edwards, R. D.; Gales, S.; Girling, M. T.; Hoarty, D. J.; Hopps, N. W.; James, S. F.; Kopec, M. F.; Nolan, J. R.; Ryder, K.

    2006-10-01

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60J on target in a 500fs pulse, around 100TW, at the fundamental laser wavelength of 1.054μm. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibrated radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 1019Wcm-2 and to underwrite the facility radiological safety system.

  10. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. William

    1987-01-01

    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  11. Was the 18 May 1980 lateral blast at Mt St Helens the product of two explosions?

    USGS Publications Warehouse

    Hoblitt, R.P.

    2000-01-01

    The 18 May 1980 lateral blast at Mt St Helens has been interpreted as the product of a single explosion by some stratigraphers and as two closely spaced explosions by others. The stratigraphic evidence that bears on this question is inconclusive; strata change dramatically over short distances and this complexity provides wide latitude for interpretation. Some independent non-stratigraphic evidence, however, suggests that the blast was the product of two explosions or clusters of explosions. The independent evidence comes from eyewitness accounts and photographs, from satellite sensors, and from seismic records. This paper reviews the pertinent evidence, offers a new interpretation, and concludes that the blast was indeed the product of two explosions or clusters of explosions.

  12. Anthropology in a postcolonial colony: Helen I. Safa's contribution to Puerto Rican ethnography.

    PubMed

    Duany, Jorge

    2010-01-01

    This article assesses Helen I. Safa's legacy to anthropological thought in Puerto Rico. The first part of the article locates Safa's research on the Island within a long tradition of fieldwork by U.S. scholars since the early twentieth century. More recent research, conducted mostly by Puerto Rican women anthropologists and other social scientists, has expanded upon Safa's insights on gender and work. The second part of the essay analyzes Safa's major empirical work, The Urban Poor of Puerto Rico: A Study in Development and Inequality. Above all, this book helped overcome the theoretical impasse over the culture of poverty that characterized much of urban anthropology during the 1960s and 1970s. The article concludes with an appraisal of the relevance of Safa's work for the ethnography of contemporary Puerto Rico. PMID:22073441

  13. Gas emissions and the eruptions of Mount St. Helens through 1982

    SciTech Connect

    Casadevall, T.; Rose, W.; Gerlach, T.; Greenland, L.P.; Ewert, J.; Wunderman, R.; Symonds, R.

    1983-09-30

    The monitoring of gas emissions from Mount St. Helens includes daily airborne measurements of sulfur dioxide in the volcanic plume and monthly sampling of gases from crater fumaroles. The composition of the fumarolic gases has changed slightly since 1980: the water content increased from 90 to 98 percent, and the carbon dioxide concentrations decreased from about 10 to 1 percent. The emission rates of sulfur dioxide and carbon dioxide were at their peak during July and August 1980, decreased rapidly in late 1980, and have remained low and decreased slightly through 1981 and 1982. These patterns suggest steady outgassing of a single batch of magma has been added since mid-1980. The gas data were useful in predicting eruptions in August 1980 and June 1981.

  14. Seismic precursors to the mount st. Helens eruptions in 1981 and 1982.

    PubMed

    Malone, S D; Boyko, C; Weaver, C S

    1983-09-30

    Six categories of seismic events are recognized on the seismograms from stations in the vicinity of Mount St. Helens. Two types of high-frequency earthquakes occur near the volcano and under the volcano at depths of more than 4 kilometers. Medium- and low-frequency earthquakes occur at shallow depths (less than 3 kilometers) within the volcano and increase in number and size before eruptions. Temporal changes in the energy release of the low-frequency earthquakes have been used in predicting all the eruptions since October 1980. During and after eruptions, two types of low-frequency emergent surface events occur, including rockfalls and steam or gas bursts from the lava dome. PMID:17759007

  15. Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-05.

    PubMed

    Iverson, Richard M; Dzurisin, Daniel; Gardner, Cynthia A; Gerlach, Terrence M; LaHusen, Richard G; Lisowski, Michael; Major, Jon J; Malone, Stephen D; Messerich, James A; Moran, Seth C; Pallister, John S; Qamar, Anthony I; Schilling, Steven P; Vallance, James W

    2006-11-23

    The 2004-05 eruption of Mount St Helens exhibited sustained, near-equilibrium behaviour characterized by relatively steady extrusion of a solid dacite plug and nearly periodic shallow earthquakes. Here we present a diverse data set to support our hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upwards by ascending, solidifying, gas-poor magma. We formalize this hypothesis with a dynamical model that reveals a strong analogy between behaviour of the magma-plug system and that of a variably damped oscillator. Modelled stick-slip oscillations have properties that help constrain the balance of forces governing the earthquakes and eruption, and they imply that magma pressure never deviated much from the steady equilibrium pressure. We infer that the volcano was probably poised in a near-eruptive equilibrium state long before the onset of the 2004-05 eruption. PMID:17122849

  16. The role of mycorrhizal fungi and microsites in primary succession on Mount St. Helens.

    PubMed

    Titus, J; Del Moral, R

    1998-03-01

    This study was designed to examine the role of vesicular-arbuscular mycorrhizae (VAM) and microsites on the growth of pioneer species. Flat, rill, near-rock, and dead lupine microsites were created in plots in barren areas of the Pumice Plain of Mount St. Helens. VAM propagules were added to the soil in half of the plots. Six pioneer species were planted into both VAM and non-VAM inoculated microsites. Plants in dead lupine microsites were greater in biomass than those in flat, rill, and near-rock microsites. Significant effects of VAM on plant biomass did not occur. Microsites continue to be important to plant colonization on the Pumice Plain, but VAM do not yet appear to play an important role. This may be due to limited nutrient availability and the facultatively mycotrophic nature of the colonizing plant species. It is unlikely that VAM play an important role in successional processes in newly emplaced nutrient-poor surfaces. PMID:21684921

  17. Intrusive and extrusive growth of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Malin, Michael C.; Anderson, Steven W.

    1990-01-01

    High-resolution, digital topographic maps of the Mount St. Helens dome derived from aerial photographs are used here to make a quantitative assessment of the partitioning of magma into endogenous intrusion and exogenous lobes. The endogenous growth is found to be predictable, which shows that the cooling dome controls its own development independently of such deep-seated factors as magma overpressure and extrusion rate. The observed regular decrease in exogenous growth rate also allows volume prediction. Knowledge of the volume can be used to determine when an ongoing eruptive event should end. Finally, the observed transition from predominantly exogenous to predominantly endogenous growth reflects the increase in crust thickness, which in turn seems to depend on long repose periods rather than some fundamental change in the character of the dome.

  18. Monitoring the 1980-1982 eruptions of mount st. Helens: compositions and abundances of glass.

    PubMed

    Melson, W G

    1983-09-30

    The Mount St. Helens eruptive sequence of 1980 through 1982 reflects the tapping of successively less water-rich, more highly crystallized, and more viscous, highly phyric dacitic magmas. These changes reflect both syn- and preeruption processes. The decreasing water content points to a continued decline in the volume and intensity of explosive pyroclastic activity. This decreasing water content appears to be composed of a long-term trend established during a long period of repose (about 130 years) imposed on short-term trends established during short periods (about 7 to 100 days) of repose between eruptions in the present eruptive cycle. The last two eruptive cycles of this volcano, the T (A.D. 1800) and W cycles (about A. D. 1500), exhibited similar trends. These changes are inferred from a combination of petrographic, bulk chemical, and electron- and ion-microprobe analyses of matrix and melt-inclusion glasses. PMID:17759012

  19. Mount St. Helens dust veil observed at Boulder, Colorado by optical techniques

    NASA Technical Reports Server (NTRS)

    Lerfald, G.

    1982-01-01

    Following the May 18, 1980, eruption of Mount St. Helens, photometric and photograhic observations were taken at Boulder, Colorado, to record the optical effects of volcanic dust atmospherically transported to this area. The instruments used included a narrow-beamwidth solar photometer which recorded solar irradiance in eight narrow-bandwidth channels in the wavelength range 0.3 to 1.1 microns, a solar aureole photometer, and two time-lapse camera systems. The eight-channel solar photometer data have been analyzed to obtain the wavelength dependence of optical thickness. At the longer wavelengths, on May 20, 1980, the optical thickness was as much as nine times that expected from a 'clean atmosphere' model. During the first several days following the eruption, the dust veil sometimes exhibited sufficient spatial structure that its motion can be seen on the time-lapse films. The results of analysis to date are presented and the plans for additional analysis are outlined.

  20. Deep earthquakes beneath mount st. Helens: evidence for magmatic gas transport?

    PubMed

    Weaver, C S; Zollweg, J E; Malone, S D

    1983-09-30

    Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir. PMID:17759013

  1. Petrologic monitoring of 1981 and 1982 eruptive products from mount st. Helens.

    PubMed

    Cashman, K V; Taggart, J E

    1983-09-30

    New material from the dacite lava dome of Mount St. Helens, collected soon after the start of each successive extrusion, is subjected to rapid chemical and petrologic analysis. The crystallinity of the dacite lava produced in 1981 and 1982 is 38 to 42 percent, about 10 percent higher than for products of the explosive 1980 eruptions. This increase in crystallinity accompanies a decrease in the ratio of hornblende to hornblende plus orthopyroxene, which suggests that the volatile-rich, crystal-poor material explosively erupted in 1980 came from the top of a zoned magma chamber and that a lower, volatile-poor and crystal-rich region is now being tapped. The major-element chemistry of the dacite lava has remained essentially constant (62 to 63 percent silica) since August 1980, ending a trend of decreasing silica seen in the products of the explosive eruptions of May through August 1980. PMID:17759011

  2. Gas emissions and the eruptions of mount st. Helens through 1982.

    PubMed

    Casadevall, T; Rose, W; Gerlach, T; Greenland, L P; Ewert, J; Wunderman, R; Symonds, R

    1983-09-30

    The monitoring of gas emissions from Mount St. Helens includes daily airborne measurements of sulfur dioxide in the volcanic plume and monthly sampling of gases from crater fumaroles. The composition of the fumarolic gases has changed slightly since 1980: the water content increased from 90 to 98 percent, and the carbon dioxide concentrations decreased from about 10 to 1 percent. The emission rates of sulfur dioxide and carbon dioxide were at their peak during July and August 1980, decreased rapidly in late 1980, and have remained low and decreased slightly through 1981 and 1982. These patterns suggest steady outgassing of a single batch of magma (with a volume of not less than 0.3 cubic kilometer) to which no significant new magma has been added since mid-1980. The gas data were useful in predicting eruptions in August 1980 and June 1981. PMID:17759010

  3. Hydrogen-isotope evidence for extrusion mechanisms of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Anderson, Steven W.; Fink, Jonathan H.

    1989-01-01

    Hydrogen isotope analyses were used to determine water content and deuterium content for 18 samples of the Mount St Helens dome dacite in an attempt to identify the triggering mechanisms for periodic dome-building eruptions of lava. These isotope data, the first ever collected from an active lava dome, suggest a steady-state process of magma evolution combining crystallization-induced volatile production in the chamber with three different degassing mechanisms: closed-system volatile loss in the magma chamber, open-system volatile release during ascent, and kinetically controlled degassing upon eruption at the surface. The data suggest the future dome-building eruptions may require a new influx of volatile-rich magma into the chamber.

  4. Monitoring vegetation recovery patterns on Mount St. Helens using thermal infrared multispectral data

    NASA Technical Reports Server (NTRS)

    Langran, K. J.

    1985-01-01

    The eruptions of Mount St. Helens created new surfaces by stripping and implacing large volumes of eroded material and depositing tephra in the blast area and on the flanks of the mountain. Areas of major disturbance are those in the blast zone that were subject to debris avalanche, pyroclastic flows, mudflows, and blowdown and scorched timber; and those outside the blast zone that received extensive tephra deposits. These zones represent a spectrum of disturbance types and intensities that can be indexed by temperature, impact force, and depth of subsequent deposition. This paper describes an application of NASA's Thermal Infrared Multispectral Scanner (TIMS) in monitoring vegetation recovery patterns in disturbed areas. Preliminary study results indicate a significant correlation between measured effective radiant temperature and vegetated/nonvegetated areas, percent vegetation cover, and vegetation type.

  5. Mass Intrusion at Mount St. Helens (WA) From Temporal Gravity Variations

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Lisowski, M.; Dzurisin, D.; Poland, M. P.; Schilling, S. P.; Diefenbach, A. K.; Wynn, J.

    2015-12-01

    Repeated high-precision gravity measurements made at Mount St. Helens (WA) have revealed systematic temporal variations in the gravity field several years after the end of the 2004-2008 dome-building eruption. Changes in gravity with respect to a stable reference station 36 km NW of the volcano were measured at 10 sites on the volcanic edifice and at 4 sites far afield (10 to 36 km) from the summit in August 2010, August 2012 and August 2014. After simulating and removing the gravity signal associated with changes in mass of the crater glacier, the local hydrothermal aquifer, and vertical deformation, the residual gravity field observed at sites near the volcano's summit significantly increased with respect to the stable reference site during 2010-2012 (maximum change 48 ± 15 mgal). No significant change was measured during 2012-2014. The pattern of gravity increase is radially symmetrical, with a half-width of about 2.5 km and a point of maximum change centered at the 2004-2008 lava dome. Forward modeling of residual gravity data using the same source geometry, depth, and location as that inferred from geodetic data (a spheroidal source centered 7.5 km beneath the 2004-2008 dome) indicates a mass increase rate of the order of 1011 kg/year. For a reasonable magma density (~2250 kg/m3), the volume rate of magma intrusion beneath the summit region inferred from gravity (~ 0.1 km3/yr) greatly exceeds the volume inferred from inversion of geodetic data (0.001 km3/yr between 2008-2011), suggesting that either magma compressibility or other processes are important aspects of magma storage at Mount St. Helens, or that the data argue for a different source.

  6. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    USGS Publications Warehouse

    Hotovec-Ellis, Alicia J.; Gomberg, Joan S.; Vidale, John; Creager, Ken C.

    2014-01-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980–1986 eruptions in the years before the 2004–2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  7. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    USGS Publications Warehouse

    De Siena, Luca; Thomas, Christine; Waite, Greg P.; Moran, Seth C.; Klemme, Stefan

    2014-01-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4–6 km2 “hole” under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  8. Attenuation and Scattering Tomography of the Deep Plumbing System of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    De Siena, L.; Thomas, C.; Waite, G. P.; Moran, S. C.; Klemme, S.

    2014-12-01

    We present a combined 3D P-wave attenuation, 2D S-coda attenuation, and 3D S-coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of a deeper aseismic velocity anomaly. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wave-field, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone, between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally-extended 3D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust, and caused in our interpretation by the large scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low scattering, 4-6 km2 "hole" under the north-eastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different non-standard tomographic methods, and particularly the application of full-waveform tomography to highly heterogeneous media, represent the future of seismic volcano imaging.

  9. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    De Siena, L.; Thomas, C.; Waite, G. P.; Moran, S. C.; Klemme, S.

    2014-11-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4-6 km2 "hole" under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  10. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Thomas, Christine; Waite, Greg; Moran, Seth; Klemme, Stephan

    2015-04-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4-6 km2 "hole" under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  11. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Waite, Greg; Moran, Seth; Klemme, Stephan; Thomas, Christine

    2014-05-01

    We present a combined 3D P-wave attenuation, 2D S-coda attenuation, and 3D S-coda scattering tomography model of magmatic/fluid chambers, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High scattering and high attenuation shallow anomalies are indicative of magma and fluid cumulates within and below the volcanic edifice down to 6 km depth. These structures induce a combination of resonant-scattering and strong attenuation on any seismic wave-field recorded north and east of the volcanic cone. North of the cone between depths of 0 and 10 km a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments inferred to lie within the Saint Helens Seismic Zone (SHZ). A laterally-extended 3D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust, and caused in our interpretation by the large scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low scattering, 4-6 km2 "hole" under the north-eastern flank of the volcano: we infer that this section represents the main path of magma ascent from depths larger than 6 km at MSH. The images suggest a small north-east shift in the lower plumbing system of the volcano as well as the absence of any large melt sill extending between depths of 0 and 18 km. We conclude that combinations of different non-standard tomographic methods, and particularly the application of full-waveform tomography to highly heterogeneous media, represent the future of seismic volcano imaging.

  12. Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens.

    PubMed

    Fagan; Bishop

    2000-02-01

    Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized. PMID:10686163

  13. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Gomberg, J.; Vidale, J. E.; Creager, K. C.

    2014-03-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980-1986 eruptions in the years before the 2004-2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  14. The effects of catastrophic ecosystem disturbance: the residual mammals at Mount St. Helens

    USGS Publications Warehouse

    Andersen, Douglas C.; MacMahon, James A.

    1985-01-01

    Individuals that survive the direct effects of community- or ecosystem-level disturbances, i.e., "residuals", can have major roles in determining the rate and pathway of subsequent secondary succession. The explosive eruption of the Mount St. Helens volcano on 19 May 1980 resulted in severe damage to a cast array of animal and plant populations (Edwards and Schwartz, 1981; MacMahon, 1982; Hayward et al., 1982). We apply the term "catastrophic" to this event because of its intensity and the large area (>600 km2) over which successional processes were initiated. We present here the results of surveys for mammals, particularly small mammals (excluding bats), conducted in the Mount St. Helens region during the 40 months following the eruption. Our purpose was to elucidate any patterns in species representation that might exist along a gradient of disturbance "intensity", and thus document which species could potentially influence early plant successional patterns there. We infer whether individuals captured were more likely to have been residuals (or their descendants), or immigrants from areas less affected by the eruption, from consideration of the time span between the eruption and the capture date, the trapping location, and life history data. We also make inferences concerning the animal-environment relationships that led to our survey results, and thereby address the question of the likelihood of other types of disturbance, either natural or anthropogenic, producing similar results. Data concerning survival of Thomomys talpoides, the northern pocket gopher, have been presented elsewhere (Andersen, 1982). Initial results from our studies of the relationships among residual small mammals and plant population dynamics are detailed in MacMahon and Warner (1984), Allen et al. (1984) and Andersen and MacMahon (in press).

  15. Modeling the System Response to Gravitational Collapse During Spine Extrusion at Mount St. Helens, WA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Rempel, A.

    2008-12-01

    The extrusion of solid dacite spines was the dominant feature of the most recent eruption of Mount St. Helens, WA between late 2004 and early 2008. Iverson et al. (2006) established a one-dimensional numerical model to represent the mechanical behavior of the spine, which extends at most 1 km downward to the depth of crystallization. Relying on the laboratory friction experiments of Moore et al. (in press), the model assumes rate-weakening behavior of the fault gouge, which is responsible for episodic slip events of several mm separated by stick periods of about 100 s. This model provides a plausible source mechanism for the repetitive, so-called "Drumbeat" earthquakes that were a key characteristic of eruptive activity. Gravitational collapse of the spines represents a significant mass loss to the plug. Elementary extensions to the Iverson et al. model predict that the spine system responds abruptly to simulated gravitational collapse. In such events, the sub-surface plug extrudes at tens of m/s, a condition that has not been observed. Furthermore, because of the well-documented relationship between gouge rheology and temperature, the higher temperatures near the depth of crystallization likely cause deeper segments of the fault to slide in a stable, creeping fashion. Harrington and Brodsky (2007) interpreted the hybrid earthquakes at Mount St. Helens as shallow brittle-failure events. An absence of deeper earthquakes would be further evidence that the bounding faults are creeping at depth. We incorporate a temperature-dependence to the gouge frictional behavior to examine whether rate strengthening at the plug base can provide stability in the event of gravitational spine collapse.

  16. Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E., Jr.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.

    2008-01-01

    Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample

  17. Seismicity and infrasound associated with explosions at Mount St. Helens, 2004-2005: Chapter 6 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.

    2008-01-01

    Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.

  18. Ambient airborne solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Sehmel, G. A.

    1982-01-01

    Airborne solids concentrations were measured on a near daily basis at two Hanford, Washington sites after the eruption of Mount St. Helens on May 18, 1980. These sites are about 211 km east of Mount St. Helens. Collected airborne solids included resuspended volcanic ash plus normal ambient solids. Average airborne solids concentrations were greater at the Hanford meteorological station sampling site which is 24 km northwest of the Horn Rapids dam sampling site. These increased concentrations reflect the sampling site proximity to greater ash fallout depths. Both sites are in low ash fallout areas although the Hanford meteorological station site is closer to the greater ash fallout areas. Airborne solids concentrations were decreased by rain, but airborne solids concentrations rapidly increased as surfaces dried. Airborne concentrations tended to become nearly the same at both sampling sites only for July 12 and 13.

  19. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA

    USGS Publications Warehouse

    Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.

    2011-01-01

    Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.

  20. Deep long-period earthquakes under Mount St. Helens captured with dense recordings by iMUSH

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.; Moran, S. C.; Creager, K. C.; Levander, A.; Malone, S. D.; Sisson, T. W.; Hotovec-Ellis, A. J.; Schmandt, B.

    2014-12-01

    Mysteries abound regarding the mechanism generating deep-long-period earthquakes (DLPs). DLPs are most commonly associated with the process of magma ascent from a deep source to a crustal reservoir, and plausible ideas include dehydration embrittlement, sluggish faulting, gurgling flow of magmatic fluids, and cooling of relic magma conduits. By good fortune, at least four DLPs occurred since the imaging Magma Under St Helens (iMUSH) experiment began in late June 2014. The DLPs were captured by 70 broadband seismometers in the passive array, and several were also recorded by the 3500 short-period seismometers deployed for the active experiment. These lower crust/upper mantle events were 20-35 km deep, offset less than 15 km from the crater, and have the low-frequency, long-duration reverberative waveforms, and lower crust/upper mantle locations characteristic of DLPs. One DLP had numerous bursts across ~100s, and two others consisted of two bursts within a minute. These are similar to the 19 DLPs seen beneath Mount St. Helens (MSH) previously [Nichols et al., 2011, JVGR]. We will also use these DLPs as templates in the search for others that are too small to be found otherwise. DLPs at MSH occur beneath the St. Helens Seismic Zone, proposed to be the block boundary between the Southern Washington Cascades Conductor and Siletzia rocks to the west. This actively-slipping and weak structural boundary could enhance the ability of magmatic fluids to reach the surface, and the co-located DLPs provide evidence for such fluid migration. We plan to investigate the frequency content, time evolution, spatial location, and clustering of DLPs under Mount St. Helens to shed light on the underlying physics and implications for shallower activity.

  1. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88

    SciTech Connect

    Gerlach, T.M.; McGee, K.A.

    1994-12-15

    SO{sub 2} from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. TOMS, COSPEC, and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO{sub 2} emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO{sub 2} emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of {open_quotes}excess sulfur{close_quotes} (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO{sub 2} emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO{sub 2} emissions, together with the H{sub 2}O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO{sub 2}. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body. 23 refs., 3 figs.

  2. Petrology and geochemistry of high cascade volcanics in southern Washington: Mount St. Helens volcano and the Indian Heaven basalt field

    SciTech Connect

    Smith, D.R.

    1984-01-01

    Mount St. Helens volcano (Washington, USA) has been characterized by four eruptive periods during the last 2200 years. Eruptive products include a wide spectrum of rock types including basaltic to andesitic lavas, andesitic to dacitic pyroclastic flows and tephra, and dacite domes. The major and trace element compositions of some andesites and dacites are broadly consistent with their derivation from a basaltic andesite parental magma by fractional cyrstallization processes involving the observed phenocryst assemblages. However, the strontium and oxygen isotopic compositions of representative samples of the Mount St. Helens suite indicate that closed system processes cannot explain the isotopic variations. The isotopic rations are positively correlated with one another and the bulk composition (SiO/sub 2/, Mg number, etc.). The vents of the nearby Indian Heaven Quaternary volcanic field erupted several basalt types which can be defined on the basis of major and trace element composition - calcalkaline (low and high TiO/sub 2/ varieties), transitional, and tholeiitic. Several of these basalt types occur at Mount St. Helens as well, but Indian Heaven lavas are generally more primitive as indicated by higher Mg/(Mg + Fe) ratios. The distribution of volcanic rock types in relation to local structures in the Cascade Range of southern Washington and northern Oregon suggests that crustal structure may influence the degree of evolution of specific volcanic fields. Cascade arc suggests that volcanic arc magma evolution does not necessarily produce a continuous sequence from tholeiitic to calcalkaline rocks in time or space.

  3. Environmental Impact of the Helen, Research, and Chicago Mercury Mines on Water, Sediment, and Biota in the Upper Dry Creek Watershed, Lake County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel; Brussee, Brianne E.

    2009-01-01

    The Helen, Research, and Chicago mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the southwestern part of the Clear Lake volcanic field in Lake County, California. The mine workings and tailings are located in the headwaters of Dry Creek. The Helen Hg mine is the largest mine in the watershed having produced about 7,600 flasks of Hg. The Chicago and Research Hg mines produced only a small amount of Hg, less than 30 flasks. Waste rock and tailings have eroded from the mines, and mine drainage from the Helen and Research mines contributes Hg-enriched mine wastes to the headwaters of Dry Creek and contaminate the creek further downstream. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and geochemical constituents in tailings, sediment, water, and biota at the Helen, Research, and Chicago mines and in Dry Creek. This report is made in response to the USBLM request to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Helen, Research, and Chicago mines as a means of reducing Hg transport to Dry Creek. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Helen, Research, and Chicago mines on April 19, 2001, during a storm event. Further sampling of water, sediment, and biota at the Helen mine area and the upper part of Dry Creek was completed on July 15, 2003, during low-flow conditions. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in the water, sediment, and biota that are impacted by historic mining.

  4. Mount Saint Helens, Washington, USA, SRTM Perspective: Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Mount Saint Helens is a prime example of how Earth's topographic form can greatly change even within our lifetimes. The mountain is one of several prominent volcanoes of the Cascade Range that stretches from British Columbia, Canada, southward through Washington, Oregon, and into northern California. Mount Adams (left background) and Mount Hood (right background) are also seen in this view, which was created entirely from elevation data produced by the Shuttle Radar Topography Mission.

    Prior to 1980, Mount Saint Helens had a shape roughly similar to other Cascade peaks, a tall, bold, irregular conic form that rose to 2950 meters (9677 feet). However, the explosive eruption of May 18, 1980, caused the upper 400 meters (1300 feet) of the mountain to collapse, slide, and spread northward, covering much of the adjacent terrain (lower left), leaving a crater atop the greatly shortened mountain. Subsequent eruptions built a volcanic dome within the crater, and the high rainfall of this area lead to substantial erosion of the poorly consolidated landslide material.

    Eruptions at Mount Saint Helens subsided in 1986, but renewed volcanic activity here and at other Cascade volcanoes is inevitable. Predicting such eruptions still presents challenges, but migration of magma within these volcanoes often produces distinctive seismic activity and minor but measurable topographic changes that can give warning of a potential eruption.

    Three visualization methods were combined to produce this image: shading of topographic slopes, color coding of topographic height, and then projection into a perspective view. The shade image was derived by computing topographic slope in the northeast-southwest (left to right) direction, so that northeast slopes appear bright and southwest slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The perspective

  5. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and

  6. Leaching characteristics of ash from the May 18, 1980, eruption of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Smith, David Burl; Zielinski, Robert A.; Taylor, Howard Edward

    1982-01-01

    Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1.980,eruption of Mount St. Helens volcano, Washington, shows that Ca 2+, Na+, Mg+, SO4 2-, and Cl- are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F, Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may co-accumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution.

  7. Toxicity of Mount St. Helens ash leachate to a blue-green alga

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, Gerald L.; Stiles, Eric A.

    1981-01-01

    During several periods of volcanic-ash eruption at Mount St. Helens, Wash., (March 30, May 25-26, May 30-June 2, and June 12-13, 1980) strong winds from the north occurred at high altitudes. As a result, the volcanic ash fell some 50 miles to the south in the Bull Run watershed, the principal water-supply source for the metropolitan area of Portland, Oreg. Water samples collected from three stream sites within the watershed were compared with samples collected during the same season in previous years. No detectable changes were noted in chemical characteristics. Precipitation samples collected immediately after the June 12-13 ash fall ranged in specific conductance from 20 to 41 micromhos per centimeter at 25C and in pH from 4.0 to 4.3 pH units. Stream samples collected during the May-June period ranged in specific conductance from 18 to 28 micromhos per centimeter at 25C and in pH from 6.7 to 7.5 pH units. Volcanic-ash samples were collected and analyzed for particle size, chemical composition, and weight. Significant differences in particle size of ash were found in samples from two separate eruptions. (USGS)

  8. Drainage evolution in the debris avalanche deposits near Mount Saint Helens, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.; Dzurisin, D.

    1984-01-01

    The 18 May 1980 eruption of Mount St. Helens was initiated by a massive rockslide-debris avalanche which completely transformed the upper 25 km of the North Fork Toutle River valley. The debris was generated by one of the largest gravitational mass movements ever recorded on Earth. Moving at an average velocity of 35 m/s, the debris avalanche buried approximately 60 sq km of terrain to an average depth of 45 m with unconsolidated, poorly sorted volcaniclastic material, all within a period of 10 minutes. Where exposed and unaltered by subsequent lahars and pyroclastic flows, the new terrain surface was characterized predominantly by hummocks, closed depressions, and the absence of an identifiable channel network. Following emplacement of the debris avalanche, a complex interrelationship of fluvial and mass wasting processes immediately began operating to return the impacted area to an equilibrium status through the removal of material (potential energy) and re-establishment of graded conditions. In an attempt to chronicle the morphologic evolution of this unique environmental setting, a systematic series of interpretative maps of several selected areas was produced. These maps, which document the rate and character of active geomorphic processes, are discussed.

  9. Ash loading and insolation at Hanford, Washington during and after the eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Laulainen, N. S.

    1982-01-01

    The effects of volcanic ash suspended in the atmosphere on the incident solar radiation was monitored at the Hanford Meteorological Station (HMS) subsequent to the major eruption of Mount St. Helens on May 18, 1980. Passage of the ash plume over Hanford resulted in a very dramatic decrease of solar radiation intensity to zero. A reduction in visibility to less than 1 km was observed, as great quantities of ash fell out of the plume onto the ground. Ash loading in the atmosphere remained very high for several days following the eruption, primarily as a result of resuspension from the surface. Visibilities remained low (2 to 8 km) during this period. Estimates of atmospheric turbidity were made from the ratio of diffuse-to-direct solar radiation; these turbidities were used to estimate extinction along a horizontal path, a quantity which can be related to visibility. Comparisons of observed and estimated visibilities were very good, in spite of the rather coarse approximations used in the estimates. Atmospheric clarity and visibility improved to near pre-eruption conditions following a period of rain showers. The diffuse-to-direct ratio of solar radiation provided a useful index for estimating volcanic ash loading of the atmosphere.

  10. Erosional furrows formed during the lateral blast at Mount St. Helens, May 18, 1980

    USGS Publications Warehouse

    Kieffer, S.W.; Sturtevant, B.

    1988-01-01

    Nearly horizontal, quasi-periodic erosional features of 7-m average transverse wavelength and of order 100-m length occur in scattered locations from 3.5 to 9 km from the crater at Mount St. Helens under deposits of the lateral blast of May 18, 1980. We attribute the erosional features to scouring by longitudinal vortices resulting from flow instabilities induced by complex topography, namely, by streamline curvature in regions of reattachment downstream of sheltered regions, and by the cross-flow component of flow subparallel to ridge crests. The diameter of the vortices and their transverse spacing, inferred from the distance between furrows, are taken to be of the order of the boundary layer thickness. The inferred boundary layer thickness (???14 m at 9 km from the source of the blast) is consistent with the running length from the mountain to the furrow locations. The orientation of furrows induced by the cross-flow instability can be used to measure the upwash angle and estimate the flow Mach number: at the central ridge of Spirit Lake the Mach number is inferred to have been about 2.5, and the flow velocity approximately 235 m/s. -from Authors

  11. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    USGS Publications Warehouse

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  12. Hydrothermal circulation at Mount St. Helens determined by self-potential measurements

    USGS Publications Warehouse

    Bedrosian, P.A.; Unsworth, M.J.; Johnston, M.J.S.

    2007-01-01

    The distribution of hydrothermal circulation within active volcanoes is of importance in identifying regions of hydrothermal alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and 2001. A strong dipolar anomaly in the self-potential field was detected on the north face of the 1980-86 lava dome. This anomaly reaches a value of negative one volt on the lower flanks of the dome and reverses sign toward the dome summit. The anomaly pattern is believed to result from a combination of thermoelectric, electrokinetic, and fluid disruption effects within and surrounding the dome. Heat supplied from a cooling dacite magma very likely drives a shallow hydrothermal convection cell within the dome. The temporal stability of the SP field, low surface recharge rate, and magmatic component to fumarole condensates and thermal waters suggest the hydrothermal system is maintained by water vapor exsolved from the magma and modulated on short time scales by surface recharge. ?? 2006 Elsevier B.V. All rights reserved.

  13. Monitoring Eruptive Activity at Mount St. Helens with TIR Image Data

    NASA Technical Reports Server (NTRS)

    Vaughan, R. G.; Hook, S. J.; Ramsey, M. S.; Realmuto, V. J.; Schneider, D. J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of similar to approximately 330 C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures similar to approximately 675 C, in narrow (approximately 1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of approximately 714 J/m(exp 2)/s over the new dome, corresponding to a radiant power of approximately 24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring.

  14. Characteristics of Columbia River sediment following the eruption of Mount St. Helens on May 18, 1980

    USGS Publications Warehouse

    Hubbell, David Wellington; Laenen, Julija M.; McKenzie, Stuart W.

    1983-01-01

    During several periods of volcanic-ash eruption at Mount St. Helens, Wash., (March 30, May 25-26, May 30-June 2, and June 12-13, 1980) strong winds from the north occurred at high altitudes. As a result, the volcanic ash fell some 50 miles to the south in the Bull Run watershed, the principal water-supply source for the metropolitan area of Portland, Oreg. Water samples collected from three stream sites within the watershed were compared with samples collected during the same season in previous years. No detectable changes were noted in chemical characteristics. Precipitation samples collected immediately after the June 12-13 ash fall ranged in specific conductance from 20 to 41 micromhos per centimeter at 25C and in pH from 4.0 to 4.3 pH units. Stream samples collected during the May-June period ranged in specific conductance from 18 to 28 micromhos per centimeter at 25C and in pH from 6.7 to 7.5 pH units. Volcanic-ash samples were collected and analyzed for particle size, chemical composition, and weight. Significant differences in particle size of ash were found in samples from two separate eruptions. (USGS)

  15. Aircraft sampling of the sulfate layer near the tropopause following the eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Lezberg, E. A.; Otterson, D. A.; Roberts, W. K.; Papathakos, L. C.

    1982-04-01

    Twenty-three filter sampling flights of the NASA Lewis F-106 aircraft, were conducted in the Great Lakes region between June 4 and Dec. 23, 1980, following the major eruption of Mount St. Helens on May 18. The IPC-1478 filters were exposed over an altitude range spanning the local tropopause. A filter sample exposed above the tropopause on June 5 indicated a sulfate level 50 times the baseline measurements, which is consistent with the trajectory predictions of the leading edge of the cloud on its second transit around the earth. Subsequent measurements over a period of 7 months revealed the existence of a layer of sulfate above the tropopause that decayed to a level of about 4 times previously measured background levels by the beginning of August. Concentration of nitrate above the tropopause exhibited considerable variability and showed some enhancement compared with previously measured concentration levels. On the basis of the null results of X ray fluorescence measurements, there is no evidence of ash particle concentrations of greater than 3.4 microns/cu m persisting in the layer above the tropopause following the second transit of the cloud.

  16. Influence of Mount St. Helens volcanic ash on alfalfa growth and nutrient uptake

    SciTech Connect

    Mahler, R.L.

    1984-01-01

    Concern has been expressed that large amounts of volcanic ash from the May 18, 1980 eruption of Mount St. Helens may have created potential nutritional problems associated with forage production in northern Idaho and eastern Washington to the extent that adjustments need to be made in soil test correlation data. The objectives of this greenhouse study were to : (1) determine the effect of varying amounts of volcanic ash mixed into soils of northern Idaho on total alfalfa biomass production, and (2) to determine the effect of various soil/ash mixtures on the nutrient concentrations of P, K, S, Ca, Mg, Mn and Zn in alfalfa. Alfalfa was grown in eight different northern Idaho soils amended with differing levels of volcanic ash (0, 20, 35, 50 and 75%) in the greenhouse. The alfalfa seeds were inoculated and fertilizer P and S were added to all treatments. Total plant biomass and P, K, S, Ca, Mg, Mn and Zn plant concentrations were measured. The eight were pooled for analysis and it was found that increasing amounts of volcanic ash increased alfalfa biomass production. Plant P, S, Ca, Mg and Zn concentrations also increased with increasing levels of ash. Conversely, increasing levels of ash resulted in lower alfalfa tissue K and Mn concentrations. 13 references, 7 figures.

  17. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  18. GOES weather satellite observations and measurements of the May 18, 1980, Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Holasek, R. E.; Self, S.

    1995-01-01

    We demonstrate the use of Geostationary Operational Environmental Satellite (GOES) images of the May 18, 1980, Mount St. Helens volcanic plume in providing details of the dynamics and changing character of this major explosive eruption. Visible and thermal infrared (IR) data from a sequence of images at 30-min intervals from 0850 to 1720 Local Time (LT) give information on dispersal and plume top temperature. Initial visible and IR images at 0850 show the top of a spreading co-ignimbrite-like umbrella plume and an overshooting column emerging from it, both rising off the ground-hugging pyroclastic gravity flow generated by the opening directed blast. The overshooting column had a minimum temperature significantly colder than local ambient atmosphere, indicating substantial undercooling, and a maximum altitude of 31 +/- 2 km at 0920. This large plume system then formed a high-velocity, radially spreading, gravitationally driven current before becoming advected in the wind field at an average downwind velocity of 29 m/s. Reflectance values from visible GOES data change from lower to higher during periods of transition from darker toned Plinian to lighter toned co-ignimbrite plumes indicating that in this case satellite data resolved changes in eruptive style from plumes with a coarser to a finer dominant particle size.

  19. Influence of the Geotechnical Properties of Dacite Domes on the 1980 Failure of Mt. St. Helens

    NASA Astrophysics Data System (ADS)

    Katzenstein, K. W.; Watters, R. J.

    2003-12-01

    The largest historical rockslide-avalanche occurred on May 18th, 1980 as part of the eruption of Mt. St. Helens. The slide had a volume of approximately 2.8 km3, and decreased the elevation of the volcano by about 400 m. The flank collapse prompted a reappraisal of theories regarding volcano morphology, construction, and hazard assessment. Previous stability assessments of the volcano used small-scale (36 cm2) shear tests on the reworked avalanche deposits to obtain strength data. Our approach utilized strength data from 1) large (0.15 m2) and small-scale shear testing on reworked avalanche deposits, 2) uniaxial, triaxial and joint shear strength of collected in-situ samples of fractured domes and associated dykes, and 3) calculated or back - analyzed strength values of the 1980 cryptodome. Field investigations included collection of data from safe, accessible areas within the crater, breach and summit rim. Field mapping, photogrammetry, spatial correlation of geologic structures, and the collection of representative rock samples for the laboratory testing were accomplished. Laboratory strength data and rock mass characterization information were combined in order to obtain strength parameters for different failure scenarios. Once a simplified cross section of the volcano had been produced, strength values, earthquake loadings, and theorized pore pressures were inputted into a limit equilibrium stability program. The results show the crucial role that the highly fractured dacite domes in the northern portion of the volcano have in determining failure direction, and nature of the collapse.

  20. Geospatial and statistical analysis of volcanic ash leachate data from Mt. St. Helens

    NASA Astrophysics Data System (ADS)

    Ayris, P. M.; Delmelle, P.; Pereira, B.; Damby, D. E.; Durant, A. J.; Maters, E. C.; Dingwell, D. B.

    2014-12-01

    Upon contact with water, freshly-fallen volcanic ash releases a pulse of readily soluble material, derived from dissolution of S-, Cl- and F-bearing salts formed on ash surfaces during transport through the volcanic eruption plume. Analysis of leachate solutions can provide insight into the spatial and temporal variations in surface salt loadings, and hence the processes by which they were emplaced, and the hazards which they may induce upon mobilisation within receiving environments. However, excluding a small number of publications from the 1970's and 1980's, leachate studies are often limited by the use of small datasets with an uncertain capacity to adequately represent their parent ash deposit. Here we illustrate the significance of such limitations through the compilation and interrogation of a database of 96 published leachate compositions from 6 studies which investigated the May 18th, 1980 eruption of Mt. St. Helens. Utilising statistical analysis techniques, we removed outliers and biases between studies by linear transformation in order to produce a useable ash leachate dataset. The corrected data were mapped by kriging method to derive the spatial distribution of soluble S and Cl concentrations downwind of the volcano. Our treatment highlighted spatial trends in leachate data which may reflect various volcanic and atmospheric processes. In order to be able to disentangle these processes, we emphasise the need to obtain a homogeneous spatial distribution when sampling ash for leaching purposes, and to conduct those analyses according to a standardized protocol.

  1. Mount St. Helens Ash from the 18 May 1980 Eruption: Chemical, Physical, Mineralogical, and Biological Properties

    NASA Astrophysics Data System (ADS)

    Fruchter, Jonathan S.; Robertson, David E.; Evans, John C.; Olsen, Khris B.; Lepel, Elwood A.; Laul, Jagdish C.; Abel, Keith H.; Sanders, Ronald W.; Jackson, Peter O.; Wogman, Ned S.; Perkins, Richard W.; van Tuyl, Harold H.; Beauchamp, Raymond H.; Shade, John W.; Leland Daniel, J.; Erikson, Robert L.; Sehmel, George A.; Lee, Richard N.; Robinson, Alfred V.; Moss, Owen R.; Briant, James K.; Cannon, William C.

    1980-09-01

    Samples of ash from the 18 May 1980 eruption of Mount St. Helens were collected from several locations in eastern Washington and Montana. The ash was subjected to a variety of analyses to determine its chemical, physical, mineralogical, and biological characteristics. Chemically, the ash samples were of dacitic composition. Particle size data showed bimodal distributions and differed considerably with location. However, all samples contained comparable amounts of particles less than 3.5 micrometers in diameter (respirable fraction). Mineralogically, the samples ranged from almost totally glassy to almost totally crystalline. Crystalline samples were dominated by plagioclase feldspar (andesine) and orthopyroxene (hypersthene), with smaller amounts of titanomagnetite and hornblende. All but one of the samples contained from less than 1 percent to 3 percent free crystalline silica (quartz, trydimite, or cristobalite) in both the bulk samples and 1 to 2 percent in the fractions smaller than 3.5 micrometers. The long-lived natural radionuclide content of the ash was comparable to that of crustal material; however, relatively large concentrations of short-lived radon daughters were present and polonium-210 content was inversely correlated with particle size. In vitro biological tests showed the ash to be nontoxic to alveolar macrophages, which are an important part of the lungs' natural clearance mechanism. On the basis of a substantial body of data that has shown a correlation between macrophage cytotoxicity and fibrogenicity of minerals, the ash is not predicted to be highly fibrogenic.

  2. Geologic map of the Sasquatch Steps area, north flank of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hausback, Brian P.

    2000-01-01

    The 1980 eruption of Mount St. Helens resulted in both new volcanic deposits and deeply incised exposures into pre-1980 deposits. These exposures were produced by excavation of the crater by the 1980 landslides and lateral explosion as well as the subsequent erosion of Step and Loowit creeks by northerly stream flow out of the horseshoe-shaped crater. The map covers the area known as the Sasquatch Steps (commonly called the Steps), which lies between the Pumice Plain on the north and the lowermost portion of the crater on the south. Rapid alluvial aggradation at the base of the Steps is presently burying some of the lowest exposures, and erosion is stripping many of the upland deposits. The stratigraphic sequence exposed in the map area includes deposits from the eruptive periods listed in table 1 (Crandell, 1987). Assignment of deposits to the various eruptive periods is based on lithology and ferromagnesian-mineral suites typical for each of the eruptive periods (Mullineaux and Crandell, 1981; Mullineaux, 1986), as well as three 14 C dates from wood found in the deposits. Faults displayed on the map are largely confined to the older part of the stratigraphic section. These older units are highly shattered, with an extremely complicated fracture pattern, and it is only possible to show the largest and most distinctive of these structures at the map scale. Interpretation of the stratigraphy and structure of this area is given in Hausback and Swanson (1990).

  3. Bimodal Density Distribution of Cryptodome Dacite from the 1980 Eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hoblitt, R.P.; Harmon, R.S.

    1993-01-01

    The explosion of a cryptodome at Mount St. Helens in 1980 produced two juvenile rock types that are derived from the same source magma. Their differences-color, texture and density-are due only to vesicularity differences. The vesicular gray dacite comprises bout 72% of the juvenile material; the black dacite comprises the other 28%. The density of juvenile dacite is bimodally distributed, with peaks at 1.6 g cm-3 (gray dacite) and 2.3 g cm-3 (black dacite). Water contents, deuterium abundances, and the relationship of petrographic structures to vapor-phase crystals indicate both rock types underwent pre-explosion subsurface vesiculation and degassing. The gray dacite underwent a second vesiculation event, probably during the 18 May explosion. In the subsurface, gases probably escaped through interconnected vesicles into the permeable volcanic edifice. We suggest that nonuniform degassing of an initially homogeneous magma produced volatile gradients in the cryptodome and that these gradients were responsible for the density bimodality. That is, water contents less than about 0.2-0.4 wt% produced vesicle growth rates that were slow in comparison to the pyroclast cooling rates; greater water contents produced vesicle growth rates that were fast in comparison to cooling rates. In this scheme, the dacite densities are bimodally distributed simply because, following decompression on 18 May 1980, one clast population vesiculated while the other did not. For clasts that did vesiculate, vesicle growth continued until it was arrested by fragmentation. ?? 1993 Springer-Verlag.

  4. Emergency assessment of Mount St. Helens post-eruption flood hazards, Toutle and Cowlitz rivers, Washington

    USGS Publications Warehouse

    Jennings, Marshall E.; Schneider, V.R.; Smith, P.E.

    1981-01-01

    During several periods of volcanic-ash eruption at Mount St. Helens, Wash., (March 30, May 25-26, May 30-June 2, and June 12-13, 1980) strong winds from the north occurred at high altitudes. As a result, the volcanic ash fell some 50 miles to the south in the Bull Run watershed, the principal water-supply source for the metropolitan area of Portland, Oreg. Water samples collected from three stream sites within the watershed were compared with samples collected during the same season in previous years. No detectable changes were noted in chemical characteristics. Precipitation samples collected immediately after the June 12-13 ash fall ranged in specific conductance from 20 to 41 micromhos per centimeter at 25C and in pH from 4.0 to 4.3 pH units. Stream samples collected during the May-June period ranged in specific conductance from 18 to 28 micromhos per centimeter at 25C and in pH from 6.7 to 7.5 pH units. Volcanic-ash samples were collected and analyzed for particle size, chemical composition, and weight. Significant differences in particle size of ash were found in samples from two separate eruptions. (USGS)

  5. Digital database of channel cross-section surveys, Mount St. Helens, Washington

    USGS Publications Warehouse

    Mosbrucker, Adam R.; Spicer, Kurt R.; Major, Jon J.; Saunders, Dennis R.; Christianson, Tami S.; Kingsbury, Cole G.

    2015-01-01

    Stream-channel cross-section survey data are a fundamental component to studies of fluvial geomorphology. Such data provide important parameters required by many open-channel flow models, sediment-transport equations, sediment-budget computations, and flood-hazard assessments. At Mount St. Helens, Washington, the long-term response of channels to the May 18, 1980, eruption, which dramatically altered the hydrogeomorphic regime of several drainages, is documented by an exceptional time series of repeat stream-channel cross-section surveys. More than 300 cross sections, most established shortly following the eruption, represent more than 100 kilometers of surveyed topography. Although selected cross sections have been published previously in print form, we present a comprehensive digital database that includes geospatial and tabular data. Furthermore, survey data are referenced to a common geographic projection and to common datums. Database design, maintenance, and data dissemination are accomplished through a geographic information system (GIS) platform, which integrates survey data acquired with theodolite, total station, and global navigation satellite system (GNSS) instrumentation. Users can interactively perform advanced queries and geospatial time-series analysis. An accuracy assessment provides users the ability to quantify uncertainty within these data. At the time of publication, this project is ongoing. Regular database updates are expected; users are advised to confirm they are using the latest version.

  6. Geochronology of archean gneisses in the Lake Helen area, Southwestern Big Horn Mountains, Wyoming

    USGS Publications Warehouse

    Arth, Joseph G.; Barker, F.; Stern, T.W.

    1980-01-01

    The RbSr and UPb methods were used to study gneisses in the 7 1 2-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite. A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ?? 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ?? 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ?? 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source. A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ?? 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ?? 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source. ?? 1980.

  7. Changes in the organic material in lakes in the blast zone of Mount St. Helens, Washington

    USGS Publications Warehouse

    McKnight, Diane M.; Klein, John M.; Wissmar, Robert C.

    1984-01-01

    During several periods of volcanic-ash eruption at Mount St. Helens, Wash., (March 30, May 25-26, May 30-June 2, and June 12-13, 1980) strong winds from the north occurred at high altitudes. As a result, the volcanic ash fell some 50 miles to the south in the Bull Run watershed, the principal water-supply source for the metropolitan area of Portland, Oreg. Water samples collected from three stream sites within the watershed were compared with samples collected during the same season in previous years. No detectable changes were noted in chemical characteristics. Precipitation samples collected immediately after the June 12-13 ash fall ranged in specific conductance from 20 to 41 micromhos per centimeter at 25C and in pH from 4.0 to 4.3 pH units. Stream samples collected during the May-June period ranged in specific conductance from 18 to 28 micromhos per centimeter at 25C and in pH from 6.7 to 7.5 pH units. Volcanic-ash samples were collected and analyzed for particle size, chemical composition, and weight. Significant differences in particle size of ash were found in samples from two separate eruptions. (USGS)

  8. Dustsonde measurements of the Mount St. Helens volcanic dust cloud over Wyoming

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Hofmann, D. J.

    1982-01-01

    Numerous balloon soundings of the aerosol and condensation nuclei (CN) concentrations were made over Laramie, Wyoming following the eruption of Mount St. Helens in May of 1980. On several occasions the volatility of the particles was tested. In addition, special instrumentation was used to observe the evolution of particle size after the eruption. The particles in the initial cloud were relatively large and nonvolatile. In a relatively short time, however, the aerosol began showing a dominant volatile component. Although there were probably no CN in the original cloud due to the expected very short coagulation life time, high concentrations of unusually small CN particles were observed about a month after the eruption. By the end of September the CN profiles and associated particle size were practically back to normal. At present the aerosol particles show about a three times larger concentration than before the eruption, most of the new material being in a layer centered around 19 km. The net effect of the more recent series of eruptions during the last half of October 1980 seems to be negligible.

  9. Interaction of Mount St. Helens' volcanic ash with cells of the respiratory epithelium.

    PubMed

    Adler, K B; Mossman, B T; Butler, G B; Jean, L M; Craighead, J E

    1984-12-01

    Respirable-sized dust from the Mount St. Helens (MSH) eruption of Spring 1980, and minerals similar to the major components of the volcanic ash, were examined comparatively for interactions with epithelial cells of rodent respiratory airways in vitro. MSH dust, Na feldspar, cristobalite, and alpha-quartz, in concentrations of 0.4 to 40 mg/ml, had neither significant effects on mucin release by tracheal explants nor acute toxic effects after exposure for 2 hr. Long-term incubation (1 and 3 weeks) of explants after a 1-hr exposure to MSH dust failed to elicit widespread toxic or proliferative changes in airway epithelial cells. In contrast, long-term exposure to Na feldspar, cristobalite, and alpha-quartz caused significant toxicity to the explants, although metaplastic changes were not observed. Ultrastructural evidence of associations (e.g., phagocytosis) between particulates and respiratory epithelium was not observed. The results of these studies suggest that volcanic ash from MSH interacts minimally with cells of the respiratory mucosa. PMID:6510386

  10. The 1980 eruptions of Mount St. Helens - Physical and chemical processes in the stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.; Keesee, R. G.

    1983-01-01

    The large and diverse set of observational data collected in the high-altitude plumes of the May 18, May 25, and June 13, 1980 eruptions is organized and analyzed with a view to discerning the processes at work. The data serve to guide and constrain detailed model simulations of the volcanic clouds. For this purpose, use is made of a comprehensive one-dimensional model of stratospheric sulfate aerosols, sulfur precursor gases, and volcanic ash and dust. The model takes into account gas-phase and condensed-phase (heterogeneous) chemistry in the clouds, aerosol nucleation and growth, and cloud expansion. Computational results are presented for the time histories of the gaseous species concentrations, aerosol size distributions, and ash burdens of the eruption clouds. Also investigated are the long-term buildup of stratospheric aerosols in the Northern Hemisphere and the persistent effects of injected chlorine and water vapor on stratospheric ozone. It is concluded that SO2, water vapor, and ash were probably the most important substances injected into the stratosphere by the Mount St. Helens volcano, both with respect to their widespread effects on composition and their effect on climate.

  11. Emplacement of a silicic lava dome through a crater glacier: Mount St Helens, 2004-06

    USGS Publications Warehouse

    Walder, J.S.; LaHusen, R.G.; Vallance, J.W.; Schilling, S.P.

    2007-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time after Mount St Helens reawakened in September 2004. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal alpine glaciers. Unlike normal temperate glaciers, the crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano's groundwater system rather than flowing through a drainage network along the bed.

  12. Effects of Mount St. Helens eruption on selected lakes in Washington

    USGS Publications Warehouse

    Dion, N.P.; Embrey, S.S.

    1981-01-01

    During several periods of volcanic-ash eruption at Mount St. Helens, Wash., (March 30, May 25-26, May 30-June 2, and June 12-13, 1980) strong winds from the north occurred at high altitudes. As a result, the volcanic ash fell some 50 miles to the south in the Bull Run watershed, the principal water-supply source for the metropolitan area of Portland, Oreg. Water samples collected from three stream sites within the watershed were compared with samples collected during the same season in previous years. No detectable changes were noted in chemical characteristics. Precipitation samples collected immediately after the June 12-13 ash fall ranged in specific conductance from 20 to 41 micromhos per centimeter at 25C and in pH from 4.0 to 4.3 pH units. Stream samples collected during the May-June period ranged in specific conductance from 18 to 28 micromhos per centimeter at 25C and in pH from 6.7 to 7.5 pH units. Volcanic-ash samples were collected and analyzed for particle size, chemical composition, and weight. Significant differences in particle size of ash were found in samples from two separate eruptions. (USGS)

  13. Colonization genetics of an animal-dispersed plant (Vaccinium membranaceum) at Mount St Helens, Washington.

    PubMed

    Yang, S; Bishop, J G; Webster, M S

    2008-02-01

    Population founding and spatial spread may profoundly influence later population genetic structure, but their effects are difficult to quantify when population history is unknown. We examined the genetic effects of founder group formation in a recently founded population of the animal-dispersed Vaccinium membranaceum (black huckleberry) on new volcanic deposits at Mount St Helens (Washington, USA) 24 years post-eruption. Using amplified fragment length polymorphisms and assignment tests, we determined sources of the newly founded population and characterized genetic variation within new and source populations. Our analyses indicate that while founders were derived from many sources, about half originated from a small number of plants that survived the 1980 eruption in pockets of remnant soil embedded within primary successional areas. We found no evidence of a strong founder effect in the new population; indeed genetic diversity in the newly founded population tended to be higher than in some of the source regions. Similarly, formation of the new population did not increase among-population genetic variance, and there was no evidence of kin-structured dispersal in the new population. These results indicate that high gene flow among sources and long-distance dispersal were important processes shaping the genetic diversity in this young V. membranaceum population. Other species with similar dispersal abilities may also be able to colonize new habitats without significant reduction in genetic diversity or increase in differentiation among populations. PMID:18194163

  14. Changes in Seismic Velocity During the 2004 - 2008 Eruption of Mount St. Helens Volcano

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J. S.; Moran, S. C.; Thelen, W. A.

    2013-12-01

    Mount St. Helens (MSH) effusively erupted in late 2004, following an 18-year quiescence. Many swarms of repeating earthquakes accompanied the extrusion and in some cases the waveforms from these earthquakes evolved slowly, possibly reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify these changes in terms of small (usually <1%) changes in seismic velocity structure by determining how relatively condensed or stretched the coda is between two similar earthquakes. We then utilize several hundred distinct families of repeating earthquakes at once to create a continuous function of velocity change observed at any station in the seismic network. The rate of earthquakes allows us to track these changes on a daily or even hourly time scale. Following years of no seismic velocity changes larger than those due to climatic processes (tenths of a percent), we observed decreases in seismic velocity of >1% coincident with the onset of increased earthquake activity beginning September 23, 2004. These changes are largest near the summit of the volcano, and likely related to shallow deformation as magma first worked its way to the surface. Changes in velocity are often attributed to deformation, especially volumetric strain and the opening or closing of cracks, but also with nonlinear responses to ground shaking and fluid intrusion. We compare velocity changes across the eruption with other available observations, such as deformation (e.g., GPS, tilt, photogrammetry), to better constrain the relationships between velocity change and its possible causes.

  15. Mount St. Helens ash from the 18 May 1980 eruption: chemical, physical, mineralogical, and biological properties

    SciTech Connect

    Fruchter, J.S.; Robertson, D.E.; Evans, J.C.

    1980-09-05

    Samples of ash from the 18 May 1980 eruption of Mount St. Helens were collected from several locations in eastern Washington and Montana. The ash was subjected to a variety of analyses to determine its chemical, physical, mineralogical, and biological characteristics. Chemically, the ash samples were of dacitic composition. Particle size data showed bimodal distributions and differed considerably with location. However, all samples contained comparable amounts of particles less than 3.5 micrometers in diameter (respirable fraction). Mineralogically, the samples ranged from almost totally glassy to almost totally crystalline. Crystalline samples were dominated by plagioclase feldspar (andesine) and orthopyroxene (hypersthene), with smaller amounts of titanomagnetite and hornblende. All but one of the samples contained from less than 1% to 3% free crystalline silica (quartz, trydimite, or cristobalite) in both the bulk samples and 1 to 2% in the fractions smaller than 3.5 micrometers. The long-lived natural radionuclide content of the ash was comparable to that of crustal material; however, relatively large concentrations of short-lived radon daughters were present and polonium-210 content was inversely correlated with particle size. In vitro biological tests showed the ash to be nontoxic to alveolar macrophages, which are an important pat of the lungs' natural clearance mechanism. On the basis of a substantial body of data that has shown a correlation between macrophage cytotoxicity and fibrogenicity of minerals, the ash is not predicted to be highly fibrogenic.

  16. Aircraft sampling of the sulfate layer near the tropopause following the eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Lezberg, E. A.; Otterson, D. A.; Roberts, W. K.; Papathakos, L. C.

    1982-01-01

    Twenty filter sampling flights of the NASA Lewis F-106 aircraft were conducted in the Great Lakes region between June 4 and August 8, 1980, following the major eruption of Mount St. Helens, Washington on May 18. The IPC-1478 filters were exposed over an altitude range spanning the local tropopause. Quarter sections were analyzed for sulfate and nitrate by ion chromatography and selected samples were analyzed for chloride by selective ion electrode. Trace elements were searched by X-ray fluorescence analysis. A filter sample taken above the tropopause on June 5 indicated a sulfate level of 50 times the baseline measurements. Subsequent measurements over a period of 2 months showed an initial dropoff and formation of a persistent layer of sulfate above the tropopause with a concentration of 10 to 18 times previously measured background-levels. Concentrations of nitrate above the tropopause exhibited considerable variability and some enhancement compared with previously measured concentration levels. It is suggested that the source of the nitrate may also be volcanic as evidenced by its temporal relationship to the sulfate concentration changes. Based on the null results of X-ray fluorescence measurements, there is no evidence of ash particle concentrations greater than 3.4 microns g/cubic m persisting in the layer above the tropopause after the second transit of the cloud.

  17. Mount St. Helens eruptions: the acute respiratory effects of volcanic ash in a North American community.

    PubMed

    Baxter, P J; Ing, R; Falk, H; Plikaytis, B

    1983-01-01

    After the May 18, 1980 volcanic eruption of Mount St. Helens, increases were observed in the number of patients who, because of asthma or bronchitis, sought medical care at emergency rooms of major hospitals in areas of ashfall. An interview study of 39 asthma and 44 bronchitis patients who became sick during the 4 wk following the eruption and who attended the emergency rooms of two major hospitals in Yakima, Washington, and of healthy matched controls indicated that a history of asthma, and possibly of bronchitis, were risk factors for contracting respiratory problems. The interview study also indicated that the main exacerbating factor was the elevated level of airborne total suspended particulates (in excess of 30,000 micrograms/m3) after the eruption. An interview study of 97 patients who had chronic lung disease and who lived in the same area as the above-mentioned patients, but who did not go to a hospital, showed that the ashfall exacerbated the condition in about one-third of these. Emergency planners and their geologist advisers should be aware that special preventive measures are justified for people with a history of asthma or chronic lung disease who live in communities at risk to volcanic ashfalls. PMID:6870351

  18. Acute effects of volcanic ash from Mount Saint Helens on lung function in children.

    PubMed

    Buist, A S; Johnson, L R; Vollmer, W M; Sexton, G J; Kanarek, P H

    1983-06-01

    To evaluate the acute effects of volcanic ash from Mt. St. Helens on the lung function of children, we studied 101 children 8 to 13 yr of age who were attending a 2-wk summer camp for children with diabetes mellitus in an area where about 1.2 cm of ash had fallen after the June 12, 1980, eruption. The outcome variables used were forced vital capacity, forced expiratory volume in one second, their ratio and mean transit time. Total and respirable dust levels were measured using personal sampling pumps. The children were tested on arrival and twice (early morning [A.M.] and late afternoon [P.M.]) every second or third day during the session. A within-day effect was measured by the P.M./A.M. ratio for the lung function variables; a between-day effect was measured by the change in the P.M. measurements over the 2 wk of camp. We found no strong evidence of either a within-day or a between-day effect on lung function, even in a subgroup of children who had preexisting lung disease or symptoms, despite daytime dust/ash levels that usually exceeded the Environmental Protection Agency's significant harm level for particulate matter. PMID:6859654

  19. Airborne aerosol measurements in the quiescent plume of Mount St. Helens: September, 1980

    SciTech Connect

    Phelan, J.M.; Finnegan, D.L.; Ballantine, D.S.; Zoller, W.H.; Hart, M.A.; Moyers, J.L.

    1982-09-01

    Atmospheric particulate matter and condensed volatile species were collected in the quiescent plume of Mount St. Helens volcano in Sept. 1980 using air filter systems mounted aboard a NASA turbo-prop P-3 aircraft. Concentrations of 27 elements were determined by instrumental neutron activation analysis and ion chromotagraphy. The volatile elements Cl, Br, F, Zn, W, In, S, Cd, Se, Sb, Hg, As and Au were enriched relative to bulk ash emitted during the earlier eruptions by factors of 50 to 20,000. Particulate S concentrations were approx.3 ..mu..g/m/sup 3/ and accounted for 6% of the total plume sulfur. Gas-phase Hg concentrations were 2.5 to 16 ng/m/sup 3/. Fluxes of elements were estimated by normalizing elemental concentrations to the concurrently measured total sulfur flux. Emission rates vary from 3500 kg/day for particulate Cl to 3 kg/day for Au, with substantial quantities of the enriched elements Zn, As, Hg, Sb, Se, and Cd also being released. Estimated global fluxes of these elements from volcanoes to the atmosphere are in reasonable agreement with other literature estimates.

  20. Comparative in vitro cytotoxicity of volcanic ashes from Mount St. Helens, El Chichon, and Galunggung.

    PubMed

    Vallyathan, V; Robinson, V; Reasor, M; Stettler, L; Bernstein, R

    1984-01-01

    Dry sedimented volcanic ash samples from each of three widely separated volcanoes of the "Circum Pacific" region have been subjected to mineralogic analysis and in vitro tests for cytotoxicity. The ash samples from the three different volcanoes varied in particle size, surface area, and concentration of silica. Total crystalline silica in the respirable fraction of ashes was 1.5% (Mount St. Helens, Moses Lake); 1.36% (Galunggung, Bandung-1); 1.95% (Gallunggung, Bandung-2); and 1.72% (El Chichon, Tuxtla). Hemolysis as an index of cytotoxicity was measured by in vitro tests on sheep blood erythrocytes and indicated wide differences in hemolytic activity among ash samples. Alveolar macrophage cytosolic (lactate dehydrogenase) and lysosomal (beta-glucuronidase and beta-N-acetyl glucosaminidase) enzymes were measured as an index of cellular integrity following dust exposure. Hemolysis and release of enzymes from alveolar macrophages were greater with volcanic ash from Galunggung (Bandung-1) and El Chichon (Tuxtla) than the other ashes. Although crystalline silica induced an effect similar to volcanic ash from Galunggung (Bandung-1) on the release of enzymes from alveolar macrophages, the hemolytic potency of silica was much greater. Light and electron microscopic observations of dust-exposed alveolar macrophages indicated that the ash particles were readily phagocytized. These results indicate that volcanic ash is moderately cytotoxic and that exposure may lead to overt reactions and the exacerbation of preexisting chronic inflammatory processes. PMID:6097694

  1. Mount St. Helens ash fall in the Bull Run watershed, Oregon, May-June 1980

    SciTech Connect

    Shulters, M.V.; Clifton, D.G.

    1980-07-01

    On May 25-26, May 30-June 2, and June 12-13, 1980, strong, high-altitude winds from the north occurred during periods of volcanic-ash eruption at Mount St. Helens in southwestern Washington. As a result, ash fell in the Bull Run watershed, Oregon, some 50 miles to the south, the principal water-supply source for the Portland area. Samples from precipitation collectors and from stream sites in the Bull Run watershed were collected on several dates during May and June 1980. Analyses were made and are tabulated for pH, conductivity, acidity, sulfate, and nitrate plus nitrite. Field pH values of the precipitation ranged from 4.0 to 5.6 pH units and the stream samples from 6.7 to 7.5 units. Particle-size analyses for ash samples collected in the Bull Run watershed and Portland, Oregon, are also shown. Volcanic events, precipitation and high-altitude speeds for northerly winds are given for May 18-June 15, 1980. 6 references, 5 figures, 3 tables.

  2. Impact of mount st. Helens eruption on bacteriology of lakes in the blast zone.

    PubMed

    Staley, J T; Lehmicke, L G; Palmer, F E; Peet, R W; Wissmar, R C

    1982-03-01

    Lakes lying within the blast zone of Mount St. Helens showed dramatic increases in heterotrophic bacterial numbers after the eruption of 18 May 1980. The total microscopic counts of bacteria in some of the most severely affected lakes were more than 10 cells per ml, an order of magnitude above the counts in outlying control lakes. Likewise, the numbers of viable bacteria reached levels of more than 10 cells per ml, compated with fewer than 10 cells per ml in control lakes. The CPS medium used for enumeration provided growth of up to 81.5% of the bacteria during sampling of one of the blast zone lakes. The high numbers of bacteria and the efficacy of the viable enumeration procedure are evidence that the lakes have been transformed rapidly from oligotrophy to eutrophy due to the eruption and its aftermath. Organic material leached from the devastated forest vegetation is thought to be responsible for the enrichment of heterotrophs. Total coliform bacteria were found in all of the blast zone lakes, and some lakes contained fecal coliform bacteria. Klebsiella pneumoniae was the predominant total coliform and was also identified as one of the fecal coliform bacteria, although Escherichia coli was the predominant species in that category. Our data indicate that bacterial populations peaked in the outer blast zone lakes in the summer of 1980 and in most of the inner lakes during the summer of 1981. PMID:16345973

  3. Vegetation patterns 25 years after the eruption of Mount St. Helens, Washington, USA.

    PubMed

    Del Moral, Roger; Lacher, Iara L

    2005-12-01

    In 2004, we surveyed the vegetation on Mount St. Helens to document changes since 1992. We asked how communities differentiate and if they develop predictable relationships with local environments. We sought evidence from links between species and environment and changes in community structure in 271 250-m(2) plots. The habitats of the seven community types (CTs) overlapped broadly. Ordination methods demonstrated weak correlations among species distributions and location, elevation, and surface variables. Comparisons to 1992 by habitat demonstrated a large increase in plant cover and substantial development of vegetation structure. Pioneer species declined while mosses increased proportionately leading to more pronounced dominance hierarchies in most habitats. In Lupinus colonies, dominance declined, and diversity increased due to the increased abundance of formerly rare species. On once barren sites, dominance increased, but diversity changed slightly, which suggested the incipient development of competitive hierarchies. Weak correlations between vegetation and the environment suggested that initially stochastic establishment patterns had not yet been erased by deterministic factors. A vegetation mosaic that is loosely controlled by environmental factors may produce different successional trajectories that lead to alternative stable communities in similar habitats. This result has implications for restoration planning. PMID:21646112

  4. Equisetum plants and the cycling of mercury at Mount St. Helens

    SciTech Connect

    Siegel, B.Z.; Siegel, S.M.; Horsky, S.J.

    1984-03-01

    Samples of Equisetum arvense collected in July 1982 at nine stations around Mount St. Helens have increased by 63-158 ppb in mercury content since the last sampling at the same locations in June 1981. Associated soils show little change by comparison. Unlike the highly directional pattern of June 1981, suggestive of the plume vector of the major 1980 eruption, the July 1982 distribution is more diffuse. It seems consistent with a continuous and extended mercury output distributed around the compass by seasonal and local wind variation. Mercury in follow-up samples at four stations in Sept 1982 had decreased 20-91 ppb without significant soil change. The authors propose that these variations are based on a predominat atmospheric source of plant mercury, the episodic character of volcanic mercury emission into the atmosphere, and relatively steady rates of volatilization of mercury from the plants. Calculated loss rates in the field samples agree well with measured rates of mercury release by Equisetum in the laboratory.

  5. Aircraft sampling of the sulfate layer near the tropopause following the eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Lezberg, E. A.; Otterson, D. A.; Roberts, W. K.; Papathakos, L. C.

    1982-01-01

    Twenty-three filter sampling flights of the NASA Lewis F-106 aircraft, were conducted in the Great Lakes region between June 4 and Dec. 23, 1980, following the major eruption of Mount St. Helens on May 18. The IPC-1478 filters were exposed over an altitude range spanning the local tropopause. A filter sample exposed above the tropopause on June 5 indicated a sulfate level 50 times the baseline measurements, which is consistent with the trajectory predictions of the leading edge of the cloud on its second transit around the earth. Subsequent measurements over a period of 7 months revealed the existence of a layer of sulfate above the tropopause that decayed to a level of about 4 times previously measured background levels by the beginning of August. Concentration of nitrate above the tropopause exhibited considerable variability and showed some enhancement compared with previously measured concentration levels. On the basis of the null results of X ray fluorescence measurements, there is no evidence of ash particle concentrations of greater than 3.4 microns/cu m persisting in the layer above the tropopause following the second transit of the cloud.

  6. Precursor gases of aerosols in the Mount St. Helens eruption plumes at stratospheric altitudes

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1982-01-01

    Nineteen stratospheric samples from the eruption plumes of Mount St. Helens were collected in five flight experiments. The plume samples were collected at various altitudes from 13.1 to 20.7 km by using the Ames cryogenic sampling system on board the NASA U-2 aircraft. The enriched, cryogenically collected samples were analyzed by chromatography. The concentrations of aerosols precursor gases (OCS, SO2, and CS2), CH3Cl, N2O, CF2Cl2, and CFCl3 were measured by gas chromatography. Large enhancement of the mixing ratio of SO2 and moderate enhancement of CS2 and OCS were found in the plume samples compared with similar measurement under pre-volcanic conditions. A fast decay rate of the SO2 mixing ratio in the plume was observed. Measurement of Cl(-), SO2(2-), and NO3(-) by ion chromatography was also carried out on water solutions prepared from the plume samples. The results obtained with this technique imply large mixing ratios of HCl, (NO + NO2 + HNO3), and SO2, in which these constituents are the respective sources of the anions. Measurement of the Rn222 concentration in the plume was made. Other stratospheric constituents in the plume samples, such as H2O, CO2, CH4, and CO, were also observed.

  7. Time variations of aerosols in the stratosphere following Mount St. Helens eruptions

    NASA Technical Reports Server (NTRS)

    Farlow, N. H.; Snetsinger, K. G.; Oberbeck, V. R.; Ferry, G. V.; Polkowski, G.; Hayes, D. M.

    1982-01-01

    Samples of stratospheric aerosols collected with U-2 aircraft for several months following the first three major eruptions of Mount St. Helens were analyzed for ash and liquid acid content. Ash grain sizes and compositions vary depending on collection altitude, location within the drifting cloud, and days following their injection. s computers Size distributions of ash particles vary with altitude. Generally small particles are depleted more rapidly at low altitudes (12 km) than at higher altitudes (17-18 km). Although samples collected 1 day after the first eruption of May 18, 1980, were dry, flow marks on the aircraft indicated parts of the cloud contained heavy acid concentrations. Indeed, all other samples obtained within 1 to 4 days after later eruptions (May 25 and June 12, 1980) were covered with copious amounts of liquid acid. Proportions of liquid to ash varied considerably depending on sampling location and cloud age. Because the acid-coated ash globules were large, they rapidly fell from the stratosphere until, by late June 1980, only a residue of acid droplets remained. Size distributions and concentrations of these droplets varied considerably.

  8. Analysis of seismic body waves excited by the Mount Saint Helens eruption of May 18, 1980

    NASA Technical Reports Server (NTRS)

    Kanamori, H.; Given, J. W.; Lay, T.

    1982-01-01

    Seismic body waves which were excited by eruption of Mt. St. Helens, and recorded by the Global Digital Seismographic Network (GDSN) stations are analyzed to determine the nature and the time sequence of the events associated with the eruption. The polarity of teleseismic P waves (period 20 sec) is identical at six stations which are distributed over a wide azimuthal range. This observation, together with a very small S to P amplitude ratio (at 20 sec), suggests that the source is a nearly vertical single force that represents the counter force of the eruption. The time history of the vertical force suggests two distinct groups of events, about two minutes apart, each consisting of several subevents with a duration of about 25 sec. The magnitude of the force is approximately 2.6 to the 17th power dyne. this vertical force is in contrast with the long period (approximately 150 sec) southward horizontal single force which was determined by a previous study and interpreted to be due to the massive landslide.

  9. Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980

    NASA Technical Reports Server (NTRS)

    Kanamori, H.; Given, J. W.; Lay, T.

    1984-01-01

    Seismic body waves which were excited by eruption of Mt. St. Helens, and recorded by the Global Digital Seismographic Network (GDSN) stations are analyzed to determine the nature and the time sequence of the events associated with the eruption. The polarity of teleseismic P waves (period 20 sec) is identical at six stations which are distributed over a wide azimuthal range. This observation, together with a very small S to P amplitude ratio (at 20 sec), suggests that the source is a nearly vertical single force that represents the counter force of the eruption. The time history of the vertical force suggests two distinct groups of events, about two minutes apart, each consisting of several subevents with a duration of about 25 sec. The magnitude of the force is approximately 2.6 to the 17th power dyne. This vertical force is in contrast with the long period (approximately 150 sec) southward horizontal single force which was determined by a previous study and interpreted to be due to the massive landslide. Previously announced in STAR as N83-15968

  10. Timing of degassing and plagioclase growth in lavas erupted from Mount St. Helens, 2004-2005, from 210Po-210Pb-226Ra disequilibria: Chapter 37 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Reagan, Mark K.; Cooper, Kari M.; Pallister, John S.; Thornber, Carl R.; Wortel, Matthew

    2008-01-01

    Disequilibrium between 210Po, 210Pb, and 226Ra was measured on rocks and plagioclase mineral separates erupted during the first year of the ongoing eruption of Mount St. Helens. The purpose of this study was to monitor the volatile fluxing and crystal growth that occurred in the weeks, years, and decades leading up to eruption. Whole-rock samples were leached in dilute HCl to remove 210Po precipitated in open spaces. Before leaching, samples had variable initial (210Po) values, whereas after leaching, the groundmasses of nearly all juvenile samples were found to have had (210Po) ≈ 0 when they erupted. Thus, most samples degassed 210Po both before and after the magmas switched from open- to closed-system degassing. All juvenile samples have (210Pb)/(226Ra) ratios within 2 δ of equilibrium, suggesting that the magmas involved in the ongoing eruption did not have strong, persistent fluxes of 222Rn in or out of magmas during the decades and years leading to eruption. These equilibrium values also require a period of at least a century after magma generation and the last significant differentiation of the Mount St. Helens dacites. Despite this, the elevated (210Pb)/(226Ra) value measured in a plagioclase mineral separate from lava erupted in 2004 suggests that a significant proportion of this plagioclase grew within a few decades of eruption. The combined dataset suggests that for most 2004-5 lavas, the last stage of open-system degassing of the dacite magmas at Mount St. Helens is confined to the period between 1-2 years and 1-2 weeks before eruption, whereas plagioclase large enough to be included in the mineral separate grew around the time of the 1980s eruption or earlier.

  11. Seismic-monitoring changes and the remote deployment of seismic stations (seismic spider) at Mount St. Helens, 2004-2005: Chapter 7 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.

    2008-01-01

    The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.

  12. Constraints and conundrums resulting from ground-deformation measurements made during the 2004-2005 dome-building eruption of Mount St. Helens, Washington: Chapter 14 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Dzurisin, Daniel; Lisowski, Michael; Poland, Michael P.; Sherrod, David R.; LaHusen, Richard G.

    2008-01-01

    Lack of precursory inflation suggests that the volcano was poised to erupt magma already stored in a crustal reservoir when JRO1 was installed in 1997. Trilateration and campaign GPS data indicate surface dilatation, presumably caused by reservoir expansion between 1982 and 1991, but no measurable deformation between 1991 and 2003. We conclude that all three of the traditionally reliable eruption precursors (seismicity, ground deformation, and volcanic gas emission) failed to provide warning that an eruption was imminent until a few days before a visible welt appeared at the surface--a situation reminiscent of the 1980 north-flank bulge at Mount St. Helens.

  13. iMUSH: The design of the Mount St. Helens high-resolution active source seismic experiment

    NASA Astrophysics Data System (ADS)

    Kiser, Eric; Levander, Alan; Harder, Steve; Abers, Geoff; Creager, Ken; Vidale, John; Moran, Seth; Malone, Steve

    2013-04-01

    Mount St. Helens is one of the most societally relevant and geologically interesting volcanoes in the United States. Although much has been learned about the shallow structure of this volcano since its eruption in 1980, important questions still remain regarding its magmatic system and connectivity to the rest of the Cascadia arc. For example, the structure of the magma plumbing system below the shallowest magma chamber under the volcano is still only poorly known. This information will be useful for hazard assessment for the southwest Washington area, and also for gaining insight into fundamental scientific questions such as the assimilation and differentiation processes that lead to the formation of continental crust. As part of the multi-disciplinary imaging of Magma Under St. Helens (iMUSH) experiment, funded by NSF GeoPRISMS and EarthScope, an active source seismic experiment will be conducted in late summer 2014. The experiment will utilize all of the 2600 IRIS/PASSCAL/USArray Texan instruments. The instruments will be deployed as two 1000-instrument consecutive refraction profiles (one N/S and one WNW/ESE). Each of these profiles will be accompanied by two 1600-instrument areal arrays at varying distances from Mount St. Helens. Finally, one 2600-instrument areal array will be centered on Mount St. Helens. These instruments will record a total of twenty-four 500-1000 kg shots. Each refraction profile will have an average station spacing of 150 m, and a total length of 150 km. The stations in the areal arrays will be separated by ~1 km. A critical step in the success of this project is to develop an experimental setup that can resolve the most interesting aspects of the magmatic system. In particular, we want to determine the distribution of shot locations that will provide good coverage throughout the entire model space, while still allowing us to focus on regions likely to contain the magmatic plumbing system. In this study, we approach this problem by

  14. GeoGirls: A Geology and Geophysics Field Camp for Middle School Girls at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Samson, C.; Allstadt, K.; Melander, S.; Groskopf, A.; Driedger, C. L.; Westby, E.

    2015-12-01

    The August 2015 GeoGirls program was a project designed to inspire girls to gain an appreciation and enthusiasm for Earth sciences using Mount St. Helens as an outdoor volcanic laboratory. Occupations in the field of science and engineering tend to be held by more males than females. One way to address this is to introduce girls to possible opportunities within the geosciences and encourage them to learn more about the dynamic environment in which they live. In 2015, the GeoGirls program sought to accomplish this goal through organizing a five day-long field camp for twenty middle school-aged girls, along with four high school-aged mentors and two local teachers. This group explored Mount St. Helens guided by female scientists from the USGS Cascade Volcano Observatory (CVO), the Mount St. Helens Institute (MSHI), UNAVCO, Boise State, Georgia Tech, University of Washington and Oregon State University. To introduce participants to techniques used by volcanologists, the girls participated in hands-on experiments and research projects focusing on seismology, GPS, terrestrial lidar, photogrammetry, water and tephra. Participants also learned to collect samples, analyze data and use microscopes. Through this experience, participants acquired strategies for conducting research by developing hypotheses, making observations, thinking critically and sharing their findings with others. The success of the GeoGirls program was evaluated by participant and parent survey questionnaires, which allowed assessment of overall enthusiasm and interest in pursuing careers in the geosciences. The program was free to participants and was run jointly by MSHI and CVO and funded by NSF, the American Association of University Women, the Association for Women Geoscientists, the Association of Environmental & Engineering Geologists and private donors. The program will run again in the summer of 2016.

  15. Experimental phase equilibria of a Mount St. Helens rhyodacite: a framework for interpreting crystallization paths in degassing silicic magmas

    NASA Astrophysics Data System (ADS)

    Riker, Jenny M.; Blundy, Jonathan D.; Rust, Alison C.; Botcharnikov, Roman E.; Humphreys, Madeleine C. S.

    2015-07-01

    We present isothermal (885 °C) phase equilibrium experiments for a rhyodacite from Mount St. Helens (USA) at variable total pressure (25-457 MPa) and fluid composition (XH2Ofl = 0.6-1.0) under relatively oxidizing conditions (NNO to NNO + 3). Run products were characterized by SEM, electron microprobe, and SIMS. Experimental phase assemblages and phase chemistry are consistent with those of natural samples from Mount St. Helens from the last 4000 years. Our results emphasize the importance of pressure and melt H2O content in controlling phase proportions and compositions, showing how significant textural and compositional variability may be generated in the absence of mixing, cooling, or even decompression. Rather, variations in the bulk volatile content of magmas, and the potential for fluid migration relative to surrounding melts, mean that magmas may take varied trajectories through pressure-fluid composition space during storage, transport, and eruption. We introduce a novel method for projecting isothermal phase equilibria into CO2-H2O space (as conventionally done for melt inclusions) and use this projection to interpret petrological data from Mount St. Helens dacites. By fitting the experimental data as empirical functions of melt water content, we show how different scenarios of isothermal magma degassing (e.g., water-saturated ascent, vapor-buffered ascent, and vapor fluxing) can have quite different textural and chemical consequences. We explore how petrological data might be used to infer degassing paths of natural magmas and conclude that melt CO2 content is a much more useful parameter in this regard than melt H2O.

  16. Operation of a digital seismic network on Mount St. Helens volcano and observations of long-period seismic events that originate under the volcano

    SciTech Connect

    Fehler, M.; Chouet, B.

    1982-01-01

    During the period May through October 1981, a nine station digital seismic array was operated on the flanks of Mount St. Helens volcano in the state of Washington. The purpose was to obtain high quality digital seismic data from a dense seismic array operating near and in the summit crater of the volcano to facilitate study of near field seismic waveforms generated under the volcano. Our goal is to investigate the source mechanism of volcanic tremor and seismic activity associated with magma intrusion, dome growth and steam-ash emissions occurring within the crater of Mount St. Helens.

  17. Trace metals in the Columbia River Estuary following the 18 May 1980 eruption of Mount St. Helens

    SciTech Connect

    Riedel, G.F.; Wilson, S.L.; Holton, R.L.

    1984-10-01

    Dissolved and suspended concentrations of cadmium, copper, iron, manganese, nickel, lead, and zinc were measured in the Columbia River Estuary following the 18 May 1980 eruption of Mount St. Helens. Soluble concentrations of these trace elements were not substantially elevated by the influx of volcanic ash and mud into the estuary during this period, except for somewhat higher than usual concentrations of manganese and copper. A laboratory experiment indicates that manganese leached from volcanic debris in fresh water and in the transition from fresh to slightly saline water probably caused the elevated Mn leaching from the material into fresh water.

  18. Measurements of the imaginary part of the refractive index between 300 and 700 nanometers for Mount St. Helens ash

    SciTech Connect

    Patterson, E.M.

    1981-01-01

    The absorption properties, expressed as a wavelength-dependent imaginary index of refraction, of the Mount St. Helens ash from the 18 May 1980 eruption were measured between 300 and 700 nanometers by diffuse reflectance techniques. The measurements were made for both surface and stratospheric samples. The stratospheric samples show imaginary index values that decrease from approximately 0.01 to 0.02 at 300 nanometers to about 0.0015 at 700 nanometers. The surface samples show less wavelength variation in imaginary refractive index over this spectral range.

  19. Overview of the 2004-2008 Eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.

    2008-12-01

    Well-monitored and observed volcanic eruptions provide critical data sets needed to understand sub-surface properties, timescales of geophysical and geochemical processes and the conditions necessary to initiate or cease eruptive activity. Mount St. Helens' second eruptive episode within 30 years began on 1 October 2004 with a low-temperature vapor-and-ash emission and ended approximately 40 months later after extrusion of nearly 100 million m3 (DRE) of dacitic lava (roughly equivalent to the volume of the 1980s lava dome) into the 1980s crater. Unlike the episodic explosive and lava-dome-building events that characterized the 1980s eruption, the 2004-2008 episode consisted of continuous lava-dome extrusion punctuated by only two minor explosive events. Seismic unrest heralding the new eruptive episode began in late September 2004 after unseasonally heavy August rains and during a year of overall low seismic activity and no anomalous trends in either deformation or volcanic gas emissions. Soon after the start of increased seismic activity, visible near-field deformation occurred on the south side of the 1980s lava dome, with detectable volcanic gas following several days later. Lava-dome extrusion began in mid-October 2004. Monitoring parameters exhibited gradually diminishing trends such that: (1) significant seismicity accompanied high extrusion rates (>6 to < 2 m3/s) and lava spines with well-developed gouge surfaces during the first year+ of the eruption, but by the last year, when extrusion rates were below 0.5 m3/sec and the gouge surface was smaller and more poorly developed, seismicity had decreased markedly such that the eruption was nearly aseismic; (2) volcanic gas emission rates, which were barely above background by the end of the first year, were barely above instrumental limits during the last year of the eruption; and (3) flank and far-field deflation centered on the crater starting in late September 2004, dropped monotonically to below noise level

  20. Conduit-margin faulting at Mount St. Helens - a seismogenic process?

    NASA Astrophysics Data System (ADS)

    Pallister, J. S.; Cashman, K. V.; Hagstrum, J. T.

    2008-12-01

    The 2004-2008 eruption of Mount St. Helens produced dacite spines mantled by fault gouge and breccia, with textures and structures remarkably similar to those in brittle tectonic fault zones. The spines are mantled by 1-3 meters of cataclastic fault rocks, comprising a fault core overlying a damage zone. The outermost surface of the fault core consists of 1-3-mm-thick layers of extremely fine-grained slickenside-bearing ultracataclasite, within finely comminuted fault gouge and soft cataclasite. The fault core varies in thickness from spine to spine, ranging from a few centimeters to about 1 m. Interior to the gouge is a 1-3-m-thick damage zone composed of dense cataclastic breccia, which overlies massive dacite lava of the spine interior. Structures and micro-textures indicate entirely brittle deformation, including rock breakage, shearing, grain flow, faulting and gas escape through intergranular porosity and along fractures. Slickenside lineations on fault surfaces and consistent orientations of thousands of Riedel shears in the damage zone indicate shear between the vertically extruding spines and the formerly adjacent conduit wall. Field relations indicate that Riedel shears formed in a continuous cycle of deformation, beginning with episodes of fracture and granular flow and followed by transfer of slip to bounding fault planes. Granular flow in the cataclasite may also result in stress concentration along force-chains as seen in laboratory experiments. Paleomagnetic pole positions, demagnetization paths, and oxide mineralogy indicate that cataclasis took place within the solidified and oxidizing sub-vertical volcanic conduit and at temperatures above 500°C. Low water content of matrix glass is consistent with brittle behavior at these high temperatures, and along with tridymite in the groundmass of the dacite, requires nearly complete decompression-driven solidification at depths <1 km. Such shallow depths for brittle failure are coincident with the

  1. Mount St. Helens: Controlled-source audio-frequency magnetotelluric (CSAMT) data and inversions

    USGS Publications Warehouse

    Wynn, Jeff; Pierce, Herbert A.

    2015-01-01

    The apparent conductivity (or its inverse, apparent resistivity) measured by a geoelectrical system is caused by several factors. The most important of these are water-filled rock porosity and the presence of water-filled fractures; however, rock type and minerals (for instance, sulfides and clay content) also contribute to apparent conductivity. In situations with little recharge (for instance, in arid regions), variations in ionic content of water occupying pore space and fractures sampled by the measurement system must also be factored in (Wynn, 2006). Variations in ionic content may also be present in hydrothermal fluids surrounding volcanoes in wet regions. In unusual cases, temperature may also affect apparent conductivity (Keller, 1989; Palacky, 1989). There is relatively little hydrothermal alteration (and thus fewer clay minerals that might add to the apparent conductivity) in the eruptive products of Mount St. Helens (Reid and others, 2010), so conductors observed in the Fischer, Occam, and Marquardt inversion results later in this report are thus believed to map zones with significant water content. Geoelectrical surveys thus have the potential to reveal subsurface regions with significant groundwater content, including perched and regional aquifers. Reid and others (2001) and Reid (2004) have suggested that groundwater involvement may figure in both the scale and the character of some if not all volcanic edifice collapse events. Ongoing research by the U.S. Geological Survey (USGS) and others aims to better understand the contribution of groundwater to both edifice pore pressure and rock alteration as well as its direct influence on eruption processes by violent interaction with magma (Schmincke, 1998).

  2. Hydrometeor-enhanced tephra sedimentation: Constraints from the 18 May 1980 eruption of Mount St. Helens

    USGS Publications Warehouse

    Durant, A.J.; Rose, William I., Jr.; Sarna-Wojcicki, A. M.; Carey, Steven; Volentik, A.C.M.

    2009-01-01

    Uncertainty remains on the origin of distal mass deposition maxima observed in many recent tephra fall deposits. In this study the link between ash aggregation and the formation of distal mass deposition maxima is investigated through reanalysis of tephra fallout from the Mount St. Helens 18 May 1980 (MSH80) eruption. In addition, we collate all the data needed to model distal ash sedimentation from the MSH80 eruption cloud. Four particle size subpopulations were present in distal fallout with modes at 2.2 ??, 4.2 ??, 5.9 ??, and 8.3 ??. Settling rates of the coarsest subpopulation closely matched predicted single-particle terminal fall velocities. Sedimentation of particles <100 ??m was greatly enhanced, predominantly through aggregation of a particle subpopulation with modal diameter 5.9 ?? 0.2 ?? (19 ?? 3 ??m). Mammatus on the MSH80 cloud provided a mechanism to transport very fine ash particles, with predicted atmospheric lifetimes of days to weeks, from the upper troposphere to the surface in a matter of hours. In this mechanism, ash particles initiate ice hydrometeor formation high in the troposphere. Subsequently, the volcanic cloud rapidly subsides as mammatus develop from increased particle loading and cloud base sublimation. Rapid fallout occurs as the cloud passes through the melting level in a process analogous to snowflake aggregation. Aggregates sediment en masse and form the distal mass deposition maxima observed in many recent volcanic ash fall deposits. This work provides a data resource that will facilitate tephra sedimentation modeling and allow model intercomparisons. Copyright 2009 by the American Geophysical Union.

  3. A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Mount St. Helens began a dome-building eruption in September 2004 after nearly two decades of quiescence. Dome growth was initially robust, became more sluggish with time, and ceased completely in late January 2008. The volcano has been quiet again since January 2008. Professional Paper 1750 describes the first 1 1/2 years of this eruptive activity, chiefly from September 2004 until December 2005. Its 37 chapters contain contributions of 87 authors from 23 institutions, including the U.S. Geological Survey, Forest Service, many universities, and local and State emergency management agencies. Chapter topics range widely - from seismology, geology, geodesy, gas geochemistry, and petrology to the human endeavor required for managing the public volcanic lands and distributing information during the hectic early days of a renewed eruption. In PDF format, the book may be downloaded in its entirety or by its topical sections, each section including a few prefatory paragraphs that describe the general findings, recurrent themes, and, in some cases, the unanswered questions that arise repeatedly. Those readers who prefer downloading the smaller files of only a chapter or two have this option available as well. Readers are directed to chapter 1 for a general overview of the eruption and the manner in which different chapters build our knowledge of events. More detailed summaries for specific topics can be found in chapter 2 (seismology), chapter 9 (geology), chapter 14 (deformation), chapter 26 (gas geochemistry), and chapter 30 (petrology). The printed version of the book may be purchased as a hardback weighty tome (856 printed pages) that includes a DVD replete with the complete online version, including all chapters and several additional appendixes not in the printed book.

  4. The 2004-2008 dome-building eruption at Mount St. Helens, Washington: epilogue

    NASA Astrophysics Data System (ADS)

    Dzurisin, Daniel; Moran, Seth C.; Lisowski, Michael; Schilling, Steve P.; Anderson, Kyle R.; Werner, Cynthia

    2015-10-01

    The 2004-2008 dome-building eruption at Mount St. Helens ended during winter 2007-2008 at a time when field observations were hampered by persistent bad weather. As a result, recognizing the end of the eruption was challenging—but important for scientists trying to understand how and why long-lived eruptions end and for public officials and land managers responsible for hazards mitigation and access restrictions. In hindsight, the end of the eruption was presaged by a slight increase in seismicity in December 2007 that culminated on January 12-13, 2008, with a burst of more than 500 events, most of which occurred in association with several tremor-like signals and a spasmodic burst of long-period earthquakes. At about the same time, a series of regular, localized, small-amplitude tilt events—thousands of which had been recorded during earlier phases of the eruption—came to an end. Thereafter, seismicity declined to 10-20 events per day until January 27-28, when a spasmodic burst of about 50 volcano-tectonic earthquakes occurred over a span of 3 h. This was followed by a brief return of repetitive "drumbeat" earthquakes that characterized much of the eruption. By January 31, however, seismicity had declined to 1-2 earthquakes per day, a rate similar to pre-eruption levels. We attribute the tilt and seismic observations to convulsive stagnation of a semisolid magma plug in the upper part of the conduit. The upward movement of the plug ceased when the excess driving pressure, which had gradually decreased throughout the eruption as a result of reservoir deflation and increasing overburden from the growing dome, was overcome by increasing friction as a result of cooling and crystallization of the plug.

  5. Plant reestablishment 15 years after the debris avalanche at Mount St Helens, Washington.

    PubMed

    Dale, Virginia H; Adams, Wendy M

    2003-09-01

    Vegetation has slowly reestablished on the debris avalanche deposit in the 15 years after the 1980 eruption of Mount St. Helens that created a 60-km(2) debris avalanche, the largest landslide in recorded history. There has been a gradual increase in species richness and cover, but only 61% of the species present on the mountain before the eruption have established on the debris avalanche deposit. Plant cover averages 38% and is extremely patchy. Life form composition changed over successional time, because part of the avalanche deposit was invaded by introduced plant species aerially seeded to reduce erosion, the site offers the opportunity to compare successional processes occurring with and without introduced species. Long-term recovery trends and effects of nonnative species on succession are important to understand since plant reestablishment practices often rely on nonnative species for enhancing vegetation recovery of denuded sites along road sides, strip mines, or other human-generated clearing. Fifteen years after the eruption and 10 years since the invasion by introduced species, plots invaded by nonnative species had greater vegetation cover and more native plant richness than plots that were not inundated. Significantly greater mortality of conifers occurred in the plots dominated by introduced species shortly after the invasion of those species, but no difference in conifer mortality occurred in the last 5 years. Even so, the plots dominated by introduced species still have fewer conifer trees. Thus, the short-term pulse of conifer mortality after the invasion of introduced species may have long-term effects on the recovery of the dominant vegetation. It will likely be decades before there is 100% plant cover on the debris avalanche deposit and a century or more before full recovery of the vegetation system. PMID:12922064

  6. Morphological evolution of the North Fork Toutle River following the eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Zheng, Shan; Wu, Baosheng; Thorne, Colin R.; Simon, Andrew

    2014-03-01

    The North Fork Toutle River (NFTR) has undergone extensive morphological changes following the catastrophic eruption of Mount St. Helens, Washington, in 1980, especially the upper reaches affected by a 2.5-km3 debris-avalanche deposit caused by the eruption. This paper reports analysis and interpretation of vertical adjustments to the thalweg long-profile at some 33 km river reaches redeveloped on the debris-avalanche deposit during the 30-year period since the eruption. The results confirm that adjustments in the upper part of the study reaches have generally been led by degradation, while that in the lower reaches have been led by aggradation, with the middle reaches acting as a hinge zone. Trends of change in the thalweg long profile and bedslope reveal that channel gradients have decreased nonlinearly through time and with distance downstream from the volcano. Values of stream power have decreased with time commensurately owing to reductions in slope and channel widening (while the bed has coarsened) so that rates of erosion of the debris-avalanche deposit in the upper NFTR have slowed to the point that the long profile, now perched and slightly steeper, is relaxing toward a new equilibrium or graded condition. Thirty-year relaxation paths for thalweg elevation were simulated at seven key cross sections using newly developed, comprehensive rate law models based on nonlinear decay in rates of morphological response to perturbation. The results indicate that both single- and multistep rate law models can simulate the observed records. Consequently, the rate law approach provides an effective method for studying and simulating morphological response of the fluvial system to a major, instantaneous disturbance, such as a volcanic eruption.

  7. The 2004–2008 dome-building eruption at Mount St. Helens, Washington: Epilogue

    USGS Publications Warehouse

    Dzurisin, Daniel; Moran, Seth C.; Lisowski, Michael; Schilling, Steve P.; Anderson, Kyle R.; Werner, Cynthia A.

    2015-01-01

    The 2004–2008 dome-building eruption at Mount St. Helens ended during winter 2007–2008 at a time when field observations were hampered by persistent bad weather. As a result, recognizing the end of the eruption was challenging—but important for scientists trying to understand how and why long-lived eruptions end and for public officials and land managers responsible for hazards mitigation and access restrictions. In hindsight, the end of the eruption was presaged by a slight increase in seismicity in December 2007 that culminated on January 12–13, 2008, with a burst of more than 500 events, most of which occurred in association with several tremor-like signals and a spasmodic burst of long-period earthquakes. At about the same time, a series of regular, localized, small-amplitude tilt events—thousands of which had been recorded during earlier phases of the eruption—came to an end. Thereafter, seismicity declined to 10–20 events per day until January 27–28, when a spasmodic burst of about 50 volcano-tectonic earthquakes occurred over a span of 3 h. This was followed by a brief return of repetitive “drumbeat” earthquakes that characterized much of the eruption. By January 31, however, seismicity had declined to 1–2 earthquakes per day, a rate similar to pre-eruption levels. We attribute the tilt and seismic observations to convulsive stagnation of a semisolid magma plug in the upper part of the conduit. The upward movement of the plug ceased when the excess driving pressure, which had gradually decreased throughout the eruption as a result of reservoir deflation and increasing overburden from the growing dome, was overcome by increasing friction as a result of cooling and crystallization of the plug.

  8. Radar interferometry observations of surface displacements during pre- and coeruptive periods at Mount St. Helens, Washington, 1992-2005: Chapter 18 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Poland, Michael; Lu, Zhong

    2008-01-01

    We analyzed hundreds of interferograms of Mount St. Helens produced from radar images acquired by the ERS-1/2, ENVISAT, and RADARSAT satellites during the 1992-2004 preeruptive and 2004-2005 coeruptive periods for signs of deformation associated with magmatic activity at depth. Individual interferograms were often contaminated by atmospheric delay anomalies; therefore, we employed stacking to amplify any deformation patterns that might exist while minimizing random noise. Preeruptive interferograms show no signs of volcanowide deformation between 1992 and the onset of eruptive activity in 2004. Several patches of subsidence in the 1980 debris-avalanche deposit were identified, however, and are thought to be caused by viscoelastic relaxation of loosely consolidated substrate, consolidation of water-saturated sediment, or melting of buried ice. Coeruptive interferometric stacks are dominated by atmospheric noise, probably because individual interferograms span only short time intervals in 2004 and 2005. Nevertheless, we are confident that at least one of the seven coeruptive stacks we constructed is reliable at about the 1-cm level. This stack suggests deflation of Mount St. Helens driven by contraction of a source beneath the volcano.

  9. Effects of lava-dome growth on the crater glacier of Mount St. Helens, Washington: Chapter 13 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steve P.; Vallance, James W.; LaHusen, Richard G.

    2008-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time as the 2004-6 eruption of Mount St. Helens proceeded. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry, and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal temperate alpine glaciers. Unlike such glaciers, the Mount St. Helens crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano’s groundwater system rather than flowing through a drainage network along the bed. Mechanical consideration of the glacier-squeeze process also leads to an estimate for the driving pressure applied by the growing lava dome.

  10. Mount St Helens eruptions, May 18 to June 12, 1980. An overview of the acute health impact.

    PubMed

    Baxter, P J; Ing, R; Falk, H; French, J; Stein, G F; Bernstein, R S; Merchant, J A; Allard, J

    1981-12-01

    Thirty-five known deaths were caused by the landslide and lateral blast of the May 18 eruption of Mount St Helens and at least 23 persons are missing. In 18 of 23 cases that reached autopsy, asphyxiation from ash inhalation was the cause of death. A rapidly established hospital surveillance system detected increases in the number of emergency room (ER) visits and admissions for asthma and bronchitis in communities with the heaviest ashfall after the May 18 eruption and the eruptions on May 25 and June 12. There were also increases in the number of ER visits for ash-related eye complaints in some areas. laboratory studies indicated that the May 18 ash was not acutely toxic, but the respirable portion contained 3% to 7% of crystalline free silica, a potential pneumoconiosis hazard to certain heavily exposed occupational groups. Continuing volcanic activity of Mount St Helens and future eruption of other volcanoes in the Cascade Range may pose a variety of health hazards, including blast, ashfalls, flooding, damage to public utilities, and possible psychosocial effects. PMID:7029020

  11. The mechanics of ground deformation precursory to dome-building extrusions at Mount St. Helens 1981-1982.

    USGS Publications Warehouse

    Chadwick, W.W., Jr.; Archuleta, R.J.; Swanson, D.A.

    1988-01-01

    Detailed monitoring at Mount St. Helens since 1980 has enabled prediction of the intermittent eruptive activity (mostly dome growth) with unprecedented success. During 1981 and 1982, accelerating deformation of the crater floor around the vent (including radial cracks, thrust faults, and ground tilt) was the earliest indicator of impending activity. The magnitude of the shear stress required to match observed dipslacements (1-7 MPa) is inversely proportional to the conduit diameter (estimated to be 25-100 m). The most probable source of this shear stress is the flow of viscous magma up to the conduit and into the lava dome. A model is proposed in which the accelerating deformation, beginning as much as 4 weeks before extrusions, is caused by the increasing velocity of ascending magma in the conduit. This model is examined by using deformation data of the dome before four extrusions in 1981 and 1982 to estimate the volumetric flow rate through the conduit. This flow rate and an estimate of the effective viscosity of the magma enable calculation of an ascent velocity and an applied shear stress that, again, depend on the conduit diameter. The results of these calculations are consistent with the finite element experiments and show that the proposed model is feasible. Precursory deformation like that measured at Mount St. Helens should be observable at similar volcanoes elsewhere because it is caused by the fundamental process of magma ascent.-from Authors

  12. Ambient Airborne Solids Concentrations Including Volcanic Ash at Hanford, Washington Sampling Sites Subsequent to the Mount St. Helens Eruption

    SciTech Connect

    Sehmel, G.A.

    1982-12-20

    A major eruption of Mount St. Helens occurred on May 18, 1980. Subsequently, airborne solid concentrations were measured as a function of time at two sites within the southern edge of the fallout plume about 211 km east of Mount St. Helens. This ash was a source for investigating area-wide resuspension. Rain had a variable effect on decreasing airborne concentrations from resuspension. From 0.5 to 1.5 cm of rain were required to significantly reduce airborne solid concentrations through July. For a more aged resuspension source in September, a rain of 2.0 cm had a negligible effect. A monthly average threshold-wind speed for resuspension was defined as 3.6 m/s. For monthly-average wind speeds less than the threshold wind speed, monthly-average airborne concentrations tended to decrease with time. A decrease was recorded between September and October. For this 4-month time period, the half-life was on the order of 50 days, corresponding to a weathering rate of 5.1 year/sup -1/.

  13. Evaluation of physical health effects due to volcanic hazards: crystalline silica in Mount St. Helens volcanic ash

    SciTech Connect

    Dollberg, D.D.; Balyard, M.L.; Smith, D.L.

    1986-03-01

    This investigation has shown that crystalline silica has been identified as being present in the Mount St. Helens volcanic ash at levels of 3 to 7 per cent by weight. This identification has been established using X-ray powder diffraction, infrared spectrophotometry, visible spectrophotometry, electron microscopy, and Laser Raman spectrophometry. Quantitative analysis by IR, XRD, and visible spectrophotometry requires a preliminary phosphoric acid digestion of the ash sample to remove the plagioclase silicate material which interferes with the determination by these methods. Electron microscopic analysis as well as Laser Raman spectrophotometric analysis of the untreated ash confirms the presence of silica and at levels found by the XRD and IR analysis of the treated samples. An interlaboratory study of volcanic ash samples by 15 laboratories confirms the presence and levels of crystalline silica. Although several problems with applying the digestion procedure were observed in this hastily organized study, all laboratories employed the digestion procedure reported the presence of crystalline silica. These results unequivocally put to rest the question of the presence of silica in the volcanic ash from eruptions of Mount St. Helens in 1980.

  14. Evaluation of physical health effects due to volcanic hazards: crystalline silica in Mount St. Helens volcanic ash.

    PubMed

    Dollberg, D D; Bolyard, M L; Smith, D L

    1986-03-01

    This investigation has shown that crystalline silica has been identified as being present in the Mount St. Helens volcanic ash at levels of 3 to 7 per cent by weight. This identification has been established using X-ray powder diffraction, infrared spectrophotometry, visible spectrophotometry, electron microscopy, and Laser Raman spectrophotometry. Quantitative analysis by IR, XRD, and visible spectrophotometry requires a preliminary phosphoric acid digestion of the ash sample to remove the plagioclase silicate material which interferes with the determination by these methods. Electron microscopic analysis as well as Laser Raman spectrophotometric analysis of the untreated ash confirms the presence of silica and at levels found by the XRD and IR analysis of the treated samples. An interlaboratory study of volcanic ash samples by 15 laboratories confirms the presence and levels of crystalline silica. Although several problems with applying the digestion procedure were observed in this hastily organized supply, all laboratories employing the digestion procedure reported the presence of crystalline silica. These results unequivocally put to rest the question of the presence of silica in the volcanic ash from eruptions of Mount St. Helens in 1980. PMID:3004241

  15. The conjoined twin sisters Helen and Judith (1701-1723) and their pictorial impact in later 18th-century science.

    PubMed

    van der Weiden, Robin M F; Clausberg, Karl

    2015-08-01

    Given the uniqueness of the Hungarian conjoined twin sisters Helen and Judith (1701–1723) and their lasting influence as an anatomical showcase if not model for mental or social deviant states, we present here a closer scrutiny of their introduction into the scientific literature of the later 18th century by analyzing depictions of the twins from 1707 onwards. PMID:26133671

  16. An Overview of the Project on the Imaging and Full-Text Retrieval of the Ava Helen and Linus Pauling Papers at the Oregon State University Libraries.

    ERIC Educational Resources Information Center

    Krishnamurthy, Ramesh S.; Mead, Clifford S.

    1995-01-01

    Presents plan of Oregon State University Libraries to convert all paper documents from the Ava Helen and Linus Pauling archives to digital format. The scope, goals, tasks and objectives set by the project coordinators are outlined, and issues such as protection of equipment, access, copyright and management are discussed. (JKP)

  17. Commentary on: "On the Need for a Specialist Service within the Generic Hospital Setting" by Robyn A. Wallace and Helen Beange (2008)

    ERIC Educational Resources Information Center

    Kerr, Michael

    2008-01-01

    This commentary discusses whether a sufficient case has been made for specialism in hospital services as a viable alternative to existing generic services. The impact of developments in specialist care such as those outlined by Robyn A. Wallace and Helen Beange should be assessed as a means of reducing inequality. In particular, model services…

  18. Spatial analysis of Mount St. Helens tephra leachate compositions: implications for future sampling strategies

    NASA Astrophysics Data System (ADS)

    Ayris, P. M.; Delmelle, P.; Pereira, B.; Maters, E. C.; Damby, D. E.; Durant, A. J.; Dingwell, D. B.

    2015-07-01

    Tephra particles in physically and chemically evolving volcanic plumes and clouds carry soluble sulphate and halide salts to the Earth's surface, ultimately depositing volcanogenic compounds into terrestrial or aquatic environments. Upon leaching of tephra in water, these salts dissolve rapidly. Previous studies have investigated the spatial and temporal variability of tephra leachate compositions during an eruption in order to gain insight into the mechanisms of gas-tephra interaction which emplace those salts. However, the leachate datasets analysed are typically small and may poorly represent the natural variability and complexity of tephra deposits. Here, we have conducted a retrospective analysis of published leachate analyses from the 18 May 1980 eruption of Mount St. Helens, Washington, analysing the spatial structure of the concentrations and relative abundances of soluble Ca, Cl, Na and S across the deposits. We have identified two spatial features: (1) concentrated tephra leachate compositions in blast deposits to the north of the volcano and (2) low S/Cl and Na/Cl ratios around the Washington-Idaho border. By reference to the bulk chemistry and granulometry of the deposit and to current knowledge of gas-tephra interactions, we suggest that the proximal enrichments are the product of pre-eruptive gas uptake during cryptodome emplacement. We speculate that the low S/Cl and Na/Cl ratios reflect a combination of compositional dependences on high-temperature SO2 uptake and preferential HCl uptake by hydrometeor-tephra aggregates, manifested in terrestrial deposits by tephra sedimentation and fallout patterns. However, despite our interrogation of the most exhaustive tephra leachate dataset available, it has become clear in this effort that more detailed insights into gas-tephra interaction mechanisms are prevented by the prevalent poor temporal and spatial representativeness of the collated data and the limited characterisation of the tephra deposits. Future

  19. Dynamic Phase Relations in Ascending Silicic Magmas: Insights from Experimental Decompression of Mount St. Helens Rhyodacite

    NASA Astrophysics Data System (ADS)

    Riker, J. M.; Blundy, J. D.; Rust, A.

    2011-12-01

    Ascent-driven degassing and crystallization play a major role in modulating the chemical and physical properties of erupting magmas. Previous experimental studies of ascent-driven crystallization have focused on instantaneous or stepped decompression, measuring a response to discrete imposed undercoolings. More recently, technical advances have enabled the study of magmas undergoing slow decompression at controlled rates. In these instances, undercooling is a variable, not a constant. Time-dependent changes in effective undercooling may generate complex textural or compositional variations as the relevant liquidus shifts and kinetically-favored phases compete for components. The challenge is to extract meaningful information from rocks that have experienced a time-integrated history of crystallization and vesiculation. To address this problem, we have performed a series of dynamic decompression experiments on a hydrous Mount St. Helens rhyodacite. Each sample was first equilibrated at conditions inferred for the shallow 1980 magma chamber (200 MPa and 880-900 °C), then isothermally decompressed at a constant rate (1-1000 MPa/hr). Charges quenched at different pressures yield syn-eruptive 'snapshots' of the decompressing system. We use these snapshots to assess how kinetics governs the stabilities of multiple phases (plagioclase, amphibole, orthopyroxene, and Fe-Ti oxides) as a function of depth and decompression rate. Our results can be qualitatively summarized by 'dynamic phase diagrams' that define the crystallizing phases in quench pressure-decompression rate space. Such diagrams are useful for two reasons: (1) they provide a means of relating observed rock textures to quench pressures and decompression rates for the simple case of continuous ascent, and (2) they identify the dominant crystallizing phases across a range of conditions. Our initial results show that, as in other silicic systems, plagioclase is often the principal crystallizing phase; however

  20. The source of infrasound associated with long-period events at mount St. Helens

    USGS Publications Warehouse

    Matoza, R.S.; Garces, M.A.; Chouet, B.A.; D'Auria, L.; Hedlin, M.A.H.; De Groot-Hedlin, C.; Waite, G.P.

    2009-01-01

    During the early stages of the 2004-2008 Mount St. Helens eruption, the source process that produced a sustained sequence of repetitive long-period (LP) seismic events also produced impulsive broadband infrasonic signals in the atmosphere. To assess whether the signals could be generated simply by seismic-acoustic coupling from the shallow LP events, we perform finite difference simulation of the seismo-acoustic wavefield using a single numerical scheme for the elastic ground and atmosphere. The effects of topography, velocity structure, wind, and source configuration are considered. The simulations show that a shallow source buried in a homogeneous elastic solid produces a complex wave train in the atmosphere consisting of P/SV and Rayleigh wave energy converted locally along the propagation path, and acoustic energy originating from , the source epicenter. Although the horizontal acoustic velocity of the latter is consistent with our data, the modeled amplitude ratios of pressure to vertical seismic velocity are too low in comparison with observations, and the characteristic differences in seismic and acoustic waveforms and spectra cannot be reproduced from a common point source. The observations therefore require a more complex source process in which the infrasonic signals are a record of only the broadband pressure excitation mechanism of the seismic LP events. The observations and numerical results can be explained by a model involving the repeated rapid pressure loss from a hydrothermal crack by venting into a shallow layer of loosely consolidated, highly permeable material. Heating by magmatic activity causes pressure to rise, periodically reaching the pressure threshold for rupture of the "valve" sealing the crack. Sudden opening of the valve generates the broadband infrasonic signal and simultaneously triggers the collapse of the crack, initiating resonance of the remaining fluid. Subtle waveform and amplitude variability of the infrasonic signals as

  1. Simulating the Initial Dynamics of the 18 May 1980 Mount St.Helens Blast

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Widiwijayanti, C.; Voight, B.; Clarke, A. B.; Neri, A.

    2008-12-01

    The initial stage of the 18 May 1980 blast at Mount St. Helens (MSH) has been simulated numerically by the 2D/3D multiphase multiparticle flow model PDAC (Neri et al., J. Geophys. Res. 108 (B4), 2003; Esposti Ongaro et al., Parallel Computing 33, 2007), to provide further insight into the fluid dynamics of this phenomenon. Initial source conditions, including the gas content, the total mass of juvenile and entrained rocks, the temperature, grain size distribution and pre-eruption pressure distribution in the lava dome have been parameterized accordingly to field evidence, available geological constraints and simple theoretical models. Simulation results suggest that the MSH blast can be characterized as an expansion phase (burst), lasting about ten seconds, followed by collapse and pyroclastic density current (PDC) phases. In the burst phase the pressure forces dominate and the flow can locally reach supersonic velocities and generate pressure waves that can be tracked by the numerical model. In the collapse and PDC phases the flow is dominantly gravity-driven and the dynamics are strongly controlled by the source geometry, vertical stratification within the flow and by the 3D topography. The simulations suggest that the severe damage observed at MSH can be explained by high dynamic pressures in gravity currents, and the rapid decrease of dynamic pressure from proximal to distal areas (and related parameters of PDC velocity and density) was largely related to rugged topography beyond the North Fork Toutle River valley. Although the source models investigated thus far represent a simplification of the actual geometry and complex sequence of initial events, we show that the explosion mechanisms are significantly robust over a wide range of initial conditions. Simulation results for MSH are also consistent with those obtained in a previous application of a similar model to the 1997 Boxing Day blast pulses at Soufriere Hills volcano (Montserrat, West Indies) (Esposti

  2. Evaluation of gas data from high-temperature fumaroles at Mount St. Helens, 1980-1982

    USGS Publications Warehouse

    Gerlach, T.M.; Casadevall, T.J.

    1986-01-01

    The Mount St. Helens fumarole gases show linear composition trends during periods of noneruptive degassing between September 1980 and October 1981. The trends are characterized by increasing H2O and decreasing CO2 and sulfur. Maximum fumarole temperatures also show a linear decrease during this period. High-temperature fumarole gases collected from the crater and dome between September 1980 and July 1982 are all H2O-rich (> 90%) with 1-10% CO2 and small amounts of H2S, SO2, H2, CO, HC, and HF. Trace amounts of COS and S2 are present, and occasional observations of minor CH4 appear to result from contamination or low-temperature reactions in sample vessels. The O2 fugacities of the gases remain near Ni-NiO during cooling. The low sulfur content of the gases obviates the need for extensive gas-rock oxygen exchange to maintain fO2's near Ni-NiO. A detailed thermodynamic analysis of 50 gas samples collected between September 1980 and December 1981 led to improved compositions for 22 samples. The gases were initially in a state of equilibrium, but disequilibrium modifications from atmospheric oxidation of H2 and, to a lesser extent, CO occurred within the upper portions of the fumarole vents. The last temperatures of equilibrium for the fumarole gases range from 800??C to 650??C and are nearly always higher than the collection temperatures. No evidence was found of disequilibrium admixture of surface waters; if such modifications of the fumarole gases occurred, the water must have been added at depth and have reequilibrated with the other gas species at magmatic or near-magmatic temperatures. The highest quality analytical data are obtained by field gas chromatograph measurements and from caustic soda bottle samples. Samples collected in evacuated bottles or by pumping through double stopcock tubes tend to be severely deficient in sulfur due to post-collection reactions between H2S and SO2. It is also necessary to infer the water content of the latter samples. ?? 1986.

  3. The SPASM Model of Seismogenic Solid-state Extrusion at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.

    2007-12-01

    The 2004-2007 eruption of Mount St. Helens (MSH) has been characterized by nearly steady extrusion of a gouge- coated plug of solid dacite and by millions of small (

  4. Separating long-term deformation cycles and atmospheric signals at Mount St. Helens using PS-InSAR

    NASA Astrophysics Data System (ADS)

    Welch, M.

    2015-12-01

    Since its eruption in 1980, Mount St. Helens has experienced multiple inflation-deflation cycles associated with dome building eruptions. During the most recent dome-building episode, which spanned 2004 to 2008, GPS recorded the transition from pre-eruptive inflation to co-eruptive deflation and a final transition back to inflation. Such observations provide important constraints on the timing and mechanics of cyclic magma recharge and extrusion. Currently, the subtle surface deformation signal at St Helens is monitored primarily by ground based geodetic techniques like GPS. Satellite-based InSAR has the potential to substantially augment these techniques by providing spatially continuous, precise measurements of surface displacements, and may also reveal other volcanic or surficial processes too localized to be detected by ground based methods. Traditional interferometry is challenging to apply to volcanoes in the Cascades. Widespread phase decorrelation caused by persistent snow cover and dense vegetation, combined with large, elevation dependent atmospheric phase delays, mask or make deformation signals difficult to detect. By applying StaMPS, a Persistent Scatterers (PS) technique, phase decorrelation is mitigated by utilizing only the pixels with the highest, statistically derived, signal to noise ratio. However, atmospheric water vapor, which delays the radar signal, remains problematic, particularly on the volcano edifice. To assess the bias imposed by the atmosphere, we perform a series of sensitivity tests using a suite of methods including several that rely on the linear or power-law correlation of phase delay to topography and knowledge of the spatial scale of the signal. We also apply methods that calculate wet and dry phase delay from atmospheric reanalysis datasets such as ERA-Interim provided by the ECMWF. SAR data from the ERS, Envisat, and ALOS satellites, along with newer datasets, are processed with these tools to create a time series spanning

  5. Fumarole emissions at Mount St. Helens volcano, June 1980 to October 1981: Degassing of a magma-hydrothermal system

    USGS Publications Warehouse

    Gerlach, T.M.; Casadevall, T.J.

    1986-01-01

    This study is an investigation of the chemical changes in the Mount St. Helens fumarole gases up to October 1981, the sources of the fumarole gases, and the stability of gas species in the shallow magma system. These problems are investigated by calculations of element compositions, thermodynamic equilibria, and magmatic volatile-hydrothermal steam mixing models. The fumarole gases are treated as mixtures of magmatic volatiles and hydrothermal steam formed by magma degassing and boiling of local waters in a dryout zone near conduit and dome magma. The magmatic volatile fraction is significant in fumaroles with temperatures in excess of the magma cracking-temperature (??? 700??C) - i.e., the temperature below which cracking is induced by thermal stresses during cooling and solidification. Linear composition changes of the fumarole gases over time appear to be the result of a steady decline in the magmatic volatile mixing fraction, which may be due to the tapping of progressively volatile-depleted magma. The maximum proportion of hydrothermal steam in the fumaroles rose from about 25-35% in September 1980 to around 50-70% by October 1981. Fractional degassing of magmatic CO2 and sulfur also contributed to the chemical changes in the fumarole gases. The steady chemical changes indicate that replenishment of the magma system with undegassed magma was not significant between September 1980 and September 1981. Extrapolations of chemical trends suggest that fumarole gases emitted at the time of formation of the first dome in mid-June 1980 were more enriched in a magmatic volatile fraction and contained a minimum of 9% CO2. Calculations show H2S is the predominant sulfur species in Mount St. Helens magma below depths of 200 m. Rapid release of gases from magma below this depth is a plausible mechanism for producing the high H2S/SO2 observed in Mount St. Helens plumes during explosive eruptions. This study suggests that dacite-andesite volcanos may emit gases richer in CO2

  6. Petrology of the 2004-2006 Mount St. Helens lava dome -- implications for magmatic plumbing and eruption triggering: Chapter 30 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Pallister, John S.; Thornber, Carl R.; Cashman, Katharine V.; Clynne, Michael A.; Lowers, Heather; Mandeville, Charles W.; Brownfield, Isabelle K.; Meeker, Gregory P.

    2008-01-01

    The question of new versus residual magma has implications for the long-term eruptive behavior of Mount St. Helens, because arrival of a new batch of dacitic magma from the deep crust could herald the beginning of a new long-term cycle of eruptive activity. It is also important to our understanding of what triggered the eruption and its future course. Two hypotheses for triggering are considered: (1) top-down fracturing related to the shallow groundwater system and (2) an increase in reservoir pressure brought about by recent magmatic replenishment. With respect to the future course of the eruption, similarities between textures and character of eruption of the 2004-6 dome and the long-duration (greater than 100 years) pre-1980 summit dome, along with the low eruptive rate of the current eruption, suggest that the eruption could continue sluggishly or intermittently for years to come.

  7. Extrusion rate of the Mount St. Helens lava dome estimated from terrestrial imagery, November 2004-December 2005: Chapter 12 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Major, Jon J.; Kingsbury, Cole G.; Poland, Michael P.; LaHusen, Richard G.

    2008-01-01

    Oblique, terrestrial imagery from a single, fixed-position camera was used to estimate linear extrusion rates during sustained exogenous growth of the Mount St. Helens lava dome from November 2004 through December 2005. During that 14-month period, extrusion rates declined logarithmically from about 8-10 m/d to about 2 m/d. The overall ebbing of effusive output was punctuated, however, by episodes of fluctuating extrusion rates that varied on scales of days to weeks. The overall decline of effusive output and finer scale rate fluctuations correlated approximately with trends in seismicity and deformation. Those correlations portray an extrusion that underwent episodic, broad-scale stick-slip behavior superposed on the finer scale, smaller magnitude stick-slip behavior that has been hypothesized by other researchers to correlate with repetitive, nearly periodic shallow earthquakes.

  8. From dome to dust: shallow crystallization and fragmentation of conduit magma during the 2004-2006 dome extrusion of Mount St. Helens, Washington: Chapter 19 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Cashman, Katharine V.; Thornber, Carl R.; Pallister, John S.

    2008-01-01

    Comparison of eruptive conditions during the 2004-6 activity at Mount St. Helens with those of other spine-forming eruptions suggests that magma ascent rates of about 10-4 m/s or less allow sufficient degassing and crystallization within the conduit to form large volcanic spines of intermediate composition (andesite to dacite). Solidification deep within the conduit, in turn, requires transport of the solid plug over long distances (hundreds of meters); resultant large strains are responsible for extensive brittle breakage and development of thick gouge zones. Moreover, similarities between gouge textures and those of ash emitted by explosions from spine margins indicate that fault gouge is the origin for the ash. As the comminution and generation of ash-sized particles was clearly a multistep process, this observation suggests that fragmentation preceded, rather than accompanied, these explosions.

  9. Remote camera observations of lava dome growth at Mount St. Helens, Washington, October 2004 to February 2006: Chapter 11 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Poland, Michael P.; Dzurisin, Daniel; LaHusen, Richard G.; Major, John J.; Lapcewich, Dennis; Endo, Elliot T.; Gooding, Daniel J.; Schilling, Steve P.; Janda, Christine G.

    2008-01-01

    Images from a Web-based camera (Webcam) located 8 km north of Mount St. Helens and a network of remote, telemetered digital cameras were used to observe eruptive activity at the volcano between October 2004 and February 2006. The cameras offered the advantages of low cost, low power, flexibility in deployment, and high spatial and temporal resolution. Images obtained from the cameras provided important insights into several aspects of dome extrusion, including rockfalls, lava extrusion rates, and explosive activity. Images from the remote, telemetered digital cameras were assembled into time-lapse animations of dome extrusion that supported monitoring, research, and outreach efforts. The wide-ranging utility of remote camera imagery should motivate additional work, especially to develop the three-dimensional quantitative capabilities of terrestrial camera networks.

  10. Mass Intrusion at Mount St. Helens (WA) Between 2010 and 2014 from Temporal Gravity Variations Mass Intrusion at Mount St. Helens (WA) Between 2010 and 2014 from Temporal Gravity Variations

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Lisowski, M.; Dzurisin, D.; Poland, M. P.

    2014-12-01

    Repeated high-precision gravity measurements made at Mount St. Helens (WA) have revealed systematic temporal variations in the gravity field several years after the 2004-2008 dome-building eruption. Changes in gravity with respect to a stable reference station 36 km NW of the volcano were measured at 10 sites in the summit region and at 4 sites far afield (10 to 36 km) from the summit in August 2010 and August 2012. After removing the gravity signal associated with changes in mass of the crater glacier and the local (perched) hydrothermal aquifer, the gravity field observed at sites near the volcano's summit significantly increased with respect to sites far from the summit (maximum change 146 ±7 μgal). The pattern of gravity increase is radially symmetrical, with a half-width around 3 km and a point of maximum change centered 1.5 km NW of the 2004-2008 lava dome. Inversion of residual gravity data using the same source geometry, depth and location inferred from geodetic data (a spheroidal source centered 7.5 km beneath the 2004-2008 dome) indicates a mass increase of about 1012 kg. For a reasonable magma density (~2250 kg/m3), the volume of magma intrusion beneath the summit region inferred from gravity exceeds the volume inferred from inversion of geodetic data, suggesting that magma compressibility and other processes are important aspects of magma storage at Mount St. Helens. A third survey will be completed in August 2014, and we will present results of those measurements in the context of the 2010-2012 gravity changes.

  11. Characterization of dissolved organic materials in surface waters within the blast zone of Mount St Helens, Washington

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, W.E.; Ceazan, M.L.; Wissmar, Robert C.

    1982-01-01

    After the May 18, 1980, eruption of Mount St Helens, the concentration of dissolved organic material in surface waters near the volcano increased significantly as a result of the destruction of the surrounding conifer forest. Low molecular weight organic compounds identified in the blast zone surface waters were derived from pyrolysis of plant and soil organic materials incorporated into pyroclastic flow, mud flow and debris avalanche deposits. A major fraction of the dissolved organic material consisted of high molecular weight, colored, organic acids that are similar in their general properties to aquatic fulvic acids found in more typical surface waters except for greater sulfur contents. The other major fraction of the dissolved organic material consisted of hydrophilic acids, which may include compounds capable of supporting heterotrophic microorganisms, and precursors in the formation of aquatic fulvic acids. The organic chemistry of blast zone surface waters will probably be greatly influenced by the May 18, 1980, eruption for many years. ?? 1982.

  12. Human radiation studies: Remembering the early years. Oral history of Oncologist Helen Vodopick, M.D., December 28, 1994

    SciTech Connect

    1995-08-01

    This report is a transcript of an interview with Dr. Helen Vodopick by representatives of the US DOE Office of Human Radiation Experiments. Dr. Vodopick was chosen for this interview because of her involvement with the Oak Ridge Institute of Nuclear Studies (ORINS) and Oak Ridge Associated Universities (ORAU) experimental cancer-therapy program involving total-body irradiation. After a short biographical sketch Dr. Vodopick relates her remembrances of the Medium-Exposure-Rate Total Body Irradiator (METBI), ORINS radioisotope tracer studies, treatment of cancer patients with the METBI, radiation treatment for leukemia patients, bone marrow treatment of leukemia, the Low-Exposure-Rate Total Body Irradiation (LETBI), treatment of radiation accident victims at ORAU, research with radioactive phosphorus and sulfur, and public opinion issues.

  13. Growth of cells in culture treated with the soluble component of volcanic ash from Mount St. Helens.

    PubMed

    Hosick, H L; Carrington, C A; Angello, J C; Zamora, P O

    1982-12-01

    Volcanic ash was collected immediately after the eruption of Mount St. Helens on May 18, 1980. This ash was extracted with water. The elemental composition of the extracted portion was determined by atomic absorption spectrometry. The aqueous extract was applied at high concentrations (up to 37.5 micrograms/ml) to non-confluent mixed cultures of mouse lung cells. Even after treatment for up to 10 days, cell number was typically unaffected by the ash extract. Cell viability was also unaltered, and no grossly observable changes were noted in the cells by light microscopy. We conclude that the water-soluble portion of the ash we tested does not markedly affect growth of the cells most at risk, those of the lung. PMID:6926312

  14. Development of a multidisciplinary plan for evaluation of the long-term health effects of the Mount St. Helens eruptions

    SciTech Connect

    Buist, A.S.; Martin, T.R.; Shore, J.H.; Butler, J.; Lybarger, J.A.

    1986-03-01

    The emphasis of this article is on the approach that was taken to evaluating the chronic or delayed effects of the volcanic eruptions of Mount St. Helens in 1980. This strategy has been very successful and may be useful as a model for addressing the possible health effects of other environmental hazards. The steps in this process were: 1) identification of the physical and physicochemical characteristics of the hazard; 2) formation of hypotheses about biologically plausible effects of the hazard on human health; and 3) development of a plan for evaluating the health effects and, were possible, for controlling or minimizing adverse health effects. The third step involved a multidisciplinary group that included public health officials, medical specialists, and research scientists, including a geologist.

  15. Ambient airborne-solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    SciTech Connect

    Sehmel, G.A.

    1981-06-01

    A major eruption of Mount St. Helens, state of Washington, USA, occurred on May 18, 1980. The resulting volcanic ash plume was transported to the east. The Hanford area, northwest of Richland, Washington, was within the southern edge of the fallout plume. Airborne solid concentrations and airborne particle size distributions were measured at two sites in the Hanford area, a southern and northern site. During the initial sampling day (May 19), the average concentration for respirable particles, < 5.5-..mu..m diameter, was 1430-..mu..g/m/sup 3/ at the southern site; the total collection was 2610-..mu..g/m/sup 3/. The respirable content of the total airborne solids was 55%. At both sites average airborne solid concentrations decreased to 10- to 20-..mu..g/m/sup 3/ in December.

  16. Fluoride distribution and biological availability in the fallout from Mount St. Helens, 18 to 21 May 1980

    SciTech Connect

    Taves, D.R.

    1980-12-19

    Concentrations of fluoride in the ash fallout in central Washington from the 18 May 1980 eruption of Mount St. Helens varied severalfold, but none are high enough to constitute any immediate hazard to animal life. The heaviest fallout (Moses Lake) contained 113 parts per million (ppm) of acid-labile fluoride, but of this only 11 ppm was water-soluble and 20 ppm was available to rats. The fluoride concentrations in the urine of cattle feeding for 4 days on hay contaminated with this ash were essentially normal. Samples of ash from other areas generally had higher concentrations of acid-labile fluoride but lower concentrations of water-soluble fluoride. The concentrations of water-soluble fluoride was inversely correlated with the coarseness of the fallout. 8 references, 1 figure, 1 table.

  17. The mount st. Helens volcanic eruption of 18 may 1980: large short-term surface temperature effects.

    PubMed

    Robock, A; Mass, C

    1982-05-01

    The surface temperature effects of the 18 May 1980 eruption of Mount St. Helens Volcano were examinedfor 1 day immediately after the eruption; 24-hour temperature differences and Model Output Statistics errors as well as the detailed temporal evolution of surface temperature at selected stations were used. During the daytime hours immediately after the eruption, the temperature was suppressed by the volcanic plume by as much as 8 degrees C. That night, low-level volcanic dust produced temperature enhancements of up to 8 degrees C. These effects quickly diminished the next day as the volcanic dust cloud dissipated and moved toward the east. The net local effect of the eruption appears to be warming, in contrast to cooling which might be expected over climatic time scales. PMID:17783309

  18. Automated detection and location of microseismicity at Mount St. Helens with a large-N geophone array

    NASA Astrophysics Data System (ADS)

    Hansen, Steven M.; Schmandt, Brandon

    2015-09-01

    In the summer of 2014 a dense array of 904 geophones was deployed at Mount St. Helens along the road and trail system within 15 km distance of the summit crater. The array recorded continuous data for approximately 2 weeks and presents an unprecedented seismic observation of an active volcano. A reverse-time imaging method is applied to short-term-average over long-term-average time series data to automatically detect and locate microseismicity. These efforts resulted in an order of magnitude increase in earthquake detections over the normal monitoring operations of the Pacific Northwest Seismic Network. Earthquake locations resolve a narrow, ≤1 km wide, vertical lineament of seismicity which extends from the surface to 4 km depth directly beneath the summit crater. This feature is interpreted as a fracture network that acts as a conduit connecting an underlying magma chamber to the surface.

  19. An incursion of dust in the southwestern United States from April 1980 eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Mathews, L. A.; Roquemore, G. R.; St.amand, P.; Gibson, J. P.

    1982-01-01

    An intrusion of volcanic dust occurred over the northern Mojave Desert, one month before the explosive eruption of 18 May 1980. Visibility was reduced to 15 to 30 miles during meteorological conditions that should have yielded a visibility in excess of 100 miles. This intrusion was documented by particle size distributions, scanning electron microscope analysis of Nuclepore filter samples, insolation measurements, observations by Navy and NASA aircraft, and meteorological data. No further incidents have been observed to date because of a lack of simultaneous volcanic activity with the particular wind patterns that existed in April. Therefore, under certain meteorological conditions, the desert of the southwestern United States could be significantly affected by volcanic ash from an eruption of Mount St. Helens.

  20. Chemistry of thermal waters and mineralogy of the new deposits at Mount St. Helens: a preliminary report

    SciTech Connect

    Dethier, D.P.; Frank, D.; Peavear, D.R.

    1980-12-01

    After May 18, 1980 eruption of Mount St. Helens, Washington, interactions between the hot deposits and shallow ground water produced ephemeral phreatic eruptions and thermal ponds and streams. In early June water and sediment samples were collected from about 20 sites in the devastated zone to study the initial alteration of the new deposits, and the effects of the eruption on water chemistry. The levels of certain trace elements in thermal waters, and whether these mineralized waters were reaching the North Fork Toutle River in appreciable quantities were studied. Collection and analysis procedures, the mineralogy of the new deposits, and the chemistry of the thermal waters are discussed. Finally, the chemistry of water from different deposits is compared, alteration reactions suggested by the water chemistry, and the mineralogy of the deposits is discussed.

  1. Explosive tephra emissions of Mount St. Helens, 1989-1991: the violent escape of magmatic gas following storms?

    USGS Publications Warehouse

    Mastin, L.G.

    1994-01-01

    From 24 August 1989 until 18 June 1991, Mount St. Helens produced at least 28 shallow, explosion-like seismic events with signatures similar to those produced by gas explosions on the dome during the mid 1980s. At least six were accompanied by violent emission of non-juvenile tephra, ejection of blocks of rock nearly 1 km from the vent, and avalanching of debris off the north side of the dome. All six confirmed emissions and most (although not all) other seismic events took place hours to days after storms. The short delay between storms and emissions suggests that the events that follow storms originate at very shallow depth, probably within the dome itself. Although the exact causal mechanism is not known, it is speculated that slope instability or accelerated growth of cooling fractures following storms may have released gas trapped within or at the base of the dome. -from Author

  2. Spatial and temporal patterns of dome extrusion during the 2004-2008 eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Salzer, J. T.; Denlinger, R. P.; Diefenbach, A. K.; Walter, T. R.

    2014-12-01

    Extensive efforts by the USGS Cascades Volcano Observatory in response to the 2004-2008 dome building eruption at Mount St. Helens recorded the extrusion of seven dacite spines. Efforts included a network of time-lapse cameras. Published studies of decimated data from these cameras show strong correlations between (long-term) extrusion velocities determined from the camera imagery and ancillary geophysical data, such as dome tilt and RSAM seismicity. However, more detailed analysis of these data should provide better constraints on physical processes behind dome extrusion. Here we apply modern computer vision techniques to explore the spatiotemporal variability and interactions occurring during spine extrusion and dome growth. Digital Image Correlation (DIC) delineates the deformation field in a series of images at sub-pixel level, and quantifies dome, talus and glacier deformation at unprecedented resolution, revealing spatiotemporal variability of the strain field on the time scale of hours. We identify sharp boundaries between the vertically extruding spine, laterally displaced material, and downward-creeping talus. The spine growth at Mount St. Helens appears locally constrained and structurally separated into distinct segments. The velocities of different dome segments are generally correlated, but displacement patterns of the talus are more complex. We identify short term fluctuations with periods of hours to days superimposed on longer term fluctuations having periods of several weeks. The short term episodes of high displacement rates are often associated with strongly degassing plumes observed in the camera imagery. Over longer periods (days to weeks), extrusion rates form a sinusoidal fluctuating pattern, marked by sharp increases and gradual decreases in velocity. These observations substantiate the correlations with seismic and geodetic data shown in previous studies, but more closely constrain the velocity fluctuations of each spine. These fluctuations

  3. Seismic scattering and absorption mapping of debris flows, feeding paths, and tectonic units at Mount St. Helens volcano

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Calvet, Marie; Watson, Keira J.; Jonkers, Art R. D.; Thomas, Christine

    2016-04-01

    Frequency-dependent peak-delay times and coda quality factors have been used jointly to separate seismic absorption from scattering quantitatively in Earth media at regional and lithospheric scale; to this end, we measure and map these two quantities at Mount St. Helens volcano. The results show that we can locate and characterise volcanic and geological structures using their unique contribution to seismic attenuation. At 3 Hz a single high-scattering and high-absorption anomaly outlines the debris flows that followed the 1980 explosive eruption, as deduced by comparison with remote sensing imagery. The flows overlay a NNW-SSE interface, separating rocks of significant varying properties down to 2-4 km, and coinciding with the Saint Helens Seismic Zone. High-scattering and high-absorption anomalies corresponding to known locations of magma emplacement follow this signature under the volcano, showing the important interconnections between its feeding systems and the regional tectonic boundaries. With frequency increasing from 6 to 18 Hz the NNW-SSE tectonic/feeding trends rotate around an axis centered on the volcano in the direction of the regional-scale magmatic arc (SW-NE). While the aseismic high-scattering region WSW of the volcano shows no evidence of high absorption, the regions of highest-scattering and absorption are consistently located at all frequencies under either the eastern or the south-eastern flank of the volcanic edifice. From the comparison with the available geological and geophysical information we infer that these anomalies mark both the location and the trend of the main feeding systems at depths greater than 4 km.

  4. Tomographic Imaging of the Magmatic System at Mount St. Helens with the iMUSH Broadband Array

    NASA Astrophysics Data System (ADS)

    Ulberg, C. W.; Creager, K. C.; Levander, A.; Kiser, E.; Moran, S. C.; Abers, G. A.; Schmandt, B.; Vidale, J. E.; Houston, H.; Denlinger, R. P.; Williams, M. C. B.

    2015-12-01

    We deployed 70 broadband seismometers in the summer of 2014 to image the velocity structure beneath Mount St. Helens (MSH), Washington, USA as part of a collaborative project called imaging Magma Under St. Helens (iMUSH). Our goal is to illuminate the MSH magmatic system, using active- and passive-source seismology, magnetotellurics and petrology. Details of the velocity structure, coupled with other geophysical and geologic data, can help constrain the geometry and physical state of any bodies of melt beneath the volcano. The broadband array has a diameter of ~100 km centered on MSH with an average station spacing of 10 km, and will remain deployed through summer 2016. It is augmented by dozens of permanent stations in the area. We determine P-wave arrival times using Antelope software and incorporate permanent network picks for the region. We use the program struct3DP to invert travel times to obtain a 3-D seismic velocity model and relocate hypocenters, computing travel times using a 3-D eikonal-equation solver. There were more than 500 useable local events during the first year of iMUSH broadband recording, which to date have provided 5000 arrival times, with the number growing rapidly. The local events include 23 active shots that were set off in the summer of 2014 as part of the iMUSH experiment, which recorded with good signal-to-noise ratios across the entire array. The absolute P times will be augmented by differential times calculated by cross-correlation between observations at the same station for nearby event pairs. These will be incorporated into our model using double-difference tomography. We anticipate that our 3D velocity model will provide the highest resolution image of volcanic plumbing at MSH thus far. Our model interpretation will incorporate results from active-source and ambient noise tomography, receiver functions, magnetotellurics, and petrology.

  5. Identifying sediment sources and quantifying rates of erosion along the North Fork Toutle River near Mount St. Helens, WA

    NASA Astrophysics Data System (ADS)

    Pitlick, J.; Meertens, C. M.; Major, J. J.; Normandeau, J.; Spicer, K.

    2010-12-01

    Traditional methods for measuring surface erosion are labor intensive and subject to large uncertainty due to the spatial variability in topography and stochastic nature of sediment transport processes. High-resolution Terrestrial Laser Scanning (TLS) measurements of surface topography have the potential to shorten the time involved in taking measurements as well as improve the accuracy of the surface change data. In this presentation we describe a pilot project that uses TLS to track erosion and deposition along the North Fork Toutle River (NFTR) near Mount St. Helens, WA. Since the May 1980 eruption of Mount St. Helens, the NFTR has been incising through the deposits of the massive debris avalanche generated at the start of the eruption. These deposits are still largely free of vegetation and present an ideal opportunity to examine erosional processes. In August, 2010, we performed initial surveys of two 0.5-km-long swaths of representative areas of the NFTR valley. Each of the two 250-300-meter diameter survey areas was scanned from multiple positions at cm-level spacing, and the resulting point cloud was georeferenced using co-located GPS. Measurements from this year's campaign will be used to develop a baseline digital elevation model (DEM) to track future changes in side-slope and valley-floor topography. Data from overlapping scans from this initial survey will be used to further evaluate the resolution of surface change measurements. In subsequent campaigns, the same areas will be mapped, and by differencing the scanned surfaces, we hope to identify prominent sediment sources and develop fine-scale quantitative estimates of localized erosion and deposition. In the long term we expect to use these surveys to test hypotheses regarding the relative contributions of sediment eroded from hillslopes versus sediment eroded from the valley floor.

  6. Doing more with short period data: Determining magnitudes from clipped and over-run seismic data at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Wellik, John J., II

    How can we calculate earthquake magnitudes when the signal is clipped and over-run? When a volcano is very active, the seismic record may saturate (i.e., the full amplitude of the signal is not recorded) or be over-run (i.e., the end of one event is covered by the start of a new event). The duration, and sometimes the amplitude, of an earthquake signal are necessary for determining event magnitudes; thus, it may be impossible to calculate earthquake magnitudes when a volcano is very active. This problem is most likely to occur at volcanoes with limited networks of short period seismometers. This study outlines two methods for calculating earthquake magnitudes when events are clipped and over-run. The first method entails modeling the shape of earthquake codas as a power law function and extrapolating duration from the decay of the function. The second method draws relations between clipped duration (i.e., the length of time a signal is clipped) and the full duration. These methods allow for magnitudes to be determined within 0.2 to 0.4 units of magnitude. This error is within the range of analyst hand-picks and is within the acceptable limits of uncertainty when quickly quantifying volcanic energy release during volcanic crises. Most importantly, these estimates can be made when data are clipped or over-run. These methods were developed with data from the initial stages of the 2004-2008 eruption at Mount St. Helens. Mount St. Helens is a well-studied volcano with many instruments placed at varying distances from the vent. This fact makes the 2004-2008 eruption a good place to calibrate and refine methodologies that can be applied to volcanoes with limited networks.

  7. Seismic scattering and absorption mapping of debris flows, feeding paths, and tectonic units at Mount St. Helens volcano

    NASA Astrophysics Data System (ADS)

    De Siena, L.; Calvet, M.; Watson, K. J.; Jonkers, A. R. T.; Thomas, C.

    2016-05-01

    Frequency-dependent peak-delay times and coda quality factors have been used jointly to separate seismic absorption from scattering quantitatively in Earth media at regional and continental scale; to this end, we measure and map these two quantities at Mount St. Helens volcano. The results show that we can locate and characterize volcanic and geological structures using their unique contribution to seismic attenuation. At 3 Hz a single high-scattering and high-absorption anomaly outlines the debris flows that followed the 1980 explosive eruption, as deduced by comparison with remote sensing imagery. The flows overlay a NNW-SSE interface, separating rocks of significant varying properties down to 2-4 km, and coinciding with the St. Helens Seismic Zone. High-scattering and high-absorption anomalies corresponding to known locations of magma emplacement follow this signature under the volcano, showing the important interconnections between its feeding systems and the regional tectonic boundaries. With frequency increasing from 6 to 18 Hz the NNW-SSE tectonic/feeding trends rotate around an axis centered on the volcano in the direction of the regional-scale magmatic arc (SW-NE). While the aseismic high-scattering region WSW of the volcano shows no evidence of high absorption, the regions of highest-scattering and absorption are consistently located at all frequencies under either the eastern or the south-eastern flank of the volcanic edifice. From the comparison with the available geological and geophysical information we infer that these anomalies mark both the location and the trend of the main feeding systems at depths greater than 4 km.

  8. Turbulent dynamics and pyroclastic flow generation during the Mount St. Helens May 18th, 1980 eruption

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.; Gardner, J. E.

    2007-12-01

    Eruption behavior at Mount St. Helens changed greatly over the course of 18 May: a buoyant, Plinian column dominated the morning phases of eruption, whereas during the early afternoon, the column partially collapsed, such that a Plinian column and non-buoyant pyroclastic flows were simultaneously erupted. Changes in the plume's turbulent flow dynamics, pyroclastic fall and flow deposit grain size distributions (GSDs), and character of the plume reflect this evolution in eruption dynamics. Optical flow velocimetry of video of the plume immediately above the crater rim indicates the sizes of the largest structures in the plume decreased from a range of ~300 to >1000 m during the morning to 150-200 m during the afternoon. These measurements agree with visual inspection of photographs showing eddy size decreasing from a range of 200 to >500 m (average 300 m) in the morning to a range of 150-350 m (average 250) in the afternoon. During this same time interval, the rotation speed of eddies (as measured by the rms values of the 2D velocity field) increased by a factor of 1.6. Furthermore, the appearance of the column changed through the course of the eruption. In the morning, the column was characterized by discontinuous, large eddies frequently depositing "curtains" of pyroclasts, and an indentation was present on the column's southern margin. In contrast, the column margins were completely covered by smaller eddies and no curtains of sedimenting pyroclasts during the afternoon. Given that during the morning most mass erupted as buoyant plumes, we have estimated total eruptive GSDs from fall deposit GSDs using known mass fluxes and plume sedimentation models. Accounting for changes in buoyant mass flux and depositional axis, the afternoon Plinian fall deposits are 0.5 to 1 phi units coarser than models predict if the bulk, buoyant GSD remained the same. Although the majority of pyroclastic flows were emplaced to the north of the crater during the afternoon, smaller

  9. Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses

    NASA Astrophysics Data System (ADS)

    Simon, A.

    2010-12-01

    The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event

  10. The Mount St. Helens Hybrid Earthquakes: Stick-slip or Resonating Pipes?

    NASA Astrophysics Data System (ADS)

    Harrington, R. M.; Brodsky, E. E.

    2006-12-01

    The goal of volcano seismology is to use the seismic signals generated in a volcano to understand the physical processes dictating eruptive behavior. Low-frequency earthquakes are arguably most poorly understood, but sources are often thought to involve fluids resonating in a conduit, or in fluid-filled cracks. Low- frequency events are often subdivided into long-period (LP) and hybrid events, because of their different frequency content; hybrids commence with a high-frequency onset, in contrast to the emergent onset of a typical LP event. There is an ambiguity as to whether hybrid sources are purely brittle failure, or brittle failure in combination with fluid pressure gradients along a shear crack, partly because the dramatic path effects seen in volcanic areas can cause recordings of brittle failure events to appear otherwise LP. The ongoing 2004-2006 Mount St. Helens eruption is largely characterized by hybrid "drumbeat" earthquakes, with high-frequency onsets and long period and duration compared to amplitude, much like those seen on Montserrat. To learn more about their sources, we use an Empirical Green's Function approach to deconvolve the path effects and obtain the source-time function for a set of events on February 26th, 2005 from high- and low-gain channels at the Cascades Chain station MIDE in the crater. We use a simple omega-squared spectrum model to fit the Moments, M0, and corner frequencies, fc, of the deconvolved spectra. The fitted moments and corner frequencies are related by slope of -2.7 \\mp 0.35 on a logarithmic plot. Earthquakes modeled by a shear dislocation on a 2-D surface are mathematically equivalent to a distribution of double-couples with total moment proportional to the average slip multiplied by fault area. Empirical observations showing moment and fault area are proportional on a logarithmic plot imply stress drops are constant, or that earthquakes are similar over a large range of magnitudes. A constant stress drop assumption

  11. Mount St. Helens Volcano Reawakens: An Overview of the First Month of Activity

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.; Sisson, T.; Scott, W. E.

    2004-12-01

    Late in the evening of 22 September 2004, a shallow (< 2 km), high-frequency earthquake swarm began beneath Mount St. Helens volcano in southwest Washington. Seismicity declined and then, on the afternoon of 25 September and the following day, rapidly increased both in rate and magnitude. This prompted the U.S. Geological Survey's Cascades Volcano Observatory to issue an alert above background level for the first time since the 1980s. Over the following week, maximum earthquake magnitudes increased to M3.5 and the first steam-and-ash emission occurred on 1 October. Four additional steam-and-ash emissions occurred through 5 October; the last and largest sent an ash plume to 15,000 feet. Seismicity then dropped to low levels and changed character to more low-frequency events where it remains as of 24 October. Throughout, earthquake locations have remained shallow. By 30 September, field observers noted localized deformation on the south side of the 1980-86 lava dome and adjacent glacier, but in retrospect the deformation probably began earlier. The volume of the deforming area, or welt, grew to 5.4 million cubic meters by 4 October, grew to 11.7 million cubic meters by 13 October, and continues growing. Gas-sensing flights began on 27 September and detected only a few point sources of magmatic gas over the next several days. By 4 October, however, emission rates for carbon dioxide were large enough to be detected in the plume and by 7 October emissions rates for carbon dioxide, hydrogen sulfide and sulfur dioxide were readily measured. Since 7 October, sulfur dioxide has remained the principal sulfur gas. Forward-Looking InfraRed (FLIR) images from 1 to 10 October recorded increasing, but well below magmatic, temperatures on the northwest flank of the welt. On 11 October, temperature measurements of 500 to 600 degrees C coincided with the appearance of a lava spine on the northwest side of the welt that heralded the beginning of exogenous dome growth. Microbeam

  12. Effects of the 1980 eruption of Mount St. Helens on the limnological characteristics of selected lakes in western Washington. Water resources investigations

    SciTech Connect

    Embrey, S.S.; Dion, N.P.

    1988-01-01

    The 1980 eruption of Mount St. Helens, Washington, afforded an opportunity to study its physical, chemical, and biological effects on lakes near the volcano and to describe two newly created lakes. From June 1980 to August 1982, water samples were collected from four lakes in the blast zone and two outside the blast zone, as well as from the two newly created lakes. Concentrations of chemical constituents were inversely related to the distance of a lake from the volcano. The recovery of physical, chemical, and biological characteristics of the lakes will depend on stabilization of the volcano and lake watersheds, dilution and water-exchange rates, and biological processes within each lake. Excluding Spirit Lake from consideration, it was estimated from the study that St. Helens Lake would be the slowest of the study lakes to recover, and Venus Lake would be the fastest.

  13. Long-term reactivity of lung and mediastinal lymph nodes following intratracheal instillation of sandy loam soil or Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Rhoads, K.; Mahaffey, J.A.

    1983-01-01

    The effects of Ritzville sandy loam soil and Mount St. Helens volcanic ash particles on the lung and mediastinal lymph nodes of Fischer rats were studied about 400 days after intratracheal instillation. A total of 22 or 77 mg of soil or ash was given in two or seven equally divided, consecutive, weekly intervals as a suspension in 0.5 ml saline. Significantly elevated levels of lipid-phosphorus and protein were found in lung lavages of rats given ash compared to those given soil. An enhanced histological degree of granulomatous reactivity, lipoproteinosis, fibrosis, and bronchiolar hyperplasia was seen in ash-exposed rats as compared to soil-exposed rats. Mediastinal lymph nodes of ash-exposed rats were 8-18 times larger than those of soil-exposed rats due to abundant cellular microgranuloma formation and early fibrosis. Mount St. Helens volcanic ash is apparently more biologically reactive than soil particles commonly found in eastern Washington.

  14. Thermal surveillance of active volcanoes using the LANDSAT-1 data collection system. Part 3: Heat discharge from Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Friedman, J. D.; Frank, D. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Two thermal anomalies, A at 2740 m altitude on the north slope, and B between 2650 and 2750 m altitude on the southwest slope at the contact of the dacite summit dome of Mount St. Helens, Washington were confirmed by aerial infrared scanner surveys between 1971 and 1973. LANDSAT 1 data collection platform 6166, emplaced at site B anomaly, transmitted 482 sets of temperature values in 1973 and 1974, suitable for estimating the differential radiatin emission as 84 W/sq m, approximately equivalent to the Fourier conductive flux of 89 W/sq m in the upper 15 cm below the surface. The differential geothermal flux, including heat loss via evaporation and convection, was estimated at 376 W/sq m. Total energy yield of Mount St. Helens probably ranges between 0.1 and 0.4 x 10 to the 6th power W.

  15. Long-term reactivity of lung and mediastinal lymph nodes following intratracheal instillation of sandy loam soil or Mount St. Helens volcanic ash.

    PubMed

    Sanders, C L; Rhoads, K; Mahaffey, J A

    1983-10-01

    The effects of Ritzville sandy loam soil and Mount St. Helens volcanic ash particles on the lung and mediastinal lymph nodes of Fischer rats were studied about 400 days after intratracheal instillation. A total of 22 or 77 mg of soil or ash was given in two or seven equally divided, consecutive, weekly intervals as a suspension in 0.5 ml saline. Significantly elevated levels of lipid-phosphorus and protein were found in lung lavages of rats given ash compared to those given soil. An enhanced histological degree of granulomatous reactivity, lipoproteinosis, fibrosis, and bronchiolar hyperplasia was seen in ash-exposed rats as compared to soil-exposed rats. Mediastinal lymph nodes of ash-exposed rats were 8-18 times larger than those of soil-exposed rats due to abundant cellular microgranuloma formation and early fibrosis. Mount St. Helens volcanic ash is apparently more biologically reactive than soil particles commonly found in eastern Washington. PMID:6617611

  16. Zircon from Swift Creek stage eruptions records the assembly and evolution of an intrusive magmatic complex beneath Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Flanagan, D. M.; Claiborne, L. L.; Miller, C. F.; Clynne, M. A.; Wooden, J. L.

    2009-12-01

    We employed U-series geochronology and trace element analyses of zircon from the Swift Creek stage (16-10 ka) of Mount St. Helens to obtain time-temperature-composition records of the melts from which these crystals grew. This focused study of samples from eight eruptive units within this relatively brief interval documents ~250 k.y. of assembly and evolution of an intrusive complex beneath the volcano. We suggest that, similar to large-scale batholiths, small-scale volcanic systems accumulate in small increments over prolonged periods of time (105-106 yrs.). The majority of U-Th model ages for zircons from Swift Creek stage eruptive units range from tens to hundreds of thousands of years before eruption and only a small portion (<10%) fall within error of sample eruption ages. Most units contain multiple populations of crystallization ages that span on the order of 105 years, and although each sample contains a unique combination of populations, similar ages recur in multiple samples. We infer that Swift Creek zircons grew episodically, with periods of crystallization occurring at ~26, 39, 62, 103, and 168 ka. Many analytical spots also exhibit ages <16 ka and >200 ka, but these may not represent single, coherent populations. Application of the Ti-in-zircon thermometer yields zircon crystallization temperatures below the eruption temperatures of the final host magmas for reasonable SiO2 and TiO2 activities. There are no major geochemical distinctions among analyses of zircon grains from different Swift Creek samples, but older analytical spots (>~100 ka) typically show evidence of having grown from cooler, more evolved melts (i.e., higher Hf and Yb/Nd, lower crystallization temperature and Th/U) than younger analytical spots. Individual zircon crystals exhibit fluctuations in trace element signatures from the centers to the edges of grains and the pattern of variation varies markedly from grain to grain, even within zircons from the same sample. Our results

  17. Extreme Decompression-induced Crystallization During the 2004-present Eruption of Mount St. Helens Implications for Shallow Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Pallister, J. S.; Thornber, C. R.

    2006-12-01

    Decompression-induced crystallization may control both the ascent rate and eruption style of hydrous magmas. While rapid magma evacuation accompanying plinian eruptions can transfer magma from storage regions to the surface with little modification other than degassing, slow to moderate rates of magma ascent permit efficient degassing and crystallization of both phenocryst (particularly plagioclase) and groundmass phases. In the extreme, very slow magma ascent leads to complete solidification of magma within the conduit, forming either plugs or large spines. Seven such spines extruded from Mount St. Helens from 2004 to present are remarkable for their carapaces of striated fault gouge. Examination of individual outcrops shows transitions from competent flow banded dacite to breccia, cataclasite, to finely comminuted and variably consolidated gouge. Field, hand specimen, and thin section observations of these cataclastic dome facies provide new constraints on interactions between rates of magma ascent, degassing, crystallization, and brittle fragmentation, interactions that control the dynamics of lava extrusion. Within the gouge zone, dome fragments are holocrystalline as the result of complete solidification along conduit margins prior to brittle fragmentation. Sequential breakage along the margin then created zones of breccia, cataclasite, and powdery fault gouge. Continued slip created narrow slickenside planes within the gouge that comprise thin (1 mm) zones of foliated ultracataclasite. The grain size reduction along these slip zones, the entrainment of shattered grains into foliated bands, and the rounding and abrasion of larger clasts outside the slickenside planes, show that the gouge zone developed as the result of large shear strains along the conduit margin. This inference is reasonable given a solidification depth of 400-500 m (estimated from experimental phase relations), above which brittle deformation was concentrated along the conduit margin. Near

  18. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    NASA Astrophysics Data System (ADS)

    Salzer, J. T.; Thelen, W. A.; James, M. R.; Walter, T. R.; Moran, S. C.; Denlinger, R. P.

    2015-12-01

    The morphology of a volcanic lava dome and its rate of change play key roles in the estimation of dome stability. While long term variations of dome morphology can be quantified using aerial remote sensing, changes over shorter time scales and smaller spatial scales are more difficult to determine. However, intermittent destabilization of the dome, in particular on flanks of the domes, can be significant. This study focuses on short term deformation associated with earthquakes and tremor at Mount St. Helens, observed over a 6 week period in the summer of 2006. We use Digital Image Correlation (DIC) to compute the displacement field between successive optical images acquired by multiple fixed cameras with clear views of the dome. The results of the these calculations are compared to the occurrence of seismic events. A systematic time-series DIC analysis of image pairs showed no sharp changes in the dome morphology during periods without seismic events. However, the results reveal that the steady dome growth at Mount St. Helens was interrupted by short term displacements reaching magnitudes on the order of a meter. These displacements are only observed in association with low frequency, large magnitude seismic events, followed by tremor with frequencies between 5 Hz and likely exceeding 30 Hz. For selected events that coincide with the timing of the acquisition of an accurate DEM of the crater floor, we reproject the displacement fields obtained from two cameras onto the topography. This enables 3D displacement vectors to be derived, showing that the co-seismic deformation is marked by subsidence of the dome in a segmented fashion, the central region displaying mainly vertical motion, while the displacements on the talus are more slope-parallel. The exact relationship between the recorded seismic energy and the observed deformation of the dome can not be resolved because the cameras were only sampling every 15 - 60 minutes. However, our analysis suggests that the

  19. Methane production and oxidation in lakes impacted by the May 18, 1980 Eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Lilley, Marvin D.; Baross, John A.; Dahm, Clifford N.

    1988-12-01

    The concentrations of CH4 and CH4 oxidation rates were measured in lakes impacted by the May 18, 1980 eruption of Mount St. Helens. The highest CH4 concentrations were recorded during the first summer after the eruption and ranged in surface waters from 5 μM in the moderately impacted Ryan Lake to 28 μM in the heavily impacted North Coldwater Lake. At depths below the oxic/anoxic interface, CH4 levels reached 250 μM in North Coldwater Lake, 184 μM in Spirit Lake, 70 μM in Castle Creek Lake, and 60 μM in Ryan Lake. The CH4 flux measurements from these lakes during the summer following the May 18, 1980 eruption were the highest ever recorded in lakes with ranges of 1.1-2.9 mmol CH4 m-2 d-1 in the light to moderately impacted McBride and Ryan Lakes to ranges of 17.4-25.3 mmol CH4 m-2 d-1 in the heavily impacted Castle Creek, North Coldwater, and Spirit Lakes. Evidence of CH4 oxidation was seen in all of the lakes during the summer of 1981, and rates of CH4 oxidation using 14C-CH4 were measured in Spirit Lake from 1982 to 1986. The highest rates of CH4 oxidation measured were during the summer stratification and ranged from 50 to 150 nmol CH4 oxidized L-1 d-1. Methane oxidation rates were measured in waters having oxygen concentrations less than 100 μM with highest activity occurring at concentrations of 30-60 μM. Spirit Lake samples taken during 1986 showed a marked reduction in the levels of CH4. This has corresponded with a marked reduction in the levels of dissolved organic material in the lake and an apparent decline in sedimentary methanogenesis. The lakes heavily impacted by the eruption of Mount St. Helens, while having gone through a 2-3 year period of eutrophy following the massive input of organic wood debris and inorganic nutrients associated with ash and pyroclastic materials, are presently rapidly returning to preeruption conditions characteristic of oligotrophic, subalpine lakes.

  20. Long-term autonomous volcanic gas monitoring with Multi-GAS at Mount St. Helens, Washington, and Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.

    2015-12-01

    In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.

  1. Low-Cost Photogrammetric Technique Used to Measure Dome Growth at Mount St. Helens Volcano, 2007-2007

    NASA Astrophysics Data System (ADS)

    Diefenbach, A. K.; Crider, J. G.; Schilling, S. P.; Dzurisin, D.

    2007-12-01

    We describe a low-cost application of digital photogrammetry using commercial grade software, an off-the-shelf digital camera, a laptop computer and oblique photographs to reconstruct volcanic dome morphology during the on-going eruption at Mount St. Helens, Washington. Renewed activity at Mount St. Helens provides a rare opportunity to devise and test new methods for better understanding and predicting volcanic events, because the new method can be validated against other observations on this well-instrumented volcano. Uncalibrated, oblique aerial photographs (snap shots) taken from a helicopter are the raw data. Twelve sets of overlapping digital images of the dome taken during 2004-2007 were used to produce digital elevation models (DEMs) from which dome height, eruption volume and extrusion rate can be derived. Analyses of the digital images were carried out using PhotoModeler software, which produces three dimensional coordinates of points identified in multiple photos. The steps involved include: (1) calibrating the digital camera using this software package, (2) establishing control points derived from existing DEMs, (3) identifying tie points located in each photo of any given model date, and (4) identifying points in pairs of photos to build a three dimensional model of the evolving dome at each photo date. Text files of three-dimensional points encompassing the dome at each date were imported into ArcGIS and three-dimensional models (triangulated irregular network or TINs) were generated. TINs were then converted to 2 m raster DEMs. The evolving morphology of the growing dome was modeled by comparison of successive DEMs. The volume of extruded lava visible in each DEM was calculated using the 1986 pre-eruption crater floor topography as a basal surface. Results were validated by comparing volume measurements derived from traditional aerophotogrammetric surveys run by the USGS Cascades Volcano Observatory. Our new "quick and cheap" technique yields

  2. Re-examination of crystal ages in recent Mount St. Helens lavas: implications for magma reservoir processes

    NASA Astrophysics Data System (ADS)

    Cooper, Kari M.; Reid, Mary R.

    2003-08-01

    U-series data for recent Mount St. Helens lavas suggest that crystallization preceded eruption by more than 0.5 ka but are complicated by possible evidence of crystal recycling and/or addition of radium to the liquid after crystallization. We report new ion and electron microprobe trace- and major-element data for plagioclase and pyroxene in these recent Mount St. Helens lavas and use these data to reassess 226Ra-230Th crystal ages by taking into account differences in the partitioning behavior of radium and barium and the effects of impurities in mineral separates. Revised 226Ra-230Th model crystallization ages are ∼2-4 ka for plagioclase (with the exception of the 1982 dacite) and ∼0.15-5.7 ka for pyroxene. In contrast to previous interpretations, no late-stage addition of Ra to the liquid after precipitation of the minerals is required. The variability of Ba concentrations measured in plagioclase is too large to be consistent with progressive crystallization from the same liquid or with diffusive re-equilibration of xenocrysts with a new host liquid. Ba heterogeneity limits the residence time of the crystals in a magma at high temperatures and also suggests that in most cases Ra-Th ages have not been significantly modified by Ra diffusion into or out of the crystals. High (226Ra)/Ba in plagioclase in the 1982 dacite relative to the host liquid likely reflects crystallization processes that precluded bulk crystal-liquid chemical equilibrium. One possibility is that of growth entrapment of surface enrichments during rapid crystallization, which could lead to less discrimination between Ra and Ba than predicted by calculated bulk partition coefficients. 226Ra-230Th crystal ages for the Castle Creek andesite and basalt that are younger than 230Th-238U ages of the same crystals could be explained by mixing of crystals into melts with different 230Th/232Th ratios, by combinations of older and younger crystal growth within the same magma, or, for the basalt, by

  3. Spatial trends in S and Cl in ash leachates of the May 18th, 1980 eruption of Mt. St Helens

    NASA Astrophysics Data System (ADS)

    Ayris, Paul M.; Delmelle, Pierre; Durant, Adam J.; Damby, David E.; Maters, Elena C.

    2014-05-01

    It has long been known that surficial deposits of salts and acids on volcanic ash particles derive from interactions of ash with sulphur and halide species within the eruption plume and volcanic cloud. These compounds are mobilised as ash particles are wetted, and beneficial or detrimental environmental and health impacts may be induced where the most concentrated solutions are produced. However, limited mechanistic understanding of gas-ash interactions currently precludes prediction of the spatial distribution or variation in leachate chemistry and concentration following an eruption. Sampling and leachate analysis of freshly-fallen ash therefore offers the sole method by which such variations can be observed. Previous ash leachate studies often involve a limited number of ash samples, and utilise a 'one-dimensional' analysis that considers variation in terms of absolute distance from the source volcano. Here, we demonstrate that extensive sampling and a 'two-dimensional' analysis can uncover more complex spatial trends. We compiled over 358 leachate compositions from the May 18th 1980 eruption of Mt. St. Helens. Of the water-extracted leachates, only 95 compositions from ash sampled at 45 localities between 35 and 1129 km from the volcano are sufficiently documented to be retrospectively comparable. To consider the effects of intra-deposit variability, we calculated average concentrations of leachate data within 11×22 km grid cells across the region, and defined a data quality parameter to reflect confidence in the derived values. To investigate any dependence of leachate composition on the grain size distribution, we generated an interpolated map of geometric specific surface area variation across the deposit, normalising ash leachate data to the calculated specific surface area at the corresponding sampling location. The data treatment identifies S and Cl enrichments in proximal blast deposits; relatively constant Cl concentrations across the ashfall deposits

  4. Multiphase petrography of volcanic rocks using element maps: a method applied to Mount St. Helens, 1980-2005

    NASA Astrophysics Data System (ADS)

    Muir, D. D.; Blundy, J. D.; Rust, A. C.

    2012-07-01

    Quantitative textural analyses including crystal size distributions (CSDs) provide insights into crystallisation kinetics of magmatic systems. Investigations of volcanic crystal textures often rely on greyscale variations on backscattered electron images to identify crystal phases, which must then be thresholded and/or traced manually, a laborious task, and investigations are typically restricted to a single crystal phase. A method is presented that uses energy-dispersive X-ray element maps to generate textural data. Each pixel is identified as a crystal phase, glass or vesicle according to relative chemical composition enabling concurrent acquisition of multiphase CSD, crystallinity and mineral mode data. Data processing is less time intensive for the operator but considerable instrument time is required to generate element maps. The method is applied to 17 dacite samples from the 1980-1986 and 3 from the 2004-2005 eruptive periods of Mount St. Helens volcano (USA) to provide quantitative insights into multiphase textural evolution. All of the CSDs are curved and concave-up in the standard CSD plot with curvature increasing with plagioclase content. To facilitate comparisons with previous studies, CSDs for microlites (<50 μm length crystals) are approximated as straight lines. The line intercepts and slopes provide information on n 0 (nucleation density) and characteristic length or Gτ (the product of growth rate ( G) and residence time ( τ)), respectively. These parameters, as well as the total groundmass crystallinity, show distinct differences between explosive deposits from summer 1980 and post-summer 1980 domes. Post-summer 1980 microlite n 0 values are mostly at the lower end of the range of those measured for summer 1980 samples. Total groundmass crystallinities during summer 1980 are between 10 and 30 vol.%, whereas post-summer 1980 crystallinity increases to between 39 and 51 vol.%. The range of n 0 values is similar to those previously published for

  5. Scattering and absorption mapping of tectonic and feeding structures under the pre-eruptive Mount St. Helens volcano.

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Calvet, Marie; Thomas, Christine

    2015-04-01

    Knowing how seismic waves lose their energy in space and frequency is both critical for understating volcanic structures and important to detect eventual changes in their seismic and volcanic activity. We measure both the peak-delay time and the coda quality factor on seismic envelopes recorded at Mount St. Helens volcano between 2000 and 2003, just before its 2004 explosive eruption. By the 2D mapping of these two frequency-dependent quantities we obtain S-wave scattering and absorption maps in the pre-eruptive phase of the volcano. We use a 2D K-means cluster analysis to highlight correlations in the frequency-dependent spatial patterns and interpret the results in terms of tectonic and feeding structures. The transition between the high-velocity and high-scattering Siletz terrane and the low-velocity and high-absorption Cascade arc crust is a persistent signature in the entire frequency range. At high frequencies, we observe strong correlation between high-scattering, high-absorption, and high P-wave heterogeneity (this last tomographically derived between depths of 0 and 10 km). In our interpretation, this correlation is a direct consequence of resonance effects, induced by the presence of melt and fluid inclusions as well as residuals of previous eruptions. The area of maximum heterogeneity is located south-south-west of the central crater: the region shows selective high absorption characteristics at 6 Hz only. If this supports the presence of a previously-inferred aseismic magma chamber intersecting the south-south-western flank of the volcano, the selectivity suggests a depth extension of the magma chamber lower than 1 km. The most important high-scattering and high-absorption signature at high frequencies remains a NNW-SSE suture crossing the volcanic cone and parallel to the St. Helens Seismic Zone. The trend confirms the persistent major role of the main direction of regional structural stress in the uprise of magma/fluid filled materials in the first

  6. Chemical and Hydrogen Isotope Compositions of Amphibole Phenocrysts in 1980 - 1986 and 2005 Mount St. Helens Eruption Products

    NASA Astrophysics Data System (ADS)

    Underwood, S. J.; Feeley, T. C.

    2006-12-01

    To better understand transient disequilibria processes in the shallow volcanic plumbing system beneath Mount St. Helens immediately prior to and during the eruptive phases of 1980 - 1986 and 2005, we determined chemical compositions and deuterium/protium (D/H) ratios of amphibole phenocrysts from dacitic volcanic rocks. The sample suite includes: (1) May 18, 1980, lateral blast lithic blocks representing the pre-eruptive cryptodome, white pumice lapilli in the Plinian fallout deposit and pumice blocks in pyroclastic flow deposits; (2) pumiceous and lithic blocks from pyroclastic flow deposits emplaced between June - October 1980; (3) 1982 - 1986 dome lavas; (4) gabbroic inclusions and (5) 2005 dome dacite. In addition, groundmass D/H ratios and water contents were determined where possible and magmatic temperatures and oxygen fugacities for samples were derived from electron microprobe analyses of coexisting Fe-Ti oxides. Key results include the following: (1) The rapid ascent and quench upon eruption of the May 18, 1980, white pumice preserved pristine phenocryst amphibole δD and water contents [baseline δDVSMOW = -57 ‰, 2 wt. % H2O]; trajectories formed by amphibole phenocrysts in rocks from succeeding eruptions project to this composition through at least 2005. (2) Shallow storage of the 1980 cryptodome magma over several weeks prior to May 18 resulted in lower amphibole δD values (-80 to -70 ‰) and water contents (1.6 wt.%) principally via dehydration. (3) Magmatic degassing resulted in dramatic isotopic disequilibrium between amphibole phenocrysts and groundmass δD. Some groundmass samples also show significant rehydration from contact with meteoric water. (4) Amphibole phenocrysts from pyroclastic flow deposits erupted in the mid- to late afternoon of May 18, 1980, have elevated δD values and Fe3+/Fe2+ ratios and lower water contents as the dehydroxylation process of dehydrogenation first appears. The magnitude of dehydrogenation intensifies (up to

  7. Managing public and media response to a reawakening volcano: lessons from the 2004 eruptive activity of Mount St. Helens: Chapter 23 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Frenzen, Peter M.; Matarrese, Michael T.

    2008-01-01

    Volcanic eruptions and other infrequent, large-scale natural disturbances pose challenges and opportunities for public-land managers. In the days and weeks preceding an eruption, there can be considerable uncertainty surrounding the magnitude and areal extent of eruptive effects. At the same time, public and media interest in viewing developing events is high and concern for public safety on the part of local land managers and public safety officials is elevated. Land managers and collaborating Federal, State, and local officials must decide whether evacuations or restrictions to public access are necessary, the appropriate level of advance preparation, and how best to coordinate between overlapping jurisdictions. In the absence of a formal Federal or State emergency declaration, there is generally no identified source of supplemental funding for emergency-response preparation or managing extraordinary public and media response to developing events. In this chapter, we examine responses to escalating events that preceded the 2004 Mount St. Helens eruption and changes in public perception during the extended period of the largely nonexplosive, dome-building eruption that followed. Lessons learned include the importance of maintaining up-to-date emergency-response plans, cultivating close working relationships with collaborating agencies, and utilizing an organized response framework that incorporates clearly defined roles and responsibilities and effective communication strategies.

  8. Near-real-time information products for Mount St. Helens -- tracking the ongoing eruption: Chapter 3 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Qamar, Anthony I.; Malone, Stephen; Moran, Seth C.; Steele, William P.; Thelen, Weston A.

    2008-01-01

    The rapid onset of energetic seismicity on September 23, 2004, at Mount St. Helens caused seismologists at the Pacific Northwest Seismic Network and the Cascades Volcano Observatory to quickly improve and develop techniques that summarized and displayed seismic parameters for use by scientists and the general public. Such techniques included webicorders (Web-based helicorder-like displays), graphs showing RSAM (real-time seismic amplitude measurements), RMS (root-mean-square) plots, spectrograms, location maps, automated seismic-event detectors, focal mechanism solutions, automated approximations of earthquake magnitudes, RSAM-based alarms, and time-depth plots for seismic events. Many of these visual-information products were made available publicly as Web pages generated and updated routinely. The graphs and maps included short written text that explained the concepts behind them, which increased their value to the nonseismologic community that was tracking the eruption. Laypeople could read online summaries of the scientific interpretations and, if they chose, review some of the basic data, thereby providing a better understanding of the data used by scientists to make interpretations about ongoing eruptive activity, as well as a better understanding of how scientists worked to monitor the volcano.

  9. Use of thermal infrared imaging for monitoring renewed dome growth at Mount St. Helens, 2004: Chapter 17 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Schneider, David J.; Vallance, James W.; Wessels, Rick L.; Logan, Matthew; Ramsey, Michael S.

    2008-01-01

    A helicopter-mounted thermal imaging radiometer documented the explosive vent-clearing and effusive phases of the eruption of Mount St. Helens in 2004. A gyrostabilized gimbal controlled by a crew member housed the radiometer and an optical video camera attached to the nose of the helicopter. Since October 1, 2004, the system has provided thermal and video observations of dome growth. Flights conducted as frequently as twice daily during the initial month of the eruption monitored rapid changes in the crater and 1980-86 lava dome. Thermal monitoring decreased to several times per week once dome extrusion began. The thermal imaging system provided unique observations, including timely recognition that the early explosive phase was phreatic, location of structures controlling thermal emissions and active faults, detection of increased heat flow prior to the extrusion of lava, and recognition of new lava extrusion. The first spines, 1 and 2, were hotter when they emerged (maximum temperature 700-730°C) than subsequent spines insulated by as much as several meters of fault gouge. Temperature of gouge-covered spines was about 200°C where they emerged from the vent, and it decreased rapidly with distance from the vent. The hottest parts of these spines were as high as 500-730°C in fractured and broken-up regions. Such temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques, as such features are smaller than pixels in satellite images.

  10. Broadband characteristics of earthquakes recorded during a dome-building eruption at Mount St. Helens, Washington, between October 2004 and May 2005: Chapter 5 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Horton, Stephen P.; Norris, Robert D.; Moran, Seth C.

    2008-01-01

    From October 2004 to May 2005, the Center for Earthquake Research and Information of the University of Memphis operated two to six broadband seismometers within 5 to 20 km of Mount St. Helens to help monitor recent seismic and volcanic activity. Approximately 57,000 earthquakes identified during the 7-month deployment had a normal magnitude distribution with a mean magnitude of 1.78 and a standard deviation of 0.24 magnitude units. Both the mode and range of earthquake magnitude and the rate of activity varied during the deployment. We examined the time domain and spectral characteristics of two classes of events seen during dome building. These include volcano-tectonic earthquakes and lower-frequency events. Lower-frequency events are further classified into hybrid earthquakes, low-frequency earthquakes, and long-duration volcanic tremor. Hybrid and low-frequency earthquakes showed a continuum of characteristics that varied systematically with time. A progressive loss of high-frequency seismic energy occurred in earthquakes as magma approached and eventually reached the surface. The spectral shape of large and small earthquakes occurring within days of each other did not vary with magnitude. Volcanic tremor events and lower-frequency earthquakes displayed consistent spectral peaks, although higher frequencies were more favorably excited during tremor than earthquakes.

  11. Generation of pyroclastic flows and surges by hot-rock avalanches from the dome of Mount St. Helens volcano, USA

    USGS Publications Warehouse

    Mellors, R.A.; Waitt, R.B.; Swanson, D.A.

    1988-01-01

    Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2-3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard. ?? 1988 Springer-Verlag.

  12. Rock fracture as a precursor to lava dome eruptions at Mount St Helens from June 1980 to October 1986

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kilburn, C. R. J.; Sammonds, P. R.

    2007-04-01

    Following its plinian eruption on 18 May 1980, Mount St Helens (Washington State, USA) entered a period of intermittent lava-dome extrusion until 1986. Renewed extrusion was frequently preceded by accelerating rates of seismicity, with more precursory seismicity observed prior to eruptions later in the sequence. Here the failure forecasting method (FFM) is used to investigate changes in the observed rate of volcano tectonic (VT) seismicity. The analysis indicates that: (1) all VT crises resulted in an eruption within 3 weeks (usually less than 10 days), (2) the majority of eruptions had VT precursors, and (3) patterns of precursory seismicity showed fluctuations about the ideal model trend. Thus, although these seismic events could be used to warn of an impending eruption, specific forecasts were subject to an uncertainty of weeks or more. It is proposed that: (1) increased seismicity prior to later eruptions is a result of a larger and more solidified dome acting as a greater impediment to magma ascent; (2) the consistency of seismic swarms resulting in an eruption indicates that stresses high enough to initiate fracturing in the country rock and lava dome carapace were only achieved once the approach to an eruption had already begun; and (3) discrepancies between models of accelerating rock fracture and the observed seismicity may arise due to a significant amount of the rocks deforming through ductile mechanisms rather than seismogenic fracture.

  13. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    SciTech Connect

    Mills, H.H. )

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots of this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.

  14. Large-scale magnetic field perturbation arising from the 18 May 1980 eruption from Mount St. Helens, Washington

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1989-01-01

    A traveling magnetic field disturbance generated by the 18 may 1980 eruption of Mount St. Helens at 1532 UT was detected on an 800-km linear array of recording magnetometers installed along the San Andreas fault system in California, from San Francisco to the Salton Sea. Arrival times of the disturbance field, from the most northern of these 24 magnetometers (996 km south of the volcano) to the most southern (1493 km S23?? E), are consistent with the generation of a traveling ionospheric disturbance stimulated by the blast pressure wave in the atmosphere. The first arrivals at the north and the south ends of the array occurred at 26 and 48 min, respectively, after the initial eruption. Apparent average wave velocity through the array is 309 ?? 14 m s-1 but may have approached 600 m s-1 close to the volcano. The horizontal phase and the group velocity of ??? 300 m s-1 at periods of 70-80 min, and the attenuation with distance, strongly suggest that the magnetic field perturbations at distances of 1000-1500 km are caused by gravity mode acoustic-gravity waves propagating at F-region heights in the ionosphere. ?? 1989.

  15. The Effect of Consumers and Mutualists of Vaccinium membranaceum at Mount St. Helens: Dependence on Successional Context

    PubMed Central

    Yang, Suann; Jongejans, Eelke; Yang, Sylvia; Bishop, John G.

    2011-01-01

    In contrast to secondary succession, studies of terrestrial primary succession largely ignore the role of biotic interactions, other than plant facilitation and competition, despite the expectation that simplified interaction webs and propagule-dependent demographics may amplify the effects of consumers and mutualists. We investigated whether successional context determined the impact of consumers and mutualists by quantifying their effects on reproduction by the shrub Vaccinium membranaceum in primary and secondary successional sites at Mount St. Helens (Washington, USA), and used simulations to explore the effects of these interactions on colonization. Species interactions differed substantially between sites, and the combined effect of consumers and mutualists was much more strongly negative for primary successional plants. Because greater local control of propagule pressure is expected to increase successional rates, we evaluated the role of dispersal in the context of these interactions. Our simulations showed that even a small local seed source greatly increases population growth rates, thereby balancing strong consumer pressure. The prevalence of strong negative interactions in the primary successional site is a reminder that successional communities will not exhibit the distribution of interaction strengths characteristic of stable communities, and suggests the potential utility of modeling succession as the consequence of interaction strengths. PMID:22028808

  16. Progress in Improving the Accuracy of Hugoniot Equation-of-State Measurements at the AWE Helen Laser.

    NASA Astrophysics Data System (ADS)

    Rothman, Stephen; Evans, Andrew; Graham, Peter; Horsfield, Colin

    1998-11-01

    For several years we have been conducting a series of equation-of-state (EOS) experiments using the Helen laser at AWE with the aim of an accuracy of 1% in shock velocity measurements(A.M. Evans, N.J. Freeman, P. Graham, C.J. Horsfield, S.D. Rothman, B.R. Thomas and A.J. Tyrrell, Laser and Particle Beams, vol. 14, no. 2, pp. 113-123, 1996.). Our best results to date are 1.2% in velocity on copper and aluminium double-step targets which lead to 4% in copper principal Hugoniot pressures. The accuracy in pressure depends not only on two measured shock velocities but also target density and the EOS of Al which is used here as a standard. In order to quantify sources of error and to improve accuracy we have measured the preheat-induced expansion of target surfaces using a Michelson interferometer. Analysis of streaks from this has also given reflectivity measurements. We are also investigating the use of a shaped laser pulse designed to give constant pressure for 2.5ns which will reduce the fractional errors in both step transit time and height by allowing the use of a thicker step.

  17. Effect of temperature on the permeability of lava dome rocks from the 2004-2008 eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Gaunt, H. Elizabeth; Sammonds, Peter R.; Meredith, Philip G.; Chadderton, Amy

    2016-04-01

    As magma ascends to shallow levels in the volcanic conduit, volatile exsolution can produce a dramatic increase in the crystal content of the magma. During extrusion, low porosity, highly crystalline magmas are subjected to thermal stresses which generate permeable microfracture networks. How these networks evolve and respond to changing temperature has significant implications for gas escape and hence volcano explosivity. Here, we report the first laboratory experimental study on the effect of temperature on the permeability of lava dome rocks under environmental conditions designed to simulate the shallow volcanic conduit and lava dome. Samples were collected for this study from the 2004-2008 lava dome eruption of Mount St. Helens (Washington State, USA). We show that the evolution of microfracture networks, and their permeability, depends strongly on temperature changes. Our results show that permeability decreases by nearly four orders of magnitude as temperature increases from room temperature to 800 °C. Above 800 °C, the rock samples become effectively impermeable. Repeated cycles of heating leads to sample compaction and a reduction in fracture density and therefore a decrease in permeability. We argue that changes in eruption regimes from effusive to explosive activity can be explained by strongly decreasing permeability caused by repeated heating of magma, conduit walls and volcanic plugs or domes. Conversely, magma becomes more permeable as it cools, which will reduce explosivity.

  18. Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Diefenbach, Angela K.; Crider, Juliet G.; Schilling, Steve P.; Dzurisin, Daniel

    2012-01-01

    We describe a low-cost application of digital photogrammetry using commercially available photogrammetric software and oblique photographs taken with an off-the-shelf digital camera to create sequential digital elevation models (DEMs) of a lava dome that grew during the 2004–2008 eruption of Mount St. Helens (MSH) volcano. Renewed activity at MSH provided an opportunity to devise and test this method, because it could be validated against other observations of this well-monitored volcano. The datasets consist of oblique aerial photographs (snapshots) taken from a helicopter using a digital single-lens reflex camera. Twelve sets of overlapping digital images of the dome taken during 2004–2007 were used to produce DEMs and to calculate lava dome volumes and extrusion rates. Analyses of the digital images were carried out using photogrammetric software to produce three-dimensional coordinates of points identified in multiple photos. The evolving morphology of the dome was modeled by comparing successive DEMs. Results were validated by comparison to volume measurements derived from traditional vertical photogrammetric surveys by the US Geological Survey Cascades Volcano Observatory. Our technique was significantly less expensive and required less time than traditional vertical photogrammetric techniques; yet, it consistently yielded volume estimates within 5% of the traditional method. This technique provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.

  19. Changes in seismic velocity during the first 14 months of the 2004-2008 eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J.; Thelen, W.; Moran, S. C.

    2015-09-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  20. The effect of consumers and mutualists of Vaccinium membranaceum at Mount St. Helens: dependence on successional context.

    PubMed

    Yang, Suann; Jongejans, Eelke; Yang, Sylvia; Bishop, John G

    2011-01-01

    In contrast to secondary succession, studies of terrestrial primary succession largely ignore the role of biotic interactions, other than plant facilitation and competition, despite the expectation that simplified interaction webs and propagule-dependent demographics may amplify the effects of consumers and mutualists. We investigated whether successional context determined the impact of consumers and mutualists by quantifying their effects on reproduction by the shrub Vaccinium membranaceum in primary and secondary successional sites at Mount St. Helens (Washington, USA), and used simulations to explore the effects of these interactions on colonization. Species interactions differed substantially between sites, and the combined effect of consumers and mutualists was much more strongly negative for primary successional plants. Because greater local control of propagule pressure is expected to increase successional rates, we evaluated the role of dispersal in the context of these interactions. Our simulations showed that even a small local seed source greatly increases population growth rates, thereby balancing strong consumer pressure. The prevalence of strong negative interactions in the primary successional site is a reminder that successional communities will not exhibit the distribution of interaction strengths characteristic of stable communities, and suggests the potential utility of modeling succession as the consequence of interaction strengths. PMID:22028808

  1. Mount St. Helens ash: recreating its effects on the steppe environment and ecophysiology. [Artemisia tridentata; Lupinus sulphureus

    SciTech Connect

    Black, R.A.; Mack, R.N.

    1986-10-01

    The 18 May 1980 ash fall from Mount St. Helens was experimentally reproduced in May 1982 by applying silt-sized ash to a stand of the Artemisia tridentata/Agropyron spicatum association in south-central Washington. Compared to the adjacent control site, ash caused an immediate increase in albedo from 13% to 28%, while other parameters of the energy budget were simultaneously lowered: net radiation by approx. = 20%, soil surface temperatures by as much as 10/sup 0/C, and soil heat flux by as much as 50%. The ash's mulching action initially increased water availability and delayed leaf abscission in Artemisia tridentata (Big sagebrush) by 2 wk in summer 1982. But after summer 1982 water availability declined, while water use increased, illustrating the diverse effects of the ash. Increased reflection from the ash-covered surface increased the radiation load on plant canopies. In turn, air temperature at 0.5 m increased, latent heat flux often doubled in summer, and xylem pressure potentials decreased. Available water at the -1 m soil depth eventually decreased as much as 40%. This decrease was the result of the increase in latent heat flux and the decline in infiltration through the stratified layer created by the ash cap. In addition to allowing assessment of the effects of the 18 May 1980 ash fall on arid steppe, application of ash provided an unexpected level of precision in detecting the often subtle effects that occur when some microenvironmental parameters change while the overall macroclimate remains the same.

  2. Using Satellite Data to Characterize the Temporal Thermal Behavior of an Active Volcano: Mount St. Helens, WA

    NASA Technical Reports Server (NTRS)

    Vaughan, R. Greg; Hook, Simon J.

    2006-01-01

    ASTER thermal infrared data over Mt. St Helens were used to characterize its thermal behavior from Jun 2000 to Feb 2006. Prior to the Oct 2004 eruption, the average crater temperature varied seasonally between -12 and 6 C. After the eruption, maximum single-pixel temperature increased from 10 C (Oct 2004) to 96 C (Aug 2005), then showed a decrease to Feb 2006. The initial increase in temperature was correlated with dome morphology and growth rate and the subsequent decrease was interpreted to relate to both seasonal trends and a decreased growth rate/increased cooling rate, possibly suggesting a significant change in the volcanic system. A single-pixel ASTER thermal anomaly first appeared on Oct 1, 2004, eleven hours after the first eruption - 10 days before new lava was exposed at the surface. By contrast, an automated algorithm for detecting thermal anomalies in MODIS data did not trigger an alert until Dec 18. However, a single-pixel thermal anomaly first appeared in MODIS channel 23 (4 um) on Oct 13, 12 days after the first eruption - 2 days after lava was exposed. The earlier thermal anomaly detected with ASTER data is attributed to the higher spatial resolution (90 m) compared with MODIS (1 m) and the earlier visual observation of anomalous pixels compared to the automated detection method suggests that local spatial statistics and background radiance data could improve automated detection methods.

  3. Cooling rate and thermal structure determined from progressive magnetization of the dacite dome at Mount St. Helens, Washington

    USGS Publications Warehouse

    Dzurisin, D.; Denlinger, R.P.; Rosenbaum, J.G.

    1990-01-01

    Our study of a magnetic anomaly associated with the recently active dacite dome at Mount St. Helens suggests that the dome consists of a hot, nonmagnetized core surrounded by a cool, magnetized carapace and flanking talus. Temporal changes in the magnetic anomaly indicate that the magnetized carapace thickened at an average rate of 0.03 ?? 0.01 m/d from 1984 to 1986. Petrographic and rock magnetic properties of dome samples indicate that the dominant process responsible for these changes is magnetization of extensively oxidized rock at progressively deeper levels within the dome as the rock cools through its blocking temperature, rather than subsequent changes in magnetization caused by further oxidation. Newly extruded material cools rapidly for a short period as heat is conducted outward in response to convective heat loss from its surface. The cooling rate gradually declines for several weeks, and thereafter the material cools at a relatively constant rate by convective heat loss from its interior along fractures that propagate inward. -from Authors

  4. The effects of Mount St. Helens volcanic ash on the pulmonary function of 120 elementary school children.

    PubMed

    Johnson, K G; Loftsgaarden, D O; Gideon, R A

    1982-12-01

    The 1977 Montana legislature funded an extensive Montana Air Pollution Study (MAPS). One hundred and twenty children in the fourth and fifth grades in Missoula, Montana had their pulmonary functions tested on 6 days during the 1979-80 school year. On May 18, 1980, Mount St. Helens erupted, resulting in very high total suspended particulates (TSP) levels due to ash (peak day = 11,054 micrograms/m3 24-hour average) through May 22. When these children returned to school on May 23, they had their pulmonary functions tested a seventh time. There was no substantial decrease in pulmonary function after the ash exposure. By comparison, the childrens' pulmonary tests did show a significant decrease after 3 days of high urban air pollution (440 micrograms/m3 3-day average). Businesses and schools were closed for 4 days after the eruption and people were advised to remain indoors; hence, lack of measured pulmonary function test effects from the ash may be due to the protective precautions taken by the children. PMID:7181226

  5. Volcanic tremor masks its seismogenic source: Results from a study of noneruptive tremor recorded at Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Denlinger, Roger P.; Moran, Seth C.

    2014-03-01

    On 2 October 2004, a significant noneruptive tremor episode occurred during the buildup to the 2004-2008 eruption of Mount St. Helens (Washington). This episode was remarkable both because no explosion followed, and because seismicity abruptly stopped following the episode. This sequence motivated us to consider a model for volcanic tremor that does not involve energetic gas release from magma but does involve movement of conduit magma through extension on its way toward the surface. We found that the tremor signal was composed entirely of Love and Rayleigh waves and that its spectral bandwidth increased and decreased with signal amplitude, with broader bandwidth signals containing both higher and lower frequencies. Our modeling results demonstrate that the forces giving rise to this tremor were largely normal to conduit walls, generating hybrid head waves along conduit walls that are coupled to internally reflected waves. Together these form a crucial part of conduit resonance, giving tremor wavefields that are largely a function of waveguide geometry and velocity. We find that the mechanism of tremor generation fundamentally masks the nature of the seismogenic source giving rise to resonance. Thus multiple models can be invoked to explain volcanic tremor, requiring that information from other sources (such as visual observations, geodesy, geology, and gas geochemistry) be used to constrain source models. With concurrent GPS and field data supporting rapid rise of magma, we infer that tremor resulted from drag of nearly solid magma along rough conduit walls as magma was forced toward the surface.

  6. Decadal-scale change of infiltration characteristics of a tephra-mantled hillslope at Mount St Helens, Washington

    USGS Publications Warehouse

    Major, J.J.; Yamakoshi, T.

    2005-01-01

    The cataclysmic 1980 eruption of Mount St Helens radically reduced the infiltration characteristics of ???60 000 ha of rugged terrain and dramatically altered landscape hydrology. Two decades of erosional, biogenic, cryogenic, and anthropogenic activity have modified the infiltration characteristics of much of that devastated landscape and modulated the hydrological impact of the eruption. We assessed infiltration and runoff characteristics of a segment of hillslope thickly mantled with tephra, but now revegetated primarily with grasses and other plants, to evaluate hydrological modifications due to erosion and natural turbation. Eruptive disturbance reduced infiltration capacity of the hillslope by as much as 50-fold. Between 1980 and 2000, apparent infiltration capacities of plots on the hillslope increased as much as ten fold, but remain approximately three to five times less than the probable pre-eruption capacities. Common regional rainfall intensities and snowmelt rates presently produce little surface runoff; however, high-magnitude, low-frequency storms and unusually rapid snowmelt can still induce broad infiltration-excess overland flow. After 20 years, erosion and natural mechanical turbation have modulated, but not effaced, the hydrological perturbation caused by the cataclysmic eruption. Copyright ?? 2005 John Wiley & Sons, Ltd.

  7. When can herbivores slow or reverse the spread of an invading plant? A test case from Mount St. Helens.

    PubMed

    Fagan, William F; Lewis, Mark; Neubert, Michael G; Aumann, Craig; Apple, Jennifer L; Bishop, John G

    2005-12-01

    Here we study the spatial dynamics of a coinvading consumer-resource pair. We present a theoretical treatment with extensive empirical data from a long-studied field system in which native herbivorous insects attack a population of lupine plants recolonizing a primary successional landscape created by the 1980 volcanic eruption of Mount St. Helens. Using detailed data on the life history and interaction strengths of the lupine and one of its herbivores, we develop a system of integrodifference equations to study plant-herbivore invasion dynamics. Our analyses yield several new insights into the spatial dynamics of coinvasions. In particular, we demonstrate that aspects of plant population growth and the intensity of herbivory under low-density conditions can determine whether the plant population spreads across a landscape or is prevented from doing so by the herbivore. In addition, we characterize the existence of threshold levels of spatial extent and/or temporal advantage for the plant that together define critical values of "invasion momentum," beyond which herbivores are unable to reverse a plant invasion. We conclude by discussing the implications of our findings for successional dynamics and the use of biological control agents to limit the spread of pest species. PMID:16475084

  8. Absolute and relative locations of earthquakes at Mount St. Helens, Washington, using continuous data: implications for magmatic processes: Chapter 4 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Thelen, Weston A.; Crosson, Robert S.; Creager, Kenneth C.

    2008-01-01

    This study uses a combination of absolute and relative locations from earthquake multiplets to investigate the seismicity associated with the eruptive sequence at Mount St. Helens between September 23, 2004, and November 20, 2004. Multiplets, a prominent feature of seismicity during this time period, occurred as volcano-tectonic, hybrid, and low-frequency earthquakes spanning a large range of magnitudes and lifespans. Absolute locations were improved through the use of a new one-dimensional velocity model with excellent shallow constraints on P-wave velocities. We used jackknife tests to minimize possible biases in absolute and relative locations resulting from station outages and changing station configurations. In this paper, we show that earthquake hypocenters shallowed before the October 1 explosion along a north-dipping structure under the 1980-86 dome. Relative relocations of multiplets during the initial seismic unrest and ensuing eruption showed rather small source volumes before the October 1 explosion and larger tabular source volumes after October 5. All multiplets possess absolute locations very close to each other. However, the highly dissimilar waveforms displayed by each of the multiplets analyzed suggest that different sources and mechanisms were present within a very small source volume. We suggest that multiplets were related to pressurization of the conduit system that produced a stationary source that was highly stable over long time periods. On the basis of their response to explosions occurring in October 2004, earthquakes not associated with multiplets also appeared to be pressure dependent. The pressure source for these earthquakes appeared, however, to be different from the pressure source of the multiplets.

  9. Hazard information management during the autumn 2004 reawakening of Mount St. Helens volcano, Washington: Chapter 24 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Driedger, Carolyn L.; Neal, Christina A.; Knappenberger, Tom H.; Needham, Deborah H.; Harper, Robert B.; Steele, William P.

    2008-01-01

    The 2004 reawakening of Mount St. Helens quickly caught the attention of government agencies as well as the international news media and the public. Immediate concerns focused on a repeat of the catastrophic landslide and blast event of May 18, 1980, which remains a vivid memory for many individuals. Within several days of the onset of accelerating seismicity, media inquiries increased exponentially. Personnel at the U.S. Geological Survey, the Pacific Northwest Seismic Network, and the Gifford Pinchot National Forest soon handled hundreds of press inquiries and held several press briefings per day. About one week into the event, a Joint Information Center was established to help maintain a consistent hazard message and to provide a centralized information source about volcanic activity, hazards, area closures, and media briefings. Scientists, public-affairs specialists, and personnel from emergency-management, health, public-safety, and land-management agencies answered phones, helped in press briefings and interviews, and managed media access to colleagues working on science and safety issues. For scientists, in addition to managing the cycle of daily fieldwork, challenges included (1) balancing accurate interpretations of data under crisis conditions with the need to share information quickly, (2) articulating uncertainties for a variety of volcanic scenarios, (3) minimizing scientific jargon, and (4) frequently updating and effectively distributing talking points. Success of hazard information management during a volcanic crisis depends largely on scientists’ clarity of communication and thorough preplanning among interagency partners. All parties must commit to after-action evaluation and improvement of communication plans, incorporating lessons learned during each event.

  10. Partners in International Research and Education: Student Contributions to the Collaborative Investigation of Bezymianny, Shiveluch, and Karymsky Volcanoes, Kamchatka, Russia and Mount St. Helens, WA, USA.

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Kayzar, T. M.; Team, P.

    2008-12-01

    Undergraduate and graduate students as well as senior researchers from the U.S., Russia, and Japan are investigating volcanism as participants of the National Science Foundation initiative Partners in International Research and Education (PIRE). The goal of this study is to use the benefits of global comparisons to increase our understanding of explosive volcanism while at the same time developing international collaboration between scientists in the U.S., Russia, and Japan. International collaboration is established through field work in Kamchatka, Russia investigating the active systems of Bezymianny, Shiveluch, and Karymsky volcanoes with a specific focus on historic collapse-blast type eruptions. The Kamchatka volcanic arc provides unique access to multiple active volcanic systems that can be compared and contrasted to the well-studied behavior at Mount St. Helens, WA., USA. Conversely, Mount St. Helens also provides a field setting for Russian and Japanese students to be incorporated in U.S. research. Student participants employ their respective techniques in geochemistry, geophysics, petrology, and remote sensing to study the eruption response of Bezymianny and Shiveluch volcanoes, which have experienced edifice collapse. During the 2008 field season, the increased activity at Bezymianny volcano shortened a planned field expedition. In order to preserve the integrity of the program and provide a safer environment for researchers, alternative field studies began at Karymsky volcano. In July, an anonymously large eruption at Karymsky volcano permitted the collection of unique real-time data of the eruptive event. Here we present student research from three field seasons in the Kamchatka volcanic arc and associated workshops at Mount St. Helens, WA. Results include estimates of magma storage depth, gas emissions measurements, evidence for dynamic thermal regime changes in fresh volcanic deposits, and data constraining magma inputs and sources at each volcano. By

  11. Chronology, morphology and stratigraphy of pumiceous pyroclastic-flow (ignimbrite) deposits from the eruption of Mount St. Helens on 18 May 1983

    NASA Technical Reports Server (NTRS)

    Criswell, C. W.; Elston, W. E.

    1984-01-01

    Between 1217 and 1620 hours (PDT), on May 18, 1980, the magmatic eruption column of Mount St. Helens formed an ash fountain and pyroclastic flows dominated the eruption process over tephra ejection. Eurption-rate pulsations generally increased to a maximum at 1600 to 1700 hrs. After 1620 hrs, the eruption assumed an open-vent discharge with strong, vertical ejection of tephra. Relative eruption rates (relative mass flux rates) of the pyroclastic flows were determined by correlating sequential photographs and SLAR images, obtained during the eruption, with stratigraphy and surface morphology of the deposits.

  12. Where is the hot rock and where is the ground water – Using CSAMT to map beneath and around Mount St. Helens

    USGS Publications Warehouse

    Wynn, Jeff; Mosbrucker, Adam; Pierce, Herbert; Spicer, Kurt R.

    2016-01-01

    We have observed several new features in recent controlled-source audio-frequency magnetotelluric (CSAMT) soundings on and around Mount St. Helens, Washington State, USA. We have identified the approximate location of a strong electrical conductor at the edges of and beneath the 2004–08 dome. We interpret this conductor to be hot brine at the hot-intrusive-cold-rock interface. This contact can be found within 50 meters of the receiver station on Spine 5, which extruded between April and July of 2005. We have also mapped separate regional and glacier-dome aquifers, which lie one atop the other, out to considerable distances from the volcano.

  13. Using analog flow experiments to model morphologies developed during episodic dome growth: A case study of Mount St Helens, 1980-1986

    NASA Astrophysics Data System (ADS)

    Altman, K. M.; Teasdale, R.

    2009-12-01

    From 1980 to 1986 the dacite dome at Mount St. Helens was emplaced as a series of 17 events, identified by different growth rates, volumes, height to diameter ratios, emplacement rates, surface textures and dome morphologies (Swanson, 1989). Rates of emplacement characterize three periods; between October 18, 1980 and the end of 1981 the growth rate was 1.8 x 10^6 m^3/month; between March 1982 and March 1984 the growth rate was 1.3 x 10^6 m^3/month; followed by a growth rate of 0.62 x 10^6 m^3/month until the end of the emplacement events in 1986 (Swanson, 1989). The shape of the dome changed from 1980 to 1986 as a function of magma viscosity, tensile strength of the hot core, and thickness of the outer shell (Swanson, 1989). The height to diameter ratios (h:d) recorded throughout the growth of the dome have been used to quantify the changes in the shape of the dome. The dome was flatter during the first period of emplacement when larger volumes kept the dome hotter and hindered the formation of a thick, cool outer crust (Swanson, 1989). Once the growth rate slowed by June 1981, a thick skin had formed and allowed the dome to steepen (Swanson, 1989). Analog models presented here aim to reproduce the emplacement of the domes based on observations and data recorded at Mount St. Helens from 1980 to 1986. Flow experiments use a slurry of PEG (poly-ethelyne glycol) mixed with kaolin powder that is pumped into a tank of cold water (Fink and Griffiths, 1998). PEG is used because it is liquid at room temperature and solidifies in the cold water. Kaolin powder is added to the PEG to simulate the viscosity of the dacite domes. The observed and recorded data from Mount St. Helens are used to constrain analog flow model parameters such as slope, effusion rate, and PEG viscosity in an attempt to recreate the dome morphologies observed in the 1980 to 1986 episodes. As expected, dome morphology in experiments varies with the crustal thickness developed during experiments. The

  14. Effects of the eruptions of Mount St. Helens on physical, chemical, and biological characteristics of surface water, ground water, and precipitation in the Western United States

    USGS Publications Warehouse

    Lee, Douglas B.

    1996-01-01

    Over 120 publications that describe the 1980 eruption effects of Mount St. Helens on rivers, lakes, and the Columbia River estuary are reviewed. Water-quality changes ranged from minor, short-lived effects, to totally altered drainage basins and newly created lakes. Turbidity increased; concentrations of cations, anions, and dissolved organic carbon increased. Migrating fish were adversely affected; benthic-invertebrate populations changed. Ground-water levels rose near the Cowlitz River. Precipitation effects included transient, but increased specific conductance and decreased pH.

  15. Finite Element Model of a Two-Phase Non-Newtonian Thixotropic Fluid: Mount St. Helens Lava Dome

    NASA Astrophysics Data System (ADS)

    Vincent, P.; Zevada, P.

    2011-12-01

    Extrusion of highly viscous lavas that spread laterally and form lava domes in the craters of large volcanoes is associated with significant volcanic hazards. Gas overpressure driven fragmentation of the lava dome or collapse and slumping of marginal sections or the entire mass of the dome can trigger dangerous pyroclastic flows that threaten surrounding populations up to tens of kilometers away. The rate of lava dome growth in the mature state of the dome evolution is often oscillatory. Relatively quiescent episodes are terminated by renewed extrusion and emplacement of exogenous "lobes" or "spines" of lava on the surface of the dome. Emplacement of new lobes is preceded by pressurization of magma in the magmatic conduit that can trigger volcanic eruptions and is preceded by crater floor deformation (e.g. Swanson and Holcombe, 1990). This oscillatory behavior was previously attributed primarily to crystallization kinetics and gas exsolution generating cyclic overpressure build-ups. Analogue modeling of the lava domes has revealed that the oscillatory growth rate can be reproduced by extrusion of isothermal, pseudoplastic and thixotropic plaster of Paris (analogue material for the magma) on a sand layer (analogue material for the unconsolidated deposits of the crater floor). The patterns of dome growth of these models closely correspond to both the 1980-1985 and 2004-2005 growth episodes of Mt. St. Helens lava dome (Swanson and Holcombe, 1990; Major et al., 2005). They also suggest that the oscillatory growth dynamics of the lavas can be explained by the mechanical interaction of the non-Newtonian magma with the frictional and deformable substrate below the lava dome rather than complex crystallization kinetics (e.g. Melnik and Sparks, 1999). In addition, these results suggest that the renewed growth episode of Mt. St. Helens dome in 2006 could be associated with an even higher degree of magma pressurization in the conduit than occurred during the 1980 - 1986

  16. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography

    USGS Publications Warehouse

    Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.

    2009-01-01

    We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.

  17. Bayesian Inversion using Physics-based Models Applied to Dome Extrusion at Mount St. Helens 2004-2008

    NASA Astrophysics Data System (ADS)

    Wong, Y. Q.; Segall, P.; Anderson, K. R.; Bradley, A. M.

    2015-12-01

    Physics-based models of volcanic eruptions have grown more sophisticated over the past few decades. These models, combined with Bayesian inversion, offer the potential of integrating diverse geological and geophysical datasets to better understand volcanic systems. Using a Markov Chain Monte Carlo (MCMC) algorithm with a physics-based conduit model, we invert data from the 2004-2008 dome-forming eruption at Mount St. Helens, USA. We extend the 1D cylindrical conduit model of Anderson and Segall [2011] to include vertical and lateral gas loss from the magma, as well as equilibrium crystallization. The melt viscosity increases strongly with crystal content. Magma permeability obeys the Kozeny-Carman law with a threshold porosity. Excess pressure in the magma chamber drives Newtonian flow of magma upwards until the viscous resistance to flow exceeds the rate-dependent frictional strength on the conduit wall, at which point the magma transitions from viscous flow to plug flow. We investigate the steady-state solutions for lava dome growth between March and December 2005, in which magma chamber pressure, initial water content, permeability and friction parameters are unknown model parameters. These parameters are constrained by: dome rock porosity, extrusion rate from photogrammetry, plug depth from drumbeat earthquakes, and crystallization pressure from petrologic studies. Posterior probability density functions (PDFs) reveal the constraints on the model parameters and their correlations. Assuming lithostatic normal stress on the plug, low coefficients of friction (0.1-0.3) are required to allow extrusion at the observed rate while maintaining reasonable magma chamber pressures. Lower effective normal stress or melt viscosity could allow for larger friction coefficients. Future work will investigate the time-dependent system, thereby allowing us to incorporate time-evolving geodetic and eruption rate data into the inversion.

  18. Genetic structure among coastal tailed frog populations at Mount St. Helens is moderated by post-disturbance management.

    PubMed

    Spear, Stephen F; Crisafulli, Charles M; Storfer, Andrew

    2012-04-01

    Catastrophic disturbances often provide "natural laboratories" that allow for greater understanding of ecological processes and response of natural populations. The 1980 eruption of the Mount St. Helens volcano in Washington, USA, provided a unique opportunity to test biotic effects of a large-scale stochastic disturbance, as well as the influence of post-disturbance management. Despite severe alteration of nearly 600 km2 of habitat, coastal tailed frogs (Ascaphus truei) were found within a portion of the blast area five years after eruption. We investigated the genetic source of recolonization within the blast area and tested whether post-eruption salvage logging and subsequent tree planting influenced tailed frog movement patterns. Our results support widespread recolonization across the blast area from multiple sources, as all sites are grouped into one genetic cluster. Landscape genetic models suggest that gene flow through the unmanaged portion of the blast area is influenced only by distance between sites and the frost-free period (r2 = 0.74). In contrast, gene flow pathways within the blast area where salvage logging and replanting occurred post-eruption are strongly limited (r2 = 0.83) by the physiologically important variables of heat load and precipitation. These data suggest that the lack of understory and coarse wood (downed and standing dead tree boles) refugia in salvaged areas may leave frogs more susceptible to desiccation and mortality than those frogs moving through the naturally regenerated area. Simulated populations based on the landscape genetic models show an increase in the inbreeding coefficient in the managed area relative to the unmanaged blast area. In sum, we show surprising resilience of an amphibian species to a catastrophic disturbance, and we suggest that, at least for this species, naturally regenerating habitat may better maintain long-term genetic diversity of populations than actively managed habitat. PMID:22645816

  19. After the disaster: the hydrogeomorphic, ecological, and biological responses to the 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Major, Jon J.; Crisafulli, Charlie; Bishop, John

    2009-01-01

    The 1980 eruption of Mount St. Helens caused instantaneous landscape disturbance on a grand scale. On 18 May 1980, an ensemble of volcanic processes, including a debris avalanche, a directed pyroclastic density current, voluminous lahars, and widespread tephra fall, abruptly altered landscape hydrology and geomorphology, and created distinctive disturbance zones having varying impacts on regional biota. Response to the geological and ecological disturbances has been varied and complex. In general, eruption-induced alterations in landscape hydrology and geomorphology led to enhanced stormflow discharge and sediment transport. Although the hydrological response to landscape perturbation has diminished, enhanced sediment transport persists in some basins. In the nearly 30 years since the eruption, 350 million (metric) tons of suspended sediment has been delivered from the Toutle River watershed to the Cowlitz River (roughly 40 times the average annual preeruption suspended-sediment discharge of the Columbia River). Such prodigious sediment loading has wreaked considerable socioeconomic havoc, causing significant channel aggradation and loss of flood conveyance capacity. Significant and ongoing engineering efforts have been required to mitigate these problems. The overall biological evolution of the eruption-impacted landscape can be viewed in terms of a framework of survivor legacies. Despite appearances to the contrary, a surprising number of species survived the eruption, even in the most heavily devastated areas. With time, survivor “hotspots” have coalesced into larger patches, and have served as stepping stones for immigrant colonization. The importance of biological legacies will diminish with time, but the intertwined trajectories of geophysical and biological successions will influence the geological and biological responses to the 1980 eruption for decades to come.

  20. The Stars Belong to Everyone: The rhetorical practices of astronomer and science writer Dr. Helen Sawyer Hogg (1905--1993)

    NASA Astrophysics Data System (ADS)

    Cahill, Maria J.

    Astronomer and science writer Dr. Helen Sawyer Hogg (University of Toronto) reached a variety of audiences through different rhetorical forms. She communicated to her colleagues through her scholarly writings; she reached out to students and the public through her Toronto Star newspaper column entitled "With the Stars," which she authored for thirty years; she wrote The Stars Belong to Everyone , a book that speaks to a lay audience; she hosted a successful television series entitled Ideas ; and she delivered numerous speeches at scientific conferences, professional women's associations, school programs, libraries, and other venues. Adapting technical information for different audiences is at the heart of technical communication, and Sawyer Hogg's work exemplifies adaptation as she moves from writing for the scientific community (as in her articles on globular cluster research) to science writing for lay audiences (as in her newspaper column, book, and script for her television series). Initially she developed her sense of audience through a male perspective informed largely by her scholarly work with two men (Harlow Shapley and her husband, Frank Hogg) as well as the pervasive masculine culture of academic science. This dissertation situates Sawyer Hogg in what is slowly becoming a canon of technical communication scholarship on female scientists. Toward this end, I discuss how she rhetorically engaged two different audiences, one scholarly and one popular, how Sawyer Hogg translated male dominated scientific rhetoric to writing for the public, and how science writing helped her achieve her professional goals. Complementing the archival research in addressing the questions of this study, I employ social construction analysis (also known as the social perspective) for my research methodology. She was ahead of her time and embodied the social perspective years before its definition as a rhetorical concept. In short, my study illuminates one scientific woman's voice

  1. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St Helens volcano, Washington, 18 May 1980

    USGS Publications Warehouse

    Waitt, R.B.

    1989-01-01

    The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into

  2. Ground-coupled acoustic airwaves from Mount St. Helens provide constraints on the May 18, 1980 eruption

    USGS Publications Warehouse

    Johnson, J.B.; Malone, S.D.

    2007-01-01

    The May 18, 1980 Mount St. Helens eruption perturbed the atmosphere and generated atmosphere-to-ground coupled airwaves, which were recorded on at least 35 seismometers operated by the Pacific Northwest Seismograph Network (PNSN). From 102 distinct travel time picks we identify coherent airwaves crossing Washington State primarily to the north and east of the volcano. The travel time curves provide evidence for both stratospheric refractions (at 200 to 300 km from the volcano) as well as probable thermospheric refractions (at 100 to 350 km). The very few first-hand reports of audible volcano sounds within about 80 km of the volcano coincide with a general absence of ground-coupled acoustic arrivals registered within about 100 km and are attributed to upward refraction of sound waves. From the coherent refracted airwave arrivals, we identify at least four distinct sources which we infer to originate 10 s, 114 s, ∼ 180 s and 319 s after the onset of an 8:32:11 PDT landslide. The first of these sources is attributed to resultant depressurization and explosion of the cryptodome. Most of the subsequent arrivals also appear to be coincident with a source located at or near the presumed volcanic conduit, but at least one of the later arrivals suggests an epicenter displaced about 9 km to the northwest of the vent. This dislocation is compatible with the direction of the sector collapse and lateral blast. We speculate that this concussion corresponds to a northern explosion event associated with hot cryptodome entering the Toutle River Valley.

  3. The 18 May 1980 eruption of Mount St. Helens: The nature of the eruption, with an atmospheric perspective

    NASA Technical Reports Server (NTRS)

    Rose, W. I., Jr.; Hoffman, M. F.

    1982-01-01

    Mount St. Helens erupted somewhat less than 0.5 cu km of magma (dense rock equivalent) on May 18, 1980. The May 18 event was usually violent. As much 35% of the volume of the airfall material fell outside of the 2.5 mm isopach, which encloses about 88,000 sq km. This extraordinary dispersive power was transmitted by an eruption column which reached heights of more than 20 km. There was a lateral blast (or surge) of unusually large dimensions associated with the onset of the eruption. The magma is dacitic in composition and had a low ( 500 ppm) sulfur content. Distal ashes contain much nonmagmatic (lithic) material, but smaller ( 50 microns m) particles are mostly finely divided magmatic dacite. The grain size distributions of the ash are multimodal, frequently with peaks at 90, 25, and 10 microns. The finer populations fell out faster than their terminal velocities as simple particles would suggest. It is inferred that large proportions of the fine ash fell out as composite particles. This condition greatly reduces the atmospheric burden of silicate particles. Some of the unusual aspects (violence, intense surges, multimodal grain size distributions, lithic content of the ashes) of the eruption may be due to its phreatomagmatic character. The hydrothermal system above the magma may have infiltrated the magma body at the onset of the eruption. An "overprint" of the geochemistry of this hydrothermal system on the geochemistry of the magmatic gas system is likely. One important feature is that reduced gas species may be much more abundant than in many eruptions. Another is that fine ash may form aggregates more readily.

  4. Cooling rate and thermal structure determined from progressive magnetization of the Dacite Dome at Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Dzurisin, Daniel; Denlinger, Roger P.; Rosenbaum, Joseph G.

    1990-03-01

    Our study of a magnetic anomaly associated with the recently active dacite dome at Mount St. Helens suggests that the dome consists of a hot, nonmagnetized core surrounded by a cool, magnetized carapace and flanking talus. The talus does not contribute to the anomaly because its constituent blocks are randomly oriented. Temporal changes in the magnetic anomaly indicate that the magnetized carapace thickened at an average rate of 0.03±0.01 m/d from 1984 to 1986. Petrographic and rock magnetic properties of dome samples indicate that the dominant process responsible for these changes is magnetization of extensively oxidized rock at progressively deeper levels within the dome as the rock cools through its blocking temperature, rather than subsequent changes in magnetization caused by further oxidation. Newly extruded material cools rapidly for a short period as heat is conducted outward in response to convective heat loss from its surface. The cooling rate gradually declines for several weeks, and thereafter the material cools at a relatively constant rate by convective heat loss from its interior along fractures that propagate inward. The rate of internal convective heat loss through fractures varies with rainfall, snowmelt, and large-scale fracturing during subsequent eruptive episodes. In accordance with a model for solidification of the 1959 lava lake at Kilauea Iki, Hawaii, we picture the dome's magnetized carapace as being a two-phase, porous, convective zone separated from the nonmagnetized core of the dome by a thin, single-phase conductive zone. As a consequence of the heat balance between the conductive and convective zones, the blocking-temperature isotherm migrates inward at a relatively constant rate. If the dome remains inactive, the time scale for its complete magnetization is estimated to be 18-36 years, a forecast which can be refined by shallow drilling into the dome and by continuing studies of its growing magnetic anomaly.

  5. The influence of thermal and cyclic stressing on the strength of rocks from Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie Evan; Smith, Rosanna; Sammonds, Peter; Meredith, Philip G.; Dainty, Matthew; Pallister, John S.

    2013-07-01

    Stratovolcanoes and lava domes are particularly susceptible to sector collapse resulting from wholesale rock failure as a consequence of decreasing rock strength. Here, we provide insights into the influence of thermal and cyclic stressing on the strength and mechanical properties of volcanic rocks. Specifically, this laboratory study examines the properties of samples from Mount St. Helens; chosen because its strength and stability have played a key role in its history, influencing the character of the infamous 1980 eruption. We find that thermal stressing exerts different effects on the strengths of different volcanic units; increasing the heterogeneity of rocks in situ. Increasing the uniaxial compressive stress generates cracking, the timing and magnitude of which was monitored via acoustic emission (AE) output during our experiments. AEs accelerated in the approach to failure, sometimes following the pattern predicted by the failure forecast method (Kilburn 2003). Crack damage during the experiments was tracked using the evolving static Young's modulus and Poisson's ratio, which represent the quasi-static deformation in volcanic edifices more accurately than dynamic elastic moduli which are usually implemented in volcanic models. Cyclic loading of these rocks resulted in a lower failure strength, confirming that volcanic rocks may be weakened by repeated inflation and deflation of the volcanic edifice. Additionally, volcanic rocks in this study undergo significant elastic hysteresis; in some instances, a material may fail at a stress lower than the peak stress which has previously been endured. Thus, a volcanic dome repeatedly inflated and deflated may progressively weaken, possibly inducing failure without necessarily exceeding earlier conditions.

  6. Methane production and oxidation in lakes impacted by the May 18, 1980 eruption of Mount St. Helens

    SciTech Connect

    Lilley, M.D.; Baross, J.A.; Dahm, C.N. )

    1988-12-01

    The concentrations of CH{sub 4} and CH{sub 4} oxidation rates were measured in lakes impacted by the May 18, 1980 eruption of Mount St. Helens. The highest CH{sub 4} concentrations were recorded during the first summer after the eruption and ranged in surface waters from 5 microM in the moderately impacted Ryan Lake to 28 microM in the heavily impacted North Coldwater Lake. At depths below the oxic/anoxic interface, CH{sub 4} levels reached 250 microM in North Coldwater Lake, 184 microM in Spirit Lake, 70 microM in Castle Creek lake, and 60 microM in Ryan Lake. The CH{sub 4} flux measurements from these lakes during the summer following the May 18, 1980 eruption were the highest ever recorded in lakes with ranges of 1.1-2.9 mmol CH{sub 4}/sq m/day in the light to moderately impacted McBride and Ryan Lakes to ranges of 17.4-25.3 mmol CH{sub 4}/sq m/day in the heavily impacted Castle Creek, North Coldwater, and Spirit Lakes. Evidence of CH{sub 4} oxidation was seen in all of the lakes during the summer of 1981, and rates of CH{sub 4} oxidation using C{sup 14}-CH{sub 4} were measured in spirit Lake from 1982 to 1986. The highest rates of CH{sub 4} oxidation measured were during the summer stratification and ranged from 50 to 150 nmol CH{sub 4} oxidized/L/day. methane oxidation rates were measured in waters having oxygen concentrations less than 100 microM with highest activity occurring at concentrations of 30-60 microM. 36 refs., 12 figs. 3 tabs.

  7. Initial effects of the mount st. Helens eruption on nitrogen cycle and related chemical processes in ryan lake.

    PubMed

    Dahm, C N; Baross, J A; Ward, A K; Lilley, M D; Sedell, J R

    1983-05-01

    Ryan Lake, a 1.6-hectare basin lake near the periphery of the tree blowdown area in the blast zone 19 km north of Mount St. Helens, was studied from August to October 1980 to determine the microbial and chemical response of the lake to the eruption. Nutrient enrichment through the addition of fresh volcanic material and the organic debris from the surrounding conifer forest stimulated intense microbial activity. Concentrations of such nutrients as phosphorus, sulfur, manganese, iron, and dissolved organic carbon were markedly elevated. Nitrogen cycle activity was especially important to the lake ecosystem in regulating biogeochemical cycling owing to the limiting abundance of nitrogen compounds. Nitrogen fixation, both aerobic and anaerobic, was active from aerobic benthic and planktonic cyanobacteria with rates up to 210 nmol of N(2) cm h and 667 nmol of N(2) liter h, respectively, and from anaerobic bacteria with rates reaching 220 nmol of N(2) liter h. Nitrification was limited to the aerobic epilimnion and littoral zones where rates were 43 and 261 nmol of NO(2) liter day, respectively. Potential denitrification rates were as high as 30 mumol of N(2)O liter day in the anaerobic hypolimnion. Total bacterial numbers ranged from 1 x 10 to 3 x 10 ml with the number of viable sulfur-metal-oxidizing bacteria reaching 2 x 10 ml in the hypolimnion. A general scenario for the microbial cycling of nitrogen, carbon, sulfur, and metals is presented for volcanically impacted lakes. The important role of nitrogen as these lakes recover from the cataclysmic eruption and proceed back towards their prior status as oligotrophic alpine lakes is emphasized. PMID:16346298

  8. Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano

    SciTech Connect

    Carey, S.N.; Sigurdsson, H.

    1982-08-10

    The May 18, 1980, eruption of Mount St. Helens (MSH) produced an extensive ashfall deposit in Washington, Idaho, and Montana with a minimum volume of 0.55 km/sup 3/ (tephra). An unusual feature of the deposit is the occurrence of a second thickness maximum 325 km ENE of MSH near Ritzville, Washington. Grain size and component abundance analysis of samples along the main is very fine grained (mean size, 2 ..mu..m), poorly sorted, polymodal, and rich in glass shards and pumice fragments. A computer simulation of ash fallout from an atmospherically dispersed eruption plume was developed to evaluate various hypotheses for the origin of the distal ash characteristics, particularly the thickness versus distance relationship. The model was constrained by observations of the eruption column height, elevation of major ash transport, lateral spreading of the eruption plume, and atmospheric wind structure in the vicinity of MSH. Results of different simulations indicate that the second thickness maximum cannot be attributed to either decreased wind velocities over central Washington or injection of fine ash above the horizontal wind velocity maximum near the tropopause. For the model to fit the observed characteristics of the deposit, significant particle aggregation of ash finer than 63 ..mu..m must be invoked. The best fit occurs when ash less than 63 ..mu..m is aggregated into particles several hundred microns in diameter with a settling velocity of 0.35 m/s. Support for this process comes from the observation and collection of fragile ash clusters of similar size which fell at Pullman, Washington, during the May 18 eruption (Sorem, 1982). The premature fallout of fine ash as particle aggregates is a fundamental process in the origin of the grain size characteristics, variations in component abundances, and thickness versus distance relationship of the May 18 MSH ash fall deposit.

  9. Duration of exposure--histological effects on broiler lungs, performance, and house environment with Mt. St. Helens volcanic ash dust

    SciTech Connect

    Bland, M.C.; Nakaue, H.S.; Goeger, M.P.; Helfer, D.H.

    1985-01-01

    Fourteen hundred broilers were exposed to Mt. St. Helens volcanic ash (VA) dust (D) from 28 to 49 days of age to correlate the duration of exposure time to histological effect on lungs and to determine the effects on broiler performance and house environment. Histological examinations of the lungs from birds exposed each day for 4 days to either VAD for 60 min (VAD 60) in the morning and afternoon (3276 g VA/day), or VAD after one direct application (DiAp) (20 kg/m2) on wood shaving litter revealed mild lymphoid hyperplasia and granuloma formation accompanied by phagocytized crystalline material seen in some alveolar macrophages; however, no effect was observed in lung tissues from broilers exposed each day for 4 days to VAD for 15 min (VAD 15) in the morning and afternoon (82 g VAD/day). Birds exposed to all VAD treatments and examined after 7 days had histological changes in the lungs, including giant cell granuloma formation, similar to those seen at 4 days. No significant histopathological changes were found in the turbinates with any VAD treatments. Levels of mean body weight, ammonia concentration, mortality, and respiratory dust (particles ranging in size from .5 to 10 micron) levels were not significantly different among the treatments. Significantly poorer mean feed conversion was observed with broilers exposed to VAD 60 than the VA DiAp exposure. No difference in feed conversion was observed between the control and either VAD 15 or VAD 60 treatments. From this experiment, the observed histological changes in the lungs occurred with 4 days or less exposure to VAD 60 (3276 g/day).

  10. Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms: Interaction of the shallow magmatic and hydrothermal systems

    USGS Publications Warehouse

    Waite, G.P.; Chouet, B.A.; Dawson, P.B.

    2008-01-01

    The current eruption at Mount St. Helens is characterized by dome building and shallow, repetitive, long-period (LP) earthquakes. Waveform cross-correlation reveals remarkable similarity for a majority of the earthquakes over periods of several weeks. Stacked spectra of these events display multiple peaks between 0.5 and 2 Hz that are common to most stations. Lower-amplitude very-long-period (VLP) events commonly accompany the LP events. We model the source mechanisms of LP and VLP events in the 0.5-4 s and 8-40 s bands, respectively, using data recorded in July 2005 with a 19-station temporary broadband network. The source mechanism of the LP events includes: 1) a volumetric component modeled as resonance of a gently NNW-dipping, steam-filled crack located directly beneath the actively extruding part of the new dome and within 100 m of the crater floor and 2) a vertical single force attributed to movement of the overlying dome. The VLP source, which also includes volumetric and single-force components, is 250 m deeper and NNW of the LP source, at the SW edge of the 1980s lava dome. The volumetric component points to the compression and expansion of a shallow, magma-filled sill, which is subparallel to the hydrothermal crack imaged at the LP source, coupled with a smaller component of expansion and compression of a dike. The single-force components are due to mass advection in the magma conduit. The location, geometry and timing of the sources suggest the VLP and LP events are caused by perturbations of a common crack system.

  11. Ground-coupled acoustic airwaves from Mount St. Helens provide constraints on the May 18, 1980 eruption

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey B.; Malone, Stephen D.

    2007-06-01

    The May 18, 1980 Mount St. Helens eruption perturbed the atmosphere and generated atmosphere-to-ground coupled airwaves, which were recorded on at least 35 seismometers operated by the Pacific Northwest Seismograph Network (PNSN). From 102 distinct travel time picks we identify coherent airwaves crossing Washington State primarily to the north and east of the volcano. The travel time curves provide evidence for both stratospheric refractions (at 200 to 300 km from the volcano) as well as probable thermospheric refractions (at 100 to 350 km). The very few first-hand reports of audible volcano sounds within about 80 km of the volcano coincide with a general absence of ground-coupled acoustic arrivals registered within about 100 km and are attributed to upward refraction of sound waves. From the coherent refracted airwave arrivals, we identify at least four distinct sources which we infer to originate 10 s, 114 s, ˜ 180 s and 319 s after the onset of an 8:32:11 PDT landslide. The first of these sources is attributed to resultant depressurization and explosion of the cryptodome. Most of the subsequent arrivals also appear to be coincident with a source located at or near the presumed volcanic conduit, but at least one of the later arrivals suggests an epicenter displaced about 9 km to the northwest of the vent. This dislocation is compatible with the direction of the sector collapse and lateral blast. We speculate that this concussion corresponds to a northern explosion event associated with hot cryptodome entering the Toutle River Valley.

  12. A glacier peak and Mount Saint Helens J volcanic ash couplet and the timing of deglaciation in the Colville Valley area, Washington

    USGS Publications Warehouse

    Carrara, P.E.; Trimble, D.A.

    1992-01-01

    A Late Pleistocene volcanic ash couplet consisting of a glacier Peak ash layer and an underlying Mount Saint Helens J ash layer has been identified at three sites in the Colville Valley area of northeastern Washington. This ash couplet has been reported as far east as northwestern Montana and therefore appears to have widespread distribution south of the International Boundary. Because areas covered by the Cordilleran Ice Sheet, as well as by local mountain glaciers and icefields, were undergoing extensive deglaciation when these ash layers were deposited, about 11 200 BP, the ash couplet is an important time-stratigraphic marker, and its identification at a site provides information about the extent of deglaciation at that time. The presence of the Glacier Peak and Mount Saint Helens J ash couplet in the Colville Valley, about 50km north (upglacier) from the Late Wisconsin terminal moraine near the town of Springdale, indicates that the active margin of the Colville sublobe of the Cordilleran Ice Sheet had retreated at least that distance by 11 200 BP. -from Authors

  13. Effects of ground water, slope stability, and seismic hazard on the stability of the South Fork Castle Creek blockage in the Mount St. Helens Area, Washington

    SciTech Connect

    Meyer, W.; Sabol, M.A.; Glicken, H.X.; Voight, B.

    1984-01-01

    South Fork Castle Creek was blocked by the debris avalanche that occurred during the May 18, 1980, eruption of Mount St. Helens, Washington. A lake formed behind the blockage, eventually reaching a volume of approximately 19,000 acre-feet prior to construction of a spillway - a volume sufficiently large to pose a flood hazard of unknown magnitude to downstream areas if the lake were to break out as a result of blockage failure. Breakout of lakes formed in a similar fashion is fairly common and several such events occurring in recent times have posed hazards around the world. Analyses of blockage stability included determining the effects of gravitational forces and horizontal forces induced by credible earthquakes from the Mount St. Helens seismic zone, which passes within several miles of the blockage. The blockage is stable at September 1983 water levels under static gravitational forces. If an earthquake with magnitude near 6.0 occurred with September 1983 water levels, movement on the order of 5 feet on both upstream and downstream parts of the blockage over much of its length could potentially occur. If the sliding blocks liquified, retrogressive failure could lead to lake breakout, but this is not considered to be probable. 24 refs., 25 figs., 5 tabs.

  14. Dynamics of seismogenic volcanic extrusion resisted by a solid surface plug, Mount St. Helens, 2004-2005: Chapter 21 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Iverson, Richard M.

    2008-01-01

    The 2004-5 eruption of Mount St. Helens exhibited sustained, near-equilibrium behavior characterized by nearly steady extrusion of a solid dacite plug and nearly periodic occurrence of shallow earthquakes. Diverse data support the hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upward by ascending, solidifying, gas-poor magma. I formalize this hypothesis with a mathematical model derived by assuming that magma enters the base of the eruption conduit at a steady rate, invoking conservation of mass and momentum of the magma and plug, and postulating simple constitutive equations that describe magma and conduit compressibilities and friction along the plug margins. Reduction of the model equations reveals a strong mathematical analogy between the dynamics of the magma-plug system and those of a variably damped oscillator. Oscillations in extrusion velocity result from the interaction of plug inertia, a variable upward force due to magma pressure, and a downward force due to the plug weight. Damping of oscillations depends mostly on plug-boundary friction, and oscillations grow unstably if friction exhibits rate weakening similar to that observed in experiments. When growth of oscillations causes the extrusion rate to reach zero, however, gravity causes friction to reverse direction, and this reversal instigates a transition from unstable oscillations to self-regulating stick-slip cycles. The transition occurs irrespective of the details of rate-weakening behavior, and repetitive stick-slip cycles are, therefore, robust features of the system’s dynamics. The presence of a highly compressible elastic driving element (that is, magma containing bubbles) appears crucial for enabling seismogenic slip events to occur repeatedly at the shallow earthquake focal depths (8 N. These results imply that the system’s self-regulating behavior is not susceptible to dramatic change--provided that the

  15. Discrete Slip, Amorphous Silica and Pore Structure of Slickensided Gouge Layers in 2004-2006 Mt. St. Helens Lava Domes

    NASA Astrophysics Data System (ADS)

    White, J. C.; Kennedy, L. A.; Russell, J. K.; Friedlander, B.

    2012-12-01

    Spines of dacite lava formed during the 2004-2006 Mt. St. Helens (MSH) effusion event are enveloped by extrusion gouges created during upward movement of crystallized magma. Multiple slickenside sets form one of the most distinctive feature types within this gouge carapace. Macroscopically, slickenside surfaces are seen to be composite features composed of discrete slip surfaces in Y- and R-shear orientations. In general, the spacing between the slip surfaces decreases toward the outer, exposed slickensided surface until they appear to coalesce. Slickensides are formed in association with all MSH spines, unlike some other fault rock fabrics within the gouge; therefore, their morphology can be inferred to be independent of syn-faulting residence time. As a significant record of the extrusion process, the MSH slickensides have been characterized by analytical scanning/transmission electron microscopy (STEM) to elucidate the mechanisms of energy dissipation and material transport. At the scale of these observations, the individual surfaces within a slickenside set comprise comminution bands (10-20 μm wide), each bounded by a discrete slip surface. The internal structure of these shear bands consists of a consistent sense of decreasing grain size toward the slip surface away and away from the spire core; grain size is routinely less than 100nm within the bands. The 1-5 μm wide slip layers that bound comminution bands are variously composed of amorphous silica or polycrystalline aggregates of sub-100nm grain size plagioclase, k-feldspar and quartz. Grain aggregates in the slip layer form an extended fabric parallel to the displacement direction, creating a "flow" foliation at edges of the shears. Specific to the slip bands are nano-scale pores, often silica-filled, whose circular cross-sections indicate the presence of fluids throughout slickenside formation. It is contended that the development of discrete slip surfaces is consistent with formation of the gouge by

  16. Dynamics of co-ignimbrite plumes generated from pyroclastic flows of Mount St. Helens (7 August 1980)

    NASA Astrophysics Data System (ADS)

    Calder, Eliza S.; Sparks, R. Stephen J.; Woods, Andrew W.

    Four co-ignimbrite plumes were generated along the flow path of the pyroclastic flow of 7 August 1980 at Mount St. Helens. Three of the plumes were generated in discrete pulses which can be linked to changes in slope along the channel. One plume was generated at the mouth of the channel where the flow decelerated markedly as it moved onto the lower slopes of the pumice plain. Plume generation here may be triggered by enhanced mixing due to a hydraulic jump associated with an abrupt slope change. Measurements of plume ascent velocity and width show that the co-ignimbrite plumes increased in velocity with height. The plumes have initial velocities of 1-2m/s. Two of the plumes reached a velocity maximum (4.6 and 8.8m/s, respectively, at heights of 270 and 315m above the flow) and thereafter decelerated. The other plumes reached velocities of 6.2 and 13m/s. The four plumes become systematically less energetic downstream as measured by their ascent rates, which can be interpreted as a consequence of decreasing interaction of the pyroclastic flow front with the atmosphere. Theoretical models of both co-ignimbrite plumes and discrete co-ignimbrite clouds assume that there is no initial momentum, and both are able to predict the observed acceleration stage. The rising plumes mix with and heat air and sediment out particles causing their buoyancy to increase. Theoretical models agree well with observations and suggest that the initial motion of the ascending material is best described as a discrete thermal cloud which expands as it entrains air, whereas the subsequent motion of the head may become influenced by material supplied from the following plume. The models agree well with observations for an initial temperature of the ash and air mixture in the range of 500-600K, which is in turn consistent with the measured initial ash temperature of around 920K. Ash masses of 3.4×105 to 1.8×106kg are estimated.

  17. The Sedimentology of Pyroclastic Flow Lift-Off: The 18 May 1980 Mt. St. Helens Singe Zone Deposit

    NASA Astrophysics Data System (ADS)

    Dennen, R. L.; Gardner, J. E.; Befus, K. S.

    2014-12-01

    Pyroclastic density currents (PDCs) reverse buoyancy to form buoyant plumes after sufficient entrainment and heating of ambient atmosphere and deposition of suspended sediment. The deposits associated with buoyancy reversal depend on input from the feeding flow. It is expected that fines are swept away by the buoyant plume, and coarse sediment might be deposited preferentially during reversal; in an extreme case, one might expect deposit thickening at the point of buoyancy reversal as the coarse sediment rains out of the lofting plume. Alternatively, a thinner, finer grained deposit would be expected from a flow that deposited the bulk of its coarse sediment load prior to buoyancy reversal. The PDC associated with the 18 May 1980 Mt. St. Helens lateral blast downed trees as it traversed the ground (blowdown zone); at the distal extent of the blowdown zone, trees were burned, yet remained standing, in an area thought to represent a well-constrained case of PDC buoyancy reversal (singe zone). We present a sedimentological analysis of preserved deposits from the blowdown and singe zones to investigate this transition. The PDC deposit is poorly sorted, gray, sandy ash, generally <15 cm thick, and is locally normally graded. The unit includes lapilli sized clasts, with fragments of pumice, lithics, and, locally, wood fragments. Flow velocities at the blowdown/singe zone transition varied by a factor of ~2, and, where the flow velocities were slower, deceleration occurred within the blowdown zone prior to lift-off. In the singe zone, the deposit is structureless, and thins from <10 cm to <5 cm thick over a distance of 0.5-1 km. The grain-size distribution and sorting of the unit within the singe zone is broadly similar to deposits in the blowdown zone, but either become better sorted where deceleration in the blowdown zone preceded lift-off, or fine at the point of lift-off before becoming fines poor further downstream. These data indicate that the flow experienced only

  18. Topographic controls on pyroclastic density current dynamics: Insight from 18 May 1980 deposits at Mount St. Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Bendaña, Sylvana; Self, Stephen; Pollock, Nicholas

    2016-07-01

    Our ability to interpret the deposits of pyroclastic density currents (PDCs) is critical for understanding the transport and depositional processes that control PDC dynamics. This paper focuses on the influence of slope on flow dynamics and criticality as recorded in PDC deposits from the 18 May 1980 eruption of Mt. St. Helens (USA). PDC deposits are found along the steep flanks (10°-30°) and across the pumice plain (~ 5°) up to 8 km north of the volcano. Granulometry, componentry and descriptions of depositional characteristics (e.g., bedform morphology) are recorded with distance from source. The pumice plain deposits are primarily thick (3-12 m), massive and poorly-sorted, and represent deposition from a series of concentrated PDCs. By contrast, the steep flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes. We propose that acceleration of the concentrated PDCs along the steep flanks resulted in thinning of the concentrated, basal region of the current(s). Enhanced entrainment of ambient air, and autofluidization from upward fluxes of air from substrate interstices and plunging breakers across rugged, irregular topography further inflated the currents to the point that the overriding turbulent region strongly influenced transport and depositional mechanisms. Acceleration in combination with partial confinement in slot canyons and high surface roughness would also increase basal shear stress, further promoting shear and traction transport in the basal region of the current. Conditions along the steep flank resulted in supercritical flow, as recorded by regressive bedforms, which gradually transitioned to subcritical flow downstream as the concentrated basal region thickness increased as a function of decreasing slope and flow energy. We also find that (1) PDCs were erosive into the underlying granular substrate along high slopes (> 25°) where currents were

  19. A closer look at the pyroclastic density current deposits of the May 18, 1980 eruption of Mt St Helens

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.

    2010-12-01

    Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow

  20. Subevents of long-period seismicity: implications for hydrothermal dynamics during the 2004-2008 eruption of Mount St. Helens

    USGS Publications Warehouse

    Matoza, Robin S.; Chouet, Bernard A.

    2010-01-01

    One of the most striking aspects of seismicity during the 2004–2008 eruption of Mount St. Helens (MSH) was the precise regularity in occurrence of repetitive long-period (LP) or “drumbeat” events over sustained time periods. However, this precise regularity was not always observed, and at times the temporal occurrence of LP events became more random. In addition, accompanying the dominant LP class of events during the 2004–2008 MSH eruption, there was a near-continuous, randomly occurring series of smaller seismic events. These subevents are not always simply small-amplitude versions of the dominant LP class of events but appear instead to result from a separate random process only loosely coupled to the main LP source mechanism. We present an analysis of the interevent time and amplitude distributions of the subevents, using waveform cross correlation to separate LP events from the subevents. We also discuss seismic tremor that accompanied the 8 March 2005 phreatic explosion event at MSH. This tremor consists of a rapid succession of LPs and subevents triggered during the explosion, in addition to broadband noise from the sustained degassing. Immediately afterward, seismicity returned to the pre-explosion occurrence pattern. This triggering in relation to the rapid ejection of steam from the system, and subsequent return to pre-explosion seismicity, suggests that both seismic event types originated in a region of the subsurface hydrothermal system that was (1) in contact with the reservoir feeding the 8 March 2005 phreatic explosion but (2) not destroyed or drained by the explosion event. Finally, we discuss possible thermodynamic conditions in a pressurized hydrothermal crack that could give rise to seismicity. Pressure drop estimates for typical LP events are not generally large enough to perturb pure water in a shallow hydrothermal crack into an unstable state. However, dissolved volatiles such as CO2 may lead to a more unstable system, increasing the

  1. iMUSH-aided fault-plane studies at Mount St. Helens, Washington: Evidence for magma recharge

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Abers, G. A.; Creager, K. C.; Denlinger, R. P.; Ulberg, C. W.; Vidale, J. E.

    2014-12-01

    Background seismicity has been relatively low at Mount St. Helens (MSH) following its last eruption in 2004-2008, with an average of 95 located M > 0 events per year. This is in marked contrast to the five years immediately following the 1980-86 eruptive period, when the yearly average rate was about 400 events. During that time there was clear evidence, in the form of rotated fault-plane solutions (FPS), that magma recharge was occurring at depths > 2 km. Despite lower seismicity rates and generally smaller earthquakes, an improved seismic network recorded data sufficient to allow for computation of 88 FPS for the period 2008-2013. These FPS show that stress fields at depths > 2 km were rotated in a manner similar to that seen post-1980-86, providing evidence that magma recharge is again occurring at MSH. A subtle trend towards slightly deeper earthquakes since 2011 is consistent with this hypothesis, as is previously reported outward motion on GPS stations that has been modeled with an inflationary source beneath the volcano at ~8-9 km depth. In the summer of 2014, 70 broadband seismometers were installed within 50 km of MSH as part of the iMUSH experiment, greatly increasing the number of stations close enough to MSH to obtain good recordings of MSH-generated events. By the Fall AGU meeting we expect to have several months of data collected and processed from iMUSH stations. These data should greatly improve constraints on first-motion FPS and/or the number of events for which well-constrained FPS can be computed. In addition, the density of three-component stations may allow for computation of moment tensor solutions for larger events (M > 1), which typically occur ~20 times per year. This would allow us to assess whether recent MSH events have significant non-double-couple components, something that could indicate fluid involvement and that has previously only been seen during eruptive periods at MSH via short-term deployments of broadband stations.

  2. Distribution and compositions of magmatic inclusions in the Mount Helen dome, Lassen Volcanic Center, California: Insights into magma chamber processes

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Wilson, L. F.; Underwood, S. J.

    2008-11-01

    Variations in spatial abundances, compositions, and textures of undercooled magmatic inclusions were determined in a glaciated Pleistocene lava dome (Mt. Helen; ~ 0.6 km 3) at the Lassen volcanic center (LVC), southernmost Cascades. Spatial variations were determined by point-counting at 86 locations separated by ~ 100 m on the dome. Major and trace element compositions of host rocks and inclusions at 12 locations along the flow length of the dome were obtained. Important results include the following. (1) Inclusion abundances range from 3-19 vol.%, with the highest values generally located along the little eroded northwestern margin and flow front of the dome. (2) Host rock compositions are markedly uniform across the dome (65.4 +/- 0.4 wt.% SiO 2) indicating that the degree of inclusion disaggregation was uniform, despite large spatial variations in inclusion abundances. (3) Inclusion sizes range from a maximum of ~ 1 m across to mm-sized crystal clots of phenocrysts plus adhering Ca-rich plagioclase microphenocrysts. (4) Inclusions have variable macroscopic textures indicating that partial undercooling both prior to and following entrapment in cooler dacitic host magma were important processes. (5) Inclusions are variably fractionated magmas with large variations in Ni (79-11 ppm) and Cr (87-7 ppm) contents that are lower than presumed mantle-derived melts. Furthermore, large ranges in incompatible trace elements indicate that inclusion compositions also reflect deep processes involving either melting of variable mantle source rocks or assimilation-fractional crystallization. (6) Inclusions are variably mixed magmas (56-61 wt.% SiO 2) that contain up to 50% host dacitic magma. (7) Correlations between Ni and Cr contents in hosts and inclusions from individual outcrops indicate that the effect of inclusion disaggregation and magma mingling on host dacitic magma was local (e.g., < 50 m). These features are interpreted to reflect protracted recharge of diverse

  3. Effects of slope on the formation of dunes in dilute, turbulent pyroclastic currents: May 18th, 1980 Mt. St. Helens eruption

    NASA Astrophysics Data System (ADS)

    Bendana, Sylvana; Brand, Brittany D.; Self, Stephen

    2014-05-01

    The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the

  4. Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions: Chapter 33 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Blundy, Jon; Cashman, Katharine V.; Berlo, Kim

    2008-01-01

    O contents, consistent with magma extraction from shallow depths. Highly enriched Li in melt inclusions suggests that vapor transport of Li is a characteristic feature of Mount St. Helens. Melt inclusions from the current eruption have subtly different trace-element chemistry from all but one of the 1980-86 melt inclusions, with steeper rareearth-element (REE) patterns and low U, Th, and high-fieldstrength elements (HFSE), indicating addition of a new melt component to the magma system. It is anticipated that increasing involvement of the new melt component will be evident as the current eruption proceeds.

  5. Changes in channel geometry of six eruption-affected tributaries of the Lewis River, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Martinson, H.A.; Finneran, S.D.; Topinka, L.J.

    1984-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars and tephra deposits that altered tributary channels in the Lewis River drainage basin. In order to assess potential flood hazards, study channel adjustments, and construct a sediment budget for the perturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek, and Clearwater Creek during the summer of 1981. The network of 88 channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. The report presents channel cross-section profiles constructed from the survey data collected during water years 1980-82. (USGS)

  6. Hydrologic data for computation of sediment discharge : Toutle and North Fork Toutle Rivers near Mount St. Helens, Washington, water years 1980-84

    USGS Publications Warehouse

    Childers, Dallas; Hammond, Stephen E.; Johnson, William P.

    1988-01-01

    Immediately after the devastating May 18, 1980, eruption of Mount St. Helens, a program was initiated by the U.S. Geological Survey to study the streamflow and sediment characteristics of streams impacted by the eruption. Some of the data gathered in that program are presented in this report. Data are presented for two key sites in the Toutle River basin: North Fork Toutle River near Kid Valley, and Toutle River at Tower Road, near Silver Lake. The types of data presented are appropriate for use with sediment transport formulas; however, the data are also intended for use in a wide variety of additional applications. The data presented in this report are unique because they delineate flow conditions possessing great potential fo sediment transport. The data define unusually high suspended-sediment concentration. Data defining hydraulic, peak discharge, suspended-sediment, and bed-material characteristics are presented. (USGS)

  7. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA04 in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, Central Florida, September 2008

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Davis, Jeffrey B.; Flocks, James G.; Wiese, Dana S.

    2009-01-01

    From September 2 through 4, 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided.

  8. The effects of ground water, slope stability, and seismic hazards on the stability of the South Fork Castle Creek blockage in the Mount St. Helens area, Washington

    USGS Publications Warehouse

    Meyer, William; Sabol, M.A.; Glicken, H.X.; Voight, Barry

    1985-01-01

    A slope stability analysis on the South Fork Castle Creek debris avalanche blockage, near Mount St. Helens, Washington, was conducted to determine the likelihood of mass failure of the blockage and resultant breakout of South Fork Castle Creek Lake. On the basis of material properties, groundwater levels, and seismic history of the blockage, slope stability with and without earthquake-induced forces was determined. Results indicated that the blockage will not fail from gravitational forces at September 1983 groundwater levels. An increase of 25 feet or more in water levels could cause local failures, but massive failure of the blockage is improbable. Blockage slopes are potentially unstable for present and higher water levels if an earthquake with magnitude greater than 6.0 should occur. Retrogressive slope failures are possible, but lowering of the blockage crest below lake level and consequent lake breakout are considered remote. Significant earthquake shaking could cause cracks in the blockage that might facilitate piping. (USGS)

  9. Preliminary report on physical, chemical and mineralogical composition and health implications of ash from the Mount St. Helens eruption of May 18, 1980

    SciTech Connect

    Not Available

    1980-06-01

    On May 18, 1980 at 8:32 AM Pacific Daylight Time, a major eruption of ash and pyroclastics occurred from the Mount St. Helens volcano in Washington State. These and subsequent eruptions resulted in deposition of volcanic ash on large areas of the state of Washington and neighboring states. Beginning the day of the eruption and continuing through the following week, samples of the ash were collected for analysis by Battelle staff from various parts of eastern Washington and Montana. Specifically, samples were obtained from Richland, Yakima, Ahtanum, Tieton Ranger Station, Pullman, Rosalia, Moses Lake, Spokane, Ellensburg, Washington and Missoula, Montana. These materials were subjected to a variety of analyses including chemical, mineralogical and physical characterization and an in vitro biological assay to determine the effects of the ash on the pulmonary macrophage. This test gives an indication of the potential of the ash to cause respiratory diseases such as silicosis. Preliminary results of these various analyses are described.

  10. Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens - A terrestrial monopole

    NASA Technical Reports Server (NTRS)

    Kanamori, H.; Given, J. W.

    1982-01-01

    The eruption of Mount St. Helens on May 18, 1980, excited long-period seismic waves, and high-quality digital seismograms were recorded. The present investigation is concerned with the results of detailed analyses of Rayleigh and Love waves excited by this eruption. Since the elastic response of the earth is very accurately known, it is possible to retrieve the source parameters of this unique event from observations at far-field. It is shown that the source can be represented by a nearly horizontal single force. The conducted analysis is concerned with only long-period characteristics of the source. The short-period behavior of the source is difficult to determine from surface waves because the available knowledge of the earth's response is less accurate than at long periods.

  11. Dissociation of the Reach and the Grasp in the destriate (V1) monkey Helen: a new anatomy for the dual visuomotor channel theory of reaching.

    PubMed

    Whishaw, Ian Q; Karl, Jenni M; Humphrey, Nicholas K

    2016-08-01

    Dual visuomotor channel theory proposes that reaching depends on two neural pathways that extend from visual cortex (V1) to motor cortex via the parietal lobe. The Reach pathway directs the hand to the target's location and the Grasp pathway shapes the hand and digits for purchase. Sighted human participants integrate the Reach and the Grasp, but without vision they dissociate the movements to capitalize on tactile cues. They use a Reach with a relatively open hand to locate the target and then they use touch cues to shape the fingers to Grasp. After a V1 lesion, the rhesus monkey, Helen, learned to make near-normal visual discriminations based on size and brightness but displayed visual agnosia. She also learned to reach for food with her mouth and her hands. The present analysis of film of her reaching behavior shows that she dissociated the Reach and the Grasp, as do unsighted human participants reaching for a food target at a fixed location. Her rapid and direct Reach was made with an open hand and extended fingers to contact the food with the palm whereas her Grasp was initiated after she touched the food. She also visually fixated the target during the Reach and visually disengaged after target contact, as do sighted human participants. In contrast, Helen did integrate the Reach and the Grasp to take food from her mouth, demonstrating that she could integrate the movements using online tactile cues. The finding that extrastriate pathways can direct the hand toward extrinsic target properties (location) but not intrinsic target properties (size and shape) is discussed as a novel addition to dual visuomotor channel theory. PMID:27056084

  12. Patterns of earthquakes and the effect of solid earth and ocean load tides at Mount St. Helens prior to the May 18, 1980, eruption

    SciTech Connect

    McNutt, S.R.; Beavan, R.J.

    1984-05-10

    Seismographs near Mount St. Helens Volcano recorded an earthquake swarm lasting nearly 2 months prior to the May 18, 1980, eruption. The earthquakes are divided into four classes based on station CPW (..delta.. = 116 km) seismogram characteristics: (1) events with Sv:P amplitude ratio > 3 and dominant frequency > 3 Hz; (2) events with Sv:P ratio between 1 and 3 and dominant frequency > 2 Hz; (3) events similar to characteristic 2 but with a strong (probably surface wave) phase just after the S phase; and (4) events with frequencies between 1 and 2 Hz lacking a clear S phase. The seismicity pattern for each of the four classes is unique. Solid earth stress and strain tides were calculated at the average hypocentral depth of 4 km. Stress and strain tides induced by ocean loading were also calculated; their amplitudes are typically 20-40% those of the solid earth tides at the location of Mount St. Helens. A weak but significant correlation exists between the latter two classes of events and the tides for a time interval of about 5 days preceding the first onset of volcanic tremor and about 5 days thereafter. The polarity of the correlation is opposite for the two classes of events. In each case, the phase of the correlation changes systematically with time, the changes coinciding with the onset of tremor on March 31 and with a pronounced decrease in earthquake energy release rate on April 3. There are no significant correlations between the tides and the number of events or energy release of these two classes of earthquakes during any other interval between March 20 and May 18, 1980. The first two classes of events show no evidence of significant tidal correlation at any time during the study period. 20 references, 8 figures, 2 tables.

  13. Cyclic pressurisation of Mount St Helens dacites and basalt. Laboratory results and implications for lava dome monitoring

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie; Dainty, Matthew; Smith, Rosanna; Sammonds, Peter; Pallister, John; Meredith, Phillip

    2010-05-01

    Lava domes are frequently subjected to cyclic heating and pressurisation, which may weaken the dome rocks, leading to renewed extrusion, explosions or collapse. These heating and loading cycles can be recreated in the laboratory, allowing the level of crack damage caused by these cycles to be established through analysing elastic moduli. Acoustic emissions (AEs) indicate the timing of cracking, and can also be used to interpret precursory seismicity for eruption prediction. Experiment samples are from Mount St. Helens, USA: 3 dacites from the Pine Creek eruptive period (2.9-2.55 ka), a Castle Creek age basalt (2.55-1.895 ka), and 4 dacites from the 2004-2008 eruption. Each sample was cut into several cylindrical cores (25 mm diameter and 62.5-70 mm long). Some samples were then heated and cooled at 1˚C/ minute to a target temperature of 600o C or 900o C, and held for 2 hours to achieve thermal equilibrium. This heating can cause cracking due to contrasts in thermal expansion of different minerals. Dynamic elastic moduli were calculated for each sample using ultrasonic wave velocity, density and porosity for later comparison to static elastic moduli gathered during deformation. One core of each sample was loaded to failure in uniaxial compression in order to find the short term strength of the sample. For all cyclic loading tests, conducted on pre-heated and unheated cores, samples were loaded at 10-5 s-1 strain rate then unloaded to 5MPa. Subsequent cycles had an increasing peak load. Most had the same rate for unloading, with a few samples unloaded instantaneously. Axial, radial and volumetric strain were determined from the recorded displacement throughout the experiment and used with the axial stress measurements to calculate static elastic moduli. Samples loaded to failure with no cycling generally failed at higher stresses than their cyclically loaded counter-parts, whilst rapid unloading increased their strength. Failure stresses of the dacite lava dome

  14. Fragmentation and Cataclasis of Lava Domes: Field Evidence of Conduit-Margin Faulting and Cryptodome Unloading at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Pallister, J. S.; Hagstrum, J.; Cashman, K.; Tuffen, H.

    2007-12-01

    Structures and textures preserved in dome rocks reveal much about ascent history, seismicity, and dynamics of eruptions. The current eruption of Mount St. Helens (MSH) produced dacite spines mantled by fault gouge and breccia. Flow-banded spine interiors attest to early degassing and ductile deformation; micro-textures and structures in the spine margins indicate entirely brittle shear, rock breakage, grain-flow and gas-escape along fractures. Paleomagnetic pole positions and demagnetization data constrain cataclasis to the sub-vertical volcanic conduit at temperatures above 500°-570°C. Low water content of matrix glass and presence of tridymite require nearly complete decompression-driven solidification at depths <1 km, coincident with the eruption's seismogenic zone. 1-3 m thick cataclastic breccia of spine margins contains multiple Reidel shears in a conjugate set formed by shear between the vertically extruding spines and conduit walls. This breccia is overlain by a thin (<10 cm) outer mantle of finely comminuted gouge with 1-3 mm-thick, surface-parallel layers of slickenside-bearing ultracataclasite, forming through-going fault planes. Slickenside lineations and direction indicators are consistent with upward transport of the spines. These relations document two dominant modes of brittle failure in the spine margins, similar to the brittle S-C fabrics seen in tectonic fault zones. The Reidel shears represent limited-slip planes (S-shears), which are inclined relative to the primary bounding fault planes (C-surfaces). We infer that the Reidel shears formed as multiple, domino-like episodes of fracture, prior to transfer of slip to the bounding C-surfaces. Because the depth of deformation is the same as the depth of the seismogenic zone, and because there are two distinct modes of brittle fracture (S and C fabrics) as well as two distinct types of earthquakes (volcano-tectonic and longer-period hybrids) it is logical to infer that these structures are sources

  15. Rock property measurements guide interpretation of electromagnetic, magnetic and gravity models at Mts. Adams, Baker, Rainier and St. Helens (Invited)

    NASA Astrophysics Data System (ADS)

    Finn, C.; Bedrosian, P. A.; Horton, R.; Polster, S.

    2010-12-01

    Mt. Adams north of the summit. Alteration at Mt. Baker is restricted to thinner (<300 m) zones beneath Sherman Crater and the Dorr Fumerole Fields. The presence of water not only helps form clay minerals that weaken the edifice but also can reduce the pore pressures, increasing the potential for slope failure. In addition, water with entrained melting ice acts as a lubricant to transform debris avalanches into lahars. The EM data identified water-saturated rocks from the surface to the detection limit (100 - 200 m) in discreet zones at Mt. Rainier and Mt Adams and over the entire summit region at Mt. Baker. At Mt. St. Helens, perched aquifers are identified in the 1980 avalanche deposits as well as in older, thick breccia or avalanche deposits. The modeled distribution of alteration and pore fluids helps identify likely sources for future alteration-related debris flows and clearly shows that debris flow hazard studies on altered volcanoes are greatly enhanced by magnetic, EM and gravity data.

  16. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (Invited)

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; Pollock, N. M.; Mackaman-Lofland, C. A.; Bendana, S.

    2013-12-01

    The May 18th, 1980 eruption of Mount St. Helens (MSH) produced multiple pyroclastic density currents (PDCs), burying the area north of the volcano under 10s of meters of deposits. Detailed measurements of recently exposed strata from these PDCs provide substantial insight into the dynamics of concentrated currents including inferences on particle-particle interactions, current mobility due to sedimentation fluidization and internal pore pressure, particle support mechanisms, the influence of surface roughness and the conditions that promote substrate erosion and self-channelization. Four primary flow units are identified along the extensive drainage system north of the volcano. The PDCs associated with Units I and II likely occurred during the pre-climactic, waxing phase of the eruption. These currents flowed around and filled in the hummocky topography left behind by the earlier debris avalanche, leaving the massive to diffusely-stratified deposits of Units I and II. The deposits of both Units I and II are generally massive in low lying areas and stratified in areas of high surface roughness, suggesting that surface roughness enhanced basal shear stress within the flow boundary. Units III and IV are associated with the climactic phase of the eruption, which produced the most voluminous and wide-spread PDCs. Both flow units are characteristically massive and enriched in vent-derived lithic blocks. However, an increase in the proportion and size of lithic blocks is found (1) downstream of debris avalanche hummocks, suggesting the PDCs flowed over and around debris avalanche hummocks and were energetic enough to locally entrain accidental lithics from the hummocks and transport them tens of meters downstream, and (2) within large channels cut by later PDCs into earlier PDC deposits, suggesting self-channelization of the flows increased the carrying capacity of the subsequent channelized currents. Unit III is massive, poorly sorted, and shows little to no evidence of

  17. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Mackaman-Lofland, Chelsea; Pollock, Nicholas M.; Bendaña, Sylvana; Dawson, Blaine; Wichgers, Pamela

    2014-04-01

    The May 18th, 1980 eruption of Mount St. Helens (MSH) produced multiple pyroclastic density currents (PDCs), burying the area north of the volcano under 10s of meters of deposits. Detailed measurements of recently exposed strata from these PDCs provide substantial insight into the dynamics of concentrated currents including inferences on particle-particle interactions, current mobility due to sedimentation fluidization and internal pore pressure, particle support mechanisms, the influence of surface roughness and the conditions that promote substrate erosion and self-channelization. Four primary flow units are identified along the extensive drainage system north of the volcano. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. Each flow unit is an accumulation from an unsteady but locally sustained PDC or an amalgamation of several PDC pulses. The PDCs associated with Units I and II likely occurred during the pre-climactic, waxing phase of the eruption. These currents flowed around and filled in the hummocky topography, leaving the massive to diffusely-stratified deposits of Units I and II. The deposits of both Units I and II are generally more massive in low lying areas and more stratified in areas of high surface roughness, suggesting that surface roughness enhanced basal shear stress within the flow boundary. Units III and IV are associated with the climactic phase of the eruption, which produced the most voluminous and wide-spread PDCs. Both flow units are characteristically massive and enriched in vent-derived lithic blocks. These currents flowed over and around the debris avalanche deposits, as evidenced by the erosion of blocks from the hummocks. Unit III is massive, poorly sorted, and shows little to no evidence of elutriation or segregation of lithics and pumice, suggesting a highly concentrated current where size-density segregation was suppressed. Unit IV shows similar depositional

  18. Analysis of recently digitized continuous seismic data recorded during the March-May, 1980, eruption sequence at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Malone, S. D.

    2013-12-01

    The May 18, 1980, eruption of Mount St. Helens (MSH) was an historic event, both for society and for the field of volcanology. However, our knowledge of the eruption and the precursory period leading up it is limited by the fact that most of the data, particularly seismic recordings, were not kept due to severe limitations in the amount of digital data that could be handled and stored using 1980 computer technology. Because of these limitations, only about 900 digital event files have been available for seismic studies of the March-May seismic sequence out of a total of more than 4,000 events that were counted using paper records. Fortunately, data from a subset of stations were also recorded continuously on a series of 24 analog 14-track IRIG magnetic tapes. We have recently digitized these tapes and time-corrected and cataloged the resultant digital data streams, enabling more in-depth studies of the (almost) complete pre-eruption seismic sequence using modern digital processing techniques. Of the fifteen seismic stations operating near MSH for at least a part of the two months between March 20 and May 18, six stations have relatively complete analog recordings. These recordings have gaps of minutes to days because of radio noise, poor tape quality, or missing tapes. In addition, several other stations have partial records. All stations had short-period vertical-component sensors with very limited dynamic range and unknown response details. Nevertheless, because the stations were at a range of distances and were operated at a range of gains, a variety of earthquake sizes were recorded on scale by at least one station, and therefore a much more complete understanding of the evolution of event types, sizes and character should be achievable. In our preliminary analysis of this dataset we have found over 10,000 individual events as recorded on stations 35-40 km from MSH, spanning a recalculated coda-duration magnitude range of ~1.5 to 4.1, including many M < 3

  19. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    USGS Publications Warehouse

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  20. An updated numerical simulation of the ground-water flow system for the Castle Lake debris dam, Mount St. Helens, Washington, and implications for dam stability against heave

    USGS Publications Warehouse

    Roeloffs, Evelyn A.

    1994-01-01

    A numerical simulation of the ground-water flow system in the Castle Lake debris dam, calibrated to data from the 1991 and 1992 water years, was used to estimate factors of safety against heave and internal erosion. The Castle Lake debris dam, 5 miles northwest of the summit of Mount St. Helens, impounds 19,000 acre-ft of water that could pose a flood hazard in the event of a lake breakout. A new topographic map of the Castle Lake area prior to the 1980 eruption of Mount St. Helens was prepared and used to calculate the thickness of the debris avalanche deposits that compose the dam. Water levels in 22 piezometers and discharges from seeps on the dam face measured several times per year beginning in 1990 supplemented measurements in 11 piezometers and less frequent seep discharge measurements made since 1983. Observations in one group of piezometers reveal heads above the land surface and head gradients favoring upward flow that correspond to factors of safety only slightly greater than 2. The steady-state ground-water flow system in the debris dam was simulated using a threedimensional finite difference computer program. A uniform, isotropic model having the same shape as the dam and a hydraulic conductivity of 1.55 ft/day simulates the correct water level at half the observation points, but is in error by 10 ft or more at other points. Spatial variations of hydraulic conductivity were required to calibrate the model. The model analysis suggests that ground water flows in both directions between the debris dam and Castle Lake. Factors of safety against heave and internal erosion were calculated where the model simulated upward flow of ground water. A critical gradient analysis yields factors of safety as low as 2 near the piezometers where water level observations indicate low factors of safety. Low safety factors are also computed near Castle Creek where slumping was caused by a storm in January, 1990. If hydraulic property contrasts are present in areas of the

  1. Pre-eruptive volatile content of mafic magma from the 2.0-1.7 ka Castle Creek eruptive period, Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Rea, J.; Wallace, P. J.; Clynne, M. A.

    2012-12-01

    Among global convergent margins, the Cascade arc (Pacific Northwest, North America) has an atypically warm thermal profile due to the young age of the subducting ocean crust (≤10 Ma) and slow rate of subduction (3.5 cm/yr) in this region. Slab dehydration is thus expected to occur at relatively shallow subduction depths, resulting in high fluid fluxes in the mantle wedge below the forearc, with minimal addition of volatiles directly beneath the main volcanic front. Across-arc trends in magmatic volatiles should be most visible within particularly wide (E-W) portions of the active volcanic arc, such as are observed in Southern Washington, Central Oregon, and Northern California. As part of an ongoing study aimed at constraining variations in magmatic volatiles using monogenetic cinder cones across the Southern Washington Cascades, we analyzed the H2O and CO2 contents of olivine-hosted melt inclusions in basaltic scoria (Bu tephra) from the Castle Creek eruptive period (2.0-1.7 ka) of Mount St. Helens (MSH). The defining feature of this period is the first appearance of mafic magma at the surface, which initiated the modern Mount St. Helens and its variety of rock compositions (Mullineaux, 1996). Andesite, dacite, and basalt all were erupted during Castle Creek time, producing pyroclastic flows, surges, and tephra as well as lava flows. Our initial results show pre-eruptive H2O contents of 0.4-1.3 wt. % H2O and CO2 values that are below detection (<25-50 ppm). The morphology of the olivine crystals and their melt inclusions indicate relatively rapid crystallization. Given the low CO2 values, we conclude that the melt inclusions trapped partially degassed melts at relatively low pressure in a volcanic conduit or shallow storage reservoir. MSH represents the western extent of a stretch of volcanism extending ~100 km to the east; MSH magmas are thus expected to have high volatile contents relative to the other volcanic centers at this latitude.

  2. Imaging Magma Under St. Helens (iMUSH): Details of passive-source seismic deployment and preliminary 3-D velocity structure

    NASA Astrophysics Data System (ADS)

    Ulberg, C. W.; Creager, K. C.; Moran, S. C.; Abers, G. A.; Denlinger, R. P.; Hotovec-Ellis, A. J.; Vidale, J. E.; Kiser, E.; Levander, A.; Schultz, A.

    2014-12-01

    The imaging Magma Under St. Helens (iMUSH) experiment aims to delineate the extent of the magmatic system beneath Mount St. Helens (MSH) in Washington State. The experiment involves active- and passive-source seismology, magnetotellurics, and geochemistry/petrology. Seventy passive-source broadband seismometers were deployed in a 100-km-diameter array centered on MSH, with an average spacing of 10 km, and a planned duration of two years. The deployment over two weeks in June 2014 involved a group of 18 people split into 6 teams. Approximately half of the seismic stations have aircell batteries and/or pole-mounted solar panels in order to maintain power through deep snow at higher elevations during the winter months. Data will be retrieved 2-4 times a year throughout the duration of the experiment. The first service run performed in mid-July 2014 had a 98.4% data recovery. This is one of the largest wide-aperture two-dimensional arrays covering a volcano anywhere. The active-source portion of the experiment successfully set off 23 shots in late-July 2014. These were recorded clearly at permanent stations run by the Pacific Northwest Seismic Network up to 200 km away, and are expected to be well-recorded on many of the 70 broadband seismometers in addition to the 2500 Reftek "Texans" deployed temporarily for this purpose. For the 2-4 weeks of broadband data collected in July, local earthquakes down to magnitude 0 are recorded across the array, with clear P- and S- arrivals. Earthquakes of this size occur daily within 50 km of MSH. We are keeping a careful catalog of all activity in the region for the duration of the iMUSH experiment. We will pick P- and S-wave travel times at the 70 broadband stations from local earthquakes and active shots, for available data from between June and October 2014. We will also use a tomographic code (Preston et al, 2003, Science) to invert the travel times to obtain preliminary earthquake location and 3-D velocity structure.

  3. Trace Metals in Amphibole from Mount St. Helens, Mt. Hood, Shiveluch, and Mount Pinatubo: Insight into Metal Mobility in Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Loewen, M.; Kent, A. J.; Rowe, M. C.

    2013-12-01

    Arc magmas associated with subduction zones are often linked to the formation of some magmatic ore deposits. Observing the processes associated with metal mobility and enrichment in active arc volcanoes can elucidate the controls that lead to the formation of such ore deposits. In addition, volatile element mobility in a volcanic system may be related to the timing and style of volcanic eruptions. We have undertaken a study of trace metal abundances (Li, Cu, Zn, Pb, Sn, Mo, others) in amphibole from a number of intermediate volcanic systems to constrain the timing of trace metal mobility in arc magmas. Individual volcanoes show variable behavior. At Mount St. Helens, most analyzed metals show systematic variations similar to lithophile elements that can be explained with magma mixing and/or fractional crystallization. Lithium and Cu, however, are clearly decoupled from other trace elements, and concentrations vary by sample and date of eruption. For example, Li and Cu concentrations in amphibole are 3-5x higher in samples from the May 18 cryptodome than the May 18 pumice, in otherwise chemically identical phenocrysts. No significant zoning of Li or Cu has been observed. These two elements are likely transported in volatile fluids and rapidly equilibrated with phenocrysts in the region of volatile enrichment. In the case of the May 18 eruption, the cryptodome was fluxed with Li and Cu-bearing volatiles while it stalled at the top of a volatile-saturated magma chamber. Over the summer of 1980, variations in Li and Cu concentrations suggest Cu and Li were reconcentrated in magmas, as concentrations of Cu and Li exceeding that of the cryptodome occur in samples from the June 12 eruption, and the lowest concentrations are recorded from the July 22 and August 7 eruption. At Mt. Hood, Li and Cu concentrations correlate with each other but are decoupled from lithophile trace elements. Although two distinct depths of amphibole crystallization have been established for this

  4. Tracing pre-eruptive magma degassing using ( 210Pb/ 226Ra) disequilibria in the volcanic deposits of the 1980-1986 eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Berlo, Kim; Turner, Simon; Blundy, Jon; Black, Stuart; Hawkesworth, Chris

    2006-09-01

    Disequilibria between 210Pb and 226Ra can be used to trace magma degassing, because the intermediate nuclides, particularly 222Rn, are volatile. Products of the 1980-1986 eruptions of Mount St. Helens have been analysed for ( 210Pb/ 226Ra). Both excesses and deficits of 210Pb are encountered suggesting rapid gas transfer. The time scale of diffuse, non-eruptive gas escape prior to 1980 as documented by 210Pb deficits is on the order of a decade using the model developed by Gauthier and Condomines (Earth Planet. Sci. Lett. 172 (1999) 111-126) for a non-renewed magma chamber and efficient Rn removal. The time required to build-up 210Pb excess is much shorter (months) as can be observed from steady increases of ( 210Pb/ 226Ra) with time during 1980-1982. The formation of 210Pb excess requires both rapid gas transport through the magma and periodic blocking of gas escape routes. Superposed on this time trend is the natural variability of ( 210Pb/ 226Ra) in a single eruption caused by tapping magma from various depths. The two time scales of gas transport, to create both 210Pb deficits and 210Pb excesses, cannot be reconciled in a single event. Rather 210Pb deficits are associated with pre-eruptive diffuse degassing, while 210Pb excesses document the more vigorous degassing associated with eruption and recharge of the system.

  5. Self-similar rupture implied by scaling properties of volcanic earthquakes occurring during the 2004-2008 eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Harrington, Rebecca M.; Kwiatek, Grzegorz; Moran, Seth C.

    2015-07-01

    We analyze a group of 6073 low-frequency earthquakes recorded during a week-long temporary deployment of broadband seismometers at distances of less than 3 km from the crater at Mount St. Helens in September of 2006. We estimate the seismic moment (M0) and spectral corner frequency (f0) using a spectral ratio approach for events with a high signal-to-noise (SNR) ratio that have a cross-correlation coefficient of 0.8 or greater with at least five other events. A cluster analysis of cross-correlation values indicates that the group of 421 events meeting the SNR and cross-correlation criteria forms eight event families that exhibit largely self-similar scaling. We estimate the M0 and f0 values of the 421 events and calculate their static stress drop and scaled energy (ER/M0) values. The estimated values suggest self-similar scaling within families, as well as between five of eight families (i.e., M0∝f0-3 and ER/M0∝ constant). We speculate that differences in scaled energy values for the two families with variable scaling may result from a lack of resolution in the velocity model. The observation of self-similar scaling is the first of its kind for such a large group of low-frequency volcanic tectonic events occurring during a single active dome extrusion eruption.

  6. Effects of the Mount St. Helens eruption on the benthic fauna of the Toutle River, Muddy River, and Pine Creek drainage basins, Washington

    USGS Publications Warehouse

    Fuste, Luis A.

    1981-01-01

    During several periods of volcanic-ash eruption at Mount St. Helens, Wash., (March 30, May 25-26, May 30-June 2, and June 12-13, 1980) strong winds from the north occurred at high altitudes. As a result, the volcanic ash fell some 50 miles to the south in the Bull Run watershed, the principal water-supply source for the metropolitan area of Portland, Oreg. Water samples collected from three stream sites within the watershed were compared with samples collected during the same season in previous years. No detectable changes were noted in chemical characteristics. Precipitation samples collected immediately after the June 12-13 ash fall ranged in specific conductance from 20 to 41 micromhos per centimeter at 25C and in pH from 4.0 to 4.3 pH units. Stream samples collected during the May-June period ranged in specific conductance from 18 to 28 micromhos per centimeter at 25C and in pH from 6.7 to 7.5 pH units. Volcanic-ash samples were collected and analyzed for particle size, chemical composition, and weight. Significant differences in particle size of ash were found in samples from two separate eruptions. (USGS)

  7. Marine accident report - grounding of United States Tankship SS MOBILOIL, in the Columbia River near Saint Helens, Oregon, March 19, 1984

    SciTech Connect

    Not Available

    1984-11-20

    About 0006 P.S.T. on March 19, 1984, the fully loaded 618-foot-long United States tankship SS MOBILOIL experienced a steering gear malfunction and grounded in the Columbia River on the right ascending bank about 1 mile upstream from Saint Helens, Oregon. There were no injuries to the 36 persons aboard, but five cargo tanks and the forepeak tank were ruptured, and more than 170,000 gallons of oil polluted the river and its shores. The cleanup cost of the oil spill was estimated to be $3 million, and the cost of the repair to the ship was estimated to be $5 million. The National Transportation Safety Board determines that the probable cause of the grounding of the United States tankship SS MOBILOIL was a steering gear failure caused by the disconnection of the control linkage to the starboard steering gear pump when an improperly secured clevis pin vibrated loose while the pump was in the full starboard stroke position, which held the rudder at the 25 degrees right position.

  8. Changes in seismic velocity during the first 14 months of the 2004–2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hotovec-Ellis, A.J.; Vidale, J.E.; Gomberg, Joan S.; Thelen, Weston A.; Moran, Seth C.

    2015-01-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  9. Channel geometry and hydrologic data for six eruption-affected tributaries of the Lewis River, Mount St. Helens, Washington, water years 1983-84

    USGS Publications Warehouse

    Martinson, H.A.; Hammond, H.E.; Mast, W.W.; Mango, P.D.

    1986-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars, and tephra deposits that altered stream channels in the Lewis River drainage basin. In order to assess potential flood hazards, monitor channel adjustments, and construct a sediment budget for disturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek , and Clearwater Creek during 1981. This network of channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. Longitudinal stream profiles of the low-water thalweg and (or) water surfaces were surveyed periodically for selected short reaches of channel. Corresponding map views for these reaches were constructed using the survey data and aerial photographs. This report presents plots of channel cross-section profiles, longitudinal stream profiles, and channel maps constructed from survey data collected during water years 1983-84. (USGS)

  10. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  11. Self-similar rupture implied by scaling properties of volcanic earthquakes occurring during the 2004-2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Harrington, Rebecca M.; Kwiatek, Grzegorz; Moran, Seth C.

    2015-01-01

    We analyze a group of 6073 low-frequency earthquakes recorded during a week-long temporary deployment of broadband seismometers at distances of less than 3 km from the crater at Mount St. Helens in September of 2006. We estimate the seismic moment (M0) and spectral corner frequency (f0) using a spectral ratio approach for events with a high signal-to-noise (SNR) ratio that have a cross-correlation coefficient of 0.8 or greater with at least five other events. A cluster analysis of cross-correlation values indicates that the group of 421 events meeting the SNR and cross-correlation criteria forms eight event families that exhibit largely self-similar scaling. We estimate the M0 and f0 values of the 421 events and calculate their static stress drop and scaled energy (ER/M0) values. The estimated values suggest self-similar scaling within families, as well as between five of eight families (i.e.,  and  constant). We speculate that differences in scaled energy values for the two families with variable scaling may result from a lack of resolution in the velocity model. The observation of self-similar scaling is the first of its kind for such a large group of low-frequency volcanic tectonic events occurring during a single active dome extrusion eruption.

  12. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004--2008

    USGS Publications Warehouse

    Anderson, Kyle; Segall, Paul

    2013-01-01

    Physics-based models of volcanic eruptions can directly link magmatic processes with diverse, time-varying geophysical observations, and when used in an inverse procedure make it possible to bring all available information to bear on estimating properties of the volcanic system. We develop a technique for inverting geodetic, extrusive flux, and other types of data using a physics-based model of an effusive silicic volcanic eruption to estimate the geometry, pressure, depth, and volatile content of a magma chamber, and properties of the conduit linking the chamber to the surface. A Bayesian inverse formulation makes it possible to easily incorporate independent information into the inversion, such as petrologic estimates of melt water content, and yields probabilistic estimates for model parameters and other properties of the volcano. Probability distributions are sampled using a Markov-Chain Monte Carlo algorithm. We apply the technique using GPS and extrusion data from the 2004–2008 eruption of Mount St. Helens. In contrast to more traditional inversions such as those involving geodetic data alone in combination with kinematic forward models, this technique is able to provide constraint on properties of the magma, including its volatile content, and on the absolute volume and pressure of the magma chamber. Results suggest a large chamber of >40 km3 with a centroid depth of 11–18 km and a dissolved water content at the top of the chamber of 2.6–4.9 wt%.

  13. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004-2008

    NASA Astrophysics Data System (ADS)

    Anderson, Kyle; Segall, Paul

    2013-05-01

    Physics-based models of volcanic eruptions can directly link magmatic processes with diverse, time-varying geophysical observations, and when used in an inverse procedure make it possible to bring all available information to bear on estimating properties of the volcanic system. We develop a technique for inverting geodetic, extrusive flux, and other types of data using a physics-based model of an effusive silicic volcanic eruption to estimate the geometry, pressure, depth, and volatile content of a magma chamber, and properties of the conduit linking the chamber to the surface. A Bayesian inverse formulation makes it possible to easily incorporate independent information into the inversion, such as petrologic estimates of melt water content, and yields probabilistic estimates for model parameters and other properties of the volcano. Probability distributions are sampled using a Markov-Chain Monte Carlo algorithm. We apply the technique using GPS and extrusion data from the 2004-2008 eruption of Mount St. Helens. In contrast to more traditional inversions such as those involving geodetic data alone in combination with kinematic forward models, this technique is able to provide constraint on properties of the magma, including its volatile content, and on the absolute volume and pressure of the magma chamber. Results suggest a large chamber of >40 km3 with a centroid depth of 11-18 km and a dissolved water content at the top of the chamber of 2.6-4.9 wt%.

  14. Immediate public health concerns and actions in volcanic eruptions: lessons from the Mount St. Helens eruptions, May 18-October 18, 1980

    SciTech Connect

    Bernstein, R.S.; Baxter, P.J.; Falk, H.; Ing, R.; Foster, L.; Frost, F.

    1986-03-01

    The Centers for Disease Control in collaboration with affected state and local health departments, clinicians, and private institutions carried out a compulsive epidemiologic evaluation of mortality and morbidity associated with volcanic activity following the 1980 eruption of Mount St. Helens. Excession morbidity were limited to transient increases to emergency room visits and hospital admissions for troumatic injuries and respiratory problems. Excessive mortality due to suffocation (76%) thermal injuries (12%), or trauma (12%) by ash and other volcanic hazards was directly proportional to the degree of environmental damage. De novo appearance of asthma was not observed, but excess adverse respiratory effects were observed in persons with preexisting respiratory disease and in heavy smokers. The volcanic ash had a mild to moderate fibrogenic potential. Community exposures to resuspended ash only transiently exceeded health limits normally applied to entire working lifetime exposures to free silica. There were no excessive exposures to toxic metals, fibrous minerals, organic chemicals, radon, or toxic gases of volcanic origin in community water supplies on air.

  15. Source mechanisms of persistent shallow earthquakes during eruptive and non-eruptive periods between 1981 and 2011 at Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Lehto, Heather L.; Roman, Diana C.; Moran, Seth C.

    2013-04-01

    Shallow seismicity between 0 and 3-km depth has persisted at Mount St. Helens, Washington (MSH) during both eruptive and non-eruptive periods for at least the past thirty years. In this study we investigate the source mechanisms of shallow volcano-tectonic (VT) earthquakes at MSH by calculating high-quality hypocenter locations and fault plane solutions (FPS) for all VT events recorded during two eruptive periods (1981-1986 and 2004-2008) and two non-eruptive periods (1987-2004 and 2008-2011). FPS show a mixture of normal, reverse, and strike-slip faulting during all periods, with a sharp increase in strike-slip faulting observed in 1987-1997 and an increase in normal faulting in 1998-2004. FPS P-axis orientations show a ~ 90° rotation with respect to regional σ1 (N23°E) during 1981-1986 and 2004-2008, bimodal orientations (~ N-S and ~ E-W) during 1987-2004, and bimodal orientations at ~ N-E and ~ S-W from 2008-2011. We interpret these orientations to likely be due to pressurization accompanying the shallow intrusion and subsequent eruption of magma as domes during 1981-1986 and 2004-2008 and the buildup of pore pressure beneath a seismogenic volume (located at 0-1 km) with a smaller component due to the buildup of tectonic forces during 1987-2004 and 2008-2011.

  16. An investigation of vegetation and other Earth resource/feature parameters using LANDSAT and other remote sensing data. 1: LANDSAT. 2: Remote sensing of volcanic emissions. [New England forest and emissions from Mt. St. Helens and Central American volcanoes

    NASA Technical Reports Server (NTRS)

    Birnie, R. W.; Stoiber, R. E. (Principal Investigator)

    1981-01-01

    A fanning technique based on a simplistic physical model provided a classification algorithm for mixture landscapes. Results of applications to LANDSAT inventory of 1.5 million acres of forest land in Northern Maine are presented. Signatures for potential deer year habitat in New Hampshire were developed. Volcanic activity was monitored in Nicaragua, El Salvador, and Guatemala along with the Mt. St. Helens eruption. Emphasis in the monitoring was placed on the remote sensing of SO2 concentrations in the plumes of the volcanoes.

  17. Calculation of multicomponent chemical equilibria in gas-solid- liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens

    USGS Publications Warehouse

    Symonds, R.B.; Reed, M.H.

    1993-01-01

    This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. Examples of gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mount St. Helens are shown. -from Authors

  18. Impact of the lateral blast on the spatial pattern and grain size characteristics of the 18 May 1980 Mount St. Helens fallout deposit

    NASA Astrophysics Data System (ADS)

    Eychenne, Julia; Cashman, Katharine; Rust, Alison; Durant, Adam

    2015-09-01

    The 18 May 1980 eruption of Mount St. Helens started with a lateral blast that fed a pyroclastic surge, which then uplifted to form a co-blast plume. Thirty minutes later, Plinian activity started at the vent and fluctuated in intensity for ~9 h. The resulting fallout deposit, documented to > 600 km from vent, presents some striking features: (1) displacement of the overall deposit to the north of the vent, (2) a secondary thickness and mass maximum at ~300 km from vent, (3) a total grain size distribution dominated by fine ash (62 wt % of the deposit < 63 µm), and (4) individual grain size distributions that vary dramatically in the crosswind direction from strongly bimodal in the south to skewed unimodal in the north. Results from a new deconvolution of the individual grain size distributions show that they are a combination of a coarse subpopulation that decreases in size with distance from vent and a constant fine subpopulation with a mean of ˜15 µm. Relative proportions of each subpopulation vary asymmetrically in the crosswind directions, with the fine subpopulation preponderant toward the north and the coarse one dominating the south of the deposit, both reach their absolute maxima in mass on the deposit axis. Componentry analyses of selected samples show that blast-derived material is greatly enriched toward the north of the deposit. These results indicate that the co-blast plume dispersed fine-grained material over great distances and dominated the fine subpopulation. Comparison with reanalysis data of atmospheric wind fields and satellite images of the spreading ash cloud suggests contrasting ash transport and depositional processes for the (early) co-blast plume and the (later) vent-derived Plinian plumes. The co-blast plume is displaced to the north; it had a high overshoot height, and eastward dispersion via strong winds low in the stratosphere (~10-15 km). The Plinian plumes were lower and dispersed most of the material to the southeast as the

  19. Communicating Uncertainty to the Public During Volcanic Unrest and Eruption -A Case Study From the 2004-2005 Eruption of Mount St. Helens, USA

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.; Pallister, J. S.

    2005-12-01

    The earthquake swarm beneath Mount St. Helens that began on 23 September 2004 did not initially appear different from previous swarms (none of which culminated in an eruption) that had occurred beneath the volcano since the end of the 1980-1986 eruptions. Three days into the swarm, however, a burst of larger-magnitude earthquakes indicated that this swarm was indeed different and prompted the U.S. Geological Survey's Cascades Volcano Observatory (CVO) to issue a change in alert level, the first time such a change had been issued in the Cascades in over 18 years. From then on, the unrest accelerated quickly as did the need to communicate the developing conditions to the public and public officials, often in the spotlight of intense media attention. Within three weeks of the onset of unrest, magma reached the surface. Since mid-October 2004, lava has been extruding through a glacier within the crater of Mount St. Helens, forming a 60 Mm3 dome by August 2005. The rapid onset of the eruption required a rapid ramping up of communication within and among the scientific, emergency-response and land-management communities, as well as the reestablishment of protocols that had not been rigorously tested for 18 years. Early on, daily meetings of scientists from CVO and the University of Washington's Pacific Northwest Seismograph Network were established to discuss incoming monitoring data and to develop a consensus on the likely course of activity, hazard potential and the uncertainty inherent in these forecasts. Subgroups developed scenario maps to describe the range of activity likely under different eruptive behaviors and sizes, and assessed short- and long-term probabilities of eruption, explosivity and hazardous events by employing a probability-tree methodology. Resultant consensual information has been communicated to a variety of groups using established alert levels for ground-based and aviation communities, daily updates and media briefings, postings on the

  20. Better constraints on the size and volatile content of the Mount St. Helens magma reservoir following the end of the 2004-2008 eruption

    NASA Astrophysics Data System (ADS)

    Mastin, L. G.; Lisowski, M.; Beeler, N.; Roeloffs, E.

    2008-12-01

    The October 2004-January 2008 eruption of Mount St. Helens produced about 93 million cubic meters dense-rock equivalent (DRE) lava at a continuous rate that decreased monotonically from ~6 m3 s-1 to zero over its duration. From late October 2004 through the end of the eruption, continuous GPS stations around the mountain recorded inward deflation at a rate that dropped monotonically below the noise level by early 2007. The geodetic signal is consistent with a volume change Δ Vc of ~16-25M m3 in an ellipsoidal reservoir of volume Vc centered at ~9-14 km depth beneath the crater. Throughout the eruption we used physically based models to extrapolate trends in lava-dome volume and deflation, and to forecast the duration and final erupted volume, Ve, using assumed or geologically constrained values of Vc, average recharge rate R into the reservoir, and compressibilities of magma (Km = ( 1/ρ m )( ∂ ρ m /∂ p )) and of the reservoir (Kc = ( 1/Vc )( ∂ Vc /∂ p )), where ρ m is magma density and p is pressure). Curves that neglected recharge consistently under-predicted both the final duration and volume, while those that assumed a constant recharge rate predicted indefinite duration and volume. The fact that the eruption ended several months after deflation stopped suggests that the long-term average recharge was close to zero, or at least much less than the average eruption rate. The discrepancy between Ve (93M m3) and Δ VC (16-25M m3) can be accounted for by the elastic relation Ve /Δ Vc = ( 1 + Km /Kc ), with Km = 3 - 4 × 10- 10 Pa-1 calculated for reservoir magma with 1- 1.5% bubbles (constrained from gas studies of the erupted lava), and Kc = 1.1 - 1.5 × 10 - 10 Pa-1. Assuming that the pressure drop dp in the reservoir was only slightly greater than the ~5 MPa increase in pressure at the 2004 vent elevation due to growth of the 220-m-high lava dome, the elastic relation Ve = VC dp( Kc + Km ) suggests that the eruption could have been fed by a reservoir

  1. The roles of magmatic and external water in the March 8 tephra eruption at Mount St. Helens as assessed by a 1-D steady plume-height model

    NASA Astrophysics Data System (ADS)

    Mastin, L. G.; Sherrod, D. R.; Vallance, J. W.; Thornber, C. T.; Ewert, J. W.

    2005-12-01

    The dome-building eruption at Mount St. Helens has occurred through glacial ice and snow that would be expected to substantially affect the character of the eruption. Nevertheless, the role of water in the eruption to date has not always been clear. For example, on March 8, 2005, a half-hour-long tephra blast sent a plume to a maximum of ~9 km above the vent (based on pilot reports); seismicity and plume heights were greatest during the first ~10 minutes, then persisted for another ~15 minutes at a lower level before the eruption stopped. Tephra volume within 5 km2 downwind of the vent was ~5x104 m3 DRE, but trace amounts were reported at least to Ellensburg, WA (150 km NE), suggesting a total areal coverage >5,000 km2 and total volume >1x105 m3. Assuming that most of this material was expelled in the first ten minutes and had a density of 2500 kg/m3, the mass flow rate (M) during the vigorous phase was >~4x105 kg/s. The tephra, composed primarily of non-pumiceous broken and decrepitated dome rock, could have been expelled either by groundwater and steam at relatively modest (boiling-point) temperatures, or by magmatic gas at much higher temperatures. The high plume, however, suggested significant buoyancy, perhaps driven by temperatures closer to magmatic. To assess the effect of magmatic heat on plume height, we employ a 1-D steady volcanic plume model that uses specified vent diameter, exit velocity, eruption temperature, mass fractions of gas and added external water, and profiles of atmospheric temperature and humidity, to calculate plume height and plume properties as a function of elevation. The model considers the enthalpy of equilibrium water condensation and of ice formation. Model results show that, under atmospheric temperature and humidity profiles measured near Mount St. Helens on the afternoon of March 8, 2005, a plume height (h) of 7-9 km could have developed with eruption temperatures (T) as low as 100° C, provided the mass fraction of water vapor

  2. Digital Elevation Models of the Pre-Eruption 2000 Crater and 2004-07 Dome-Building Eruption at Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Messerich, J.A.; Schilling, S.P.; Thompson, R.A.

    2008-01-01

    Presented in this report are 27 digital elevation model (DEM) datasets for the crater area of Mount St. Helens. These datasets include pre-eruption baseline data collected in 2000, incremental model subsets collected during the 2004-07 dome building eruption, and associated shaded-relief image datasets. Each dataset was collected photogrammetrically with digital softcopy methods employing a combination of manual collection and iterative compilation of x,y,z coordinate triplets utilizing autocorrelation techniques. DEM data points collected using autocorrelation methods were rigorously edited in stereo and manually corrected to ensure conformity with the ground surface. Data were first collected as a triangulated irregular network (TIN) then interpolated to a grid format. DEM data are based on aerotriangulated photogrammetric solutions for aerial photograph strips flown at a nominal scale of 1:12,000 using a combination of surveyed ground control and photograph-identified control points. The 2000 DEM is based on aerotriangulation of four strips totaling 31 photographs. Subsequent DEMs collected during the course of the eruption are based on aerotriangulation of single aerial photograph strips consisting of between three and seven 1:12,000-scale photographs (two to six stereo pairs). Most datasets were based on three or four stereo pairs. Photogrammetric errors associated with each dataset are presented along with ground control used in the photogrammetric aerotriangulation. The temporal increase in area of deformation in the crater as a result of dome growth, deformation, and translation of glacial ice resulted in continual adoption of new ground control points and abandonment of others during the course of the eruption. Additionally, seasonal snow cover precluded the consistent use of some ground control points.

  3. Source mechanism of small long-period events at Mount St. Helens in July 2005 using template matching, phase-weighted stacking, and full-waveform inversion

    USGS Publications Warehouse

    Matoza, Robin S.; Chouet, Bernard A.; Dawson, Phillip B.; Shearer, Peter M.; Haney, Matthew M.; Waite, Gregory P.; Moran, Seth C.; Mikesell, T. Dylan

    2015-01-01

    Long-period (LP, 0.5-5 Hz) seismicity, observed at volcanoes worldwide, is a recognized signature of unrest and eruption. Cyclic LP “drumbeating” was the characteristic seismicity accompanying the sustained dome-building phase of the 2004–2008 eruption of Mount St. Helens (MSH), WA. However, together with the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP “subevents”), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. The signal-to-noise ratios of the individual events are too low to produce reliable waveform-inversion results, but the events are repetitive and can be stacked. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005 using a master event to detect 822 network triggers. We stack waveforms for 359 high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism pointsto the volumetric oscillation (~10 m3) of a subhorizontal crack located at shallow depth (~30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice, perhaps supplied from snow melt.

  4. N-P Co-Limitation of Primary Production and Response of Arthropods to N and P in Early Primary Succession on Mount St. Helens Volcano

    PubMed Central

    Bishop, John G.; O'Hara, Niamh B.; Titus, Jonathan H.; Apple, Jennifer L.; Gill, Richard A.; Wynn, Louise

    2010-01-01

    Background The effect of low nutrient availability on plant-consumer interactions during early succession is poorly understood. The low productivity and complexity of primary successional communities are expected to limit diversity and abundance of arthropods, but few studies have examined arthropod responses to enhanced nutrient supply in this context. We investigated the effects of nitrogen (N) and phosphorus (P) addition on plant productivity and arthropod abundance on 24-yr-old soils at Mount St. Helens volcano. Methodology/Principal Findings We measured the relative abundance of eight arthropod orders and five families in plots that received N, P, or no nutrients for 3–5 years. We also measured plant % cover, leaf %N, and plant diversity. Vegetation responded rapidly to N addition but showed a lagged response to P that, combined with evidence of increased N fixation, suggested P-limitation to N availability. After 3 yrs of fertilization, orthopterans (primarily Anabrus simplex (Tettigoniidae) and Melanoplus spp (Acrididae)) showed a striking attraction to P addition plots, while no other taxa responded to fertilization. After 5 yrs of fertilization, orthopteran density in the same plots increased 80%–130% with P addition and 40% with N. Using structural equation modeling, we show that in year 3 orthopteran abundance was associated with a P-mediated increase in plant cover (or correlated increases in resource quality), whereas in year 5 orthopteran density was not related to cover, diversity or plant %N, but rather to unmeasured effects of P, such as its influence on other aspects of resource quality. Conclusions/Significance The marked surprising response to P by orthopterans, combined with a previous observation of P-limitation in lepidopteran herbivores at these sites, suggests that P-mediated effects of food quantity or quality are critical to insect herbivores in this N-P co-limited primary successional system. Our results also support a previous

  5. Pyroclastic Flow (Post-)Emplacement Thermal History Derived From Titanomagnetite Curie Temperatures: Mt. St. Helens and Soufrière Hills as Test Cases

    NASA Astrophysics Data System (ADS)

    Bowles, J.; Jackson, M.; Lappe, S. C. L. L.; Solheid, P.; Stinton, A. J.

    2014-12-01

    Pumice blocks and ash matrix sampled from the 1980 pyroclastic flows at Mt. St. Helens and the 2010 flow at Soufrière Hills, Montserrat, display magnetic Curie temperatures (TC) that vary strongly with depth in the flow. We demonstrate that these TC variations result from variable degrees of cation ordering within Mg- and Al-bearing titanomagnetites, and that the degree of ordering is dependent on the emplacement temperature and post-emplacement thermal history of the sample. Curie temperatures are lowest at the tops of flows where rapid cooling has quenched in a relatively low degree of cation order. Samples that cooled more slowly at depth in the flow evolved towards a higher degree of cation order with a correspondingly higher TC. Isothermal annealing experiments in the laboratory have allowed us to document the time-temperature evolution of the cation ordering and Curie temperature, and we use this data in combination with conductive cooling calculations to forward model stratigraphic variations in TC as a function of emplacement temperature (e.g., Fig.1). Preliminary results show that modeled emplacement temperatures (Templ) are reasonably close to measured or estimated emplacement temperatures. Thermal demagnetization data from lithic clasts incorporated into some flows supports the modeled emplacement temperatures; a low-temperature overprint in the direction of the present-day field is removed at ~Templ. However, the documented variation of TC with thermal history means that care should be taken in interpreting this more traditional lithic-based paleomagnetic paleothermometry data. Modification of Curie and blocking temperatures both during natural cooling and during laboratory thermal treatments could affect lithic-based emplacement temperature estimates.

  6. Operation of a digital seismic network on Mount St. Helens volcano and observations of long period seismic events that originate under the volcano

    SciTech Connect

    Fehler, M.; Chouet, B.

    1982-09-01

    A 9 station digital seismic array was operated on Mount St. Helens volcano in Washington State during 1981. One of the stations was placed inside the crater of the volcano, six were located on the flanks of the volcano within two km of the crater and two were approximately ten km from the crater. Four of the instruments recorded three components of motion and the remaining five recorded only the vertical component. A one day experiment was carried out during which the crater monitoring seismometer was complimented by the addition of two ink recording instruments. During the one day experiment six observers recorded times of rockfall, felt-earthquake occurrences, and changes in steam emissions from the dome in the crater. Using information obtained during the one day experiment seismic events recorded by the digital instruments were classified as earthquakes, rockfalls, helicopter noise and a type of event that is unique to volcanoes which is called long period. Waveforms of these long period events have a duration of up to 30 seconds and a spectrum that is peaked at approximately 2 Hz. The frequency at which the peak in the spectrum occurs is nearly the same at all stations which means that the unique waveform of long period events is due to a source effect, not a path effect. The peak frequency is fairly insensitive to the amplitude of the signal which means that the size of the source region is constant, independent of the signal amplitude. Long period events were not felt and were accompanied by no visible changes inside the crater which lead to the conclusion that they are some sort of seismic disturbance generated inside the Volcano.

  7. Source mechanism of small long-period events at Mount St. Helens in July 2005 using template matching, phase-weighted stacking, and full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Chouet, Bernard A.; Dawson, Phillip B.; Shearer, Peter M.; Haney, Matthew M.; Waite, Gregory P.; Moran, Seth C.; Mikesell, T. Dylan

    2015-09-01

    Long-period (LP, 0.5-5 Hz) seismicity, observed at volcanoes worldwide, is a recognized signature of unrest and eruption. Cyclic LP "drumbeating" was the characteristic seismicity accompanying the sustained dome-building phase of the 2004-2008 eruption of Mount St. Helens (MSH), WA. However, together with the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP "subevents"), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. The signal-to-noise ratios of the individual events are too low to produce reliable waveform inversion results, but the events are repetitive and can be stacked. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005 using a master event to detect 822 network triggers. We stack waveforms for 359 high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism points to the volumetric oscillation (˜10 m3) of a subhorizontal crack located at shallow depth (˜30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice, perhaps supplied from snow melt.

  8. A New Perspective on Mount St. Helens - Dramatic Landform Change and Associated Hazards at the Most Active Volcano in the Cascade Range

    USGS Publications Warehouse

    Ramsey, David W.; Driedger, Carolyn L.; Schilling, Steve P.

    2008-01-01

    Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range during the past 4,000 years. The volcano has exhibited a variety of eruption styles?explosive eruptions of pumice and ash, slow but continuous extrusions of viscous lava, and eruptions of fluid lava. Evidence of the volcano?s older eruptions is recorded in the rocks that build and the deposits that flank the mountain. Eruptions at Mount St. Helens over the past three decades serve as reminders of the powerful geologic forces that are reshaping the landscape of the Pacific Northwest. On May 18, 1980, a massive landslide and catastrophic explosive eruption tore away 2.7 cubic kilometers of the mountain and opened a gaping, north-facing crater. Lahars flowed more than 120 kilometers downstream, destroying bridges, roads, and buildings. Ash from the eruption fell as far away as western South Dakota. Reconstruction of the volcano began almost immediately. Between 1980 and 1986, 80 million cubic meters of viscous lava extruded episodically onto the crater floor, sometimes accompanied by minor explosions and small lahars. A lava dome grew to a height of 267 meters, taller than the highest buildings in the nearby city of Portland, Oregon. Crater Glacier formed in the deeply shaded niche between the 1980-86 lava dome and the south crater wall. Its tongues of ice flowed around the east and west sides of the dome. Between 1989 and 1991, multiple explosions of steam and ash rocked the volcano, possibly a result of infiltrating rainfall being heated in the still-hot interior of the dome and underlying crater floor. In September 2004, rising magma caused earthquake swarms and deformation of the crater floor and glacier, which indicated that Mount St. Helens might erupt again soon. On October 1, 2004, a steam and ash explosion signaled the beginning of a new phase of eruptive activity at the volcano. On October 11, hot rock reached the surface and began building a new lava dome immediately

  9. Instrumentation in remote and dangerous settings; examples using data from GPS “spider” deployments during the 2004-2005 eruption of Mount St. Helens, Washington: Chapter 16 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    LaHusen, Richard G.; Swinford, Kelly J.; Logan, Matthew; Lisowski, Michael

    2008-01-01

    Self-contained, single-frequency GPS instruments fitted on lightweight stations suitable for helicopter-sling payloads became a critical part of volcano monitoring during the September 2004 unrest and subsequent eruption of Mount St. Helens. Known as “spiders” because of their spindly frames, the stations were slung into the crater 29 times from September 2004 to December 2005 when conditions at the volcano were too dangerous for crews to install conventional equipment. Data were transmitted in near-real time to the Cascades Volcano Observatory in Vancouver, Washington. Each fully equipped unit cost about $2,500 in materials and, if not destroyed by natural events, was retrieved and redeployed as needed. The GPS spiders have been used to track the growth and decay of extruding dacite lava (meters per day), thickening and accelerated flow of Crater Glacier (meters per month), and movement of the 1980-86 dome from pressure and relaxation of the newly extruding lava dome (centimeters per day).

  10. Using semi-automated photogrammetry software to generate 3D surfaces from oblique and vertical photographs at Mount St. Helens, WA

    NASA Astrophysics Data System (ADS)

    Schilling, S.; Diefenbach, A. K.

    2012-12-01

    Photogrammetry has been used to generate contours and Digital Elevation Models (DEMs) to monitor change at Mount St. Helens, WA since the 1980 eruption. We continue to improve techniques to monitor topographic changes within the crater. During the 2004-2008 eruption, 26 DEMs were used to track volume and rates of growth of a lava dome and changes of Crater Glacier. These measurements constrained seismogenic extrusion models and were compared with geodetic deflation volume to constrain magma chamber behavior. We used photogrammetric software to collect irregularly spaced 3D points primarily by hand and, in reasonably flat areas, by automated algorithms, from commercial vertical aerial photographs. These models took days to months to complete and the areal extent of each surface was determined by visual inspection. Later in the eruption, we pioneered the use of different software to generate irregularly spaced 3D points manually from oblique images captured by a hand-held digital camera. In each case, the irregularly spaced points and intervening interpolated points formed regular arrays of cells or DEMs. Calculations using DEMs produced from the hand-held images duplicated volumetric and rate results gleaned from the vertical aerial photographs. This manual point capture technique from oblique hand-held photographs required only a few hours to generate a model over a focused area such as the lava dome, but would have taken perhaps days to capture data over the entire crater. Here, we present results from new photogrammetric software that uses robust image-matching algorithms to produce 3D surfaces automatically after inner, relative, and absolute orientations between overlapping photographs are completed. Measurements using scans of vertical aerial photographs taken August 10, 2005 produced dome volume estimates within two percent of those from a surface generated using the vertical aerial photograph manual method. The new August 10th orientations took less than 8

  11. Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens: a terrestrial monopole

    SciTech Connect

    Kanamori, H.; Given, J.W.

    1982-07-10

    Long-period (100 to 260 s) Love and Rayleigh waves excited by the eruption of Mount St. Helens on May 18, 1980, and recorded by ID, SRO, and ASRO stations were analyzed to determine the mechanism of the eruption. The amplitude radiation patterns of both Rayleigh and Love waves are two lobed with nodal direction in E5/sup 0/S for Rayleigh waves and in N5/sup 0/E for Love waves. These radiation patterns preclude any double-couple mechanism. The radiation pattern, the initial phase, the relatively large amplitude ratio of Love to Rayleigh waves and the existence of clear nodes in the radiation patterns of fundamental mode and higher-mode Rayleigh waves suggest that the source is represented by an almost horizontal (less than 15/sup 0/ from the horizontal) single force pointed toward S5/sup 0/W. The surface wave spectra fall off very rapidly at periods shorter than 75 s suggesting a very slow source process. Although the details of the source time history could not be determined, a smooth bell-shaped time function: f/sub 0/s(t) = (1/2)f/sub 0/(1-cos( (t)/(tau) ..pi..)) for 0< or =t< or =2tau and f/sub 0/s(t) = 0 for t> or =2tau, with tau = 75 s is considered appropriate on the basis of comparison between synthetic and observed seismograms and of the shape of the source spectrum. The peak value of the force f/sub 0/ is about 10/sup 18/ dynes. The tailing end of the source time function could not be resolved, and some overshoot may be added. The magnitude and the time history of the force can be explained by a northward landslide followed by a lateral blast observed at the time of the eruption. Two distinct events about 110 apart can be identified on body wave and short-period surface wave records. The first event may correspond to the earthquake which triggered the landslide and the lateral blast. The second event appears to correspond to a second large earthquake and explosion which took place about 2 minutes after the first earthquake.

  12. Immediate public health concerns and actions in volcanic eruptions: lessons from the Mount St. Helens eruptions, May 18-October 18, 1980.

    PubMed Central

    Bernstein, R S; Baxter, P J; Falk, H; Ing, R; Foster, L; Frost, F

    1986-01-01

    A comprehensive epidemiological evaluation of mortality and short-term morbidity associated with explosive volcanic activity was carried out by the Centers for Disease Control in collaboration with affected state and local health departments, clinicians, and private institutions. Following the May 18, 1980 eruption of Mount St. Helens, a series of public health actions were rapidly instituted to develop accurate information about volcanic hazards and to recommend methods for prevention or control of adverse effects on safety and health. These public health actions included: establishing a system of active surveillance of cause-specific emergency room (ER) visits and hospital admissions in affected and unaffected communities for comparison; assessing the causes of death and factors associated with survival or death among persons located near the crater; analyzing the mineralogy and toxicology of sedimented ash and the airborne concentration of resuspended dusts; investigating reported excesses of ash-related adverse respiratory effects by epidemiological methods such as cross-sectional and case-control studies; and controlling rumors and disseminating accurate, timely information about volcanic hazards and recommended preventive or control measures by means of press briefings and health bulletins. Surveillance and observational studies indicated that: excess in morbidity were limited to transient increases in ER visits and hospital admissions for traumatic injuries and respiratory problems (but not for communicable disease or mental health problems) which were associated in time, place, and person with exposures to volcanic ash; excessive mortality due to suffocation (76 per cent), thermal injuries (12 per cent), or trauma (12 per cent) by ash and other volcanic hazards was directly proportional to the degree of environmental damage--that is, it was more pronounced among those persons (48/65, or about 74 per cent) who, at the time of the eruption, were residing

  13. High-resolution digital elevation model of lower Cowlitz and Toutle Rivers, adjacent to Mount St. Helens, Washington, based on an airborne lidar survey of October 2007

    USGS Publications Warehouse

    Mosbrucker, Adam

    2015-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the Toutle River basin, which drains the northern and western flanks of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and lower Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, continues to monitor and mitigate excess sediment in North and South Fork Toutle River basins to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From October 22–27, 2007, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 273 square kilometers (105 square miles) of lower Cowlitz and Toutle River tributaries from the Columbia River at Kelso, Washington, to upper North Fork Toutle River (below the volcano's edifice), including lower South Fork Toutle River. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at

  14. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    NASA Astrophysics Data System (ADS)

    Brantley, Steven R.; Waitt, Richard B.

    1988-09-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable “wet” character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated

  15. Immediate public health concerns and actions in volcanic eruptions: lessons from the Mount St. Helens eruptions, May 18-October 18, 1980.

    PubMed

    Bernstein, R S; Baxter, P J; Falk, H; Ing, R; Foster, L; Frost, F

    1986-03-01

    A comprehensive epidemiological evaluation of mortality and short-term morbidity associated with explosive volcanic activity was carried out by the Centers for Disease Control in collaboration with affected state and local health departments, clinicians, and private institutions. Following the May 18, 1980 eruption of Mount St. Helens, a series of public health actions were rapidly instituted to develop accurate information about volcanic hazards and to recommend methods for prevention or control of adverse effects on safety and health. These public health actions included: establishing a system of active surveillance of cause-specific emergency room (ER) visits and hospital admissions in affected and unaffected communities for comparison; assessing the causes of death and factors associated with survival or death among persons located near the crater; analyzing the mineralogy and toxicology of sedimented ash and the airborne concentration of resuspended dusts; investigating reported excesses of ash-related adverse respiratory effects by epidemiological methods such as cross-sectional and case-control studies; and controlling rumors and disseminating accurate, timely information about volcanic hazards and recommended preventive or control measures by means of press briefings and health bulletins. Surveillance and observational studies indicated that: excess in morbidity were limited to transient increases in ER visits and hospital admissions for traumatic injuries and respiratory problems (but not for communicable disease or mental health problems) which were associated in time, place, and person with exposures to volcanic ash; excessive mortality due to suffocation (76 per cent), thermal injuries (12 per cent), or trauma (12 per cent) by ash and other volcanic hazards was directly proportional to the degree of environmental damage--that is, it was more pronounced among those persons (48/65, or about 74 per cent) who, at the time of the eruption, were residing

  16. Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: Calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mt. St. Helens

    SciTech Connect

    Symonds, R.B. ); Reed, M.H. )

    1993-10-01

    This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. The programs interface with a thermo-chemical data base, GASTHERM, which contains coefficients for retrieval of the equilibrium constants from 25[degrees] to 1200[degrees]C. The programs and data base model dynamic chemical processes in 30- to 40-component volcanic-gas systems. The authors can model gas evaporation from magma, mixing of magmatic and hydrothermal gases, precipitation of minerals during pressure and temperature decrease, mixing of volcanic gas with air, and reaction of gases with wall rock. Examples are given of the gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mt. St. Helens in September 1981. The authors predict: (1) the amounts of trace elements volatilized from shallow magma, deep magma, and wall rock, and (2) the solids that precipitate from the gas upon cooling. The predictions are tested by comparing them with the measured trace-element concentrations in gases and the observed sublimate sequence. This leads to the following conclusions: (1) most of the trace elements in the Mt. St. Helens gases are volatilized from shallow magma as simple chlorides; (2) some elements (for example, Al, Ca) exist dominantly in rock aerosols, not gases, in the gas stream; (3) near-surface cooling of the gases triggers precipitation of oxides, sulfides, halides, tungstates, and native elements; and (4) equilibrium cooling of the gases to 100[degrees]C causes most trace elements, except for Hg, Sb, and Se, to precipitate from the gas. 94 refs., 30 figs., 7 tabs.

  17. Hydrogen isotope investigation of amphibole and glass in dacite magmas erupted in 1980-1986 and 2005 at Mount St. Helens, Washington

    USGS Publications Warehouse

    Underwood, S.J.; Feeley, T.C.; Clynne, M.A.

    2013-01-01

    In active, shallow, sub-volcanic magma conduits the extent of the dehydrogenation–oxidation reaction in amphibole phenocrysts is controlled by energetic processes that cause crystal lattice damage or conditions that increase hydrogen diffusivity in magmatic phases. Amphibole phenocrysts separated from dacitic volcanic rocks erupted from 1980 to 1986 and in 2005 at Mount St. Helens (MSH) were analyzed for δD, water content and Fe3+/Fe2+, and fragments of glassy groundmass were analyzed for δD and water content. Changes in amphibole δD values through time are evaluated within the context of carefully observed volcanic eruption behavior and published petrological and geochemical investigations. Driving forces for amphibole dehydrogenation include increase in magma oxygen fugacity, decrease in amphibole hydrogen fugacity, or both. The phenocryst amphibole (δD value c. –57‰ and 2 wt % H2O) in the white fallout pumice of the May 18, 1980 plinian eruptive phase is probably little modified during rapid magma ascent up an ∼7 km conduit. Younger volcanic rocks incorporate some shallowly degassed dacitic magma from earlier pulses, based on amphibole phenocryst populations that exhibit varying degrees of dehydrogenation. Pyroclastic rocks from explosive eruptions in June–October 1980 have elevated abundances of mottled amphibole phenocrysts (peaking in some pyroclastic rocks erupted on July 22, 1980), and extensive amphibole dehydrogenation is linked to crystal damage from vesiculation and pyroclastic fountain collapse that increased effective hydrogen diffusion in amphibole. Multiple amphibole δD populations in many 1980 pyroclastic rocks combined with their groundmass characteristics (e.g. mixed pumice textures) support models of shallow mixing prior to, or during, eruption as new, volatile-rich magma pulses blended with more oxidized, degassed magma. Amphibole dehydrogenation is quenched at the top surface of MSH dacite lava lobes, but the diversity in the

  18. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  19. Sequential fragmentation/transport theory, pyroclast size-density relationships, and the emplacement dynamics of pyroclastic density currents — A case study on the Mt. St. Helens (USA) 1980 eruption

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, Chelsea; Brand, Brittany D.; Taddeucci, Jacopo; Wohletz, Kenneth

    2014-04-01

    Pyroclastic density currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Despite recent advancements in the general understanding of PDC dynamics, limited direct observation and/or outcrop scarcity often hinder the interpretation of specific transport and depositional processes at many volcanoes. This study explores the potential of sequential fragmentation/transport theory (SFT; cf. Wohletz et al., 1989), a modeling method capable of predicting particle mass distributions based on the physical principles of fragmentation and transport, to retrieve the transport and depositional dynamics of well-characterized PDCs from the size and density distributions of individual components within the deposits. The extensive vertical and lateral exposures through the May 18th, 1980 PDC deposits at Mt. St. Helens (MSH) provide constraints on PDC regimes and flow boundary conditions at specific locations across the depositional area. Application to MSH deposits suggests that SFT parameter distributions can be effectively used to characterize flow boundary conditions and emplacement processes for a variety of PDC lithofacies and deposit locations. Results demonstrate that (1) the SFT approach reflects particle fragmentation and transport mechanisms regardless of variations in initial component distributions, consistent with results from previous studies; (2) SFT analysis reveals changes in particle characteristics that are not directly observable in grain size and fabric data; and (3) SFT parameters are more sensitive to regional transport conditions than local (outcrop-scale) depositional processes. The particle processing trends produced using SFT analysis are consistent with the degree of particle processing inferred from lithofacies architectures: for all lithofacies examined in this study, suspension sedimentation products exhibit much better processing than concentrated current deposits. Integrated field observations and SFT results

  20. Double-difference relocations and spectral ratio analysis of volcanic seismic events in the Mount St. Helens crater using a 3D velocity model suggest slip events under the new dome with constant stress-drop scaling.

    NASA Astrophysics Data System (ADS)

    Harrington, R. M.; Kwiatek, G.; Moran, S. C.

    2014-12-01

    Shallow low frequency seismic events are common features associated with restless and erupting volcanoes. The physical mechanisms generating their characteristic low frequency, and often extended duration signals remain poorly understood. Here we present new double-difference relocations and spectral scaling of a group of ~400 shallow low-frequency seismic events occurring within the Mount St. Helens edifice during its 2004-2008 dome-building eruption, as recorded by a temporary seismic array for a month within the crater in 2006. Relocation results suggest that the majority of earthquakes occurred in the center of the crater close to the vent at depths < 500 m, with some events potentially locating under the new dome but ~200-300m southwest of the vent. Low-frequency events exhibit moment-corner frequency scaling roughly consistent with a constant static stress-drop, similar to tectonic earthquakes occurring elsewhere in shallow crustal faults. The scaling suggests that the ~400 events result from stick-slip behavior, and that the low frequency character of the waveforms may result from a combination of path effects and slow rupture speeds. For relocation, we divide the 400 events into eight families based on waveform similarity, and use a subset of nearly 40 earthquakes with clear first arrivals ranging in moment magnitude from 0.4 - 1.8 to calculate hypocenters. We then relocate these events using a double-difference method with a three-dimensional velocity model of the edifice from Waite and Moran (2009). The relocated events are then used to estimate source parameters of the remaining earthquakes via a spectral ratio technique. Spectral corner frequency estimations based on this spectral ratio approach produce stress-drop values of ~1 MPa assuming a shear-wave velocity of 1500 m/s. The estimations also indicate a constant stress-drop scaling for all events, with two event families having lower estimated stress drops of ~0.1 MPa. While localized lithological