Science.gov

Sample records for helium compound transfer

  1. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    NASA Astrophysics Data System (ADS)

    Parente, C.; Allen, W.; Munday, A.; Wiggins, P.

    2006-04-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, flexible hoses were used instead of bellows to allow for thermal compensation of the process pipes. If necessary, compensation units were integrated in the vacuum jacket. The thermal design was performed to fulfil the specified heat-load budget. This paper presents the main technical design choices for the lines together with their expected performance.

  2. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  3. BASG thermomechanical pump helium 2 transfer tests

    NASA Technical Reports Server (NTRS)

    Mills, G. L.; Newell, D. A.; Urbach, A. R.

    1990-01-01

    The purpose of the effort described was to perform experiments and calculations related to using a thermomechanical pump in the space-based resupply of the Space Infrared Telescope Facility (SIRTF) with Helium 2. Thermomechanical (fountain effect) pumps have long been suggested as a means for pumping large quantities of Helium 2. The unique properties of Helium 2 have made it useful for cooling space instruments. Several space science missions, including SIRTF, are now being planned which would benefit greatly from on-orbit resupply of Helium 2. A series of experiments were performed to demonstrate that large volumes of Helium 2 can be transferred with a thermomechanical pump at high flow rates and at high efficiency from one dewar to another through valves and lines that are similar to the plumbing arrangement that would be necessary to accomplish such a transfer on-orbit. In addition, temperature, pressure, and flow rate data taken during the tests were used to verify and refine a computer model which was developed.

  4. Lifetime of a Chemically Bound Helium Compound

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.

  5. Charge transfer in helium-rich supernova plasma

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.

    1994-01-01

    Charge transfer rate coefficients are estimated using Landau-Zener and modified Demkov approximations. The coefficients, augmented by those available from the literature, are used in statistical equilibrium equations describing the state of helium-rich supernova plasma. Such a plasma may describe both Type Ib and Type Ic supernova ejecta. The hypothesis that extensive mixing of metals with helium in Type Ic supernovae may provide a catalyst for rapid charge transfer that weakens the helium line emission by altering the excitation balance is tested. It is shown that charge transfer as a mechanism for suppressing helium line emission is ineffective unless the metal abundance is comparable to or larger than the helium abundance. This result supports an earlier conclusion that Type Ic supernovae must be helium poor relative to Type Ib events.

  6. Superfluid Helium On-Orbit Transfer (SHOOT) operatons

    NASA Technical Reports Server (NTRS)

    Kittel, P.; Dipirro, M. J.

    1988-01-01

    The in-flight tests and the operational sequences of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment are outlined. These tests include the transfer of superfluid helium at a variety of rates, the transfer into cold and warm receivers, the operation of an extravehicular activity coupling, and tests of a liquid acquisition device. A variety of different types of instrumentation will be required for these tests. These include pressure sensors and liquid flow meters that must operate in liquid helium, accurate thermometry, two types of quantity gauges, and liquid-vapor sensors.

  7. Helium Evolution from the Transfer of Helium Saturated Propellant in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.

    2000-01-01

    Helium evolution from the transfer of helium saturated propellant in space is quantified to determine its impact from creating a two-phase mixture in the transfer line. The transfer line is approximately 1/2 inch in diameter and 2400 inches in length comprised of the Fluid Interconnect System (FICS), the Orbiter Propellant Transfer System (OPTS) and the International Space Station (ISS) Propulsion Module (ISSPM). The propellant transfer rate is approximately two to three gallons per minute, and the supply tank pressure is maintained at approximately 250 psig.

  8. Liquid acquisition devices for superfluid helium transfer

    NASA Technical Reports Server (NTRS)

    Dipirro, M. J.

    1990-01-01

    To transfer superfluid helium (He II) in the milli-g or micro-g environment in orbit, it is necessary to provide a reasonably steady supply of liquid to the inlet of the pump in the supply dewar. To accomplish this without providing an artificial gravity through acceleration requires a liquid acquisition device. Fluid swirl and electrostatic devices have been proposed to orientate the fluid. However, the simplest mechanisms appear to be the use of surface tension or the thermomechanical effect. This paper examines four concepts for providing He II to the inlet of a thermomechanical pump. The devices are a distributed thermomechanical pump, a distributed pump with a main thermomechanical pump, a screened channel system and a vane/sponge combination. Calculations on the efficiency of these types of liquid acquisition devices are made using laboratory data from tests involving small scale devices where applicable. These calculations show that the latter two types of liquid acquisition devices are the most efficient. Questions as to the probability of cavitation and the effect of the residual shuttle acceleration on their operation remain to be answered, however.

  9. Superfluid helium on orbit transfer (SHOOT)

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.

    1987-01-01

    A number of space flight experiments and entire facilities require superfluid helium as a coolant. Among these are the Space Infrared Telescope Facility (SIRTF), the Large Deployable Reflector (LDR), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (PAMF or Astromag), and perhaps even a future Hubble Space Telescope (HST) instrument. Because these systems are required to have long operational lifetimes, a means to replenish the liquid helium, which is exhausted in the cooling process, is required. The most efficient method of replenishment is to refill the helium dewars on orbit with superfluid helium (liquid helium below 2.17 Kelvin). To develop and prove the technology required for this liquid helium refill, a program of ground and flight testing was begun. The flight demonstration is baselined as a two flight program. The first, described in this paper, will prove the concepts involved at both the component and system level. The second flight will demonstrate active astronaut involvement and semi-automated operation. The current target date for the first launch is early 1991.

  10. Design Methodology of Long Complex Helium Cryogenic Transfer Lines

    NASA Astrophysics Data System (ADS)

    Fydrych, J.; Chorowski, M.; Polinski, J.; Skrzypacz, J.

    2010-04-01

    Big scientific facilities, like superconducting particle accelerators or fusion reactors require high cooling power, usually produced locally by large helium refrigerators and transferred, by means of liquid or supercritical helium, over the distances that may exceed several kilometres. Construction of cold helium transfer lines should take into consideration many different issues. The lines are exposed to thermal loads which can constitute an important part of the cryogenic system thermal budget. Pressure difference between the vacuum insulation and the inner content of the pipes causes significant mechanical stresses. The cyclic changes of temperature can lead to considerable fatigue stresses. Additionally, due to complex structure of the scientific facilities, the access to the cryogenic lines can be partly or totally limited. Therefore all these thermal and mechanical aspects have to be analyzed and compromised during the design phase of the complex helium transfer line. The paper presents a design methodology of long multi-channel helium cryogenic transfer lines. It describes some aspects of process line arrangement, thermo-mechanical calculation, supporting structure and contraction protection, taking as a case study cryogenic transfer line XATL1, dedicated for the Accelerator Module Test Facility (AMTF) of the European X-rays Free Electron Laser (XFEL).

  11. Experiments on transferring helium II with a thermomechanical pump

    NASA Technical Reports Server (NTRS)

    Mills, G. L.; Urbach, A. R.; Mord, A. J.; Brandreth, B. H.; Hermanson, L. A.

    1988-01-01

    Porous plugs were tested as thermomechanical pumps for the transfer of helium II from one dewar to another through a transfer line and two valves. SEM images for two different size porous plugs are presented. The present pump design was shown to transfer 80 liters at a maximum flow rate of 90 liters/hr. Temperature, pressure, flow rate, and heater power data are compared with theoretical results.

  12. Liquid helium pumps for in-orbit transfer

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1986-01-01

    Both mechanical and fountain-effect pumps are being considered for use in the in-orbit resupply of superfluid helium to a number of scientific instrument systems. This paper presents a review of the operating characteristics of these pumps. Particular emphasis will be given to the different methods of evaluating the efficiency of these pumps and their effectiveness in a transfer system.

  13. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  14. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  15. Mechanical pumps for superfluid helium transfer in space

    NASA Astrophysics Data System (ADS)

    Izenson, M. G.; Swift, W. L.

    1988-02-01

    Two alternate mechanical pump concepts have been identified for the transfer of superfluid helium in space. Both pumps provide flow at sufficient head and have operating characteristics suitable for the Space Infrared Telescope Facility (SIRTF) refill mission. One pump operates at a relatively low speed and utilizes mechanical roller bearings, while the other operates at a higher rotational speed using either electromagnetic or tilting pad gas-dynamic bearings. The use of gas bearings requires transfer of normal helium so that the gas pressure within the pump casing is high enough to operate the bearings. The operating characteristics of both pumps are predicted, the dimensions are estimated and major technology issues are identified. The major issues for each pump design are cavitation performance and bearing development. Roller bearings require quantified reliability for operation in space while electromagnetic bearings require basic development as well as a complex control system. The low speed pump has significantly poorer hydraulic efficiency than the high speed pump.

  16. Heat Transfer through Porous Media in Static Superfluid Helium

    SciTech Connect

    Baudouy, B.; Juster, F.-P.; Allain, H.; Maekawa, R.

    2006-04-27

    Heat transfer through porous media in static saturated superfluid helium is investigated for porous media with different thickness, porosity and pore size. For large pore diameter, data are analyzed with the tortuosity concept in the pure Gorter-Mellink regime. It is shown that the tortuosity is constant over the temperature range investigated. For smaller pore diameter, the analysis reveals that the permeability is temperature-dependent in the Landau regime. In the intermediate regime, a model, including Landau and Gorter-Mellink regime, predicts a constant tortuosity within 10% but falls short predicting correctly the experimental data over the entire range of temperature.

  17. Heat and mass transfer of submerged helium injection in liquid oxygen vessel

    NASA Astrophysics Data System (ADS)

    Jung, Youngsuk; Cho, Namkyung; Baek, Seungwhan; Jeong, Sangkwon

    2014-11-01

    The submerged helium injection process results in the heat and mass transfer between the helium bubble and the cryogenic liquid. The objective of this paper is to analyze the dynamics of the heat and mass transfer process. It is observed that during the helium injection process the dynamics of mass transfer is dominant and the transient heat transfer is negligible. The helium bubble shape and rising patterns are observed with a visualization device that helps to discern the dominant process between heat transfer and mass transfer. The clustering patterns such as coalescence of helium bubbles are observed with the visualization device. The visualization results indicate that, it is very difficult to determine the representative size of bubbles due to the irregular shape of the helium bubbles. The shape and size of the helium bubbles are important parameters for evaluating the overall mass transfer coefficient (kGA) which is the essential parameter for calculating the evaporation rate of the bulk liquid into the helium bubbles. In this paper, the simplified lumped model is considered to fairly approximate the evaporation rate of the cryogenic liquid into the bubbles and the cooling rate of helium injection. The empirical correlation for the average concentration (C‾A) of evaporated cryogenic liquid into the helium bubbles is presented and the overall mass transfer coefficients (kGA) are calculated as the result of the lumped model. The proposed model and empirical correlations are compared with the experimental results, and the comparison result shows good agreement with differences that are less than ±0.4 K.

  18. Model for the charge-transfer probability in helium nanodroplets following electron-impact ionization

    SciTech Connect

    Ellis, Andrew M.; Yang Shengfu

    2007-09-15

    A theoretical model has been developed to describe the probability of charge transfer from helium cations to dopant molecules inside helium nanodroplets following electron-impact ionization. The location of the initial charge site inside helium nanodroplets subject to electron impact has been investigated and is found to play an important role in understanding the ionization of dopants inside helium droplets. The model is consistent with a charge migration process in small helium droplets that is strongly directed by intermolecular forces originating from the dopant, whereas for large droplets (tens of thousands of helium atoms and larger) the charge migration increasingly takes on the character of a random walk. This suggests a clear droplet size limit for the use of electron-impact mass spectrometry for detecting molecules in helium droplets.

  19. High-efficiency pump for space helium transfer. Final Technical Report

    SciTech Connect

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  20. Study of helium transfer technology for STICCR: Fluid management

    NASA Technical Reports Server (NTRS)

    Frank, D. J.; Yuan, S. W. K.; Grove, R. K.; Lheureux, J. M.

    1987-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long life cryogenically cooled space based telescope for infrared astronomy from 2 to 700 microns currently under study and planned for launch in the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. Candidates are reviewed for a liquid management device to be used in the resupply of liquid helium, and for the selection of an appropriate candidate.

  1. Experimental investigation of the heat transfer characteristics of a helium cryogenic thermosyphon

    NASA Astrophysics Data System (ADS)

    Long, Z. Q.; Zhang, P.

    2013-10-01

    The heat transfer performance of a cryogenic thermosyphon filled with helium as the working fluid is investigated experimentally with a G-M cryocooler as the heat sink in this study. The cryogenic thermosyphon acts as a thermal link between the cryocooler and the cooled target (the copper evaporator with a large mass). Helium is charged in different filling ratios, and the cooling down process and the heat transfer characteristics of the cryogenic thermosyphon are investigated. The cooling down process of the cooled target can be significantly accelerated by the presence of helium in the cryogenic thermosyphon and the cooling down period can be further shortened by the increase of filling ratio. The heat transfer mode changes from the liquid-vapor phase change to natural convection as the increase of the heating power applied on the evaporator. The heat transfer limit and thermal resistance are discussed for the liquid-vapor phase change heat transfer, and they can be estimated by empirical correlations. For the natural convection heat transfer, it can be enhanced by increasing the filling ratio, and the natural convection of supercritical helium is much stronger than that of gaseous helium.

  2. A Study on the Heat Transfer Properties of Pressurized Helium II through Fine Channels

    SciTech Connect

    Kimura, N.; Nakai, H.; Yamamoto, A.; Murakami, M.; Shintomi, T.

    2006-04-27

    An experimental study was carried out on the heat transfer properties of pressurized superfluid helium in the Gorter-Mellink heat transfer region. By using channels of hydraulic diameter from 5.6 x 10- through 4.81 x 10-3 m, the heat transfer properties of pressurized superfluid helium were measured in the experiment. The temperature dependence of Gorter-Mellink parameter, AGM, is revealed from the experimental results. It is also proven that AGM depend only on temperature, and not on the channel size and shape. The effect of quantized vortices on heat transfer of pressurized superfluid helium is discussed in comparison of the channel diameter with the mean vortex line spacing.

  3. Electron-impact ionization of helium with large energy transfer

    SciTech Connect

    Bray, I.; Fursa, D. V.; Stelbovics, A. T.

    2006-09-15

    We consider the recently measured case of 730 eV electron-impact ionization of the ground state of helium with 205 and 500 eV coplanar outgoing electrons by Catoire et al. [J. Phys. B 39, 2827 (2006)]. These measurements, which are on a relative scale, show some unexpected structure and variation from the second-order distorted-wave Born approximation R-matrix and Brauner-Briggs-Klar theories. Using the convergent close-coupling method we provide an improved agreement with experiment, but some discrepancies still remain.

  4. Knowledge based and interactive control for the Superfluid Helium On-orbit Transfer Project

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P.; Raymond, Eric A.; Shapiro, Jeff C.; Robinson, Frank A.; Rosenthal, Donald A.

    1989-01-01

    NASA's Superfluid Helium On-Orbit Transfer (SHOOT) project is a Shuttle-based experiment designed to acquire data on the properties of superfluid helium in micro-gravity. Aft Flight Deck Computer Software for the SHOOT experiment is comprised of several monitoring programs which give the astronaut crew visibility into SHOOT systems and a rule based system which will provide process control, diagnosis and error recovery for a helium transfer without ground intervention. Given present Shuttle manifests, this software will become the first expert system to be used in space. The SHOOT Command and Monitoring System (CMS) software will provide a near real time highly interactive interface for the SHOOT principal investigator to control the experiment and to analyze and display its telemetry. The CMS software is targeted for all phases of the SHOOT project: hardware development, pre-flight pad servicing, in-flight operations, and post-flight data analysis.

  5. Verification testing of the superfluid helium on-orbit transfer (SHOOT) experiment

    NASA Astrophysics Data System (ADS)

    Volz, S.; Conaty, C.; Weintz, K.

    The Superfluid Helium On-Orbit Transfer (SHOOT) project is a secondary shuttle crossbay payload which flew on the STS-57/Endeavour mission. It was designed to develop and demonstrate the technologies required to resupply liquid helium containers in space, and to develop new technologies that may be used in other future space cryogenic systems. The SHOOT payload consists of two superfluid helium Dewars with helium management cryostats connected by a transfer line, and six avionics boxes for valve and heater control, temperature, pressure and fluid position monitoring and data processing and telemetry. The cryostats contain numerous specialized helium management components; including high and low flow phase separators, liquid/vapour discriminators, flowmeters, liquid level detectors, cryogenic mechanical valves and cryogenic relief valves and burst discs, and two varieties of fluid acquisition systems. To prepare the SHOOT payload for launch a series of functional, structural, thermal and reliability tests were conducted at every level of hardware assembly, from materials tests to system level thermal, structural and functional performance tests. We present here the verification tests and analyses developed and completed at each level of assembly. We discuss the trade-offs considered for, and the success (or failure) of, models and analyses to predict performance results. Finally, we present some lessons learned of potential interest to future cryogenic missions, whether on the Space Shuttle or on expendable launch vehicles.

  6. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    NASA Astrophysics Data System (ADS)

    Bellina, Bruno; Merthe, Daniel J.; Kresin, Vitaly V.

    2015-03-01

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N-H ṡ ṡ ṡ N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  7. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    SciTech Connect

    Bellina, Bruno; Merthe, Daniel J.; Kresin, Vitaly V.

    2015-03-21

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N–H ⋅ ⋅ ⋅ N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  8. Characterisation and optimisation of flexible transfer lines for liquid helium. Part I: Experimental results

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-04-01

    The transfer of liquid helium (LHe) into mobile dewars or transport vessels is a common and unavoidable process at LHe decant stations. During this transfer reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus generated helium gas needs to be collected and reliquefied which requires a huge amount of electrical energy. Therefore, the design of transfer lines used at LHe decant stations has been optimised to establish a LHe transfer with minor evaporation losses which increases the overall efficiency and capacity of LHe decant stations. This paper presents the experimental results achieved during the thermohydraulic optimisation of a flexible LHe transfer line. An extensive measurement campaign with a set of dedicated transfer lines equipped with pressure and temperature sensors led to unique experimental data of this specific transfer process. The experimental results cover the heat leak, the pressure drop, the transfer rate, the outlet quality, and the cool-down and warm-up behaviour of the examined transfer lines. Based on the obtained results the design of the considered flexible transfer line has been optimised, featuring reduced heat leak and pressure drop.

  9. Heat transfer design and performance of a helium cryostat operating at 6.5 K

    SciTech Connect

    Gasteyer, T.H.; Krempetz, K.J.; Lee, A.; Rucinski, R.A.; Stefanik, A.M.

    1994-12-31

    A liquid helium cryostat has been designed and operated for the purpose of testing visible light photon counter (VLPC) chips at 6.5 K. To achieve the desired operational characteristics for the VLPC devices their operating temperature is restricted to 6.5 K +/{minus} 0.1 K. They will be used in a scintillating fiber tracker being proposed as part of an upgrade of the D(0) detector at Fermilab. The final version of the scintillating fiber tracker will contain roughly 100,000 VLPC channels. Two cryostats with identical thermal design (a 128 channel and a 3072 channel design) have been built to perform the initial VLPC testing. The heat transfer needed to maintain the VLPC at its operating temperature occurs by conduction across an annular helium gas gap to a liquid helium reservoir. Helium boiloff is used to intercept conduction heat leak to the liquid reservoir. ANSYS finite element heat transfer analysis was utilized in the thermal design of the cryostat. The cryostat design and thermal performance (predicted and measured) are presented.

  10. Measurement of the charge transfer efficiency of electrons clocked on superfluid helium

    SciTech Connect

    Sabouret, G.; Lyon, S.A.

    2006-06-19

    Electrons floating on the surface of liquid helium are possible qubits for quantum information processing. Varying electric potentials do not modify spin states, which allows their transport on helium using a charge-coupled device (CCD)-like array of underlying gates. This scheme depends on an efficient intergate electron transfer and on the absence of electron traps. We will present a measurement of the charge transfer efficiency (CTE) of electrons clocked back and forth above a short CCD-like structure. The CTE obtained at low clocking frequencies is 0.999 with an electron density of about 4 electrons/{mu}m{sup 2}. We find no evidence for deep electron trapping.

  11. Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.

    PubMed

    LaForge, A C; Stumpf, V; Gokhberg, K; von Vangerow, J; Stienkemeier, F; Kryzhevoi, N V; O'Keeffe, P; Ciavardini, A; Krishnan, S R; Coreno, M; Prince, K C; Richter, R; Moshammer, R; Pfeifer, T; Cederbaum, L S; Mudrich, M

    2016-05-20

    We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets. PMID:27258866

  12. Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    LaForge, A. C.; Stumpf, V.; Gokhberg, K.; von Vangerow, J.; Stienkemeier, F.; Kryzhevoi, N. V.; O'Keeffe, P.; Ciavardini, A.; Krishnan, S. R.; Coreno, M.; Prince, K. C.; Richter, R.; Moshammer, R.; Pfeifer, T.; Cederbaum, L. S.; Mudrich, M.

    2016-05-01

    We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

  13. Proton transfer at helium temperatures during dioxygen activation by heme monooxygenases.

    PubMed

    Davydov, Roman; Chemerisov, Sergey; Werst, David E; Rajh, Tijana; Matsui, Toshitaka; Ikeda-Saito, Masao; Hoffman, Brian M

    2004-12-15

    In the first measurement of enzymatic proton transfer at liquid helium temperatures, we examine protonation of the peroxo-ferriheme state of heme oxygenase (HO) produced by in situ radiolytic cryoreduction of oxy-HO in H2O and D2O solvents at ca. 4 K and above, and compare these findings with analogous measurements for oxy-P450cam and for oxy-Mb. Proton transfer in HO occurs at helium temperatures in both solvents; it occurs in P450cam at approximately 50 K and higher; in Mb it does not occur until T > 170 K. For Mb, this transfer at 180 K is biphasic, and the majority phase shows a solvent kinetic isotope effect of 3.8. We discuss these results in the context of the picture of environmentally coupled tunneling, which links proton transfer to two classes of protein motions: environmental reorganization (lambda in Marcus-like equations) and protein fluctuations ("active dynamics"; gating) which modulate the distance of proton transfer. PMID:15584719

  14. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  15. 3He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds.

    PubMed

    Radula-Janik, Klaudia; Kupka, Teobald

    2015-02-01

    The (3)He nuclear magnetic shieldings were calculated for free helium atom and He-pyrrole, He-indole, and He-carbazole complexes. Several levels of theory, including Hartree-Fock (HF), Second-order Møller-Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization-consistent pcS-2 and aug-pcS-2 basis sets were employed. Gauge-including atomic orbital (GIAO) calculated (3)He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. (3)He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five-membered ring of pyrrole, indole, and carbazole were tested. It was observed that (3)He NMR parameters of single helium atom, calculated at various levels of theory (HF, MP2, and DFT) are sensitive to the presence of heteroatomic rings. The helium atom was insensitive to the studied molecules at distances above 5 Å. Our results, obtained with BHandHLYP method, predicted fairly accurately the He-pyrrole plane separation of 3.15 Å (close to 3.24 Å, calculated by MP2) and yielded a sizable (3)He NMR chemical shift (about -1.5 ppm). The changes of calculated nucleus-independent chemical shifts (NICS) with the distance above the rings showed a very similar pattern to helium-3 NMR chemical shift. The ring currents above the five-membered rings were seen by helium magnetic probe to about 5 Å above the ring planes verified by the calculated NICS index. PMID:25228253

  16. Forced flow supercritical helium in a closed heat transfer loop subjected to pulsed heat loads

    NASA Astrophysics Data System (ADS)

    Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Charvin, Philippe; Cheynel, Jean-Noel; Girard, Alain; Lagier, Benjamin; Michel, Frederic; Monteiro, Lionel; Poncet, Jean-Marc; Roussel, Pascal; Rousset, Bernard; Vallcorba-Carbonell, Roser

    2012-06-01

    The superconducting magnets of the tokamak JT-60SA are cooled by means of forced flows of supercritical helium at 4.4 K and 0.5 MPa. The closed loops transfer heat from the magnets to the refrigerator through heat exchangers immersed into a saturated liquid helium bath. An experimental loop was designed to represent a 1/20 scaled down mock-up of JT-60SA central solenoid cooling circuits. This design for keeping the same transit times in the helium circuits, aims at observing the thermally induced transients in the closed loop. Indeed, heated section simulates the variable loads coming from the magnet circuits. A series of experiments was performed with pulsed loads in an isochoric configuration of the loop. The cold circulator has been characterized under pulsed operation and its performances are addressed. Mass flow regulations at the interface of the refrigerator were tested to smooth the pulsed loads with the saturated liquid bath acting as a thermal buffer. Knowledge of the pulsed loads effects on the cryogenic components is important in view of a safe operation of the cryogenic system.

  17. SHOOT flowmeter and pressure transducers. [for Superfluid Helium On-Orbit Transfer system

    NASA Technical Reports Server (NTRS)

    Kashani, A.; Wilcox, R. A.; Spivak, A. L.; Daney, D. E.; Woodhouse, C. E.

    1990-01-01

    A venturi flowmeter has been designed and constructed for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment. The calibration results obtained from the SHOOT venturi demonstrate the ability of the flowmeter to meet the requirements of the SHOOT experiment. Flow rates as low as 20 cu dm/h and as high as 800 cu dm/h have been measured. Performances of the SHOOT differential and absolute pressure transducers, which have undergone calibration and vibration tests, are also included. Throughout the tests, the responses of the transducers remained linear and repeatable to within + or - 1 percent of the full scales of the transducers.

  18. Transient Electromagnetic and Heat Transfer Characteristics of the MgB2 Superconductor in Liquid Helium

    NASA Astrophysics Data System (ADS)

    Jaim, H. M. Iftekhar; Bärner, K.

    2013-07-01

    A transient current density analysis is carried out for the type II superconductor (SC) material MgB2 in liquid Helium. Variable magnetic fields are used as the unknown in solving the curl-curl relations of the electromagnetic fields applying the finite element method (FEM) for 2D axis symmetric cylindrical wires. Assuming an exponential current rise, the magnetic flux, current density and temperature distribution in the SC and He are calculated. This study gives the limiting current values to avoid the normal state, the temperature distribution profile with time as well as the changes in the magnitude of the current and time constant. Oscillations and non-uniform temperature distributions are observed in He and in the SC respectively if one varies the parameters which are related to the different heat transfer mechanisms. A slight instability in the current distribution is also observed which might transfer to a thermal instability, i.e. could signal He boiling.

  19. Operating parameters of liquid helium transfer lines used with continuous flow cryostats at low sample temperatures

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Welker, D.; Haberstroh, Ch; Hesse, U.; Krzyzowski, M.

    2015-12-01

    Continuous flow cryostats are used to cool samples to a variable temperature level by evaporating a cryogen, e.g. liquid helium (LHe). For this purpose LHe is usually stored outside the cryostat in a mobile dewar and supplied through a transfer line. In general, the complete setup has to be characterised by the lowest possible consumption of LHe. Additionally, a minimum sample temperature can be favourable from an experimental point of view. The achievement of both requirements is determined by the respective cryostat design as well as by the transfer line. In the presented work operating data, e.g. the LHe consumption during cooldown and steady state, the minimum sample temperature, and the outlet quality are analysed to characterise the performance of a reference transfer line. In addition, an experimental transfer line with built-in pressure sensors has been commissioned to examine the pressure drop along the transfer line, too. During the tests LHe impurities occurred which restricted a steady operation.

  20. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  1. Lab tests of a thermomechanical pump for shoot. [Superfluid Helium On-Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dipirro, Michael J.; Boyle, Robert F.

    1988-01-01

    Laboratory tests of a thermomechanical (TM) pump utilizing a commercially available porous disk have been conducted. Various size disks, heater configurations, and outlet flow impedances have been used to characterize scale models of the pump proposed for the Superfluid Helium On-Orbit Transfer (SHOOT) Flight Experiment. The results yield the scalability of the TM pump to larger diameters, and hence larger pumping rates, the dependence of flow rate on back pressure and heater power, and the limits of pumping speed due to internal losses within the porous disk due to mutual and superfluid friction. Analysis indicates that for low back pressures the flow rate is limited by the superfluid friction rather than the mutual friction. For the porous plug used in the early tests this amounts to a practical limit of 4.4 liters per hour per square centimeter. For a baselined flight plug area of 180 sq cm this yields 790 liters per hour.

  2. Heat transfer in a liquid helium cooled vacuum tube following sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, R. C.; Van Sciver, S. W.

    2015-12-01

    Condensation of nitrogen gas rapidly flowing into a liquid helium (LHe) cooled vacuum tube is studied. This study aims to examine the heat transfer in geometries such as the superconducting RF cavity string of a particle accelerator following a sudden loss of vacuum to atmosphere. In a simplified experiment, the flow is generated by quickly venting a large reservoir of nitrogen gas to a straight long vacuum tube immersed in LHe. Normal LHe (LHe I) and superfluid He II are used in separate experiments. The rate of condensation heat transfer is determined from the temperature of the tube measured at several locations along the gas flow. Instantaneous heat deposition rates in excess of 200 kW/m2 result from condensation of the flowing gas. The gas flow is then arrested in its path to pressurize the tube to atmosphere and estimate the heat transfer rate to LHe. A steady LHe I heat load of ≈25 kW/m2 is obtained in this scenario. Observations from the He II experiment are briefly discussed. An upper bound for the LHe I heat load is derived based on the thermodynamics of phase change of nitrogen.

  3. Exploration of solid helium 4 at multiple frequencies using a compound torsional oscillator

    NASA Astrophysics Data System (ADS)

    Keiderling, Michael C.

    Apparent but controversial evidence of supersolidity, a coexistence of crystalline and superfluid states, was observed in 2004. Samples of solid 4He were grown, in a chamber, inside a torsion oscillator (TO). The samples showed evidence of apparent decoupling from their container in the form of a resonant frequency increase of the TO as the temperature was lowered. We have developed a Compound torsion oscillator (CTO), with two resonant modes, that allows us to observe a single solid helium sample at two frequencies simultaneously. This thesis will cover the first comprehensive study on the frequency dependence of the apparent supersolid effect. This includes a study of the effect of varying 3He concentrations (x3) on the frequency dependence. Additionally a study on how changes in x3 affect the dissipation, which previous studies of x3 dependence have not explored. Also studied is how varying x3 affected the hysteresis first observed by Aoki et al. The CTO has allowed the exploration of the amplitude dependent effects in new ways. By exciting the sample at both frequencies simultaneously and varying the driving amplitude of one mode one can see how excitations at one mode affect what is observed at the other. The studies of the effects of varying x3 show results that are consistent with the dislocation movement model proposed by Iwasa. The collected data was not consistent with the simple supersolid model initially proposed. The studies of hysteresis show that the onset of hysteresis was dependent on x3 but was not frequency dependent. This lends credit to the hysteresis being due to the pinning and unpinning of 3He impurities. The studies of the effect of amplitude dependent effects show an asymmetry between the two frequencies. The higher frequency has a larger effect on the lower frequency than the lower frequency has on the higher. This is also inconsistent with the initial simple supersolid model.

  4. Transient heat transfer in helium II due to a sudden vacuum break

    NASA Astrophysics Data System (ADS)

    Bosque, Ernesto S.; Dhuley, Ram C.; Van Sciver, Steven W.

    2014-01-01

    To ensure future cryogenic devices meet safety and operational specifications, significant value is gained from a developed understanding of the transient heat fluxes that result from failure of an insulating vacuum jacket around a helium II (He II)-cooled device. A novel, one-dimensional experiment is successfully performed examining the phenomena immediately following a vacuum rupture onto a cryosurface. In the experiment, a fast-opening (˜10 ms) valve isolates a rigid container of ultra high purity nitrogen (N2) gas kept at room temperature and adjustable pressure from a vertically oriented, highly evacuated (˜10-3 Pa) tube roughly 1 m in length. The bottom of the evacuated tube is sealed via a 2.54 mm thick copper disk, whose bottom surface is in intimate contact with an open column of He II (˜1.8 K). The evacuated tube, disk, and He II column share a diameter of 24 mm. Opening the valve results in a vacuum rupture. N2 gas is immediately drawn into the evacuated space and cryopumped onto the disk as a growing layer of solid cryodeposit. Various coupled transient heat transfer processes proceed as the internal energy of the warm gas is transferred through the growing layer of solid N2, through the copper disk, and into the He II column. This work examines the qualitative nature of these transient phenomena and the magnitude of the heat fluxes present through each of the series of thermal resistances.

  5. Transient heat transfer in helium II due to a sudden vacuum break

    SciTech Connect

    Bosque, Ernesto S.; Dhuley, Ram C.; Van Sciver, Steven W.

    2014-01-29

    To ensure future cryogenic devices meet safety and operational specifications, significant value is gained from a developed understanding of the transient heat fluxes that result from failure of an insulating vacuum jacket around a helium II (He II)-cooled device. A novel, one-dimensional experiment is successfully performed examining the phenomena immediately following a vacuum rupture onto a cryosurface. In the experiment, a fast-opening (∼10 ms) valve isolates a rigid container of ultra high purity nitrogen (N{sub 2}) gas kept at room temperature and adjustable pressure from a vertically oriented, highly evacuated (∼10{sup −3} Pa) tube roughly 1 m in length. The bottom of the evacuated tube is sealed via a 2.54 mm thick copper disk, whose bottom surface is in intimate contact with an open column of He II (∼1.8 K). The evacuated tube, disk, and He II column share a diameter of 24 mm. Opening the valve results in a vacuum rupture. N{sub 2} gas is immediately drawn into the evacuated space and cryopumped onto the disk as a growing layer of solid cryodeposit. Various coupled transient heat transfer processes proceed as the internal energy of the warm gas is transferred through the growing layer of solid N{sub 2}, through the copper disk, and into the He II column. This work examines the qualitative nature of these transient phenomena and the magnitude of the heat fluxes present through each of the series of thermal resistances.

  6. Effect of spray cooling on heat transfer in a two-phase helium flow

    NASA Astrophysics Data System (ADS)

    Perraud, S.; Puech, L.; Thibault, P.; Rousset, B.; Wolf, P. E.

    2013-10-01

    We describe an experimental study of the phenomenon of spray cooling in the case of liquid helium, either normal or superfluid, and its relationship to the heat transfer between an atomized two-phase flow contained in a long pipe, and the pipe walls. This situation is discussed in the context of the cooling of the superconducting magnets of the Large Hadron Collider (LHC). Experiments were conducted in a test loop reproducing the LHC cooling system, in which the vapor velocity and temperature could be varied in a large range. Shear induced atomization results in the generation of a droplet mist which was characterized by optical means. The thickness of the thin liquid film deposited on the walls by the mist was measured using interdigitated capacitors. The cooling power of the mist was measured using thermal probes, and correlated to the local mist density. Analysis of the results shows that superfluidity has only a limited influence on both the film thickness and the mist cooling power. Using a simple model, we show that the phenomenon of spray cooling accounts for the measured non-linearity of the global heat transfer. Finally, we discuss the relevance of our results for cooling the final focus magnets in an upgraded version of the LHC.

  7. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  8. Heat transfer characteristics of a plate-fin type supercritical/liquid helium heat exchanger

    NASA Astrophysics Data System (ADS)

    Kato, T.; Miyake, A.; Hiyama, T.; Kawano, K.; Iwamoto, S.; Ebisu, H.; Takahashi, T.; Hamada, K.; Tsuji, H.; Tsukamoto, N.; Yamaguchi, M.; Ishida, H.; Honda, T.; Yamanishi, A.; Ohmori, T.; Mori, M.

    A compact supercritical-helium/liquid-helium heat exchanger composed of a plate-fin type was studied. The heat exchange limit performance was determined through the experiment. The pulse heating performance was observed to apply the pulse heating by an electric heater. A numerical heat exchanger simulating calculation was carried out, which successfully expresses the experiment results.

  9. Ab initio molecular treatment for charge transfer by P{sup 3+} ions on hydrogen and helium

    SciTech Connect

    Moussa, A.; Zaidi, A.; Lahmar, S.; Bacchus-Montabonel, M.-C.

    2010-02-15

    A theoretical treatment of charge-transfer processes induced by collision of phosphorus P{sup 3+}(3s{sup 2}){sup 1}S ions on atomic hydrogen and helium has been carried out using ab initio potential-energy curves and couplings at the multireference configuration interaction level of theory. The cross sections calculated by means of semiclassical collision methods show the existence of a significant charge transfer in the 0.1-700-keV laboratory energy range. Radial and rotational coupling interactions were analyzed for both collision systems.

  10. Dielectronic recombination and resonant transfer excitation processes for helium-like krypton

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Li; Qu, Yi-Zhi; Zhang, Song-Bin; Zhang, Yu

    2012-10-01

    The relativistic configuration interaction method is employed to calculate the dielectronic recombination (DR) cross sections of helium-like krypton via the 1s2lnl' (n = 2, 3, ..., 15) resonances. Then, the resonant transfer excitation (RTE) processes of Kr34+ colliding with H, He, H2, and CHx (x = 0-4) targets are investigated under the impulse approximation. The needed Compton profiles of targets are obtained from the Hartree—Fock wave functions. The RTE cross sections are strongly dependent on DR resonant energies and strengths, and the electron momentum distributions of the target. For H2 and H targets, the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l' to 1.88 for other resonances, which demonstrates the weak molecular effects on the Compton profiles of H2. For CHx (x = 0-4) targets, the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons; as the number of hydrogen increases in CHx, the RTE cross section almost increases by the same value, displaying the strong separate atom character for the hydrogen. However, further comparison of the individual orbital contributions of C(2p, 2s, 1s) and CH4(1t2, 2a1, 1a1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%, 19.9%, and 0.2% between 2p-1t2, 2s-2a1, and 1s-1a1 orbitals, respectively.

  11. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  12. Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min

    2014-03-01

    The metal transfer in CO2 Laser+GMAW-P hybrid welding by using argon-helium mixtures was investigated and the effect of the laser on the mental transfer is discussed. A 650 nm laser, in conjunction with the shadow graph technique, is used to observe the metal transfer process. In order to analyze the heat input to the droplet and the droplet internal current line distribution. An optical emission spectroscopy system was employed to estimate default parameter and optimized plasma temperature, electron number densities distribution. The results indicate that the CO2 plasma plume have a significant impact to the electrode melting, droplet formation, detachment, impingement onto the workpiece and weld morphology. Since the current distribution direction flow changes to the keyhole, to obtain a metal transfer mode of one droplet per pulse, the welding parameters should be adjusted to a higher pulse time (TP) and a lower voltage.

  13. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II. Ionization structure of helium at periastron

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-yr orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric (e ˜ 0.9) binary orbit. The secondary star (ηB) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of η Car's interacting winds at periastron. Using the SIMPLEX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the η Car system for two different primary star mass-loss rates (dot{M}_{η A}). Using previous results from simulations at apastron as a guide for the initial conditions, we compute 3D helium ionization maps. We find that, for higher dot{M}_{η A}, ηB He0+-ionizing photons are not able to penetrate into the pre-shock primary wind. He+ due to ηB is only present in a thin layer along the leading arm of the WWIR and in a small region close to the stars. Lowering dot{M}_{η A} allows ηB's ionizing photons to reach the expanding unshocked secondary wind on the apastron side of the system, and create a low fraction of He+ in the pre-shock primary wind. With apastron on our side of the system, our results are qualitatively consistent with the observed variations in strength and radial velocity of η Car's helium emission and absorption lines, which helps better constrain the regions where these lines arise.

  14. Charge transfer vibronic transitions in uranyl tetrachloride compounds;

    SciTech Connect

    Liu, G. K.; Deifel, N. P.; Cahill, C. L.

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO{sub 2}){sup 2+} in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3{sigma} ground state into the f{sub {delta}{phi}}, orbitals of uranyl. The Huang-Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck-Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  15. Charge transfer vibronic transitions in uranyl tetrachloride compounds

    SciTech Connect

    Liu, Guokui; Deifel, Nicholas P.; Cahill, Christopher L.; Zhurov, Vladimir V.; Pinkerton, A. Alan

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO₂)2+ in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3σ ground state into the fδ,Φ orbitals of uranyl. The Huang–Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck–Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  16. Time-dependent calculations of transfer ionization by fast proton-helium collision in one-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Kheifets, A. S.

    2014-12-01

    We analyze a transfer ionization (TI) reaction in the fast proton-helium collision H++He →H0+He2 ++ e- by solving a time-dependent Schrödinger equation (TDSE) under the classical projectile motion approximation in one-dimensional kinematics. In addition, we construct various time-independent analogs of our model using lowest-order perturbation theory in the form of the Born series. By comparing various aspects of the TDSE and the Born series calculations, we conclude that the recent discrepancies of experimental and theoretical data may be attributed to deficiency of the Born models used by other authors. We demonstrate that the correct Born series for TI should include the momentum-space overlap between the double-ionization amplitude and the wave function of the transferred electron.

  17. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  18. Light noble gas chemistry: Structures, stabilities, and bonding of helium, neon and argon compounds

    SciTech Connect

    Frenking, G. ); Koch, W. ); Reichel, F. ); Cremer, D. )

    1990-05-23

    Theoretically determined geometries are reported for the light noble gas ions Ng{sub 2}C{sup 2+}, Ng{sub 2}N{sup 2+}, Ng{sub 2}O{sup 2+}, NgCCNg{sup 2+}, NgCCH{sup +}, NgCN{sup +}, and NgNC{sup +} (Ng = He, Ne, Ar) at the MP2/6-31G(d,p) level of theory. In a few cases, optimizations were carried out at CASSCF/6-31G(d,p). The thermodynamic stability of the Ng compounds is investigated at MP4(SDTQ)/6-311G(2df,2pd) for Ng = He, Ne and at MP4(SDTQ)/6-311G(d,p) for Ng = Ar. The structures and stabilities of the molecules are discussed in terms of donor-acceptor interactions between Ng and the respective fragment cation, by using molecular orbital arguments and utilizing the analysis of the electron density distribution and its associated Laplace field. Generally, there is an increase in Ng,X binding interactions of a noble gas molecule NgX with increasing atomic size of Ng. In some cases the Ne,X stabilization energies are slightly smaller than the corresponding He,X values because of repulsive p-{pi} interactions in the neon compounds. The argon molecules are in all cases significantly stronger bound.

  19. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Navin, A.; Tripathi, V.; Blumenfeld, Y.; Nanal, V.; Simenel, C.; Casandjian, J. M.; de France, G.; Raabe, R.; Bazin, D.; Chatterjee, A.; Dasgupta, M.; Kailas, S.; Lemmon, R. C.; Mahata, K.; Pillay, R. G.; Pollacco, E. C.; Ramachandran, K.; Rejmund, M.; Shrivastava, A.; Sida, J. L.; Tryggestad, E.

    2004-10-01

    Reactions induced by radioactive 6,8 He beams from the SPIRAL facility were studied on 63,65 Cu and 188,190,192 Os targets and compared to reactions with the stable 4He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam γ rays for the 6He + 63,65 Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic γ rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei 6He at 19.5 and 30 MeV and 8He at 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for 6,8 He +Cu systems. Cross sections for fusion and direct reactions with 4,6 He beams on heavier targets of 188,192 Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam γ -ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.

  20. Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

    SciTech Connect

    Navin, A.; Tripathi, V.; Chatterjee, A.; Kailas, S.; Mahata, K.; Ramachandran, K.; Shrivastava, A.; Blumenfeld, Y.; Tryggestad, E.; Nanal, V.; Pillay, R.G.; Simenel, C.; Casandjian, J.M.; France, G. de; Rejmund, M.; Raabe, R.; Pollacco, E.C.; Sida, J.L.; Dasgupta, M.

    2004-10-01

    Reactions induced by radioactive {sup 6,8}He beams from the SPIRAL facility were studied on {sup 63,65}Cu and {sup 188,190,192}Os targets and compared to reactions with the stable {sup 4}He projectiles from the Mumbai Pelletron. Partial residue cross sections for fusion and neutron transfer obtained from the measured intensities of characteristic in-beam {gamma} rays for the {sup 6}He+{sup 63,65}Cu systems are presented. Coincidence measurements of heavy reaction products, identified by their characteristic {gamma} rays, with projectilelike charged particles, provide direct evidence for a large transfer cross section with Borromean nuclei {sup 6}He at 19.5 and 30 MeV and {sup 8}He at 27 MeV. Reaction cross sections were also obtained from measured elastic angular distributions for {sup 6,8}He+Cu systems. Cross sections for fusion and direct reactions with {sup 4,6}He beams on heavier targets of {sup 188,192}Os at 30 MeV are also presented. The present work underlines the need to distinguish between various reaction mechanisms leading to the same products before drawing conclusions about the effect of weak binding on the fusion process. The feasibility of extracting small cross sections from inclusive in-beam {gamma}-ray measurements for reaction studies near the Coulomb barrier with low intensity isotope separation on-line beams is highlighted.

  1. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  2. Heat transfer in a compact tubular heat exchanger with helium gas at 3.5 MPa

    NASA Technical Reports Server (NTRS)

    Olson, Douglas A.; Glover, Michael P.

    1990-01-01

    A compact heat exchanger was constructed consisting of circular tubes in parallel brazed to a grooved base plate. This tube specimen heat exchanger was tested in an apparatus which radiatively heated the specimen on one side at a heat flux of up to 54 W/sq cm, and cooled the specimen with helium gas at 3.5 MPa and Reynolds numbers of 3000 to 35,000. The measured friction factor of the tube specimen was lower than that of a circular tube with fully developed turbulent flow, although the uncertainty was high due to entrance and exit losses. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in circular tubes.

  3. Four-body charge transfer processes in collisions of bare projectile ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Jana, S.; Mandal, C. R.; Purkait, M.

    2015-02-01

    Single-electron capture by a bare ion from a helium atom at intermediate and high energies in the framework of four-body distorted wave (DW-4B) approximation in both prior and post form has been considered. In the entrance channel, the initial bound state wave function is distorted by the incoming projectile ion, and the corresponding distortion is related to the Coulomb continuum states of the active electron and the residual target ion in the field of the projectile ion respectively. Continuum states of the active electron and the projectile ion in the field of the residual target ion are also included in the exit channel. It may be mentioned that the effect of dynamic electron correlation is explicitly taken into account through the complete perturbation potential. The total single-electron capture cross sections are obtained by summing over all contributions up to n = 3 shells and sub-shells respectively. In addition, the differential cross sections for alpha particle-helium collision are calculated at impact energies of 60, 150, 300, 450, and 630 keV amu-1, respectively. The cross sections exhibit a monotonically decreasing angular dependence, with clear peak structures around 0.1 to 0.2 mrad being found at low impact energies. The current theoretical results, both in prior and post forms of the transition amplitude for symmetric and asymmetric collision, are compared with the available theoretical and experimental results. Current computed results have been found to be satisfactory in comparison with other theoretical and experimental findings.

  4. Discrete Visible Luminescence of Helium Atoms and Molecules Desorbing from Helium Clusters: The Role of Electronic, Vibrational, and Rotational Energy Transfer

    SciTech Connect

    von Haeften, K.; von Pietrowski, R.; Moeller, T.; Joppien, M.; Moussavizadeh, L.; de Castro, A.R.

    1997-06-01

    Discrete visible and near-infrared luminescence of a beam of photoexcited helium clusters is reported. The emission lines are attributed to free helium atoms and molecules desorbing from clusters in electronically excited states. Depending on the excitation energy, various atomic and molecular singlet and triplet states are involved in the relaxation process. With increasing cluster size the intensity of molecular transitions becomes dominant. The temperature of ejected molecules could be estimated to T{sub vib}{approximately}2500 K and T{sub rot}{approximately}450 K and is much higher than that of the cluster itself. {copyright} {ital 1997} {ital The American Physical Society}

  5. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  6. Parity propensities in rotational energy transfer of OH X 2Pi(i) with helium

    NASA Technical Reports Server (NTRS)

    Wysong, Ingrid J.; Jeffries, Jay B.; Crosley, David R.

    1991-01-01

    Preliminary results of rotational energy transfer in ground state OH in collisions in He are reported. A surprising propensity is found: conservation of total parity is favored in collisions which change in spin-orbit component, the reversible reaction 2Pi3/2 yields 2Pi1/2. This has implications concerning the OH-He potential surface.

  7. The target effect in transfer ionization in proton-helium and neon collisions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Feng, W. T.; Ma, X.; Zhu, X. L.; Zhang, S. F.; Zhang, R. T.; Guo, D. L.; Li, B.; Yan, S. Y.; Xu, S.; Zhang, P. J.

    2014-04-01

    The velocity distribution of emitted electrons in the transfer ionization (TI) in p-He and p-Ne collisions had been measured at projectile velocity Vp=2 a.u. The characteristics of electrons emission in the scattering plane is significant different from that observed in the TI of He2+-He collision (L. Schmidt et al 2007 Phys. Rev. A 76 012703-1). The mechanism leading to the ejection of electrons has still not been completely understood.

  8. Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds

    SciTech Connect

    Xiaopeng Shan

    2003-08-05

    Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH{sup +}3{sup -} and mechanisms of ligand displacement and oxidation were proposed.

  9. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    NASA Astrophysics Data System (ADS)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  10. Cross-Language Transfer of Insight into the Structure of Compound Words

    ERIC Educational Resources Information Center

    Zhang, Jie; Anderson, Richard C.; Li, Hong; Dong, Qiong; Wu, Xinchun; Zhang, Yan

    2010-01-01

    Cross-language transfer of awareness of the structure of compound words was investigated among native speakers of Chinese who were learning English as a second language. Chinese fifth graders received instruction in the morphology of four types of compound words in either Chinese or English. They then completed both the Chinese and English…

  11. Oligomer and mixed-metal compounds potential multielectron transfer catalysts

    SciTech Connect

    Rillema, D.P.

    1992-03-30

    Projects related to the design and characterization of multimetallic complexes has proceeded forward with a number of achievements. First, photoprocesses in hydrogel matrices lead to the conclusion that cationic metallochromophores could be ion exchanged into a hydrogel matrix ({kappa}-carageenan) and substantial photocurrents could be generated. Second, X-ray structures of Ru(bpy){sub 3}{sup 2+}, Ru(bpm){sub 3}{sup 2+} and Ru(bpz){sub 3}{sup 2+}, where bpy is 2,2{prime}-bipyridine, bpm is 2,2{prime}-bipyrimidine and bpz is 2,2{prime}-bipyrizine, were obtained and revealed similar Ru-N bond distances in each complex even though their {sigma}-donor and {pi}-acceptor character differ markedly. The structure parameters are expected to provide theoreticians with the information needed to probe the electronic character of the molecular systems and provide us with direction in our synthetic strategies. Third, a copper(I) complex was synthesized with a dimeric-ethane-bridged, 1,10-phenanthroline ligand that resulted in isolation of a bimetallic species. The copper(I) complex did luminesce weakly, suggesting that the dimer possesses potential electron transfer capability. Fourth, the photophysical properties of (Re(CO){sub 4}(L-L)){sup +}, where L-L = heterocyclic diimine ligands, and Pt(bph)X{sub 2}, where bph = the dianion of biphenyl and X = CH{sub 3}CN, py or ethylendiamine, displayed luminescence at high energy and underwent excited-state electron transfer. Such high energy emitters provide high driving forces for undergoing excited-state electron transfer. Fifth, both energy and electron transfer were observed in mixed-metal complexes bridged by 1,2-bis(2,2{prime}-bipyridyl-4{prime}-yl) ethane.

  12. Energy and charge state dependences of transfer ionization to single capture ratio for fast multiply charged ions on helium

    NASA Astrophysics Data System (ADS)

    Unal, Ridvan

    The charge state and energy dependences of Transfer Ionization (TI) and Single Capture (SC) processes in collisions of multiply charged ions with He from intermediate to high velocities are investigated using coincident recoil ion momentum spectroscopy. The collision chamber is commissioned on the 15-degree port of a switching magnet, which allows the delivery of a beam with very little impurity. The target was provided from a supersonic He jet with a two-stage collimation. The two-stage, geometrically cooled, supersonic He jet has significantly reduced background contribution to the spectrum compared to a single stage He jet. In the case of a differentially pumped gas cell complex calculations based on assumptions for the correction due to the collisions with the contaminant beam led to corrections, which were up to 50%. The new setup allows one to make a direct separation of contaminant processes in the experimental data using the longitudinal momentum spectra. Furthermore, this correction is much smaller (about 8.8%) yielding better overall precision. The collision systems reported here are 1 MeV/u O(4--8)+ , 0.5--2.5 MeV/u F(4--9)+, 2.0 MeV/u Ti 15,17,18+, 1.6--1.75 MeV/u Cu18,20+ and 0.25--0.5 MeV/u I(15--25)+ ions interacting with helium. We have determined the sTIsSC ratio for high velocity highly charged ions on He at velocities in the range of 6 to 10 au and observed that the ratio is monotonically decreasing with velocity. Furthermore, we see a ratio that follows a q2 dependence up to approximately q = 9. Above q = 9 the experimental values exceed the q2 dependence prediction due to antiscreening. C. D. Lin and H. C. Tseng have performed coupled channel calculations for the energy dependence of TI and SC for F9+ + He and find values slightly higher than our measured values, but with approximately the same energy dependence. The new data, Si, Ti and Cu, go up only to q = 20 and show a smooth monotonically increasing TI/SC ratio. The TI/SC ratio for I (15

  13. On Helium Anions in Helium Droplets: Interpreting Recent Experiments

    NASA Astrophysics Data System (ADS)

    Mauracher, Andreas; Huber, Stefan E.

    2014-10-01

    Helium droplets provide an ideal environment to study elementary processes in atomic systems at very low temperatures. Here, we discuss properties of charged and neutral, atomic and molecular helium species formed in helium droplets upon electron impact. By studying their interaction with atomic ground state helium we find that He, He2 and excited (metastable) He*- are well bound within the helium droplet. In comparison, He* , He2* and He2* are found to be squeezed out due to energetic reasons. We also present the formation pathways of atomic and molecular helium anions in helium droplets. Transition barriers in the energetic lowest He*- - He interaction potentials prevent molecule formation at the extremely low temperatures in helium droplets. In contrast, some excited states allow a barrier-free formation of molecular helium (anions). With these theoretical results at hand we can interpret recent experiments in which the resonant formation of atomic and molecular helium anions was observed. Furthermore, we give an outlook on the implications of the presence of these anionic species in doped helium droplets with regard to charge transfer reactions. Austrian Fund Agency (FWF, I 978-N20, DK+ project Computational Interdisciplinary Modelling W1227-N16)/Austrian Ministry of Science (BMWF, Konjunkturpaket II, UniInfrastrukturprogramm of the Focal Point Scientific Computing).

  14. Laminar Heat-Transfer and Pressure-Distribution Studies on a Series of Reentry Nose Shapes at a Mach Number of 19.4 in Helium

    NASA Technical Reports Server (NTRS)

    Wagner, Richard D., Jr.; Pine, W. Clint; Henderson, Arthur, Jr.

    1961-01-01

    An experimental investigation has been conducted in the 2-inch helium tunnel at the Langley Research Center at a Mach number of 19.4 to determine the pressure distributions and heat-transfer characteristics of a family of reentry nose shapes. The pressure and heat-transfer-rate distributions on the nose shapes are compared with theoretical predictions to ascertain the limitations and validity of the theories at hypersonic speeds. The experimental results were found to be adequately predicted by existing theories. Two of the nose shapes were tested with variable-length flow-separation spikes. The results obtained by previous investigators of spike-nose bodies were found to prevail at the higher Mach number of the present investigation.

  15. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  16. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  17. Heat transfer and Rheological behavior of nanoparticle compound microencapsulated phase change material suspensions

    NASA Astrophysics Data System (ADS)

    Wang, L.; Lin, G. P.; Ding, Y. L.

    2010-03-01

    Addition of microencapsulated phase change materials (MPCM) have been used for enhance the heat transfer of fluids because of the large latent heat during the phase change period of particles. However low thermal conductivity of phase change material diminishes the heat transfer performance of the fluid partially. In the past decade, significant enhancements of nanofluids on the enhancement of thermal conductivity and convective heat transfer were observed in comparison with the base fluids. To improve the thermal conductivity of MPCM suspensions, the additive nanoparticles were used to formulate a novel thermal fluid—nanoparticle compound microencapsulated phase change material suspensions were formulated. The rheology measurements shows that such suspensions are Newtonian fluids at the shear rate of 5-500s-1 and the shear viscosities depend strongly on temperature. Experimental investigations were conducted on the laminar convective heat transfer characteristic of the nanoparticle compound MPCM suspensions in a vertical circular tube with 0.5% TiO2 nanoparticles and various MPCM mass concentrations ranging from 5%-20%. The results exhibit that the convective heat transfer performance of nanoparticle compound MPCM suspensions are significantly improved in comparison of the MPCM suspensions and this enhancement increases with the increasing of the MPCM concentration, the modified Nusselt number can be improved by 27.0% for MPCM concentration of 20 wt%.

  18. Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents.

    PubMed

    Madden, L A; Anderson, A J; Shah, D T; Asrar, J

    1999-01-01

    We have identified a range of compounds which, when present during poly(3-hydroxybutyrate) [P(3HB)] accumulation by Ralstonia eutropha (reclassified from Alcaligenes eutrophus), can act as chain transfer agents in the chain termination step of polymerization. End-group analysis by 31P NMR of polymer derivatized with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane revealed that all these compounds were covalently linked to P(3HB) at the carboxyl terminus. All chain transfer agents possessed one or more hydroxyl groups, and glycerol was selected for further investigation. The number-average molecular mass (Mn) of P(3HB) produced by R. eutropha from glycerol was substantially lower than for polymer produced from glucose, and we identified two new end-group structures. These were attributed to a glycerol molecule bound to the P(3HB) chain via the primary or secondary hydroxyl groups. When a primary hydroxyl group of glycerol is involved in chain transfer, the end-group structure is in both [R] and [S] configurations, implying that chain transfer to glycerol is a random transesterification and that PHA synthase does not catalyse chain transfer. 3-Hydroxybutyric acid is the most probable chain transfer agent in vivo, with propagation and termination reactions involving transfer of the P(3HB) chain to enzyme-bound and free 3-hydroxybutyrate, respectively. Only carboxyl end-groups were detected in P(3HB) extracted from exponentially growing bacteria. It is proposed that a compound other than 3-hydroxybutyryl-CoA acts as a primer in the initiation of polymer synthesis. PMID:10416649

  19. Helium jet dispersion to atmosphere

    NASA Astrophysics Data System (ADS)

    Khan, Hasna J.

    On the event of loss of vacuum guard of superinsulated helium dewar, high rate of heat transfer into the tank occurs. The rapid boiling of liquid helium causes the burst disk to rupture at four atmospheres and consequently the helium passes to the atmosphere through vent lines. The gaseous helium forms a vertical buoyant jet as it exits the vent line into a stagnant environment. Characterization of the gaseous jet is achieved by detailed analysis of the axial and radial dependence of the flow parameters.

  20. Triplet energy transfer in conjugated polymers. I. Experimental investigation of a weakly disordered compound

    NASA Astrophysics Data System (ADS)

    Sudha Devi, Lekshmi; Al-Suti, Mohammad K.; Dosche, Carsten; Khan, Muhammad S.; Friend, Richard H.; Köhler, Anna

    2008-07-01

    Efficient triplet exciton emission has allowed improved operation of organic light-emitting diodes (LEDs). To enhance the device performance, it is necessary to understand what governs the motion of triplet excitons through the organic semiconductor. Here, we have investigated triplet diffusion using a model compound that has weak energetic disorder. The Dexter-type triplet energy transfer is found to be thermally activated down to a transition temperature TT , below which the transfer rate is only weakly temperature dependent. We show that above the transition temperature, Dexter energy transfer can be described within the framework of Marcus theory. We suggest that below TT , the nature of the transfer changes from phonon-assisted hopping to quantum-mechanical tunneling. The lower electron-phonon coupling and higher electronic coupling in the polymer compared to the monomer results in an enhanced triplet diffusion rate.

  1. Charge-transfer complexes of pyrimidine Schiff bases with aromatic nitro compounds

    NASA Astrophysics Data System (ADS)

    Issa, Yousry M.; El Ansary, A. L.; Sherif, O. E.; Hassib, H. B.

    2011-08-01

    Charge-transfer (CT) complexes of pyrimidine Schiff bases, derived from condensation of 2-aminopyrimidine and substituted benzaldehydes, with some aromatic polynitro compounds were prepared and investigated using IR, UV, visible and 1H NMR spectroscopy. For all solid complexes, the main interaction between the donor and acceptor molecules takes place through the π-π* interaction. Strong and some weak acidic acceptors, in addition interact through proton transfer from the acceptor molecule to the basic centre of the electron donor. Also, an n-π* transition was detected in some complexes.

  2. Charge-transfer complexes of pyrimidine Schiff bases with aromatic nitro compounds.

    PubMed

    Issa, Yousry M; el-Ansary, A L; Sherif, O E; Hassib, H B

    2011-08-01

    Charge-transfer (CT) complexes of pyrimidine Schiff bases, derived from condensation of 2-aminopyrimidine and substituted benzaldehydes, with some aromatic polynitro compounds were prepared and investigated using IR, UV, visible and (1)H NMR spectroscopy. For all solid complexes, the main interaction between the donor and acceptor molecules takes place through the π-π* interaction. Strong and some weak acidic acceptors, in addition interact through proton transfer from the acceptor molecule to the basic centre of the electron donor. Also, an n-π* transition was detected in some complexes. PMID:21531169

  3. 2-D numerical simulations of groundwater flow, heat transfer and 4He transport — implications for the He terrestrial budget and the mantle helium heat imbalance

    NASA Astrophysics Data System (ADS)

    Castro, Maria Clara; Patriarche, Delphine; Goblet, Patrick

    2005-09-01

    Because helium and heat production results from a common source, a continental 4He crustal flux of 4.65 * 10 - 14 mol m - 2 s - 1 has been estimated based on heat flow considerations. In addition, because the observed mantle He / heat flux ratio at the proximity of mid-ocean ridges (6.6 * 10 - 14 mol J - 1 ) is significantly lower than the radiogenic production ratio (1.5 * 10 - 12 mol J - 1 ), the presence of a terrestrial helium-heat imbalance was suggested. The latter could be explained by the presence of a layered mantle in which removal of He is impeded from the lower mantle [R.K. O'Nions, E.R. Oxburgh, Heat and helium in the Earth, Nature 306 (1983) 429-431; E.R. Oxburgh, R.K. O'Nions, Helium loss, tectonics, and the terrestrial heat budget, Science 237 (1987) 1583-1588]. van Keken et al. [P.E. van Keken, C.J. Ballentine, D. Porcelli, A dynamical investigation of the heat and helium imbalance, Earth Planet, Sci. Lett. 188 (2001) 421-434] have recently claimed that the helium-heat imbalance remains a robust observation. Such conclusions, however, were reached under the assumption that a steady-state regime was in place for both tracers and that their transport properties are similar at least in the upper portion of the crust. Here, through 2-D simulations of groundwater flow, heat transfer and 4He transport carried out simultaneously in the Carrizo aquifer and surrounding formations in southwest Texas, we assess the legitimacy of earlier assumptions. Specifically, we show that the driving transport mechanisms for He and heat are of a fundamentally different nature for a high range of permeabilities ( k ≤ 10 - 16 m 2) found in metamorphic and volcanic rocks at all depths in the crust. The assumption that transport properties for these two tracers are similar in the crust is thus unsound. We also show that total 4He / heat flux ratios lower than radiogenic production ratios do not reflect a He deficit in the crust or mantle original reservoir. Instead, they

  4. Resonant-transfer-and-excitation for highly charged ions (16 less than or equal to Z less than or equal to 23) in collisions with helium

    SciTech Connect

    Tanis, J.A.; Bernstein, E.M.; Oglesby, C.S.; Graham, W.G.; Clark, M.; McFarland, R.H.; Morgan, T.J.; Stockli, M.P.; Berkner, K.H.; Johnson, B.M.

    1984-01-01

    Significant new evidence is presented for resonant-transfer-and-excitation (RTE) in ion-atom collisions. This process occurs when a target electron is captured simultaneously with the excitation of the projectile followed by deexcitation via photon emission. RTE, which is analogous to dielectronic recombination (DR), proceeds via the inverse of an Auger transition, and is expected to be resonant for projectile velocities corresponding to the energy of the ejected electron in the Auger process. RTE was investigated by measuring cross sections for projectile K x-ray emission coincident with single electron capture for 15 to 200 MeV /sub 16/S/sup 13 +/, 100 to 360 MeV /sub 20/Ca/sup 16 +/ /sup 17 +/ /sup 18 +/ and 180 to 460 MeV /sub 23/V/sup 19 +/ /sup 20 +/ /sup 21 +/ ions colliding with helium. Strong resonant behavior, in agreement with theoretical calculations of RTE, was observed in the coincidence cross sections.

  5. Volatile organic compound emission rate from diffused aeration systems. 1: Mass transfer modeling

    SciTech Connect

    Chern, J.M.; Yu, C.F.

    1995-08-01

    The activated sludge process is one of the most commonly used biochemical oxidation process for the secondary treatment of municipal and industrial wastewaters. The release of volatile organic compounds (VOCs) from wastewater treatment plants has recently caused great concern. In wastewater treatment plants, many operation units such s equalization and aeration involve oxygen transfer between wastewater and air. While oxygen is transferred from air to wastewater, VOCs are stripped from wastewater to air. Due to increasingly stringent environmental regulations, wastewater treatment operators have to do VOC inventory of their facilities. A mass transfer model for VOCs is therefore called for to assess VOC emission rates from wastewater treatment processes. Almost all existing methods adopt an oxygen mass transfer model standardized by the American Society of Civil Engineers (ASCE) to evaluate VOC emission rates. A new and more fundamental oxygen mass transfer model for diffused aeration systems was developed to assess the VOC emission rates. The new model provides better insight of the VOC mass transfer process and requires only aeration performance data to predict the VOC emission rates. The results and implications of both models were discussed and compared.

  6. Volatile organic compound emission rates from mechanical surface aerators: Mass-transfer modeling

    SciTech Connect

    Chern, J.M.; Chou, S.R.

    1999-08-01

    In wastewater treatment plants, many operation units such as equalization and aeration involve oxygen transfer between wastewater and air. While oxygen is transferred from air to wastewater, volatile organic compounds (VOCs) are stripped from wastewater to air. Because of increasingly stringent environmental regulations, wastewater treatment operators have to do VOC inventory of their facilities. A new mass-transfer model has been developed to predict the VOC emission rates from batch and continuous aeration tanks with mechanical surface aerators. The model takes into consideration that the VOC mass transfer occurs in two separate mass-transfer zones instead of lumping the overall VOC transfer in the whole aeration tank as is done in the conventional ASCE-based model. The predictive capabilities of the two-zone and the ASCE-based models were examined by calculating the emission rates of 10 priority pollutants from aeration tanks. The effects of the hydraulic retention time, the Henry`s law constant, gas-phase resistance, and the water and air environmental conditions on the VOC emission rates were predicted by the two models.

  7. Conjugative transfer of preferential utilization of aromatic compounds from Pseudomonas putida CSV86.

    PubMed

    Basu, Aditya; Phale, Prashant S

    2008-02-01

    Pseudomonas putida CSV86 utilizes naphthalene (Nap), salicylate (Sal), benzyl alcohol (Balc), and methylnaphthalene (MN) preferentially over glucose. Methylnaphthalene is metabolized by ring-hydroxylation as well as side-chain hydroxylation pathway. Although the degradation property was found to be stable, the frequency of obtaining Nap(-)Sal(-)MN(-)Balc(-) phenotype increased to 11% in the presence of curing agents. This property was transferred by conjugation to Stenotrophomonas maltophilia CSV89 with a frequency of 7 x 10(-8) per donor cells. Transconjugants were Nap(+)Sal(+)MN(+)Balc(+) and metabolized MN by ring- as well as side-chain hydroxylation pathway. Transconjugants also showed the preferential utilization of aromatic compounds over glucose indicating transfer of the preferential degradation property. The transferred properties were lost completely when transconjugants were grown on glucose or 2YT. Attempts to detect and isolate plasmid DNA from CSV86 and transconjugants were unsuccessful. Transfer of degradation genes and its subsequent loss from the transconjugants was confirmed by PCR using primers specific for 1,2-dihydroxynaphthalene dioxygenase and catechol 2,3-dioxygenase (C23O) as well as by DNA-DNA hybridizations using total DNA as template and C23O PCR fragment as a probe. These results indicate the involvement of a probable conjugative element in the: (i) metabolism of aromatic compounds, (ii) ring- and side-chain hydroxylation pathways for MN, and (iii) preferential utilization of aromatics over glucose. PMID:17487554

  8. Understanding and controlling airborne organic compounds in the indoor environment: mass transfer analysis and applications.

    PubMed

    Zhang, Y; Xiong, J; Mo, J; Gong, M; Cao, J

    2016-02-01

    Mass transfer is key to understanding and controlling indoor airborne organic chemical contaminants (e.g., VVOCs, VOCs, and SVOCs). In this study, we first introduce the fundamentals of mass transfer and then present a series of representative works from the past two decades, focusing on the most recent years. These works cover: (i) predicting and controlling emissions from indoor sources, (ii) determining concentrations of indoor air pollutants, (iii) estimating dermal exposure for some indoor gas-phase SVOCs, and (iv) optimizing air-purifying approaches. The mass transfer analysis spans the micro-, meso-, and macroscales and includes normal mass transfer modeling, inverse problem solving, and dimensionless analysis. These representative works have reported some novel approaches to mass transfer. Additionally, new dimensionless parameters such as the Little number and the normalized volume of clean air being completely cleaned in a given time period were proposed to better describe the general process characteristics in emissions and control of airborne organic compounds in the indoor environment. Finally, important problems that need further study are presented, reflecting the authors' perspective on the research opportunities in this area. PMID:25740682

  9. Heat transfer through cyanate ester epoxy mix and epoxy TGPAP - DETDA electrical insulations at superfluid helium temperature

    NASA Astrophysics Data System (ADS)

    Pietrowicz, Slawomir; Four, Aurelian; Canfer, Simon; Jones, Stephanie; Baudouy, Bertrand

    2012-06-01

    A high magnetic field accelerator magnet of 13 T is being developed in Work Package 7 of the European Union FP7 project EuCARD. The application is to enable higher luminosities and energies for accelerators such as the LHC. The high magnetic field demands superconductors that require a heat treatment step such as Nb3Sn. This paper reports thermal tests on conventional composite electrical insulation with pressurized superfluid helium at atmospheric pressure as a coolant. Two composite insulation systems composed of cyanate ester epoxy mix or a tri-functional epoxy (TGPAP-DETDA) with Sglass fiber, have been chosen as candidate materials. The knowledge of their thermal properties is necessary for the thermal design and therefore samples have been tested in pressurized He II where heat is applied perpendicularly to the fibers between 1.6 K and 2.0 K. Overall thermal resistance is determined as a function of temperature and the results are compared with other electrical insulation systems used for accelerator magnets.

  10. Implementation of the superfluid helium phase transition using finite element modeling: Simulation of transient heat transfer and He-I/He-II phase front movement in cooling channels of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Bielert, E. R.; Verweij, A. P.; Ten Kate, H. H. J.

    2013-01-01

    In the thermal design of high magnetic field superconducting accelerator magnets, the emphasis is on the use of superfluid helium as a coolant and stabilizing medium. The very high effective thermal conductivity of helium below the lambda transition temperature significantly helps to extract heat from the coil windings during steady state and transient heat deposition. The layout and size of the helium channels have a strong effect on the maximum amount of heat that can be extracted from the porously insulated superconducting cables. To better understand the behavior of superfluid helium penetrating the magnet structure and coil windings, simulation based on a three dimensional finite element model can give valuable insight. The 3D geometries of interest can be regarded as a complex network of coupled 1D geometries. The governing physics is thus similar for both geometries and therefore validation of several and different 1D models is performed. Numerically obtained results and published experimental data are compared. Once the viability of the applied methods is proven, they can be incorporated into the 3D geometries. Not only the transport properties in the bulk of the helium are of interest, but also the strong non-linear behavior at the interfaces between solids and superfluid helium (Kapitza conductance) is important from an engineering point of view, since relatively large temperature jumps may occur here. In this work it is shown how He-II behavior in magnet windings can be simulated using COMSOL Multiphysics. 1D models are validated by experimental results taken from literature in order to improve existing 2D and 3D models with more complete physics. The examples discussed include transient heat transfer in 1D channels, Kapitza conductance and sub-cooling of normal liquid helium to temperatures below the lambda transition in long channels (phase front movement).

  11. Heat transfer analysis of compound multi-layer insulation for cryogenic tank under different service conditions

    NASA Astrophysics Data System (ADS)

    Zhu, H. L.; Yao, C.; Li, Y.; Pan, H. L.

    2016-05-01

    Future space missions require efficient delivery of large payloads over great distances, necessitating the use of high-energy cryogenic propellant. Therefore, reliable compound multi-layer insulation on cryogenic tank is a crucial part of future space exploration. Compound multi-layer insulation is composed of double-aluminized radiation shielding and separated by a combination of netting and bumper strips, with a foam substrate. Considering conduction, convection, and radiation in heat transfer, the thermal field of multi-layer insulation is analysis by theoretical analysis with different thickness of foam substrate and MLI. Based on the formerly theoretical analysis, the heat flux and apparent thermal conductivity are discussed under the different thickness of foam substrate and MLI. Finally, the optimum design of multi-layer thermal insulation is present in consideration of the thickness and insulation performance of multi-layer insulation.

  12. Tuning of electron injections for n-type organic transistor based on charge-transfer compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hasegawa, T.; Abe, Y.; Tokura, Y.; Nishimura, K.; Saito, G.

    2005-02-01

    A high mobility (˜1.0cm2/Vs) n-type organic field-effect transistor is devised in terms of the combination of semiconducting and metallic charge-transfer (CT) compounds, namely, DBTTF-TCNQ crystals as channels and TTF-TCNQ thin films as electrodes for carrier injections on top of the crystals. Comparison of the field-effect properties for devices with conventional electrode materials indicates the successful demonstration of the interface band engineering with use of the CT materials.

  13. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems.

    PubMed

    Li, Yongjun; Liu, Taifeng; Liu, Huibiao; Tian, Mao-Zhong; Li, Yuliang

    2014-04-15

    Highly polarized compounds exhibiting intramolecular charge transfer (ICT) are used widely as nonlinear optical (NLO) materials and red emitters and in organic light emitting diodes. Low-molecular-weight donor/acceptor (D/A)-substituted ICT compounds are ideal candidates for use as the building blocks of hierarchically structured, multifunctional self-assembled supramolecular systems. This Account describes our recent studies into the development of functional molecular systems with well-defined self-assembled structures based on charge-transfer (CT) interactions. From solution (sensors) to the solid state (assembled structures), we have fully utilized intrinsic and stimulus-induced CT interactions to construct these functional molecular systems. We have designed some organic molecules capable of ICT, with diversity and tailorability, that can be used to develop novel self-assembled materials. These ICT organic molecules are based on a variety of simple structures such as perylene bisimide, benzothiadiazole, tetracyanobutadiene, fluorenone, isoxazolone, BODIPY, and their derivatives. The degree of ICT is influenced by the nature of both the bridge and the substituents. We have developed new methods to synthesize ICT compounds through the introduction of heterocycles or heteroatoms to the π-conjugated systems or through extending the conjugation of diverse aromatic systems via another aromatic ring. Combining these ICT compounds featuring different D/A units and different degrees of conjugation with phase transfer methodologies and solvent-vapor techniques, we have self-assembled various organic nanostructures, including hollow nanospheres, wires, tubes, and ribbonlike architectures, with controllable morphologies and sizes. For example, we obtained a noncentrosymmetric microfiber structure that possessed a permanent dipole along its fibers' long axis and a transition dipole perpendicular to it; the independent NLO responses of this material can be separated and

  14. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions

    PubMed Central

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%–65.63% of total transfer rate) and for flavonoids (0.18%–0.67% of total transfer rate). ‘Picual’ was the cultivar that transferred secoiridoids to oil at the highest rate, whereas ‘Changlot Real’ was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils. PMID:26959010

  15. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions.

    PubMed

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils. PMID:26959010

  16. Synthesis and hydride transfer reactions of cobalt and nickel hydride complexes to BX3 compounds.

    PubMed

    Mock, Michael T; Potter, Robert G; O'Hagan, Molly J; Camaioni, Donald M; Dougherty, William G; Kassel, W Scott; DuBois, Daniel L

    2011-12-01

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)]. PMID:22040085

  17. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX3 Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly J.; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.

    2011-12-05

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H{sub 2} gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe){sub 2}, dmpe = 1,2-bis(dimethylphosphinoethane) was capable of reducing a variety of BX{sub 3} compounds having hydride affinity (HA) greater than or equal to HA of BEt{sub 3}. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, (HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +}), to form B-H bonds. The hydride donor abilities ({Delta}G{sub H{sup -}}{sup o}) of HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +} were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX{sub 3} compounds. The collective data guided our selection of BX{sub 3} compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe){sub 2} was observed to transfer H{sup -} to BX{sub 3} compounds with X = H, OC{sub 6}F{sub 5} and SPh. The reaction with B(SPh){sub 3} is accompanied by formation of (BH{sub 3}){sub 2}-dmpe and (BH{sub 2}SPh){sub 2}-dmpe products that follow from reduction of multiple BSPh bonds and loss of a dmpe ligand from Co. Reactions between HCo(dmpe){sub 2} and B(SPh){sub 3} in the presence of triethylamine result in formation of Et{sub 3}N-BH{sub 2}SPh and Et{sub 3}N-BH{sub 3} with no loss of dmpe ligand. Reactions of the cationic complex [HNi(dmpe){sub 2}]{sup +} with B(SPh){sub 3} under analogous conditions give Et{sub 3}N-BH{sub 2}SPh as the final product along with the nickel-thiolate complex [Ni(dmpe){sub 2}(SPh)]{sup +}. The synthesis and characterization of HCo(dedpe){sub 2} (dedpe = diethyldiphenyl(phosphino)ethane) from H{sub 2} and a base is also discussed; including the formation of an uncommon trans

  18. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX₃ Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. Scott; DuBois, Daniel L.

    2011-10-31

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H₂ gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)₂ (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX₃ compounds having a hydride affinity (HA) greater than or equal to the HA of BEt₃. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)₂ and [HNi(dmpe)₂]+, to form B–H bonds. The hydride donor abilities (ΔGH °) of HCo(dmpe)₂ and [HNi(dmpe)₂]+ were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX₃ compounds. The collective data guided our selection of BX₃ compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)₂ was observed to transfer H to BX₃ compounds with X = H, OC₆F₅, and SPh. The reaction with B(SPh)₃ is accompanied by the formation of dmpe-(BH₃)₂ and dmpe-(BH₂(SPh))₂ products that follow from a reduction of multiple B–SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)₂ and B(SPh)₃ in the presence of triethylamine result in the formation of Et₃N–BH₂SPh and Et₃N–BH₃ with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)₂]+ with B(SPh)₃ under analogous conditions give Et₃N–BH₂SPh as the final product along with the nickel–thiolate complex [Ni(dmpe)₂(SPh)]+. The synthesis and characterization of HCo(dedpe)₂ (dedpe = Et₂PCH₂CH₂PPh₂) from H₂ and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)₂Co(dedpe)₂][BF₄].

  19. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae.

    PubMed

    Tang, Xiaohan; Zhang, Chao; Li, Zeyu; Yang, Xiaoyi

    2016-02-01

    In this study, hydrothermal liquefaction (HTL) experiments of Nannochloropsis and Spirulina were carried out at different temperatures (220-300 °C) to explore the effects of temperature on bio-crude yield and properties. The optimal temperature for bio-crude yield was around 260-280 °C. Transfers of element and chemical compounds in bio-crude were discussed in detail to deduce the reaction mechanism. The hydrogen and carbon recoveries were consistent with the results of bio-crude yields at every temperature point. The relative percentage of fatty acid in bio-crude decreased and the amine and amide increased for both microalgae with temperature rising. The N-heterocyclic compounds in bio-crude increased with temperature rising for Nannochloropsis, while decreased when temperature increased from 220 °C to 280 °C for Spirulina. Bio-crude gained at higher temperature or from microalgae with high protein content may contain high heteroatom compounds. PMID:26700753

  20. Performance Evaluation of the Scent Transfer Unit (STU) for Organic Compound Collection and Release

    SciTech Connect

    Eckenrode, Brian A.; Ramsey, Scott A.; StockhamMFS, Rex A.; Van Berkel, Gary J; Asano, Keiji G; Wolf, Dennis A

    2006-01-01

    The Scent Transfer UnitTM (STU-100) is a portable vacuum that uses airflow through a sterile gauze pad to capture a volatiles profile over evidentiary items for subsequent canine presentation to assist law enforcement personnel. This device was evaluated to determine its ability to trap and release organic compounds at ambient temperature under controlled laboratory conditions. Gas chromatography-mass spectrometry (GC-MS) analyses using a five-component volatiles mixture in methanol injected directly into a capture pad indicated that compound release could be detected initially and three days after time of collection. Additionally, fifteen compounds of a 39-component toxic organics gaseous mixture (10-1,000 ppbv) were trapped, released, and detected in the headspace of a volatiles capture pad after being exposed to this mixture using the STU-100 with analysis via GC-MS. Component release efficiencies at ambient temperature varied with the analyte; however, typical values of approximately 10 percent were obtained. Desorption at elevated temperatures of reported human odor/scent chemicals and colognes trapped by the STU-100 pads was measured and indicated that the STU-100 has a significant trapping efficiency at ambient temperature. Multivariate statistical analysis of subsequent mass spectral patterns was also performed.

  1. Maternally transferred dioxin-like compounds can affect the reproductive success of European eel.

    PubMed

    Foekema, Edwin M; Kotterman, Michiel; de Vries, Pepijn; Murk, Albertinka J

    2016-01-01

    Reported concentrations of dioxin-like compounds accumulated in the European eel (Anguilla anguilla) were used to perform a risk assessment for eel larval survival, taking into account a modeled amplification of tissue concentrations with a factor of 1.33 during spawning migration. The calculated concentrations of dioxin-like compounds finally deposited in the eggs were compared with the internal effect concentrations for survival of early life stages of the European eel; these concentrations, by lack of experimental data, were estimated from a sensitivity distribution based on literature data by assuming that eel larvae are among the 10% most sensitive teleost fish species. Given concentrations of dioxin-like contaminants and assuming a relatively high sensitivity, it can be expected that larvae from eggs produced by eel from highly contaminated locations in Europe will experience increased mortality as a result of maternally transferred dioxin-like contaminants. As historical persistent organic pollutant concentrations in eel tissue were higher, this impact must have been stronger in the past. Potential effects of other compounds or effects on the migration, condition, and fertility of the parental animals were not taken into account. It is important to further study the overall impact of contaminants on the reproductive success of the European eel as this may have been underestimated until now. PMID:26223357

  2. Electrochemical and theoretical analysis of the reactivity of shikonin derivatives: dissociative electron transfer in esterified compounds.

    PubMed

    Armendáriz-Vidales, Georgina; Frontana, Carlos

    2014-09-01

    An electrochemical and theoretical analysis of a series of shikonin derivatives in aprotic media is presented. Results showed that the first electrochemical reduction signal is a reversible monoelectronic transfer, generating a stable semiquinone intermediate; the corresponding E(I)⁰ values were correlated with calculated values of electroaccepting power (ω(+)) and adiabatic electron affinities (A(Ad)), obtained with BH and HLYP/6-311++G(2d,2p) and considering the solvent effect, revealing the influence of intramolecular hydrogen bonding and the substituting group at position C-2 in the experimental reduction potential. For the second reduction step, esterified compounds isobutyryl and isovalerylshikonin presented a coupled chemical reaction following dianion formation. Analysis of the variation of the dimensionless cathodic peak potential values (ξ(p)) as a function of the scan rate (v) functions and complementary experiments in benzonitrile suggested that this process follows a dissociative electron transfer, in which the rate of heterogeneous electron transfer is slow (~0.2 cm s(-1)), and the rate constant of the chemical process is at least 10(5) larger. PMID:25007856

  3. Primary Kinetic Isotope Effects on Hydride Transfer from Heterocyclic Compounds to NAD+ Analogues

    NASA Astrophysics Data System (ADS)

    Kil, Hyun Joo; Lee, In-Sook Han

    2009-09-01

    Primary kinetic isotope effects (KIEs), kH/kD, have been determined spectrophotometrically for the reactions of NAD+ analogues (acridinium ions, 1a-e+, and quinolinium ion, 2+) with heteroaromatic compounds such as 3-methyl-2-phenylbenzothiazoline, 3H(D), and 1,3-dimethyl-2-phenylbenzimidazoline, 4H(D) in a mixed solvent containing four parts 2-propanol and one part water at 25.0 ± 0.1 °C. The KIEs decrease from 6.24 to 3.93 as the equilibrium constant, K, is increased from about 1 to 1012 by the structural variation in the hydride acceptor. The Marcus theory of atom transfer in a linear, triatomic model of the reaction, with tunneling, can explain the variation of KIE with K. The Marcus theory is based on a model involving no high-energy intermediates, leading to a one-step mechanism. The present system satisfies this condition.

  4. Role of dense shelf water cascading in the transfer of organochlorine compounds to open marine waters.

    PubMed

    Salvadó, Joan A; Grimalt, Joan O; López, Jordi F; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2012-03-01

    Settling particles were collected by an array of sediment trap moorings deployed along the Cap de Creus (CCC) and Lacaze-Duthiers (LDC) submarine canyons and on the adjacent southern open slope (SOS) between October 2005 and October 2006. This array collected particles during common settling processes and particles transferred to deep waters by dense shelf water cascading (DSWC). Polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlorobenzenes (CBzs)--pentachlorobenzene and hexachlorobenzene--and hexachlorocyclohexanes were analyzed in all samples. The results show much higher settling fluxes of these compounds during DSWC than during common sedimentation processes. The area of highest deposition was located between 1000 and 1500 m depth and extended along the canyons and outside them showing their channelling effects but also overflows of dense shelf water from these canyons. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water close to the continental shelf and main displacement through the slope by the bottom. DSWC involved the highest settling fluxes of these compounds ever described in marine continental slopes and pelagic areas, e.g., peak values of PCBs (960 ng · m(-2) · d(-1)), DDTs (2900 ng · m(-2) · d(-1)), CBzs (340 ng · m(-2) · d(-1)) and lindane (180 ng · m(-2) · d(-1)). PMID:22296346

  5. How To Reach Intense Luminescence for Compounds Capable of Excited-State Intramolecular Proton Transfer?

    PubMed

    Skonieczny, Kamil; Yoo, Jaeduk; Larsen, Jillian M; Espinoza, Eli M; Barbasiewicz, Michał; Vullev, Valentine I; Lee, Chang-Hee; Gryko, Daniel T

    2016-05-23

    Photoinduced intramolecular direct arylation allows structurally unique compounds containing phenanthro[9',10':4,5]imidazo[1,2-f]phenanthridine and imidazo[1,2-f]phenanthridine skeletons, which mediate excited-state intramolecular proton transfer (ESIPT), to be efficiently synthesized. The developed polycyclic aromatics demonstrate that the combination of five-membered ring structures with a rigid arrangement between a proton donor and a proton acceptor provides a means for attaining large fluorescence quantum yields, exceeding 0.5, even in protic solvents. Steady-state and time-resolved UV/Vis spectroscopy reveals that, upon photoexcitation, the prepared protic heteroaromatics undergo ESIPT, converting them efficiently into their excited-state keto tautomers, which have lifetimes ranging from about 5 to 10 ns. The rigidity of their structures, which suppresses nonradiative decay pathways, is believed to be the underlying reason for the nanosecond lifetimes of these singlet excited states and the observed high fluorescence quantum yields. Hydrogen bonding with protic solvents does not interfere with the excited-state dynamics and, as a result, there is no difference between the occurrences of ESIPT processes in MeOH versus cyclohexane. Acidic media has a more dramatic effect on suppressing ESIPT by protonating the proton acceptor. As a result, in the presence of an acid, a larger proportion of the fluorescence of ESIPT-capable compounds originates from their enol excited states. PMID:27062363

  6. Lipid transfer protein transports compounds from lipid nanoparticles to plasma lipoproteins.

    PubMed

    Seki, Junzo; Sonoke, Satoru; Saheki, Akira; Koike, Tomohiro; Fukui, Hiroshi; Doi, Masaharu; Mayumi, Tadanori

    2004-05-01

    Nanometer-sized lipid emulsion particles with a diameter of 25-50 nm, called Lipid Nano-Sphere (LNS), are expected as a promising drug carrier to show prolonged plasma half-life of an incorporating drug. In terms of successful drug delivery using LNS, a drug should be incorporated into the lipid particles and remain within the particle, not only in the formulation in vitro but also after administration into the systemic blood circulation. In this study, we showed that phospholipids and some water-insoluble molecules also moved from lipid particles to plasma lipoproteins or albumin in serum and plasma half-lives of these compounds did not reflect that of the drug carriers. It was suggested that phospholipid or its derivative were transferred from LNS particles to plasma lipoproteins by lipid transfer proteins (LTP) in the circulation. These phenomena leaded to unsuccessful delivery of the drug with lipid-particulate drug carriers. On the other hand, lipophilic derivatives with cholesterol pro-moiety tested in this study were not released from LNS particles and showed prolonged plasma half-lives. Lipophilicity is known to be an important parameter for incorporating drugs into lipid particles but substrate specificity for LTP seems to be another key to success promising drug design using lipid emulsion particulate delivery system. PMID:15081154

  7. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain.

    PubMed

    Dahlgren, Elin; Lindqvist, Dennis; Dahlgren, Henrik; Asplund, Lillemor; Lehtilä, Kari

    2016-02-01

    Brominated aromatic compounds (BACs) are widely distributed in the marine environment. Some of these compounds are highly toxic, such as certain hydroxylated polybrominated diphenyl ethers (OH-PBDEs). In addition to anthropogenic emissions through use of BACs as e.g. flame retardants, BACs are natural products formed by marine organisms such as algae, sponges, and cyanobacteria. Little is known of the transfer of BACs from natural producers and further up in the trophic food chain. In this study it was observed that total sum of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and OH-PBDEs increased in concentration from the filamentous red alga Ceramium tenuicorne, via Gammarus sp. and three-spined stickleback (Gasterosteus aculeatus) to perch (Perca fluviatilis). The MeO-PBDEs, which were expected to bioaccumulate, increased in concentration accordingly up to perch, where the levels suddenly dropped dramatically. The opposite pattern was observed for OH-PBDEs, where the concentration exhibited a general trend of decline up the food web, but increased in perch, indicating metabolic demethylation of MeO-PBDEs. Debromination was also indicated to occur when progressing through the food chain resulting in high levels of tetra-brominated MeO-PBDE and OH-PBDE congeners in fish, while some penta- and hexa-brominated congeners were observed to be the dominant products in the alga. As it has been shown that OH-PBDEs are potent disruptors of oxidative phosphorylation and that mixtures of different congener may act synergistically in terms of this toxic mode of action, the high levels of OH-PBDEs detected in perch in this study warrants further investigation into potential effects of these compounds on Baltic wildlife, and monitoring of their levels. PMID:26517387

  8. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    NASA Astrophysics Data System (ADS)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  9. Applications of Groundwater Helium

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  10. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    EPA Science Inventory

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  11. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  12. Heat and mass transfer in the sorption of hydrogen by intermetallic compounds

    SciTech Connect

    Svinarev, S.V.; Trushevskii, S.N.

    1984-06-01

    Intermetallic compounds (IMC), which reversibly absorb hydrogen, are currently the subject of many investigations re their possible use in hydrogen accumulators, thermal machines, thermal pumps and accumulators, sorptional compressors, etc. The dynamics of hydrogen sorption in IMC must be investigated for the analysis and design of such devices. Trends in such studies can be distinguished: the study of the true chemical kinetics of sorption; the investigation of the sorption dynamics in extended IMC layers of dimensions characteristic for practical applications. However, these do not give criteria by which the experimental conditions may be chosen, and often the conditions themselves are not completely described. In connection with this, calculations of the sorption process in which the heat liberation and filtration of hydrogen through the IMC layer are taken into account are of interest both for practical applications and for the elucidation of the conditions in which the process may be regarded as purely kinetic or controlled by the heat and mass transfer in the layer. The authors devote themselves to this aspect in this presentation.

  13. Formation of Nanoscale Composites of Compound Semiconductors Driven by Charge Transfer.

    PubMed

    Gao, Weiwei; Dos Reis, Roberto; Schelhas, Laura T; Pool, Vanessa L; Toney, Michael F; Yu, Kin Man; Walukiewicz, Wladek

    2016-08-10

    Composites are a class of materials that are formed by mixing two or more components. These materials often have new functional properties compared to their constituent materials. Traditionally composites are formed by self-assembly due to structural dissimilarities or by engineering different layers or structures in the material. Here we report the synthesis of a uniform and stoichiometric composite of CdO and SnTe with a novel nanocomposite structure stabilized by the dissimilarity of the electronic band structure of the constituent materials. The composite has interesting electronic properties which range from highly n-type in CdO to semi-insulating in the intermediate composition range to highly p-type in SnTe. This can be explained by the overlap of the conduction and valence band of the constituent compounds. Ultimately, our work identifies a new class of composite semiconductors in which nanoscale self-organization is driven and stabilized by charge transfer between constituent materials. PMID:27459505

  14. Metal electrodeposition and electron transfer studies of uranium compounds in room temperature ionic liquids.

    SciTech Connect

    Stoll, M. E.; Oldham, W. J.; Costa, D. A.

    2004-01-01

    complexes have been studied with various electrochemical methods including cyclic and square-wave voltammetry, chronoamperometry, and bulk coulometry. Results from these studies will be presented to show the general electron transfer behavior of metal complexes in the RTIL's. As an example, Figure 2 shows the difference in chemical stability of an electrogenerated U(V) anion for two uranyl (U(VI)O{sub 2}{sup 2+}) complexes due to the difference in ancillary ligands about the uranyl moiety. Figure 2a shows a cyclic voltammogram (CV) for the U(VI)/U(V) couple of a uranyl complex containing a multi-dentate chelating nitrogen/oxygen ligand (inset in figure). The couple is both chemically and electrochemically reversible. The CV in Figure 2b is that of [UO{sub 2}Cl{sub 4}]{sup 2-} in which the electrogenerated U(V) derivative is unstable yielding a chemically irreversible wave. For the compound giving rise to the CV in Figure 2a its electrochemical behavior in a conventional nonaqueous electrolyte medium is very similar to that obtained in the RTIL. While this result does not illustrate a distinct advantage for employing the RTIL solvent in this particular case, we believe it effectively demonstrates the ability of the RTIL to be utilized as a solvent/electrolyte medium for detailed electrochemical studies without severe limitations.

  15. Superfluid Helium Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, P.

    This paper reports on the development and the thermal tests of three superfluid helium heat pipes. Two of them are designed to provide a large transport capacity (4 mW at 1.7 K). They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The other heat pipe has no copper braid and is designed to get much smaller heat transport capacity (0.5 mW) and to explore lower temperature (0.7 - 1 K). The copper braid and the tube wall is the support of the Rollin superfluid helium film in which the heat is transferred. The low filling pressure makes the technology very simple with the possibility to easily bend the tube. We present the design and discuss the thermal performance of the heat pipes tested in the 0.7 to 2.0 K temperature range. The long heat pipe (1.2 m with copper braid) and the short one (0.25 m with copper braid) have similar thermal performance in the range 0.7 - 2.0 K. At 1.7 K the long heat pipe, 120 g in weight, reaches a heat transfer capacity of 6.2 mW and a thermal conductance of 600 mW/K for 4 mW transferred power. Due to the pressure drop of the vapor flow and Kapitza thermal resistance, the conductance of the third heat pipe dramatically decreases when the temperature decreases. A 3.8 mW/K is obtained at 0.7 K for 0.5 mW transferred power.

  16. Mass transfer and biodegradation of PAH compounds from coal tar. Quarterly technical report, April--June 1993

    SciTech Connect

    Ramaswami, A.; Ghoshal, S.; Luthy, R.G.

    1994-09-01

    This study, examines the role of physico-chemical mass transfer processes on the rate of biotransformation of polycyclic aromatic hydrocarbon (PAH) compounds released from non-aqueous phase liquid (NAPL) coal tar present at residual saturation within a microporous medium. A simplified coupled dissolution-degradation model is developed that describes the concurrent mass transfer and biokinetic processes occurring in the system. Model results indicate that a dimensionless Damkohler number can be utilized to distinguish between systems that are mass transfer limited, and those that are limited by biological phenomena. The Damkohler number is estimated from independent laboratory experiments that measure the rates of aqueous phase dissolution and biodegradation of naphthalene from coal tar. Experimental data for Stroudsburg coal tar imbibed within 236 {mu}m diameter silica particles yield Damkohler numbers smaller than unity, indicating, for the particular system under study, that the overall rate of biotransformation of naphthalene is not limited by the mass transfer of naphthalene from coal tar to the bulk aqueous phase. There is a need for investigation of mass transfer for larger particles and/or other PAH compounds, and study, of microbial rate-limiting phenomena including toxicity, inhibition and competitive substrate utilization.

  17. Sub-100nm pattern transfer on compound semiconductor using sol-gel-based TiO2 resist

    NASA Astrophysics Data System (ADS)

    Liu, Boyang; Ho, Seng-Tiong

    2009-02-01

    The possibility to pattern III-V compound semiconductor with nanometer scale is of great interest to photonic, electronic and optoelectronic systems. Typical method for sub-micrometer compound semiconductor dry etching utilizes PMMA or other resist to transfer patterns to SiO2 as intermediate masks due to resist's low etching selectivity, especially for ultra-small features. This additional pattern transfer will inevitably increase the potential damage caused by plasma dry etching and the complexity of patterning process. Therefore, it is desirable to find an easier and more effective way to pattern compound semiconductor. In this paper, we report a new approach of direct pattern transfer using Ti(OBun)4 solgel derived TiO2 resist as mask. The optimal dose of TiO2 resist for e-beam lithography is ~220mC/cm2. Thermal stability study of spin-coated TiO2 shows a good performance as lithography resist even at 300°C, which will have wider applications than conventional resists. Post-annealings at different temperatures are performed to study temperature-dependence of patterned TiO2 resist as dry-etching mask. The etching selectivity of sample InP compound semiconductor to TiO2 resist is over 7:1. A variety of sub-100 dry etching patterns with good profile qualities have been obtained. The aspect ratio of etching patterns is over 20:1, and the smallest feature is as small as 20nm with over 600nm deep. This sol-gel derived TiO2 sipn-coatable nanolithography resist with high etching selectivity and high aspect ratio etching profile provides a novel and convenient way to directly pattern compound semiconductor material for various challenging nano sacle photonic, electronic and optoelectronic applications.

  18. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution.

    PubMed

    Zhao, Yan; Lu, Wenjing; Wang, Hongtao

    2015-12-30

    Odour pollution caused by municipal solid waste is a public concern. This study quantitatively evaluated the concentration, environmental impacts, and olfaction of volatile trace compounds released from a waste transfer station. Seventy-six compounds were detected, and ethanol presented the highest releasing rate and ratio of 14.76 kg/d and 12.30 g/t of waste, respectively. Life cycle assessment showed that trichlorofluoromethane and dichlorodifluoromethane accounted for more than 99% of impact potentials to global warming and approximately 70% to human toxicity (non-carcinogenic). The major contributor for both photochemical ozone formation and ecotoxicity was ethanol. A detection threshold method was also used to evaluate odour pollution. Five compounds including methane thiol, hydrogen sulphide, ethanol, dimethyl disulphide, and dimethyl sulphide, with dilution multiples above one, were considered the critical compounds. Methane thiol showed the highest contribution to odour pollution of more than 90%, as indicated by its low threshold. Comparison of the contributions of the compounds to different environmental aspects indicated that typical pollutants varied based on specific evaluation targets and therefore should be comprehensively considered. This study provides important information and scientific methodology to elucidate the impacts of odourant compounds to the environment and odour pollution. PMID:26292056

  19. Enhancement of Electron Transfer in Various Photo-Assisted Oxidation Processes for Nitro-Phenolic Compound Conversion

    NASA Astrophysics Data System (ADS)

    Khue, Do Ngoc; Lam, Tran Dai; Minh, Do Binh; Loi, Vu Duc; Nam, Nguyen Hoai; Bach, Vu Quang; Van Anh, Nguyen; Van Hoang, Nguyen; Hu'ng, Dao Duy

    2016-08-01

    The present study focuses on photo-assisted advanced oxidation processes (AOPs) with strongly enhanced electron transfer for degradation of nitro-phenolic compounds in aqueous medium. The effectiveness of these processes was estimated based on the pseudo-first order rate constant k determined from high-performance liquid chromatography. The degradation of four different nitro-phenolic compounds was systematically studied using selected AOPs; these four compounds were nitrophenol, dinitrophenol, trinitrophenol and trinitroresorcin. It was observed that the combination of ultraviolet light with hydrogen peroxide H2O2 enhanced and maintained hydroxyl radicals, and therefore increased the conversion yield of organic pollutants. These AOPs provided efficient and green removal of stable organic toxins found in a wide range of industrial wastewater.

  20. Photoinduced proton transfer and isomerization in a hydrogen-bonded aromatic azo compound: a CASPT2//CASSCF study.

    PubMed

    Cui, Ganglong; Guan, Pei-Jie; Fang, Wei-Hai

    2014-07-01

    Intramolecularly hydrogen-bonded aromatic azo compound 1-cyclopropyldiazo-2-naphthol (CPDNO) exhibits complicated excited-state behaviors, e.g., wavelength-dependent photoinduced proton transfer and photoproducts. Its photochemistry differs from that of common aromatic azo compounds in which cis-trans photoisomerization is dominant. To rationalize the intriguing photochemistry of CPDNO at the atomic level, we have in this work employed the complete active space self-consistent field (CASSCF) and its second-order perturbation (CASPT2) methods to explore the S0, S1, and S2 potential-energy profiles relevant to enol-keto proton transfer and isomerization reactions. It is found that the proton transfer along the bright diabatic (1)ππ* potential-energy profile is almost barrierless, quickly forming the fluorescent (1)ππ* keto minimum. In this process, the dark (1)nπ* state is populated via a (1)ππ*/(1)nπ* crossing point, but the proton transfer on this dark state is suppressed heavily as a result of a large barrier. In addition, two deactivation paths that decay the S1 enol and keto minima to the S0 state, respectively, were uncovered. For the former, it is exoenergetic and thereby thermodynamically favorable; for the latter, it is a little endothermic (ca. 5 kcal/mol). Both are energetically allowable concerning the available total energy. Finally, on the basis of the present results, the experimentally observed wavelength-dependent photoproducts were explained very well. PMID:24940848

  1. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal. PMID:22051345

  2. An Assessment of Helium Evolution from Helium-Saturated Propellant Depressurization in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.; Best, Frederick; Wong, Tony; Kurwitz, Cable; McConnaughey, H. (Technical Monitor)

    2001-01-01

    Helium evolution from the transfer of helium-saturated propellant in space is quantified to assess its impacts from creating two-phase gas/liquid flow from the supply tank, gas injection into the receiving tank, and liquid discharge from the receiving tank. Propellant transfer takes place between two similar tanks whose maximum storage capacity is approximately 2.55 cubic meters each. The maximum on-orbit propellants transfer capability is 9000 lbm (fuel and oxidizer). The transfer line is approximately 1.27 cm in diameter and 6096 cm in length and comprised of the fluid interconnect system (FICS), the orbiter propellant transfer system (OPTS), and the International Space Station (ISS) propulsion module (ISSPM). The propellant transfer rate begins at approximately 11 liter per minute (lpm) and subsequently drops to approximately 0.5 lpm. The tank nominal operating pressure is approximately 1827 kPa (absolute). The line pressure drops for Monomethy1hydrazine (MMH) and Nitrogen tetroxide (NTO) at 11.3 lpm are approximately 202 kPa and 302 kPa, respectively. The pressure-drop results are based on a single-phase flow. The receiving tank is required to vent from approximately 1827 kPa to a lower pressure to affect propellant transfer. These pressure-drop scenarios cause the helium-saturated propellants to release excess helium. For tank ullage venting, the maximum volumes of helium evolved at tank pressure are approximately 0.5 ft3 for MMH and 2 ft3 for NTO. In microgravity environment, due to lack of body force, the helium evolution from a liquid body acts to propel it, which influences its fluid dynamics. For propellant transfer, the volume fractions of helium evolved at line pressure are 0.1% by volume for MMH and 0.6 % by volume for NTO at 11.3 lpm. The void fraction of helium evolved varies as an approximate second order power function of flow rate.

  3. Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation

    NASA Astrophysics Data System (ADS)

    Nelson, Sheldon

    2013-04-01

    Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the

  4. Theoretical analysis of intramolecular double-hydrogen transfer in bridged-ring compounds

    NASA Astrophysics Data System (ADS)

    Smedarchina, Zorka K.; Siebrand, Willem

    1993-08-01

    Model calculations are reported on double-hydrogen and double-deuterium transfer rates in two bridged-ring molecules recently investigated by Mackenzie. [Tetrahedron Letters, 33 (1992) 5629]. The calculations indicate that, contrary to an earlier interpretation, the two atoms are transferred by asynchronous tunnelling, the observed activation energy being representative of the energy of the biradical intermediate rather than the barrier height.

  5. Crosslinguistic Transfer in the Acquisition of Compound Words in Persian-English Bilinguals

    ERIC Educational Resources Information Center

    Foroodi-Nejad, Farzaneh; Paradis, Johanne

    2009-01-01

    Crosslinguistic transfer in bilingual language acquisition has been widely reported in various linguistic domains (e.g., Dopke, 1998; Nicoladis, 1999; Paradis, 2001). In this study we examined structural overlap (Dopke, 2000; Muller and Hulk, 2001) and dominance (Yip and Matthews, 2000) as explanatory factors for crosslinguistic transfer in…

  6. Surface activity of branched alkylamino-compounds and their influence on phase transfer behavior in water solutions of dyes

    NASA Astrophysics Data System (ADS)

    Li, Cuiqin; Guo, Suyue; Lin, Zhiyu; Wang, Jun; Ge, Tengjie

    2016-02-01

    Two branched alkylamino-compounds (AAC, R12-0.5G, and R12-1.0G), were synthesized from dodecylamine, methyl acrylate and ethylenediamine. The surface tension measurements on branched alkylamino- compounds demonstrated that surface activity of R12-1.0G is superior to that of R12-0.5G at 25°C. It has been found that the self-assembly of R12-1.0G and lauric acid formed by electrostatic interaction and the self-assembly of the molecule might transfer water-soluble dyes from water to toluene. These AAC might be applied for treating dyes in wastewater. The mass ratio of lauric to toluene, the concentration of R12-1.0G, and hydrophilic groups of dyes affected the transfer rate of the water-soluble dyes. The transfer rates of the watersoluble dyes by R12-1.0G were higher than that of 1.0G polyacrylamide-acrylamide.

  7. Electron transfer within a reaction path model calibrated by constrained DFT calculations: application to mixed-valence organic compounds.

    PubMed

    Mangaud, E; de la Lande, A; Meier, C; Desouter-Lecomte, M

    2015-12-14

    The quantum dynamics of electron transfer in mixed-valence organic compounds is investigated using a reaction path model calibrated by constrained density functional theory (cDFT). Constrained DFT is used to define diabatic states relevant for describing the electron transfer, to obtain equilibrium structures for each of these states and to estimate the electronic coupling between them. The harmonic analysis at the diabatic minima yields normal modes forming the dissipative bath coupled to the electronic states. In order to decrease the system-bath coupling, an effective one dimensional vibronic Hamiltonian is constructed by partitioning the modes into a linear reaction path which connects both equilibrium positions and a set of secondary vibrational modes, coupled to this reaction coordinate. Using this vibronic model Hamiltonian, dissipative quantum dynamics is carried out using Redfield theory, based on a spectral density which is determined from the cDFT results. In a first benchmark case, the model is applied to a series of mixed-valence organic compounds formed by two 1,4-dimethoxy-3-methylphenylene fragments linked by an increasing number of phenylene bridges. This allows us to examine the coherent electron transfer in extreme situations leading to a ground adiabatic state with or without a barrier and therefore to the trapping of the charge or to an easy delocalization. PMID:26041466

  8. A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine

    PubMed Central

    Tian, H; Ip, L; Luo, H; Chang, D C; Luo, K Q

    2006-01-01

    Background and purpose: We report the development of a very efficient cell-based high throughput screening (HTS) method, which utilizes a novel bio-sensor that selectively detects apoptosis based on the fluorescence resonance energy transfer (FRET) technique. Experimental approach: We generated a stable HeLa cell line expressing a FRET-based bio-sensor protein. When cells undergo apoptosis, they activate a protease called ‘caspase-3'. Activation of this enzyme will cleave our sensor protein and cause its fluorescence emission to shift from a wavelength of 535 nm (green) to 486 nm (blue). A decrease in the green/blue emission ratio thus gives a direct indication of apoptosis. The sensor cells are grown in 96-well plates. After addition of different chemical compounds to each well, a fluorescence profile can be measured at various time-points using a fluorescent plate reader. Compounds that can trigger apoptosis are potential candidates as anti-cancer drugs. Key results: This novel cell-based HTS method is highly effective in identifying anti-cancer compounds. It was very sensitive in detecting apoptosis induced by various known anti-cancer drugs. Further, this system detects apoptosis, but not necrosis, and is thus more useful than the conventional cell viability assays, such as those using MTT. Finally, we used this system to screen compounds, isolated from two plants used in Chinese medicine, and identified several effective compounds for inducing apoptosis. Conclusions and Implications: This FRET-based HTS method is a powerful tool for identifying anti-cancer compounds and can serve as a highly efficient platform for drug discovery. PMID:17179946

  9. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  10. Charge Transfer in FeOCl Intercalation Compounds and its Pressure Dependence: An X-ray Spectroscopic Study

    SciTech Connect

    I Jarrige; Y Cai; S Shieh; H Ishii; N Hiraoka; S Karna; W Li

    2011-12-31

    We present a study of charge transfer in Na-intercalated FeOCl and polyaniline-intercalated FeOCl using high-resolution x-ray absorption spectroscopy and resonant x-ray emission spectroscopy at the Fe-K edge. By comparing the experimental data with ab initio simulations, we are able to unambiguously distinguish the spectral changes which appear due to intercalation into those of electronic origin and those of structural origin. For both systems, we find that about 25% of the Fe sites are reduced to Fe{sup 2+} via charge transfer between FeOCl and the intercalate. This is about twice as large as the Fe{sup 2+} fraction reported in studies using Moessbauer spectroscopy. This discrepancy is ascribed to the fact that the charge transfer occurs on the same time scale as the Moessbauer effect itself. Our result suggests that every intercalated atom or molecule is involved in the charge-transfer process, thus making this process a prerequisite for intercalation. The Fe{sup 2+} fraction is found to increase with pressure for polyaniline-FeOCl, hinting at an enhancement of the conductivity in the FeOCl intercalation compounds under pressure.

  11. Proton-Coupled Electron Transfer Reactions at a Heme-Propionate in an Iron-Protoporphyrin-IX Model Compound

    PubMed Central

    2011-01-01

    A heme model system has been developed in which the heme-propionate is the only proton donating/accepting site, using protoporphyrin IX-monomethyl esters (PPIXMME) and N-methylimidazole (MeIm). Proton-coupled electron transfer (PCET) reactions of these model compounds have been examined in acetonitrile solvent. (PPIXMME)FeIII(MeIm)2-propionate (FeIII~CO2) is readily reduced by the ascorbate derivative 5,6-isopropylidine ascorbate to give (PPIXMME)FeII(MeIm)2-propionic acid (FeII~CO2H). Excess of the hydroxylamine TEMPOH or of hydroquinone similarly reduce FeIII~CO2, and TEMPO and benzoquinone oxidize FeII~CO2H to return to FeIII~CO2. The measured equilibrium constants, and the determined pKa and E1/2 values, indicate that FeII~CO2H has an effective bond dissociation free energy (BDFE) of 67.8 ± 0.6 kcal mol–1. In these PPIX models, electron transfer occurs at the iron center and proton transfer occurs at the remote heme propionate. According to thermochemical and other arguments, the TEMPOH reaction occurs by concerted proton-electron transfer (CPET), and a similar pathway is indicated for the ascorbate derivative. Based on these results, heme propionates should be considered as potential key components of PCET/CPET active sites in heme proteins. PMID:21524059

  12. Photochemistry of compounds adsorbed into cellulose: Effect on environment on photoinduced electron transfer in constringent media

    NASA Astrophysics Data System (ADS)

    Milosavljevic, B. H.; Thomas, J. K.

    1985-02-01

    Photoinduced electron transfer reactions in Ru(bpy) 32+/MV 2+ and Py/Cu(II) donor—acceptor systems have been studied in cellophane polymer film under conditions of various water content. The results obtained are discussed in terms of both the reaction exothermicity and separation between the reactants.

  13. Hydrogen bonding and electron transfer between dimetal paddlewheel compounds containing pendant 2-pyridone functional groups.

    PubMed

    Wilkinson, Luke A; McNeill, Laura; Scattergood, Paul A; Patmore, Nathan J

    2013-08-19

    The compounds M2(TiPB)3(HDON) (TiPB = 2,4,6-triisopropylbenzoic acid; H2DON = 2,7-dihdroxy-1,8-napthyridine; M = Mo (1a) or W (1b)) and Mo2(TiPB)2(O2CCH2Cl)(HDON) (1c) which contain a pendant 2-pyridone functional group have been prepared. These compounds are capable of forming self-complementary hydrogen bonds, resulting in the formation of "dimers of dimers" ([1a-c]2) in CH2Cl2 solutions. Electrochemical studies reveal two successive one-electron redox processes for [1a-c]2 in CH2Cl2 solutions that correspond to successive oxidations of the dimetal core, indicating stabilization of the mixed-valence state. Only small changes in the value of Kc are observed upon changing the ancillary ligand or metal, implying that proton coupled mixed valency is responsible for the stabilization. Dimethylsulfoxide (DMSO) disrupts the hydrogen bonding interactions in these compounds, and a single oxidation process is observed in DMSO which shifts to lower potential as the number of HDON ligands increases. Further substitution of carboxylate ligands with HDON leads to the formation of Mo2(TiPB)2(HDON)2 (2) and Mo2(HDON)4 (3), which adopt trans-1,1 and cis-2,2 regioisomers in the solid-state. (1)H NMR spectroscopy indicates that there are at least two regioisomers present in solution for both compounds. The lowest energy transition in the electronic absorption spectra of these compounds corresponds to a M2-δ → HDON-π* transition. The electrochemical, spectroscopic and structural results were rationalized with the aid of density functional theory (DFT) calculations. PMID:23927688

  14. Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C-H amination using azide compounds as nitrene precursors.

    PubMed

    Uchida, Tatsuya; Katsuki, Tsutomu

    2014-02-01

    Nitrogen functional groups are found in many biologically active compounds and their stereochemistry has a profound effect on biological activity. Nitrene transfer reactions such as aziridination, C-H bond amination, and sulfimidation are useful methods for introducing nitrogen functional groups, and the enantiocontrol of the reactions has been extensively investigated. Although high enantioselectivity has been achieved, most of the reactions use (N-arylsulfonylimino)phenyliodinane, which co-produces iodobenzene, as a nitrene precursor and have a low atom economy. Azide compounds, which give nitrene species by releasing nitrogen, are ideal precursors but rather stable. Their decomposition needs UV irradiation, heating in the presence of a metal complex, or Lewis acid treatment. The examples of previous azide decomposition prompted us to examine Lewis acid and low-valent transition-metal complexes as catalysts for azide decomposition. Thus, we designed new ruthenium complexes that are composed of a low-valent Ru(II) ion, apical CO ligand, and an asymmetry-inducing salen ligand. With these ruthenium complexes and azides, we have achieved highly enantioselective nitrene transfer reactions under mild conditions. Recently, iridium-salen complexes were added to our toolbox. PMID:24449500

  15. Anomalous charge and negative-charge-transfer insulating state in cuprate chain compound KCuO2

    NASA Astrophysics Data System (ADS)

    Choudhury, D.; Rivero, P.; Meyers, D.; Liu, X.; Cao, Y.; Middey, S.; Whitaker, M. J.; Barraza-Lopez, S.; Freeland, J. W.; Greenblatt, M.; Chakhalian, J.

    2015-11-01

    Using a combination of x-ray absorption spectroscopy (XAS) experiments and first-principles calculations, we demonstrate that insulating KCuO2 contains Cu in an unusually high formal 3+ valence state, and the ligand-to-metal (O-to-Cu) charge-transfer energy is intriguingly negative (Δ ˜-1.5 eV) and has a dominant (˜60 % ) ligand-hole character in the ground state akin to the high Tc cuprate Zhang-Rice state. Unlike most other formal Cu3 + compounds, the Cu 2 p XAS spectra of KCuO2 exhibit pronounced 3 d8 (Cu3 +) multiplet structures, which account for ˜40 % of its ground state wave function. Ab initio calculations elucidate the origin of the band gap in KCuO2 as arising primarily from strong intracluster Cu 3 d -O 2 p hybridizations (tpd); the value of the band gap decreases with a reduced value of tpd. Further, unlike conventional negative-charge-transfer insulators, the band gap in KCuO2 persists even for vanishing values of Coulomb repulsion U , underscoring the importance of single-particle band-structure effects connected to the one-dimensional nature of the compound.

  16. Temperature Rises In Pumps For Superfluid Helium

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1990-01-01

    Report discusses increases in temperature of superfluid helium in centrifugal and fountain-effect pumps. Intended for use in transfers of superfluid helium in outer space. Increases in temperature significantly affect losses during transfers and are important in selection of temperatures of supply tanks. Purpose of study, increase in temperature in fountain-effect pump calculated on basis of thermodynamic considerations, starting from assumption of ideal pump. Results of recent tests of ceramic material intended for use in such pumps support this assumption. Overall, centrifugal pumps more effective because it produces smaller rise in temperature.

  17. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Guo, Hongmei; Wu, Jianhua; Du, Wenjuan

    2012-07-01

    To improve heat transfer performance of shell side of double-pipe heat exchanger with helical fins on its inner tube, some vortex generators (VGs) were installed along the centerline of the helical channel. Heat transfer performance and pressure drop characteristic of the enhanced heat exchangers were investigated using air as the working fluid and steam as the heating medium. The helical fins were in the annulus and span its full width at different helical pitch. Wing-type VGs (delta or rectangular wing) and winglet-type VGs (delta or rectangular winglet pair) were used to combine with helical fins. The friction factor and Nusselt number can be well correlated by power-law correlations in the Reynolds number range studied. In order to evaluate the thermal performance of the shell side enhanced over the shell side without enhancement, comparisons were made under three constraints: (1) identical mass flow rate, IMF; (2) identical pressure drop, IPD and (3) identical pumping power, IPP. The results show the shell side enhanced by the compound heat transfer enhancement has better performance than the shell side only enhanced by helical fins at shorter helical pitch under the three constraints.

  18. Jahn-Teller effects in transition-metal compounds with small charge-transfer energy

    NASA Astrophysics Data System (ADS)

    Mizokawa, Takashi

    2013-04-01

    We have studied Jahn-Teller effects in Cs2Au2Br6, ACu3Co4O12(A=Ca or Y), and IrTe2 in which the ligand p-to-transition-metal d charge-transfer energy is small or negative. The Au+/Au3+ charge disproportionation of Cs2Au2Br6 manifests in Au 4f photoemission spectra. In Cs2Au2Br6 with negative Δ and intermediate U, the charge disproportionation can be described using effective d orbitals constructed from the Au 5d and Br 4p orbitals and is stabilized by the Jahn-Teller distortion of the Au3+ site with low-spin d8 configuration. In ACu3Co4O12, Δs for Cu3+ and Co4+ are negative and Us are very large. The Zhang-Rice picture is valid to describe the electronic state, and the valence change from Cu2+/Co4+ to Cu3+/Co3+ can be viewed as the O 2p hole transfer from Co to Cu or d9 + d6L → d9L + d6. In IrTe2, both Δ and U are small and the Ir 5d and Te 5p electrons are itinerant to form the multi-band Fermi surfaces. The ideas of band Jahn-Teller transition and Peierls transition are useful to describe the structural instabilities.

  19. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo.

    PubMed

    Jussila, Minna M; Zhao, Ji; Suominen, Leena; Lindström, Kristina

    2007-03-01

    Molecular profiling methods for horizontal transfer of aromatics-degrading plasmids were developed and applied during rhizoremediation in vivo and conjugations in vitro. pWW0 was conjugated from Pseudomonas to Rhizobium. The xylE gene was detected both in Rhizobium galegae bv. officinalis and bv. orientalis, but it was neither stably maintained in orientalis nor functional in officinalis. TOL plasmids were a major group of catabolic plasmids among the bacterial strains isolated from the oil-contaminated rhizosphere of Galega orientalis. A new finding was that some Pseudomonas migulae and Pseudomonas oryzihabitans strains harbored a TOL plasmid with both pWW0- and pDK1-type xylE gene. P. oryzihabitans 29 had received the archetypal TOL plasmid pWW0 from Pseudomonas putida PaW85. As an application for environmental biotechnology, the biodegradation potential of oil-polluted soil and the success of bioremediation could be estimated by monitoring changes not only in the type and amount but also in transfer of degradation plasmids. PMID:17000041

  20. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes.

    PubMed

    Kasuno, Megumi; Kimura, Hiroki; Yasutomo, Hisataka; Torimura, Masaki; Murakami, Daisuke; Tsukatani, Yusuke; Hanada, Satoshi; Matsushita, Takayuki; Tao, Hiroaki

    2016-01-01

    Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I₀), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm(-3)). The I₀ decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I₀ or Ic. The utility of this electrode system for the detection of harmful compounds is discussed. PMID:27023553

  1. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes

    PubMed Central

    Kasuno, Megumi; Kimura, Hiroki; Yasutomo, Hisataka; Torimura, Masaki; Murakami, Daisuke; Tsukatani, Yusuke; Hanada, Satoshi; Matsushita, Takayuki; Tao, Hiroaki

    2016-01-01

    Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I0), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm−3). The I0 decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I0 or Ic. The utility of this electrode system for the detection of harmful compounds is discussed. PMID:27023553

  2. Emissions of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Holzinger, R.; Sandoval-Soto, L.; Rottenberger, S.; Crutzen, P. J.; Kesselmeier, J.

    2000-08-01

    Volatile organic compound (VOC) emissions of the Mediterranean holm oak (Quercus ilex L.) were investigated using a fast Proton Transfer Reaction Mass Spectrometry (PTR-MS) instrument for analysis. This technique is able to measure compounds with a proton affinity higher than water with a high time resolution of 1 s per compound. Hence nearly all VOCs can be detected on-line. We could clearly identify the emission of methanol, acetaldehyde, ethanol, acetone, acetic acid, isoprene, monoterpenes, toluene, and C10-benzenes. Some other species could be tentatively denominated. Among these are the masses 67 (cyclo pentadiene), mass 71 (tentatively attributed to methyl vinyl ketone (MVK) and metacrolein (MACR)), 73 (attributed to methyl ethyl ketone (MEK)), 85 (C6H12 or hexanol), and 95 (vinylfuran or phenol). The emissions of all these compounds (identified as well as nonidentified) together represent 99% of all masses detected and account for a carbon loss of 0.7-2.9% of the net photosynthesis. Of special interest was a change in the emission behavior under changing environmental conditions such as flooding or fast light/dark changes. Flooding of the root system caused an increase of several VOCs between 60 and 2000%, dominated by the emission of ethanol and acetaldehyde, which can be explained by the well described production of ethanol under anoxic conditions of the root system and the recently described subsequent transport and partial oxidation to acetaldehyde within the green leaves. However, ethanol emissions were dominant. Additionally, bursts of acetaldehyde with lower ethanol emission were also found under fast light/dark changes. These bursts are not understood.

  3. On-Line Analysis of Organic Compounds in Diesel Exhaust Using Proton-Transfer-Reaction Mass Spectrometry

    SciTech Connect

    White, M.V.; Jobson, B.T.

    2004-01-01

    In this study, diesel exhaust (DE) was measured in real time using a proton-transfer-reaction mass spectrometer (PTR-MS) to determine the effect of an after-treatment catalyst on gas phase volatile organic compounds (VOCs). DE after-treatment catalysts are being designed to reduce the pollutants in exhaust, which contains both particulate matter and gas phase constituents. The PTR-MS can make in-situ real time measurements of hydrocarbons in the air, from concentrations in the parts per million by volume (ppmV) down to the low part per trillion by volume (pptV) range. Spectrum scans were performed at varied engine loads from mass range m/z (mass to charge ratio) = 20 to 200. This showed the relative abundance of gas phase VOCs produced as the engine ran between idle mode and 80% of its maximum load. The mass spectrum was complex and appeared to be composed of aromatic species ionized by PTR (M+1) through the anticipated proton transfer reactions as well as unexpected alkane fragments, evidenced by a strong 14n+1 ion pattern showing intense peaks at m/z = 43, 57, and 71. A number of protonated M+1 masses could be identified. These compounds displayed M+2 peaks consistent with known 13C isotopic abundance. As the engine load increased, the concentrations of over 90% of the species decreased. An attached smoke meter showed that soot concentrations increased over the same conditions. In addition, the decrease in the concentration of compounds with a larger molecular weight (m/z>100) was greater than the rate that the smaller compounds experienced. This appears to be due to the affinity of VOCs, larger masses in particular, to adhere to soot particles. Further PTR-MS measurements of VOCs on soot confirmed this by producing a mass spectrum comprised of masses predominantly over 100 amu. On-line analysis of diesel exhaust by PTR-MS is a practical tool for quantifying selected organic species in diesel exhaust and should prove useful for developing better diesel exhaust

  4. Preparation of Core-Shell Hybrid Compounds by Atomic Transfer Radical Polymerization and Its Application to Plastic Lens of Headlamp.

    PubMed

    Noh, Seung-Man; Ahn, Jae-Beum; Choi, Ki-Hyun; Park, Seung-Kyu

    2015-09-01

    Nano silica ball (NSB) core polymethylmethacrylate (PMMA) shell hybrid nanocomposites were synthesized by atomic transfer radical polymerization (ATRP) method for the application to the clearcoat to enhance scratch resistance. The characteristics of the synthesized inorganic/organic hybrid material were examined by scanning electron microscope (SEM), particle size analysis, Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis-differential scanning calorimetry (TGA-DSC). The scratch resistance and light transmittance of the clearcoat were measured by a nano-scratch tester and UV-visible spectroscopy, respectively. The average particle size of the NSB-PMMA hybrid compounds was 30 nm with narrow size distribution. Even 0.1 wt% loading of NSB-PMMA in the clearcoat dramatically enhanced the scratch resistance, about 40% increase in the force of the first fracture, while slightly reduced the light transmittance, about 5% only. PMID:26716303

  5. Equivalent inhibition of half-site and full-site retroviral strand transfer reactions by structurally diverse compounds.

    PubMed Central

    Hazuda, D; Felock, P; Hastings, J; Pramanik, B; Wolfe, A; Goodarzi, G; Vora, A; Brackmann, K; Grandgenett, D

    1997-01-01

    In vitro assay systems which use recombinant retroviral integrase (IN) and short DNA oligonucleotides fail to recapitulate the full-site integration reaction as it is known to occur in vivo. The relevance of using such circumscribed in vitro assays to define inhibitors of retroviral integration has not been formerly demonstrated. Therefore, we analyzed a series of structurally diverse inhibitors with respect to inhibition of both half-site and full-site strand transfer reactions with either recombinant or virion-produced IN. Half-site and full-site reactions catalyzed by avian myeloblastosis virus and human immunodeficiency virus type 1 (HIV-1) IN from virions are shown to be equivalently sensitive to inhibition by compounds which inhibit half-site reactions catalyzed by the recombinant HIV-1 IN. These studies therefore support the utility of using in vitro assays employing either recombinant or virion-derived IN to identify inhibitors of integration. PMID:8985421

  6. D-π-A Compounds with Tunable Intramolecular Charge Transfer Achieved by Incorporation of Butenolide Nitriles as Acceptor Moieties.

    PubMed

    Moreno-Yruela, Carlos; Garín, Javier; Orduna, Jesús; Franco, Santiago; Quintero, Estefanía; López Navarrete, Juan T; Diosdado, Beatriz E; Villacampa, Belén; Casado, Juan; Andreu, Raquel

    2015-12-18

    Chromophores where a polyenic spacer separates a 4H-pyranylidene or benzothiazolylidene donor and three different butenolide nitriles have been synthesized and characterized. The role of 2(5H)-furanones as acceptor units on the polarization and the second-order nonlinear (NLO) properties has been studied. Thus, their incorporation gives rise to moderately polarized structures with NLO responses that compare favorably to those of related compounds featuring more efficient electron-withdrawing moieties. Derivatives of the proaromatic butenolide PhFu show the best nonlinearities. Benzothiazolylidene-containing chromophores present less alternated structures than their pyranylidene analogues, and, unlike most merocyanines, the degree of charge transfer does not decrease on lengthening the π-bridge. PMID:26588012

  7. An optimized rotating helium-recondensing system using Roebuck refrigerators

    NASA Astrophysics Data System (ADS)

    Jeong, Sangkw. O. O. N.; Lee, C.

    1999-09-01

    This paper describes an optimized design of the helium-recondensing system utilizing cascade Roebuck refrigerators. A superconducting generator or motor has a superconducting field winding in its rotor that should be continuously cooled by cryogen. Liquid helium transfer from the stationary system to the rotor of the LTS (Low Temperature Superconductor) superconducting generator has been problematic, cumbersome, and inefficient. The novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and recondensed to 4.2 K reservoir through the expansion process. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the optimum key design parameters. The loss mechanisms are also described to point out the sources that might reduce the system performance.

  8. Highly substituted azulene dyes as multifunctional NLO and electron-transfer compounds.

    PubMed

    Lambert, Christoph; Nöll, Gilbert; Zabel, Manfred; Hampel, Frank; Schmälzlin, Elmar; Bräuchle, Christoph; Meerholz, Klaus

    2003-09-01

    Two highly substituted azulene derivatives were synthesised by Pd-mediated dimerisation from the corresponding tolan species. One azulene derivative (2) has donor functionalities (dianisylaminophenyl and dianisylamino) in the 1-, 2-, 3- and 6-positions, while the other (1) has donors (dianisylaminophenyl) in the 2- and 6-positions and acceptors (nitrophenyl) in the 1- and 3-positions. Each azulene derivative shows strong bond length alternation in the solid state, determined by X-ray crystal analysis, and an intense CT band around 450-500 nm in its UV/Vis spectrum. The first-order hyperpolarisability of 1 and of 2 was measured by hyper-Rayleigh scattering and is about that of disperse red DR1. Both azulene derivatives show multiple oxidation processes. The intramolecular adiabatic ET behaviour of the mixed valence radical cations of 1 and of 2 was investigated by UV/Vis/NIR spectroelectrochemistry. The intervalence-CT band of 1(+) could be analysed by the Generalised Mulliken-Hush theory, which yields an electronic coupling V=1140 cm(-1) for the optically induced adiabatic hole transfer. PMID:12953208

  9. Experimental investigation of the steam condensation with air and helium

    NASA Astrophysics Data System (ADS)

    Su, Jiqiang; Sun, Zhongning; Fan, Guangming; Ding, Ming

    2013-07-01

    Condensation of steam coming out from the coolant pipe during a loss of coolant accident (LOCA) plays a key role in removing heat from the primary containment of the nuclear reactor. The presence of air and helium reduces the overall heat transfer coefficient substantially. Condensation experiments in the presence of non-condensable gases (e.g. air, helium) were conducted to evaluate the heat removal capacity of a vertical mounted smooth tube. The influences of various parameters, especially the wall subcooling, on the steam condensation heat transfer with non-condensable gases have been obtained for the wall subcooling ranging from 20 to 70°C, total pressure ranging from 2.0×105 Pa to 7.0×105 Pa and air mass fraction ranging from 0.10 to 0.95. The empirical correlations for the heat transfer coefficient, consisting of the mass fraction of the non-condensable gases (air/air helium), total pressure, wall subcooling, and helium mole fraction in non-condensable gases, have been developed based on the experimental results. The relative error of proposed correlations with experimental data is less than 10%. The helium stratification on the condensation has been researched from the distribution of helium fraction and the bulk temperature at different axial positions. It shows that the helium stratification can be ignored when the helium mole fraction in non-condensable gases is less than 35%.

  10. Off-flavours in wines through indirect transfer of volatile organic compounds (VOCs) from coatings.

    PubMed

    Fumi, M D; Lambri, M; De Faveri, D M

    2009-05-01

    This paper assesses the impact of volatile organic compounds (VOCs) from the drying of coatings on the sensory characters of corks and wines. According to Italian National Standard Method 11021:2002, a small-scale chamber was used (1) to expose wines to the drying of coatings with both low and high VOCs, and (2) to expose corks to the same coatings. After exposure to the coatings, the corks were then placed in direct contact with wine. Different styles of white, red and rose wines were tested. In both directly exposed wines and in wines after contact with the exposed cork, the taste and smell off-flavour perception and intensity were assessed by a panel of eight experienced wine tasters using a five-point numerical scale according to International Organization for Standardization (ISO) standard methods. The results showed that the sensory characters of wines, especially taste, were influenced by the VOC content of the coatings. The taste off-flavour perception was found to be higher than the smell in wines exposed to coatings with either high or low VOCs contents. Analysis of variance (ANOVA) and Duncan analysis prove that: (1) panellist's answers were significantly different, (2) it was difficult to differentiate the off-flavour perception on the high-level scale, and (3) the panellist off-flavour perceptions versus wine style discriminated the wines into two groups (red and white/rose). For all the wine styles, Pearson's test showed no significant correlation between off-flavour perception levels and the main chemical characters of the wines. For the wines that were in direct contact with the exposed corks, the panellists detect the off-flavours according to the levels of VOCs in the coating and wine styles and they assessed the highest levels of alteration were to the taste. PMID:19680948

  11. Slow Hydrogen Transfer Reactions of Oxo— and Hydroxo— Vanadium Compounds: the Importance of Intrinsic Barriers

    PubMed Central

    Waidmann, Christopher R.; Zhou, Xin; Tsai, Erin A.; Kaminsky, Werner; Hrovat, David A.; Borden, Weston Thatcher; Mayer, James M.

    2009-01-01

    barrier heights and show that transfer of a hydrogen atom involves more structural reorganization for vanadium than the Ru analogs. The vanadium complexes have larger changes in the metal–oxo and metal–hydroxo bond lengths, which is traced to the difference in d-orbital occupancy in the two systems. This study thus highlights the importance of intrinsic barriers in the transfer of a hydrogen atom, in addition to the thermochemical (bond strength) factors that have been previously emphasized. PMID:19292442

  12. Anthropometric, socioeconomic, and maternal health determinants of placental transfer of organochlorine compounds

    PubMed Central

    Patayová, Henrieta; Wimmerová, Soňa; Lancz, Kinga; Palkovičová, Ľubica; Drobná, Beata; Fabišková, Anna; Kováč, Ján; Hertz-Picciotto, Irva; Jusko, Todd A.

    2014-01-01

    The aim of this study was to relate placental transfer, quantified by the cord to maternal serum concentration ratio (C/M), of five organochlorine pesticides (OCP) hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), γ-hexachlorocyclohexane (γ-HCH) , p,p'-DDT, p,p'-DDE and 15 polychlorinated biphenyl (PCB) congeners (28, 52, 101, 105, 114, 118, 123+149, 138+163, 153, 156+171, 157, 167, 170, 180, and 189) to anthropometric, socioeconomic, and maternal health characteristics. We included into the study 1,134 births during the period 2002–2004 from two districts in eastern Slovakia with high organochlorine concentrations relative to other areas of the world. Only concentrations >LOD were taken into account. Variables as age, weight and height of mothers, parity, ethnicity, alcohol consumption, illness during pregnancy, smoking during pregnancy, hypertension, respiratory diseases, rheumatoid arthritis and diabetes mellitus, and birth weight were related to C/M. Results of regression analyses showed that C/M was predicted by several factors studied. Positive associations were observed for gestational alcohol consumption, fewer illnesses during pregnancy, maternal age, and maternal weight. Caucasians had a greater C/M compared to Romani for wet weight data of congeners 170 and 180 and in contrast C/M for HCB was greater in Romani. Our results show that drinking mothers compared to abstaining expose their fetuses not only to alcohol but to an increased level of several PCB congeners. A straightforward explanation of associations between C/M shifts and factors studied is very difficult, however, with regard to the high lipophilicity of OCPs and PCBs, changes in their kinetics probably reflect lipid kinetics. PMID:23677752

  13. Blow-down analysis of helium from a cryogenic dewar

    NASA Astrophysics Data System (ADS)

    Khan, H. J.; Zhang, Q. Q.; Rhee, M.; Figueroa, O.

    NASA is currently developing Space Shuttle-based refilling of helium using superfluid helium on-orbit transfer (SHOOT). All the critical components of SHOOT need to be developed through ground-based tests. The helium dewar is one of these components. The Dewar consists of a vacuum vessel enclosing a superinsulated tank. The space between the vacuum vessel and the liquid tank is considered a common vacuum space. In the event that the vacuum is lost, the heat transfers to the dewar and the pressure inside the dewar increases rapidly, resulting in rupture of the dewar due to excessive pressure. Therefore, an emergency vent line is required for release of helium to prevent the dewar from rupturing. The study describes a numerical model for blow-down analysis in an emergency. This qualifies the design of the emergency vent line to be adequate for the assumed heat loads to the helium dewar.

  14. Participation of Electron Transfer Process in Rate-Limiting Step of Aromatic Hydroxylation Reactions by Compound I Models of Heme Enzymes.

    PubMed

    Asaka, Maaya; Fujii, Hiroshi

    2016-07-01

    Hydroxylation reactions of aromatic rings are key reactions in various biological and chemical processes. In spite of their significance, no consensus mechanism has been established. Here we performed Marcus plot analysis for aromatic hydroxylation reactions with oxoiron(IV) porphyrin π-cation radical complexes (compound I). Although many recent studies support the mechanism involving direct electrophilic attack of compound I, the slopes of the Marcus plots indicate a significant contribution of an electron transfer process in the rate-limiting step, leading us to propose a new reaction mechanism in which the electron transfer process between an aromatic compound and compound I is in equilibrium in a solvent cage and coupled with the subsequent bond formation process. PMID:27327623

  15. Electron Diffraction of Superfluid Helium Droplets

    PubMed Central

    2014-01-01

    We present experimental results of electron diffraction of superfluid helium droplets and droplets doped with phthalocyanine gallium chloride and discuss the possibility of performing the same experiment with a laser aligned sample. The diffraction profile of pure droplets demonstrates dependence on the nozzle temperature, that is, on the average size of the droplets. Larger clusters demonstrate faster decay with increasing momentum transfer, whereas smaller clusters converge to isolated gas phase molecules at source temperatures of 18 K and higher. Electron diffraction of doped droplets shows similar modified molecular scattering intensity as that of the corresponding gas phase molecules. On the basis of fittings of the scattering profile, the number of remaining helium atoms of the doped droplets is estimated to be on the order of hundreds. This result offers guidance in assessing the possibility of electron diffraction from laser aligned molecules doped in superfluid helium droplets. PMID:24920997

  16. Genetic Diversity and Horizontal Transfer of Genes Involved in Oxidation of Reduced Phosphorus Compounds by Alcaligenes faecalis WM2072

    PubMed Central

    Wilson, Marlena M.; Metcalf, William W.

    2005-01-01

    Enrichment was performed to isolate organisms that could utilize reduced phosphorus compounds as their sole phosphorus sources. One isolate that grew well with either hypophosphite or phosphite was identified by 16S rRNA gene analysis as a strain of Alcaligenes faecalis. The genes required for oxidation of hypophosphite and phosphite by this organism were identified by using transposon mutagenesis and include homologs of the ptxD and htxA genes of Pseudomonas stutzeri WM88, which encode an NAD-dependent phosphite dehydrogenase (PtxD) and 2-oxoglutarate-dependent hypophosphite dioxygenase (HtxA). This organism also has the htxB, htxC, and htxD genes that comprise an ABC-type transporter, presumably for hypophosphite and phosphite transport. The role of these genes in reduced phosphorus metabolism was confirmed by analyzing the growth of mutants in which these genes were deleted. Sequencing data showed that htxA, htxB, htxC, and htxD are virtually identical to their homologs in P. stutzeri at the DNA level, indicating that horizontal gene transfer occurred. However, A. faecalis ptxD is very different from its P. stutzeri homolog and represents a new ptxD lineage. Therefore, this gene has ancient evolutionary roots in bacteria. These data suggest that there is strong evolutionary selection for the ability of microorganisms to oxidize hypophosphite and phosphite. PMID:15640200

  17. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    SciTech Connect

    Kelleher, Aidan

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  18. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  19. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    SciTech Connect

    Pentlehner, D.; Slenczka, A.

    2015-01-07

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.

  20. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry

    PubMed Central

    2013-01-01

    Background Exhaled breath volatile organic compound (VOC) analysis for airway disease monitoring is promising. However, contrary to nitric oxide the method for exhaled breath collection has not yet been standardized and the effects of expiratory flow and breath-hold have not been sufficiently studied. These manoeuvres may also reveal the origin of exhaled compounds. Methods 15 healthy volunteers (34 ± 7 years) participated in the study. Subjects inhaled through their nose and exhaled immediately at two different flows (5 L/min and 10 L/min) into methylated polyethylene bags. In addition, the effect of a 20 s breath-hold following inhalation to total lung capacity was studied. The samples were analyzed for ethanol and acetone levels immediately using proton-transfer-reaction mass-spectrometer (PTR-MS, Logan Research, UK). Results Ethanol levels were negatively affected by expiratory flow rate (232.70 ± 33.50 ppb vs. 202.30 ± 27.28 ppb at 5 L/min and 10 L/min, respectively, p < 0.05), but remained unchanged following the breath hold (242.50 ± 34.53 vs. 237.90 ± 35.86 ppb, without and with breath hold, respectively, p = 0.11). On the contrary, acetone levels were increased following breath hold (1.50 ± 0.18 ppm) compared to the baseline levels (1.38 ± 0.15 ppm), but were not affected by expiratory flow (1.40 ± 0.14 ppm vs. 1.49 ± 0.14 ppm, 5 L/min vs. 10 L/min, respectively, p = 0.14). The diet had no significant effects on the gasses levels which showed good inter and intra session reproducibility. Conclusions Exhalation parameters such as expiratory flow and breath-hold may affect VOC levels significantly; therefore standardisation of exhaled VOC measurements is mandatory. Our preliminary results suggest a different origin in the respiratory tract for these two gasses. PMID:23837867

  1. Experimental investigation of the effects of compound angle holes on film cooling effectiveness and heat transfer performance using a transient liquid crystal thermometry technique

    NASA Astrophysics Data System (ADS)

    Seager, David J.; Liburdy, James A.

    1997-11-01

    To further understand the effect of both compound angle holes and hole shaping on film cooling, detailed heat transfer measurements were obtained using hue based thermochromic liquid crystal method. The data were analyzed to measure both the full surface adiabatic effectiveness and heat transfer coefficient. The compound angles that were evaluated consist of holes that were aligned 0 degrees, 45 degrees, 60 degrees and 90 degrees to the main cross flow direction. Hole shaping variations from the traditional cylindrical shaped hole include forward diffused and laterally diffused hole geometries. Geometric parameters that were selected were the length to diameter ratio of 3.0, and the inclination angle 35 degrees. A density ratio of 1.55 was obtained for all teste. For each set of conditions the blowing ratio was varied to be 0.88, 1.25, and 1.88. Adiabatic effectiveness was obtained using a steady state test, while an active heating surface was used to determine the heat transfer coefficient using a transient method. The experimental method provides a unique method of analyzing a three-temperature heat transfer problem by providing detailed surface transport properties. Based on these results for the different hole geometries at each blowing ratio conclusions are drawn relative to the effects of compound angle holes on the overall film cooling performance.

  2. X-ray crystal structure and solution studies of hexacoordinated mercury (II) complex of a pyridine containing proton transfer compound

    NASA Astrophysics Data System (ADS)

    Moghimi, A.; Shokrollahi, A.; Shamsipur, M.; Aghabozorg, H.; Ranjbar, M.

    2004-09-01

    Solution studies and X-ray crystallography were used to investigate the complexation of Hg(II) by the proton transfer compound (pyda·H 2) (pydc) (pyda=2,6-pyridinediamine and pydc·H 2=2,6-pyridinedicarboxilic acid), LH 2. The protonation constants of the building blocks of the LH 2 adduct, the equilibrium constants for the reaction of pydc·H 2 with pyda and the stoichiometry and stability of the Hg(II) complex with LH 2 on aqueous solution were accomplished by potentiometric pH titration. The solution studies strongly support a self-association between (pydc) 2- and (pyda·H 2) 2+. The most aboundant ternary complex of mercury(II) formed in aqueous solution is Hg(pydc) 2(pyda) 2 which existed at pH>9.0 by an extent of 86.5%, while a (pyda·H) 2[Hg(pydc)] 2 complex species exists in about 35% in a pH range of 3.5-4.5. The complexation reactions of LH 2 with HgCl 2 lead to the formation of a crystalline anionic {(pyda·H) 2[Hg(pydc)Cl] 2·2H 2O} n complex. The Hg(II) complex shows 1H and 13C NMR resonances of cationic counter ion (pyda·H) + and signals corresponding to the coordinated ligands (pydc) 2-. This complex crystallizes in the triclinic space group P 1¯ with a=7.078(2) Å, b=10.152(3) Å, c=10.784(3) Å, α=96.107(6)°, β=99.163(7)°, γ=101.792(6)° and Z=1. Coordination number around each Hg(II) atom is six, with distorted octahedral geometry. The binuclear units of the polymeric complex are linked into infinite network via additional Hg-O bonds.

  3. Synthesis, Electrochemistry, Geometric and Electronic Structure of Oxo-Molybdenum Compounds Involved in an Oxygen Atom Transferring System

    PubMed Central

    Sengar, Raghvendra S.; Nemykin, Victor N.; Basu, Partha

    2008-01-01

    The oxygen atom transfer reactivity of Tp*MoO2(SPh) (1) (where Tp* = hydrotris-(3,5-dimethylpyrazol-1-yl)borate) with trimethyl phosphine (PMe3) has been investigated. The reaction proceed through a diamagnetic phosphoryl intermediate complex, Tp*MoO(SPh)(OPMe3) (2), which has been isolated and characterized by IR, NMR, UV-visible spectroscopy, and mass spectrometry. The molecular structure of 2 has been determined by X-ray crystallography. The complex crystallizes in monoclinic (P21/n) space group, a = 19.81 (1) Å, b = 11.1 (4) Å, c = 18.416 (5) Å, β= 121.2 (3)°, V = 3463.8(25) Å3 with Z = 4. In acetonitrile, complex 2 exchanges its phosphoryl ligand with a solvent molecule resulting in Tp*MoO(SPh)(MeCN) (3), which has been isolated and also characterized spectroscopically and by X-ray crystallography. Compound 3 crystallizes in triclinic (P-1) space group, a = 10.159 (6) Å, b = 18.563 (5) Å, c = 7.986 (3) Å, α = 96.22(3)°, β = 121.2 (3)°, γ = 84.64(3)°, V = 1452.4(11) Å3 with Z = 2. The electronic structures of the complexes have been investigated by density functional theory and the redox chemistry has been investigated by cyclic and differential pulse voltammetry. In acetonitrile, complex 2 spontaneously transforms to complex, 3 at a rate of 5.6 × 10−4 s−1. PMID:18187198

  4. The role of free volume in the twisted intramolecular charge transfer (TICT) emission of dimethylaminobenzonitrile and related compounds in rigid polymer matrices

    NASA Astrophysics Data System (ADS)

    Al-Hassan, Khader A.; Azumi, Tohru

    1988-04-01

    The amount of free volume present in a polymer matrix represents a driving force toward twisted intramolecular charge transfer (TICT) emission of p-dimethylaminobenzonitrile (DMABN) and related compounds. The intensity of the TICT band for these compounds in PVC (poly(vinyl chloride), PVA (poly(vinyl alcohol)), PHEMA (poly(hydroxyethyl methacrylate)) and PMMA (poly(methyl methacrylate)) was found to increase in this order, which is consistent with the increased free volume present in the same sequence. This rules out specific solute-solvent interactions as being responsible for the TICT emission in PVA polymer matrices.

  5. Feasibility of lunar Helium-3 mining

    NASA Astrophysics Data System (ADS)

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  6. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  7. Acquisition system testing with superfluid helium. [cryopumping for space

    NASA Technical Reports Server (NTRS)

    Anderson, John E.; Fester, Dale A.; Dipirro, Michael J.

    1988-01-01

    Minus one-g outflow tests were conducted with superfluid helium in conjunction with a thermomechanical pump setup in order to study the use of capillary acquisition systems for NASA's Superfluid Helium On-Orbit Transfer (SHOOT) flight experiment. Results show that both fine mesh screen and porous sponge systems are capable of supplying superfluid helium to the thermomechanical pump inlet against a one-g head up to 4 cm, fulfilling the SHOOT requirements. Sponge results were found to be reproducible, while the screen results were not.

  8. Interactions of satellite-speed helium atoms with satellite surfaces. 2: Energy distributions of reflected helium atoms

    NASA Technical Reports Server (NTRS)

    Liu, S. M.; Knuth, E. L.

    1976-01-01

    Energy transfer in collisions of satellite-speed (7,000 m/sec) helium atoms with a cleaned 6061-T6 satellite-type aluminum surface was investigated using the molecular-beam technique. The amount of energy transferred was determined from the measured energy of the molecular-beam and the measured spatial and energy distributions of the reflected atoms. Spatial distributions of helium atoms scattered from a 6061-T6 aluminum surface were measured. The scattering pattern exhibits a prominent backscattering, probably due to the gross surface roughness and/or the relative lattice softness of the aluminum surface. Energy distributions of reflected helium atoms from the same surface were measured for six different incidence angles. For each incidence angle, distributions were measured at approximately sixty scattering positions. At a given scattering position, the energy spectra of the reflected helium atoms and the background gas were obtained using the retarding-field energy analyzer.

  9. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  10. Spectral characteristics and energy transfer from Ce3+ to Tb3+ in compounds Lu1 - x - y Ce x Tb y BO3

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kedrov, V. V.; Kiselev, A. P.; Fursova, T. N.; Smyt'ko, I. M.

    2016-03-01

    The structure, IR absorption spectra, morphology, and spectral characteristics of compounds Lu1 - x - y Ce x Tb y BO3 have been investigated. It has been shown that the Tb3+ luminescence excitation spectrum of the Lu1 - x - y Ce x Tb y BO3 compounds is dominated by a broad band coinciding with the excitation band of Ce3+ ions, which clearly indicates energy transfer from the Ce3+ ions to the Tb3+ ions. The spectral position of this band depends on the structural state of the sample: in the structures of calcite and vaterite, the band has maxima at ~339 and ~367 nm, respectively. By varying the ratio between the calcite and vaterite phases in the sample, it is possible to purposefully change the Tb3+ luminescence excitation spectrum, which is important for the optimization of the spectral characteristics of Lu1 - x - y Ce x Tb y BO3 when it is used in light-emitting diode sources. An estimate has been obtained for the maximum distance between Ce3+ and Tb3+ ions, which corresponds to electronic excitation energy transfer. It has been shown that the high intensity of Tb3+ luminescence in these compounds is due to the high efficiency of electronic excitation energy transfer from the Ce3+ ions to the Tb3+ ions as a result of the dipole-dipole interaction.

  11. Monitoring of volatile compound emissions during dry anaerobic digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry.

    PubMed

    Papurello, Davide; Soukoulis, Christos; Schuhfried, Erna; Cappellin, Luca; Gasperi, Flavia; Silvestri, Silvia; Santarelli, Massimo; Biasioli, Franco

    2012-12-01

    Volatile Organic Compounds (VOCs) formed during anaerobic digestion of aerobically pre-treated Organic Fraction of Municipal Solid Waste (OFMSW), have been monitored over a 30 day period by a direct injection mass spectrometric technique: Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Most of the tentatively identified compounds exhibited a double-peaked emission pattern which is probably the combined result from the volatilization or oxidation of the biomass-inherited organic compounds and the microbial degradation of organic substrates. Of the sulfur compounds, hydrogen sulfide had the highest accumulative production. Alkylthiols were the predominant sulfur organic compounds, reaching their maximum levels during the last stage of the process. H(2)S formation seems to be influenced by the metabolic reactions that the sulfur organic compounds undergo, such as a methanogenesis induced mechanism i.e. an amino acid degradation/sulfate reduction. Comparison of different batches indicates that PTR-ToF-MS is a suitable tool providing information for rapid in situ bioprocess monitoring. PMID:23079412

  12. Is solid helium a supersolid?

    SciTech Connect

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  13. The role of charge-transfer integral in determining and engineering the carrier mobilities of 9,10-di(2-naphthyl)anthracene compounds

    NASA Astrophysics Data System (ADS)

    Tse, S. C.; So, S. K.; Yeung, M. Y.; Lo, C. F.; Wen, S. W.; Chen, C. H.

    2006-05-01

    The charge transporting properties of t-butylated 9,10-di(2-naphthyl)anthracene (ADN) compounds have been investigated experimentally and computationally in relation to their molecular structures. The ADN compounds are found to be ambipolar with both electron and hole mobilities in the range of 1-4 × 10 -7 cm 2 V -1 s -1 (electric field 0.5-0.8 MV/cm). As the degree of t-butylation increases, the carrier mobility decreases progressively. The mobility reduction was examined by Marcus theory of reorganization energies. All ADN compounds possess similar reorganization energies of ˜0.3 eV. The reduction of carrier mobilities with increasing t-butylation can be attributed to a decrease in the charge-transfer integral or the wavefunction overlap.

  14. The Kaonic Helium Case

    NASA Astrophysics Data System (ADS)

    Curceanu (Petrascu), C.; Bragadireanu, A. M.; Curceanu (Petrascu), C.; Ghio, F.; Girolami, B.; Guaraldo, C.; Iliescu, M.; Levi Sandri, P.; Lucherini, V.; Sirghi, D. L.; Sirghi, F.; Cargnelli, M.; Fuhrmann, H.; Ishiwatari, T.; Kienle, P.; Marton, J.; Zmeskal, J.; Fiorini, C.; Longoni, A.; Frizzi, T.; Itahashi, K.; Iwasaki, M.; Koike, T.; Ponta, T.; Soltau, H.; Lechner, P.; Struder, L.

    2005-12-01

    The only three existent kaonic helium X-ray transition measurements at present are referring to the transitions to 2p level. These measurements are more than 30 years old and the obtained results, affected by big errors, are much larger than those predicted by optical models. It is thought that the optical model is inadequate, due to the presence of the ∧(1405) resonance, not properly taken into account. Because the nucleons in the helium nucleus are tightly bound, the effective energy of the K-p interaction (1432 MeV at threshold) is in helium much closer to the energy of the resonance than in other nuclei. It is then planned to measure the kaonic helium X-ray transitions to the 2p level in the framework of the SIDDHARTA (SIlicon Drift Detector for Hadronic Atom Research by Timing Application) experiment, at the DAΦNE collider of Frascati National Laboratories, and to confirm or not the discrepancy reported by the previous experiments with a much smaller error.

  15. Ketyl Radical Formation via Proton-Coupled Electron Transfer in an Aqueous Solution versus Hydrogen Atom Transfer in Isopropanol after Photoexcitation of Aromatic Carbonyl Compounds.

    PubMed

    Zhang, Xiting; Ma, Jiani; Li, Songbo; Li, Ming-De; Guan, Xiangguo; Lan, Xin; Zhu, Ruixue; Phillips, David Lee

    2016-07-01

    The excited nπ* and ππ* triplets of two benzophenone (BP) and two anthraquinone (AQ) derivatives have been observed in acetonitrile, isopropanol, and mixed aqueous solutions using time-resolved resonance Raman spectroscopic and nanosecond transient absorption experiments. These experimental results, combined with results from density functional theory calculations, reveal the effects of solvent and substituents on the properties, relative energies, and chemical reactivities of the nπ* and ππ* triplets. The triplet nπ* configuration was found to act as the reactive species for a subsequent hydrogen atom transfer reaction to produce a ketyl radical intermediate in the isopropanol solvent, while the triplet ππ* undergoes a proton-coupled electron transfer (PCET) in aqueous solutions to produce a ketyl radical intermediate. This PCET reaction, which occurs via a concerted proton transfer (to the excited carbonyl group) and electron transfer (to the excited phenyl ring), can account for the experimental observation by several different research groups over the past 40 years of the formation of ketyl radicals after photolysis of a number of BP and AQ derivatives in aqueous solutions, although water is considered to be a relatively "inert" hydrogen-donor solvent. PMID:27266916

  16. Helium anion formation inside helium droplets

    NASA Astrophysics Data System (ADS)

    Jabbour Al Maalouf, Elias; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed.

  17. Resolution of volatile fuel compound profiles from Ascocoryne sarcoides: a comparison by proton transfer reaction-mass spectrometry and solid phase microextraction gas chromatography-mass spectrometry

    PubMed Central

    2012-01-01

    Volatile hydrocarbon production by Ascocoryne sacroides was studied over its growth cycle. Gas-phase compounds were measured continuously with a proton transfer reaction-mass spectrometry (PTR-MS) and at distinct time points with gas chromatography-mass spectrometry (GC-MS) using head space solid phase microextraction (SPME). The PTR-MS ion signal permitted temporal resolution of the volatile production while the SPME results revealed distinct compound identities. The quantitative PTR-MS results showed the volatile production was dominated by ethanol and acetaldehyde, while the concentration of the remainder of volatiles consistently reached 2,000 ppbv. The measurement of alcohols from the fungal culture by the two techniques correlated well. Notable compounds of fuel interest included nonanal, 1-octen-3-ol, 1-butanol, 3-methyl- and benzaldehyde. Abiotic comparison of the two techniques demonstrated SPME fiber bias toward higher molecular weight compounds, making quantitative efforts with SPME impractical. Together, PTR-MS and SPME GC-MS were shown as valuable tools for characterizing volatile fuel compound production from microbiological sources. PMID:22480438

  18. Calculation of hydrogen and helium concentrations for CSNS target

    NASA Astrophysics Data System (ADS)

    Pan, Dong-Dong; Liang, Tai-Ran; Yin, Wen; Yao, Ze-En

    2016-03-01

    The China Spallation Neutron Source (CSNS) is driven by protons whose energies are about 1.6 GeV. At such high energies, the spallation neutrons lead to the formation of large amounts of helium, hydrogen and new heavier species in the form of transmutation products. These hydrogen, helium and transmutation products have a critical effect on the mechanical properties on the one hand and exacerbate the displacement radiation damage on the other hand. In this paper, the background hydrogen/helium concentrations and the maximum hydrogen/helium concentrations near cracks in a tungsten target for CSNS have been calculated at temperatures of 100°C and 300°C by applying a theoretical model. For the CSNS tungsten target plate, we find the maximum hydrogen concentration near the tips of cracks ranges from 3.0 × 10-2-2 × 10-1, which exceeds the hydrogen background concentration by 1.2-1.8 times; the maximum helium concentration near the tips of cracks ranges from 3.0 × 10-4 -1.2 × 10-3, which exceeds the helium background concentration by 2-4 times; the maximum hydrogen/helium concentration increases with the increase of the transfer length across the surfaces of the target and it decreases with the increase of temperature. Supported by National Science Foundation of China (51371195, 11174358)

  19. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K.; Kanekiyo, T.; Morita, S.

    2014-01-29

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  20. The Hall D solenoid helium refrigeration system at JLab

    SciTech Connect

    Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.; Ganni, Venkatarao; Martin, Floyd D.; Norton, Robert O.; Radovic, Sasa

    2014-01-01

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  1. Electron-helium scattering in Debye plasmas

    SciTech Connect

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor; Janev, R. K.

    2011-11-15

    Electron-helium scattering in weakly coupled hot-dense (Debye) plasma has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe plasma Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a{sub 0}). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  2. THERMAL OSCILLATIONS IN LIQUID HELIUM TARGETS.

    SciTech Connect

    WANG,L.; JIA,L.X.

    2001-07-16

    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  3. Performance of an efficient Helium Circulation System on a MEG

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Okamoto, M.; Atsuda, K.; Katagiri, K.

    2009-02-01

    We report a Helium Circulation System (HCS) that re-liquefies all the evaporating helium gas, consumes far less power and has extremely lower magnetic noise compared with conventional systems. It collects warm helium gas about 300 K, cools it to about 40K and returns it to the neck tube of the Dewar to keep it cold. It also collects helium gas just above the liquid helium surface while it is still cold, re-liquefies and returns it to the Dewar. A special transfer tube (TT) about 2 m length with 7 multi-concentric pipes was developed to allow the dual helium streams. It separates the HCS with a MEG to reduce magnetic noise. A refiner to collect the contaminating gases such as oxygen and nitrogen effectively by freezing the gases is developed. It has an electric heater to remove the frozen contamination in the form of gases into the air. A gas flow controller is also developed, which automatically control the heater to cleanup the contamination. The developed TT has very low heat inflow less than 0.1W/m to the liquid helium ensuring the efficient operation. The HCS can re-liquefy up to 35.5 1/D of liquid helium from the evaporated helium gas using two 1.5W@4.2K GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). It has been confirmed that the HCS could be used with the real MEG system without any noise problem for over one year. The maintenance cost (electricity charges and cryocoolers maintenance fee) of the MEG has reduced to be less than 1/10 of the previous cost.

  4. Measurement of the radiative L3-M vacancy transfer probabilities of some 4f elements and compounds using Indus-2 synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Krishnananda; Mirji, Santosh; Badiger, N. M.; Tiwari, M. K.

    2016-08-01

    The L X-ray intensity ratios (ILα/ILl, ILα/ILβ, ILα/ILγ) and the radiative L3-M vacancy transfer probabilities (ηL3-M) of some 4f elements such as Gd, Tb, Ho and compounds; Pr2O3, Pr2(CO3)3·8H2O, Nd2O3, Sm2O3, Sm2(CO3)3·2.85H2O, Sm2(SO4)3·8H2O, Gd2(CO3)3, Tb2O3, Dy2(SO4)3, Ho2O3 and HoF3 have been measured using Indus-2 synchrotron radiation. The elements and compounds are excited by synchrotron radiation and the emitted characteristic L X-ray photons are measured with high resolution silicon drift detector. The measured intensity ratios of compounds are not influenced by the chemical environment. However, the ηL3-M values of compound targets indicate the effect of crystal structure.

  5. A needle-free reconstitution and transfer system for compounded sterile intravenous drug solutions in compliance with United States Pharmacopeia Chapter <797> standards.

    PubMed

    Marks, Zach

    2014-01-01

    Today's health-system pharmacists and those in independent practice face risks, including exposure to potent cytotoxic drugs via needlesticks, that are associated with preparing intravenous compounded sterile preparations for immediate use. Healthcare givers who administer such medications also risk exposure to needlesticks. Those hazards can be minimized when the pharmacist thoroughly understands and complies with current standard operating procedures for preparing intravenous compounded sterile preparations and the healthcare giver uses a needle-free system for drug reconstitution and administration. The components of an overall needlestick risk-reduction strategy to ensure safety in the preparation (and eventual administration) of intravenous compounded sterile preparations should therefore include the use of needle-free connection and administration devices as well as hand-hygiene training, aseptic technique competency evaluation and training, and the maximum use of commercially available or ready-to-use dosage forms. This article, which focuses on the pharmacist's use of a needle-free reconstitution and transfer system for compounded sterile intravenous drug solutions, uses as an example the Vial2Bag (Medimop Medical Projects, Ltd., [a subsidiary of West Pharmaceutical Services, Inc., Exton, Pennsylvania], Ra'anana, Israel), which complies with United States Pharmacopeia Chapter <797> standards. Features of that system are summarized for easy reference. PMID:24881111

  6. Helium anion formation inside helium droplets

    NASA Astrophysics Data System (ADS)

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  7. Distinguishing N-oxide and hydroxyl compounds: impact of heated capillary/heated ion transfer tube in inducing atmospheric pressure ionization source decompositions.

    PubMed

    Peiris, Dilrukshi M; Lam, Wing; Michael, Steven; Ramanathan, Ragu

    2004-06-01

    In the pharmaceutical industry, a higher attrition rate during the drug discovery process means a lower drug failure rate in the later stages. This translates into shorter drug development time and reduced cost for bringing a drug to market. Over the past few years, analytical strategies based on liquid chromatography/mass spectrometry (LC/MS) have gone through revolutionary changes and presently accommodate most of the needs of the pharmaceutical industry. Among these LC/MS techniques, collision induced dissociation (CID) or tandem mass spectrometry (MS/MS and MS(n)) techniques have been widely used to identify unknown compounds and characterize metabolites. MS/MS methods are generally ineffective for distinguishing isomeric compounds such as metabolites involving oxygenation of carbon or nitrogen atoms. Most recently, atmospheric pressure ionization (API) source decomposition methods have been shown to aid in the mass spectral distinction of isomeric oxygenated (N-oxide vs hydroxyl) products/metabolites. In previous studies, experiments were conducted using mass spectrometers equipped with a heated capillary interface between the mass analyzer and the ionization source. In the present study, we investigated the impact of the length of a heated capillary or heated ion transfer tube (a newer version of the heated capillary designed for accommodating orthogonal API source design) in inducing for-API source deoxygenation that allows the distinction of N-oxide from hydroxyl compounds. 8-Hydroxyquinoline (HO-Q), quinoline-N-oxide (Q-NO) and 8-hydroxyquinoline-N-oxide (HO-Q-NO) were used as model compounds on three different mass spectrometers (LCQ Deca, LCQ Advantage and TSQ Quantum). Irrespective of heated capillary or ion transfer tube length, N-oxides from this class of compounds underwent predominantly deoxygenation decomposition under atmospheric pressure chemical ionization conditions and the abundance of the diagnostic [M + H - O](+) ions increased with

  8. [Transfer possibilities of the mobile phases between different liquid chromatographic techniques for the analysis and isolation of compounds of biological matrices].

    PubMed

    Nyiredy, S

    1999-01-01

    After the survey and characterisation of the solid/liquid chromatographic methods, the author summarized the features of overpressure layer chromatography; the disturbing zone and the multi-front effect as well as the elimination of their influence. In light of these effects, the strategy of the mobile phase transfer possibilities is demonstrated between the various analytical and preparative liquid chromatographic methods, with the OPLC playing a central role. The main point of this strategy is that the examination of biological matrices is always begun with unsaturated TLC chamber, in which the compounds to be separated are placed between the Rf values of 0.3 and 0.8. The optimized TLC mobile phase is transferred without changes to the OPLC technique where a prerun is applied. For separation of nonpolar compounds, the prerun can be performed with hexane; for separation of polar substances the prerun can be performed with any component of the mobile phase in which the components are unable to migrate. The selection of this solvent might be considered during optimization of the mobile phase. Using HPTLC chromatoplate and analytical OPLC technique, highly effective separation can be achieved. The scaling-up for the various preparative chromatographic systems can be performed on basis of the applied chromatographic circumstances. The dry-filled preparative (FC, LPLC, MPLC) columns can be equilibrated with the solvent used for the prerun in analytical OPLC, while in case of filling with slurry technique, the slurry has to be prepared using the same solvent as was used for the prerun of OPLC. The air bubbles can be eliminated in both cases by pumping over the appropriate quantity of the solvent used for prerun, afterwards the preparative separation can be started with the optimized unsaturated TLC mobile phase. The author deals separately with the mobile phase transfer possibilities between the different analytical and preparative planar (OPLC and RPC with various

  9. Helium cryopumping for fusion applications

    SciTech Connect

    Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1988-05-01

    Large quantities of helium and hydrogen isotopes will be exhausted continuously from fusion power reactors. This paper summarizes two development programs undertaken to address vacuum pumping for this application: (i) A continuous duty cryopump for pumping helium and/or hydrogen species using charcoal sorbent and (ii) a cryopump configuration with an alternative shielding arrangement using charcoal sorbent or argon spray. A test program evaluated automatic pumping of helium, helium pumping by charcoal cryosorption and with argon spray, and cryosorption of helium/hydrogen mixtures. The continuous duty cryopump pumped helium continuously and conveniently. Helium pumping speed was 7.7 l/s/cm/sup 2/ of charcoal, compared to 5.8 l/s/cm/sup 2/ for the alternative pump. Helium speed using argon spray was 18% of that obtained by charcoal cryosorption in the same (W-panel) pump. During continuous duty cryopump mixture tests with helium and hydrogen copumped on charcoal, gas was released sporadically. Testing was insufficient to explain this unacceptable event.

  10. On-line measurements of nitro organic compounds emitted from automobiles by proton transfer reaction mass spectrometry: Laboratory experiments and a field measurement

    NASA Astrophysics Data System (ADS)

    Inomata, S.; Tanimoto, H.; Fujitani, Y.; Fushimi, A.; Sato, K.; Sekimoto, K.; Yamada, H.; Hori, S.; Shimono, A.; Hikida, T.

    2011-12-01

    On-line measurements of nitro organic compounds in automobile exhaust were carried out by proton transfer reaction mass spectrometry (PTR-MS) with a chassis dynamometer. Diesel vehicles with oxidation catalyst system (diesel vehicle A) and with diesel PM-NOx reduction system ((diesel vehicle B) and a gasoline vehicle were used as a test vehicle. In the case of the diesel vehicle A, the emissions of nitromethane, nitrophenol (NPh), C7-, C8-, C9-, and C10-nitrophenols, and dihydroxynitrobenzenes (DHNB) were observed in the diesel exhaust from the experiment under the constant driving at 60 km hr-1. Temporal variations of mixing ratios for nitromethane, NPh, and DHNB along with related volatile organic compounds (VOCs) were measured during a transient driving cycle. The time-resolved measurement revealed that the nitromethane emission was strongly correlated with the emissions of CO, benzene, and acetone, which are relatively quickly produced in acceleration processes and appeared as sharp peaks. On the other hand, the NPh emission was moderately correlated with the emissions of acetic acid and phenol, which peaks were broad. The emission of nitromethane was observed from the exhaust of the diesel vehicle B but the emission of other nitro organic compounds was not observed. This suggests that the emission of nitro organic compounds besides nitromethane may depend on the diesel exhaust aftertreatment devices. The emission of nitromethane was also observed from the exhaust of the gasoline vehicle with cold start. An in-situ measurement of nitro organic compounds and their related VOCs was carried out at the crossing of an urban city, Kawasaki. Nitromethane was observed at the crossing and we found that the concentration of nitrometane varied rapidly. During the measurement, the maximum of the concentration of nitrometane reached 5 ppbv. Not only nitrophenols but also nitroaromatics were sometimes detected in the field measurement.

  11. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  12. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2014) (a)...

  13. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  14. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  15. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  16. 10-methylacridine derivatives acting as efficient and stable photocatalysts in reductive dehalogenation of halogenated compounds with sodium borohydride via photoinduced electron transfer

    SciTech Connect

    Ishikawa, Masashi; Fukuzumi, Shunichi )

    1990-11-21

    10-Methylacridine derivatives, 9,10-dihydro-10-methylacridine (AcrH{sub 2}) and acriflavine (AFH{sup +}), act as efficient and stable photocatalysts in reductive dechlorination of p-chlorobiphenyl (ClBP) as well as dehalogenation of other halogenated compounds with sodium borohydride (NaBH{sub 4}) in a mixture of acetonitrile and H{sub 2}O (9:1 v/v) at 298 K. The reductive dechlorination proceeds via the reduction of ClBP by the singlet excited state ({sup 1}AcrH{sub 2}*) to yield dechlorinated product (biphenyl) and 10-methylacridinium ion (AcrH{sup +}), followed by the facile reduction of AcrH{sup +} with NaBH{sub 4} to regenerate AcrH{sub 2}. The absence of the primary kinetic isotope effect as well as the comparison of the observed rate constants with those predicted by using the Marcus theory of electron transfer indicates that the reduction of halogenated compounds (RX) by the singlet excited state ({sup 1}AcrH{sub 2}*) proceeds via photoinduced electron transfer from {sup 1}AcrH{sub 2}* to RX, which results in the cleavage of C-X bonds.

  17. Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds.

    PubMed

    Rai, Neeraj; Siepmann, J Ilja

    2007-09-13

    The explicit hydrogen version of the transferable potentials for phase equilibria (TraPPE-EH) force field is extended to benzene, pyridine, pyrimidine, pyrazine, pyridazine, thiophene, furan, pyrrole, thiazole, oxazole, isoxazole, imidazole, and pyrazole. While the Lennard-Jones parameters for carbon, hydrogen (two types), nitrogen (two types), oxygen, and sulfur are transferable for all 13 compounds, the partial charges are specific for each compound. The benzene dimer energies for sandwich, T-shape, and parallel-displaced configurations obtained for the TraPPE-EH force field compare favorably with high-level electronic structure calculations. Gibbs ensemble Monte Carlo simulations were carried out to compute the single-component vapor-liquid equilibria for benzene, pyridine, three diazenes, and eight five-membered heterocycles. The agreement with experimental data is excellent with the liquid densities and vapor pressures reproduced within 1 and 5%, respectively. The critical temperatures and normal boiling points are predicted with mean deviations of 0.8 and 1.6%, respectively. PMID:17713943

  18. Lars Onsager Prize Talk: Quantum fluids: from liquid helium to cold atoms

    NASA Astrophysics Data System (ADS)

    Pethick, Christopher

    2008-03-01

    The study of quantum liquids has led to ideas and concepts of broad applicability. I shall illustrate this by examples from the physics of liquid helium-3, heavy-fermion compounds, quark-gluon plasmas and cold atomic gases.

  19. A computer simulation of the turbocharged turbo compounded diesel engine system: A description of the thermodynamic and heat transfer models

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.

    1985-01-01

    A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.

  20. Experimental assessment and modeling of organic compound interphase mass-transfer rates in multiphase subsurface systems. Progress report

    SciTech Connect

    Weber, W.J. Jr.; Abriola, L.M.

    1990-03-15

    During the initial eight month period of this grant, work has been conducted on all facets of the project. Significant progress has been made in the design, construction and testing of the experimental apparatus. Investigation of methods for characterizing the physical forms of non-aqueous phase liquid (NAPL) residuals (globules or blobs) has led to a narrowing of possible approaches. Development of a numerical simulator that accomodates multiphase transport with mass transfer rate interactions is well underway.

  1. Regulated In Situ Generation of Molecular Ions or Protonated Molecules under Atmospheric-Pressure Helium-Plasma-Ionization Mass Spectrometric Conditions

    NASA Astrophysics Data System (ADS)

    Gangam, Rekha; Pavlov, Julius; Attygalle, Athula B.

    2015-07-01

    In an enclosed atmospheric-pressure helium-plasma ionization (HePI) source engulfed with dehumidified ambient gases, molecular cations are generated from compounds such as toluene, bromobenzene, and iodobenzene. Evidently, the ionization is effected by a direct Penning mechanism attributable to interactions of the gas-phase analyte with metastable helium atoms. It is widely known that secondary ions generated from ambient gases also play an important role in the overall ionization process. For example, when the ambient gases bear even traces of moisture, the analytes are ionized by proton transfer reactions with gaseous H3O+. In this study, we demonstrate how a controlled variation of experimental conditions can manipulate the abundance of molecular ions and protonated molecules in a HePI source.

  2. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  3. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  4. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Multiple automated headspace in-tube extraction for the accurate analysis of relevant wine aroma compounds and for the estimation of their relative liquid-gas transfer rates.

    PubMed

    Zapata, Julián; Lopez, Ricardo; Herrero, Paula; Ferreira, Vicente

    2012-11-30

    An automated headspace in-tube extraction (ITEX) method combined with multiple headspace extraction (MHE) has been developed to provide simultaneously information about the accurate wine content in 20 relevant aroma compounds and about their relative transfer rates to the headspace and hence about the relative strength of their interactions with the matrix. In the method, 5 μL (for alcohols, acetates and carbonyl alcohols) or 200 μL (for ethyl esters) of wine sample were introduced in a 2 mL vial, heated at 35°C and extracted with 32 (for alcohols, acetates and carbonyl alcohols) or 16 (for ethyl esters) 0.5 mL pumping strokes in four consecutive extraction and analysis cycles. The application of the classical theory of Multiple Extractions makes it possible to obtain a highly reliable estimate of the total amount of volatile compound present in the sample and a second parameter, β, which is simply the proportion of volatile not transferred to the trap in one extraction cycle, but that seems to be a reliable indicator of the actual volatility of the compound in that particular wine. A study with 20 wines of different types and 1 synthetic sample has revealed the existence of significant differences in the relative volatility of 15 out of 20 odorants. Differences are particularly intense for acetaldehyde and other carbonyls, but are also notable for alcohols and long chain fatty acid ethyl esters. It is expected that these differences, linked likely to sulphur dioxide and some unknown specific compositional aspects of the wine matrix, can be responsible for relevant sensory changes, and may even be the cause explaining why the same aroma composition can produce different aroma perceptions in two different wines. PMID:23102525

  6. Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La Porte super site during the Texas Air Quality Study 2000

    NASA Astrophysics Data System (ADS)

    Karl, Thomas; Jobson, Tom; Kuster, William C.; Williams, Eric; Stutz, Jochen; Shetter, Rick; Hall, Samuel R.; Goldan, Paul; Fehsenfeld, Fred; Lindinger, Werner

    2003-08-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was deployed for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Overall, 28 ions dominated the PTR-MS mass spectra and were assigned as anthropogenic aromatics (e.g., benzene, toluene, xylenes) and hydrocarbons (propene, isoprene), oxygenated compounds (e.g., formaldehyde, acetaldehyde, acetone, methanol, C7 carbonyls), and three nitrogen-containing compounds (e.g., HCN, acetonitrile and acrylonitrile). Biogenic VOCs were minor components at this site. Propene was the most abundant lightweight hydrocarbon detected by this technique with concentrations up to 100+ nmol mol-1, and was highly correlated with its oxidation products, formaldehyde (up to ˜40 nmol mol-1) and acetaldehyde (up to ˜80 nmol/mol), with typical ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained data set helped in identifying different anthropogenic sources (e.g., industrial from urban emissions) and testing current emission inventories. A comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by "soft" chemical ionization using proton-transfer via H3O+. The method was especially valuable in monitoring rapidly changing VOC plumes which passed over the site, and when coupled with meteorological data it was possible to identify likely sources.

  7. Temperature rise in superfluid helium pumps

    SciTech Connect

    Kittel, P.

    1988-07-01

    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  8. Temperature rise in superfluid helium pumps

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1988-01-01

    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  9. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry.

    PubMed

    Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf

    2015-08-01

    Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust. PMID:25600686

  10. Converting the bis-FeIV state of the diheme enzyme MauG to Compound I decreases the reorganization energy for electron transfer.

    PubMed

    Dow, Brian A; Davidson, Victor L

    2016-01-01

    The electron transfer (ET) properties of two types of high-valent hemes were studied within the same protein matrix; the bis-Fe(IV) state of MauG and the Compound I state of Y294H MauG. The latter is formed as a consequence of mutation of the tyrosine which forms the distal axial ligand of the six-coordinate heme that allows it to stabilize Fe(IV) in the absence of an external ligand. The rates of the ET reaction of each high-valent species with the type I copper protein, amicyanin, were determined at different temperatures and analysed by ET theory. The reaction with bis-Fe(IV) wild-type (WT) MauG exhibited a reorganization energy (λ) that was 0.39 eV greater than that for the reaction of Compound I Y295H MauG. It is concluded that the delocalization of charge over the two hemes in the bis-Fe(IV) state is responsible for the larger λ, relative to the Compound I state in which the Fe(V) equivalent is isolated on one heme. Although the increase in λ decreases the rate of ET, the delocalization of charge decreases the ET distance to its natural substrate protein, thus increasing the ET rate. This describes how proteins can balance different ET properties of complex redox cofactors to optimize each system for its particular ET or catalytic reaction. PMID:26494530

  11. Two-step neutral-ionic phase transition in organic charge-transfer compounds: Possible staging effect

    NASA Astrophysics Data System (ADS)

    Iwasa, Y.; Watanabe, N.; Koda, T.; Saito, G.

    1993-02-01

    A two-step neutral-ionic transition has been discovered in a 1:1 mixed-stack charge-transfer crystal, (3,3',5,5') tetramethylbenzidine-(7,7,8,8) tetracyanoquinodimethane (TMB-TCNQ) under pressure. The fraction of ionized molecules changes discontinuously at two critical pressures, P1~6 and P2~20 kbar, demonstrating a characteristic feature of a staging phenomena. This result is interpreted in terms of a frustration effect of Coulomb interactions in the crystal, as predicted theoretically by Hubbard and Torrance.

  12. Overcoming Phase-Transfer Limitations in the Conversion of Lipophilic Oleo Compounds in Aqueous Media-A Thermomorphic Approach.

    PubMed

    Gaide, Tom; Dreimann, Jens M; Behr, Arno; Vorholt, Andreas J

    2016-02-01

    A new process concept has been developed for recycling transition-metal catalysts in the synthesis of moderately polar products via aqueous thermomorphic multicomponent solvent systems. This work focuses on the use of "green" solvents (1-butanol and water) in the hydroformylation of the bio-based substrate methyl 10-undecenoate. Following the successful development of a biphasic reaction system on the laboratory scale, the reaction was transferred to a continuously operated miniplant to demonstrate the robustness of this innovative recycling concept for homogenous catalysts. PMID:26822502

  13. A helium regenerative compressor

    SciTech Connect

    Swift, W.L.; Nutt, W.E.; Sixsmith, H.

    1994-12-31

    This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors.

  14. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  15. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  16. Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds

    NASA Astrophysics Data System (ADS)

    Lumbiny, B. J.; Hui, Z.; Islam, M. A.; Quader, M. A.; Rahman, M.

    2014-04-01

    Tetracoordinated organophosphorous compounds were synthesized, characterized and nucleophilic substitution reaction were investigated by varying substituents around phosphorous centre or in nucleophile considering its utility in biological and environmental system. The reactivity is expressed in terms of second-order rate constant, k2 and measured conductometrically. Linear Free Energy Relationship (LFER) tools mainly Hammett (ρ), Brönsted (β) LFER coefficients and deuterium kinetic isotope effects (KIEs) being determined for the pyridinolysis of 4 - chlorophenyl 4 - methoxy phenyl chlorophosphate, 1 in acetonitrile at 5.0 °C. The experimental data's were compared with those of structurally similar organophosphorous compounds reported earlier in quest for the mechanistic information. Nice linear correlation being found for Hammett (logk2 vs σx), having negative value of the ρX = -5.85 and Brönsted (logk2 vs pKa(x)) plots having large positive value for βX = 1.18 for 1 can be interpreted as SN2 process with greater extent of bond formation in transition state (TS) of 1. The observed kH/kD values of 1 is 1.00 ± 0.05 and net KIE, 1.32 suggests the primary KIE and indicates frontside nucleophilic attack through the partial deprotonation of pyridine occurs by the hydrogen bonding in the rate-determining step.

  17. Dietary exposure to, and internal organ transfer of, selected halogenated organic compounds in birds eating fish from the Southern Baltic.

    PubMed

    Falkowska, Lucyna; Reindl, Andrzej R

    2015-01-01

    The aim of this study was to assess the effect of a marine diet on the accumulation, magnification, maternal transfer and detoxification of chlorinated organic pollutants on the highest trophic level in the Baltic Sea. Results showed that birds eating whole herring received the highest doses of herbicides > pesticides > fungicides > polychlorinated dibenzofurans (PCDFs) > polychlorinated dibenzo-para-dioxins (PCDDs). The toxicity of PCDD/Fs in a penguin's 24-h alimentary exposure was estimated at 7.77 ng TEQ-WHO2005. Among pesticides, the highest concentrations--both in fish and penguin tissue--were those of the pp-DDE isomer. In terms of herbicides, simazine and terbutrine were predominant. The majority of Persistent Organic Pollutants (POPs) underwent accumulation and magnification, and these factors were observed to increase with the birds' age. Guano was found to be an effective means of elimination for all of the studied xenobiotics. Maternal transfer of PCDD/Fs into eggs from internal tissues was most prominent for highly chlorinated dioxins and low chlorinated furans. PMID:26121018

  18. Effectiveness of a Closed-System Transfer Device in Reducing Surface Contamination in a New Antineoplastic Drug-Compounding Unit: A Prospective, Controlled, Parallel Study

    PubMed Central

    Pinturaud, Marine; Soichot, Marion; Richeval, Camille; Humbert, Luc; Lebecque, Michèle; Sidikou, Ousseini; Barthelemy, Christine; Bonnabry, Pascal; Allorge, Delphine; Décaudin, Bertrand; Odou, Pascal

    2016-01-01

    Background The objective of this randomized, prospective and controlled study was to investigate the ability of a closed-system transfer device (CSTD; BD-Phaseal) to reduce the occupational exposure of two isolators to 10 cytotoxic drugs and compare to standard compounding devices. Methods and Findings The 6-month study started with the opening of a new compounding unit. Two isolators were set up with 2 workstations each, one to compound with standard devices (needles and spikes) and the other using the Phaseal system. Drugs were alternatively compounded in each isolator. Sampling involved wiping three surfaces (gloves, window, worktop), before and after a cleaning process. Exposure to ten antineoplastic drugs (cyclophosphamide, ifosfamide, dacarbazine, 5-FU, methotrexate, gemcitabine, cytarabine, irinotecan, doxorubicine and ganciclovir) was assessed on wipes by LC-MS/MS analysis. Contamination rates were compared using a Chi2 test and drug amounts by a Mann-Whitney test. Significance was defined for p<0.05. Overall contamination was lower in the “Phaseal” isolator than in the “Standard” isolator (12.24% vs. 26.39%; p < 0.0001) although it differed according to drug. Indeed, the contamination rates of gemcitabine were 49.3 and 43.4% (NS) for the Standard and Phaseal isolators, respectively, whereas for ganciclovir, they were 54.2 and 2.8% (p<0.0001). Gemcitabine amounts were 220.6 and 283.6 ng for the Standard and Phaseal isolators (NS), and ganciclovir amounts were 179.9 and 2.4 ng (p<0.0001). Conclusion This study confirms that using a CSTD may significantly decrease the chemical contamination of barrier isolators compared to standard devices for some drugs, although it does not eliminate contamination totally. PMID:27391697

  19. Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons

    SciTech Connect

    Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec

    2009-02-15

    A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

  20. Electronic structure of novel charge transfer compounds: application of Fermi orbital self-interaction corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Hahn, Torsten; Rückerl, Florian; Liebing, Simon; Pederson, Mark

    We present our experimental and theoretical results on novel Picene/F4TCNQ and Manganese-Phthalocyanine/F4TCNQ donor / acceptor systems. We apply the recently developed Fermi-orbital based approach for self-interaction corrected density functional theory (FO-SIC DFT) to these materials and compare the results to standard DFT calculations and to experimental data obtained by photoemission spectroscopy. We focus our analysis on the description of the magnitude of the ground state charge transfer and on the details of the formed hybrid orbitals. Further, we show that for weakly bound donor / acceptor systems the FO-SIC approach delivers a more realistic description of the electronic structure compared to standard DFT calculations Support by DFG FOR1154 is greatly acknowledged.

  1. Precision spectroscopy of Helium

    SciTech Connect

    Cancio, P.; Giusfredi, G.; Mazzotti, D.; De Natale, P.; De Mauro, C.; Krachmalnicoff, V.; Inguscio, M.

    2005-05-05

    Accurate Quantum-Electrodynamics (QED) tests of the simplest bound three body atomic system are performed by precise laser spectroscopic measurements in atomic Helium. In this paper, we present a review of measurements between triplet states at 1083 nm (23S-23P) and at 389 nm (23S-33P). In 4He, such data have been used to measure the fine structure of the triplet P levels and, then, to determine the fine structure constant when compared with equally accurate theoretical calculations. Moreover, the absolute frequencies of the optical transitions have been used for Lamb-shift determinations of the levels involved with unprecedented accuracy. Finally, determination of the He isotopes nuclear structure and, in particular, a measurement of the nuclear charge radius, are performed by using hyperfine structure and isotope-shift measurements.

  2. The Arctic seasonal snow pack as a transfer mechanism and a reactor for lower atmosphere chemical compounds (Invited)

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.

    2013-12-01

    The Polar Regions are snow covered for two thirds of the year (or longer) and in many locations there are few melt events during the winter. As a consequence, the late winter snow pack presents a spatial and temporal archive of the previous winter's precipitation, snow-atmosphere exchange, and within snow pack physical and chemical processes. However, to use the snow pack as a 'sensor' we have to understand the physical and chemical exchange processes between atmospheric compounds and snow and ice surfaces. Of equal importance is knowledge of the reactions that occur in and on snow and ice particle surfaces. Recent research has provided insights on the pathways individual compounds take from the lower atmosphere to snow and on the physical and chemical processes occurring within the snow pack at a variety of scales. Snow on or near sea ice has markedly higher major ion concentrations than snow on the terrestrial snow pack, most notably for chloride and bromide. This difference in chemical composition can be dramatic even in coastal regions where the land is only hundreds of meters away. As a consequence, we have to treat chemical cycling processes in/on snow on sea ice and snow on land differently. Since these halogens, particularly bromine, play critical roles in the spring time photochemical reactions that oxidize ozone and mercury their presence and fate on the sea ice snow pack is of particular interest. A future Arctic is expected to have a thinner, more dynamic sea ice cover that will arrive later and melt earlier. The areal extent of young ice production will likely increase markedly. This would lead to a different snow depositional and chemical regime on sea ice with potential ramifications for chemical exchange with the lower atmosphere. The roles of clear sky precipitation ('diamond dust') and surface hoar deposition in providing a unique lower atmospheric 'reactor' and potential source of water equivalence have been largely overlooked. This despite the

  3. Resonant charge-exchange involving excited helium atoms and reactive transport of local thermodynamic equilibrium helium plasma

    NASA Astrophysics Data System (ADS)

    Kosarim, A. V.; Smirnov, B. M.; Laricchiuta, A.; Capitelli, M.

    2012-06-01

    The cross sections for charge-exchange and charge-transfer processes are evaluated for collisions of helium ions with parent-atoms in ground and excited states, with the principal quantum number n = 1-5, in the collision energy range from thermal up to 10 eV. Corresponding diffusion-type collision integrals are derived, and the role of "abnormal" transport of electronically excited states on the reactive thermal conductivity of equilibrium helium plasma, at atmospheric pressure, estimated in the frame of a simplified approach.

  4. Role of phosphate-containing compounds in the transfer of indium-111 and gallium-67 from transferrin to ferritin.

    PubMed

    Weiner, R E

    1989-01-01

    Physiologic concentrations of ATP stimulate the translocation of gallium-67 (67Ga) from human transferrin (TF) to horse ferritin (HoFE). The mechanism of this translocation was examined. One millimolar ATP did not speed the binding of 67Ga or indium-111 (111In) to HoFE. ATP and pyrophosphate (PPi) at 1 mM, did not form high affinity complexes with 67Ga or 111In. ATP and PPi interacted directly with the [67Ga]TF complex and could within minutes increase the amount of nonprotein-bound 67Ga. Serum HCO3- concentration, 30 mM, prevented the ATP-induced dissociation of 67Ga from TF, whereas intracellular concentrations (0.4 and 5 mM) did not. Using a dialysis technique, ATP also stimulated the translocation of 111In from TF to HoFE; however, this process was much slower than with 67Ga. ATP caused an increase in the nonprotein-bound 111In compared to the control. These results suggest the formation of nonprotein-bound nuclide by these phosphate-containing compounds in a kinetically labile form is important to the translocation mechanism. PMID:2536083

  5. Binding of a cyclic organoselenium compound with gold nanoparticles (GNP) and its effect on electron transfer properties.

    PubMed

    Kumar, Pavitra V; Singh, Beena G; Maiti, Nandita; Iwaoka, Michio; Priyadarsini, K Indira

    2014-12-15

    Binding of a cyclic organoselenium compound, DL-trans-3,4-dihydroxy-1-selenolane (DHSred) with gold nanoparticles (GNP) of different sizes was studied by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), surface enhanced Raman spectroscopy (SERS) and zeta-potential (ζ) measurements. GNP of different size were synthesized by varying the reaction conditions and their size was determined by DLS and TEM techniques. The absorption spectral data showed red shift in the surface plasmon resonance (SPR) band indicating increase in the size of GNP on binding to DHSred. SERS studies confirmed that the binding of DHSred with GNP is through selenium center with planar orientation of DHSred on the GNP surface. The product of the number of binding sites (n) in GNP and the binding constant (K) was estimated for GNP of different particle size. The zeta potential (ζ) value of GNP decreased marginally in the presence of DHSred. Further, the binding of DHSred with GNP was found to enhance its reactivity with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS(·-)) and the reactivity increased with decrease in the GNP size. Such enhancement in the reducing ability may have a greater impact on the antioxidant activity of DHSred. PMID:25268822

  6. First hyperpolarizability in proton-transfer benzoxazoles: computer-aided design, synthesis and study of a new model compound

    NASA Astrophysics Data System (ADS)

    Hillebrand, Sandro; Segala, Maximiliano; Buckup, Tiago; Correia, Ricardo R. B.; Horowitz, Flavio; Stefani, Valter

    2001-11-01

    With regard to second-order nonlinear optics (NLO) applications, a new class of 2-(2 '-hydroxyphenyl)benzoxazoles (HBO) was designed for a combination of high first hyperpolarizability, β, with good photothermal stability, in association with a fast excited state intramolecular proton transfer (ESIPT) mechanism. Semi-empirical optimization of molecular structures and ab initio calculations of dipole moments were performed. Clear evidence was found that conditions such as conjugation efficiency and electron donor/acceptor strength cannot be evaluated separately, due to structural changes in molecular spatial distribution. Experimentally, a new fluorescent molecule of the HBO family, 2-(2 '-hydroxy-4 '-aminophenyl)-6-nitrobenzoxazole (BO6), was synthesized, purified and characterized, including solvent environments of distinct polarities. Hyper-Rayleigh scattering, UV-Vis absorption and emission spectroscopy, differential scanning calorimetry and thermogravimetric analysis of BO6 show a significant β (213.4±25.7×10 -30 esu in acetone, at 1064 nm) and thermal stability up to 270 °C. Such results, in this first study of ESIPT dyes for second-order NLO to our best knowledge, indicate that the HBO family well deserves further attention towards promising application materials.

  7. Numerical Simulation of Cold Helium Safety Discharges into a Long Relief Line

    NASA Astrophysics Data System (ADS)

    Andersson, R.; Fydrych, J.; Weisend, J. G.

    All existing and currently constructed large superconducting particle accelerators use liquid or supercritical helium for transferring cooling power from the cryogenic plant to the accelerator magnets and cavities. These accelerators have extremely elongated structures and therefore require widespread cryogenic distribution systems as well as advanced gas management systems. The design and operation of their cryogenic system are strongly affected by the requirements of high reliability and operating cost minimization. This strongly influences pressure equipment safety strategies. Becauseaccidental helium discharges from the accelerator cryostats and cryomodules cannot be excluded, possibilities of recovering helium releases from safety devices are taken into consideration. Collecting discharged helium and transferring it back to the cryoplant via a long recovery line is not only an option, but also a must. Usually the baseline design choice for the helium recovery system is a set of safety valves connected to a bare relief line that ends in a gas bag. However, rapid and fast discharges of cold helium into warm relief lines can result in significantly unsteady, compressible and thermal flows. Therefore the proper designing and sizing of the recovery system have to be supported by detailed analyses of all expected fluid dynamics and thermodynamics phenomena. This paper describes the numerical simulations of cold helium discharges into a long, warm safety relief line. The simulations have been done for the helium recovery system of the superconducting proton accelerator that is under construction at ESS in Lund, Sweden. The paper discusses the model assumptions and presents some example results.

  8. Long-Term Measurements of Volatile Organic Compound Fluxes and Concentrations By Proton Transfer Reaction-Mass Spectrometry from an Amazonian Terra Firme Ecosystem (CLAIRE-UK)

    NASA Astrophysics Data System (ADS)

    Valach, A. C.; House, E. R.; Davison, B.; Shaw, M.; Langford, B.; Nemitz, E.; MacKenzie, A. R.; Artaxo, P.; Yanez-Serrano, A. M.; Jardine, K.; Hewitt, C. N.

    2014-12-01

    Tropical broad leaf species are the highest contributors to biogenic volatile organic compounds (BVOCs) globally making the Amazon tropical forest a major global source. BVOCs can affect atmospheric chemistry, air quality and climate by influencing the oxidative capacity and radiative balance of the atmosphere. Isoprene is the main constituent of total BVOC emissions, however, a wide suite of compounds such as methyl vinyl ketone and methacrolein (MVK and MACR), methyl ethyl ketone, acetone, and monoterpenes play an important role. Due to the remoteness of tropical background sites, there are few continuous long-term canopy scale BVOC measurements and more are needed to improve global atmospheric chemistry models. Approximately one year of continuous high temporal resolution BVOC measurements were made during 2013-2014 as part of the CLAIRE-UK project. Measurements were carried out from the top of a tower above a primary terra firme forest canopy situated approximately 60km north of Manaus, Brazil. A high sensitivity proton transfer reaction-(quadrupole) mass spectrometer (PTR-(Q)MS) was deployed alongside a sonic anemometer to quantify BVOC fluxes using disjunct eddy covariance. Mixing ratios of a range of compounds were measured for 45 minutes at a frequency of 0.5 Hz for flux calculation. Here we present the first results of BVOC flux and mixing ratio measurements from September 2013 to July 2014. Diurnal variability, seasonal differences and possible driving factors will be discussed. In example, positive isoprene fluxes were observed during the day, closely following light intensity and temperature. Diurnal maxima, typically in the order of 5-15 mg isoprene m-2 h-1 were observed between 11:00 and 14:00 local time. Higher emissions occurred during the drier and warmer months from September to December. Preliminary analyses suggest deposition of isoprene oxidation products MVK and MACR, though there is evidence of emission at higher temperatures during some

  9. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  10. Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene.

    PubMed

    Ko, Yong-Ho; Lee, Jong-Dae; Yoon, Taeshik; Lee, Chang-Woo; Kim, Taek-Soo

    2016-03-01

    The immoderate growth of intermetallic compounds (IMCs) formed at the interface of a solder metal and the substrate during soldering can degrade the mechanical properties and reliability of a solder joint in electronic packaging. Therefore, it is critical to control IMC growth at the solder joints between the solder and the substrate. In this study, we investigated the control of interfacial reactions and IMC growth by the layer-by-layer transfer of graphene during the reflow process at the interface between Sn-3.0Ag-0.5Cu (in wt %) lead-free solder and Cu. As the number of graphene layers transferred onto the surface of the Cu substrate increased, the thickness of the total IMC (Cu6Sn5 and Cu3Sn) layer decreased. After 10 repetitions of the reflow process for 50 s above 217 °C, the melting temperature of Sn-3.0Ag-0.5Cu, with a peak temperature of 250 °C, the increase in thickness of the total IMC layer at the interface with multiple layers of graphene was decreased by more than 20% compared to that at the interface of bare Cu without graphene. Furthermore, the average diameter of the Cu6Sn5 scallops at the interface with multiple layers of graphene was smaller than that at the interface without graphene. Despite 10 repetitions of the reflow process, the growth of Cu3Sn at the interface with multiple layers of graphene was suppressed by more than 20% compared with that at the interface without graphene. The multiple layers of graphene at the interface between the solder metal and the Cu substrate hindered the diffusion of Cu atoms from the Cu substrate and suppressed the reactions between Cu and Sn in the solder. Thus, the multiple layers of graphene transferred at the interface between dissimilar metals can control the interfacial reaction and IMC growth occurring at the joining interface. PMID:26856638

  11. Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence.

    PubMed

    Zhang, Qisheng; Kuwabara, Hirokazu; Potscavage, William J; Huang, Shuping; Hatae, Yasuhiro; Shibata, Takumi; Adachi, Chihaya

    2014-12-31

    Red fluorescent molecules suffer from large, non-radiative internal conversion rates (k(IC)) governed by the energy gap law. To design efficient red thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs), a large fluorescence rate (k(F)) as well as a small energy difference between the lowest singlet and triplet excited states (ΔE(ST)) is necessary. Herein, we demonstrated that increasing the distance between donor (D) and acceptor (A) in intramolecular-charge-transfer molecules is a promising strategy for simultaneously achieving small ΔE(ST) and large k(F). Four D-Ph-A-Ph-D-type molecules with an anthraquinone acceptor, phenyl (Ph) bridge, and various donors were designed, synthesized, and compared with corresponding D-A-D-type molecules. Yellow to red TADF was observed from all of them. The k(F) and ΔE(ST) values determined from the measurements of quantum yield and lifetime of the fluorescence and TADF components are in good agreement with those predicted by corrected time-dependent density functional theory and are approximatively proportional to the square of the cosine of the theoretical twisting angles between each subunit. However, the introduction of a Ph-bridge was found to enhance k(F) without increasing ΔE(ST). Molecular simulation revealed a twisting and stretching motion of the N-C bond in the D-A-type molecules, which is thought to lower ΔE(ST) and k(F) but raise k(IC), that was experimentally confirmed in both solution and doped film. OLEDs containing D-Ph-A-Ph-D-type molecules with diphenylamine and bis(4-biphenyl)amine donors demonstrated maximum external quantum efficiencies of 12.5% and 9.0% with emission peaks at 624 and 637 nm, respectively. PMID:25469624

  12. Resource Letter SH-1: Superfluid Helium.

    ERIC Educational Resources Information Center

    Hallock, Robert B.

    1982-01-01

    Provides an annotated list of books, textbooks, and films on superfluid helium. Also lists research reports/reviews arranged by category, including among others, early history, microscopic understanding, ions in helium, helium in rotation, vortices and quantization, helium films and constricted geometrics, persistence flow, and superfluid helium…

  13. Performance of the Helium Circulation System on a Commercialized MEG

    NASA Astrophysics Data System (ADS)

    T, Takeda; M, Okamoto; T, Miyazaki; K, Katagiri

    2012-12-01

    We report the performance of a helium circulation system (HCS) mounted on a MEG (Magnetoencephalography) at Nagoya University, Japan. This instrument is the first commercialized version of an HCS. The HCS collects warm helium gas at approximately 300 K and then cools it to approximately 40 K. The gas is returned to the neck tube of a Dewar of the MEG to keep it cold. It also collects helium gas in the region just above the liquid helium surface while it is still cold, re-liquefies the gas and returns it to the Dewar. A special transfer tube (TT) of approximately 3 m length was developed to allow for dual helium streams. This tube separates the HCS using a MEG to reduce magnetic noise. A refiner was incorporated to effectively collect contaminating gases by freezing them. The refiner was equipped with an electric heater to remove the frozen contaminants as gases into the air. A gas flow controller was also developed, which automatically controlled the heater and electric valves to clean up contamination. The developed TT exhibited a very low heat inflow of less than 0.1 W/m to the liquid helium, ensuring efficient operation. The insert tube diameter, which was 1.5 in. was reduced to a standard 0.5 in. size. This dimensional change enabled the HCS to mount onto any commercialized MEG without any modifications to the MEG. The HCS can increase liquid helium in the Dewar by at least 3 liters/Day using two GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). The noise levels were virtually the same as before this installation.

  14. Low temperature uses of helium

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1970-01-01

    Helium is used for purging and pressurizing cryogenic rocket propellants, welding, atmosphere control, leak detection, and refrigeration. It provides the lowest possible liquid-bath temperature and produces superconductivity in certain materials. Its superfluid effects are used in superconducting magnets.

  15. Radiation source for helium magnetometers

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E. (Inventor)

    1991-01-01

    A radiation source (12) for optical magnetometers (10) which use helium isotopes as the resonance element (30) includes an electronically pumped semiconductor laser (12) which produces a single narrow line of radiation which is frequency stabilized to the center frequency of the helium resonance line to be optically pumped. The frequency stabilization is accomplished using electronic feedback (34, 40, 42, 44) to control a current sources (20) thus eliminating the need for mechanical frequency tuning.

  16. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    NASA Technical Reports Server (NTRS)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  17. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  18. Tropical Greenhouse Measurements of Volatile Organic Compounds Using Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectromety (PTR-TOF-MS)

    NASA Astrophysics Data System (ADS)

    Veres, P.; Auld, J.; Williams, J.

    2012-04-01

    In this presentation, we will summarize the results of measurements made in an approximately 1300 m3 tropical greenhouse at the Johannes Gutenberg University botanical garden in Mainz Germany conducted over a one month period. The greenhouse is home to a large variety of plant species from hot and humid regions of the world. The greenhouse is also host to several crops such as Cocoa and Cola Nut as well as ornamental plants. A particular focus of the species maintained are those which are considered ant plants, or plants which have an intimate relationship with ants in tropical habitats. Volatile organic compounds (VOCs) were measured using a Switchable Reagent Ion Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) using H3O+, NO+, and O2+ ion chemistry. Measurements will be presented both for primary emissions observed in the closed greenhouse atmosphere as well as the oxidation products observed after the introduction of ambient ozone. The high resolving power (5000 m/Δm) of the time-of-flight instrument allows for the separation of isobaric species. In particular, both isoprene (68.1170 amu) and furan (68.0740 amu) were observed and separated as primary emissions during this study. The significance of this will be discussed in terms of both atmospheric implications as well as with respect to previous measurements of isoprene obtained using quadrupole PTR-MS where isobaric separation of these compounds is not possible. Additionally observed species (e.g. Methanol, Acetaldehyde, MVK and MEK) will be discussed in detail with respect to their behavior as a function of light, temperature and relative humidity. The overall instrument performance of the PTR-TOF-MS technique using the H3O+, NO+, and O2+ primary ions for the measurement of VOCs will be evaluated.

  19. Carbon Shell or Core Ignitions in White Dwarfs Accreting from Helium Stars

    NASA Astrophysics Data System (ADS)

    Brooks, Jared; Bildsten, Lars; Schwab, Josiah; Paxton, Bill

    2016-04-01

    White dwarfs accreting from helium stars can stably burn at the accreted rate and avoid the challenge of mass loss associated with unstable helium burning that is a concern for many SNe Ia scenarios. We study binaries with helium stars of mass 1.25{M}ȯ ≤slant {M}{{He}}≤slant 1.8{M}ȯ , which have lost their hydrogen rich envelopes in an earlier common envelope event and now orbit with periods ({P}{{orb}}) of several hours with non-rotating 0.84 and 1.0{M}ȯ C/O WDs. The helium stars fill their Roche lobes after exhaustion of central helium and donate helium on their thermal timescales (∼ {10}5 years). As shown by others, these mass transfer rates coincide with the steady helium burning range for WDs, and grow the WD core up to near the Chandrasekhar mass ({M}{{Ch}}) and a core carbon ignition. We show here, however, that many of these scenarios lead to an ignition of hot carbon ashes near the outer edge of the WD and an inward going carbon flame that does not cause an explosive outcome. For {P}{{orb}}=3 hr, 1.0{M}ȯ C/O WDs with donor masses {M}{{He}}≳ 1.8{M}ȯ experience a shell carbon ignition, while {M}{{He}}≲ 1.3{M}ȯ will fall below the steady helium burning range and undergo helium flashes before reaching core C ignition. Those with 1.3{M}ȯ ≲ {M}{{He}}≲ 1.7{M}ȯ will experience a core C ignition. We also calculate the retention fraction of accreted helium when the accretion rate leads to recurrent weak helium flashes.

  20. Helium superfluidity. Shapes and vorticities of superfluid helium nanodroplets.

    PubMed

    Gomez, Luis F; Ferguson, Ken R; Cryan, James P; Bacellar, Camila; Tanyag, Rico Mayro P; Jones, Curtis; Schorb, Sebastian; Anielski, Denis; Belkacem, Ali; Bernando, Charles; Boll, Rebecca; Bozek, John; Carron, Sebastian; Chen, Gang; Delmas, Tjark; Englert, Lars; Epp, Sascha W; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Hexemer, Alexander; Huth, Martin; Kwok, Justin; Leone, Stephen R; Ma, Jonathan H S; Maia, Filipe R N C; Malmerberg, Erik; Marchesini, Stefano; Neumark, Daniel M; Poon, Billy; Prell, James; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Seifrid, Martin; Siefermann, Katrin R; Sturm, Felix P; Swiggers, Michele; Ullrich, Joachim; Weise, Fabian; Zwart, Petrus; Bostedt, Christoph; Gessner, Oliver; Vilesov, Andrey F

    2014-08-22

    Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets. PMID:25146284

  1. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  2. Hydrogen and helium excitation by EUV radiation for the production of white-light flares

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Milkey, R. W.; Thompson, W. T.

    1988-01-01

    Non-LTE radiative transfer calculations for hydrogen and helium in a simple model atmosphere are used to demonstrate that EUV radiation cannot be the main energy source for white-light flares. The opacities in the Lyman continuum and the helium I and II continua are found to be much larger than the enhanced opacity in the visible hydrogen continuum. It is shown that the EUV radiation is absorbed before it can have a significant effect on the visible light continuum.

  3. International solar polar mission: The vector helium magnetometer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The functional requirements for the vector helium magnetometer (VHM) on the Solar Polar spacecraft are presented. The VHM is one of the two magnetometers on board that will measure the vector magnetic field along the Earth to Jupiter transfer trajectory, as well as in the vicinity of Jupiter and along the solar polar orbit following the Jupiter encounter. The interconnection between these two magnetometers and their shared data processing unit is illustrated.

  4. Rogue mantle helium and neon.

    PubMed

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting. PMID:18202257

  5. HELIUM CORE WHITE DWARFS IN CATACLYSMIC VARIABLES

    SciTech Connect

    Shen, Ken J.; Bildsten, Lars; Idan, Irit

    2009-11-01

    Binary evolution predicts a population of helium core (M < 0.5 M{sub sun}) white dwarfs (WDs) that are slowly accreting hydrogen-rich material from low-mass main-sequence or brown dwarf donors with orbital periods less than 4 hr. Four binaries are presently known in the Milky Way that will reach such a mass-transferring state in a few Gyr. Despite these predictions and observations of progenitor binaries, there are still no secure cases of helium core WDs among the mass-transferring cataclysmic variables. This led us to calculate the fate of He WDs once accretion begins at a rate M-dot<10{sup -10}M-odot yr{sup -1} set by angular momentum losses. We show here that the cold He core temperatures (T{sub c} < 10{sup 7} K) and low M-dot thermonuclear runaway. Shara and collaborators noted that these large accumulated masses may lead to exceptionally long classical nova (CN) events. For a typical donor star of 0.2 M{sub sun}, such binaries will only yield a few hundred CNe, making these events rare among all CNe. We calculate the reheating of the accreting WD, allowing a comparison to the measured WD effective temperatures in quiescent dwarf novae and raising the possibility that WD seismology may be the best way to confirm the presence of a He WD. We also find that a very long (>1000 yr) stable burning phase occurs after the CN outburst, potentially explaining enigmatic short orbital period supersoft sources like RX J0537-7034 (P{sub orb} = 3.5 hr) and 1E 0035.4-7230 (P{sub orb} = 4.1 hr).

  6. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  7. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  8. D0 Silicon Upgrade: Commissioning Test Results for D-Zero's Helium Refrigerator

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1997-06-30

    The test objectives are: (1) Make liquid helium and measure refrigerator capacity; (2) Measure liquid helium dewar heat leak, transfer line heat leak, and liquid nitrogen consumption rates; (3) Operate all cryogenic transfer lines; (4) Get some running time on all components; (5) Debug mechanical components, instrumentation, DMACs user interface, tune loops, and otherwise shake out any problems; (6) Get some operating time in to get familiar with system behavior; (7) Revise and/or improve operating procedures to actual practice; and (8) Identify areas for future improvement. D-Zero's stand alone helium refrigerator (STAR) liquified helium at a rate of 114 L/hr. This is consistent with other STAR installations. Refrigeration capacity was not measured due to lack of a calibrated heat load. Measured heat leaks were within design values. The helium dewar loss was measured at 2 to 4 watts or 9% per day, the solenoid and VLPC helium transfer lines had a heat leak of about 20 watts each. The liquid nitrogen consumption rates of the mobile purifier, STAR, and LN2 subcooler were measured at 20 gph, 20 to 64 gph, and 3 gph respectively. All cryogenic transfer lines including the solenoid and visible light photon counter (VLPC) transfer lines were cooled to their cryogenic operating temperatures. This included independent cooling of nitrogen shields and liquid helium components. No major problems were observed. The system ran quite well. Many problems were identified and corrected as they came up. Areas for improvement were noted and will be implemented in the future. The instrumentation and control system operated commendably during the test. The commissioning test run was a worthwhile and successful venture.

  9. Photoinduced charge, ion & energy transfer processes at transition-metal coordination compounds anchored to mesoporous, nanocrystalline metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ardo, Shane

    Photovoltaics provide a direct means of converting photons into useful, electric power; however traditional silicon-based technologies are too expensive for global commercialization. Dye-sensitized mesoporous semiconducting thin films, when utilized in regenerative photoelectrochemical cells, are one category of next generation photovoltaics that could eventually circumvent this issue. In fact, their architecture also affords a clear platform for implementation of a direct, solar fuel-forming system. The mechanisms involved in the myriad of molecular processes that occur in these molecular--solid-state hybrid materials are poorly understood. Thus, the overriding goal of this dissertation was to evaluate sensitized mesoporous, nanocrystalline metal-oxide thin films critically so as to elucidate mechanistic phenomena. Using transient and steady-state absorption and emission spectroscopies as well as (photo)electrochemistry, various previously unobserved processes have been identified. Chapter 2 demonstrates for the first time that the electric fields emanating from these charged thin films affect surface-anchored molecular sensitizers via a Stark effect. In most cases, further, but incomplete, ionic screening of the charged nanoparticles from the sensitizers, as non-Faradaic electrolyte redistribution, was spectroscopically inferred after rapid semiconductor charging. Chapter 3 highlights the reactivity of Co(I) coordination-compound catalysts anchored to anatase TiO2 thin-film electrodes. Visible-light excitation resulted in prompt excited-state electron injection into TiO2 while introduction of benzylbromide into the fluid solution surrounding the thin film led to a 2e--transfer, oxidative-addition reaction to Co1 forming a stable Co--benzyl product. Subsequent visible-light excitation initiated a photocatalytic cycle for C--C bond formation. Unique to the nanocrystalline thin films employed here, Chapter 4 demonstrates that traditional time-resolved polarization

  10. Performance of BNL-TSTA compound cryopump

    SciTech Connect

    Hseuh, H C; Worwetz, H A

    1980-01-01

    A compound cryopump using cryocondensation pumping for hydrogen isotopes and cryosorption pumping with coconut charcoal as adsorbent for helium was designed. This compound cryopump was subsequently built (by Janis Research, Stoneham, MA) and has been tested at Brookhaven, fulfilling the design requirements and are delivered to Tritium Systems Test Assembly (TSTA) Vacuum Facility at Los Alamos Scientific Laboratory (LASL) for on-line operations.