Science.gov

Sample records for helium dilution effect

  1. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  2. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  3. A Microgravity Helium Dilution Cooler

    NASA Technical Reports Server (NTRS)

    Roach, Pat R.; Sperans, Joel (Technical Monitor)

    1994-01-01

    We are developing a He-3-He-4 dilution cooler to operate in microgravity. It uses charcoal adsorption pumps and heaters for its operation; it has no moving parts. It currently operates cyclically to well below 0.1 K and we have designed a version to operate continuously. We expect that the continuous version will be able to provide the long-duration cooling that many experiments need at temperatures down to 0.040 K. More importantly, such a dilution cooler could provide the precooling that enables the use of adiabatic demagnetization techniques that can reach temperatures below 0.001 K. At temperatures below 0.002 K many fascinating microgravity experiments on superfluid He-3 become possible. Among the possibilities are: research into a superfluid He-3 gyroscope, study of the nucleation of the B-phase of superfluid He-3 when the sample is floating out of contact with walls, study of the anisotropy of the surface tension of the B-phase, and NMR experiments on tiny free-floating clusters of superfluid He-3 atoms that should model the shell structure of nuclei.

  4. Helium 3/Helium 4 dilution cryocooler for space

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.; Dingus, Michael L.

    1991-01-01

    Prototype dilution cryocoolers based on dilution refrigeration and adiabatic demagnetization refrigeration (ADR) cycles were designed, constructed, and tested. Although devices the devices did not operate as fully functional dilution cryocoolers, important information was gathered. The porous metal phase separator was demonstrated to operate in the -1-g configuration; this phase separation is the critical element in the He-3 circulation dilution cryocooler. Improvements in instrumentation needed for additional tests and development were identified.

  5. A helium-3/helium-4 dilution cryocooler for operation in zero gravity

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.

    1988-01-01

    This research effort covered the development of He-3/He-4 dilution cryocooler cycles for use in zero gravity. The dilution cryocooler is currently the method of choice for producing temperatures below 0.3 Kelvin in the laboratory. However, the current dilution cryocooler depends on gravity for their operation, so some modification is required for zero gravity operation. In this effort, we have demonstrated, by analysis, that the zero gravity dilution cryocooler is feasible. We have developed a cycle that uses He-3 circulation, and an alternate cycle that uses superfluid He-4 circulation. The key elements of both cycles were demonstrated experimentally. The development of a true 'zero-gravity' dilution cryocooler is now possible, and should be undertaken in a follow-on effort.

  6. Influence of helium dilution of silane on microstructure and opto-electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by HW-CVD

    SciTech Connect

    Waman, V.S.; Kamble, M.M.; Ghosh, S.S.; Hawaldar, R.R.; Amalnerkar, D.P.; Sathe, V.G.; Gosavi, S.W.; Jadkar, S.R.

    2012-11-15

    Highlights: ► nc-Si:H films synthesized using HW-CVD method from silane and helium gas mixture without hydrogen. ► Volume fraction of crystallites and its size in the films decreases with increase in He dilution of SiH{sub 4}. ► Increase in Urbach energy and defect density with increase in He dilution of SiH{sub 4}. ► Increasing He dilution, hydrogen bonding in the films shifts from Si-H{sub 2} and (Si-H{sub 2}){sub n} complexes to Si-H. ► Hydrogen content films were found to be <2.2 at.% but the bandgap remains as high as 2.0 eV or even more. -- Abstract: We report influence of helium dilution of silane in hot wire chemical vapor deposition for hydrogenated nano-crystalline silicon films. Structural properties of these films have been investigated by using Raman spectroscopy, low angle x-ray diffraction, Fourier transform infra-red spectroscopy and non-contact atomic force microscopy. Optical characterization has been performed by UV–visible spectroscopy. It has been observed that in contrast to conventional plasma enhanced chemical vapor deposition, the addition of helium with silane in hot wire chemical vapor deposition has an adverse effect on the crystallinity and the material properties. Hydrogen content in the films was found <2.2 at.% whereas the bandgap remain as high as 2 eV or more. Increase in Urbach energy and defect density also suggests the deterioration effect of helium on material properties. The possible reasons for the deterioration of crystallinity and the material properties have been discussed.

  7. Isotopic and Symmetry Effects in the Collision of Atomic Helium

    NASA Astrophysics Data System (ADS)

    Bouledroua, Moncef; Bouchelaghem, Fouzia; Tahar Bouazza, M.; Reggami, Lamia

    2006-11-01

    The thermophysical properties of a helium dilute gas at low and high temperatures are revisited with new and recent potential data points. The second virial coefficients are computed in order to assess the accuracy of the constructed He-He potentials. The results, mainly at high temperatures, are in a good agreement with the published values. The isotopic effects due to the presence of ^4He and ^3He atoms are also examined and the calculations of various transport parameters, namely diffusion, viscosity, and thermal conductivity, are extended to include the nuclear spins and the symmetry effects, which arise from the identity and indistinguishability of the colliding atoms.

  8. Declining ecosystem health and the dilution effect.

    PubMed

    Khalil, Hussein; Ecke, Frauke; Evander, Magnus; Magnusson, Magnus; Hörnfeldt, Birger

    2016-01-01

    The "dilution effect" implies that where species vary in susceptibility to infection by a pathogen, higher diversity often leads to lower infection prevalence in hosts. For directly transmitted pathogens, non-host species may "dilute" infection directly (1) and indirectly (2). Competitors and predators may (1) alter host behavior to reduce pathogen transmission or (2) reduce host density. In a well-studied system, we tested the dilution of the zoonotic Puumala hantavirus (PUUV) in bank voles (Myodes glareolus) by two competitors and a predator. Our study was based on long-term PUUV infection data (2003-2013) in northern Sweden. The field vole (Microtus agrestis) and the common shrew (Sorex araneus) are bank vole competitors and Tengmalm's owl (Aegolius funereus) is a main predator of bank voles. Infection probability in bank voles decreased when common shrew density increased, suggesting that common shrews reduced PUUV transmission. Field voles suppressed bank vole density in meadows and clear-cuts and indirectly diluted PUUV infection. Further, Tengmalm's owl decline in 1980-2013 may have contributed to higher PUUV infection rates in bank voles in 2003-2013 compared to 1979-1986. Our study provides further evidence for dilution effect and suggests that owls may have an important role in reducing disease risk. PMID:27499001

  9. Declining ecosystem health and the dilution effect

    PubMed Central

    Khalil, Hussein; Ecke, Frauke; Evander, Magnus; Magnusson, Magnus; Hörnfeldt, Birger

    2016-01-01

    The “dilution effect” implies that where species vary in susceptibility to infection by a pathogen, higher diversity often leads to lower infection prevalence in hosts. For directly transmitted pathogens, non-host species may “dilute” infection directly (1) and indirectly (2). Competitors and predators may (1) alter host behavior to reduce pathogen transmission or (2) reduce host density. In a well-studied system, we tested the dilution of the zoonotic Puumala hantavirus (PUUV) in bank voles (Myodes glareolus) by two competitors and a predator. Our study was based on long-term PUUV infection data (2003–2013) in northern Sweden. The field vole (Microtus agrestis) and the common shrew (Sorex araneus) are bank vole competitors and Tengmalm’s owl (Aegolius funereus) is a main predator of bank voles. Infection probability in bank voles decreased when common shrew density increased, suggesting that common shrews reduced PUUV transmission. Field voles suppressed bank vole density in meadows and clear-cuts and indirectly diluted PUUV infection. Further, Tengmalm’s owl decline in 1980–2013 may have contributed to higher PUUV infection rates in bank voles in 2003–2013 compared to 1979–1986. Our study provides further evidence for dilution effect and suggests that owls may have an important role in reducing disease risk. PMID:27499001

  10. Synergistic effects in hydrogen-helium bubbles.

    PubMed

    Hayward, Erin; Deo, Chaitanya

    2012-07-01

    The detrimental effects of hydrogen and helium on structural materials undergoing irradiation are well documented, if not well understood. There is experimental evidence to suggest that a synergistic effect between the two elements exists, which results in increased damage when both are present. This situation is expected in the next generation of fusion and fission reactors, so a fundamental understanding of these synergistic interactions is needed to predict materials performance. We perform atomistic simulations of hydrogen and helium bubbles in body-centered cubic iron to determine the mechanism behind this effect. We first develop an interatomic potential suitable for describing the interactions between hydrogen and helium. Through analysis of the energetics and structure of these bubbles, we explain the observed synergy as a consequence of bubble growth through helium induced loop punching, aided by the presence of hydrogen, instead of as a direct interaction between hydrogen and helium. The hydrogen benefits from an increased area of free surface on which to bind. PMID:22691382

  11. THE ANISOTROPIC TRANSPORT EFFECTS ON DILUTE PLASMAS

    SciTech Connect

    Devlen, Ebru

    2011-04-20

    We examine the linear stability analysis of a hot, dilute, and differentially rotating plasma by considering anisotropic transport effects. In dilute plasmas, the ion Larmor radius is small compared with its collisional mean free path. In this case, the transport of heat and momentum along the magnetic field lines becomes important. This paper presents a novel linear instability that may be more powerful and greater than ideal magnetothermal instability and ideal magnetorotational instability in the dilute astrophysical plasmas. This type of plasma is believed to be found in the intracluster medium (ICM) of galaxy clusters and radiatively ineffective accretion flows around black holes. We derive the dispersion relation of this instability and obtain the instability condition. There is at least one unstable mode that is independent of the temperature gradient direction for a helical magnetic field geometry. This novel instability is driven by the gyroviscosity coupled with differential rotation. Therefore, we call it gyroviscous-modified magnetorotational instability (GvMRI). We examine how the instability depends on signs of the temperature gradient and the gyroviscosity and also on the magnitude of the thermal frequency and on the values of the pitch angle. We provide a detailed physical interpretation of the obtained results. The GvMRI is applicable not only to the accretion flows and ICM but also to the transition region between cool dense gas and the hot low-density plasma in stellar coronae, accretion disks, and the multiphase interstellar medium because it is independent of the temperature gradient direction.

  12. Nitrogen dilution effect on the flammability limits for hydrocarbons.

    PubMed

    Chen, Chan-Cheng; Wang, Tzu-Chi; Liaw, Horng-Jang; Chen, Hui-Chu

    2009-07-30

    Theoretical models to predict the upper/lower flammability limits of hydrocarbons diluted with inert nitrogen gas are proposed in this study. It is found that there are linear relations between the reciprocal of the upper/lower flammability limits and the reciprocal of the molar fraction of hydrocarbon in the hydrocarbon/inert nitrogen mixture. Such linearity is examined by experimental data reported in the literature, which include the cases of methane, propane, ethylene and propylene. The R-squared values (R(2)) of the regression lines of the cases explored are all greater than 0.989 for upper flammability limit (UFL). The theoretical slope of the predictive line for lower flammability limit (LFL) is found to be very close to zero for all explored cases; and this result successfully explains the experimental fact that adding inert nitrogen to a flammable material has very limited effect on LFL. Because limit oxygen concentration (LOC) could be taken as the intersectional point of the UFL curve and LFL curve, a LOC-based method is proposed to predict the slope of the UFL curve when experimental data of UFL are not available. This LOC-based method predicts the UFL with average error ranging from 2.17% to 5.84% and maximum error ranging from 8.58% to 12.18% for the cases explored. The predictive models for inert gas of nitrogen are also extended to the case of inert gas other than nitrogen. Through the extended models, it was found that the inert ability of an inert gas depends on its mean molar heat capacity at the adiabatic flame temperature. Theoretical calculation shows that the inert abilities of carbon dioxide, steam, nitrogen and helium are in the following order: carbon dioxide>steam>nitrogen>helium; and this sequence conforms to the existing experimental data reported in the literature. PMID:19144467

  13. The effects of convective overshooting on naked helium stars

    NASA Astrophysics Data System (ADS)

    Yan, Jing-Zhi; Zhu, Chun-Hua; Wang, Zhao-Jun; Lü, Guo-Liang

    2016-09-01

    Using stellar evolutionary models, we investigate the effects of convective overshooting on naked helium stars. We find that a larger value of overshooting parameter δov results in a larger convective core, which prolongs the lifetimes of naked helium stars on the helium main sequence and leads to higher effective temperatures and luminosities. For naked helium stars with masses lower than about 0.8 M⊙, they hardly become giant stars as a result of a weak burning shell. However, naked helium stars with masses between about 0.8 M⊙ and 1.1 M⊙ can evolve into giant branch phases, and finally become carbon oxygen white dwarfs.

  14. The Effect of Dilution on the Structure of Microbial Communities

    NASA Technical Reports Server (NTRS)

    Mills, Aaron L.

    2000-01-01

    To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.

  15. HELIUM EFFECTS ON DISPLACEMENT CASCADE IN TUNGSTEN

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.; Wirth, Brian D.

    2013-09-30

    Molecular dynamics (MD) simulations were performed to investigate He effects on displacement cascades in W. Helium content, proportion of interstitial and substitutional He and temperature were varied to reveal the various effects. The effect of interstitial He on the number of self-interstitial atoms (SIAs) produced during cascade damage appears to be insignificant. However, interstitial He tends to fill a vacancy (V). Nevertheless, this process is less favorable than SIA-V recombination particularly when excess SIAs are present before a cascade. The efficiency of He filling and SIA-V recombination increases as temperature increases due to increased point defect mobility. Likewise, substitutional He is more susceptible to displacement during a collision cascade than W. This susceptibility increases towards higher temperatures. Consequently, the number of surviving V is governed by the interplay between displaced substitutional He and SIA-V recombination. The temperature dependence of these processes results in a minimum number of V reached at an intermediate temperature.

  16. Biodiversity inhibits parasites: Broad evidence for the dilution effect

    PubMed Central

    Civitello, David J.; Cohen, Jeremy; Fatima, Hiba; Halstead, Neal T.; Liriano, Josue; McMahon, Taegan A.; Ortega, C. Nicole; Sauer, Erin Louise; Sehgal, Tanya; Young, Suzanne; Rohr, Jason R.

    2015-01-01

    Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant–herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production. PMID:26069208

  17. Can the single-breath helium dilution method predict lung volumes as measured by whole-body plethysmography?*

    PubMed Central

    Coertjens, Patrícia Chaves; Knorst, Marli Maria; Dumke, Anelise; Pasqualoto, Adriane Schmidt; Riboldi, João; Barreto, Sérgio Saldanha Menna

    2013-01-01

    OBJECTIVE: To compare TLC and RV values obtained by the single-breath helium dilution (SBHD) method with those obtained by whole-body plethysmography (WBP) in patients with normal lung function, patients with obstructive lung disease (OLD), and patients with restrictive lung disease (RLD), varying in severity, and to devise equations to estimate the SBHD results. METHODS: This was a retrospective cross-sectional study involving 169 individuals, of whom 93 and 49 presented with OLD and RLD, respectively, the remaining 27 having normal lung function. All patients underwent spirometry and lung volume measurement by both methods. RESULTS: TLC and RV were higher by WBP than by SBHD. The discrepancy between the methods was more pronounced in the OLD group, correlating with the severity of airflow obstruction. In the OLD group, the correlation coefficient of the comparison between the two methods was 0.57 and 0.56 for TLC and RV, respectively (p < 0.001 for both). We used regression equations, adjusted for the groups studied, in order to predict the WBP values of TLC and RV, using the corresponding SBHD values. It was possible to create regression equations to predict differences in TLC and RV between the two methods only for the OLD group. The TLC and RV equations were, respectively, ∆TLCWBP-SBHD in L = 5.264 − 0.060 × FEV1/FVC (r2 = 0.33; adjusted r2 = 0.32) and ∆RVWBP-SBHD in L = 4.862 − 0.055 × FEV1/FVC (r2 = 0.31; adjusted r2 = 0.30). CONCLUSIONS: The correction of TLC and RV results obtained by SBHD can improve the accuracy of this method for assessing lung volumes in patients with OLD. However, additional studies are needed in order to validate these equations. PMID:24473761

  18. Magnetopolaron effect in diluted semimagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Tarasov, Georgiy G.; Mazur, Yuri I.; Rakitin, Andrey S.; Lavoric, S. R.; Tomm, Jens W.; Hoerstel, W.

    1997-08-01

    Phonon-assisted self-trapping of free carrier is considered in diluted semimagnetics. It is shown that the binding energy of free magnetic polaron can be substantially larger when the 'spin-phonon' coupling is taken into account. For the particular case of 'soft' lattice dynamics the region of stability for hole-induced polaron can be promoted to the temperature of tenths of degrees and magnetic field of a few Tesla. The possible hybridized excitations with the partition of free magnetic polaron are discussed in semimagnetic semiconductors.

  19. The effect of displacement cascades on small helium bubbles in aluminum and gold

    SciTech Connect

    Donnelly, S.E.; Valizadeh, R.; Vishnyakov, V.; Birtcher, R.C.; Templier, C.

    1994-12-01

    The evolution of individual helium bubbles in thin foils of gold and aluminum irradiated with 400 keV Ar+ and 200 keV Xe+ has been followed with in-situ transmission electron microscopy for a comparison between the effects of dilute (Al) and dense (Au) collision cascades. Bubble shrinkage in Al has been attributed to direct displacement of the gas out of the bubbles. Effects in Au, include the disappearance and Brownian motion of bubbles under irradiation, and are consistent with thermal spike processes seen in molecular dynamics simulations.

  20. [Effect of Helium on Diamond Films Deposited Using Microwave PCVD].

    PubMed

    Cao, Wei; Ma, Zhi-bin; Tao, Li-ping; Gao, Pan; Li, Yi-cheng; Fu, Qiu-ming

    2015-03-01

    Optical emission spectroscopy (OES) was used to in situ diagnose the CH4-H2-He plasma in order to know the effect of helium on the diamond growth by microwave plasma chemical vapor deposition (MPCVD). The spatial distribution of radicals in the plasma as a function of helium addition was studied. The diamond films deposited in different helium volume fraction were investigated using scanning electron microscope (SEM) and Raman spectroscopy. The results show that the spectra intensity of radicals of H(α), H(β), H(γ), CH and C2 increases with the increasing of helium volume fraction, especially, that of radical H(α) has the most improvement. The spectrum space diagnosis results show that the uniformity of C2, CH radicals in the plasma tends to poor due to the helium addition and resulted in a different thickness along the radial direction The measurement of deposition rate shows that the addition of helium is useful for the improvement of the growth rate of diamond films, due to relative concentration of carbon radicals was increased. The deposition rate increases by 24% when the volume fraction of He was increased from 0 vol. % to 4.7 vol.%. The micrographs of SEM reveal that with the increasing of helium volume fraction, the diamond films' crystallite orientation changes from (111) to disorder and a twins growth becomes obvious. The secondary nucleation density during growth increases because the high relatively concentration of C2 radicals under higher helium volume fraction (4.7 vol. %). In addition, the substrate was etched and sputtered by the plasma, which introduced metallic atoms into the plasma during the deposition of diamond films. Eventually, the existing of secondary nucleation and impurity atoms lead to the appearance of twins and results in the compressive dress. PMID:26117884

  1. Coffee-ring effect beyond the dilute limit

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Ryu, Seul-A.; Kim, Hyungdae; Kim, Joon Heon; Park, Jung Su; Park, Yong Seok; Oh, Jeong Su; Weon, Byung Mook

    2015-11-01

    The coffee-ring effect, which is a natural generation of outward capillary flows inside drying coffee drops, is valid at the dilute limit of initial solute concentrations. If the solute is not dilute, the ring deposit is forced to have a non-zero width; higher initial concentration leads to a wider ring. Here we study the coffee-ring effect in the dense limit by demonstrating differences with various initial coffee concentrations from 0.1% to 60%. The coffee drops with high initial concentrations of real coffee particles show interesting evaporation dynamics: dense coffee drops tend to evaporate slowly. This result is different from the classic coffee-ring effect in the dilute limit. We suppose that the slow evaporation of dense coffee drops is associated with the ring growth dynamics. The coffee-ring effect becomes more significant in modern technologies such as self-assembly of nanoparticles, ink-jet printing, painting and ceramics. The complexity in evaporation dynamics of colloidal fluids would be able to be understood by expanding the coffee-ring effects in the dilute as well as the dense limits.

  2. Effect of Helium Elasticity on Torsional Oscillator Measurements

    NASA Astrophysics Data System (ADS)

    Maris, Humphrey J.; Balibar, Sebastien

    2011-01-01

    In 2004 Kim and Chan performed a torsional oscillator measurement of the rotational inertia of solid helium-4. They found frequency changes which were interpreted in terms of a non-classical rotational inertia, that is a partial superfluidity or "supersolidity" of solid helium-4. Since then there have been many further studies using various versions of this technique. One important question that arises in these experiments is the possible effect on the oscillator frequency of changes in the elasticity of the solid helium; this can produce a change in frequency that adds to any effect due to superfluidity. In this paper we give a general discussion of the effect of changes in elasticity on the oscillator frequency and consider how the magnitude of the effect is influenced by the oscillator design. Our results should help make it possible to discriminate between frequency changes due to changes in elasticity and changes due to supersolidity.

  3. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  4. Development of High Quality 1.36 eV Amorphous SiGe:H Alloy by RF Glow Discharge under Helium Dilution

    NASA Astrophysics Data System (ADS)

    Hazra, Sukti; Middya, Abdul; Rath, Jatindra; Basak, Subhashis; Ray, Swati

    1995-11-01

    The use of 1.35 eV amorphous silicon-germanium (a-SiGe:H) alloy as the second/third intrinsic layer along with 1.85 eV front layer in double/triple tandem solar cells is believed to be the best combination for the maximum power output for multijunction cells. In this study high quality low-band-gap (1.36 eV) a-SiGe:H alloy has been developed by RF glow discharge optimizing the deposition parameters and helium dilution of source gases. It has been observed that the structural, electronic properties and defect densities of alloy films developed under the deposition condition which is the transition from low-discharge-power to high-discharge-power regime, become optimum. In the present case this deposition condition is a combination of chamber pressure 0.8 Torr and RF power 60 mW/cm2. The properties of the alloy films developed under helium dilution improve and defect density decreases with the increase of deposition rate up to 120 Å/min. The 1.36 eV alloy film prepared under this condition has very low defect density ( 3.2×1016 cm-3 eV-1). The analysis of spectral response of Pd/a-SiGe:H Schottky barrier solar cells reveals that the hole transport properties improve due to increase of RF power from 15 to 60 mW/cm2 and also due to increase of growth rate from 51 to 120 Å/min.

  5. Effect of helium on tensile properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Billone, M.C.; Smith, D.L.

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  6. The Dilution Effect and Information Integration in Perceptual Decision Making.

    PubMed

    Hotaling, Jared M; Cohen, Andrew L; Shiffrin, Richard M; Busemeyer, Jerome R

    2015-01-01

    In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects. PMID:26406323

  7. The Dilution Effect and Information Integration in Perceptual Decision Making

    PubMed Central

    Hotaling, Jared M.; Cohen, Andrew L.; Shiffrin, Richard M.; Busemeyer, Jerome R.

    2015-01-01

    In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects. PMID:26406323

  8. UV fluxes and effective temperatures of extreme helium stars

    NASA Technical Reports Server (NTRS)

    Schoenberner, D.; Drilling, J. S.; Lynas-Gray, A. E.; Heber, U.

    1982-01-01

    Low resolution IUE spectra of a complete ensemble of extreme helium stars are presented and their appearance in comparison with normal stars is discussed. Effective temperatures from these observations by means of line blanketed model atmospheres are determined. It is found that the temperatures are in accordance with earlier results from ground based observations.

  9. High-dilution effects revisited. 1. Physicochemical aspects.

    PubMed

    Bellavite, Paolo; Marzotto, Marta; Olioso, Debora; Moratti, Elisabetta; Conforti, Anita

    2014-01-01

    Several lines of evidence suggest that homeopathic high dilutions (HDs) can effectively have a pharmacological action, and so cannot be considered merely placebos. However, until now there has been no unified explanation for these observations within the dominant paradigm of the dose-response effect. Here the possible scenarios for the physicochemical nature of HDs are reviewed. A number of theoretical and experimental approaches, including quantum physics, conductometric and spectroscopic measurements, thermoluminescence, and model simulations investigated the peculiar features of diluted/succussed solutions. The heterogeneous composition of water could be affected by interactive phenomena such as coherence, epitaxy and formation of colloidal nanobubbles containing gaseous inclusions of oxygen, nitrogen, carbon dioxide, silica and, possibly, the original material of the remedy. It is likely that the molecules of active substance act as nucleation centres, amplifying the formation of supramolecular structures and imparting order to the solvent. Three major models for how this happens are currently being investigated: the water clusters or clathrates, the coherent domains postulated by quantum electrodynamics, and the formation of nanoparticles from the original solute plus solvent components. Other theoretical approaches based on quantum entanglement and on fractal-type self-organization of water clusters are more speculative and hypothetical. The problem of the physicochemical nature of HDs is still far from to be clarified but current evidence strongly supports the notion that the structuring of water and its solutes at the nanoscale can play a key role. PMID:24439452

  10. Studies of the effects of curvature on dilution jet mixing

    NASA Astrophysics Data System (ADS)

    Holdeman, James D.; Srinivasan, Ram; Reynolds, Robert S.; White, Craig D.

    1992-02-01

    An analytical program was conducted using both three-dimensional numerical and empirical models to investigate the effects of transition liner curvature on the mixing of jets injected into a confined crossflow. The numerical code is of the TEACH type with hybrid numerics; it uses the power-law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. From the results of the numerical calculations, an existing empirical model for the temperature field downstream of single and multiple rows of jets injected into a straight rectangular duct was extended to model the effects of curvature. Temperature distributions, calculated with both the numerical and empirical models, are presented to show the effects of radius of curvature and inner and outer wall injection for single and opposed rows of cool dilution jets injected into a hot mainstream flow.

  11. First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel

    NASA Astrophysics Data System (ADS)

    Hepburn, D. J.; Ferguson, D.; Gardner, S.; Ackland, G. J.

    2013-07-01

    An extensive set of first-principles density functional theory calculations have been performed to study the behavior of He, C, and N solutes in austenite, dilute Fe-Cr-Ni austenitic alloys, and Ni in order to investigate their influence on the microstructural evolution of austenitic steel alloys under irradiation. The results show that austenite behaves much like other face-centered cubic metals and like Ni in particular. Strong similarities were also observed between austenite and ferrite. We find that interstitial He is most stable in the tetrahedral site and migrates with a low barrier energy of between 0.1 and 0.2 eV. It binds strongly into clusters as well as overcoordinated lattice defects and forms highly stable He-vacancy (VmHen) clusters. Interstitial He clusters of sufficient size were shown to be unstable to self-interstitial emission and VHen cluster formation. The binding of additional He and V to existing VmHen clusters increases with cluster size, leading to unbounded growth and He bubble formation. Clusters with n/m around 1.3 were found to be most stable with a dissociation energy of 2.8 eV for He and V release. Substitutional He migrates via the dissociative mechanism in a thermal vacancy population but can migrate via the vacancy mechanism in irradiated environments as a stable V2He complex. Both C and N are most stable octahedrally and exhibit migration energies in the range from 1.3 to 1.6 eV. Interactions between pairs of these solutes are either repulsive or negligible. A vacancy can stably bind up to two C or N atoms with binding energies per solute atom up to 0.4 eV for C and up to 0.6 eV for N. Calculations in Ni, however, show that this may not result in vacancy trapping as VC and VN complexes can migrate cooperatively with barrier energies comparable to the isolated vacancy. This should also lead to enhanced C and N mobility in irradiated materials and may result in solute segregation to defect sinks. Binding to larger vacancy clusters

  12. Pinning Susceptibility: The Effect of Dilute, Quenched Disorder on Jamming

    NASA Astrophysics Data System (ADS)

    Graves, Amy L.; Nashed, Samer; Padgett, Elliot; Goodrich, Carl P.; Liu, Andrea J.; Sethna, James P.

    2016-06-01

    We study the effect of dilute pinning on the jamming transition. Pinning reduces the average contact number needed to jam unpinned particles and shifts the jamming threshold to lower densities, leading to a pinning susceptibility, χp . Our main results are that this susceptibility obeys scaling form and diverges in the thermodynamic limit as χp∝|ϕ -ϕc∞|-γp where ϕc∞ is the jamming threshold in the absence of pins. Finite-size scaling arguments yield these values with associated statistical (systematic) errors γp=1.018 ±0.026 (0.291 ) in d =2 and γp=1.534 ±0.120 (0.822 ) in d =3 . Logarithmic corrections raise the exponent in d =2 to close to the d =3 value, although the systematic errors are very large.

  13. Effects of dilution on vehicle emissions of primary particles

    NASA Astrophysics Data System (ADS)

    Hayden, K. L.; Li, S.; Liggio, G.; McCurdy, M.; Chan, T.; Rostkowski, J.

    2009-12-01

    Dilution of primary aerosols from vehicles into the ambient atmosphere can change their physical and chemical characteristics. In order to study these processes, experiments were conducted in an engine testing facility at Environment Canada in Ottawa, Ontario. Exhaust from a light duty diesel engine was vented into a constant volume sampling (CVS) system where it underwent primary dilution at an ambient temperature of 25oC, leading to a primary dilution ratio of 10-15. From the CVS, the exhaust was further diluted using a combination of a Dekati ejection diluter and mixing with zero air in a flow tube, achieving secondary dilution ratios of up to 3000. Particle and gas measurements were made through multi-ports in the CVS and the flow tube using an SMPS, FMPS, AMS, and SP2, and instruments to measure CO, CO2, NOx, and total hydrocarbons (THC). Preliminary results indicate that regardless of dilution ratios, primary particles contain significant amounts of organic material that appear to reside on small black carbon cores. With increasing dilution ratios, the primary particle sizes become progressively smaller, suggesting volatilization of the adsorbed organic material. Results from various engine operating modes (simulating different driving conditions) will be presented.

  14. The Helium Field Effect Transistor (I): Storing Surface State Electrons on Helium Films

    NASA Astrophysics Data System (ADS)

    Ashari, M.; Rees, D. G.; Kono, K.; Scheer, E.; Leiderer, P.

    2012-04-01

    We present investigations of surface state electrons on liquid helium films in confined geometry, using a suitable substrate structure microfabricated on a silicon wafer, similar to a Field Effect Transistor (FET). The sample has a source and drain region, separated by a gate structure, which consists of two gold electrodes with a narrow gap (channel) through which the transport of the surface state electrons takes place. The sample is illuminated to provide a sufficient number of free carriers in the silicon substrate, such that a well-defined potential distribution is achieved. The eventual goal of these experiments is to study the electron transport through a narrow channel in the various states of the phase diagram of the 2D electron system. In the present work we focus on storing the electrons in the source area of the FET, and investigate the spatial distribution of these electrons. It is shown that under the influence of a potential gradient in the silicon substrate the electrons accumulate in front of the potential barrier of the gate. The electron distribution, governed by Coulomb repulsion and by the substrate potential, is determined experimentally. The result is found to be in good agreement with a parallel-plate capacitor model of the system, developed with the aid of a finite element calculation of the surface potential profile of the device.

  15. Spectrophotometry of extreme helium stars - Ultraviolet fluxes and effective temperatures

    NASA Technical Reports Server (NTRS)

    Heber, U.; Drilling, J. S.; Schoenberner, D.; Lynas-Gray, A. E.

    1984-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broadband photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broadband photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K. Previously announced in STAR as N83-24433

  16. Effect of dilute acid on the accelerated weathering of wood

    SciTech Connect

    Williams, R.S.

    1988-02-01

    Western red cedar (Thuja plicata) specimens were soaked in acid solutions to determine the effect of acid conditions (such as low pH fog) on the weathering of wood. Daily 1-hour soaking in dilute sulfurous, sulfuric, or nitric acid (pH 2.0, 2.5, 3.0, 3.5, or 4.0) increased the rate of accelerated (xenon arc) weathering of the specimens compared to controls soaked in distilled/deionized water. Weathering was manifested as the erosion rate of the wood surface and was determined gravimetrically be fitting the weight loss over time to a linear model. This method detected significant differences between acid-treated specimens and untreated controls within 300 hours of accelerated weathering. The erosion rate was dependent on the acid type and pH. Sulfurous acid treatment caused the fastest rate of erosion, followed by sulfuric then nitric acid. None of the acids affected the erosion rate at pH 3.5 or above. Below this threshold, the rate of erosion increased as the hydrogen ion concentration increased. Sugar analysis of residues from the acids and the distilled water used to soak the wood indicated acid-dependent degradation of polysaccharides.

  17. Effect of boundary conditions on the kinetics of helium release from structural materials

    NASA Astrophysics Data System (ADS)

    Zaluzhnyi, A. G.

    2015-11-01

    Gaseous products of nuclear reactions (specifically, helium) play a significant part in altering the material properties upon irradiation. It is known that atoms of inert gases promote the generation and growth of pores in irradiated materials and affect phenomena such as swelling, high-temperature irradiation embrittlement, etc. Therefore, a study of the behavior of helium (its production, accumulation, retention, and release) within structural materials is fairly topical. In order to validate the methods of express imitation of accumulation and retention of helium within structural materials under reactor irradiation, we perform a comparative analysis of the spectra of the rate of gas release from samples of austenitic steel 0Kh16N15M3B that were saturated with helium in different ways, i.e., through irradiation in a cyclotron, a magnetic massseparation setup, the IRT-2000 reactor, the BOR-60 reactor, and using the so-called tritium trick technique. The effect of the presence of dislocations and grain boundaries on the release of helium from materials is evaluated. The results of the research conducted show that the kinetics of helium release from samples saturated with helium through the bombardment with alpha particles of different energies, which ensures the simultaneous introduction of helium and radiation defects (in wide ranges of helium concentration and radiation damage) into the material lattice, is similar to the kinetics of helium release from samples irradiated in reactors.

  18. Effect of dilution of stool soluble component on growth and development of Strongyloides stercoralis

    PubMed Central

    Anamnart, Witthaya; Maleewong Intapan, Pewpan; Pattanawongsa, Attarat; Chamavit, Pennapa; Kaewsawat, Supreecha; Maleewong, Wanchai

    2015-01-01

    Dispersion or dilution of stool by water from heavy rainfall may affect Strongyloides stercoralis free-living development producing infective filariform larvae (FL). This study examined effect of water dilution of stool on survival of S. stercoralis free-living development. One g of stool was prepared in water so that its soluble component was diluted sequentially from 1:2 to 1:480. Three dishes were used to compare FL production in three culture conditions: stool suspension, stool sediment deposited in soil, and isolated rhabditiform larvae (RhL) deposited in soil. The fourth dish was for developmental observation of RhL into free-living stages. Numerous FL were generated from undiluted or 1:2 diluted stool and stool sediment placed on soil. However, starting from dilution 1:5, FL production continuously decreased in both stool suspensions and stool sediments placed on soil. RhL isolated from stool dilutions placed on soil gave rise to few FL. Worm mating were seen at 24-30 hours in dilutions 1:20-1:120 only. Highest numbers of FL from indirect free-living cycle were 1/3 of those from control. FL production decreased as stool dilution increased, and reached zero production at 1:160 dilution. Rainfall may disperse or dilute stool so that nutritional supplement for S. stercoralis free-living development is insufficient. PMID:26035061

  19. Effect of dilution of stool soluble component on growth and development of Strongyloides stercoralis.

    PubMed

    Anamnart, Witthaya; Intapan, Pewpan Maleewong; Pattanawongsa, Attarat; Chamavit, Pennapa; Kaewsawat, Supreecha; Maleewong, Wanchai

    2015-01-01

    Dispersion or dilution of stool by water from heavy rainfall may affect Strongyloides stercoralis free-living development producing infective filariform larvae (FL). This study examined effect of water dilution of stool on survival of S. stercoralis free-living development. One g of stool was prepared in water so that its soluble component was diluted sequentially from 1:2 to 1:480. Three dishes were used to compare FL production in three culture conditions: stool suspension, stool sediment deposited in soil, and isolated rhabditiform larvae (RhL) deposited in soil. The fourth dish was for developmental observation of RhL into free-living stages. Numerous FL were generated from undiluted or 1:2 diluted stool and stool sediment placed on soil. However, starting from dilution 1:5, FL production continuously decreased in both stool suspensions and stool sediments placed on soil. RhL isolated from stool dilutions placed on soil gave rise to few FL. Worm mating were seen at 24-30 hours in dilutions 1:20-1:120 only. Highest numbers of FL from indirect free-living cycle were 1/3 of those from control. FL production decreased as stool dilution increased, and reached zero production at 1:160 dilution. Rainfall may disperse or dilute stool so that nutritional supplement for S. stercoralis free-living development is insufficient. PMID:26035061

  20. Helium abundance effects on RR Lyrae pulsation properties

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Coppola, G.; Bono, G.; Braga, V.; Pietrinferni, A.

    2016-05-01

    A new set of nonlinear convective pulsation models of RR Lyrae stars has been computed varying both the metallicity and the helium content. To constrain the helium dependence of pulsation observables we adopted, for each metal content, at least three different helium abundances. We provide for the first time a homogeneous evolutionary and pulsation framework covering the entire range of cluster and field variables. The implications for the use of RR Lyrae as stellar population tracers and distance indicators are briefly discussed.

  1. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    USGS Publications Warehouse

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  2. Analytic representation of the Efimov effect in the helium trimer

    SciTech Connect

    Lohr, Lawrence L.; Blinder, S.M.

    2004-06-01

    Exact solutions for the low-temperature helium dimer and trimer, {sup 4}He{sub 2} and {sup 4}He{sub 3}, are derived, based on our {delta} function model for the interatomic potential. For the trimer, the Faddeev equations are shown to be separable in hyperspherical coordinates, with the S-wave alone giving an exact solution. The parameters {lambda}{sub 0} and r{sub 0} are fitted to accurate computations on the dimer and trimer. Excited states of the trimer are shown to exhibit the Efimov effect, whereby artificially reducing the strength of the two-body potential causes an infinite number of weakly-bound levels to condense out of the continuum. All the features anticipated by Efimov are quantitatively reproduced within our model. Since short-range details of the intermolecular forces are not relevant, our results can be considered to be universally applicable.

  3. Kappa effect pulsational instability for hot extreme helium stars

    SciTech Connect

    Cox, A.N.

    1990-01-01

    A long standing problem for the hydrogen deficient stars has been the mechanism for the pulsation instability for the hottest members of this class. The usual {kappa} mechanism works well for stars that are in the hydrogen and helium ionization instability strip, and this strip extends to perhaps 20,000K at high luminosity. However, several stars are definitely hotter. Investigations for another ionization instability strip, such as for carbon, have always shown that there is not enough carbon to produce a rapid enough increase of opacity with temperature to give the well-known {kappa} effect. This is so even though these hydrogen deficient stars do show enhanced carbon in their spectra. A strong stellar wind can produce the observed hydrogen deficiency. Another popular mechanism is mass loss in a binary system through the Roche lobe. It now is possible that the missing pulsational instability mechanism is the rapid increase of iron lines absorption as the temperature increases above about 150,000K in the low density envelopes of these luminous stars. Recent calculations shows that the n = 3 to n = 3 transitions in iron that were assumed unimportant in the earlier Los Alamos calculations can double or triple the opacity suddenly as the iron lines appear in a very sensitive part of the spectrum of the diffusing photons. It has been proposed that these iron lines also cause the many varieties of normal B star pulsations, and the hydrogen deficient stars are merely another example of this new {kappa} effect for pulsating stars. The extreme helium star V2076 Oph at 31,900K, and 38,900 L{sub {circle dot}} for a mass of 1.4 M{sub {circle dot}} pulsates in the radial fundamental model at about 1 day period with a very large linear growth rate when the iron lines more than double the opacity, but is stable otherwise.

  4. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  5. The Effect of SF6 dilution in an Argon plasma

    NASA Astrophysics Data System (ADS)

    Koirala, Sudip; Gordon, Matt

    2010-02-01

    Plasma etching is widely used in semiconductor industries. There have been extensive studies in the dilution of rare gases; however, limited studies are found in the dilution of electronegative gases. In this work, SF6 content is varied from 5% to 60% in an Ar plasma in a deep reactive ion etching system. A Langmuir probe is used to measure electron temperature (Te), electron density (ne), and electron energy distribution function (eedf). Te decreases monotonically with increasing SF6 at first, and then increases for SF6 content greater than 20%. This increase is attributed to the loss of low energy electrons in attachment and high energy electrons in excitation and ionization. As the content of SF6 is increased above 20%, the dissociation of SF6 increases and most of the low energy electrons are lost in attachment and hence the average electron temperature increases. ne decreases by an order of magnitude as the SF6 dilution is increased from 5% to 60%. eedf shows that the distribution shifts towards high energy with the increase of SF6 content, which is because of the depletion of low energy electrons. )

  6. Convection and segregation in directional solidification of dilute and non-dilute binary alloys - Effects of ampoule and furnace design

    NASA Technical Reports Server (NTRS)

    Adornato, Peter M.; Brown, Robert A.

    1987-01-01

    A Petrov-Galerkin/finite-element method is used to analyze the effect of furnace configuration and ampoule design on the temperature field, the convection in the melt, the shape of the melt-solid interface, and the segregation of solute in the crystal, in the directional solidification of several dilute and nondilute binary semiconductor alloys. The vertical Bridgman-Stockbarger system leads to a two-cell flow structure, and the constant gradient furnace has only a single cell near the interface. Radial temperature gradients interact with the solute field to cause the previously predicted sideways diffusive instability, and addition of a solute that is less dense than the bulk melt and that is incorporated upon solidification decreases the intensity of the flow near the interface by increasing the melt density there. The present results have application to understanding of the effects on solute segregation of microgavity solidification and of applied magnetic fields.

  7. Helium effects on microstructural change in RAFM steel under irradiation: Reaction rate theory modeling

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Morishita, K.; Nakasuji, T.; Ando, M.; Tanigawa, H.

    2015-06-01

    Reaction rate theory analysis has been conducted to investigate helium effects on the formation kinetics of interstitial type dislocation loops (I-loops) and helium bubbles in reduced-activation-ferritic/martensitic steel during irradiation, by focusing on the nucleation and growth processes of the defect clusters. The rate theory model employs the size and chemical composition dependence of thermal dissociation of point defects from defect clusters. In the calculations, the temperature and the production rate of Frenkel pairs are fixed to be T = 723 K and PV = 10-6 dpa/s, respectively. And then, only the production rate of helium atoms was changed into the following three cases: PHe = 0, 10-7 and 10-5 appm He/s. The calculation results show that helium effect on I-loop formation quite differs from that on bubble formation. As to I-loops, the loop formation hardly depends on the existence of helium, where the number density of I-loops is almost the same for the three cases of PHe. This is because helium atoms trapped in vacancies are easily emitted into the matrix due to the recombination between the vacancies and SIAs, which induces no pronounced increase or decrease of vacancies and SIAs in the matrix, leading to no remarkable impact on the I-loop nucleation. On the other hand, the bubble formation depends much on the existence of helium, in which the number density of bubbles for PHe = 10-7 and 10-5 appm He/s is much higher than that for PHe = 0. This is because helium atoms trapped in a bubble increase the vacancy binding energy, and suppress the vacancy dissociation from the bubble, resulting in a promotion of the bubble nucleation. And then, the helium effect on the promotion of bubble nucleation is very strong, even the number of helium atoms in a bubble is not so large.

  8. EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS

    SciTech Connect

    Morgan, M; Scott West, S; Michael Tosten, M

    2006-09-26

    The fracture toughness data collected in this study are needed to assess the long-term effects of tritium and its decay product on tritium reservoirs. The results show that tritium and decay helium have negative effects on the fracture toughness properties of stainless steel and its weldments. The data and report from this study has been included in a material property database for use in tritium reservoir modeling efforts like the Technology Investment Program ''Lifecycle Engineering for Tritium Reservoirs''. A number of conclusions can be drawn from the data: (1) For unexposed Type 304L stainless steel, the fracture toughness of weldments was two to three times higher than the base metal toughness. (2) Tritium exposure lowered the fracture toughness properties of both base metals and weldments. This was characterized by lower J{sub Q} values and lower J-da curves. (3) Tritium-exposed-and-aged base metals and weldments had lower fracture toughness values than unexposed ones but still retained good toughness properties.

  9. Effect of helium-neon laser on musculoskeletal trigger points

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.; Bourbon, B.; Trumbore, D.

    1986-07-01

    Cold lasers have been proposed recently as a therapeutic tool for treating a wide variety of pathological conditions, including wounds, arthritis, orthopedic problems, and pain. These proposed therapeutic effects largely have been unsubstantiated by research. A randomized, double blind study was undertaken to ascertain the effect of a helium-neon (He-Ne) laser on the resistance of areas of skin overlying musculoskeletal trigger points. These areas usually demonstrate decreased skin resistance when compared with the surrounding tissue. Thirty patients with musculoskeletal trigger points were assigned randomly to either an experimental or a placebo group. In addition to standard physical therapy, each patient received three 15-second applications of a He-Ne laser or placebo stimulation from an identical unit that did not emit a laser. The results of a two-way analysis of covariance with one repeated measure showed a statistically significant increase (p less than .007) in skin resistance. This increase in an abnormal skin resistance pattern may accompany the resolution of pathological conditions.

  10. Simulations of Polymer Crazing: Effect of Crosslinks and Dilution

    NASA Astrophysics Data System (ADS)

    Robbins, Mark O.; Barsky, Sandra

    2000-03-01

    Molecular dynamics simulations were used to study the growth and structure of crazes in adhesive films of entangled linear polymers that have been either (a) crosslinked or (b) diluted by smaller molecules. The films were ruptured by separating the two bounding walls (adherends) at a small constant velocity. In all systems the force on the walls rose to the same value before the first yield event caused cavities to form in the film. These cavities grew as the walls were displaced further. In systems that formed a stable craze, cavity growth was eventually stopped by entanglements or crosslinks. Stress concentrations then caused new cavities to form in neighboring regions. This process continued at a constant plateau stress until the entire film had been stretched by an extension ratio λ. The plateau stress increased slightly with increasing crosslink density, and decreased with decreasing fraction of long chains in diluted systems. As in experiments, when the fraction decreased below about 30plateau stress vanished and there was no longer a stable craze. The extension ratio fell with increasing crosslink density and rose as the fraction of long chains dropped. These changes can be fit with a simple geometric model based on the ability to stretch a random coil whose length is the mean spacing between crosslinks or entanglements. No chain scission was found for reasonable bond strengths. Void formation and elastic constants were also studied.

  11. LOX Tank Helium Removal for Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  12. Linking manipulative experiments to field data to test the dilution effect.

    PubMed

    Venesky, Matthew D; Liu, Xuan; Sauer, Erin L; Rohr, Jason R

    2014-05-01

    The dilution effect, the hypothesis that biodiversity reduces disease risk, has received support in many systems. However, few dilution effect studies have linked mechanistic experiments to field patterns to establish both causality and ecological relevance. We conducted a series of laboratory experiments and tested the dilution effect hypothesis in an amphibian-Batrachochytrium dendrobatidis (Bd) system and tested for consistency between our laboratory experiments and field patterns of amphibian species richness, host identity and Bd prevalence. In our laboratory experiments, we show that tadpoles can filter feed Bd zoospores and that the degree of suspension feeding was positively associated with their dilution potential. The obligate suspension feeder, Gastrophryne carolinensis, generally diluted the risk of chytridiomycosis for tadpoles of Bufo terrestris and Hyla cinerea, whereas tadpoles of B. terrestris (an obligate benthos feeder) generally amplified infections for the other species. In addition, G. carolinensis reduced Bd abundance on H. cinerea more so in the presence than absence of B. terrestris and B. terrestris amplified Bd abundance on H. cinerea more so in the absence than presence of G. carolinensis. Also, when ignoring species identity, species richness was a significant negative predictor of Bd abundance. In our analysis of field data, the presence of Bufo spp. and Gastrophryne spp. were significant positive and negative predictors of Bd prevalence, respectively, even after controlling for climate, vegetation, anthropogenic factors (human footprint), species richness and sampling effort. These patterns of dilution and amplification supported our laboratory findings, demonstrating that the results are likely ecologically relevant. The results from our laboratory and field data support the dilution effect hypothesis and also suggest that dilution and amplification are predictable based on host traits. Our study is among the first to link

  13. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  14. Reducing the matrix effects in chemical analysis: fusion of isotope dilution and standard addition methods

    NASA Astrophysics Data System (ADS)

    Pagliano, Enea; Meija, Juris

    2016-04-01

    The combination of isotope dilution and mass spectrometry has become an ubiquitous tool of chemical analysis. Often perceived as one of the most accurate methods of chemical analysis, it is not without shortcomings. Current isotope dilution equations are not capable of fully addressing one of the key problems encountered in chemical analysis: the possible effect of sample matrix on measured isotope ratios. The method of standard addition does compensate for the effect of sample matrix by making sure that all measured solutions have identical composition. While it is impossible to attain such condition in traditional isotope dilution, we present equations which allow for matrix-matching between all measured solutions by fusion of isotope dilution and standard addition methods.

  15. Effects of strong laser fields on hadronic helium atoms

    NASA Astrophysics Data System (ADS)

    Lee, Han-Chieh; Jiang, Tsin-Fu

    2015-12-01

    The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.

  16. Parameterization of Buoyancy Effects in Generic PWR Boron Dilution Scenarios

    SciTech Connect

    Galindo-Garcia, Ivan F.; Cotton, Mark A.; Axcell, Brian P.

    2006-07-01

    A computational investigation is undertaken into the role of buoyancy in a PWR boron dilution transient following a postulated Small Break Loss of Coolant Accident (SB-LOCA). In the scenario envisaged there is flow of de-borated and relatively high temperature water from a single cold leg into the downcomer; flow rates are typical of natural circulation conditions. The study focuses upon the development of boron concentration distributions in the downcomer and adopts a 3D-unsteady formulation of the mean flow equations in combination with the standard high-Reynolds-number k-{epsilon} turbulence model. It is found that the Richardson number (Ri = Gr/Re{sup 2}) is the most important group parameterizing the course of a concentration transient. At Ri values characterizing a 'baseline' scenario the results indicate that there is a stable, circumferentially-uniform, descent through the downcomer of a stratified region of low-borated fluid. Qualitatively the same behaviour is found at higher Richardson number, although at Ri values of approximately one-fifth the baseline level there is evidence of large-scale mixing and a consequent absence of concentration stratification. (authors)

  17. Transient Effects in Planar Solidification of Dilute Binary Alloys

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Volz, Martin P.

    2008-01-01

    The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.

  18. Effects of dilution on elastohydrodynamic coating flow of an anti-HIV microbicide vehicle

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew; Park, Su Chan; Tasoglu, Savas; Katz, David F.

    2009-11-01

    Elastohydrodynamic lubrication over soft substrates characterizes the drug delivery of anti-HIV topical microbicides carried in gel vehicles. These gels are under development to prevent HIV transmission into vulnerable vaginal mucosa during intercourse. Their effectiveness depends on completeness and durability of coating, as well as on the active ingredients. Here we investigate the influence of dilution by vaginal fluid on the coating flows that serve to protect the user. The effects of dilution by vaginal fluid simulant are assessed through rheological experiments at variable dilution of the gel vehicle. This involves determination of the way parameters in a Carreau model of a shear-thinning gel are modified by dilution. The changes in coating are determined from a computational model, based on dilution rheology measured in the laboratory. The elastohydrodynamic lubrication model of Szeri, et al. Physics of Fluids (2008) is supplemented with a convective-diffusive transport equation to handle dilution, and solved using a multi-step scheme in a moving domain.

  19. Diluted magnetic semiconductor effects in Mn-implanted silicon carbide

    SciTech Connect

    Komarov, A. V.; Ryabchenko, S. M.; Los, A. V.; Romanenko, S. M.

    2011-04-15

    Light transmission and Faraday rotation spectra measured at the temperature of 2 K were compared for silicon carbide single crystals of 4H polytype (4H-SiC), implanted with 3.8 x 10{sup 16} cm{sup -2} of Mn ions at the beam energy of 190 keV, and a control 4H-SiC single crystal sample, which was not implanted. Mn ion implantation led to the creation of a Mn-doped surface layer with the average Mn concentration of 10{sup 21} cm{sup -3} and a thickness of approximately 0.2 {mu}m. Transmission of light through the implanted crystal changed only slightly in comparison with the control sample, which however, corresponded to a relatively strong attenuation in the implanted layer. This was interpreted as a result of scattering, which emerges in the surface layer due to optical nonuniformities, created by the high energy ion irradiation. The presence of a thin Mn-ion-containing surface layer led, despite its small thickness, to noticeable changes in the sample Faraday rotation spectra. The estimated values of the Verdet constant for this layer were about three orders of magnitude larger and of opposite sign compared to the Verdet constant values of the undoped sample. Magnetic field dependencies of the Faraday rotation contribution from the implanted layer were found to be saturating functions, which points to a proportionality of the Faraday rotation to the magnetization of the paramagnetic Mn ion subsystem. Based on these findings we conclude that the Mn-implanted SiC layer exhibits magneto-optical properties typical of a diluted magnetic semiconductor. At the same time, no ferromagnetic ordering was observed in the studied (Si, Mn)C sample.

  20. Dilution effect and identity effect by wildlife in the persistence and recurrence of bovine tuberculosis.

    PubMed

    Huang, Z Y X; Xu, C; VAN Langevelde, F; Prins, H H T; Ben Jebara, K; DE Boer, W F

    2014-06-01

    Current theories on disease-diversity relationships predict a strong influence of host richness on disease transmission. In addition, identity effect, caused by the occurrence of particular species, can also modify disease risk. We tested the richness effect and the identity effects of mammal species on bovine tuberculosis (bTB), based on the regional bTB outbreak data in cattle from 2005-2010 in Africa. Besides, we also tested which other factors were associated with the regional bTB persistence and recurrence in cattle. Our results suggested a dilution effect, where higher mammal species richness (MSR) was associated with reduced probabilities of bTB persistence and recurrence in interaction with cattle density. African buffalo had a positive effect on bTB recurrence and a positive interaction effect with cattle density on bTB persistence, indicating an additive positive identity effect of buffalo. The presence of greater kudu had no effect on bTB recurrence or bTB persistence. Climatic variables only act as risk factors for bTB persistence. In summary, our study identified both a dilution effect and identity effect of wildlife and showed that bTB persistence and recurrence were correlated with different sets of risk factors. These results are relevant for more effective control strategies and better targeted surveillance measures in bTB. PMID:24612552

  1. The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste

    SciTech Connect

    Bredt, P.R.; Tingey, S.M.

    1996-01-01

    Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required.

  2. The diversity-disease relationship: evidence for and criticisms of the dilution effect.

    PubMed

    Huang, Z Y X; VAN Langevelde, F; Estrada-Peña, A; Suzán, G; DE Boer, W F

    2016-08-01

    The dilution effect, that high host species diversity can reduce disease risk, has attracted much attention in the context of global biodiversity decline and increasing disease emergence. Recent studies have criticized the generality of the dilution effect and argued that it only occurs under certain circumstances. Nevertheless, evidence for the existence of a dilution effect was reported in about 80% of the studies that addressed the diversity-disease relationship, and a recent meta-analysis found that the dilution effect is widespread. We here review supporting and critical studies, point out the causes underlying the current disputes. The dilution is expected to be strong when the competent host species tend to remain when species diversity declines, characterized as a negative relationship between species' reservoir competence and local extinction risk. We here conclude that most studies support a negative competence-extinction relationship. We then synthesize the current knowledge on how the diversity-disease relationship can be modified by particular species in community, by the scales of analyses, and by the disease risk measures. We also highlight the complex role of habitat fragmentation in the diversity-disease relationship from epidemiological, evolutionary and ecological perspectives, and construct a synthetic framework integrating these three perspectives. We suggest that future studies should test the diversity-disease relationship across different scales and consider the multiple effects of landscape fragmentation. PMID:27041655

  3. The preheating effect on the dynamic strength of aluminium containing helium bubbles

    NASA Astrophysics Data System (ADS)

    Glam, B.; Strauss, M.; Eliezer, S.; Moreno, D.

    2014-05-01

    The influence of helium bubbles or boron inclusions in an aluminum target is studied by plane impact experiments with a gas gun and VISAR diagnostic. The experiments were carried out on targets with initial temperatures of 25 °C and near melting at 600 °C. The Hugoniot elastic limit yHEL for all targets becomes substantially higher at 600 °C, related to the phonon drag mechanism at high strain rates and high temperatures. The spall strength for all targets becomes substantially lower at 600 °C. The spall strength of Al-10B with helium bubbles is significantly reduced in comparison to Al-10B without helium, while at 25 °C the spall strength is the same for both cases. This effect might be explained by a local strength reduction of the aluminium at pre-heating conditions, allowing the helium bubbles to be more dominant in the spallation process

  4. Effect of Helium Accumulation on the Spent Fuel Microstructure

    SciTech Connect

    Ferry, Cecile; Piron, Jean-Paul; Stout, Ray

    2007-07-01

    In a nuclear spent fuel repository, the aqueous rapid release of radio-activity from exposed spent fuel surfaces will depend on the pellet microstructure at the arrival time of water into the disposal container. Research performed on spent fuel evolution in a closed system has shown that the evolution of microstructure under disposal conditions should be governed by the cumulated {alpha}-decay damage and the subsequent helium behavior. The evolution of fission gas bubble characteristics under repository conditions has to be assessed. In UO{sub 2} fuels with a burnup of 47.5 GWd/t, the pressure in fission gas bubbles, including the pressure increase from {alpha}-decay helium atoms, is not expected to reach the critical bubble pressure that will cause failure, thus micro-cracking in UO{sub 2} spent fuel grains is not expected. (authors)

  5. Effects of Extreme Dilutions of Apis mellifica Preparations on Gene Expression Profiles of Human Cells.

    PubMed

    Bigagli, Elisabetta; Luceri, Cristina; Dei, Andrea; Bernardini, Simonetta; Dolara, Piero

    2016-01-01

    Gene expression analysis has been employed in the past to test the effects of high dilutions on cell systems. However, most of the previous studies were restricted to the investigation of few dilutions, making it difficult to explore underlying mechanisms of action. Using whole-genome transcriptomic analysis, we investigated the effects of a wide range of Apis mellifica dilutions on gene expression profiles of human cells. RWPE-1 cells, a nonneoplastic adult human epithelial prostate cell line, were exposed to Apis mellifica preparations (3C, 5C, 7C, 9C, 12C, 15C, and 30C) or to the reference solvent solutions for 24 hours; nonexposed cells were also checked for gene expression variations. Our results showed that even the most diluted solutions retained the ability to trigger significant variations in gene expression. Gene pathway analysis revealed consistent variations in gene expression induced by Apis mellifica when compared to nonexposed reference cells but not to reference solvent solutions. Since the effects of Apis Mellifica at extreme dilutions did not show dose-effect relationships, the biological or functional interpretation of these results remains uncertain. PMID:26788033

  6. Effects of Extreme Dilutions of Apis mellifica Preparations on Gene Expression Profiles of Human Cells

    PubMed Central

    Bigagli, Elisabetta; Luceri, Cristina; Bernardini, Simonetta; Dolara, Piero

    2016-01-01

    Gene expression analysis has been employed in the past to test the effects of high dilutions on cell systems. However, most of the previous studies were restricted to the investigation of few dilutions, making it difficult to explore underlying mechanisms of action. Using whole-genome transcriptomic analysis, we investigated the effects of a wide range of Apis mellifica dilutions on gene expression profiles of human cells. RWPE-1 cells, a nonneoplastic adult human epithelial prostate cell line, were exposed to Apis mellifica preparations (3C, 5C, 7C, 9C, 12C, 15C, and 30C) or to the reference solvent solutions for 24 hours; nonexposed cells were also checked for gene expression variations. Our results showed that even the most diluted solutions retained the ability to trigger significant variations in gene expression. Gene pathway analysis revealed consistent variations in gene expression induced by Apis mellifica when compared to nonexposed reference cells but not to reference solvent solutions. Since the effects of Apis Mellifica at extreme dilutions did not show dose–effect relationships, the biological or functional interpretation of these results remains uncertain. PMID:26788033

  7. Effects of helium on void swelling in boron doped V 5Fe alloys

    NASA Astrophysics Data System (ADS)

    Iwai, Takeo; Sekimura, Naoto; Garner, F. A.

    1998-10-01

    The effects of helium on void swelling in V-5Fe were investigated with natural boron-doping techniques during FFTF/MOTA (Fast Flux Test Facility/Materials Open Test Assembly) irradiation. Microstructural observation was carried out to understand the swelling behavior obtained from density measurements. The cavity size distribution in V-5Fe- xB ( x=0, 100, and 500 appm) irradiated at temperatures lower than 713 K indicates a suppressant effect of helium on void growth, and an enhancing effect on cavity nucleation. Since the chemical effect of boron addition is competitive with the transmutation effect, the results have been compared with that of the dual ion irradiation experiments to allow separation of the effect of helium from the effect of boron.

  8. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium

    NASA Astrophysics Data System (ADS)

    Xiong, Hongwei

    2015-08-01

    We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton's law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.

  9. Some effects of argon and helium upon explosions of carbon monoxide and oxygen

    NASA Technical Reports Server (NTRS)

    Fiock, Ernst F; Roeder, Carl H

    1937-01-01

    Report presents the results of an investigation conducted to study the effects of the inert gases, argon and helium, upon flame speed and expansion ratio in exploding mixtures of carbon monoxide, oxygen and water.For the particular gas mixtures investigated the results show that: (1) With the possible exception of helium in small amounts the addition of inert gas always produces decreased flame speed and expansion ratio; (2) like volumes of argon and helium have very different effects upon flame speed but practically the same effect upon expansion ratio; and (3) the difference in the effect of these two gases upon speed is independent of the ratio of carbon monoxide to oxygen. A discussion of some possible modes by which inert gases may produce the observed effects is included.

  10. The effect of anticoagulant, storage temperature and dilution on cord blood hematology parameters over time

    PubMed Central

    FREISE, K. J.; SCHMIDT, R. L.; GINGERICH, E. L.; VENG-PEDERSEN, P.; WIDNESS, J. A.

    2010-01-01

    SUMMARY The objective of the study was to determine whether selected hematologic parameters measured on umbilical cord blood samples using an automated hematology analyzer (Sysmex XE-2100) were affected by (i) anticoagulant (the specimens were collected in EDTA vs. sodium heparin), (ii) temperature (the specimens were maintained at 4° C vs. room temperature for up to 72 h) and (iii) 1 : 5 dilution vs. undiluted using the manufacturer's diluting solution. Use of heparin, instead of EDTA, had little effect on the hematologic results (n = 8) except for lower platelet and progenitor cell counts. Results were remarkably stable for 72 h at either room temperature or 4° C except for modest red blood cell swelling at 24 h. Specimens of blood diluted at 1 : 5 had an immediate small, but significant change on white cell count (+13.3%), reticulocyte count (−11.2%) and reticulocyte hemoglobin content (−19.6%). Diluted samples did not change further over 4 h at room temperature. With a 1 : 5 dilution, analysis of 40 μl of cord blood stored for 3 days at room temperature may provide useful hematologic information with little phlebotomy loss. PMID:18422712

  11. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    SciTech Connect

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J.

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  12. Finite-range effects in dilute Fermi gases at unitarity

    SciTech Connect

    Simonucci, Stefano; Garberoglio, Giovanni; Taioli, Simone

    2011-10-15

    We develop a theoretical method going beyond the contact-interaction approximation frequently used in mean-field theories of many-fermion systems, based on the low-energy T matrix of the pair potential to rigorously define the effective radius of the interaction. One of the main consequences of our approach is the possibility to investigate finite-density effects, which are outside the range of validity of approximations based on {delta}-like potentials. We apply our method to the calculation of density-dependent properties of an ultracold gas of {sup 6}Li atoms at unitarity, whose two-body interaction potential is calculated using ab initio quantum chemistry methods. We find that density effects will be significant in ultracold gases with densities 1 order of magnitude higher than those attained in current experiments.

  13. Effective Rheological Properties in Semi-dilute Bacterial Suspensions.

    PubMed

    Potomkin, Mykhailo; Ryan, Shawn D; Berlyand, Leonid

    2016-03-01

    Interactions between swimming bacteria have led to remarkable experimentally observable macroscopic properties such as the reduction in the effective viscosity, enhanced mixing, and diffusion. In this work, we study an individual-based model for a suspension of interacting point dipoles representing bacteria in order to gain greater insight into the physical mechanisms responsible for the drastic reduction in the effective viscosity. In particular, asymptotic analysis is carried out on the corresponding kinetic equation governing the distribution of bacteria orientations. This allows one to derive an explicit asymptotic formula for the effective viscosity of the bacterial suspension in the limit of bacterium non-sphericity. The results show good qualitative agreement with numerical simulations and previous experimental observations. Finally, we justify our approach by proving existence, uniqueness, and regularity properties for this kinetic PDE model. PMID:27025378

  14. Effect of helium on structure and compression behavior of SiO2 glass

    PubMed Central

    Shen, Guoyin; Mei, Qiang; Prakapenka, Vitali B.; Lazor, Peter; Sinogeikin, Stanislav; Meng, Yue; Park, Changyong

    2011-01-01

    The behavior of volatiles is crucial for understanding the evolution of the Earth’s interior, hydrosphere, and atmosphere. Noble gases as neutral species can serve as probes and be used for examining gas solubility in silicate melts and structural responses to any gas inclusion. Here, we report experimental results that reveal a strong effect of helium on the intermediate range structural order of SiO2 glass and an unusually rigid behavior of the glass. The structure factor data show that the first sharp diffraction peak position of SiO2 glass in helium medium remains essentially the same under pressures up to 18.6 GPa, suggesting that helium may have entered in the voids in SiO2 glass under pressure. The dissolved helium makes the SiO2 glass much less compressible at high pressures. GeO2 glass and SiO2 glass with H2 as pressure medium do not display this effect. These observations suggest that the effect of helium on the structure and compression of SiO2 glass is unique. PMID:21444785

  15. Effect of helium on structure and compression behavior of SiO2 glass.

    PubMed

    Shen, Guoyin; Mei, Qiang; Prakapenka, Vitali B; Lazor, Peter; Sinogeikin, Stanislav; Meng, Yue; Park, Changyong

    2011-04-12

    The behavior of volatiles is crucial for understanding the evolution of the Earth's interior, hydrosphere, and atmosphere. Noble gases as neutral species can serve as probes and be used for examining gas solubility in silicate melts and structural responses to any gas inclusion. Here, we report experimental results that reveal a strong effect of helium on the intermediate range structural order of SiO(2) glass and an unusually rigid behavior of the glass. The structure factor data show that the first sharp diffraction peak position of SiO(2) glass in helium medium remains essentially the same under pressures up to 18.6 GPa, suggesting that helium may have entered in the voids in SiO(2) glass under pressure. The dissolved helium makes the SiO(2) glass much less compressible at high pressures. GeO(2) glass and SiO(2) glass with H(2) as pressure medium do not display this effect. These observations suggest that the effect of helium on the structure and compression of SiO(2) glass is unique. PMID:21444785

  16. Stochastic dilution effects weaken deterministic effects of niche-based processes in species rich forests.

    PubMed

    Wang, Xugao; Wiegand, Thorsten; Kraft, Nathan J B; Swenson, Nathan G; Davies, Stuart J; Hao, Zhanqing; Howe, Robert; Lin, Yiching; Ma, Keping; Mi, Xiangcheng; Su, Sheng-Hsin; Sun, I-fang; Wolf, Amy

    2016-02-01

    Recent theory predicts that stochastic dilution effects may result in species-rich communities with statistically independent species spatial distributions, even if the underlying ecological processes structuring the community are driven by deterministic niche differences. Stochastic dilution is a consequence of the stochastic geometry of biodiversity where the identities of the nearest neighbors of individuals of a given species are largely unpredictable. Under such circumstances, the outcome of deterministic species interactions may vary greatly among individuals of a given species. Consequently, nonrandom patterns in the biotic neighborhoods of species, which might be expected from coexistence or community assembly theory (e.g., individuals of a given species are neighbored by phylogenetically similar species), are weakened or do not emerge, resulting in statistical independence of species spatial distributions. We used data on phylogenetic and functional similarity of tree species in five large forest dynamics plots located across a gradient of species richness to test predictions of the stochastic dilution hypothesis. To quantify the biotic neighborhood of a focal species we used the mean phylogenetic (or functional) dissimilarity of the individuals of the focal species to all species within a local neighborhood. We then compared the biotic neighborhood of species to predictions from stochastic null models to test if a focal species was surrounded by more or less similar species than expected by chance. The proportions of focal species that showed spatial independence with respect to their biotic neighborhoods increased with total species richness. Locally dominant, high-abundance species were more likely to be surrounded by species that were statistically more similar or more dissimilar than expected by chance. Our results suggest that stochasticity may play a stronger role in shaping the spatial structure of species rich tropical forest communities than it

  17. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables.

    PubMed

    Ferrer, Carmen; Lozano, Ana; Agüera, Ana; Girón, A Jiménez; Fernández-Alba, A R

    2011-10-21

    During recent years matrix effects in liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) have quickly become a major concern in food analysis. The phenomenon of ion suppression can lead to errors in the quantification of the analytes of interest, as well as can affect detection capability, precision, and accuracy of the method. Sample dilution is an easy and effective method to reduce interfering compounds, and so, to diminish matrix effects. In this work, matrix effects of 53 pesticides in three different matrices (orange, tomato and leek) were evaluated. Several dilutions of the matrix were tested in order to study the evolution of signal suppression. Dilution of the extracts led to a reduction of the signal suppression in most of the cases. A dilution factor of 15 demonstrated to be enough to eliminate most of the matrix effects, opening the possibility to perform quantification with solvent based standards in the majority of the cases. In those cases where signal suppression could not be reduced, a possible solution would be to use stable isotope-labelled internal standards for quantification of the problematic pesticides. PMID:21820661

  18. Effects of refractory periods in the dynamics of a diluted neural network

    NASA Astrophysics Data System (ADS)

    Tamarit, F. A.; Stariolo, D. A.; Cannas, S. A.; Serra, P.

    1996-05-01

    We propose a stochastic dynamics for a neural network which accounts for the effects of the refractory periods (absolute and relative) in the dynamics of a single neuron. The dynamics can be solved analytically in an extremely diluted network. We found a very rich scenario that presents retrieval phases and a period doubling route to chaos in the attractors of the overlap order parameter. Our model incorporates some characteristics that make it biologically appealing, such as asymmetric synaptic efficacies, dilution of the synaptic matrix, absolute and relative refractory periods, complex retrieval dynamics, and low levels of activity in the retrieval regime.

  19. Friendly competition: evidence for a dilution effect among competitors in a planktonic host-parasite system.

    PubMed

    Hall, Spencer R; Becker, Claes R; Simonis, Joseph L; Duffy, Meghan A; Tessier, Alan J; Cáceres, Carla E

    2009-03-01

    The "dilution effect" concept in disease ecology offers the intriguing possibility that clever manipulation of less competent hosts could reduce disease prevalence in populations of more competent hosts. The basic concept is straightforward: host species vary in suitability (competence) for parasites, and disease transmission decreases when there are more incompetent hosts interacting with vectors or removing free-living stages of a parasite. However, host species also often interact with each other in other ecological ways, e.g., as competitors for resources. The net result of these simultaneous, multiple interactions (disease dilution and resource competition) is challenging to predict. Nonetheless, we see the signature of both roles operating concurrently in a planktonic host-parasite system. We document pronounced spatiotemporal variation in the size of epidemics of a virulent fungus (Metschnikowia bicuspidata) in Midwestern U.S. lake populations of a dominant crustacean grazer (Daphnia dentifera). We show that some of this variation is captured by changes in structure of Daphnia assemblages. Lake-years with smaller epidemics were characterized by assemblages dominated by less suitable hosts ("diluters," D. pulicaria and D. retrocurva, whose suitabilties were determined in lab experiments and field surveys) at the start of epidemics. Furthermore, within a season, less suitable hosts increased as epidemics declined. These observations are consistent with a dilution effect. However, more detailed time series analysis (using multivariate autoregressive models) of three intensively sampled epidemics show the signature of a likely interaction between dilution and resource competition between these Daphnia species. The net outcome of this interaction likely promoted termination of these fungal outbreaks. Should this outcome always arise in "friendly competition" systems where diluting hosts compete with more competent hosts? The answers to this question lie at a

  20. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    NASA Astrophysics Data System (ADS)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  1. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    SciTech Connect

    Li Guo; Li Heping; Wang Sen; Sun Wenting; Bao Chengyu; Wang Liyan; Zhao Hongxin; Xing Xinhui

    2008-06-02

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  2. Effects of helium gas mixing on the production of active species in nitrogen plasma

    NASA Astrophysics Data System (ADS)

    Naveed, M. A.; Qayyum, A.; Ali, Shujaat; Zakaullah, M.

    2006-12-01

    Optical emission spectroscopy is used to investigate the effects of helium gas mixing on the electron temperature and the production of active species in nitrogen plasma generated by 50 Hz pulsed-DC power source. The electron temperature is determined from He I line intensities, using Boltzmann's plot method. The relative changes in the concentration of active species N2(C Πu3) and N+2(B Σu+2) are monitored by measuring the emission intensities of nitrogen (0 0) bands of the second positive and the first negative systems. It is found that the electron temperature can be raised considerably by mixing helium in nitrogen plasma, which in return plays a significant role in enhancing the concentration of active species through Penning effect of metastable states of the helium.

  3. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium

    PubMed Central

    Sun, Xiankai; Zhang, Xufeng; Schuck, Carsten; Tang, Hong X.

    2013-01-01

    Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations and numerical simulations. PMID:23486445

  4. Effective doping of low energy ions into superfluid helium droplets

    SciTech Connect

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  5. Effect of helium on the electronic structure of palladium tritide

    SciTech Connect

    Gupta, R.P.; Gupta, M.

    1998-12-31

    Tritium is usually stored in the form of a metal tritide since it is safe to handle in this form, easily recoverable, and further large quantities of tritium can be stored. However, since tritium is radioactive it decays into {sup 3}He and an electron. Helium recoil energy in this reaction is very small, and not enough to create defects. The authors have performed ab-initio electronic structure calculations that show that in PdT, a considerable amount of {sup 3}He can be accommodated at the octahedral interstitial sites where it is produced. Their calculations also show that the presence of {sup 3}He results in an overall enhancement in the strength of the metal-tritium bonding that leads to the lowering of the plateau pressure. They also find that there is a weakening of the metal-metal bonds due to the repulsive interaction with {sup 3}He.

  6. Effective doping of low energy ions into superfluid helium droplets

    PubMed Central

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei

    2015-01-01

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 104 ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 105/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies. PMID:26298127

  7. Helium irradiation effects on tritium retention and long-term tritium release properties in polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Nobuta, Y.; Hatano, Y.; Matsuyama, M.; Abe, S.; Yamauchi, Y.; Hino, T.

    2015-08-01

    DT+ ion irradiation with energy of 0.5 and 1.0 keV was performed on helium pre-irradiated tungsten and the amount of retained tritium and the long-term release of retained tritium in vacuum was investigated using an IP technique and BIXS. Tritium retention and long-term tritium release were significantly influenced by helium pre-irradiation. The amount of retained tritium increased until it reached 1 × 1017 He/cm2, and at 1 × 1018 He/cm2 it became smaller compared to 1 × 1017 He/cm2. The amount of retained tritium in tungsten without helium pre-irradiation largely decreased after several weeks preservation in vacuum, and the long-term release rate during vacuum preservation was retarded by helium pre-irradiation. The results indicate that the long-term tritium release and the helium irradiation effect on it should be taken into account for more precise estimation of tritium retention in the long-term use of tungsten in fusion devices.

  8. Ab initio investigation of helium in Y2Ti2O7: Mobility and effects on mechanical properties

    NASA Astrophysics Data System (ADS)

    Danielson, T.; Tea, E.; Hin, C.

    2016-08-01

    Oxide nanoclusters (NCs) in nanostructured ferritic alloys (NFAs) are known to be efficient trapping sites for the transmutation product helium. In this study, the migration barriers and potential energy surfaces of helium in Y2Ti2O7 are presented to explain the mobility of helium through oxide NCs and shed light on the accumulation of helium and the trapping mechanisms of the oxides. A complex tunnel-shaped potential energy surface is identified and gives rise to relatively large migration barriers. Subsequently, the effect of helium accumulation on the mechanical properties of Y2Ti2O7 oxide nanoclusters is investigated and it is shown that the mechanical properties of the oxide do not significantly degrade as helium accumulates.

  9. Helium effects on the post-implantation creep properties and the microstructure of AISI 316L welds and parent material

    NASA Astrophysics Data System (ADS)

    Dai, Yong; Schroeder, Herbert

    1992-09-01

    The influence of implanted helium on the creep properties in electron-beam welds of the Next European Torus (NET) reference material, AISI 316L, and its parent material in the as-received condition has been investigated at 873 K. Helium degredation effects (i.e. reduced creep rupture time and creep rupture strain) are more serious in the parent material than in the welds. The fracture mode for implanted weld specimens is usually transgranular, while for the parent material specimens it is mixed trans- and intergranular. TEM investigations show that in the welds there is a lot of σ-ferrite at grain boundaries (occupying about 50% of grain boundary area) and in the interior of grains as well. Helium bubble sizes increase with increasing helium concentration, while helium bubble densities remain constant. Helium bubbles in the matrix are larger in size but much lower in density than those at boundaries or interfaces.

  10. Pros and cons of nickel- and boron-doping to study helium effects in ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Hashimoto, N.; Klueh, R. L.; Shiba, K.

    2002-12-01

    In the absence of a 14 MeV neutron source, the effect of helium on structural materials for fusion must be simulated using fission reactors. Helium effects in ferritic/martensitic steels have been studied by adding nickel and boron and irradiating in a mixed-spectrum reactor. Although the nickel- and boron-doping techniques have limitations and difficulties to estimate helium effects on the ferritic/martensitic steels, past irradiation experiments using these techniques have demonstrated similar effects on the swelling and Charpy impact properties that are indicative of a helium effect. Although both techniques have disadvantages, it should be possible to plan experiments using the nickel- and boron-doping techniques to develop an understanding of the effects of helium on mechanical properties.

  11. The effects of swift heavy-ion irradiation on helium-ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Li, B. S.; Du, Y. Y.; Wang, Z. G.; Shen, T. L.; Li, Y. F.; Yao, C. F.; Sun, J. R.; Cui, M. H.; Wei, K. F.; Zhang, H. P.; Shen, Y. B.; Zhu, Y. B.; Pang, L. L.

    2014-10-01

    Cross-sectional transmission electron microscopy (XTEM) was used to study the effects of irradiation with swift heavy ions on helium-implanted silicon. <1 0 0>-oriented silicon wafers were implanted with 30 keV helium to a dose of 3 × 1016 He+/cm2 at 600 K. Subsequently, the helium-implanted Si wafers were irradiated with 792 MeV argon ions. The He bubbles and extended defects in the wafers were examined via XTEM analysis. The results reveal that the mean diameter of the He bubbles increases upon Ar-ion irradiation, while the number density of the He bubbles decreases. The microstructure of the He bubbles observed after Ar-ion irradiation is comparable to that observed after annealing at 1073 K for 30 min. Similarly, the mean size of the extended defects, i.e., Frank loops, increases after Ar-ion irradiation. Possible mechanisms are discussed.

  12. Field-effect modulation of anomalous Hall effect in diluted ferromagnetic topological insulator epitaxial films

    NASA Astrophysics Data System (ADS)

    Chang, CuiZu; Liu, MinHao; Zhang, ZuoCheng; Wang, YaYu; He, Ke; Xue, QiKun

    2016-03-01

    High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2- x Cr x Te3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing carrier density. Carrier-independent ferromagnetism heralds Sb2- x Cr x Te3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.

  13. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    SciTech Connect

    Hammond, Karl D.; Wirth, Brian D.

    2014-10-14

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  14. EFFECTS OF HELIUM PRECONDITIONING ON INTESTINAL ISCHEMIA AND REPERFUSION INJURY IN RATS.

    PubMed

    Du, Lei; Zhang, Rongjia; Luo, Tianhang; Nie, Mingming; Bi, Jianwei

    2015-10-01

    Intestinal ischemia-reperfusion (I/R) injury can occur in clinical settings such as organ transplantation, cardiopulmonary bypass and trauma. The noble gas helium attenuates I/R injury in a number of animal organs and thus may offer a strategy for reducing I/R-induced intestinal injury in clinical settings. In the present study, we used four different helium preconditioning (HPC) profiles to investigate the potential beneficial effect of HPC on I/R-induced intestinal injury. Male Sprague-Dawley rats were pretreated with three cycles of air breathing for 5 min combined with three cycles of breathing a 70% helium:30% oxygen mixture for either 2, 5, 10, or 15 min, after which they were subjected to 60-min intestinal ischemia and 60-min reperfusion. Sixty minutes after reperfusion, the intestinal tissues of the variously treated rats were analyzed using histology, immunohistochemistry, terminal dUTP nick-end labeling staining, myeloperoxidase activity assay, Western blotting, and enzyme-linked immunosorbent assay for tumor necrosis factor α and macrophage inflammatory protein 1α. Intestinal permeability was assayed by measuring fluorescein isothiocyanate-dextran release in blood samples. The results showed that the HPC profile consisting of three cycles of 10 or 15 min of helium breathing and three cycles of 5 min of air breathing reduced I/R-induced intestinal injury, cell apoptosis, and the inflammatory response. However, the 2- or 5-min helium breathing did not confer any protective effects. It seems that longer helium episodes should be used in HPC profiles designed to attenuate intestinal I/R injury. PMID:26052960

  15. Large Eddy Simulation of Radiation Effects on Pollutant Emissions in Diluted Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Nunno, A. Cody; Mueller, Michael E.

    2015-11-01

    Radiation effects are examined in turbulent premixed flames using a detailed Large Eddy Simulation (LES) approach. The approach combines a tabulated premixed flamelet model (Flamelet Generated Manifolds) with an optically thin radiation model. Radiation heat loss is tracked using an enthalpy deficit coordinate. Heat loss in the flamelets is calculated by varying a coefficient on the radiation source term, ranging from zero (adiabatic) to unity (full optically thin heat loss). NOx emissions are modeled with an additional transport equation that is able to capture unsteady effects resulting from slow kinetics. The model is compared against experimental measurements of methane-air piloted turbulent premixed planar jet flames with increasing levels of water dilution that maintain a constant adiabatic flame temperature. The effects of water dilution on global flame structure and NO emissions resulting directly and indirectly from radiation are examined in detail.

  16. Helium generation rates in isotopically tailored Fe-Cr-Ni alloys irradiated in FFTF/MOTA

    SciTech Connect

    Greenwood, L.R.; Garner, F.A. ); Oliver, B.M. . Rocketdyne Div.)

    1991-11-01

    Three Fe-Cr-Ni alloys have been doped with 0.4% {sup 59}Ni for side-by-side irradiations of doped and undoped materials in order to determine the effects of fusion-relevant levels of helium production on microstructural development and mechanical properties. The alloys were irradiated in three successive cycles of the Materials Open Test Assembly (MOTA) located in the Fast Flux Test Facility (FFTF). Following irradiation, helium levels were measured by isotope dilution mass spectrometry. The highest level of helium achieved in doped alloys was 172 appm at 9.1 dpa for a helium(appm)-to-dpa ratio of 18.9. The overall pattern of predicted helium generation rates in doped and undoped alloys is in good agreement with the helium measurements.

  17. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui

    2016-04-01

    This study aims to investigate the effect of Ar8+ ions pre-damage on the following He2+ irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He2+ ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar8+ ions at a fluence of 4 × 1019 ions m-2. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar8+ ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to <111>. The Ar8+ ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He2+ irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar8+ ions pre-damage.

  18. Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    NASA Astrophysics Data System (ADS)

    Abrams, K. J.; Hinks, J. A.; Pawley, C. J.; Greaves, G.; van den Berg, J. A.; Eyidi, D.; Ward, M. B.; Donnelly, S. E.

    2012-04-01

    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin (≈55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change.

  19. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    NASA Astrophysics Data System (ADS)

    Lee, Wonwook; Park, Kyungdeuk; Kwon, Duck-Hee; Oh, Cha-Hwan

    2016-06-01

    Low density (ne < 1011 cm-3) and low temperature (Te < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded. The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.

  20. Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    SciTech Connect

    Abrams, K. J.; Greaves, G.; Berg, J. A. van den; Hinks, J. A.; Donnelly, S. E.; Pawley, C. J.; Eyidi, D.; Ward, M. B.

    2012-04-15

    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin ({approx_equal}55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change.

  1. Path Integral Quantum Monte Carlo Study of Coupling and Proximity Effects in Superfluid Helium-4

    NASA Astrophysics Data System (ADS)

    Graves, Max T.

    When bulk helium-4 is cooled below T = 2.18 K, it undergoes a phase transition to a superfluid, characterized by a complex wave function with a macroscopic phase and exhibits inviscid, quantized flow. The macroscopic phase coherence can be probed in a container filled with helium-4, by reducing one or more of its dimensions until they are smaller than the coherence length, the spatial distance over which order propagates. As this dimensional reduction occurs, enhanced thermal and quantum fluctuations push the transition to the superfluid state to lower temperatures. However, this trend can be countered via the proximity effect, where a bulk 3-dimensional (3d) superfluid is coupled to a low (2d) dimensional superfluid via a weak link producing superfluid correlations in the film at temperatures above the Kosterlitz-Thouless temperature. Recent experiments probing the coupling between 3d and 2d superfluid helium-4 have uncovered an anomalously large proximity effect, leading to an enhanced superfluid density that cannot be explained using the correlation length alone. In this work, we have determined the origin of this enhanced proximity effect via large scale quantum Monte Carlo simulations of helium-4 in a topologically non-trivial geometry that incorporates the important aspects of the experiments. We find that due to the bosonic symmetry of helium-4, identical particle permutations lead to correlations between contiguous spatial regions at a length scale greater than the coherence length. We show that quantum exchange plays a large role in explaining the anomalous experimental results while simultaneously showing how classical arguments fall short of this task.

  2. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-07-01

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K.

  3. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    SciTech Connect

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.

  4. Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma

    SciTech Connect

    Zener Sukra Lie; Koo Hendrik Kurniawan; May On Tjia; Rinda, Hedwig; Suliyanti, Maria Margaretha; Syahrun Nur Abdulmadjid; Nasrullah Idris; Alion Mangasi Marpaung; Marincan Pardede; Jobiliong, Eric; Muliadi Ramli; Heri Suyanto; Fukumoto, Kenichi; Kagawa, Kiichiro

    2013-02-07

    A time-resolved orthogonal double pulse laser-induced breakdown spectroscopy (LIBS) with helium surrounding gas is developed for the explicit demonstration of time mismatch between the passage of fast moving impurity hydrogen atoms and the formation of thermal shock wave plasma generated by the relatively slow moving major host atoms of much greater masses ablated from the same sample. Although this so-called 'mismatching effect' has been consistently shown to be responsible for the gas pressure induced intensity diminution of hydrogen emission in a number of LIBS measurements using different ambient gases, its explicit demonstration has yet to be reported. The previously reported helium assisted excitation process has made possible the use of surrounding helium gas in our experimental set-up for showing that the ablated hydrogen atoms indeed move faster than the simultaneously ablated much heavier major host atoms as signaled by the earlier H emission in the helium plasma generated by a separate laser prior to the laser ablation. This conclusion is further substantiated by the observed dominant distribution of H atoms in the forward cone-shaped target plasma.

  5. Effects of alloying elements on thermal desorption of helium in Ni alloys

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  6. Phase separation as a strategy toward controlling dilution effects in macrocyclic Glaser-Hay couplings.

    PubMed

    Bédard, Anne-Catherine; Collins, Shawn K

    2011-12-14

    Macrocycles are abundant in numerous chemical applications, however the traditional strategy for the preparation of these compounds remains cumbersome and environmentally damaging; involving tedious reaction set-ups and extremely dilute reaction media. The development of a macrocyclization strategy conducted at high concentrations is described which exploits phase separation of the catalyst and substrate, as a strategy to control dilution effects. Sequestering a copper catalyst in a highly polar and/or hydrophilic phase can be achieved using a hydrophilic ligand, T-PEG(1900), a PEGylated TMEDA derivative. Similarly, phase separation is possible when suitable copper complexes are soluble in PEG(400), a green and efficient solvent which can be utilized in biphasic mixtures for promoting macrocyclization at high concentrations. The latter phase separation technique can be exploited for the synthesis of a wide range of industrially relevant macrocycles with varying ring sizes and functional groups. PMID:22029394

  7. Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

    SciTech Connect

    Wallner, Thomas; Kaul, Brian C; Sevik, James; Scarcelli, Riccardo; Wagner, Robert M

    2015-01-01

    Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution levels were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms. Ignition perturbation was phased early/late of MBT timing, and injection perturbation was set fuel rich/lean of the given air-to-fuel ratio. COVIMEP was used to define acceptable operation limits when comparing different perturbation cases. Overall sensitivity data shows COVIMEP is more sensitive to injection perturbation over ignition perturbation. This is because of the greater effect injection perturbation has on combustion phasing, ignition delay, and combustion duration.

  8. Hypoxia, an adjunct in helium-cold hypothermia - Sparing effect on hepatic and cardiac metabolites.

    NASA Technical Reports Server (NTRS)

    Anderson, G. L.; Resch, G. E.; Musacchia, X. J.

    1973-01-01

    Investigation of the effect of hypoxia on the depletion of metabolites that occurs in helium-aided induction of hypothermia. Hypoxic slowing of the heart of a hamster while exposed to cold helox is demonstrated. An attempt is made to evaluate the relative importance of cardiac slowing and limitation of thermogenesis in determining the effect of hypoxia. In explanation of the results presented, it is suggested that hypoxia limits the energy expenditure by the heart during induction.

  9. Diffusion of helium in carbonates: Effects of mineral structure and composition

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Amidon, W.; Hobbs, D.; Watson, E. B.

    2015-09-01

    Diffusion of helium has been characterized in four carbonates: calcite, dolomite, magnesite, and aragonite. Cleaved or oriented and polished slabs of carbonate minerals were implanted with 100 keV or 3 MeV 3He at doses of 5 × 10153He/cm2 and 1 × 10163He/cm2, respectively, and annealed in 1-atm furnaces. 3He distributions following diffusion experiments were measured with nuclear reaction analysis using the reaction 3He(d,p)4He. Our results show that He diffusion in calcite is the fastest among the carbonates studied, with diffusivities progressively slower in magnesite, dolomite and aragonite. In the case of the isomorphic trigonal carbonates (calcite, dolomite, magnesite), these observations are broadly consistent with predictions based on lattice characteristics such as unit cell size and inter-atomic apertures, with diffusivities faster in more open carbonate structures. Dolomite is an exception to this trend, suggesting that its unique ordered R3 crystal structure may play a role in slowing helium diffusion. Diffusion is anisotropic in all of the trigonal carbonates, and is typically slowest for diffusion along the c direction, and faster for diffusion normal to c and in directions normal to cleavage surfaces. The patterns of diffusional anisotropy are predicted to first order by the size of limiting inter-atomic apertures along any given crystallographic direction, providing additional support to the concept of modeling crystal lattices as "molecular sieves" with regard to diffusion of helium. When the effects of anisotropy and diffusion domain size are considered, our results are in reasonable agreement with previous results from bulk degassing of natural samples. Modeling of helium diffusive loss shows that calcite and magnesite are unlikely to be retentive of helium on the Earth's surface for typical grain sizes and time/temperature conditions. Dolomite and aragonite may be retentive under cooler conditions, but because helium retention is strongly

  10. The effect of confinement on liquid helium near the lambda line

    SciTech Connect

    Larson, M.E.

    1993-12-31

    This thesis is the compilation of several projects relevant to the behavior of confined liquid helium near the {lambda}-line. The first project described is the development of two new high resolution thermometers optimized for specific heat studies of helium confined in pores. One of the thermometers is a superconductive transition thermometer (STT). The STT has a temperature resolution of about 5nK. The other high resolution thermometer described is a magnetic susceptibility thermometer. This thermometer measures the magnetization of copper ammonium bromide (CAB) using a SQUID magnetometer. The CAB thermometer has an observed sensitivity of about 20nK. Suggestions for improvements in both thermometers are made. Simulation work on the temperature profile of a thermal conductivity cell near T{lambda} is described. The simulations are compared with the experimental results, and a careful study of the stability of the numerics is described. The study of helium confined into pores and films is described next. Both previous theoretical and experimental work on finite size effects in liquid helium are described. The geometry provided by glass capillary arrays is analyzed to determine what would be observed when the specific heat of helium confined to the arrays is measured. Finally, I describe my measurements of the isobaric thermal expansion coefficient {beta}{sub P} of 4He confined in an aerogel for several isobars along the {lambda}-line. {beta}{sub P} is an asymptotically linear function of C{sub P} near the superfluid transition temperature {Tc}. Therefore, fits to power laws in t {triple_bond} T/{Tc} - 1 give the specific heat exponents {alpha} and {alpha}{prime} and amplitude ratio A{prime}/A. Such fits gave different exponents {alpha} {approx} -0.6 and {alpha}{prime} {approx} -1.0 above and below {Tc}.

  11. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  12. Effect of dilute tungsten alloying on the dynamic strength of tantalum under ramp compression

    NASA Astrophysics Data System (ADS)

    Alexander, C. S.; Brown, J. L.; Millett, J. C. F.; Whiteman, G.; Asay, J. R.; Bourne, N. K.

    2015-06-01

    The strength of tantalum and tantalum alloys are of considerable interest due to their widespread use in both military and industrial applications. Previous work has shown that strength in these materials is tied to dislocation density and mobility within the microstructure. Accordingly, strength has been observed to increase with dilute alloying which serves to increase the dislocation density. In this study, we examine the effect of alloying on the strength of a dilute tantalum-tungsten alloy (2.5 weight percent W) under ramp compression. The strength of the alloy is measured using the ``self-consistent'' technique which examines the response under longitudinal unloading from peak compression. The results are compared to previous studies of pure tantalum and dilute tantalum-tungsten alloys under both shock and ramp compression and indicate strengthening of the alloy when compared to pure tantalum. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    SciTech Connect

    Szybist, James P

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.

  14. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    NASA Astrophysics Data System (ADS)

    Banerjee, Ananya; Sarkar, A.

    2016-05-01

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  15. Effects of liquid helium bubble formation in a superconducting cavity cryogenic system

    SciTech Connect

    Chang, X.; Wang, E.; Xin, T.

    2011-03-01

    We constructed a simple prototype model based on the geometry of the 56 MHz superconducting cavity for RHIC. We studied the formation, in this prototype, of bubbles of liquid helium and their thermal effects on the cavity. We found that due to the low viscosity of the liquid helium, and its small surface tension, no large bubbles formed. The tiny bubbles, generated from most of the area, behaved like light gas travelling in a free space and escaped from the trapping region. The bubbles that were generated in the trapping area, due to its descending geometry, are much bigger than the other bubbles, but due to the liquid flow generated by heating, they still are negligible compared to the size of the trapping region. We expected that the effects of bubbles in our 56 MHz cavity during operation might well be negligible.

  16. Modeling of the Tritium Impact on Mechanical Properties of Structural Materials by Radiogenic Helium and Hydrogen Synergetic Effect Technique

    SciTech Connect

    Boitsov, I.E.; Grishechkin, S.K.; Zlatoustovskiy, S.V.; Yukhimchuk, A.A.

    2005-07-15

    The paper presents results of tritium-structural materials interaction modeling by simultaneous exposure to radiogenic helium-3 and hydrogen (both dissolved and external). This method of synergetic effect of radiogenic helium-3 and hydrogen is a radiation-safe technique to study the tritium impact on mechanical properties of structural materials. Applicability of the method is illustrated by technique and research results on the impact of high-pressure hydrogen (80MPa), helium-3 (concentration {approx}140appm) and their synergetic (hydrogen+{sup 3}He) effects on mechanical properties of CrNi40MoCuTiAl alloy in temperature range from 20 to 600 deg. C. It has been shown that joint effect of radiogenic helium-3 and hydrogen on mechanical properties of alloy can not be represented as the result of a simple summation of helium and hydrogen embrittlement. Proposed technique of synergetic impact of radiogenic helium-3 and hydrogen allows more correct simulation and investigation in the tritium impact on mechanical properties of materials than individual research in helium or hydrogen embrittlement.

  17. EFFECTS OF WASTEWATER TREATMENT AND SEAWATER DILUTION IN REDUCING LETHAL TOXICITY OF MUNICIPAL WASTEWATER TO SHEEPSHEAD MINNOW AND PINK SHRIMP

    EPA Science Inventory

    The study was conducted to determine the effects of treatment and seawater dilution of municipal wastewater on marine organisms. n experimental facility was built in southeast Florida that provided both unchlorinated and chlorinated effluent from three standard treatments: primar...

  18. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    PubMed Central

    Wenninger, Alexandria; Kim, Tania N.; Spiesman, Brian J.; Gratton, Claudio

    2016-01-01

    Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta) as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants) resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers), and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation. PMID:27271673

  19. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators.

    PubMed

    Wenninger, Alexandria; Kim, Tania N; Spiesman, Brian J; Gratton, Claudio

    2016-01-01

    Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta) as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants) resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers), and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation. PMID:27271673

  20. Effect of dilute amounts of oxygen solute on nucleation of zirconium

    NASA Astrophysics Data System (ADS)

    Wert, M. J.; Hofmeister, W. H.; Bayuzick, R. J.

    2003-03-01

    Classical nucleation theory was used as the basis for investigating the effects of dilute oxygen solute on the nucleation behavior of pure zirconium. Undercooling distributions were obtained for zirconium samples via electrostatic levitation experiments and kinetic parameters were determined using statistical analysis. Oxygen and residual impurity content were determined using glow discharge mass spectrometry. The work of formation of a critical nucleus, ΔG*, and the kinetic prefactor, Kv, increased with decreasing oxygen content. To examine the effects of oxygen on ΔG*, a sharp interface model was assumed to allow separation of volume free energy and interfacial free energy components. Dilute oxygen has a minimal effect on the volume free energy. A temperature-dependent reduced interfacial free energy, αm, was used to examine the effect of oxygen on interfacial free energy. Experimentally derived values for αm and the corresponding interface configurational entropy values varied significantly from theoretical predictions for "pure" zirconium. Oxygen compositional effects increased the configurational entropy of the interface atoms, resulting in a decrease in the reduced interfacial free energy.

  1. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Brimbal, Daniel; Fournier, Lionel; Barbu, Alain

    2016-01-01

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium.

  2. Investigation of effects of dilute oxygen solute on nucleation of zirconium

    NASA Astrophysics Data System (ADS)

    Wert, Melissa Jane

    Classical nucleation theory is the foundation of considerations of the freezing of liquids. The presence of a dilute solute has been shown to affect nucleation, however, classical theory does not account for the rates seen experimentally. This work investigates the effects of a dilute amount of oxygen solute on the nucleation of solidification in otherwise pure zirconium. Undercooling distributions were obtained for mid and high purity zirconium samples via electrostatic levitation experiments and the critical work of formation, DeltaG*, and kinetic prefactor, log Kv, were determined using statistical analysis. Oxygen content of each sample was determined using glow discharge mass spectrometry. Both kinetic parameters were seen to increase with increasing sample purity. In order to examine these effects of oxygen, a sharp interface model was assumed to allow separation of total free energy change accompanying nucleation into volume free energy and interfacial free energy components. It was shown that dilute amounts of oxygen (<0.2 at %) had a minimal effect on the volume free energy change for this system. Thus, the interfacial free energy term was found to be the dominant factor in the total free energy change for nucleation. Spaepen and Turnbull's temperature-dependent reduced interfacial free energy, alpha, was used to examine the interfacial free energy which arises as a result of the decrease in configurational entropy at the interface. Experimentally-determined values for alpha were significantly less than theoretical predictions of their negentropic model, which assumed an infinite planar interface between a pure liquid and pure close-packed crystal. The interface configurational entropy is greater than the theoretical prediction due to the curvature of the interface and the presence of oxygen. The addition of oxygen increases the number of available configurations, increasing the configurational entropy at the interface, decreasing the interfacial free

  3. Effect of topography on deposition from dilute pyroclastic density currents simulated by Ansys Fluent software

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico Maria; Valentine, Greg A.; Dellino, Pierfrancesco; de Tullio, Marco D.

    2010-05-01

    Pyroclastic density currents are volcanic gas-particle flows that move along volcano flanks and over the neighboring topography. Flow particle concentration can vary between two end members, concentrated and dilute. When a pyroclastic density current interacts with an uneven topography, the flow-field variables (velocity, pressure, particle concentration) are drastically changed at the flow-substrate boundary. These changes may significantly affect the sedimentation rate and the resulting deposits can record such effects in their sedimentological features. Here we show, by means of numerical simulations, how a dilute pyroclastic density current interacts with four different types of topographies, namely: flat, one hill, one valley and two hills. The simulations are carried out by Ansys Fluent commercial software for applications in fluid dynamic engineering. Our numerical scheme treats the very fine particles as being in full thermo-mechanical equilibrium with the volcanic gas (pseudo-fluid phase), and the trajectories of the coarser particles are tracked by means of the pseudo-fluid solution (Lagrangian particles). There is a two-way coupling between the pseudo-fluid phase and Lagrangian particles, which accounts for the reciprocal mechanical effects of the two phases. Numerical results are then used to analyze the local effects of topography on the deposition of the Lagrangian particles, by monitoring with time and space the local changes at the boundary between the dilute pyroclastic density current and substrate. We use the sedimentation rate and grain-size distribution of the Lagrangian particles as proxies of the deposit features, and by these parameters we compare qualitatively the numerical results with the deposits of known eruptions: Mount St. Helens blast, Taupo ignimbrite and Vulcano surge deposits. The results reproduce qualitatively the natural deposits very well, and we conclude that Ansys Fluent software could be used in volcanology with success.

  4. Subtask 12G2: Effects of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE). One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage under conditions relevant to fusion reactor operation. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in the Li-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-4Cr-4Ti, an alloy identified as the most promising vanadium-base alloy for fusion reactors on the basis of its superior baseline and irradiation properties. Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room-temperature ductilities of DHCE specimens were higher than those of non-DHCE specimens (in which there was negligible helium generation), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to tritium-trick experiments in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE. 25 refs., 2 figs., 3 tabs.

  5. Bowing effect in elastic constants of dilute Ga(As,N) alloys

    NASA Astrophysics Data System (ADS)

    Berggren, Jonas; Hanke, Michael; Trampert, Achim

    2016-05-01

    We study the elastic properties of dilute Ga(As,N) thin films grown on GaAs(001) by means of nano-indentation and complementary dynamic finite element calculations. The experimental results of indentation modulus are compared with simulations in order to extract the cubic elastic constants cij as a function of nitrogen content of the Ga(As,N) alloys. Both, indentation modulus and elastic constants decrease with increasing nitrogen content, which proves a strong negative bowing effect in this system in contrast to Vegard's law.

  6. Effects of diamagnetic Ga dilution on the Faraday response of bismuth-doped iron garnet films

    NASA Astrophysics Data System (ADS)

    Garzarella, A.; Shinn, M. A.; Wu, Dong Ho

    2016-06-01

    In bismuth-doped iron garnets, diamagnetic dilution of Fe with Ga is a well-known method to increase the Faraday rotation response under externally applied magnetic fields. It is found, however, that while this method improves responsivity at larger field strengths, the responsivity under smaller fields (which are more typical in sensing applications) is generally unaffected by Ga doping. The data indicate that the low-field responsivity is limited by anomalous pinning effects in the rotational magnetization process of the ferromagnetic domains. To overcome this, a magnetic biasing technique was developed, which enhances responsivity by activating Barkhausen steps in the films to free the domains from their pinning sites.

  7. Effect of helium on the swelling of GlidCop Al25 IG alloy

    NASA Astrophysics Data System (ADS)

    Fabritsiev, S. A.; Pokrovsky, A. S.; Zinkle, S. J.; Ostrovsky, S. E.

    2002-12-01

    This report presents data on the effect of neutron irradiation up to 0.5 dpa in the mixed spectrum SM-2 reactor at Tirr≈160 and ≈295 °C and on the TEM microstructure of GlidCop Al25 IG oxide dispersion strengthened copper after different heat treatments (CR+annealed, HIP). It is shown for the first time that a high helium generation rate in the alloy, due to boron introduced into the alloy in the capacity of deoxidizer, results in high-rate swelling of GlidCop Al25 IG of about 1%/dpa at 300 °C. It is shown that the average size of Al 2O 3 particles reduces under irradiation. The conclusion is made that the application of elements with high cross-sections of helium generation as deoxidizers can result in a substantial decrease of the resistance to swelling of copper alloys for fusion applications.

  8. TRITIUM AND DECAY HELIUM EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL WELDMENTS

    SciTech Connect

    Morgan, M; Scott West, S; Michael Tosten, M

    2007-08-31

    J-Integral fracture toughness tests were conducted on tritium-exposed-and-aged Types 304L and 21-6-9 stainless steel weldments in order to measure the combined effects of tritium and its decay product, helium-3 on the fracture toughness properties. Initially, weldments have fracture toughness values about three times higher than base-metal values. Delta-ferrite phase in the weld microstructure improved toughness provided no tritium was present in the microstructure. After a tritium-exposure-and-aging treatment that resulted in {approx}1400 atomic parts per million (appm) dissolved tritium, both weldments and base metals had their fracture toughness values reduced to about the same level. The tritium effect was greater in weldments (67 % reduction vs. 37% reduction) largely because the ductile discontinuous delta-ferrite interfaces were embrittled by tritium and decay helium. Fracture toughness values decreased for both base metals and weldments with increasing decay helium content in the range tested (50-200 appm).

  9. Effect of tritium and decay helium on the fracture toughness properties of stainless steel weldments

    SciTech Connect

    Morgan, M. J.; West, S.; Tosten, M. H.

    2008-07-15

    J-Integral fracture toughness tests were conducted on tritium-exposed-and- aged Types 304L and 21-6-9 stainless steel weldments in order to measure the combined effects of tritium and its decay product, helium-3 on the fracture toughness properties. Initially, weldments have fracture toughness values about three times higher than base-metal values. Delta-ferrite phase in the weld microstructure improved toughness provided no tritium was present in the microstructure. After a tritium-exposure-and-aging treatment that resulted in {approx}1400 atomic parts per million (appm) dissolved tritium, both weldments and base metals had their fracture toughness values reduced to about the same level. The tritium effect was greater in weldments (67 % reduction vs. 37% reduction) largely because the ductile discontinuous delta-ferrite phase was embrittled by tritium and decay helium. For both base metals and weldments, fracture toughness values decreased with increasing decay helium content in the range tested (50-800 appm). (authors)

  10. Subtask 12G1: Effects of dynamically charged helium on swelling and microstructure of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Gazda, J.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine void structure, distribution, and density changes of several vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment (DHCE). Combined effects of dynamically charged helium and neutron damage on density change, void distribution, and microstructural evolution of V-4Cr-4Ti alloy have been determined after irradiation to 18-31 dpa at 425-600{degrees}C in the DHCE, and the results compared with those from a non-DHCE in which helium generation was negligible. For specimens irradiated to {approx}18-31 dpa at 500-600{degrees}C with a helium generation rate of 0.4-4.2 appm He/dpa, only a few helium bubbles were observed at the interface of grain matrices and some of the Ti(O,N,C) precipitates, and no microvoids or helium bubbles were observed either in grain matrices or near grain boundaries. Under these conditions, dynamically produced helium atoms seem to be trapped in the grain matrix without significant bubble nucleation or growth, and in accordance with this, density changes from DHCE and non-DHCE (negligible helium generation) were similar for comparable fluence and irradiation temperature. Only for specimens irradiated to {approx}31 dpa at 425{degrees}C, when helium was generated at a rate of 0.4-0.8 appm helium/dpa, were diffuse helium bubbles observed in limited regions of grain matrices and near {approx}15% of the grain boundaries in densities significantly lower than those in the extensive coalescences of helium bubbles typical of other alloys irradiated in tritium-trick experiments. Density changes of specimens irradiated at 425{degrees}C in the DHCE were significantly higher than those from non-DHCE irradiation. Microstructural evolution in V-4Cr-4Ti was similar for DHCE and non-DHCE except for helium bubble number density and distribution. As in non-DHCE, the irradiation-induced precipitation of ultrafine Ti{sub 5}Si{sub 3} was observed for DHCE at >500{degrees}C but not at 425{degrees}C.

  11. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  12. Helium effects on creep properties of Fe-14CrWTi ODS steel at 650 °C

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Rebac, T.; Duval, F.; Sauvage, T.; de Carlan, Y.; Barthe, M. F.

    2014-10-01

    In the present paper, the effects of helium on creep properties of Fe-14CrWTi ODS steel were studied by in-beam and post He-implantation creep tests. In-situ creep was performed in an in-beam creep device under uniaxial tensile stresses from 350 to 370 MPa during homogeneous helium implantation. Helium ions of energies varying from 0 to 25 MeV were implanted at a rate of 6 × 10-3 appm/s (corresponding to a displacement dose rate of 1.5 × 10-6 dpa/s). The average temperature was controlled to 650 °C within ±2 °C. In addition, post He-implantation creep tests were conducted at 650 °C as well. Subsequently, fracture surfaces and helium bubble evolution were studied in detail by SEM and TEM observations, respectively. Preliminary creep results show that helium slightly shortens the creep life time of ODS steel at 650 °C. Fracture surfaces of reference as well as implanted specimens, show areas with various grades of deformation. Areas of highest deformation can be interpreted as necking, while areas of low deformation show in helium implanted specimens a more granular structure. The results are discussed in terms of possible embrittlement of ODS steels by helium.

  13. Helium effects on irradiation dmage in V alloys

    SciTech Connect

    Doraiswamy, N.; Alexander, D.

    1996-10-01

    Preliminary investigations were performed on V-4Cr-4Ti samples to observe the effects of He on the irradiation induced microstructural changes by subjecting 3 mm electropolished V-4Cr-4Ti TEM disks, with and without prior He implantation, to 200 keV He irradiation at room temperature and monitoring, in-situ, the microstructural evolution as a function of total dose with an intermediate voltage electron microscope directly connected to an ion implanter. A high density of black dot defects were formed at very low doses in both He pre-implanted and unimplanted samples.

  14. Post-irradiation annealing effect on helium diffusivity in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Katsura, R.; Morisawa, J.; Kawano, S.; Oliver, B. M.

    2004-08-01

    As an experimental basis for helium induced weld cracking of neutron irradiated austenitic stainless steels, helium diffusivity has been evaluated by measuring helium release at high temperature. Isochronal and isothermal experiments were performed at temperatures between 700 and 1300 °C for 304 and 316L stainless steels. In 1 h isochronal experiments, helium was released beginning at ˜900 °C and reaching almost 100% at 1300 °C. No apparent differences in helium release were observed between the two stainless steel types. At temperatures between 900 and 1300 °C, the diffusion rate was calculated from the time dependence of the helium release rate to be: D0=4.91 cm 2/s, E=289 kJ/mol. The observed activation energy suggests that the release of helium from the steels is associated with the removal of helium from helium bubbles and/or from vacancy diffusion.

  15. Post-Irradiation Annealing Effect on Helium Diffusivity in Austenitic Stainless Steels

    SciTech Connect

    Katsura, Ryoei; Morisawa, J; Kawano, S; Oliver, Brian M.

    2004-08-01

    As an experimental basis for helium induced weld cracking of neutron irradiated austenitic stainless steels, helium diffusivity has been evaluated by measuring helium release rates at high temperature. Isochronal and isothermal experiment were performed at temperatures between 700 and 1300 for Type 304 and 316L stainless steels. In 1 hour isochronal experiments, helium was released beginning at {approx}900 and reaching near 100% at 1300. No apparent differences in helium release rate were observed between Type 304 and 316L stainless steels. At temperatures between 1100 and 1300, the diffusion rate was calculated from the time dependence of the helium release rate to be:?D0=3.42?104 cm2/s, E=173.2 kJ/mol. The observed activation energy suggests that the release of helium from the steels is associated with the removal of helium from helium bubbles.

  16. Effects of Dilution, Polarization Ratio, and Energy Transfer on Photoalignment of Liquid Crystals Using Coumarin-Containing Polymer Films

    SciTech Connect

    Kim, C.; Wallace, J.U.; Chen, S.H.; Merkel, P.B.

    2008-05-27

    Orientation of a nematic liquid crystal, E-7, was investigated using coumarin-containing polymethacrylates to elucidate the roles played by the dilution of coumarin and the polarization ratio of irradiation. Dilution of coumarin by inert moieties had adverse effects on a nematic cell’s number density of disclinations and its orientational order parameter in the parallel but not the perpendicular regime. In addition, both dilution of coumarin and a decreasing polarization ratio resulted in a lower extent of coumarin dimerization at crossover, Xc. The significantly reduced Xc in a homopolymer comprising triphenylamine and coumarin was attributed to the dilution of coumarin and the diminished polarization ratio caused by competing absorption with simultaneous triplet energy transfer from triphenylamine to coumarin moieties.

  17. Mechanical properties of neutron-irradiated nickel-containing martensitic steels: II. Review and analysis of helium-effects studies

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Hashimoto, N.; Sokolov, M. A.; Maziasz, P. J.; Shiba, K.; Jitsukawa, S.

    2006-10-01

    In part I of this helium-effects study on ferritic/martensitic steels, results were presented on tensile and Charpy impact properties of 9Cr-1MoVNb (modified 9Cr-1Mo) and 12Cr-1MoVW (Sandvik HT9) steels and these steels containing 2% Ni after irradiation in the High Flux Isotope Reactor (HFIR) to 10-12 dpa at 300 and 400 °C and in the Fast Flux Test Facility (FFTF) to 15 dpa at 393 °C. The results indicated that helium caused an increment of hardening above irradiation hardening produced in the absence of helium. In addition to helium-effects studies on ferritic/martensitic steels using nickel doping, studies have also been conducted over the years using boron doping, ion implantation, and spallation neutron sources. In these previous investigations, observations of hardening and embrittlement were made that were attributed to helium. In this paper, the new results and those from previous helium-effects studies are reviewed and analyzed.

  18. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, K. W.; Choi, D. M.; Noh, S. J.; Kim, H. S.; Lee, Cheol Eui

    2016-02-01

    Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  19. Effectiveness and robustness of robot infotaxis for searching in dilute conditions.

    PubMed

    Moraud, Eduardo Martin; Martinez, Dominique

    2010-01-01

    Tracking scents and locating odor sources is a major challenge in robotics. The odor plume is not a continuous cloud but consists of intermittent odor patches dispersed by the wind. Far from the source, the probability of encountering one of these patches vanishes. In such dilute conditions, a good strategy is to first 'explore' the environment and gather information, then 'exploit' current knowledge and direct toward the estimated source location. Infotactic navigation has been recently proposed to strike the balance between exploration and exploitation. Infotaxis was tested in simulation and produced trajectories similar to those observed in the flight of moths attracted by a sexual pheromone. In this paper, we assess the performance of infotaxis in dilute conditions by combining robotic experiments and simulations. Our results indicate that infotaxis is both effective (seven detections on average were sufficient to reach the source) and robust (the source is found in presence of inaccurate modeling by the searcher). The biomimetic characteristic of infotaxis is also preserved when searching with a robot in a real environment. PMID:20407611

  20. Effect of modularity on the Glauber dynamics of the dilute spin glass model

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Man

    2014-11-01

    We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity ( M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization ( m) and the energy per spin ( r), in addition to the equation for the spin glass order parameter ( q αβ ). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter ( q): q = 0which is stable for r < 1/2 and q = (-1+4 r 2)/(32 r 4) which is stable for r > 1/2 in the non-modular system and q = 0 which is stable for r < 1/ and q = (-1+8 r 2)/(128 r 4) which is stable for r > 1/ in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.

  1. Effectiveness and Robustness of Robot Infotaxis for Searching in Dilute Conditions

    PubMed Central

    Moraud, Eduardo Martin; Martinez, Dominique

    2010-01-01

    Tracking scents and locating odor sources is a major challenge in robotics. The odor plume is not a continuous cloud but consists of intermittent odor patches dispersed by the wind. Far from the source, the probability of encountering one of these patches vanishes. In such dilute conditions, a good strategy is to first ‘explore’ the environment and gather information, then ‘exploit’ current knowledge and direct toward the estimated source location. Infotactic navigation has been recently proposed to strike the balance between exploration and exploitation. Infotaxis was tested in simulation and produced trajectories similar to those observed in the flight of moths attracted by a sexual pheromone. In this paper, we assess the performance of infotaxis in dilute conditions by combining robotic experiments and simulations. Our results indicate that infotaxis is both effective (seven detections on average were sufficient to reach the source) and robust (the source is found in presence of inaccurate modeling by the searcher). The biomimetic characteristic of infotaxis is also preserved when searching with a robot in a real environment. PMID:20407611

  2. Effect of dilution and contaminants on sand grouted with colloidal silica

    SciTech Connect

    Persoff, P.; Apps, J.; Moridis, G.; Whang, J.M.

    1999-06-01

    Colloidal silica is a low-viscosity chemical grout. Samples of grouted sand were made by pouring sand into liquid grout in molds, with the grout diluted to concentrations ranging from 5 to 27% silica by weight. The unconfined compressive strength of the grouted sand, measured after 7 days, was proportional to the silica concentration, up to a maximum of 400 kPa. The hydraulic conductivity of the grouted sand decreased with increasing silica concentration in a nearly log-linear manner down to a minimum of 2 {times} 10{sup {minus}9} cm/s, and was below 1 {times} 10{sup {minus}7} cm/s for grouts with 7.4% silica or more. Inclusion of 5% volumetric saturation of organics (tetrachloroethene, CCl{sub 4}, or aniline) in the samples had little effect on the strength or hydraulic conductivity. Samples were immersed in test liquids (organics, HCl diluted to pH 3, distilled water saturated with organics, and distilled water control) for up to 1 year. All samples increased in strength except for those immersed in aniline; samples immersed in water saturated with aniline were also weaker than control samples.

  3. Solid Effect Between Quadrupolar Transitions in Dilute Cu-Pd Alloys

    NASA Astrophysics Data System (ADS)

    Konzelmann, K.; Majer, G.; Seeger, A.

    1996-06-01

    The paper investigates the Dynamic Solid Effect (DSE) in Nuclear Quadrupole Double Reso-nance (NQDOR) on a system (dilute alloys of CuPd with 8, 42, 210, or 1000 at.ppm Pd) chosen for its simplicity and the possibility to test the theoretical concepts on which the experimental tech-niques (in particular the so-called Berthier-Minier technique for exhibiting the DSE) are based. NQDOR allows to observe the transitions between the Cu nuclear energy levels split by the quadrupolar interaction with the electric field gradients generated by nearby Pd atoms even in dilute alloys, in which the fraction of Cu nuclei experiencing a given field gradient is very small. The DSE permits transitions at frequencies corresponding to the sums or differences of quadrupolar level splittings at neighbouring nuclei and thus gives access to information on the spatial correlation of nuclei accessible to NQDOR studies. The DSE information is shown to be in full accord with the conclusions drawn earlier, on the basis of line-intensity arguments, on the assignment of quadrupo-lar transitions to the first four shells of Cu nuclei surrounding isolated Pd atoms but, in addition, allows to identify the low-frequency NQDOR lines associated with Cu nuclei in the fifth and sixth shells.

  4. Dilution of microbicide gels with vaginal fluid and semen simulants: effect on rheological properties and coating flow.

    PubMed

    Lai, Bonnie E; Xie, Yao Quan; Lavine, Michael L; Szeri, Andrew J; Owen, Derek H; Katz, David F

    2008-02-01

    Microbicides are agents applied topically to the vagina to prevent HIV transmission. Microbicide products formulated as semi-solid dosage forms or "gels" coat vulnerable tissue to deliver active ingredients. Effective microbicide delivery vehicles must have appropriate rheological properties to ensure appropriate deployment in vivo. Microbicide products become diluted by fluids in the vagina after application; dilution affects vehicle rheological properties and mechanics of vaginal distribution, thus affecting efficacy. To simulate the changes that might occur after application, this study analyzed the effects of small dilutions (10-30%) with vaginal fluid and semen simulants on three semi-solid vaginal formulations: a cellulose lubricant (KY Jelly), a polyacrylic acid moisturizer (Replens), and a carrageenan prototype microbicide (Carraguard). Rheological behavior was characterized using cone-and-plate rheometry. Data were fitted to either the power-law, Carreau, or Herschel-Bulkley model. Rheological parameters from these fits were input to models of coating flow due squeezing, and the simulated area coated output from these models was used to compare the responses of the different formulations to the two diluents for varying degrees of dilution. There were differences in the responses of the three materials to dilution. Even small dilutions altered the rank order of vaginal coating rates compared to the undiluted formulations. PMID:17724667

  5. Effect of a high helium content on the flow and fracture properties of a 9Cr martensitic steel

    NASA Astrophysics Data System (ADS)

    Henry, J.; Vincent, L.; Averty, X.; Marini, B.; Jung, P.

    2007-08-01

    An experimental characterization was conducted of helium effects on the mechanical properties of a 9Cr martensitic steel. Six sub-size Charpy samples were implanted in the notch region at 250 °C with 0.25 at.% helium and subsequently tested in 3-point bending at room temperature. Brittle fracture mode (cleavage and intergranular fracture) was systematically observed in the implanted zones of the samples. Finite element calculations of the tests, using as input the tensile properties measured on a helium loaded sample, were performed in order to determine the fracture stress at the onset of brittle crack propagation. Preliminary TEM investigations of the implantation-induced microstructure revealed a high density of small helium bubbles.

  6. The Effects of Helium Bubble Microstructure on Ductility in Annealed and HERF 21Cr-6Ni-9Mn Stainless Steel

    SciTech Connect

    Tosten, M.H.; Morgan, M.J.

    1998-01-01

    This study examined the effects of microstructure on the ambient temperature embrittlement from hydrogen isotopes and decay helium in 21Cr-6Ni-9Mn stainless steel. Hydrogen and tritium-exposed 21Cr-6Ni-9Mn stainless steel tensile samples were pulled to failure and then characterized by transmission electron microscopy (TEM) and optical microscopy. This study determined that ductility differences between annealed and high-energy-rate-forged (HERF) stainless steel containing tritium and its decay product, helium, could be related to differences in the helium bubble microstructures. The HERF microstructures were more resistant to tritium-induced embrittlement than annealed microstructures because the high number density of helium bubbles on dislocations trap tritium within the matrix and away from the grain boundaries.

  7. Helium ion irradiation behavior of Ni-1wt.%SiCNP composite and the effect of ion flux

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Huang, H. F.; Xie, R.; Thorogood, G. J.; Yang, C.; Li, Z. J.; Xu, H. J.

    2015-12-01

    Silicon carbide nanoparticle-reinforced nickel metal (Ni-SiCNP composite) samples were bombarded by helium ions with fluences of 1 × 1016 and 3 × 1016 ions/cm2 at two different fluxes. The microstructural and mechanical changes were characterized via TEM and nanoindentation. Nano-scaled helium bubbles in the shape of spheres were observed in the samples irradiated at high flux and polygons at low flux. The number of helium bubbles increased with the fluence, whereas their mean size remained unaffected. In addition, the nanohardness of the damage layer also increased as the fluence increased. In addition this study suggests that a higher flux results in a higher number of smaller helium bubbles, while showing no obvious effect on the irradiation-induced hardening of the materials.

  8. Temperature and Atomic Oxygen Effects on Helium Leak Rates of a Candidate Main Interface Seal

    NASA Technical Reports Server (NTRS)

    Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.

    2011-01-01

    Helium leak tests were completed to characterize the leak rate of a 54 in. diameter composite space docking seal design in support of the National Aeronautics and Space Administration s (NASA's) Low Impact Docking System (LIDS). The evaluated seal design was a candidate for the main interface seal on the LIDS, which would be compressed between two vehicles, while docked, to prevent the escape of breathable air from the vehicles and into the vacuum of space. Leak tests completed at nominal temperatures of -30, 20, and 50 C on untreated and atomic oxygen (AO) exposed test samples were examined to determine the influence of both test temperature and AO exposure on the performance of the composite seal assembly. Results obtained for untreated seal samples showed leak rates which increased with increased test temperature. This general trend was not observed in tests of the AO exposed specimens. Initial examination of collected test data suggested that AO exposure resulted in higher helium leak rates, however, further analysis showed that the differences observed in the 20 and 50 C tests between the untreated and AO exposed samples were within the experimental error of the test method. Lack of discernable trends in the test data prevented concrete conclusions about the effects of test temperature and AO exposure on helium leak rates of the candidate seal design from being drawn. To facilitate a comparison of the current test data with results from previous leak tests using air as the test fluid, helium leak rates were converted to air leak rates using standard conversion factors for viscous and molecular flow. Flow rates calculated using the viscous flow conversion factor were significantly higher than the experimental air leakage values, whereas values calculated using the molecular flow conversion factor were significantly lower than the experimentally obtained air leak rates. The difference in these sets of converted flow rates and their deviation from the

  9. Polydispersity effects on the magnetization of diluted ferrofluids: a lognormal analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Fei; Shi, Li-Qun

    2010-10-01

    Based on a lognormal particle size distribution, this paper makes a model analysis on the polydispersity effects on the magnetization behaviour of diluted ferrofluids. Using a modified Langevin relationship for the lognormal dispersion, it first performs reduced calculations without material parameters. From the results, it is extrapolated that for the ferrofluid of lognormal polydispersion, in comparison with the corresponding monodispersion, the saturation magnetization is enhanced higher by the particle size distribution. It also indicates that in an equivalent magnetic field, the lognormally polydispersed ferrofluid is magnetically saturated faster than the corresponding monodispersion. Along the theoretical extrapolations, the polydispersity effects are evaluated for a typical ferrofluid of magnetite, with a dispersity of σ = 0.20. The results indicate that the lognormal polydispersity leads to a slight increase of the saturation magnetization, but a noticeable increase of the speed to reach the saturation value in an equivalent magnetic field.

  10. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects.

    PubMed

    Kuglarz, Mariusz; Gunnarsson, Ingólfur B; Svensson, Sven-Erik; Prade, Thomas; Johansson, Eva; Angelidaki, Irini

    2014-07-01

    In the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and ethanol yields was also evaluated. Pretreatment with 1% sulfuric acid at 180°C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment as well as subsequent enzymatic hydrolysis and ethanol fermentation. PMID:24821202

  11. Hydrogen effects in dilute III-N-V alloys: From defect engineering to nanostructuring

    SciTech Connect

    Pettinari, G.; Felici, M.; Capizzi, M.; Polimeni, A.; Trotta, R.

    2014-01-07

    The variation of the band gap energy of III-N-V semiconductors induced by hydrogen incorporation is the most striking effect that H produces in these materials. A special emphasis is given here to the combination of N-activity passivation by hydrogen with H diffusion kinetics in dilute nitrides. Secondary ion mass spectrometry shows an extremely steep (smaller than 5 nm/decade) forefront of the H diffusion profile in Ga(AsN) under appropriate hydrogenation conditions. This discovery prompts the opportunity for an in-plane nanostructuring of hydrogen incorporation and, hence, for a modulation of the material band gap energy at the nanoscale. The properties of quantum dots fabricated by a lithographically defined hydrogenation are presented, showing the zero-dimensional character of these novel nanostructures. Applicative prospects of this nanofabrication method are finally outlined.

  12. A Numerical Study of the Effects of Curvature and Convergence on Dilution Jet Mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Reynolds, R.; White, C.

    1987-01-01

    An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.

  13. A numerical study of the effects of curvature and convergence on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Reynolds, R.; White, C.

    1987-01-01

    An analytical program was conducted to assemble and assess a three-dimensional turbulent viscous flow computer code capable of analyzing the flow field in the transition liners of small gas turbine engines. This code is of the TEACH type with hybrid numerics, and uses the power law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. The assessments performed in this study, consistent with results in the literature, showed that in its present form this code is capable of predicting trends and qualitative results. The assembled code was used to perform a numerical experiment to investigate the effects of curvature and convergence in the transition liner on the mixing of single and opposed rows of cool dilution jets injected into a hot mainstream flow.

  14. Comparison of dilution effects of R134a and nitrogen on flammable hydrofluorocarbons

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Gong, Maoqiong; Wu, Jianfeng; Zhou, Yuan

    2009-12-01

    An experimental apparatus has been built to measure the flammability limits of combustible gases based on Chinese national standard GB/T 12474-90. The flammability limits of four binary mixtures of R161/R134a, R152a/R134a, R161/N2 and R152a/N2 were measured with this apparatus at atmospheric pressure and ambient temperature. The fuel inertization points (FIP) of these mixtures can be found from the envelopes. Comparisons were made with the literature data; good agreement for most measurements was obtained. R134a was found to have a better dilution effect than nitrogen in reducing the flammability of hydrofluorocarbons.

  15. Effects of Dilute Acid Pretreatment on Cellulose DP and the Relationship Between DP Reduction and Cellulose Digestibility

    SciTech Connect

    Wang, W.; Chen, X.; Tucker, M.; Himmel, M. E.; Johnson, D. K.

    2012-01-01

    The degree of polymerization(DP) of cellulose is considered to be one of the most important properties affecting the enzymatic hydrolysis of cellulose. Various pure cellulosic and biomass materials have been used in a study of the effect of dilute acid treatment on cellulose DP. A substantial reduction in DP was found for all pure cellulosic materials studied even at conditions that would be considered relatively mild for pretreatment. The effect of dilute acid pretreatment on cellulose DP in biomass samples was also investigated. Corn stover pretreated with dilute acid under the most optimal conditions contained cellulose with a DPw in the range of 1600{approx}3500, which is much higher than the level-off DP(DPw 150{approx}300) obtained with pure celluloses. The effect of DP reduction on the saccharification of celluloses was also studied. From this study it does not appear that cellulose DP is a main factor affecting cellulose saccharification.

  16. Atomistic simulations of the effect of helium clusters on grain boundary mobility in iron

    NASA Astrophysics Data System (ADS)

    Wicaksono, A. T.; Militzer, M.; Sinclair, C. W.

    2015-08-01

    A series of molecular dynamics simulations was performed in this work to investigate the kinetic interaction between helium clusters and grain boundaries in iron. Helium cluster formation and size distributions were found to be markedly different in the bulk compared to the region of a stationary boundary. Upon reaching a steady-state cluster distribution, the spatial fluctuation of cluster-enriched boundaries was analyzed to determine the grain boundary mobility using the random walk method. Segregated clusters reduced the boundary mobility, the drag effect of clusters increasing as the bulk solute concentration increases. The drag effect was further rationalized by employing Cahn's solute drag model using the effective binding energy of He clusters and the grain boundary diffusivity of a single He atom, their magnitudes having been determined from the segregation level and from monitoring the trajectory of a solute atom in the investigated grain boundaries, respectively. The model is found to provide a satisfactory explanation of the simulation results in the zero velocity limit.

  17. Experimental study of the effects of helium-neon laser radiation on repair of injured tendon

    NASA Astrophysics Data System (ADS)

    Xu, Yong-Qing; Li, Zhu-Yi; Weng, Long-Jiang; An, Mei; Li, Kai-Yun; Chen, Shao-Rong; Wang, Jian-Xin; Lu, Yu

    1993-03-01

    Despite extensive research into the biology of tendon healing, predictably restoring normal function to a digit after a flexor tendon laceration remains one of the most difficult problems facing the hand surgeon. The challenge of simultaneously achieving tendon healing while minimizing the peritendinous scar formation, which limits tendon gliding, has captured the attention of investigators for many years. It has been said that low-power density helium-neon laser radiation had effects on anti-inflammation, detumescence, progressive wound healing, and reducing intestinal adhesions. This experimental study aims at whether helium-neon laser can reduce injured tendon adhesions and improve functional recovery of the injured tendon. Fifty white Leghorn hens were used. Ten were randomly assigned as a normal control group, the other forty were used in the operation. After anesthetizing them with Amytal, a half of the profundus tendons of the second and third foretoes on both sides of the feet were cut. Postoperatively, the hens moved freely in the cages. One side of the toes operated on were randomly chosen as a treatment group, the other side served as an untreated control group. The injured tendon toes in the treatment group were irradiated for twenty minutes daily with a fiber light needle of helium-neon laser therapeutic apparatus (wavelength, 6328 angstroms) at a constant power density of 12.74 mW/cm2, the first exposure taking place 24 hours after the operation. The longest course of treatment was 3 weeks. The control group was not irradiated. At 3 days, 1, 2, 3, and 5 weeks after surgery, 8 hens were sacrificed and their tendons were examined. The experimental results: (1) active, passive flexion and tendon gliding functional recovery were significantly better in the treatment group (p < 0.01); (2) width and thickness of the tendon at the cut site were significantly smaller in the treatment group (p < 0.01); (3) degrees of tendon adhesions were significantly lighter

  18. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Aneeqa; De Temmerman, Gregory; Morgan, Thomas W.; Ward, Michael B.

    2016-06-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as 'fuzz' when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to be dependent on time, temperature and flux. Initial fuzz growth was seen to be highly dependent on grain orientation, with rhenium having little effect. Once the fuzz was fully developed, the effect of grain orientation disappeared and the rhenium had an inhibiting effect on growth. This could be beneficial for inhibiting fuzz growth in a future fusion reactor, where transmutation of tungsten to rhenium is expected. It also appears that erosion or annealing of the fuzz is limiting growth of fuzz at higher temperatures in the range of ∼1340 °C.

  19. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  20. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  1. Hydrodynamic and chemical effects of hydrogen dilution on soot evolution in turbulent nonpremixed bluff body ethylene flames

    NASA Astrophysics Data System (ADS)

    Deng, Sili; Mueller, Michael E.; Chan, Qing N.; Qamar, Nader H.; Dally, Bassam B.; Alwahabi, Zeyad T.; Nathan, Graham J.

    2015-11-01

    A turbulent nonpremixed bluff body ethylene/hydrogen (volume ratio 2:1) flame is studied and compared with the ethylene counterpart [Mueller et al., Combust. Flame, 160, 2013]. Similar to the ethylene buff body flame, a low-strain recirculation zone, a high-strain neck region, and a downstream jet-like region are observed. However, the maximum soot volume fraction in the recirculation zone of the hydrogen diluted case is significantly lower than the ethylene case. Large Eddy Simulation is used to further investigate soot evolution in the recirculation zone and to elucidate the role of hydrogen dilution. Since the central jet Reynolds numbers in both cases are the same (approximately 30,900), the jet velocity of the hydrogen diluted case is higher, resulting in a shorter and leaner recirculation zone. In addition, hydrogen dilution chemically suppresses soot formation due to the reduction of C/H ratio. Consequently, the reduction of the soot volume fraction for the hydrogen diluted ethylene flame is attributed to two major effects: hydrodynamic and chemical effects.

  2. Spectral photometry of extreme helium stars: Ultraviolet fluxes and effective temperature

    NASA Technical Reports Server (NTRS)

    Drilling, J. S.; Schoenberner, D.; Heber, U.; Lynas-Gray, A. E.

    1982-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broad band photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broad band photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K.

  3. Nuclear induces effects and mass correlations in low and multiply charged helium-like ions

    NASA Astrophysics Data System (ADS)

    Stoyanov, Zh K.; Pavlov, R. L.; Mihailov, L. M.; Velchev, Ch J.; Mutafchieva, Y. D.; Tonev, D.; Chamel, N.

    2016-06-01

    The ground-state electron energies, the mass correction and mass polarization of low and multiply charged helium-like ions are analytically and numerically calculated. Approximately 3500 different kinds of ions with charge Z = 2 ÷ 118 are considered. The two-electron Schrodinger equation was solved using a discrete variational-perturbation approach developed by the authors and based on explicitly correlated wave functions. This approach takes into account the motion of the nucleus and yields accurate values for the electron characteristics. The results are presented with and without the inclusion of the mass polarization in the minimization procedure. The relative importance of mass correlations and relativistic effects in the formation of the electron energy characteristics of the helium-like ions are studied for different values of Z. The role of the inclusion of the mass polarization in the minimization procedure as an instrument to present and take into account the effects induced by the nuclear properties, structure and characteristics has been shown.

  4. Determination of effective axion masses in the helium-3 buffer of CAST

    SciTech Connect

    Ruz, J

    2011-11-18

    The CERN Axion Solar Telescope (CAST) is a ground based experiment located in Geneva (Switzerland) searching for axions coming from the Sun. Axions, hypothetical particles that not only could solve the strong CP problem but also be one of the favored candidates for dark matter, can be produced in the core of the Sun via the Primakoff effect. They can be reconverted into X-ray photons on Earth in the presence of strong electromagnetic fields. In order to look for axions, CAST points a decommissioned LHC prototype dipole magnet with different X-ray detectors installed in both ends of the magnet towards the Sun. The analysis of the data acquired during the first phase of the experiment yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV/c{sup 2}. During the second phase, CAST extends its mass sensitivity by tuning the electron density present in the magnetic field region. Injecting precise amounts of helium gas has enabled CAST to look for axion masses up to 1.2 eV/c{sup 2}. This paper studies the determination of the effective axion masses scanned at CAST during its second phase. The use of a helium gas buffer at temperatures of 1.8 K has required a detailed knowledge of the gas density distribution. Complete sets of computational fluid dynamic simulations validated with experimental data have been crucial to obtain accurate results.

  5. The effects of inhomogeneous boundary dilution on the coating flow of an anti-HIV microbicide vehicle

    NASA Astrophysics Data System (ADS)

    Tasoglu, Savas; Peters, Jennifer J.; Park, Su Chan; Verguet, Stéphane; Katz, David F.; Szeri, Andrew J.

    2011-09-01

    A recent study in South Africa has confirmed, for the first time, that a vaginal gel formulation of the antiretroviral drug Tenofovir, when topically applied, significantly inhibits sexual HIV transmission to women [Karim et al., Science 329, 1168 (2010)]. However, the gel for this drug and anti-HIV microbicide gels in general have not been designed using an understanding of how gel spreading and retention in the vagina govern successful drug delivery. Elastohydrodynamic lubrication theory can be applied to model spreading of microbicide gels [Szeri et al., Phys. Fluids 20, 083101 (2008)]. This should incorporate the full rheological behavior of a gel, including how rheological properties change due to contact with, and dilution by, ambient vaginal fluids. Here, we extend our initial analysis, incorporating the effects of gel dilution due to contact with vaginal fluid produced at the gel-tissue interface. Our original model is supplemented with a convective-diffusive transport equation to characterize water transport into the gel and, thus, local gel dilution. The problem is solved using a multi-step scheme in a moving domain. The association between local dilution of gel and rheological properties is obtained experimentally, delineating the way constitutive parameters of a shear-thinning gel are modified by dilution. Results show that dilution accelerates the coating flow by creating a slippery region near the vaginal wall akin to a dilution boundary layer, especially if the boundary flux exceeds a certain value. On the other hand, if the diffusion coefficient of boundary fluid is increased, the slippery region diminishes in extent and the overall rate of gel spreading decreases.

  6. The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree.

    PubMed

    Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun

    2015-11-01

    The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure. PMID:25899308

  7. Focused helium-ion beam irradiation effects on electrical properties of multi-layer WSe2

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Stanford, Michael; Cross, Nick; Duscher, Gerd; Mandrus, David; Rack, Philip

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving great attention due to their excellent opto-electronic properties. Tuning optical and electrical properties of mono and few layers TMDs, such as Tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to fabricate the next generation opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on structural, optical and electrical properties of few layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy and electrical measurements. By controlling the ion irradiation dose, we selectively introduced precise defects in few layer WSe2 thereby locally tuning the electrically resistivity of the material. Hole transport in the few layer WSe2 is severely affected compared to electron transport for the same dose of helium ion beam irradiation studied. Furthermore, by selectively exposing the ion beams, we demonstrate the lateral p-n junction in few layer WSe2 flakes, which constitute an important advance towards two dimensional opto-electronic devices. Materials Science and Technology Division, ORNL, Oak Ridge, TN 37831, USA.

  8. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  9. Helium-abundance and other composition effects on the properties of stellar surface convection in solar-like main-sequence stars

    SciTech Connect

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-12-01

    We investigate the effect of helium abundance and α-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars using a grid of three-dimensional radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances (Y = 0.1, 0.2, 0.3), each with two metallicities (Z = 0.001, 0.020). We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of α-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance.

  10. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    SciTech Connect

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-24

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of {approx}2 {mu}m depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  11. Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice

    PubMed Central

    Magnani, Paolo; Conforti, Anita; Zanolin, Elisabetta; Marzotto, Marta

    2010-01-01

    Introduction This study was designed to investigate the putative anxiolytic-like activity of ultra-low doses of Gelsemium sempervirens (G. sempervirens), produced according to the homeopathic pharmacopeia. Methods Five different centesimal (C) dilutions of G. sempervirens (4C, 5C, 7C, 9C and 30C), the drug buspirone (5 mg/kg) and solvent vehicle were delivered intraperitoneally to groups of ICR-CD1 mice over a period of 9 days. The behavioral effects were assessed in the open-field (OF) and light–dark (LD) tests in blind and randomized fashion. Results Most G. sempervirens dilutions did not affect the total distance traveled in the OF (only the 5C had an almost significant stimulatory effect on this parameter), indicating that the medicine caused no sedation effects or unspecific changes in locomotor activity. In the same test, buspirone induced a slight but statistically significant decrease in locomotion. G. sempervirens showed little stimulatory activity on the time spent and distance traveled in the central zone of the OF, but this effect was not statistically significant. In the LD test, G. sempervirens increased the % time spent in the light compartment, an indicator of anxiolytic-like activity, with a statistically significant effect using the 5C, 9C and 30C dilutions. These effects were comparable to those of buspirone. The number of transitions between the compartments of the LD test markedly increased with G. sempervirens 5C, 9C and 30C dilutions. Conclusion The overall pattern of results provides evidence that G. sempervirens acts on the emotional reactivity of mice, and that its anxiolytic-like effects are apparent, with a non-linear relationship, even at high dilutions. PMID:20401745

  12. Use of a {sup 15}N isotope dilution method to assess contaminant effects on soil nitrification

    SciTech Connect

    Nason, G.E.; Dinwoodie, G.D.

    1995-12-31

    Ecologically relevant bioassays are needed to assess effects of contaminants on soil processes such as decomposition and nutrient cycling. This study was conducted to assess the potential of a soil-based nitrification bioassay. Soil samples adjusted to 0.03 MPa moisture content were amended with 0.1, 1.0, 10 and 100 mg kg{sup {minus}1} PCP or PCB, and 0.05, 0.5, 5 and 50 mg kg{sup {minus}1} Hg and preincubated for 7 days. A 2-d incubation was then started by addition of 10 mg kg{sup {minus}1} {sup 15}NO{sub 3}-N. Diethyl ether used as a carrier for PCP addition had little effect on inorganic nitrogen concentrations during the incubation. Net nitrogen mineralization and nitrification were unaffected by PCB. Higher amendment levels of both PCP and Hg resulted in increases in ammonium concentrations and decreases in net nitrification. {sup 15}N-nitrate pool dilution was sensitive to contamination and showed some gross nitrification was occurring even when net nitrification had ceased. Recoveries of Hg and PCB at the end of the study were greater than 90%. Recovery of PCP was 5%. Incubations carried out under sterile and non-sterile conditions indicated that both sorption and biological degradation were factors in the low PCP recovery.

  13. Magnetization dynamics, rheology, and an effective description of ferromagnetic units in dilute suspension.

    PubMed

    Ilg, Patrick; Kröger, Martin

    2002-08-01

    The rheological properties of a dilute suspension of ellipsoidal ferromagnetic particles in the presence of a magnetic field are studied on the basis of a kinetic model, where the flow and magnetic external fields couple in qualitatively different ways to the orientational behavior of the suspension. In the uniaxial phase the stress tensor is found to be of the same form as in the Ericksen-Leslie theory for nematic liquid crystals in the steady state. Expressions for a complete set of viscosity coefficients in terms of orientational order parameters are worked out. In the low Péclet number regime, the viscosity coefficients are given as explicit functions of the magnetic field and a particle shape factor, where the shape factor may equally represent a nonspherical unit (agglomerate, chain) composed of spherical particles. Effects due to possible flow-induced breakup of units are not covered in this work. Further, by considering the magnetization as the only relevant variable, a magnetization equation within an effective field approach is derived from the kinetic equation and compared to existing magnetization equations. The alignment angle of the magnetization and the first and second normal stress coefficient are studied for the special case of plane Couette flow. The assumptions employed are tested against a Brownian dynamics simulation of the full kinetic model, and a few comparisons with experimental data are made. PMID:12241181

  14. Effect of dilution rate on feline urethral sperm motility, viability, and DNA integrity.

    PubMed

    Prochowska, Sylwia; Niżański, Wojciech; Ochota, Małgorzata; Partyka, Agnieszka

    2014-12-01

    This study was designed to investigate if the characteristics of feline urethral sperm can be affected by high dilution in an artificial medium. The semen collected by urethral catheterization from eight male cats was evaluated for sperm concentration and motility and subsequently diluted with a TRIS-based extender to the concentration of spermatozoa 10 × 10(6)/mL, 5 × 10(6)/mL, and 1 × 10(6)/mL. Immediately after the extension samples were assessed for motility, cell viability using SYBR-14 and propidium iodide, acrosome integrity using lectin from Arachis hypogaea Alexa Fluor 488 Conjugate, and propidium iodide and chromatin status by acridine orange. Compared with 10 × 10(6)/mL dilution rate, spermatozoa diluted to 1 × 10(6) sperm/mL had a significantly lower proportion of motile (31.1% ± 19.8 and 0.7% ± 1.6, respectively, P < 0.05) and viable spermatozoa (88.3% ± 3.1 and 69.1% ± 12.8, respectively, P < 0.01). There was no dilution-related difference in the acrosome integrity (76.7% ± 11.9 vs. 75.9% ± 10.6) and chromatin status (defragmentation index, 3.3% ± 0.97 vs. 3.4% ± 1.7). These results indicate that feline urethral semen is susceptible to high dilution rate, and some sperm characteristics can be artifactually changed by semen dilution. It also suggests the potential role of seminal plasma in maintaining sperm motility and viability in high dilution rates. PMID:25262548

  15. Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H2

    SciTech Connect

    Fleming, Donald G.; Arseneau, Donald J.; Sukhorukov, Oleksandr; Brewer, Jess H.; Mielke, Steven L.; Schatz, George C.; Garrett, Bruce C.; Peterson, Kirk A.; Truhlar, Donald G.

    2011-01-28

    The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 amu (4.1H), because the negative muon screens one proton charge. We report the reaction rate of 4.1H with 1H2 to produce 4.1H1H + 1H at 295 to 500 K. The experimental rate constants are compared with the predictions of accurate quantum mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of 0.11H (where 0.11H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 K, and variational transition state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10-4 to 10-2 range.

  16. Effect of helium implantation on mechanical properties of EUROFER97 evaluated by nanoindentation

    NASA Astrophysics Data System (ADS)

    Roldán, M.; Fernández, P.; Rams, J.; Jiménez-Rey, D.; Ortiz, C. J.; Vila, R.

    2014-05-01

    Helium effects on EUROFER97 mechanical properties were studied by means of nanoindentation. The steel was implanted with He ions in a stair-like profile configuration using energies from 2 to 15 MeV at room temperature. Firstly, a deep nanoindentation study was carried out on as-received state (normalized + tempered) in order to obtain a reliable properties database at the nanometric scale, including aspects such as indentation size effect. The nanoindentation hardness of tests on He implanted samples showed a hardness increase depending on the He concentration. The hardness increase follows the He implantation concentration profile with a good accuracy according to BCA calculations using MARLOWE code, considering the whole volume affected by the nanoindentation tests. The results obtained in this work shown that nanoindentation technique permits to assess any change of hardness properties due to ion implantation.

  17. Effect of helium-neon laser irradiation on peripheral sensory nerve latency

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.E.

    1988-02-01

    The purpose of this randomized, double-blind study was to determine the effect of a helium-neon (He-Ne) laser on latency of peripheral sensory nerve. Forty healthy subjects with no history of right upper extremity pathological conditions were assigned to either a Laser or a Placebo Group. Six 1-cm2 blocks along a 12-cm segment of the subjects' right superficial radial nerve received 20-second applications of either the He-Ne laser or a placebo. We assessed differences between pretest and posttest latencies with t tests for correlated and independent samples. The Laser Group showed a statistically significant increase in latency that corresponded to a decrease in sensory nerve conduction velocity. Short-duration He-Ne laser application significantly increased the distal latency of the superficial radial nerve. This finding provides information about the mechanism of the reported pain-relieving effect of the He-Ne laser.

  18. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Zhu, Hanliang; Ionescu, Mihail; Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon

    2015-04-01

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 1021 ion m-2 (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α2 and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  19. The effects of disorder on superflow in the quantum solid helium-4

    NASA Astrophysics Data System (ADS)

    West, Joshua T.

    The existence of a superfluid-like phase in solid helium was predicted in the late 1960's. The first convincing experimental evidence of such a phase was the non-classical rotational inertia (NCRI) measurements published in 2004 by Kim and Chan. Uncovering the exact microscopic mechanism giving rise to this effect is the subject of this dissertation. The majority of the work concentrates on exploring the effect of various types of disorder on NCRI and performing some of the first simultaneous measurements of crystal quality and NCRI. We have measured the effect of 3He impurities in solid 4He crystals, from isotopically pure 4He (<1ppb 3He) up to 30 ppm. We find that the onset temperature and the broadness of the transition increase continuously with the 3He concentration. We have also studied ultra-high purity 4He crystals down to temperatures of ˜1 mK finding no additional features in the period or dissipation. The sample quality dependence of NCRI was measured by growing samples with various methods known to produce crystals of high or low quality. The addition of disorder is observed to increase the magnitude of NCRI and the onset temperature. Higher quality crystals were found to be more reproducible from sample to sample. In some crystals, annealing was found to reduce the NCRI and dissipation. However, there was always appears to be some non-zero minimum NCRI. The first combined sample characterization and torsional oscillator measurements were made for solid helium confined within aerogel. Torsional oscillator measurements were made at Penn State and a complimentary x-ray scattering experiment was performed at the APS synchrotron facility. Although the samples were highly disordered (with an average grain size of 1000 A) the NCRI signals were comparable with those from high quality crystals, the data were also highly reproducible, as with the high quality samples. A set of complimentary torsional oscillator and heat capacity measurements with helium

  20. Effect of simultaneous helium implantation on the microstructure evolution of Inconel X-750 superalloy during dual-beam irradiation

    NASA Astrophysics Data System (ADS)

    Changizian, P.; Zhang, H. K.; Yao, Z.

    2015-12-01

    This study focuses on investigation into the effect of helium implantation on microstructure evolution in Inconel X-750 superalloy during dual-beam (Ni+/He+) irradiation. The 1 MeV Ni+ ions with the damage rate of 10-3 dpa/s as well as 15 keV He+ ions using rate of 200 appm/dpa were simultaneously employed to irradiate specimens at 400 °C to different doses. Microstructure characterization has been conducted using high-resolution analytical transmission electron microscopy (TEM). The TEM results show that simultaneous helium injection has significant influence on irradiation-induced microstructural changes. The disordering of γ‧ (Ni3 (Al, Ti)) precipitates shows noticeable delay in dose level compared to mono heavy ion irradiation, which is attributed to the effect of helium on promoting the dynamic reordering process. In contrast to previous studies on single-beam ion irradiation, in which no cavities were reported even at high doses, very small (2-5 nm) cavities were detected after irradiation to 5 dpa, which proved that helium plays crucial role in cavity formation. TEM characterization also indicates that the helium implantation affects the development of dislocation loops during irradiation. Large 1/3 <1 1 1> Frank loops in the size of 10-20 nm developed during irradiation at 400 °C, whereas similar big loops detected at higher irradiation temperature (500 °C) during sole ion irradiation. This implies that the effect of helium on trapping the vacancies can help to develop the interstitial Frank loops at lower irradiation temperatures.

  1. Studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti

    SciTech Connect

    Doraiswamy, N.; Kestel, B.; Alexander, D.E.

    1997-04-01

    The favorable physical and mechanical properties of V-3.8Cr-3.9Ti (wt.%), when subjected to neutron irradiation, has lead to considerable attention being focused on it for use in fusion reactor structural applications. However, there is limited data on the effects of helium on physical and mechanical properties of this alloy. Understanding these effects are important since helium will be generated by direct {alpha}-injection or transmutation reactions in the fusion environment, typically at a rate of {approx}5 appm He/dpa. Helium has been shown to cause substantial embrittlement, even at room temperature in vanadium and its alloys. Recent simulations of the fusion environment using the Dynamic Helium Charging Experiments (DHCE) have also indicated that the mechanical properties of vanadium alloys are altered by the presence of helium in post irradiation tests performed at room temperature. While the strengths were lower, room temperature ductilities of the DHCE specimens were higher than those of non-DHCE specimens. These changes have been attributed to the formation of different types of hardening centers in these alloys due to He trapping. Independent thermal desorption experiments suggest that these hardening centers may be associated with helium-vacancy-X (where X = O, N, and C) complexes. These complexes are stable below 290{degrees}C and persist at room temperature. However, there has been no direct microstructural evidence correlating the complexes with irradiation effects. An examination of the irradiation induced microstructure in samples preimplanted with He to different levels would enable such a correlation.

  2. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  3. Diversifying forest communities may change Lyme disease risk: extra dimension to the dilution effect in Europe.

    PubMed

    Ruyts, Sanne C; Ampoorter, Evy; Coipan, Elena C; Baeten, Lander; Heylen, Dieter; Sprong, Hein; Matthysen, Erik; Verheyen, Kris

    2016-09-01

    Lyme disease is caused by bacteria of the Borrelia burgdorferi genospecies complex and transmitted by Ixodid ticks. In North America only one pathogenic genospecies occurs, in Europe there are several. According to the dilution effect hypothesis (DEH), formulated in North America, nymphal infection prevalence (NIP) decreases with increasing host diversity since host species differ in transmission potential. We analysed Borrelia infection in nymphs from 94 forest stands in Belgium, which are part of a diversification gradient with a supposedly related increasing host diversity: from pine stands without to oak stands with a shrub layer. We expected changing tree species and forest structure to increase host diversity and decrease NIP. In contrast with the DEH, NIP did not differ between different forest types. Genospecies diversity however, and presumably also host diversity, was higher in oak than in pine stands. Infected nymphs tended to harbour Borrelia afzelii infection more often in pine stands while Borrelia garinii and Borrelia burgdorferi ss. infection appeared to be more prevalent in oak stands. This has important health consequences, since the latter two cause more severe disease manifestations. We show that the DEH must be nuanced for Europe and should consider the response of multiple pathogenic genospecies. PMID:27173094

  4. Image-based correction of the light dilution effect for SO2 camera measurements

    NASA Astrophysics Data System (ADS)

    Campion, Robin; Delgado-Granados, Hugo; Mori, Toshiya

    2015-07-01

    Ultraviolet SO2 cameras are increasingly used in volcanology because of their ability to remotely measure the 2D distribution of SO2 in volcanic plumes, at a high frequency. However, light dilution, i.e., the scattering of ambient photons within the instrument's field of view (FoV) on air parcels located between the plume and the instrument, induces a systematic underestimation of the measurements, whose magnitude increases with distance, SO2 content, atmospheric pressure and turbidity. Here we describe a robust and straightforward method to quantify and correct this effect. We retrieve atmospheric scattering coefficients based on the contrast attenuation between the sky and the increasingly distant slope of the volcanic edifice. We illustrate our method with a case study at Etna volcano, where difference between corrected and uncorrected emission rates amounts to 40% to 80%, and investigate the temporal variations of the scattering coefficient during 1 h of measurements on Etna. We validate the correction method at Popocatépetl volcano by performing measurements of the same plume at different distances from the volcano. Finally, we reported the atmospheric scattering coefficients for several volcanoes at different latitudes and altitudes.

  5. Precipitation in dilute Cu-Cr alloys; The effects of phosphorus impurities and aging procedure

    SciTech Connect

    Luo, C.P.; Dahmen, U.; Witcomb, M.J.; Westmacott, K.H. )

    1992-02-15

    This paper reports that precipitation in dilute Cu-Cr alloys has been studied extensively in part because this alloy can be used as a model system for the investigation of the crystallography and interfaces in FCC-BCC phase transformations. Hall et al. first reported needle- or lath-shaped Cr-rich precipitates with a {l brace}335{r brace}{sub f} habit plane and a variable orientation relationship ranging from Nishiyama-Wasserman (N-W) to Kurdjumov-Sachs (K-S). Hall and Aaronson later confirmed their early findings. Weatherly et al. however, found a constant K-S orientation relationship for this alloy system and a preferred growth direction of {l angle}651{r angle}{sub f} for the needle-shaped precipitates. The variation of the orientation relationship and its potential effect on the precipitate morphology and interface structure have become key points in studying the precipitate crystallography of this alloy system. Dahmen et al. attributed the variation of the orientation relationship to the different quenching and aging conditions applied to the alloy; a direct quench from the solutionizing to the aging temperature employed by Hall et al. would result in a heterogeneous nucleation and hence a variation in the precipitation behavior, while the water quench and aging procedure utilized by Weatherly et al, would facilitate homogeneous nucleation and produce a constant crysallography.

  6. Effectiveness of coagulation and acid precipitation processes for the pre-treatment of diluted black liquor.

    PubMed

    Garg, Anurag; Mishra, I M; Chand, S

    2010-08-15

    The effectiveness of coagulation (using aluminium-based chemicals and ferrous sulfate) and acid precipitation (using H(2)SO(4)) processes for the pre-treatment of diluted black liquor obtained from a pulp and paper mill is reported. Commercial alum was found to be the most economical among all the aluminium and ferrous salts used as a coagulant. A maximum removal of chemical oxygen demand (COD) (ca. 63%) and colour reduction (ca. 90%) from the wastewater (COD = 7000 mg l(-1)) at pH 5.0 was obtained with alum. During the acid precipitation process, at pH < 5.0, significant COD reductions (up to 64%) were observed. Solid residue obtained from the alum treatment at a temperature of 95 degrees C showed much better (3 times) settling rate than that for the residue obtained after treatment with the same coagulant at a temperature of 25 degrees C. The settling curves had three parts, namely, hindered, transition and compression zones. Tory plots were used to determine the critical height of suspension-supernatant interface that is used in the design of a clarifier-thickener unit. High heating values and large biomass fraction of the solid residues can encourage the fuel users to use this waste derived sludge as a potential renewable energy source. PMID:20430523

  7. Estimating the Effect of Helium and Nitrogen Mixing on Deposition Efficiency in Cold Spray

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ozan C.; Widener, Christian A.; Helfritch, Dennis; Delfanian, Fereidoon

    2016-04-01

    Cold spray is a developing technology that is increasingly finding applications for coating of similar and dissimilar metals, repairing geometric tolerance defects to extend expensive part life and additive manufacturing across a variety of industries. Expensive helium is used to accelerate the particles to higher velocities in order to achieve the highest deposit strengths and to spray hard-to-deposit materials. Minimal information is available in the literature studying the effects of He-N2 mixing on coating deposition efficiency, and how He can potentially be conserved by gas mixing. In this study, a one-dimensional simulation method is presented for estimating the deposition efficiency of aluminum coatings, where He-N2 mixture ratios are varied. The simulation estimations are experimentally validated through velocity measurements and single particle impact tests for Al6061.

  8. Helium irradiation effects on retention behavior of deuterium implanted into boron coating film by PCVD

    NASA Astrophysics Data System (ADS)

    Kodama, H.; Oyaidzu, M.; Yoshikawa, A.; Kimura, H.; Oya, Y.; Matsuyama, M.; Sagara, A.; Noda, N.; Okuno, K.

    2005-03-01

    Helium irradiation effects on the retention of energetic deuterium implanted into the boron coating film were investigated by means of X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). It was found, by XPS, that the B 1s peak was shifted to lower binding energy side by He + ion irradiation and the FWHM was extended. These facts show that the some defects were introduced into the boron coating film by He + ion irradiation. From TDS experiment, the deuterium retention, especially the amount of B-D terminal bond, increased by the pre-He + ion irradiation. However, it decreased by the post-He + ion irradiation. These experimental results indicate that the B-D terminal bond was mainly influenced by the He + ion irradiation because the two neighbor B-D bonds have to dissociate simultaneously for the B-D-B bridge bond.

  9. Effect of helium addition on discharge characteristics in a flat fluorescent lamp

    SciTech Connect

    Lee, Seong-Eui; Lee, Ho-Nyeon; Park, Hyoung-Bin; Lee, Kyo Sung; Choi, Kyung Cheol

    2005-11-01

    The discharge characteristics of a multielectrode dual coplanar in a mercury-free flat fluorescent lamp were investigated using brightness-efficiency measurement and the infrared (IR) spectrum and intensified charge coupled device (ICCD) characteristics. The level of brightness was above 14 900 cd/m{sup 2} under the conditions of neon--50% xenon-8% He gas composition, 150 Torr pressure, and 20 kHz alternating current pulse. The ICCD results revealed a faster and wider discharge with a Ne-50% Xe-8% He gas composition. The effect of adding helium (He) to Ne-50% Xe revealed a faster peak emission, as confirmed by ICCD images. From the gated IR emission spectrum, the intensity ratio of I{sub 823nm}/I{sub 828nm} was {approx}8% higher with Ne-50% Xe-8% He than with Ne-50% Xe under the same pressure and applied voltage conditions.

  10. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVEHIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    SciTech Connect

    Ketusky, E

    2008-07-11

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned.

  11. The Effects of the Pauli Exclusion Principle in Determining the Ionization Energies of the Helium Atom and Helium-Like Ions

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    For helium and helium-like ions, we have examined the differences between the values of the ionization energies as calculated from the Bohr theory and those measured in experiments. We find that these differences vary linearly with the atomic number of the system. Using this result, we show how the Bohr model for single-electron systems may be…

  12. Transport of Tank 241-SY-101 Waste Slurry: Effects of Dilution and Temperature on Critical Pipeline Velocity

    SciTech Connect

    KP Recknagle; Y Onishi

    1999-06-15

    This report presents the methods and results of calculations performed to predict the critical velocity and pressure drop required for the two-inch pipeline transfer of solid/liquid waste slurry from underground waste storage Tank 241-SY-101 to Tank 241-SY- 102 at the Hanford Site. The effects of temperature and dilution on the critical velocity were included in the analysis. These analyses show that Tank 241-SY-101 slurry should be diluted with water prior to delivery to Tank 241-SY-102. A dilution ratio of 1:1 is desirable and would allow the waste to be delivered at a critical velocity of 1.5 ft/sec. The system will be operated at a flow velocity of 6 ft/sec or greater therefore, this velocity will be sufficient to maintain a stable slurry delivery through the pipeline. The effect of temperature on the critical velocity is not a limiting factor when the slurry is diluted 1:1 with water. Pressure drop at the critical velocity would be approximately two feet for a 125-ft pipeline (or 250-ft equivalent straight pipeline). At 6 ft/sec, the pressure drop would be 20 feet over a 250-ft equivalent straight pipeline.

  13. The effect of primordial hydrogen/helium fractionation on the solar neutrino flux

    NASA Technical Reports Server (NTRS)

    Wheeler, J. C.; Cameron, A. G. W.

    1975-01-01

    If hydrogen and helium are immiscible below some critical temperature, gravitational separation could occur in the proto-sun, resulting in a nearly pure helium core and a nearly pure hydrogen shell. We have constructed solar models according to this scenario and find the neutrino flux reduced to 1.5-3 SNU.

  14. Gravitational and radiative effects on the escape of helium from the moon

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1978-01-01

    On the moon, and probably on Mercury and other similar regolith-covered bodies with tenuous atmosphere, the dominant gas is He-4. It arises as the radiogenic product of the decay of uranium and thorium within any planet, but its major source appears to be the alpha particle flux of the solar wind. The moon intercepts solar wind helium at an average rate of 1.1 times 10 to the 24th atom/sec, and loses it at the same rate. Some helium may escape directly as the result of the process of solar wind soil bombardment which may release previously trapped helium at superthermal speeds. Atmospheric models have been calculated with the total helium influx as source. Subsequent comparison of model and measured helium concentrations indicates that the fraction of helium escaping via the atmosphere may range from 20% to 100% of the solar wind influx. Of the escaping atmosphere, most of the helium (about 93%) becomes trapped in earth orbit, while about 5% gets trapped in satellite orbits about the moon. Owing to a 6 month lifetime for helium in solar radiation, the satellite atoms form a lunar corona that exceeds the lunar atmosphere in total abundance by a factor of 4 to 5.

  15. Dilution Confusion: Conventions for Defining a Dilution

    ERIC Educational Resources Information Center

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  16. Effect of lime on the availability of residual phosphorus and its extractability by dilute acid

    SciTech Connect

    Rhue, R.D.; Hensel, D.R.

    1983-01-01

    The objective of this study was to determine the long-term effects of liming an acid, P-deficient Placid sand (sandy, siliceous, hyperthermic Typic Humaquept) on the availability of residual fertilizer P to potatoes (Solanum tuberosum L.). Dolomitic limestone was applied in November 1977, at rates of 0, 2240, 4480, and 8960 kg/ha in a split-plot design with lime as main plots and P treatments as subplots. Phosphorus was applied at rates of 0, 56, 112, and 168 kg/ha in 1978. In 1979 and 1980, P plots were split with one-half fertilized with 56 kg P/ha and the other one-half not fertilized with P (residual). In 1978, maximum tuber yields and top dry weights occurred at the 2240 kg/ha lime rate which resulted in a soil pH of 5.8. Plant P concentrations were unaffected by lime at any sampling rate. In 1979, availability of residual soil P decreased with lime rates > 2240 kg/ha but not enough to significantly affect yields. However, in 1980, overliming injury was observed for tuber yields at the higher lime rates which was the result of P deficiency. Application of P at planting eliminated the overliming injury with maximum yields occurring in the pH range of 6.0 to 6.5. It appears that liming to pH 6.5 in this study resulted in fertilizer reaction products that were more soluble in dilute acid but less plant available than those formed under more acid conditions. However, the Mehlich I extractant appeared to be a suitable extractant for P on this soil if pH was taken into account when interpreting soil-test P. 23 references, 4 figures, 2 tables.

  17. Effects of sublethal irradiation with helium ions (300 MeV/nucleon) on basic hematological parameters of mice

    NASA Astrophysics Data System (ADS)

    Hofer, M.; Viklická, S.⋖; Gerasimenko, V. N.; Kabachenko, A. N.

    The aim of the experiment was to obtain new knowledge on the biological effectiveness of high-energy (300 MeV/nucleon) helium ions, which represent a part of the spectrum of cosmic rays. Male (CBA × C57BL)F 1 mice, 4 months old, were exposed to a dose of 4 Gy helium ions (exposure rate 0.05 Gy/min). As a comparative standard irradiation the same dose of 4 Gy of 137Cs gamma-rays (exposure rate 0.07 Gy/min) was used. Material sampling was performed 6-8 h, 4 days and 9 days after irradiation for both experimental groups mentioned above. There were 7 animals in each group including the control group of non-irradiated mice. Eight basic hematological parameters of peripheral blood, bone marrow, spleen and thymus were studied. On day 4 after the irradiation with helium ions, the values of leukocyte counts in peripheral blood, bone marrow cellularity and spleen cellularity were reduced to about 10% of the respective control values while the decline after irradiation with gamma-rays amounted to about 50%. These and other results presented reflect a high relative biological effectiveness of 300 MeV/nucleon helium ions.

  18. THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES

    SciTech Connect

    Moore, Kevin; Bildsten, Lars; Townsley, Dean M.

    2013-10-20

    Accreted helium layers on white dwarfs have been highlighted for many decades as a possible site for a detonation triggered by a thermonuclear runaway. In this paper, we find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically {sup 12}C and {sup 16}O. Detonations in these thin helium layers have speeds slower than the Chapman-Jouget (CJ) speed from complete helium burning, v{sub CJ} = 1.5 × 10{sup 9} cm s{sup –1}. Though gravitationally unbound, the ashes still have unburned helium (≈80% in the thinnest cases) and only reach up to heavy elements such as {sup 40}Ca, {sup 44}Ti, {sup 48}Cr, and {sup 52}Fe. It is rare for these thin shells to generate large amounts of {sup 56}Ni. We also find a new set of solutions that can propagate in even thinner helium layers when {sup 16}O is present at a minimum mass fraction of ≈0.07. Driven by energy release from α captures on {sup 16}O and subsequent elements, these slow detonations only create ashes up to {sup 28}Si in the outer detonated He shell. We close by discussing how the unbound helium burning ashes may create faint and fast 'Ia' supernovae as well as events with virtually no radioactivity, and speculate on how the slower helium detonation velocities impact the off-center ignition of a carbon detonation that could cause a Type Ia supernova in the double detonation scenario.

  19. The effect of iron dilution on strength of nickel/steel and Monel/steel welds

    SciTech Connect

    Fout, S.L.; Wamsley, S.D.

    1983-03-28

    The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

  20. Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1971-01-01

    Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.

  1. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    SciTech Connect

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  2. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  3. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Lu, Zheng; Xie, Rui; Liu, Chunming; Wang, Lumin

    2016-06-01

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y-Ti-O and Y2Ti2O7 pyrochlore as well as large spinel Mn(Ti)Cr2O4 particles are all observed in the two ODS steels. The Y-Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y-Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles.

  4. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Lu, Zheng; Xie, Rui; Liu, Chunming; Wang, Lumin

    2016-06-01

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y-Ti-O and Y2Ti2O7 pyrochlore as well as large spinel Mn(Ti)Cr2O4 particles are all observed in the two ODS steels. The Y-Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y-Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles.

  5. Effects of discharge current and voltage on the high density of metastable helium atoms

    NASA Astrophysics Data System (ADS)

    Feng, Xian-Ping; Andruczyk, D.; James, B. W.; Takiyama, K.; Namba, S.; Oda, T.

    2003-05-01

    Both hollow-cathode and Penning-type discharges were adopted to excite helium atoms to a metastable state. Experimental data indicate that Penning discharge is more suitable for generating high fractions of metastables in a low-density helium beam for laser-induced fluorescence technique in measuring electric fields at the edge of a plasma. The metastable density increases with increasing helium gas pressure in the range of 1.33×10-2-66.7Pa. The highest metastable density of 3.8×1016m-3 is observed at a static gas pressure of 66.7Pa. An approximately linear relationship between the density of metastable helium atoms and the plasma discharge current is observed. Magnetic field plays a very important role in producing a high density of metastable atoms in Penning discharge.

  6. Effect of helium preinjection and prior thermomechanical treatment on the microstructure of Type 316 SS

    SciTech Connect

    Kohyama, A.; Ayrault, G.; Turner, A.P.L.; Igata, N.

    1982-10-01

    Samples of 316 SS were preinjected with 15 appM helium either hot (650/sup 0/C) or cold (room temperature) and irradiated with 3 MeV Ni/sup +/ ions to a dose level of 25 dpa at 625/sup 0/C in order to test the validity of helium preinjection as a means of simulation of transmutant helium production. Results for preinjected and single-ion irradiated samples were compared to samples irradiated with 3 MeV Ni/sup +/ and simultaneously injected with helium at a rate of 15 appM He/dpa (dual-ion irradiated samples). Preinjected samples exhibited bimodal cavity size distributions. Preinjected samples of solution annealed or solution annealed and aged material showed lower swelling than dual-ion irradiated samples. However, He preinjection in 20% cold worked samples showed greater swelling than dual-ion irradiated samples 9 figures, 1 table.

  7. Helium-neon laser radiation effect on fish embryos and larvae

    NASA Astrophysics Data System (ADS)

    Uzdensky, Anatoly B.

    1994-09-01

    Helium-neon laser irradiation (HNLI) is an effective biostimulating agent but its influence on embryonal processes is almost unknown. We have studied fish embryos and larvae development, viability, and growth after HNLI of fish eggs at different stages. With this aim carp, grass carp, sturgeon, and stellared sturgeon eggs were incubated in Petri plates or in fish-breeding apparatuses and were irradiated in situ with different exposures. Then we studied hutchling percentage, larvae survival and growth dynamics, and morphological anomalies percentage. HNLI effect depended on irradiation exposures and intensity, embryonal stages, and fish species. Laser eggs irradiation essentially affected larvae viability and growth in the postembryonal phase. For example, HNLI of sturgeon spawn at cleavage stage or grass carp at organogenesis decreased larvae survival rate. On the contrary HNLI at gastrulation or embryonal motorics stages markedly increased larvae survival rate and decreased the morphological anomalies percentage. We determined most effective irradiation regimes depending of fish species which may be used in practical fish-breeding.

  8. [The effect of helium-neon laser radiation on the energy metabolic indices of the myocardium].

    PubMed

    Chizhov, G K; Koval'skaia, N I; Kozlov, V I

    1991-03-01

    It was shown in experiments on white rats, that intravenous and direct myocardium helium-neon laser irradiation leads to the some activation of lactate, glucose-6-phosphate, succinate and reduced NAD degydrogenases. During direct myocardium irradiation these changes are in a less degree. It is suggested that helium-neon laser irradiation displays some active influence on the energy metabolism enzymes of the myocardium, and the mechanisms of this action are discussed. PMID:2054512

  9. Effect of Corrosion by Diluted HCL Solution on the Zno:. AL Texture

    NASA Astrophysics Data System (ADS)

    Shi, Mingji; Wang, Ping; Chen, Lanli

    2012-08-01

    High quality textured ZnO: Al electrode can improve the energy conversion efficiency of silicon based thin film solar cells. ZnO: Al films were deposited under 200W. Different textured surfaces were got when etching ZnO: Al films with diluted HCl solutions of 0.5% for different times. The transmission spectrum, square resistance and atomic force microscopy (AFM) images of the samples were measured. The dependence of corrosion time on the resistivity, transmittance and surface texture of the samples were studied. With the increasing of the corrosion time, the resistivity increased, the transmittance decreased, the root-mean-square roughness first increases, then decreases. High quality textured ZnO: Al electrode was obtained when etching the ZnO: Al film deposited under 200W of sputtering power with diluted HCl solution of 0.5%.

  10. Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study

    SciTech Connect

    Zhao, Haibo; Kwak, Ja Hun; Wang, Yong; Franz, James A.; White, John M.; Holladay, Johnathan E.

    2005-12-23

    The dilute acid (0.05 M H2SO4) hydrolysis at 175°C of samples comprising varying fractions of crystalline (α-form) and amorphous cellulose was studied. The amorphous content, based on XRD and NMR, and then the product (glucose) yield, based on HPLC, increased by as much as a factor of three upon ball milling. These results are interpreted in terms of a model involving mechanical disruption of crystallinity by breaking hydrogen bonds in α-cellulose, opening up the structure and making more β-1,4 glycosidic bonds readily accessible to the dilute acid. In parallel with hydrolysis to form liquid phase products, there are reactions of amorphous cellulose that form solid degradation products.

  11. Distinct effects of boar seminal plasma fractions exhibiting different protein profiles on the functionality of highly diluted boar spermatozoa.

    PubMed

    García, E M; Calvete, J J; Sanz, L; Roca, J; Martínez, E A; Vázquez, J M

    2009-04-01

    The aim of this study was to evaluate how different protein profiles of seminal plasma (SP) fractions affect sperm functionality in vitro. Ejaculates from three boars were separated into six fractions. The fractions differed from each other in their sperm content, in their total SP protein content, and their spermadhesin PSP-I/PSP-II and heparin-binding protein (HBP) concentrations. Spermatozoa were mainly recovered in fraction 2 (sperm-rich fraction, >1800 x 10(6) spermatozoa/ml), whereas the pre-sperm fraction 1 and the post-sperm fractions 4-6 contained low numbers of spermatozoa (<500 x 10(6)/ml). Except in fraction 2, the total SP protein concentration and the concentration of both, spermadhesin PSP-I/PSP-II and the HBPs increased with fraction order. Distinct time-dependent effects were observed on motility characteristics and membrane integrity of highly diluted boar spermatozoa upon incubation with a 10% dilution of the SP from each fraction. The highest sperm viability was recorded after exposure for 5 h to fraction 2, followed by fractions 1 and 3. The percentages of motile spermatozoa also differed significantly among fractions after 5 h of incubation. Spermatozoa incubated with SP of fractions 1-3 showed the highest percentage motility. We conclude that different SP fractions exert distinct effects on the functionality of highly diluted boar spermatozoa. Fractions 1-3 appear to promote sperm survival, whereas fractions 4-6 seem to be harmful for preserving the physiological functions of highly diluted boar spermatozoa. PMID:19323794

  12. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-01-01

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure. PMID:25947389

  13. Effect of helium-neon and infrared laser irradiation on wound healing in rabbits

    SciTech Connect

    Braverman, B.; McCarthy, R.J.; Ivankovich, A.D.; Forde, D.E.; Overfield, M.; Bapna, M.S.

    1989-01-01

    We examined the biostimulating effects of helium-neon laser radiation (HeNe; 632.8 nm), pulsed infrared laser radiation (IR; 904 nm), and the two combined on skin wound healing in New Zealand white rabbits. Seventy-two rabbits received either (1) no exposure, (2) 1.65 J/cm2 HeNe, (3) 8.25 J/cm2 pulsed IR, or (4) both HeNe and IR together to one of two dorsal full-thickness skin wounds, daily, for 21 days. Wound areas were measured photographically at periodic intervals. Tissue samples were analyzed for tensile strength, and histology was done to measure epidermal thickness and cross-sectional collagen area. Significant differences were found in the tensile strength of all laser-treated groups (both the irradiated and nonirradiated lesion) compared to group 1. No differences were found in the rate of wound healing or collagen area. Epidermal growth was greater in the HeNe-lased area compared to unexposed tissue, but the difference was not significant. Thus, laser irradiation at 632.8 nm and 904 nm alone or in combination increased tensile strength during wound healing and may have released tissue factors into the systemic circulation that increased tensile strength on the opposite side as well.

  14. Crater effects on H and D emission from laser induced low-pressure helium plasma

    SciTech Connect

    Pardede, Marincan; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Maruyama, Tadashi; Kagawa, Kiichiro; Tjia, May On

    2009-09-15

    An experimental study has been performed on the effects of crater depth on the hydrogen and deuterium emission intensities measured from laser plasmas generated in low-pressure helium ambient gas from zircaloy-4 samples doped with different H and D impurity concentrations as well as a standard brass sample for comparison. The results show that aside from emission of the host atom, the emission intensities of other ablated atoms of significantly smaller masses as well as that of the He atom generally exhibit relatively rapid initial decline with increasing crater depth. This trend was found to have its origin in the decreasing laser power density arriving at the crater bottom and thereby weakened the shock wave generated in the crater. As the crater deepened, the declining trend of the intensity appeared to level off as a result of compensation of the decreasing laser power density by the enhanced plasma confinement at increasing crater depth. Meanwhile, the result also reveals the significant contribution of the He-assisted excitation process to the doped hydrogen and deuterium emission intensities, leading to similar crater-depth dependent variation patterns in contrast to that associated with the surface water, with growing dominance of this common feature at the later stage of the plasma expansion. Therefore, a carefully chosen set of gate delay and gate width which are properly adapted to the crater-depth dependent behavior of the emission intensity may produce the desired intrinsic emission data for quantitative depth profiling of H impurity trapped inside the zircaloy wall.

  15. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    PubMed

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia. PMID:20016249

  16. Numerical studies of the surface tension effect of cryogenic liquid helium

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.

  17. The Helium Field Effect Transistor (II): Gated Transport of Surface-State Electrons Through Micro-constrictions

    NASA Astrophysics Data System (ADS)

    Shaban, F.; Ashari, M.; Lorenz, T.; Rau, R.; Scheer, E.; Kono, K.; Rees, D. G.; Leiderer, P.

    2016-06-01

    We present transport measurements of surface-state electrons on liquid helium films in confined geometry. The measurements are taken using split-gate devices similar to a field effect transistor. The number of electrons passing between the source and drain areas of the device can be precisely controlled by changing the length of the voltage pulse applied to the gate electrode. We find evidence that the effective driving potential depends on electron-electron interactions, as well as the electric field applied to the substrate. Our measurements indicate that the mobility of electrons on helium films can be high and that microfabricated transistor devices allow electron manipulation on length scales close to the interelectron separation. Our experiment is an important step toward investigations of surface-state electron properties at much higher densities, for which the quantum melting of the system to a degenerate Fermi gas should be observed.

  18. Effects of argon dilution on the translational and rotational temperatures of SiH in silane and disilane plasmas.

    PubMed

    Zhou, Jie; Zhang, Jianming; Fisher, Ellen R

    2005-11-24

    The effects of argon dilution on the translational and rotational temperatures of SiH in both silane and disilane plasmas have been investigated using the imaging of radicals interacting with surfaces (IRIS) technique. The average rotational temperature of SiH determined from the SiH excitation spectra is approximately 500 K in both SiH(4)/Ar and Si(2)H(6)/Ar plasmas, with no obvious dependence on the fraction of argon dilution. Modeling of kinetic data yields average SiH translational temperatures of approximately 1000 K, with no dependence on the fraction of argon in the SiH(4)/Ar plasmas within the studied range. In the Si(2)H(6)/Ar plasmas, however, the translational temperature decreases from approximately 1000 to approximately 550 K as the Ar fraction in the plasma increases. Thus, at the highest Ar fractions, the translational and rotational temperatures are nearly identical, indicating that the SiH radicals are thermally equilibrated. The underlying chemistry and mechanisms of SiH energy equilibration in Ar-diluted plasmas are discussed. PMID:16834307

  19. Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process.

    PubMed

    Kim, Kyoung Heon; Tucker, Melvin P; Nguyen, Quang A

    2002-01-01

    Dilute sulfuric acid catalyzed hydrolysis of biomass such as wood chips often involves pressing the wood particles in a dewatering step (e.g., after acid impregnation) or in compression screw feeders commonly used in continuous hydrolysis reactors. This study addresses the effects of pressing biomass feedstocks using a hydraulic press on soluble sugar yield obtained from two-stage dilute-acid hydrolysis of softwood. The pressed acid-impregnated feedstock gave significantly lower soluble sugar yields than the never-pressed (i.e., partially air-dried or filtered) feedstock. Pressing acid-impregnated feedstocks before pretreatment resulted in a soluble hemicellulosic sugar yield of 76.9% from first-stage hydrolysis and a soluble glucose yield of 33.7% from second-stage hydrolysis. The dilute-acid hydrolysis of partially air-dried feedstocks having total solids and acid concentrations similar to those of pressed feedstocks gave yields of 87.0% hemicellulosic sugar and 46.9% glucose in the first and second stages, respectively. Microscopic examination of wood structures showed that pressing acid-impregnated wood chips from 34 to 54% total solids (TS) did not cause the wood structure to collapse. However, pressing first-stage pretreated wood chips (i.e., feedstock for second-stage hydrolysis) from approximately 30 to 43% TS caused the porous wood matrix to almost completely collapse. It is hypothesized that pressing alters the wood structure and distribution of acid within the cell cavities, leading to uneven heat and mass transfer during pretreatment using direct steam injection. Consequently, lower hydrolysis yield of soluble sugars results. Dewatering of corn stover by pressing did not impact negatively on the sugar yield from single-stage dilute-acid pretreatment. PMID:12052064

  20. The effect of low-level helium-neon laser on oral wound healing

    PubMed Central

    Sardari, Farimah; Ahrari, Farzaneh

    2016-01-01

    Background: The effectiveness of low power lasers on incisional wound healing, because of conflicting results of previous studies, is uncertain. Therefore, the aim of this study was to evaluate the effects of low-level helium-neon (He-Ne) laser irradiation on wound healing in rat's oral mucosa. Materials and Methods: Sixty-four standardized incisions were carried out on the buccal mucosa of 32 male Wistar divided into four groups of eight animals each. Each rat received two incisions on the opposite sides of the buccal mucosa by a steel scalpel. On the right side (test side), a He-Ne laser (632 nm) was employed on the incision for 40 s. Laser radiation was used just in 1st day, 1st and 2nd day, 1st and 3rd day, and continuous 3 days in groups of A, B, C, and D of rats, respectively. The left side (control side) did not receive any laser. Histological processing and hematoxylin and eosin staining were done on tissue samples after 5 days. Wilcoxon and Kruskal-Wallis tests were used for statistical analysis. Results: Histological analysis showed that the tissue healing after continuous 3 days on the laser irradiated side was better than the control side, but there was no difference between the two sides in each groups (P > 0.05). Conclusion: This study showed that He-Ne laser had no beneficial effects on incisional oral wound healing particularly in 5 days after laser therapy. Future research in the field of laser effects on oral wound healing in human is recommended. PMID:26962312

  1. The Effect of the Residual Ion Potential on the Fully Differential Cross Section of Helium for Ionization by Electron Impact

    SciTech Connect

    Toth, A.; Nagy, L.

    2011-10-03

    We have carried out calculations for the fully differential cross section of the ionization of helium by electron projectiles. In order to study the effect of the residual ion potential, we employed three models, and tested them for the coplanar and perpendicular plane geometry. In spite of the simplicity of our models, the results for the coplanar case are in fair agreement with the available experimental data. The results for the perpendicular geometry need more improvement.

  2. The Floating Siphon - an Effective "Homemade" Device for High Dilution Experiments

    NASA Astrophysics Data System (ADS)

    Kolchinski, Alexander

    1997-10-01

    A simple device, which can be used in place of a syringe pump, has been suggested for high dilution experiments. The flasks containing the solutions to be mixed are equipped with siphons and placed on the top of a styrofoam cylinder, or other floater. The styrofoam cylinder floats in a beaker containing water. A glass rod is threaded through a central hole in the styrofoam cylinder and secured to prevent the apparatus from tilting. Addition of water to the beaker from a dropping funnel causes the cylinder to rise. Both liquids siphon into the reaction flask at an equal rate, which is determined by the rate of addition of water to the beaker.

  3. Frequency of OH in solutions of n-butanol in carbon tetrachloride: effect of dilution

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Rai, D. K.; Rai, S. B.

    2000-06-01

    It is noted that the 1←0 transition for νOH shows a blue shift as the relative concentration of n-butanol in a CCl 4- n-butanol is reduced. The magnitude of the shift decreases for the 2←0 transition and there is almost no shift for the 3←0 transition. These observations are consistent with the observed red shift [Y. Mizugai, F. Takimoto, M. Katayama, Chem. Phys. Lett. 76 (1980) 615] on dilution for the 5←0 transition in n-butanol. The observations have been interpreted on the basis of formation of O-H. . . . Cl hydrogen bond.

  4. Radiative properties of molecular nitrogen ions produced by helium Penning ionization and argon effects

    NASA Technical Reports Server (NTRS)

    Miller, George, III; Song, Kyo-Dong

    1994-01-01

    The development of hypersonic aerospace vehicles requires a better understanding on the thermal and chemical nonequilibrium kinetics of participating species in shock layers. The computational fluid dynamic (CFD) codes developed for such flowfields overestimate the radiation in the spectral region of 300 - 600 nm. A speculation for this overestimation is that inclusion of Ar, CO2, and H2O at the upper atmosphere flight region makes a significant impact on radiative kinetics of molecular nitrogen ions. To define the effects of minority species on the radiative kinetics of N2(+), an experimental setup was made by using the helium Penning ionization. The vibrational and rotational temperature were measured by mapping the vibrational and rotational distributions of N2(+) emission with high spectroscopic resolution and absolute intensity measurements. Measured vibrational temperatures were in the range from 18,000 to 36,000 K, and rotational temperatures were in the range from 300 to 370 K. The irradiance of 391.44 nm line and rotational and vibrational temperatures were analyzed to define argon and CO2 effects on the N2(+) emission. When Ar or CO2 is injected with N2, the rotational temperature did not change. The irradiances were reduced by 34 percent and 78 percent for the 50 percent of mixture of Ar and CO2, respectively. The vibrational temperatures were increased by 24.1 percent and 82.9 percent for the 50 percent of mixture of Ar and CO2, respectively. It appears that there are no significant effects from small concentrations of Ar and CO2 at the upper atmosphere flight region.

  5. Density functional theory study of the effect of helium clusters on tritium-containing palladium lattices.

    PubMed

    Das, N K; de Leeuw, N H

    2015-12-01

    Density functional theory (DFT) calculations have been employed to calculate the energetics, structures and migration behaviour of helium in palladium tritides. Increasing the tritium concentration in palladium leads to a decrease in the formation energies of helium clusters, indicating that He clusters can form in the lattices. The calculated results show less lattice expansion in Pd defect-containing lattices compared to the perfect lattice owing to smaller lattice distortions. The lowest energy migration path for helium diffusion is along octahedral-tetrahedral-octahedral sites but the energy barrier increases with increasing tritium concentration. Repulsive interactions occur between Pd d and He s orbitals, suggesting that displacement of the metal atoms in the lattice leads to growth of pressure inside the lattices. This process may change the microstructural properties leading to the degradation of the material. PMID:26459746

  6. Density functional theory study of the effect of helium clusters on tritium-containing palladium lattices

    NASA Astrophysics Data System (ADS)

    Das, N. K.; de Leeuw, N. H.

    2015-12-01

    Density functional theory (DFT) calculations have been employed to calculate the energetics, structures and migration behaviour of helium in palladium tritides. Increasing the tritium concentration in palladium leads to a decrease in the formation energies of helium clusters, indicating that He clusters can form in the lattices. The calculated results show less lattice expansion in Pd defect-containing lattices compared to the perfect lattice owing to smaller lattice distortions. The lowest energy migration path for helium diffusion is along octahedral-tetrahedral-octahedral sites but the energy barrier increases with increasing tritium concentration. Repulsive interactions occur between Pd d and He s orbitals, suggesting that displacement of the metal atoms in the lattice leads to growth of pressure inside the lattices. This process may change the microstructural properties leading to the degradation of the material.

  7. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    SciTech Connect

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  8. EFFECTS OF METEOROLOGICAL CHANGES ON CONCENTRATIONS OF HELIUM, CARBON DIOXIDE, AND OXYGEN IN SOIL GASES.

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.

    1988-01-01

    Samples were collected from a hollow probe at 0. 75-m depth and from a plastic hemisphere on the ground surface. Soil temperature, air temperature, percent humidity, and barometric pressure were also measured. Soil moisture was measured only indirectly as amount of rain or snowfall. Higher concentrations of CO//2 in both the 0. 75-m and surface samples correlated with higher soil and air temperatures, which suggests that CO//2 was produced by bacteria. Lower concentrations of helium in both the 0. 75-m and surface samples correlated with higher soil and air temperatures. Rain and snowfall appear to affect helium concentrations.

  9. Ventilatory response to helium-oxygen breathing during exercise: effect of airway anesthesia.

    PubMed

    Krishnan, B S; Clemens, R E; Zintel, T A; Stockwell, M J; Gallagher, C G

    1997-07-01

    The substitution of a normoxic helium mixture (HeO2) for room air (Air) during exercise results in a sustained hyperventilation, which is present even in the first breath. We hypothesized that this response is dependent on intact airway afferents; if so, airway anesthesia (Anesthesia) should affect this response. Anesthesia was administered to the upper airways by topical application and to lower central airways by aerosol inhalation and was confirmed to be effective for over 15 min. Subjects performed constant work-rate exercise (CWE) at 69 +/- 2 (SE) % maximal work rate on a cycle ergometer on three separate days: twice after saline inhalation (days 1 and 3) and once after Anesthesia (day 2). CWE commenced after a brief warm-up, with subjects breathing Air for the first 5 min (Air-1), HeO2 for the next 3 min, and Air again until the end of CWE (Air-2). The resistance of the breathing circuit was matched for Air and HeO2. Breathing HeO2 resulted in a small but significant increase in minute ventilation (VI) and decrease in alveolar PCO2 in both the Saline (average of 2 saline tests; not significant) and Anesthesia tests. Although Anesthesia had no effect on the sustained hyperventilatory response to HeO2 breathing, the VI transients within the first six breaths of HeO2 were significantly attenuated with Anesthesia. We conclude that the VI response to HeO2 is not simply due to a reduction in external tubing resistance and that, in humans, airway afferents mediate the transient but not the sustained hyperventilatory response to HeO2 breathing during exercise. PMID:9216948

  10. Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects.

    PubMed

    Griesbeck, Axel G; Reckenthäler, Melissa

    2014-01-01

    The homogeneous titanium- and dye-catalyzed as well as the heterogeneous semiconductor particle-catalyzed photohydroxymethylation of ketones by methanol were investigated in order to evaluate the most active photocatalyst system. Dialkoxytitanium dichlorides are the most efficient species for chemoselective hydroxymethylation of acetophenone as well as other aromatic and aliphatic ketones. Pinacol coupling is the dominant process for semiconductor catalysis and ketone reduction dominates the Ti(OiPr)4/methanol or isopropanol systems. Application of dilution effects on the TiO2 catalysis leads to an increase in hydroxymethylation at the expense of the pinacol coupling. PMID:24991265

  11. Effective Viscosity of a Near-Critical Binary Fluid Mixture with Colloidal Particles Dispersed Dilutely under Weak Shear

    NASA Astrophysics Data System (ADS)

    Fujitani, Youhei

    2014-08-01

    We consider a spherical liquid droplet immersed in a near-critical binary fluid mixture whose components interact with the droplet slightly unequally. Assuming uniform viscosity of the mixture, we use the Gaussian free-energy functional to calculate the pressure and velocity fields occurring when a weak linear shear flow is imposed far from the droplet. These fields in the limit of infinite droplet viscosity give those for a rigid sphere. Using these fields, we calculate the effective viscosity emerging when identical droplets or rigid spheres are dilutely dispersed in the mixture.

  12. Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Miura, Terumitsu; Fujii, Katsuhiko; Fukuya, Koji

    2015-02-01

    Effects of helium (He) on grain boundary (GB) fracture of austenitic stainless steel were investigated by micro-tensile tests. Micro-bicrystal tensile specimens were fabricated for non-coincidence site lattice boundaries of He ion-irradiated 316 stainless steel by focused ion beam (FIB) micro-processing. Micro-tensile tests were conducted in a vacuum at room temperature in the FIB system. Specimens containing more than 2 at.% He fractured at GBs. The criteria for brittle fracture occurrence on GBs were: (1) He concentrations higher than 2 at.%; (2) formation of He bubbles on the GBs with less than a 5 nm spacing; and (3) matrix hardening to more than 4.6 GPa (nano-indentation hardness). The fracture stress of GB brittle fracture was lower for a specimen with higher He concentration while the size and areal density of the GB He bubbles were the same. The specimens that contained 10 at.% He and had been annealed at 923 K after irradiation fractured at the GB nominally in a brittle manner; however the inter-bubble matrix at the GB experienced ductile fracture. The annealing caused He bubbles to grow but decreased the areal density so that the spacing of the GB He bubbles widened and the hardness decreased, therefore the fracture mode changed from brittle to ductile. The findings revealed that He promotes GB fracture by weakening the GB strength and hardening the matrix due to the formation of He bubbles both on GBs and in the matrix. In addition, the findings suggested that GB segregated He atoms may have a role in GB fracture.

  13. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  14. Low frequency anomalies of the effective mass of charged clusters in liquid helium

    NASA Astrophysics Data System (ADS)

    Shikin, V.

    2013-10-01

    The dynamic behavior of charged clusters in liquid helium is discussed in detail. The matter is their added mass which has ideal, Msass, and normal, Mnass, components. The normal component has a number of interesting features of viscous origin. Some of them were found in recent experiments.

  15. Effect of Kapitza resistance on standing surface waves in superfluid helium

    SciTech Connect

    Atkin, R.J.; Fox, N.

    1984-06-01

    We analyze theoretically the resonant frequencies of standing surface waves produced by second sound in /sup 4/He. In particular, we show that an empirical heat transfer coefficient involved in a recently proposed boundary condition can be related to Kapitza resistance. We also calculate the heat flux within the helium and deduce that the height of the surface waves is strongly frequency dependent.

  16. MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles

    DOE PAGESBeta

    Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; Karavaev, A. V.; Vorobyova, M. A.; Chung, B. W.

    2013-05-14

    We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in coolingmore » to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.« less

  17. MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles

    SciTech Connect

    Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; Karavaev, A. V.; Vorobyova, M. A.; Chung, B. W.

    2013-05-14

    We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling–heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling–heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in cooling to a lower symmetry α'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling–heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). Lastly, this computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys.

  18. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    SciTech Connect

    Contescu, Cristian I

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  19. Experimental Insights into Collective Effects in Eukaryotic Cell Proliferation in Dilute Suspensions

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Segota, Igor; Strandburg-Peshkin, Ariana; Zhou, Xiao-Qiao S.; Rachakonda, Archana; Yavitt, Benjamin; Lussenhop, Catherine J.; Lee, Sungsu; Tharratt, Kevin; Deshmukh, Amrish; Sebesta, Elisabeth; Zhang, Myron; Lau, Sharon; Bennedsen, Sarah; Franck, David; Fernando, Viyath; Oh, Junseok

    2013-03-01

    Physicists can look to dilute suspensions of apparently solitary cells in suspension for elegant realizations of multicellular behavior. In contrast to our earlier work (Phys. Rev. E v. 77, 041905 (2008)) with the amoeba Dictyostelium discoideum we are discovering that the vital intercellular communications responsible for the well-known but poorly understood slow to fast transition in a growing culture as a function of time might be due to the passage of chemical messages between transient cell clusters or throughout the entire system as opposed to binary collisions. In considering the observed variation in proliferation rates we have been surprised to discover that for best growth cultures are much more dependent on incubator geometry than previously suspected.

  20. Bursting of Dilute Emulsion-Based Liquid Sheets Driven by a Marangoni Effect

    NASA Astrophysics Data System (ADS)

    Vernay, Clara; Ramos, Laurence; Ligoure, Christian

    2015-11-01

    We study the destabilization mechanism of thin liquid sheets expanding in air and show that dilute oil-in-water emulsion-based sheets disintegrate through the nucleation and growth of holes that perforate the sheet. The velocity and thickness fields of the sheet outside the holes are not perturbed by holes, and hole opening follows the Taylor-Culick law. We find that a prehole, which widens and thins out the sheet with time, systematically precedes the hole nucleation. The growth dynamics of the prehole follows the law theoretically predicted for a liquid spreading on another liquid of higher surface tension due to Marangoni stresses. Classical Marangoni spreading experiments quantitatively corroborate our findings.

  1. Effect of the site dilution on spin transport in the two-dimensional biquadratic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-05-01

    We use the SU(3) Schwinger's boson theory to study the spin transport in the biquadratic Heisenberg chains in a square lattice with a distribution of non-magnetic impurities on the lattice. We verify the influence of the site dilution in the Ac and Dc spin conductivities of this model in the Bose-Einstein condensation regime in which the bosons t are condensed. Our results show that the decreasing of the gap Δ with -β suffers a change for different concentrations x of non-magnetic impurities, however the point (in the -β axis) where the gap cancels does not change with x. Therefore, the size of the region ω, where the spin conductivity goes to zero decreases with the increase of x until the point where x=0.5, where the size of this region tends to zero.

  2. Helium Diffusion Through H2O and D2O Amorphous Ice: A Lattice Inverse Istope Effect

    SciTech Connect

    Daschbach, John L.; Schenter, Gregory K.; Ayotte, Patrick; Smith, R. Scott; Kay, Bruce D.

    2004-05-14

    The diffusion of helium through both H2O and D2O amorphous solid water (ASW) has been measured between 55K and 110K. We find the diffusion rate is dependent on the isotopic composition of the ASW lattice. This lattice isotope effect is the "inverse" of a normal isotope effect, in that diffusion is faster in the heavier (D2O) isotope. Transition state theory calculations show that the isotope effect is due to a tight transition state results in a large zero point vibrational energy differences at the transition state predominantly due to hindered rotations of water in the lattice.

  3. A temporal dilution effect: hantavirus infection in deer mice and the intermittent presence of voles in Montana.

    PubMed

    Carver, Scott; Kuenzi, Amy; Bagamian, Karoun H; Mills, James N; Rollin, Pierre E; Zanto, Susanne N; Douglass, Richard

    2011-07-01

    The effect of intermittently occurring, non-reservoir host species on pathogen transmission and prevalence in a reservoir population is poorly understood. We investigated whether voles, Microtus spp., which occur intermittently, influenced estimated standing antibody prevalence (ESAP) to Sin Nombre hantavirus (SNV, Bunyaviridae: Hantavirus) among deer mice, Peromyscus maniculatus, whose populations are persistent. We used 14 years of data from central Montana to investigate whether ESAP among deer mice was related to vole presence or abundance while controlling for the relationship between deer mouse abundance and ESAP. We found a reduction in deer mouse ESAP associated with the presence of voles, independent of vole abundance. A number of studies have documented that geographic locations which support a higher host diversity can be associated with reductions in pathogen prevalence by a hypothesized dilution effect. We suggest a dilution effect may also occur in a temporal dimension at sites where host richness fluctuates. Preservation of host diversity and optimization of environmental conditions which promote occurrence of ephemeral species, such as voles, may result in a decreased ESAP to hantaviruses among reservoir hosts. Our results may extend to other zoonotic infectious diseases. PMID:21170746

  4. A temporal dilution effect: hantavirus infection in deer mice and the intermittent presence of voles in Montana

    PubMed Central

    Kuenzi, Amy; Bagamian, Karoun H.; Mills, James N.; Rollin, Pierre E.; Zanto, Susanne N.; Douglass, Richard

    2011-01-01

    The effect of intermittently occurring, non-reservoir host species on pathogen transmission and prevalence in a reservoir population is poorly understood. We investigated whether voles, Microtus spp., which occur intermittently, influenced estimated standing antibody prevalence (ESAP) to Sin Nombre hantavirus (SNV, Bunyaviridae: Hantavirus) among deer mice, Peromyscus maniculatus, whose populations are persistent. We used 14 years of data from central Montana to investigate whether ESAP among deer mice was related to vole presence or abundance while controlling for the relationship between deer mouse abundance and ESAP. We found a reduction in deer mouse ESAP associated with the presence of voles, independent of vole abundance. A number of studies have documented that geographic locations which support a higher host diversity can be associated with reductions in pathogen prevalence by a hypothesized dilution effect. We suggest a dilution effect may also occur in a temporal dimension at sites where host richness fluctuates. Preservation of host diversity and optimization of environmental conditions which promote occurrence of ephemeral species, such as voles, may result in a decreased ESAP to hantaviruses among reservoir hosts. Our results may extend to other zoonotic infectious diseases. PMID:21170746

  5. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    DOE PAGESBeta

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; Sawada, Daisuke; Pingali, Sai Venkatesh; O’Neill, Hugh M.; Li, Hongjia; Wyman, Charles E.; Langan, Paul; Ragauskas, Art J.; et al

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have largemore » implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of

  6. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    SciTech Connect

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; Sawada, Daisuke; Pingali, Sai Venkatesh; O’Neill, Hugh M.; Li, Hongjia; Wyman, Charles E.; Langan, Paul; Ragauskas, Art J.; Kumar, Rajeev

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have large implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of

  7. The effect of intergalactic helium on hydrogen reionization: implications for the sources of ionizing photons at z>6

    NASA Astrophysics Data System (ADS)

    Ciardi, B.; Bolton, J. S.; Maselli, A.; Graziani, L.

    2012-06-01

    We investigate the effect of primordial helium on hydrogen reionization using a hydrodynamical simulation combined with the cosmological radiative transfer code CRASH. The radiative transfer simulations are performed in a 35.12 h-1 comoving Mpc box using a variety of assumptions for the amplitude and power-law extreme-ultraviolet (EUV) spectral index of the ionizing emissivity at z > 6. We use an empirically motivated prescription for ionizing sources which, by design, ensures all of the models are consistent with constraints on the Thomson scattering optical depth and the metagalactic hydrogen photoionization rate at z˜ 6. The inclusion of helium slightly delays reionization due to the small number of ionizing photons which reionize neutral helium instead of hydrogen. However, helium has a significant impact on the thermal state of the intergalactic medium (IGM) during hydrogen reionization. Models with a soft EUV spectral index, α= 3, produce IGM temperatures at the mean density at z˜ 6, T0≃ 10 500 K, which are ˜20 per cent higher compared to models in which helium photoheating is excluded. Harder EUV indices produce even larger IGM temperature boosts by the end of hydrogen reionization. A comparison of these simulations to recent observational estimates of the IGM temperature at z˜ 5-6 suggests that hydrogen reionization was primarily driven by Population II stellar sources with a soft EUV index, ?. We also find that faint, as yet undetected galaxies, characterized by a luminosity function with a steepening faint-end slope (αLF≤-2) and an increasing Lyman continuum escape fraction (fesc˜ 0.5), are required to reproduce the ionizing emissivity used in our simulations at z > 6. Finally, we note there is some tension between recent observational constraints which indicate the IGM is >10 per cent neutral by volume z˜ 7, and estimates of the ionizing emissivity at z= 6 which indicate only 1-3 ionizing photons are emitted per hydrogen atom over a Hubble

  8. Effects of a helium/oxygen mixture on individuals’ lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases

    PubMed Central

    Häussermann, Sabine; Schulze, Anja; Katz, Ira M; Martin, Andrew R; Herpich, Christiane; Hunger, Theresa; Texereau, Joëlle

    2015-01-01

    Background Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22%) to that of medical air. Methods The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD) participants, both moderate and severe (6 participants in each disease group, a total of 30); at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained. Results There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups. Conclusion The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications. PMID:26451096

  9. A computational study on magnetic effects of Zn1-x Crx O type diluted magnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Duru, İzzet Paruğ; Değer, Caner; Kalaycı, Taner; Arucu, Muhammet

    2015-12-01

    Diluted magnetic semiconductors (DMS) have been intensely investigated both experimentally and theoretically in recent years. In spite of large body of studies to have a better understanding on working principles of devices based on DMS materials and taking a detailed control during fabrication process, nature of the system remains largely unknown. It is proposed that dominant contribution to DMS Hamiltonian is originated from ferromagnetic interaction between antiferromagnetic Cr+3 and its nearest neighbors rather than long-range interactions which commonly reported. In the light of experimental data obtained from literature, we simulated Zn1-x Crx O wurtzite thin film based on Metropolis algorithm and Markov Chain Monte Carlo (MC-MC) method as realistic as possible. We found that the soft ferromagnetic behaviour of Zn1-x Crx O thin film emerges by increasing doping ratios up to 15% (x=0.15), then it gradually vanishes above 15% (x=0.15) at room temperature. Results obtained here was found to be highly consistent with experimental studies.

  10. Dissipative particle dynamics simulation of dilute polymer solutions—Inertial effects and hydrodynamic interactions

    SciTech Connect

    Zhao, Tongyang; Wang, Xiaogong; Jiang, Lei; Larson, Ronald G.

    2014-07-01

    We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.

  11. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  12. Effect of heliox, oxygen and air breathing on helium bubbles after heliox diving.

    PubMed

    Hyldegaard, O; Jensen, T

    2007-01-01

    In helium saturated rat abdominal adipose tissue, helium bubbles were studied at 101.3 kPa during breathing of either heliox(80:20), 100% oxygen or air after decompression from an exposure to heliox at 405 kPa for one hour. While breathing heliox bubbles initially grew for 15-115 minutes then shrank slowly; three out of 10 bubbles disappeared in the observation period. During oxygen breathing all bubbles initially grew for 10-80 minutes then shrank until they disappeared from view; in the growing phase, oxygen caused faster growth than heliox breathing, but bubbles disappeared sooner with oxygen breathing than with heliox or air breathing. In the shrinking phase, shrinkage is faster with heliox and oxygen breathing than with air breathing. Air breathing caused consistent growth of all bubbles. With heliox and oxygen breathing, most animals survived during the observation period but with air breathing, most animals died of decompression sickness regardless of whether the surrounding atmosphere was helium or air. If recompression beyond the maximum treatment pressure of oxygen is required, these results indicate that a breathing mixture of heliox may be better than air during the treatment of decompression sickness following heliox diving. PMID:17520862

  13. Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars.

    PubMed

    Pappas, Ioannis A; Koukoura, Zoi; Tananaki, Chrisoula; Goulas, Christos

    2014-08-01

    The effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica lignocellulosic biomass into fermentable sugar monomers was studied. The pretreatment conditions were expressed in a combined severity factor (CSF), ranged from 0.13 to 1.16. The concentration of xylose and total monomeric sugars released from hemicellulose increased with pretreatment as the CSF increased. Dilute acid pretreatment resulted in about 1.7-fold increase in glucose release relative to the untreated biomass, while CSF was positively correlated with glucose recovery. A maximum glucose yield of 85.05% was observed at high severity values (i.e. CSF 1.16) after 72 h. The total amount of sugars released (i.e. xylose and glucose) was increased with pretreatment severity and a maximum conversion efficiency of 76.1% of structural carbohydrates was obtained at a CSF=1. Our data indicated that Phalaris aquatica L. is an alternative bioethanol feedstock and that hemicellulose removal promotes glucose yield. PMID:24929811

  14. Effect of Kr Gas Dilution on O Atom Density in Inductively Coupled Kr/O2 Plasma

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Ikuma, Soichi; Goto, Toshio

    2003-10-01

    Oxygen-based plasmas have been used for the low temperature oxidation of materials. It has been reported that the high quality SiO2 film was formed at a low temperature by Kr dilution O2 plasma. From the viewpoint of developing the low temperature oxidation processes used for the gate dielectric film in LCD devices, a quantitative study on the behavior of O atom in the Kr/O2 mixture plasma is strongly required. In this study, we measured the absolute O atom and metastable Kr atom densities in an inductively coupled Kr/O2 plasma using vacuum ultraviolet absorption spectroscopy technique. The transition lines used for absorption measurements were ^3S0 - ^3P_2, ^3S0 - ^3P1 and ^3S0 - ^3P0 at 130.2 nm for O atom and ^3D3 - ^3P2 at 811.3 nm for metastable Kr atom. The absolute O atom density was almost constant on 4×10^13 cm-3 although the Kr dilution ratio was increased from 0 to 99% at an RF power of 200W, a pressure of 107 Pa, and a total gas flow rate of 100 sccm. The effect of metastable Kr atom on the production of the O atom has been discussed.

  15. The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.; Orzech, K. M.; Rubin, D. M.

    2004-12-01

    The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.

  16. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    PubMed

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  17. Effect of sample dilution on matrix effects in pesticide analysis of several matrices by liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Yang, Paul; Chang, James S; Wong, Jon W; Zhang, Kai; Krynitsky, Alexander J; Bromirski, Maciej; Wang, Jian

    2015-06-01

    This study used two LC columns of different adsorbents and liquid chromatography-electrospray ionization-high-resolution mass spectrometry to study the relationship between matrix effects (ME), the LC separations, and elution patterns of pesticides and those of matrix components. Using calibration standards of 381 pesticides at three dilution levels of 1×, 1/10×, and 1/100×, 108 samples were prepared in solvent and five different sample matrices for the study. Results obtained from principal component analysis and slope ratios of calibration curves provided measurements of the ME and showed the 1/100× sample dilution could minimize suppression ME for most pesticides analyzed. Should a pesticide coeluting with matrix components have a peak intensity of 25 times or higher, the suppression for that pesticide would persist even at 1/100× dilution. The number of pesticides had enhancement ME increased with increasing dilution from 1× to 1/100×, with those early eluting, hydrophilic pesticides affected the most. PMID:25620499

  18. Tunneling effects in the kinetics of helium and hydrogen isotopes desorption from single-walled carbon nanotube bundles

    SciTech Connect

    Danilchenko, B. A. Yaskovets, I. I.; Uvarova, I. Y.; Dolbin, A. V.; Esel'son, V. B.; Basnukaeva, R. M.; Vinnikov, N. A.

    2014-04-28

    The kinetics of desorption both helium isotopes and molecules of hydrogen and deuterium from open-ended or γ-irradiated single-walled carbon nanotube bundles was investigated in temperature range of 10–300 K. The gases desorption rates obey the Arrhenius law at high temperatures, deviate from it with temperature reduction and become constant at low temperatures. These results indicate the quantum nature of gas outflow from carbon nanotube bundles. We had deduced the crossover temperature below which the quantum corrections to the effective activation energy of desorption become significant. This temperature follows linear dependence against the inverse mass of gas molecule and is consistent with theoretical prediction.

  19. Ab Initio Values of the Thermophysical Properties of Helium as Standards

    PubMed Central

    Hurly, John J.; Moldover, Michael R.

    2000-01-01

    Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form.

  20. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  1. Application of Cryocoolers to a Vintage Dilution Refrigerator

    SciTech Connect

    Schmitt, Richard; Smith, Gary; Ruschman, Mark; Beaty, Jim; /Minnesota U.

    2011-06-06

    A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiers using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.

  2. Investigation of personal and fixed head oxygen deficiency hazard monitor performance for helium gas

    SciTech Connect

    D. Arenius; D. Curry; A. Hutton; K. Mahoney; S. Prior; H. Robertson

    2002-05-10

    On May 14, 2001, the Thomas Jefferson National Accelerator Facility (JLAB) conducted a planned liquid helium release into its accelerator tunnel to study the effectiveness of the JLAB facility to vent the helium and therefore limit the oxygen deficiency hazard (ODH). During the test, it was discovered that a wide range of various oxygen deficiency monitors, of different manufacturers, were providing substantial conflicting measurements of the true oxygen level where health effects are of concern. Yet, when tested separately with nitrogen gas as the diluting gas into air, the same models performed very well. This problem, which is associated with helium displacement of air, was found for both personal oxygen monitors and fixed installation monitors from many different manufacturers. By informing other facilities of its findings, JLAB became aware this problem also exists among other national laboratories and facilities. Many manufacturers do not have data on the effects of helium displacing air for their devices. Some manufacturers have now duplicated the test results conducted at JLAB. Since both fixed installation and personal oxygen monitors have become standard safety device in many research facilities and industries in the United States and abroad, it is important that these facilities are aware of the problem and how it is being addressed at JLAB. This paper discusses the methods, procedures and materials used by JLAB to qualify its ODH sensors for helium. Data and graphs of JLAB's findings are provided.

  3. Low temperature uses of helium

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1970-01-01

    Helium is used for purging and pressurizing cryogenic rocket propellants, welding, atmosphere control, leak detection, and refrigeration. It provides the lowest possible liquid-bath temperature and produces superconductivity in certain materials. Its superfluid effects are used in superconducting magnets.

  4. The Kaonic Helium Case

    NASA Astrophysics Data System (ADS)

    Curceanu (Petrascu), C.; Bragadireanu, A. M.; Curceanu (Petrascu), C.; Ghio, F.; Girolami, B.; Guaraldo, C.; Iliescu, M.; Levi Sandri, P.; Lucherini, V.; Sirghi, D. L.; Sirghi, F.; Cargnelli, M.; Fuhrmann, H.; Ishiwatari, T.; Kienle, P.; Marton, J.; Zmeskal, J.; Fiorini, C.; Longoni, A.; Frizzi, T.; Itahashi, K.; Iwasaki, M.; Koike, T.; Ponta, T.; Soltau, H.; Lechner, P.; Struder, L.

    2005-12-01

    The only three existent kaonic helium X-ray transition measurements at present are referring to the transitions to 2p level. These measurements are more than 30 years old and the obtained results, affected by big errors, are much larger than those predicted by optical models. It is thought that the optical model is inadequate, due to the presence of the ∧(1405) resonance, not properly taken into account. Because the nucleons in the helium nucleus are tightly bound, the effective energy of the K-p interaction (1432 MeV at threshold) is in helium much closer to the energy of the resonance than in other nuclei. It is then planned to measure the kaonic helium X-ray transitions to the 2p level in the framework of the SIDDHARTA (SIlicon Drift Detector for Hadronic Atom Research by Timing Application) experiment, at the DAΦNE collider of Frascati National Laboratories, and to confirm or not the discrepancy reported by the previous experiments with a much smaller error.

  5. Aminopeptidase activity in seminal plasma and effect of dilution rate on rabbit reproductive performance after insemination with an extender supplemented with buserelin acetate.

    PubMed

    Viudes-de-Castro, M P; Mocé, E; Lavara, R; Marco-Jiménez, F; Vicente, J S

    2014-06-01

    Ovulation induction in artificially inseminated rabbits by adding GnRH synthetic analogues in the seminal doses is a welfare-orientated method to induce ovulation in rabbits and could have some advantages in field practice. This study was conducted to determine the effect of male genotype on the aminopeptidase activity in rabbit seminal plasma and the effects of dilution rate of semen on availability and reproductive performance when buserelin acetate is added to the seminal dose. To study the aminopeptidase activity, 12 mature bucks belonging to a paternal line and 12 from a maternal line were used. The bucks from the paternal line were used to study the effect of dilution rate on the availability of buserelin acetate after 2 hours of dilution and on the reproductive performance of the doses after artificial insemination of 389 commercial crossbreed does. Aminopeptidase activity in seminal plasma is dependent on the male genotype. The paternal line resulted 27% more aminopeptidase activity than the maternal line (P < 0.05). On the other hand, semen diluted 1:20 exhibited a marked increase in the availability of buserelin acetate and the fertility in this group was significantly higher than females from dilution rate 1:5 group, which showed similar results to that of the negative control group (does inseminated with semen diluted 1:20 in non-GnRH-supplemented extender). We conclude that the bioavailability of buserelin acetate when added to the seminal dose appears to be determined by the activity of the existing aminopeptidases and is consequently affected by the dilution rate used to prepare the artificial insemination doses. PMID:24629591

  6. Large positive magnetoresistance effects in the dilute magnetic semiconductor (Zn,Mn)Se in the regime of electron hopping

    SciTech Connect

    Jansson, F. Wiemer, M.; Gebhard, F.; Baranovskii, S. D.; Nenashev, A. V.; Petznick, S.; Klar, P. J.; Hetterich, M.

    2014-08-28

    Magnetoresistance in dilute magnetic semiconductors is studied in the hopping transport regime. Measurements performed on Cl-doped Zn{sub 1–x}Mn{sub x}Se with x < 8% are compared with simulation results obtained by a hopping transport model. The energy levels of the Cl donors are affected by the magnetization of Mn atoms in their vicinity via the s-d exchange interaction. Compositional disorder, in particular, the random distribution of magnetic atoms, leads to a magnetic-field induced broadening of the donor energy distribution. As the energy distribution broadens, the electron transport is hindered and a large positive contribution to the magnetoresistance arises. This broadening of the donor energy distribution is largely sufficient to account for the experimentally observed magnetoresistance effects in n-type (Zn,Mn)Se with donor concentrations below the metal–insulator transition.

  7. Effects of temperature and pressure on asphaltene particle size distributions in crude oils diluted with n-pentane

    SciTech Connect

    Nielsen, B.B.; Svrcek, W.Y.; Mehrotra, A.K. . Dept. of Chemical and Petroleum Engineering)

    1994-05-01

    The effects of temperature (0--150 C) and pressure (0--5.6 MPa) on the size distribution of asphaltene particles (or agglomerates), formed as a result of diluting the crude oils with n-pentane, were studied using a modified laser particle analyzer. Four crude oils, ranging from an asphaltic condensate to a heavy oil-sand bitumen, were tested in this investigation. The average size of asphaltene agglomerates ranged from 266 to 495 Am. The results suggest that the mean asphaltene particle size increases with pressure and decreases slightly with temperature; however, no trends were evident with the molar mass of crude oils. Although the particle size distributions in most cases were unimodal and described adequately by the log-normal distribution function, bimodal distributions were also identified in certain cases.

  8. Collision quenching effects in nitrogen and helium excited by a 30-keV electron beam

    NASA Technical Reports Server (NTRS)

    Lillicrap, D. C.

    1973-01-01

    The quenching cross section for the 0-0 first negative band of nitrogen is determined for temperatures between 78 K and 300 K. As the temperature increases above 78 K, the quenching reaches a maximum at approximately 140 K and then decreases as 300 K is approached. At temperatures on the order of 5000 K, quenching is reported to increase with temperature and must therefore reach a minimum at some intermediate temperature between 300 K and 5000 K. By comparison, quenching of the 5016 A helium line increases continuously over the temperature range 78 K to 300 K.

  9. Combined helium and metallicity effects on the Cepheid distance scale: a theoretical investigation

    NASA Astrophysics Data System (ADS)

    Fiorentino, G.; Marconi, M.; Musella, I.; Caputo, F.

    The dependence of Cepheid pulsation properties on both helium and metal abundances is investigated on the basis of the results of new computed pulsation models spanning the whole range of metallicities of the galaxies analysed by the Hubble Space Telescope (HST) Key Project (KP). As a result, the predicted metallicity correction to the KP distance moduli, which rely on the adoption of universal, LMC based, PL relations, turns out to be negligible at the shorter periods (< 10 d) but to become important, and sensitive to the adopted Y to Z enrichment ratio Delta {Y}/Delta {Z}, at longer periods.

  10. Effect of pre-implanted helium on void swelling evolution in self-ion irradiated HT9

    NASA Astrophysics Data System (ADS)

    Getto, E.; Jiao, Z.; Monterrosa, A. M.; Sun, K.; Was, G. S.

    2015-07-01

    Void evolution in Fe++-irradiated ferritic-martensitic alloy HT9 was characterized in the temperature range of 400-480 °C between doses of 25 and 375 displacements per atom (dpa) with pre-implanted helium levels of 0-100 appm. A systematic study using depth profiling in cross-section samples was conducted to determine a valid region of analysis between 300 and 700 nm from the surface, which excluded effects due to the injected interstitial and the surface. Pre-implanted helium was found to promote void swelling at low doses by shortening the nucleation regime and to retard void growth at doses in the transient regime by enhancement of nucleation of small voids. Swelling was found to peak at a temperature of 460 °C. The primary effect of temperature was on the nucleation regime; nucleation regime was the shortest at 460 °C compared to that at 440 and 480 °C. The growth rate of voids was temperature-invariant. Steady state swelling was reached at 460 °C between 188 and 375 dpa at a rate of 0.02%/dpa.

  11. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  12. Effects of high-temperature diluted-H2 annealing on effective mobility of 4H-SiC MOSFETs with thermally-grown SiO2

    NASA Astrophysics Data System (ADS)

    Hirai, Hirohisa; Kita, Koji

    2016-04-01

    The impact of post-oxidation annealing (POA) in diluted-H2 ambient on a 4H-SiC/SiO2 interface was investigated with a cold wall furnace. Effective mobility (μeff) was extracted from lateral metal-oxide-semiconductor field-effect transistors (MOSFETs) by applying the split capacitance-voltage (C-V) technique to the determination of charge density and a calibration technique using two MOSFETs with different gate lengths to minimize the contribution of parasitic components. POA at 1150 °C in diluted-H2 ambient resulted in an enhancement of μeff compared with that for POA in N2 ambient. It was indicated that the effects of POA in diluted H2 should be attributed to the reduction in the density of near interface traps, which disturb the electron transportation in the inversion channel, from the measurement temperature dependence of μeff as well as from the C-V curves of MOS capacitors fabricated on n-type SiC.

  13. The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges

    NASA Astrophysics Data System (ADS)

    Schüngel, E.; Mohr, S.; Iwashita, S.; Schulze, J.; Czarnetzki, U.

    2013-05-01

    In capacitive hydrogen diluted silane discharges the formation of dust affects plasma processes used, e.g. for thin film solar cell manufacturing. Thus, a basic understanding of the interaction between plasma and dust is required to optimize such processes. We investigate a highly diluted silane discharge experimentally using phase-resolved optical emission spectroscopy to study the electron dynamics, laser light scattering on the dust particles to relate the electron dynamics with the spatial distribution of dust, and current and voltage measurements to characterize the electrical symmetry of the discharge via the dc self-bias. The measurements are performed in single and dual frequency discharges. A mode transition from the α-mode to a bulk drift mode (Ω-mode) is found, if the amount of silane and, thereby, the amount of dust and negative ions is increased. By controlling the electrode temperatures, the dust can be distributed asymmetrically between the electrodes via the thermophoretic force. This affects both the electron heating and the discharge symmetry, i.e. a dc self-bias develops in a single frequency discharge. Using the Electrical Asymmetry Effect (EAE), the dc self-bias can be controlled in dual frequency discharges via the phase angle between the two applied frequencies. The Ω-mode is observed for all phase angles and is explained by a simple model of the electron power dissipation. The model shows that the mode transition is characterized by a phase shift between the applied voltage and the electron conduction current, and that the plasma density profile can be estimated using the measured phase shift. The control interval of the dc self-bias obtained using the EAE will be shifted, if an asymmetric dust distribution is present. However, the width of the interval remains unchanged, because the dust distribution is hardly affected by the phase angle.

  14. Field and dilution effects on the magnetic relaxation behaviours of a 1D dysprosium(iii)-carboxylate chain built from chiral ligands.

    PubMed

    Han, Tian; Leng, Ji-Dong; Ding, You-Song; Wang, Yanyan; Zheng, Zhiping; Zheng, Yan-Zhen

    2015-08-14

    A one-dimensional dysprosium(iii)-carboxylate chain in which the Dy(III) ions sit in a pseudo D(2d)-symmetry environment is synthesized and shows different slow magnetic relaxation behaviours depending on the field and dilution effects. Besides, the chiral ligand introduces the additional functions of the Cotton effect and polarization for this compound. PMID:26159885

  15. Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: Effects on structure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Callisti, M.; Karlik, M.; Polcar, T.

    2016-05-01

    This study investigates the effects of He bubbles on structural and mechanical properties of sputter-deposited Cu/W multilayers. A multilayer with a periodicity of 10 nm was deposited and subjected to helium ion irradiation with two different fluences. He bubbles formed mostly in Cu layers and their distribution was affected by He concentration and radiation damage. According to SRIM calculations, in low He concentration regions bubbles formed mostly along interfaces, while more homogeneously distributed bubbles were found in Cu layers and along columnar grain boundaries in higher He concentration regions. We suggest that the capability of interfaces to annihilate point defects is weakened by the He bubbles shielding effect. Nanoindentation tests revealed a hardness decrease amounting to ∼0.5 and ∼1 GPa for low and high fluences, respectively. The observed softening effect is attributed to He storage-induced changes in residual stresses and columnar grain boundary/interfacial sliding facilitated by He bubbles.

  16. Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91

    NASA Astrophysics Data System (ADS)

    Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr

    2016-04-01

    In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.

  17. Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Tan, Zhenyu; Pan, Jie; Chen, Xinxian

    2016-08-01

    In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fluid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He2+ and O2‑, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture. supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)

  18. Oscillator strengths and radiative decay rates for spin-changing S-P transitions in helium: finite nuclear mass effects

    NASA Astrophysics Data System (ADS)

    Morton, Donald C.; Schulhoff, Eva E.; Drake, G. W. F.

    2015-12-01

    We have calculated the electric dipole (E1) and magnetic quadrupole (M2) oscillator strengths and spontaneous decay rates for 24 spin-changing transitions of atomic helium. We included the effects of the finite nuclear mass and the anomalous magnetic moment of the electron augmented by the recently derived Pachucki term. The specific transitions for 4He are n{ }1{{{S}}}0-{n}\\prime { }3{{{P}}}{1,2} and n{ }3{{{S}}}1-{n}\\prime { }1{{{P}}}1 with n,{n}\\prime ≤slant 3 and n≤slant 10 for {n}\\prime =n. For the E1 calculations we used the Breit approximation and pseudostate expansions to perform the perturbation sums over intermediate states in both the length and velocity gauge as a check on both numerical accuracy and validity of the transition operators. The corrections for the nuclear mass and the electron anomaly tend to cancel, indicating that if one is included, then so should be the other. The tables give mass- and anomaly-dependent coefficients permitting the easy generation of results for the other isotopes of helium.

  19. Evidence of the Importance of Host Habitat Use in Predicting the Dilution Effect of Wild Boar for Deer Exposure to Anaplasma spp

    PubMed Central

    Estrada-Peña, Agustín; Acevedo, Pelayo; Ruiz-Fons, Francisco; Gortázar, Christian; de la Fuente, José

    2008-01-01

    Foci of tick-borne pathogens occur at fine spatial scales, and depend upon a complex arrangement of factors involving climate, host abundance and landscape composition. It has been proposed that the presence of hosts that support tick feeding but not pathogen multiplication may dilute the transmission of the pathogen. However, models need to consider the spatial component to adequately explain how hosts, ticks and pathogens are distributed into the landscape. In this study, a novel, lattice-derived, behavior-based, spatially-explicit model was developed to test how changes in the assumed perception of different landscape elements affect the outcome of the connectivity between patches and therefore the dilution effect. The objective of this study was to explain changes in the exposure rate (ER) of red deer to Anaplasma spp. under different configurations of suitable habitat and landscape fragmentation in the presence of variable densities of the potentially diluting host, wild boar. The model showed that the increase in habitat fragmentation had a deep impact on Habitat Sharing Ratio (HSR), a parameter describing the amount of habitat shared by red deer and wild boar, weighted by the probability of the animals to remain together in the same patch (according to movement rules), the density of ticks and the density of animals at a given vegetation patch, and decreased the dilution effect of wild boar on deer Anaplasma ER. The model was validated with data collected on deer, wild boar and tick densities, climate, landscape composition, host vegetation preferences and deer seropositivity to Anaplasma spp. (as a measure of ER) in 10 study sites in Spain. However, although conditions were appropriate for a dilution effect, empirical results did not show a decrease in deer ER in sites with high wild boar densities. The model showed that the HSR was the most effective parameter to explain the absence of the dilution effect. These results suggest that host habitat usage may

  20. A QUANTUM MECHANICAL STUDY OF STRUCTURAL AND ELECTRONIC DILUTION EFFECTS IN PARAMAGNETIC CHEMICAL EXCHANGE SATURATION TRANSFER AGENTS

    PubMed Central

    Miller, Whelton A.; Moore, Preston B.

    2014-01-01

    We present a computational study of the effect of chemical modifications of the meta and para substituents in the coordinating pendant arm of a modified 1,4,7,10-tetraazacyclododecane-N, N’, N″, N‴-tetraamide (DOTAM) ligand on the Chemical Exchange Saturation Transfer (CEST) signal. Magnetic Resonance Imaging (MRI) is currently one of the most widely used techniques available. MRI has led to a new class of pharmaceuticals termed “imagining” or “contrast” agents. These agents usually work by incorporating lanthanide metals such as Gadolinium (Gd) and Europium (Eu). This allows the contrast agents to take advantage of the paramagnetic properties of the metals, which in turn enhances the signal detectable by MRI. The effect of simple electron-withdrawing (e.g., nitro) and electron-donating (e.g., methyl) substituents chemically attached to a modified chelate arm (pendant arm) is quantified by charge transfer interactions in the coordinated water-chelate system computed from quantum mechanics. This study attempts to reveal the origin of the substituent effect on the CEST signal and the electronic structure of the complex. We find that the extent of Charge Transfer (CT) depends on orbital orientations and overlaps. However, CT interactions occur simultaneously from all arms, which causes a dilution effect with respect to the pendant arm. PMID:25485283

  1. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  2. Importance of non-first-order effects in the (e,3e) double ionization of helium

    SciTech Connect

    Lahmam-Bennani, A.; Duguet, A.; Dal Cappello, C.; Nebdi, H.; Piraux, B.

    2003-01-01

    Angular distributions of the two ejected electrons resulting from the double ionization of helium by electron impact have been measured by means of a multicoincidence multiangle (e,3e) spectrometer at an incident energy of about 0.6 keV and equal outgoing energies E{sub b}=E{sub c}=11 eV. We identify various regimes of kinematical parameters where substantial differences are found with respect to the first-Born convergent close-coupling calculations: an angular shift of the position of the main lobe and the presence of additional lobes. These differences are attributed to high-order contributions in the projectile-target interaction. This conclusion is supported by recent (e,3e) calculations performed within the second-Born approximation.

  3. Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqi; Wang, Jiangfeng; Lu, Xinghua; Huang, Wenfa; Li, Xuechun

    2015-08-01

    As the development of the laser-driven technology, the next generation of laser-driven device sets higher requirement for the repetition frequency. The higher repetition gives rise to thermal deposition, which induces thermo-optical effect, elasto-optical effect and bulk displacement. The thermal efficient management is an important approach to dissolve the thermal deposition. The quasi uniform distribution of heat medium is realized by helium cooling Nd:glass slab and the control of edge temperature. In the case, wavefront distortion and depolarization losses is obtained in experiment. Results said that both of them are improved greatly. At the same time, the distribution of temperature, stress and strain and stress birefringence in Nd:glass are analyzed by using finite element numerical simulation method. And the calculation results show that the wavefront distortion and depolarization losses match with the experimental results very well.

  4. Effect of radiogenic helium on stainless steel 12Cr18Ni10Ti mechanical properties and hydrogen permeability

    SciTech Connect

    Boitsov, I.; Kanashenko, S.; Causey, R.; Denisov, E.; Glugla, M.; Grishechkin, S.; Hassanein, A.; Lebedev, B.; Kompaniets, T.; Kurdyumov, A.; Malkov, I.; Yukhimchuk, A.

    2008-07-15

    Samples of stainless steel 12Cr18Ni10Ti with radiogenic helium were subjected to mechanical tests with a constant extension rate. The presence of {sup 3}He does not markedly affect the strength characteristic, but significantly decreases plasticity of steel. The presence of hydrogen enhances the embrittlement of steel, containing {sup 3}He. The diffusion coefficient of hydrogen does not change significantly in the presence of helium, but the traps for hydrogen, which occur due to the presence of helium, delay the kinetics of a steady state flux onset at helium concentration of 50 appm. (authors)

  5. Effective viscosity of dilute bacterial suspensions : a two-dimensional model.

    SciTech Connect

    Haines, B. M.; Aranson, I. S.; Berlyand, L.; Karpeev, D. A.; Pennsylvania State Univ.

    2008-01-01

    Suspensions of self-propelled particles are studied in the framework of two-dimensional (2D) Stokesean hydrodynamics. A formula is obtained for the effective viscosity of such suspensions in the limit of small concentrations. This formula includes the two terms that are found in the 2D version of Einstein's classical result for passive suspensions. To this, the main result of the paper is added, an additional term due to self-propulsion which depends on the physical and geometric properties of the active suspension. This term explains the experimental observation of a decrease in effective viscosity in active suspensions.

  6. Molecular simulation study of the surface barrier effect. Dilute gas limit

    SciTech Connect

    Ford, D.M.; Glandt, E.D.

    1995-07-20

    The mass transfer resistance associated with penetrating the mouth of a very small pore is evaluated using classical molecular dynamics simulation techniques. The effects of temperature, pore size, and thermal motion of the adsorbent atoms are studied for a slit pore mouth model. Adsorption followed by surface diffusion to the pore mouth makes a significant contribution to the mass transfer when the temperature is low or, equivalently, when the adsorptive potential is strong. Thermal vibrations of the adsorbent atoms have little effect on the adsorption/surface diffusion mechanisms but cause fluctuations in the effective pore mouth area which can significantly affect transport rates. Perhaps the most important observation is that when the pore size approaches the kinetic diameter of the gas molecules, changes of a few percent in the pore size cause order-of-magnitude changes in the resistance. Therefore, it is possible that the surface barrier effect observed in zeolites and carbon molecular sieves is governed by highly localized (single atomic layer) structural details. 19 refs., 7 figs., 1 tab.

  7. Dilutions Made Easy.

    ERIC Educational Resources Information Center

    Kamin, Lawrence

    1996-01-01

    Presents problems appropriate for high school and college students that highlight dilution methods. Promotes an understanding of dilution methods in order to prevent the unnecessary waste of chemicals and glassware in biology laboratories. (JRH)

  8. Spin-orbit dilution effects on the magnetism of frustrated spinel Ge(Co1-xMgx)2O4

    NASA Astrophysics Data System (ADS)

    Agata, Ryotaro; Takita, Shota; Ishikawa, Takashi; Watanabe, Tadataka

    2015-03-01

    We investigated magnetic properties of spinel oxides Ge(Co1-xMgx)2O4 with x = 0 ~ 0.5 to study the spin-orbit dilution effects on the magnetism of spin-orbit frustrated spinel GeCo2O4. We discovered that the magnetic moment per single Co2+ ion is decreased with increasing nonmagnetic Mg2+ concentration, which indicates the spin-orbit decoupling caused by the spin-orbit dilution. Additionally, small-amount substitution of Mg2+ for Co2+ causes the rapid increase of the positive Weiss temperature indicating the enhancement of ferromagnetic interactions, while the Mg2+ substitution suppresses the antiferromagnetic ordering resulting in the appearance of spin glass behavior. The present results suggest that the spin-orbit dilution causes the spin-orbit decoupling and the reinforcement of ferromagnetic frustration in GeCo2O4.

  9. Concentration effects on turbulence in dilute polymer solutions far from walls

    NASA Astrophysics Data System (ADS)

    de Chaumont Quitry, Alexandre; Ouellette, Nicholas T.

    2016-06-01

    We report measurements of the modification of turbulence far from any walls by small concentrations of long-chain polymers. We consider a range of statistical properties of the flow, including Eulerian and Lagrangian velocity structure functions, Eulerian acceleration correlation functions, and the relative dispersion of particle pairs. In all cases, we find that the polymer concentration has a strong effect on the extent to which the statistical properties are changed compared to their values in pure water. These effects can be captured by the recently proposed energy flux-balance model (when suitably extended into the time domain for Lagrangian statistics). However, unlike previous measurements, which found that the concentration effect could be completely scaled out, we consistently find that our data collapse onto two different master curves, one for small concentration and one for larger concentration. We suggest that the difference between the two may be related to the onset of interactions among polymer chains, which is likely to be more easily observed at the small Weissenberg numbers we consider here.

  10. Defect effect on tribological behavior of diamond-like carbon films deposited with hydrogen diluted benzene gas in aqueous environment

    NASA Astrophysics Data System (ADS)

    Yi, Jin Woo; Park, Se Jun; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Kim, Seock-Sam

    2009-05-01

    This study examined the friction and wear behavior of diamond-like carbon (DLC) films deposited from a radio frequency glow discharge using a hydrogen diluted benzene gas mixture. The DLC films were deposited on Si (1 0 0) and polished stainless steel substrates by radio frequency plasma-assisted chemical vapor deposition (r.f.-PACVD) at hydrogen to benzene ratios, or the hydrogen dilution ratio, ranging from 0 to 2.0. The wear test was carried out in both ambient and aqueous environments using a homemade ball-on-disk type wear rig. The stability of the DLC coating in an aqueous environment was improved by diluting the benzene precursor gas with hydrogen, suggesting that hydrogen dilution during the deposition of DLC films suppressed the initiation of defects in the film and improved the adhesion of the coating to the interface.

  11. Memory effect in the chain-collapse process in a dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Maki, Yasuyuki; Sasaki, Naoki; Nakata, Mitsuo

    2004-12-01

    The effect of temperature perturbation on a single-chain-collapse process was studied for poly(methyl methacrylate) with the molecular weight Mw=1.05×107 in the mixed solvent of tert-butyl alcohol+water (2.5 vol %). In the chain-collapse process after a quench from the θ temperature to a temperature T1, the temperature was changed from T1 to T2 at the time t1 after the quench and returned to T1 at the time t1+t2. In the three stages at T1, T2, and T1, measurements of the mean-square radius of gyration of polymer chains were carried out by static light scattering and the chain-collapse process was represented by the expansion factor as a function of time. An effect of chain aggregation on the measurements was negligibly small because of the very slow phase separation. For the negative temperature perturbation (T1>T2), the chain-collapse processes observed in the first and third stages were connected smoothly and agreed with the collapse process due to a single-stage quench to T1. A memory of the chain collapse in the first stage at T1 was found to persist into the third stage at the same temperature T1 without being affected by the temperature perturbation of T2 during t2. The memory effect was observed irrespective of the time period of t2. The positive temperature perturbation (T1

  12. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  13. Effect of impurities on the transition temperature of a dilute dipolar trapped Bose gas

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Afsaneh, E.

    2013-01-01

    By using a two-fluid model the effect of impurities on the transition temperature of a dipolar trapped Bose gas is investigated. By treating Gaussian spatial correlation for impurities from the interaction modified spectra of the system, the formula for the shift of the transition temperature is derived. The shift of the transition temperature contains essentially three contributions due to contact, dipole-dipole, and impurity interactions. Applying our results to dipolar Bose gases shows that the shift of the transition temperature due to impurities could be measured for an isotropic trap (dipole-dipole contribution is zero) and the Feshbach resonance technique (contact potential contribution is negligible).

  14. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media. PMID:26821256

  15. Effect of synapse dilution on the memory retrieval in structured attractor neural networks

    NASA Astrophysics Data System (ADS)

    Brunel, N.

    1993-08-01

    We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.

  16. Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Sah, Injin; Jang, Changheui

    2010-10-01

    The effects of high temperature environmental damage on low temperature embrittlement of wrought nickel-base superalloys, Alloy 617 and Haynes 230 were evaluated. They were aged in an impure helium environment at 1000 °C for up to 500 h before tensile tested at room temperature. The tensile test results showed that the loss of ductility was associated with the increase in the inter-granular fracture with aging time. For Alloy 617, inter-granular oxidation and coarsening of grain boundary carbides contributed to the embrittlement. The significant loss of ductility in Haynes 230 was only observed after 500 h of aging when the globular intermetallic precipitates were extensively formed and brittle inter-granular cracking began to occur.

  17. Investigation on the effect of temperature excursion on the helium defects of tungsten surface by using compact plasma device

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Miyamoto, T.; Tomida, Y.; Minagawa, T.; Ohno, N.

    2011-08-01

    The effects of temperature excursion on the helium defects of tungsten surface have been investigated by using compact plasma device AIT-PID (Aichi Institute of Technology - Plasma Irradiation Device). An initial stage of bubble formation has been identified with an order of smaller (sub-micron) bubbles and holes than those in the past in which the micron size is the standard magnitude. The radiation cooling has been detected when a blacking of tungsten surface coming from nanostructure formation is proceeding due to an increase in the emissivity. The temperature increase to the domain (˜1600 K) in bubble/hole formation from that in nanostructure formation has been found to bring a constriction in diameter and a reduction in length of fiber-form nanostructure.

  18. Exchange effects and second-order Born corrections in laser-assisted (e ,2 e ) collisions with helium atoms

    NASA Astrophysics Data System (ADS)

    Ajana, I.; Makhoute, A.; Khalil, D.; Chaddou, S.

    2015-04-01

    The triple differential cross section for laser-assisted ionization of a helium target by slow electrons is analyzed within the framework of the second Born approximation. We evaluate the S -matrix elements using Volkov and Coulomb-Volkov wave functions for describing the continuum states of the scattered and the ejected electrons, respectively. The required scattering amplitudes are performed by expanding the atomic wave functions onto a complex-scaled Sturmian basis, which allows us to exactly take into account the contribution of the continuous spectrum to the dressing of the atomic states. Our results have been improved by taking into account exchange effects. Furthermore, the second-order Born correction is seen to be important and significantly affects the magnitudes of the binary and recoil peaks.

  19. Review of the effects of dilution of dietary energy with olestra on energy intake.

    PubMed

    Jandacek, Ronald J

    2012-03-20

    The non-absorbable substitute for dietary triacylglycerol, olestra, has been marketed in the United States for fifteen years. Olestra is comprised of sucrose with six to eight of its hydroxyl groups forming ester links with long-chain fatty acids. Because olestra is not hydrolyzed by fat-splitting enzymes in the small intestine, it is not absorbed from the small intestine into blood and tissues, and therefore provides no energy that can be utilized by the body. The hedonic properties of olestra with a specific fatty acid composition are similar to those of a triacylglycerol with the same fatty acid composition. Its use by consumers has been restricted by federal regulation to the commercial preparation of savory snack food items, principally as a frying medium for potato chips. An important question about the substitution of olestra for absorbable fat in the diet is whether the consumer will sense that a smaller amount of energy has been ingested. If it is sensed, thereby providing no satiation, then consuming additional energy in later meals will compensate for the removal of absorbable energy from the diet. If it is not sensed at all, then there is no compensation, and the person reduces caloric intake. This review first summarizes studies with olestra that have focused on its effect on the physiology of appetite. In general these studies have demonstrated that olestra does not influence signals of satiation including cholecystokinin and stomach emptying. The review then discusses studies of food consumption in experimental animals in which olestra was substituted for fat in the diet. Rodents have been repeatedly observed to compensate completely for the substitution of olestra for normal fat by eating more total diet. Most studies of the effect of olestra on human satiation have found incomplete or no compensation through additional energy consumption when olestra was substituted for dietary fat. In two clinical studies, however, complete compensation was

  20. Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces

    NASA Astrophysics Data System (ADS)

    Klyavin, O. V.; Fedorov, V. Yu.; Chernov, Yu. M.; Shpeizman, V. V.

    2015-09-01

    The load dependences of the microhardness of surface layers of NaCl and LiF ionic single crystals with juvenile surfaces and surfaces exposed to air for a long time measured in the air, nitrogen, and helium gaseous media have been investigated. It has been found that there is a change in the sign of the derivative of the microhardness as a function of the load for LiF crystals indented in helium and after their aging in air, as well as a weaker effect of the nitrogen and air gaseous media on the studied dependences as compared to NaCl crystals. It has also been found that, after the aging of the surface of NaCl crystals in air, there is a change in the sign of the derivative of the microhardness in the nitrogen and air gaseous media, as well as a pronounced change in the microhardness as a function of the time of aging the samples in air as compared to the weaker effect of the gaseous medium for LiF crystals. The obtained data have been analyzed in terms of the phenomenon of dislocation-dynamic diffusion of particles from the external medium into crystalline materials during their plastic deformation along the nucleating and moving dislocations. It has been shown that this phenomenon affects the microhardness through changes in the intensity of dislocation multiplication upon the formation of indentation rosettes in different gaseous media. The performed investigation of the microhardness of the juvenile surface of NaCl and LiF crystals in different gaseous media has revealed for the first time a different character of dislocation-dynamic diffusion of these media in a "pure" form.

  1. Effects of dilute aqueous NaCl solution on caffeine aggregation

    SciTech Connect

    Sharma, Bhanita; Paul, Sandip

    2013-11-21

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  2. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  3. Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

    SciTech Connect

    Allison E Ray; Amber Hoover; Gary Gresham

    2012-07-01

    Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

  4. Effects of pollen dilution on infection of Nosema ceranae in honey bees.

    PubMed

    Jack, Cameron J; Uppala, Sai Sree; Lucas, Hannah M; Sagili, Ramesh R

    2016-04-01

    Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems. PMID:26802559

  5. Effects of helium implantation on the tensile properties and microstructure of Ni₇₃P₂₇ metallic glass nanostructures

    DOE PAGESBeta

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni₇₃P₂₇ metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He⁺ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with nomore » sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.« less

  6. Effects of helium implantation on the tensile properties and microstructure of Ni₇₃P₂₇ metallic glass nanostructures

    SciTech Connect

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni₇₃P₂₇ metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He⁺ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.

  7. Effects of helium implantation on the tensile properties and microstructure of Ni73P27 metallic glass nanostructures.

    PubMed

    Liontas, Rachel; Gu, X Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ∼130 nm diameter Ni73P27 metallic glass nanocylinders. The nanocylinders were fabricated by a templated electroplating process and implanted with He(+) at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ∼3 atom % throughout the nanocylinders. Transmission electron microscopy imaging and through-focus analysis reveal that the specimens contained ∼2 nm helium bubbles distributed uniformly throughout the nanocylinder volume. In situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation. PMID:25084487

  8. Effect of oxygen vacancy on half metallicity in Ni-doped CeO{sub 2} diluted magnetic semiconductor

    SciTech Connect

    Saini, Hardev S. Saini, G. S. S.; Singh, Mukhtiyar; Kashyap, Manish K.

    2015-05-15

    The electronic and magnetic properties of Ni-doped CeO{sub 2} diluted amgentic semiconductor (DMS) including the effect of oxygen vacancy (V{sub o}) with doping concentration, x = 0.125 have been calculated using FPLAPW method based on Density Functional Theory (DFT) as implemented in WIEN2k. In the present supercell approach, the XC potential was constructed using GGA+U formalism in which Coulomb correction is applied to standard GGA functional within the parameterization of Perdew-Burke-Ernzerhof (PBE). We have found that the ground state properties of bulk CeO{sub 2} compound have been modified significantly due to the substitution of Ni-dopant at the cation (Ce) site with/without V{sub O} and realized that the ferromagnetism in CeO{sub 2} remarkably depends on the V{sub o} concentrations. The presence of V{sub o}, in Ni-doped CeO{sub 2}, can leads to strong ferromagnetic coupling between the nearest neighboring Ni-ions and induces a HMF in this compound. Such ferromagnetic exchange coupling is mainly attributed to spin splitting of Ni-d states, via electrons trapped in V{sub o}. The HMF characteristics of Ni-doped CeO{sub 2} including V{sub o} makes it an ideal material for spintronic devices.

  9. Species' Life-History Traits Explain Interspecific Variation in Reservoir Competence: A Possible Mechanism Underlying the Dilution Effect

    PubMed Central

    Huang, Zheng Y. X.; de Boer, Willem F.; van Langevelde, Frank; Olson, Valerie; Blackburn, Tim M.; Prins, Herbert H. T.

    2013-01-01

    Hosts species for multi-host pathogens show considerable variation in the species' reservoir competence, which is usually used to measure species' potential to maintain and transmit these pathogens. Although accumulating research has proposed a trade-off between life-history strategies and immune defences, only a few studies extended this to host species' reservoir competence. Using a phylogenetic comparative approach, we studied the relationships between some species' life-history traits and reservoir competence in three emerging infectious vector-borne disease systems, namely Lyme disease, West Nile Encephalitis (WNE) and Eastern Equine Encephalitis (EEE). The results showed that interspecific variation in reservoir competence could be partly explained by the species' life histories. Species with larger body mass (for hosts of Lyme disease and WNE) or smaller clutch size (for hosts of EEE) had a higher reservoir competence. Given that both larger body mass and smaller clutch size were linked to higher extinction risk of local populations, our study suggests that with decreasing biodiversity, species with a higher reservoir competence are more likely to remain in the community, and thereby increase the risk of transmitting these pathogens, which might be a possible mechanism underlying the dilution effect. PMID:23365661

  10. Species' life-history traits explain interspecific variation in reservoir competence: a possible mechanism underlying the dilution effect.

    PubMed

    Huang, Zheng Y X; de Boer, Willem F; van Langevelde, Frank; Olson, Valerie; Blackburn, Tim M; Prins, Herbert H T

    2013-01-01

    Hosts species for multi-host pathogens show considerable variation in the species' reservoir competence, which is usually used to measure species' potential to maintain and transmit these pathogens. Although accumulating research has proposed a trade-off between life-history strategies and immune defences, only a few studies extended this to host species' reservoir competence. Using a phylogenetic comparative approach, we studied the relationships between some species' life-history traits and reservoir competence in three emerging infectious vector-borne disease systems, namely Lyme disease, West Nile Encephalitis (WNE) and Eastern Equine Encephalitis (EEE). The results showed that interspecific variation in reservoir competence could be partly explained by the species' life histories. Species with larger body mass (for hosts of Lyme disease and WNE) or smaller clutch size (for hosts of EEE) had a lower reservoir competence [corrected]. Given that both larger body mass and smaller clutch size were linked to higher extinction risk of local populations, our study suggests that with decreasing biodiversity, species with a higher reservoir competence are more likely to remain in the community, and thereby increase the risk of transmitting these pathogens, which might be a possible mechanism underlying the dilution effect. PMID:23365661

  11. Dressing effects in the attosecond transient absorption spectra of doubly excited states in helium

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Jiménez-Galán, Á.; Marante, C.; Ott, C.; Pfeifer, T.; Martín, F.

    2015-06-01

    Strong-field manipulation of autoionizing states is a crucial aspect of electronic quantum control. Recent measurements of the attosecond transient absorption spectrum (ATAS) of helium dressed by a few-cycle visible pulse [C. Ott et al., Nature (London) 516, 374 (2014), 10.1038/nature14026] provide evidence of the inversion of Fano profiles. With the support of accurate ab initio calculations that reproduce the results of the latter experiment, here we investigate the new physics that arise from ATAS when the laser intensity is increased. In particular, we show that (i) previously unnoticed signatures of the dark 2 p21S doubly excited state are observed in the experimental spectrum, (ii) inversion of Fano profiles is predicted to be periodic in the laser intensity, and (iii) the ac Stark shift of the higher terms in the s p2,n + autoionizing series exceeds the ponderomotive energy, which is the result of a genuine two-electron contribution to the polarization of the excited atom.

  12. Effect of spray cooling on heat transfer in a two-phase helium flow

    NASA Astrophysics Data System (ADS)

    Perraud, S.; Puech, L.; Thibault, P.; Rousset, B.; Wolf, P. E.

    2013-10-01

    We describe an experimental study of the phenomenon of spray cooling in the case of liquid helium, either normal or superfluid, and its relationship to the heat transfer between an atomized two-phase flow contained in a long pipe, and the pipe walls. This situation is discussed in the context of the cooling of the superconducting magnets of the Large Hadron Collider (LHC). Experiments were conducted in a test loop reproducing the LHC cooling system, in which the vapor velocity and temperature could be varied in a large range. Shear induced atomization results in the generation of a droplet mist which was characterized by optical means. The thickness of the thin liquid film deposited on the walls by the mist was measured using interdigitated capacitors. The cooling power of the mist was measured using thermal probes, and correlated to the local mist density. Analysis of the results shows that superfluidity has only a limited influence on both the film thickness and the mist cooling power. Using a simple model, we show that the phenomenon of spray cooling accounts for the measured non-linearity of the global heat transfer. Finally, we discuss the relevance of our results for cooling the final focus magnets in an upgraded version of the LHC.

  13. Nodal effects in a-iron dislocation mobility in the presence of helium bubbles

    SciTech Connect

    Kumar, N. Naveen; Martinez, E; Dutta, B. K.; Dey, G. K.; Caro, J. A.

    2013-02-13

    Dislocations and dislocation networks act as sinks for irradiation-induced point defects such as vacancies and interstitials, or impurities such as helium. Recently, it has been found that the intersection points of the screw dislocation network formed at twist grain boundaries in Au (experimental) and Cu (simulations) act as nucleation sites for He bubbles, which form an array at the interface [ J. Hetherly, E. Martinez, Z. F. Di, M. Nastasi and A. Caro Scr. Mater. 66 17 (2012)]. The modeling part of that study was based on Monte Carlo algorithms. Here, using molecular dynamics simulations, we have performed shear deformation simulations of small-angle twist grain boundaries in α-iron. We report on the mechanical properties of this interface in pure as well as He-segregated samples. We find that this particular dislocation array in pure Fe is extremely mobile, with a Peierls stress ten times smaller than the value for a single straight screw dislocation, and that He bubbles induce a colossal increase (>50 times) in Peierls stress with respect to the pristine network. We interpret the results in terms of preexisting kinks and no shear transmission across the He bubbles.

  14. Effect of Rare Gas Dilution of SF6 Plasma on RIE Etching Characteristics of SiC

    NASA Astrophysics Data System (ADS)

    Ganguly, J. D.; Bletzinger, B. N.

    1999-10-01

    The etch rates and the anisotropy of etched features of hexagonal 6H-SiC have been measured in a capacitively coupled rf discharge using SF_6+Ar and SF_6+He diluted gas mixtures. These measurements provide evidence for the generic nature of utilizing gas mixtures to modify electrical characteristics of rf discharges to optimize power coupling efficiency, although etch rates and surface morphology do not necessarily scale only with the plasma power coupling efficiency. In spite of the measured lower power deposition with He dilution compared to Ar, He diluted SF6 plasma resulted in 1.5 greater etch rates (up to 300 nm/min) with 50% He dilution, with better anisotropy and surface texture than comparable SF_6+Ar mixtures. Superior SiC etch performance was obtained with He dilution, compared to Ar, over the entire 10% up to 90% range despite lower power coupling efficiency and the notion that Ar^+ ions are expected to enhance ion assisted etch mechanism. The differences in dc self bias and volume plasma E/n leading to the conversion of SF_5^+ ions to SF_3^+ along with Penning ionization of SF6 by metastable He atoms may be responsible for the observed superior etch characteristics.

  15. Silicon-Germanium Films Deposited by Low Frequency PE CVD: Effect of H2 and Ar Dilution

    SciTech Connect

    Kosarev, A; Torres, A; Hernandez, Y; Ambrosio, R; Zuniga, C; Felter, T E; Asomoza, R R; Kudriavtsev, Y; Silva-Gonzalez, R; Gomez-Barojas, E; Ilinski, A; Abramov, A S

    2005-09-22

    We have studied structure and electrical properties of Si{sub 1-Y}Ge{sub Y}:H films deposited by low frequency PE CVD over the entire composition range from Y=0 to Y=1. The deposition rate of the films and their structural and electrical properties were measured for various ratios of the germane/silane feed gases and with and without dilution by Ar and by H{sub 2}. Structure and composition was studied by Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and Fourier transform infrared (FTIR) spectroscopy. Surface morphology was characterized by atomic force microscopy (AFM). We found: (1) The deposition rate increased with Y maximizing at Y=1 without dilution. (2) The relative rate of Ge and Si incorporation is affected by dilution. (3) Hydrogen preferentially bonds to silicon. (4) Hydrogen content decreases for increasing Y. In addition, optical measurements showed that as Y goes for 0 to 1, the Fermi level moves from mid gap to the conduction band edge, i.e. the films become more n-type. No correlation was found between the pre-exponential and the activation energy of conductivity. The behavior of the conductivity {gamma}-factor suggests a local minimum in the density of states at E {approx} 0.33 eV for the films grown with or without H-dilution and E {approx} 0.25 eV for the films with Ar dilution.

  16. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    USGS Publications Warehouse

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  17. Use of a novel radiometric method to assess the inhibitory effect of donepezil on acetylcholinesterase activity in minimally diluted tissue samples

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Arai, Takuya; Obata, Takayuki; Fukushi, Kiyoshi; Irie, Toshiaki; Shiraishi, Tetsuya

    2010-01-01

    Background and purpose: Cholinesterase inhibitors have been widely used for the treatment of patients with dementia. Monitoring of the cholinesterase activity in the blood is used as an indicator of the effect of the cholinesterase inhibitors in the brain. The selective measurement of cholinesterase with low tissue dilution is preferred for accurate monitoring; however, the methods have not been established. Here, we investigated the effect of tissue dilution on the action of cholinesterase inhibitors using a novel radiometric method with selective substrates, N-[14C]methylpiperidin-4-yl acetate ([14C]MP4A) and (R)-N-[14C]methylpiperidin-3-yl butyrate ([14C]MP3B_R), for AChE and butyrylcholinesterase (BChE) respectively. Experimental approach: We investigated the kinetics of hydrolysis of [14C]-MP4A and [14C]-MP3B_R by cholinesterases, and evaluated the selectivity of [14C]MP4A and [14C]MP3B_R for human AChE and BChE, respectively, compared with traditional substrates. Then, IC50 values of cholinesterase inhibitors in minimally diluted and highly diluted tissues were measured with [14C]MP4A and [14C]MP3B_R. Key results: AChE and BChE activities were selectively measured as the first-order hydrolysis rates of [14C]-MP4A and [14C]MP3B_R respectively. The AChE selectivity of [14C]MP4A was an order of magnitude higher than traditional substrates used for the AChE assay. The IC50 values of specific AChE and BChE inhibitors, donepezil and ethopropazine, in 1.2-fold diluted human whole blood were much higher than those in 120-fold diluted blood. In addition, the IC50 values of donepezil in monkey brain were dramatically decreased as the tissue was diluted. Conclusions and implications: This method would effectively monitor the activity of cholinesterase inhibitors used for therapeutics, pesticides and chemical warfare agents. PMID:20401964

  18. Analysis of the Effect of Time, Temperature, and Fuel Age on Helium Release from 238-Plutonium Dioxide Fuel

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Kramer, Daniel P.; Ruhkamp, Joseph D.

    2005-02-01

    The compound 238-plutonium dioxide has been employed over the last several decades as the fuel of choice in fabricating nuclear powered thermal to electrical converters. The alpha decay of 238-plutonium results in the generation of helium ions as a function of time. While the quantity of helium formed within the fuel can be easily calculated, its diffusion and/or release mechanism as a function of time, temperature, fuel quantity and age needs to be characterized. Within the scope of this paper the principle interest centers on determining the expected quantity of helium that will be released from solid 238-plutonium dioxide fuel forms enclosed within a primary containment vessel (PCV) under Hypothetical Accident Conditions (HAC) as described in 10 CFR 71.73(4). Once the quantity of helium released during HAC has been determined, the partial pressure increase due to the helium release can be calculated for a given shipping configuration. This partial pressure increase due to helium release during HAC for a selected shipping configuration can then be used to determine if the structural integrity of the package will be maintained or compromised during HAC. However, it is important to recognize that helium release is not a function of a particular shipping package, but as shall be demonstrated is a function of time, temperature, and fuel quantity and age.

  19. Analysis of the Effect of Time, Temperature, and Fuel Age on Helium Release from 238-Plutonium Dioxide Fuel

    SciTech Connect

    Barklay, Chadwick D.; Kramer, Daniel P.; Ruhkamp, Joseph D.

    2005-02-06

    The compound 238-plutonium dioxide has been employed over the last several decades as the fuel of choice in fabricating nuclear powered thermal to electrical converters. The alpha decay of 238-plutonium results in the generation of helium ions as a function of time. While the quantity of helium formed within the fuel can be easily calculated, its diffusion and/or release mechanism as a function of time, temperature, fuel quantity and age needs to be characterized. Within the scope of this paper the principle interest centers on determining the expected quantity of helium that will be released from solid 238-plutonium dioxide fuel forms enclosed within a primary containment vessel (PCV) under Hypothetical Accident Conditions (HAC) as described in 10 CFR 71.73(4). Once the quantity of helium released during HAC has been determined, the partial pressure increase due to the helium release can be calculated for a given shipping configuration. This partial pressure increase due to helium release during HAC for a selected shipping configuration can then be used to determine if the structural integrity of the package will be maintained or compromised during HAC. However, it is important to recognize that helium release is not a function of a particular shipping package, but as shall be demonstrated is a function of time, temperature, and fuel quantity and age.

  20. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Fujii, H.

    2004-06-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  1. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    SciTech Connect

    Shibata, K.; Fujii, H.

    2004-06-28

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation.

  2. A possible formation channel for blue hook stars in globular cluster II - Effects of metallicity, mass ratio, tidal enhancement efficiency and helium abundance

    NASA Astrophysics Data System (ADS)

    Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen

    2016-09-01

    Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). Totally, 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented the range of initial orbital periods which is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N enhanced model atmospheres is considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.

  3. Thermospheric wind effects on the global distribution of helium in the earth's upper atmosphere. Ph.D. Thesis - Michigan Univ., Ann Arbor

    NASA Technical Reports Server (NTRS)

    Reber, C. A.

    1973-01-01

    The momentum and continuity equations for a minor gas are combined with the momentum equation for the major constituents to obtain the time dependent continuity equation for the minor species reflecting a wind field in the background gas. This equation is used to study the distributions of helium and argon at times of low, medium, and high solar activity for a variety of latitudinal-seasonal wind cells. For helium, the exospheric return flow at the higher thermospheric temperatures dominates the distribution to the extent that much larger latitudinal gradients can be maintained during periods of low solar activity than during periods of high activity. By comparison to the exospheric flow, the smoothing effect of horizontal diffusion is almost negligible. The latitudinal variation of helium observed by satellite mass spectrometers can be reproduced by the effect of a wind system of air rising in the summer hemisphere, flowing across the equator with speeds on the order of 100 to 200 m/sec, and descending in the winter hemisphere. Argon, being heavier than the mean mass in the lower thermosphere, reacts oppositely to helium in that it is enhanced in the summer hemisphere and depleted in the winter.

  4. Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste

    SciTech Connect

    Person, J.C.

    1996-05-30

    Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

  5. Measurements of the Critical Casimir Effect and Superfluid Density in Saturated Helium-4 Films near T(lambda)

    NASA Astrophysics Data System (ADS)

    Abraham, John Bishoy Sam

    Saturated thick films of 4Helium adsorbed on a copper substrate are studied experimentally. The film thickness is measured with an ultra-sensitive capacitance bridge capable of resolving sub-Angstrom changes in film thickness. Through the use of this capacitance bridge, the critical Casimir effect in the films is studied in the vicinity of the lambda transition. Additionally, the copper substrate assembly is used to generate and detect third sound in the film. Measurements are made of the third sound speed and attenuation in thick film from 1.6 K to the Kosterlitz-Thouless transition in the films. The position of the Kosterlitz-Thouless transition relative to the critical Casimir effect in the films is identifieded. It is discovered that the Kosterlitz-Thouless transition occurs at the beginning of the dip in film thickness due to the critical Casimir effect. When the temperature of the system is swept extremely slowly across the lambda transition, a step in film thickness is observed. This step is possibly a non-universal critical Casimir effect. A model of thermal second sound excitations is developed to describe this new observation.

  6. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-01

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1 : 1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2). PMID:24231765

  7. The Effects of Buoyancy and Dilution on the Structure and Lift-Off of Coflow Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin T.; Long, Marshall B.; Smooke, Mitchell D.

    1999-01-01

    The ability to predict the coupled effects of complex transport phenomena with detailed chemical kinetics in diffusion flames is critical in the modeling of turbulent reacting flows and in understanding the processes by which soot formation and radiative transfer take place. In addition, an understanding of those factors that affect flame extinction in diffusion flames is critical in the suppression of fires and in improving engine efficiency. A goal of this work is to bring to microgravity flame studies the detailed experimental and numerical tools that have been used to study ground-based systems. This will lead to a more detailed understanding of the interaction of convection, diffusion and chemistry in a nonbuoyant environment. To better understand these phenomena, experimental and computational studies of a coflow laminar diffusion flame have been carried out. To date, these studies have focused on a single set of flow conditions, in which a nitrogen-diluted methane fuel stream (65% methane by volume) was surrounded by an air coflow, with exit velocities matched at 35 cm/s. Of particular interest is the change in flame shape due to the absence of buoyant forces, as well as the amount of diluent in the fuel stream and the coflow velocity. As a sensitive marker of changes in the flame shape, the number densities of excited-state CH (A(exp 2 delta) denoted CH*), and excited-state OH (A(exp 2 sigma, denoted OH*) are measured. CH* and OH* number densities are deconvoluted from line-of-sight chemiluminescence measurements made on the NASA KC135 reduced-gravity aircraft. Measured signal levels are calibrated, post-flight, with Rayleigh scattering. In extending the study to microgravity conditions, improvements to the computational model have been made and new calculations performed for a range of gravity conditions. In addition, modifications to the experimental approach were required as a consequence of the constraints imposed by existing microgravity facilities

  8. Effect of dynamically charged helium on tensile properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-1Si

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1996-04-01

    In the Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm He/dpa by the decay of tritium during irradiation to 18-31 dpa at 424-600{degrees}C in the lithium-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-5Ti, V-4Cr-4Ti, V-3Ti-1Si. The effect of helium on tensile strength and ductility was insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room temperature ductility of DHCE specimens was higher than that on non-DHCE specimens, whereas strength was lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to results of tritium-trick experiments, in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE.

  9. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  10. The effect of Helium-enhanced stellar populations on the ultraviolet upturn phenomenon of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook

    2015-03-01

    We present new population synthesis models (Chung et al. 2011) for quiescent early-type galaxies (ETGs) with UV-upturn phenomenon using relatively metal-poor and helium-enhanced subpopulations in the model. We find that the presence of helium-enhanced subpopulations in ETGs can naturally reproduce the strong UV-upturns observed in giant elliptical galaxies (Figure 1. left panel), without invoking unrealistically old ages (Park & Lee 1997). Our models with helium-enhanced subpopulations also predict that the well-known Burstein relation can be explained by the fraction of helium-enhanced subpopulation, the mean age, and the mean metallicity of the underlying stellar populations (Figure 1. right panel).

  11. The effect on the transmission loss of a double wall panel of using helium gas in the gap

    NASA Technical Reports Server (NTRS)

    Atwal, M. S.; Crocker, M. J.

    1985-01-01

    The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.

  12. Frequency effects on the production of reactive oxygen species in atmospheric radio frequency helium-oxygen discharges

    SciTech Connect

    Zhang, Yuantao T.; He Jin

    2013-01-15

    Several experimental and computational studies have shown that increasing frequency can effectively enhance the discharge stability in atmospheric radio-frequency (rf) discharges, but the frequency effects on the reactivity of rf discharges, represented by the densities of reactive oxygen species (ROS), are still far from fully understood. In this paper, a one-dimensional fluid model with 17 species and 65 reactions taken into account is used to explore the influences of the driving frequency on the production and destruction of ROS in atmospheric rf helium-oxygen discharges. From the computational results, with an increase in the frequency the densities of ROS decrease always at a constant power density, however, in the relatively higher frequency discharges the densities of ROS can be effectively improved by increasing the input power density with an expanded oxygen admixture range, while the discharges operate in the {alpha} mode, and the numerical data also show the optimal oxygen admixture for ground state atomic oxygen, at which the peak atomic oxygen density can be obtained, increases with the driving frequency.

  13. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Yan; Ma, Xiao-Yan; Li, Xia; Miao, Xiang-Yang; Jia, Xiang-Fu

    2012-07-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the three-Coulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Dürr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections.

  14. (e,2e) ionization of helium and the hydrogen molecule: signature of two-centre interference effects

    NASA Astrophysics Data System (ADS)

    Staicu Casagrande, E. M.; Naja, A.; Mezdari, F.; Lahmam-Bennani, A.; Bolognesi, P.; Joulakian, B.; Chuluunbaatar, O.; Al-Hagan, O.; Madison, D. H.; Fursa, D. V.; Bray, I.

    2008-01-01

    Relative (e,2e) triply differential cross sections (TDCS) are measured for the ionization of the helium atom and the hydrogen molecule in coplanar asymmetric geometry at a scattered electron energy of 500 eV and ejected electron energies of 205, 74 and 37 eV. The He experimental results are found to be in very good agreement with convergent close-coupling calculations (CCC). The H2 experimental results are compared with two state-of-the-art available theoretical models for treating differential electron impact ionization of molecules. Both models yield an overall good agreement with experiments, except for some intensity deviations in the recoil region. Similar (e,2e) works were recently published on H2 with contrasted conclusions to the hypothesis that the two H nuclei could give rise to an interference pattern in the TDCS structure. Murray (2005 J. Phys. B: At. Mol. Opt. Phys. 38 1999) found no evidence for such an effect, whereas Milne-Brownlie et al (2006 Phys. Rev. Lett. 96 233201) reported its indirect observation. In this work, based on a direct comparison between experimental results for He and H2, we observe an oscillatory pattern due to these interference effects, and for the first time the destructive or constructive character of the interference is observed, depending on the de Broglie wavelength of the ejected electron wave. The experimental finding is in good agreement with the theoretical prediction by Stia et al (2003 J. Phys. B: At. Mol. Opt. Phys. 36 L257).

  15. Standard dilution analysis.

    PubMed

    Jones, Willis B; Donati, George L; Calloway, Clifton P; Jones, Bradley T

    2015-02-17

    Standard dilution analysis (SDA) is a novel calibration method that may be applied to most instrumental techniques that will accept liquid samples and are capable of monitoring two wavelengths simultaneously. It combines the traditional methods of standard additions and internal standards. Therefore, it simultaneously corrects for matrix effects and for fluctuations due to changes in sample size, orientation, or instrumental parameters. SDA requires only 200 s per sample with inductively coupled plasma optical emission spectrometry (ICP OES). Neither the preparation of a series of standard solutions nor the construction of a universal calibration graph is required. The analysis is performed by combining two solutions in a single container: the first containing 50% sample and 50% standard mixture; the second containing 50% sample and 50% solvent. Data are collected in real time as the first solution is diluted by the second one. The results are used to prepare a plot of the analyte-to-internal standard signal ratio on the y-axis versus the inverse of the internal standard concentration on the x-axis. The analyte concentration in the sample is determined from the ratio of the slope and intercept of that plot. The method has been applied to the determination of FD&C dye Blue No. 1 in mouthwash by molecular absorption spectrometry and to the determination of eight metals in mouthwash, wine, cola, nitric acid, and water by ICP OES. Both the accuracy and precision for SDA are better than those observed for the external calibration, standard additions, and internal standard methods using ICP OES. PMID:25599250

  16. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

    PubMed

    Hyvärinen, Antti-Pekka; Brus, David; Zdímal, Vladimír; Smolík, Jiri; Kulmala, Markku; Viisanen, Yrjö; Lihavainen, Heikki

    2006-06-14

    Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons. PMID:16784271

  17. Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis

    PubMed Central

    2014-01-01

    Background There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Results Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave® (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons’ staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Conclusions Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased

  18. Comparative study of helium effects on EU-ODS EUROFER and EUROFER97 by nanoindentation and TEM

    NASA Astrophysics Data System (ADS)

    Roldán, M.; Fernández, P.; Rams, J.; Jiménez-Rey, D.; Materna-Morris, E.; Klimenkov, M.

    2015-05-01

    Helium effects on EU-ODS EUROFER were studied by means of nanoindentation and TEM. The results were compared with those of EUROFER97. Both steels were implanted in a stair-like profile configuration using energies from 2 MeV (maximum He content ∼750 appm He) to 15 MeV (minimum He ∼350 appm He) at room temperature. The nanoindentation tests on He implanted samples showed a hardness increase that depended on the He concentration. The maximum hardness increase observed at 5 mN was 21% in EU-ODS EUROFER and 41% in EUROFER97; it corresponded with the zone with the highest He concentration which was around 750 appm, according to MARLOWE simulation. In addition, FIB lamellae were prepared from EUROFER97 and EU-ODS EUROFER containing the aforementioned zones with maximum (750 appm) and minimum (300 appm) He. TEM investigations carried out showed small and homogeneously distributed He nanobubbles on both alloys in the zone corresponding with maximum He content. These microstructural features seem to be the cause of the hardness increase measured by nanoindentation.

  19. Dry Dilution Refrigerator with High Cooling Power

    NASA Astrophysics Data System (ADS)

    Uhlig, K.

    2008-03-01

    We present the construction concept and cooling capacity measurements of a 3,4He dilution refrigerator (DR), which was pre-cooled by a commercial pulse tube refrigerator (PTR). No cryogens are needed for the operation of this type of cryostat. The condensation of the helium mash was done in an integrated Joule-Thomson circuit, which was part of the dilution unit. The composition of the dilution unit was standard, but its components (still, heat exchangers, mixing chamber) were designed for high 3He flow. For thermometry, calibrated RuO chip resistance thermometers were available. In order to condense the mixture before an experiment, the fridge was operated like a Joule-Thomson liquefier with a relatively high inlet pressure (4 bar), where the liquid fraction of the circulating 3,4He mixture was accumulated in the dilution unit. The condensation took about 2 hours, and after 2 more hours of running, the temperature of the mixing chamber approached its minimum temperature of 10 mK. The maximum flow rate of the fridge was 1 mmol/s, and the refrigeration capacity of the mixing chamber was 700 μW at 100 mK. High cooling capacity, ease of operation and reliability distinguish this type of milli-Kelvin cooler.

  20. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  1. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  2. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-10-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  3. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  4. Comparison of the effectiveness of exposure to low LET helium particles (4He) and gamma rays (137Cs) on the disruption of cognitive performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rats were exposed to either Helium (4He) particles (1000 MeV/n; 0.1 – 10 cGy; head-only) or Cesium 137Cs gamma rays (50 – 400 cGy; whole body) and the effects of irradiation on cognitive performance evaluated. The results indicated that exposure to doses of 4He particles as low as 0.1 cGy disrupted...

  5. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions.

    PubMed

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-07-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to (60)Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1-4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing. PMID:25902742

  6. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions

    PubMed Central

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-01-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to 60Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1–4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing. PMID:25902742

  7. Effect of radiogenic helium on stainless steel 12Cr18Ni10Ti structural changes and hydrogen sorption

    SciTech Connect

    Denisov, E.; Kanashenko, S.; Causey, R.; Grishechkin, S.; Glugla, M.; Hassanein, A.; Kompaniets, T.; Kurdyumov, A.; Malkov, I.; Yukhimchuk, A.

    2008-07-15

    The tritium trick technique was used to build-up radiogenic helium inside stainless steel 12Cr18Ni10Ti (SS). A great quantity of defects with a mean diameter of 20 nm, most probably platelet-like bubbles with {sup 3}He atoms, was observed in {sup 3}He-containing samples. The mean density of these bubbles in SS samples containing {approx}75 appm of {sup 3}He is estimated to be 6x10{sup 20} m{sup -3}. Much larger helium bubbles were observed in SS after annealing the samples at T {>=}1170 K. Thermal release of radiogenic helium occurs at T and >1500 K The presence of {sup 3}He in structural materials causes the formation of an additional state for hydrogen sorption. (authors)

  8. Paramagnetic Attraction of Impurity-Helium Solids

    NASA Technical Reports Server (NTRS)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  9. Stability of Helium Clusters during Displacement Cascades

    SciTech Connect

    Yang, Li; Zu, Xiaotao T.; Xiao, H. Y.; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Wang, Zhiguo; Liu, K. Z.

    2007-02-01

    The interaction of displacement cascades with helium-vacancy clusters is investigated using molecular dynamics simulations. The He-vacancy clusters initially consist of 20 vacancies with a Helium-to-vacancy ratio ranging from 0.2 to 3. The primary knock-on atom (PKA) energy, Ep, varies from 2 keV to 10 keV, and the PKA direction is chosen such that a displacement cascade is able to directly interact with a helium-vacancy cluster. The simulation results show that the effect of displacement cascades on a helium-vacancy cluster strongly depends on both the helium-to-vacancy ratio and the PKA energy. For the same PKA energy, the size of helium-vacancy clusters increases with the He/V ratio, but for the same ratio, the cluster size changes more significantly with increasing PKA energy. It has been observed that the He-vacancy clusters can be dissolved when the He/V ratio less than 1, but they are able to re-nucleate during the thermal spike phase, forming small He-V nuclei. When the He/V ratio is larger than 1, the He-V clusters can absorb a number of vacancies produced by displacement cascades, forming larger He-V clusters. These results are discussed in terms of PKA energy, helium-to-vacancy ratio, number of vacancies produced by cascades, and mobility of helium atoms.

  10. The Effect of Quantum-Mechanical Interference on Precise Measurements of the n = 2 Triplet P Fine Structure of Helium

    SciTech Connect

    Marsman, A.; Horbatsch, M.; Hessels, E. A.

    2015-09-15

    For many decades, improvements in both theory and experiment of the fine structure of the n = 2 triplet P levels of helium have allowed for an increasingly precise determination of the fine-structure constant. Recently, it has been observed that quantum-mechanical interference between neighboring resonances can cause significant shifts, even if such neighboring resonances are separated by thousands of natural widths. The shifts depend in detail on the experimental method used for the measurement, as well as the specific experimental parameters employed. Here, we review how these shifts apply for the most precise measurements of the helium 2{sup 3}P fine-structure intervals.

  11. The Combined Effect of Periodic Signals and Noise on the Dilution of Precision of GNSS Station Velocity Uncertainties

    NASA Astrophysics Data System (ADS)

    Klos, Anna; Olivares, German; Teferle, Felix Norman; Bogusz, Janusz

    2016-04-01

    Station velocity uncertainties determined from a series of Global Navigation Satellite System (GNSS) position estimates depend on both the deterministic and stochastic models applied to the time series. While the deterministic model generally includes parameters for a linear and several periodic terms the stochastic model is a representation of the noise character of the time series in form of a power-law process. For both of these models the optimal model may vary from one time series to another while the models also depend, to some degree, on each other. In the past various power-law processes have been shown to fit the time series and the sources for the apparent temporally-correlated noise were attributed to, for example, mismodelling of satellites orbits, antenna phase centre variations, troposphere, Earth Orientation Parameters, mass loading effects and monument instabilities. Blewitt and Lavallée (2002) demonstrated how improperly modelled seasonal signals affected the estimates of station velocity uncertainties. However, in their study they assumed that the time series followed a white noise process with no consideration of additional temporally-correlated noise. Bos et al. (2010) empirically showed for a small number of stations that the noise character was much more important for the reliable estimation of station velocity uncertainties than the seasonal signals. In this presentation we pick up from Blewitt and Lavallée (2002) and Bos et al. (2010), and have derived formulas for the computation of the General Dilution of Precision (GDP) under presence of periodic signals and temporally-correlated noise in the time series. We show, based on simulated and real time series from globally distributed IGS (International GNSS Service) stations processed by the Jet Propulsion Laboratory (JPL), that periodic signals dominate the effect on the velocity uncertainties at short time scales while for those beyond four years, the type of noise becomes much more

  12. The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits.

    PubMed

    Gul, Nihal Y; Topal, Ayse; Cangul, I Taci; Yanik, Kemal

    2008-02-01

    The aim of this study was to compare the clinical and histopathological effects of tripeptide copper complex (TCC) and two different doses of laser application (helium-neon laser, 1 and 3 J cm(-2)) on wound healing with untreated control wounds. Experimental wounds were created on a total of 24 New Zealand white rabbits and topical TCC or laser was applied for 28 days. The wounds were observed daily, and planimetry was performed on days 7, 14, 21 and 28 to measure the unhealed wound area and percentage of total wound healing. Biopsies were taken weekly to evaluate the inflammatory response and the level of neovascularization. The median time for the first observable granulation tissue was shorter (P < 0.05) in the low and high dose laser groups than in the control group (3 and 2.66 vs. 4.5 days), but was not different between the TCC and control groups (4.16 vs. 4.5 days). Filling of the open wound to skin level with granulation tissue was faster (P < 0.05) in the TCC and high dose laser groups than in the control group (14 and 16 vs. 25 days), but was not different between the low dose laser and control groups (23 vs. 25 days). The average time for healing was shorter (P < 0.05) in the TCC and high dose laser groups (29.8 and 30.2 vs. 34.6 days), but was not different between the low dose laser and control groups (33.8 vs. 34.6 days). Histopathologically, wound healing was characterized by a decrease in the neutrophil counts and an increase in neovascularization. The TCC and high dose laser groups had greater neutrophil and vessel counts than in the control group, suggesting a more beneficial effect for wound healing. PMID:18177285

  13. Stick-slip behavior identified in helium cluster growth in the subsurface of tungsten: effects of cluster depth

    NASA Astrophysics Data System (ADS)

    Wang, Jinlong; Niu, Liang-Liang; Shu, Xiaolin; Zhang, Ying

    2015-10-01

    We have performed a molecular dynamics study on the growth of helium (He) clusters in the subsurface of tungsten (W) (1 0 0) at 300 K, focusing on the role of cluster depth. Irregular ‘stick-slip’ behavior exhibited during the evolution of the He cluster growth is identified, which is due to the combined effects of the continuous cluster growth and the loop punching induced pressure relief. We demonstrate that the He cluster grows via trap-mutation and loop punching mechanisms. Initially, the self-interstitial atom SIA clusters are almost always attached to the He cluster; while they are instantly emitted to the surface once a critical cluster pressure is reached. The repetition of this process results in the He cluster approaching the surface via a ‘stop-and-go’ manner and the formation of surface adatom islands (surface roughening), ultimately leading to cluster bursting and He escape. We reveal that, for the Nth loop punching event, the critical size of the He cluster to trigger loop punching and the size of the emitted SIA clusters are correspondingly increased with the increasing initial cluster depth. We tentatively attribute the observed depth effects to the lower formation energies of Frenkel pairs and the greatly reduced barriers for loop punching in the stress field of the W subsurface. In addition, some intriguing features emerge, such as the morphological transformation of the He cluster from ‘platelet-like’ to spherical, to ellipsoidal with a ‘bullet-like’ tip, and finally to a ‘bottle-like’ shape after cluster rupture.

  14. The effect of the anoxic radiosensitizing agent TAN on induction of revertants by gamma-rays and helium ions in Salmonella tester strains.

    PubMed

    Basha, S G; Krasavin, E A; Kozubek, S

    1992-05-01

    The modification effect of the anoxic radiosensitizer TAN on the mutagenesis in various Salmonella tester strains after gamma-ray and helium ion irradiation was studied. The oxygen enhancement ratios (OER) for all 3 strains on the lethal assay after gamma-irradiation are approximately equal to 2. The induction of reversions in TA98 and TA100 does not modify under anoxia. The value of OER on the mutagenic assay in TA102 equals 1.6. The OER after helium ion irradiation on the lethal and mutagenic assays was less than after gamma-irradiation. The mutagenesis in 3 strains after irradiation under anoxia is enhanced by TAN. The value of the TAN modification effect after gamma-irradiation increases from 2.1 +/- 0.2 for TA102 to 5.2 +/- 0.4 for TA100. However, the TAN influence on mutagenesis in TA100 after helium ion irradiation decreases to 3.1 +/- 0.3. We conclude that peculiarities of mutagenesis in various tester strains under anoxia with TAN can be explained by considering the nature of premutational DNA damages. PMID:1373848

  15. Effective thermal conductivity of helium II: from Landau to Gorter-Mellink regimes

    NASA Astrophysics Data System (ADS)

    Sciacca, M.; Jou, D.; Mongiovì, M. S.

    2015-08-01

    The size-dependent and flux-dependent effective thermal conductivity of narrow channels filled with He II is analyzed. The classical Landau evaluation of the effective thermal conductivity of quiescent He II is extended to describe the transition to fully turbulent regime, where the heat flux is proportional to the cubic root of the temperature gradient (Gorter-Mellink regime). To do so, we use an expression for the quantum vortex line density L in terms of the heat flux considering the influence of the walls. From it, and taking into account the friction force of normal component against the vortices, we compute the effective thermal conductivity as a function of the heat flux, and we discuss in detail the corresponding size dependence.

  16. Effects of solid transmutants and helium in copper studied by mixed-spectrum neutron irradiation

    NASA Astrophysics Data System (ADS)

    Muroga, T.; Watanabe, H.; Yoshida, N.

    1998-10-01

    Microstructures of pure Cu and Cu-Ni-Zn alloys irradiated in High Flux Isotope Reactor (HFIR) at 573 K to 9.2 dpa and 673 K to 10.4 dpa have been observed with TEM. Transmutant Ni and Zn of ˜3 wt% were produced during the irradiation. The effect of Ni and Zn production during irradiation was interpreted based on the knowledge obtained from Fast Flux Test Facility (FFTF) irradiated Cu and Cu-Ni-Zn alloys. The effect of He produced from Ni in Cu-5Ni during irradiation in HFIR was consistent with that produced from 10B in Cu-5Ni- 10B during irradiation in FFTF.

  17. Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gui-Jun, Cheng; Bao-Qin, Fu; Qing, Hou; Xiao-Song, Zhou; Jun, Wang

    2016-07-01

    The microstructures of titanium (Ti), an attractive tritium (T) storage material, will affect the evolution process of the retained helium (He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics (MD) simulation for the bulk hcp-Ti system and the system with grain boundary (GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic (the diffusion coefficient of the [0001] direction is higher than that of the basal plane), as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary (TB) can serve as an effective trapped region for He. The TB accelerates diffusion of He in the direction perpendicular to the twinning direction (TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region. Project supported by the National Natural Science Foundation of China (Grant No. 51501119), the Scientific Research Starting Foundation for Younger Teachers of Sichuan University, China (Grant No. 2015SCU11058), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2013GB109002), and the Cooperative Research Project “Research of Diffusion Behaviour of He in Grain Boundary of HCP-Titanium”, China.

  18. Polarization and absorption effects in electron-helium scattering at 30--400 eV

    SciTech Connect

    Thirumalai, D.; Truhlar, D.G.; Brandt, M.A.; Eades, R.A.; Dixon, D.A.

    1982-06-01

    We report several calculations of the differential, integral, and momentum-transfer cross sections for elastic scattering, and of the absorption cross sections (for the sum of all electronically inelastic and ionization processes) for electron-He collisions at 30--400 eV. We consider two basically different approaches to include the effect of absorption, i.e., loss of flux from the initial channel. The first is the matrix effective potential (MEP) based on a variational calculation of the polarization potential; this models absorption by including a pseudochannel whose properties are based on a variational adiabatic polarization potential. This method predicts both the absorption and elastic cross sections. The second method involves phenomenological absorption (A) potentials, calibrated against experimental absorption cross sections. These potentials, when combined with static (S), exchange (E), and real polarization (P) potentials form an SEPA optical model potential that is used to predict the elastic cross sections. The MEP model based on the variational polarization potential predicts the absorption cross sections with an average absolute error of 28% at 30 and 50 eV and 5% at 100--400 eV. It predicts the elastic integral cross sections with an average absolute error of 8% over the whole energy range. The SEPA models, including a nonadiabatic polarization potential, predict the elastic integral cross sections with average absolute errors of 12 or 6%, depending on the shape function (i.e., r dependence) of the absorption potential. The adiabatic approximation for polarization is less accurate than the nonadiabatic one, even when absorption effects are included. Five new calculations of the differential cross sections at each of five impact energies are compared to experimental results in detail.

  19. Polarization and absorption effects in electron-helium scattering at 30-400 eV

    NASA Astrophysics Data System (ADS)

    Thirumalai, Devarajan; Truhlar, Donald G.; Brandt, Maynard A.; Eades, Robert A.; Dixon, David A.

    1982-06-01

    We report several calculations of the differential, integral, and momentum-transfer cross sections for elastic scattering, and of the absorption cross sections (for the sum of all electronically inelastic and ionization processes) for electron-He collisions at 30-400 eV. We consider two basically different approaches to include the effect of absorption, i.e., loss of flux from the initial channel. The first is the matrix effective potential (MEP) based on a variational calculation of the polarization potential; this models absorption by including a pseudochannel whose properties are based on a variational adiabatic polarization potential. This method predicts both the absorption and elastic cross sections. The second method involves phenomenological absorption (A) potentials, calibrated against experimental absorption cross sections. These potentials, when combined with static (S), exchange (E), and real polarization (P) potentials form an SEPA optical model potential that is used to predict the elastic cross sections. The MEP model based on the variational polarization potential predicts the absorption cross sections with an average absolute error of 28% at 30 and 50 eV, and 5% at 100-400 eV. It predicts the elastic integral cross sections with an average absolute error of 8% over the whole energy range. The SEPA models, including a nonadiabatic polarization potential, predict the elastic integral cross sections with average absolute errors of 12 or 6%, depending on the shape function (i.e., r dependence) of the absorption potential. The adiabatic approximation for polarization is less accurate than the nonadiabatic one, even when absorption effects are included. Five new calculations of the differential cross sections at each of five impact energies are compared to experimental results in detail.

  20. Electrocoalescence based serial dilution of microfluidic droplets

    PubMed Central

    Bhattacharjee, Biddut; Vanapalli, Siva A.

    2014-01-01

    Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops. PMID:25379096

  1. The ring phenomenon of diluted blood droplets.

    PubMed

    Ramsthaler, Frank; Schlote, J; Wagner, C; Fiscina, J; Kettner, M

    2016-05-01

    Bloodstain pattern analysis is occasionally required in practical forensic casework. Misinterpretations may occur in cases in which diluted bloodstains are formed either within the course of the crime or during cleaning attempts after the original crime. The resulting pale or diluted aspect of the bloodstains may also be produced by passive serum separation. To differentiate between diluted and non-diluted stains and the artifacts of pure serum separation, dripping experiments were performed using droplets of multiple sizes and dilutions dripped onto common indoor and fabric surfaces. In addition, pools of blood of different volumes were applied to solid surfaces with different inclinations to determine the conditions and properties of serum separation. This study yielded morphological characteristics that enable differentiation between stains of diluted and non-diluted blood: a prominent ring phenomenon indicates dilution with water. To elucidate the underlying physical mechanism of particle distribution within a blood stain, photomicrographs were taken during the drying process. The so-called contact line pinning effect was identified as the formation mechanism of this ring phenomenon. Serum separation was highly dependent on the applied blood volume, the ambient temperature, the time elapsed since the initial deposition, and the degree of floor inclination. PMID:26718842

  2. Helium-neon effects of laser radiation in rats infected with thromboxane B2

    NASA Astrophysics Data System (ADS)

    Juri, Hugo; Palma, J. A.; Campana, Vilma; Gavotto, A.; Lapin, R.; Yung, S.; Lillo, J.

    1991-06-01

    In previous investigations it was found that prostaglanding E1 (PGE1) and Bradiquinine (B), liberated in the inflammatory process, produced a significant increment on the Plasma fibrition Level (PFL), indicative of inflammatory process. The mentioned increment was completely abolished by the irradiation with HeNe laser in the area of infection of the mentioned substances. In the current investigation it was studied the effect of HeNe laser radiation on the P.F.L. of rats injected with another substance related with the inflammatory process and tissular injury: Thromboxane (Tx). It is though that the signal to increase P.F.L. is though an adrenal and an extra adrenal pathways. To study it we injected normal and medullectomized animals and both showed marked increment of P.F.L. Then we repeated the experiment but followed immediately by HeNe laser radiation and we noted a complete blockage of the P.F.L. increment in both groups which suggest that the effect is extra-adrenal. All substances were injected I.M. once daily X 3 days. Immediately after injection the area was irradiated with HeNe laser, 1.5 J total energy. In the normal, non injected non irradiated animals the P.F.L. reached 210.3 + 1.15 mg%. The single injection of Tx did not modify the P.F.L. compared with the previous group. The HeNe irradiation alone did not modify the P.F.L. in the animals injected with Tx only. The animals injected with PGE1+B showed a marked increment of P.F.L. to 337.6 + 14.5 mg%; the HeNe laser radiation completely abolished the increment (231 + 22.3 mg%). But in the animals injected with PGE1+B+Tx, the P.F.L. reached even larger values: 375.2 + 15.3 mg%. The HeNe laser radiation produced a partial blockage in P.F.L. increment (270.3 +/- 13.4 mg%). Showing a significant difference (p < 0.001) compared with normal rats or with rats injected with PGE1+B+Tx without radiation. In conclusion Tx potentiate the effect of PGE+B on the P.F.L. The HeNe laser blocks completely the interaction

  3. Effect of helium neon laser irradiation on the bactericidal and digestive function of macrophages

    NASA Astrophysics Data System (ADS)

    Ren, Mingji; Yuan, Weizhong; Hong, Zheng; Lan, Xin

    1996-09-01

    The effect of He-Ne laser on the intracellular bactericidal and digestive function to C albicans of mice peritoneal M(theta) has been studied with the fluorescence microscope after acridine organge staining. The results indicated that the bactericidal and digestive function of M(theta) in irradiated groups, expressed more active than that in the non-irradiated group, and showed significant difference. The comparison between the different irradiated groups also showed marked difference. Ultrastructure changes of M(theta) were observed under the E/M and the content of a-Acetate Naphthy esterase in lysosome were measured by image analysis, the results demonstrated that M(theta) in the irradiated groups present marked change in ultrastructure and the GN, GA, GA/CA, IOD of esterase increased significantly. The results suggested that the He-Ne laser with appropriate dosage could activate M(theta) , and enhance anti-infection immunity.

  4. Calculation and measurement of helium generation and solid transmutations in Cu-Zn-Ni alloys

    SciTech Connect

    Greenwood, L.R.; Oliver, B.M.; Garner, F.A.; Muroga, T.

    1998-03-01

    A method was recently proposed by Garner and Greenwood that would allow the separation of the effects of solid and gaseous transmutation for Cu-Zn-Ni alloys. Pure copper produces zinc and nickel during neutron irradiation. {sup 63}Cu transmutes to {sup 64}Ni and {sup 64}Zn, in about a 2-to-1 ratio, and {sup 65}Cu transmutes to {sup 66}Zn. The {sup 64}Zn further transmutes to {sup 65}Zn which has been shown to have a high thermal neutron (n,{alpha}) cross-section. Since a three-step reaction sequence is required for natural copper, the amount of helium produced is much smaller than would be produced for the two-step, well-known {sup 58}Ni (n,{gamma}) {sup 59}Ni (n,{alpha}) reaction sequence. The addition of natural Zn and Ni to copper leads to greatly increased helium production in neutron spectra with a significant thermal component. Using a suitable Cu-Zn-Ni alloy matrix and comparative irradiation of thermal neutron-shielded and unshielded specimens, it should be possible to distinguish the separate influences of the solid and gaseous transmutants. Whereas helium generation rates have been previously measured for natural nickel and copper, they have not been measured for natural Zn or Cu-Ni-Zn alloys. The (N,{alpha}) cross section for {sup 65}Zn was inferred from helium measurements made with natural copper. By comparing helium production in Cu and Cu-Zn alloys, this cross section can be determined more accurately. In the current study, both the solid and helium transmutants were measured for Cu, Cu-5Ni, Cu-3.5Zn and Cu-5Ni-2Zn, irradiated in each of two positions in the HFIR JP-23 test. Highly accurate helium measurements were performed on these materials by isotope dilution mass spectrometry using a facility that was recently moved from Rockwell International to PNNL. It is shown that both the helium and solid transmutants for Cu-zn-Ni alloys can be calculated with reasonable certainty, allowing the development of a transmutation experiment as proposed by

  5. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    DOE PAGESBeta

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment weremore » different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.« less

  6. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    SciTech Connect

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment were different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.

  7. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.

    PubMed

    Hernández, Marta I; Bartolomei, Massimiliano; Campos-Martínez, José

    2015-10-29

    Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of (4)He and (3)He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He-graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the (4)He/(3)He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20-30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that (4)He tends to diffuse faster than (3)He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials. PMID:26447561

  8. Helium diffusion in the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Pinsonneault, M. H.

    1992-01-01

    We calculate improved standard solar models using the new Livermore (OPAL) opacity tables, an accurate (exportable) nuclear energy generation routine which takes account of recent measurements and analyses, and the recent Anders-Grevesse determination of heavy element abundances. We also evaluate directly the effect of the diffusion of helium with respect to hydrogen on the calculated neutrino fluxes, on the primordial solar helium abundance, and on the depth of the convective zone. Helium diffusion increases the predicted event rates by about 0.8 SNU, or 11 percent of the total rate, in the chlorine solar neutrino experiment, by about 3.5 SNU, or 3 percent, in the gallium solar neutrino experiments, and by about 12 percent in the Kamiokande and SNO solar neutrino experiments. The best standard solar model including helium diffusion and the most accurate nuclear parameters, element abundances, and radiative opacity predicts a value of 8.0 SNU +/- 3.0 SNU for the C1-37 experiment and 132 +21/-17 SNU for the Ga - 71 experiment, where the uncertainties include 3 sigma errors for all measured input parameters.

  9. Investigation of effects of background water on upwelled reflectance spectra and techniques for analysis of dilute primary-treated sewage sludge

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Farmer, F. H.; Gurganus, E. A.

    1979-01-01

    In an effort to improve understanding of the effects of variations in background water on reflectance spectra, laboratory tests were conducted with various concentrations of sewage sludge diluted with several types of background water. The results from these tests indicate that reflectance spectra for sewage-sludge mixtures are dependent upon the reflectance of the background water. Both the ratio of sewage-sludge reflectance to background-water reflectance and the ratio of the difference in reflectance to background-water reflectance show spectral variations for different turbid background waters. The difference in reflectance is the only parameter considered.

  10. Mantle plume helium in submarine basalts from the galapagos platform.

    PubMed

    Graham, D W; Christie, D M; Harpp, K S; Lupton, J E

    1993-12-24

    Helium-3/helium-4 ratios in submarine basalt glasses from the Galapagos Archipelago range up to 23 times the atmospheric ratio in the west and southwest. These results indicate the presence of a relatively undegassed mantle plume at the Galápagos hot spot and place Galápagos alongside Hawaii, Iceland, and Samoa as the only localities known to have such high helium-3/helium-4 ratios. Lower ratios across the rest of the Galápagos Archipelago reflect systematic variations in the degree of dilution of the plume by entrainment of depleted material from the asthenosphere. These spatial variations reveal the dynamics of the underlying mantle plume and its interaction with the nearby Galápagos Spreading Center. PMID:17794969

  11. Effect of syngas composition and CO{sub 2}-diluted oxygen on performance of a premixed swirl-stabilized combustor

    SciTech Connect

    Williams, T.C.; Shaddix, C.R.; Schefer, R.W.

    2008-07-01

    Future energy systems based on gasification of coal or biomass for co-production of electrical power and fuels may require gas turbine operation on unusual gaseous fuel mixtures. In addition, global climate change concerns may dictate the generation of a CO{sub 2} product stream for end-use or sequestration, with potential impacts on the oxidizer used in the gas turbine. In this study the operation at atmospheric pressure of a small, optically accessible swirl-stabilized premixed combustor, burning fuels ranging from pure methane to conventional and H{sub 2}-rich and H{sub 2}-lean syngas mixtures is investigated. Both air and CO{sub 2}-diluted oxygen are used as oxidizers. CO and NOx emissions for these flames have been determined from the lean blowout limit to slightly rich conditions {phi} about 1.03). In practice, CO{sub 2}-diluted oxygen systems will likely be operated close to stoichiometric conditions to minimize oxygen consumption while achieving acceptable NOx performance. The presence of hydrogen in the syngas fuel mixtures results in more compact, higher temperature flames, resulting in increased flame stability and higher NOx emissions. Consistent with previous experience, the stoichiometry of lean blowout decreases with increasing H{sub 2} content in the syngas. Similarly, the lean stoichiometry at which CO emissions become significant decreases with increasing H{sub 2} content. For the mixtures investigated, CO emissions near the stoichiometric point do not become significant until {phi} > 0.95. At this stoichiometric limit, CO emissions rise more rapidly for combustion in O{sub 2}-CO{sub 2} mixtures than for combustion in air.

  12. Symptomatic effects of exposure to diluted air sampled from a swine confinement atmosphere on healthy human subjects.

    PubMed

    Schiffman, Susan S; Studwell, Clare E; Landerman, Lawrence R; Berman, Katherine; Sundy, John S

    2005-05-01

    Aerial emissions from a swine house at North Carolina State University's field laboratory were diluted to a level that could occur at varying distances downwind from a confined animal feeding operation (CAFO) both within and beyond the property line, and these emissions were delivered to an environmental exposure chamber. The study design consisted of two 1-hr sessions, one in which 48 healthy human adult volunteers were exposed to diluted swine air and another in which they were exposed to clean air (control). Objective measures of blood pressure, temperature, heart rate, respiratory rate, lung function, nasal inflammation, secretory immunity, mood, attention, and memory were correlated with objective measures of air quality. Ratings of perceived (self-reported) health symptoms were also obtained. The mean levels of airborne constituents in the swine air condition were hydrogen sulfide (24 ppb), ammonia (817 ppb), total suspended particulates (0.0241 mg/m3), endotoxin (7.40 endotoxin units/m3), and odor (57 times above odor threshold). No statistical differences on objective measures of physical symptoms, mood, or attention resulted from the 1-hr exposure to swine emissions in the environmental chamber when compared with clean air for healthy human volunteers. However, subjects were 4.1 (p = 0.001) times more likely to report headaches, 6.1 (p = 0.004) times more likely to report eye irritation, and 7.8 (p = 0.014) times more likely to report nausea in the swine air (experimental) condition than in the control condition. These results indicate that short-term exposure in an environmental chamber to malodorous emissions from a swine house at levels expected downwind can induce clinically important symptoms in healthy human volunteers. PMID:15866765

  13. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys

    NASA Astrophysics Data System (ADS)

    Shang, S. L.; Zacherl, C. L.; Fang, H. Z.; Wang, Y.; Du, Y.; Liu, Z. K.

    2012-12-01

    A systematic study of stacking fault energy (γSF) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni23X and Ni71X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γSF is computed using the proposed quasistatic approach based on a predicted γSF-volume-temperature relationship. Besides γSF, equilibrium volume and the normalized stacking fault energy (ΓSF = γSF/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γSF of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γSF for the dilute Ni-X alloy, and roughly the γSF of Ni-X decreases with increasing equilibrium volume. In addition, the values of γSF for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γSF for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γSF due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  14. An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects

    SciTech Connect

    Machrafi, Hatim; Cavadias, Simeon; Guibert, Philippe

    2008-11-15

    In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

  15. Effect of breathing of a helium-oxygen mixture on the adaptation of the organism to exercise.

    PubMed

    Debiński, W; Kłossowski, M; Gembicka, D

    1984-01-01

    The reported investigations were carried out on 17 healthy men aged 20-27 years subjected to a 15 minute submaximal exercise on an Elema-Schonander cycle ergometer while breathing ambient air or a helium-oxygen mixture (O2 20% and He 80%). During the exercise test the heart rate was recorded from the ECG tracings, with the respiratory rate and respiratory volume, minute ventilation and arterial blood pressure. The concentrations of lactate (LA), pyruvate (PA) and glucose were determined in the serum of venous blood obtained before and 3 minutes after the exercise. Favourable changes of the reaction of the organism to exercise were observed while the subjects breathed the helium-oxygen mixture. The minute ventilation increased owing to increased respiratory volume, and the exercise caused lower rises in LA, PA and the LA/PA ratio. This may suggest a reduction of respiration cost and a decrease of anaerobic metabolism under these conditions. PMID:6537722

  16. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    NASA Astrophysics Data System (ADS)

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-01

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  17. Effect of the permeability of the porous shell on the vapor film thickness during boiling of superfluid helium in microgravity

    NASA Astrophysics Data System (ADS)

    Korolev, P. V.; Kryukov, A. P.; Puzina, Yu. Yu.

    2015-07-01

    This paper presents a theoretically study of the boiling of superfluid helium on a cylindrical heater placed in a coaxial porous shell in microgravity. Steady-state transfer processes at the interface are studied using molecular-kinetic methods. The Boltzmann transport equation is solved by the moment method based on the four-moment approximation in the form of a two-sided Maxwellian. The obtained solution is used to calculate the heat flux density in film boiling on a cylindrical heating surface in the case where the film thickness is comparable to the diameter of the heater. The motion of the normal component of the superfluid liquid in pores is described by equations that take into account heat and mass transfer in superfluid helium. The relation between the vapor film thickness and the structural characteristics and geometrical dimensions of the porous shell is obtained. Analysis of the results of the calculations is given.

  18. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    SciTech Connect

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-31

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  19. Photorefractive effect and photoinduced quadratic nonlinear susceptibility in germanosilicate fibres fabricated in nitrogen and helium atmospheres by the MCVD technique

    SciTech Connect

    Vasil'ev, Sergei A; Vechkanov, N N; Dianov, Evgenii M; Mashinsky, V M; Medvedkov, O I; Sazhin, O D; Gur'yanov, A N; Khopin, V F; Yatsenko, Yu P

    2000-09-30

    Single-mode optical fibres were fabricated from a germanosilicate glass by the method of modified chemical vapour deposition (MCVD), which used sintering of a porous glass in a reducing (helium or nitrogen-containing) atmosphere. The optical fibres exhibit a high photoinduced change in the refractive index and a high efficiency of recording quadratic nonlinear susceptibility compared to a standard germanosilicate fibre. Sintering, both in nitrogen and in helium atmospheres, was shown to increase the concentration of germanium oxygen-deficient centres in glass. It is likely that nitrogen enters into a germanosilicate glass in the concentration that is sufficient to modify the glass structure and to additionally increase its photosensitivity. The replacement of oxygen or silicon in the close vicinity of an oxygen vacancy by nitrogen may play a key role in the photosensitivity enhancement owing to the formation of additional valence bonds and blocking of recombination processes. (nonlinear optical phenomena)

  20. Potato tuber pyrophosphate-dependent phosphofructokinase: effect of thiols and polyalcohols on its intrinsic fluorescence, oligomeric structure, and activity in dilute solutions.

    PubMed

    Podestá, F E; Moorhead, G B; Plaxton, W C

    1994-08-15

    The effect of dilution of homogeneous potato tuber pyrophosphate:fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90; PFP) on the enzyme's intrinsic fluorescence, activity, and oligomeric structure has been examined. A rapid decrease in PFP's intrinsic fluorescence occurred in response to dilution. The decay follows double-exponential kinetics and was accompanied by a reduction in catalytic activity (measured in the glycolytic direction). Gel filtration-HPLC indicated a concomitant deaggregation of the native alpha 4 beta 4 heterooctamer into the inactive free alpha- and beta-subunits, followed by random aggregation of the subunits into an inactive, high M(r) conglomerate. The addition of 2 mM dithiothreitol, 2 mM 2-mercaptoethanol, or 5% (w/v) polyethylene glycol, but not any of the substrates, Mg2+, or fructose 2,6-bisphosphate, prevented this process. When purified PFP was stored for 1 week at -20 degrees C in the presence of 50% (v/v) glycerol partial degradation of its alpha-subunit occurred. This resulted in a labile enzyme that was more susceptible to subunit dissociation. The intrinsic fluorescence of the degraded PFP could be stabilized by 5% (w/v) polyethylene glycol, but not by 2 mM dithiothreitol or 2-mercaptoethanol. It is proposed that the current assay procedures for PFP, which normally involve considerable dilution in the absence of added sulfhydryl reducing agents or polyhydroxy compounds, may underestimate the actual activity of the enzyme. This has important implications for the assessment of the functions and regulation of PFP in vivo. PMID:8053686

  1. Dilution effect of Ar/H2 on the microstructures and photovoltaic properties of nc-Si:H deposited in low frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Zhou, H. P.; Wei, D. Y.; Xu, S.; Xiao, S. Q.; Xu, L. X.; Huang, S. Y.; Guo, Y. N.; Yan, W. S.; Xu, M.

    2011-07-01

    This work reports upon the dilution effect of Ar + H2 on the microstructures, optical, and photovoltaic properties of the hydrogenated nanocrystalline silicon (nc-Si:H) thin films. High crystallinity (up to 82.6%) nc-Si:H thin films were fabricated from silane diluted by Ar + H2 in a low-frequency inductively coupled plasma (LFICP) facility at a low temperature of 300 °C. The substitution of H2 by Ar in the diluent gas leads to an increase of the deposition rate, grain size, and crystallinity, and a decrease of the optical bandgap. Varying the Ar content caused a fluctuation of the H concentration and a change of the preferential orientation from (111) to (220) in the synthesized thin films. These effects physically originated from changes of the Ar + H2 + SiH4 plasma environment in the LFICP system. The enhancement of the dissociation of SiH4/H2 molecules by ion Ar+ and the metastable state Ar* were discussed in terms of related chemical reactions between the diluent gases and silane. Furthermore, it was found that a heterojunction solar cell prototype based on the as-deposited nc-Si:H thin films exhibits an excellent photovoltaic response.

  2. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO_979C in continuous culture.

    PubMed

    Valenzuela, Javier Ferrer; Pinuer, Luis; Cancino, Apolinaria García; Yáñez, Rodrigo Bórquez

    2015-08-01

    The effect of pH and dilution rate on the production of extracellular metabolites of Lactobacillus salivarius UCO_979 was studied. The experiments were carried out in continuous mode, with chemically defined culture medium at a temperature of 37 °C, 200 rpm agitation and synthetic air flow of 100 ml/min. Ethanol, acetic acid, formic acid, lactic acid and glucose were quantified through HPLC, while exopolysaccharide (EPS) was extracted with ethanol and quantified through the Dubois method. The results showed no linear trends for the specific production of lactic acid, EPS, acetic acid and ethanol, while the specific glucose consumption and ATP production rates showed linear trends. There was a metabolic change of the strain for dilution rates below 0.3 h(-1). The pH had a significant effect on the metabolism of the strain, which was evidenced by a higher specific glucose consumption and increased production of ATP at pH 6 compared with that obtained at pH 7. This work shows not only the metabolic capabilities of L. salivarius UCO_979C, but also shows that it is possible to quantify some molecules associated with its current use as gastrointestinal probiotic, especially regarding the production of organic acids and EPS. PMID:25805342

  3. Effect of the hydrogen dilution on the local microstructure in hydrogenated amorphous silicon films deposited by radiofrequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Daouahi, M.; Zellama, K.; Bouchriha, H.; Elkaïm, P.

    2000-06-01

    The nature of the hydrogen bonding and content and their influence on the film microstructure have been investigated in detail, as a function of the H2 dilution and the residual pressure, in hydrogenated amorphous silicon (a-Si:H) films prepared by radiofrequency (rf) magnetron sputtering at a common substrate temperature (sim 250 °C) and pressure (5× 10^{-4} torr) and high rates (11-15 Å/s). H2 percentages in the gas phase mixture (Ar + % H2) of 5, 10, 15 and 20% have been introduced during growth. For the 20% of H2, two different pressures of 5× 10^{-4} and 50× 10^{-4} torr were used. A combination of infrared absorption, optical transmission and elastic recoil detection analysis experiments have been carried out to fully characterize the samples in their as-deposited state. The results clearly indicate that for H2 percentage equal to or lower than 15% , the total bonded H content in the films increases as the H2 percentage increases, and then reaches a saturation value or even decreases for higher H2 percentage. Moreover, the microstructure is also found to be deeply affected by the H2 dilution and pressure. In particular, for high H2 percentage (20% ) and high pressure (50× 10^{-4} torr), unbounded H as well as polyhydride (Si-H2)_n chains, possibly located in structural inhomogeneities such as voids, are also present in the films in addition to the isolated monohydride Si-H and polyhydride Si-H2 complexes. As a result, a reduction of the compactness of the film structure associated with a decrease of the refractive index n is observed. The optical gap is found to be rather controlled by the total bonded hydrogen content. The lowest proportion of isolated polyhydride Si-H2 complexes and the highest density are observed for films deposited with 10% of H2 in the gas phase and a pressure of 5× 10^{-4} torr.

  4. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    PubMed

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data. PMID:23172684

  5. Dilution, Concentration, and Flotation

    ERIC Educational Resources Information Center

    Liang, Ling; Schmuckler, Joseph S.

    2004-01-01

    As both classroom teaching practice and literature show, many students have difficulties learning science concepts such as density. Here are some investigations that identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution.…

  6. Effects of feed intake and dietary urea concentration on ruminal dilution rate and efficiency of bacteria growth in steers

    SciTech Connect

    Firkins, J.L.; Lewis, S.M. Montgomery, L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.

    1987-11-01

    Four multiple-fistulated steers (340 kg) were fed a diet containing 50% ground grass hay, 20% dry distillers grains, and 30% concentrate at two intakes (7.2 or 4.8 kg DM/d). Urea (.4 or 1.2% of the diet) was infused continuously into the steers' rumens. The experimental design was a 4 x 4 Latin square with a 2 x 2 factorial arrangement of treatments. Infusing urea at .4 or 1.2% of the diet resulted in ruminal NH/sub 3/ N concentration of 4.97 and 9.10 mg/dl, respectively. Feeding steers at high rather than low intake decreased ruminal and total tract digestibilities of organic matter, NDF, and ADF but did not increase ruminal escape of N. However, apparent N escape from the rumen calculated using purines, but not /sup 15/N, as a bacterial marker was higher when 1.2 vs. .4% urea was infused. Feeding at high rather than at low intake increased the total pool of viable bacteria per gram organic matter fermented in the rumen. Although ruminal fluid outflows and particulate dilution rates were greater when steers were fed at high than low intakes, efficiencies of bacterial protein synthesis were unaffected by intake. The possibility of increased N recycling within the rumen with feeding at the higher intake is discussed.

  7. Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition

    NASA Astrophysics Data System (ADS)

    Staltsov, М. S.; Chernov, I. I.; Kalin, B. A.; Oo, Kyi Zin; Polyansky, A. A.; Staltsova, O. S.; Aung, Kyaw Zaw; Chernov, V. M.; Potapenko, M. M.

    2015-06-01

    The influence of alloying of vanadium by Ti and Fe on helium bubble formation, gaseous swelling and helium release peculiarities is investigated by means of transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He+ ions up to a fluence of 5 ṡ 1020 m-2 at 293 and 923 K. It is found that large faceted pores/bubbles are formed in pure vanadium and it has the highest gaseous swelling. Alloying by any used quantity of Ti (from 0.1 up to 10 wt.%) or Fe (from 1 up to 10 wt.%) essentially decreases the helium swelling. The effect of alloying of vanadium by Ti on the bubble sizes and the helium swelling is nonmonotonic. The density of bubbles increases significantly and their sizes and swelling grow monotonically with increasing the Fe content in vanadium. With low-temperature helium implantation, alloying of V by Ti shifts the HTDS peaks to higher temperatures and the temperatures of peaks are decreased with increasing the Fe concentration. A significant portion of the helium releases in a high-temperature area beyond the main peak temperatures in the HTDS spectra. It is assumed that this is caused by formation of helium bubbles on the surfaces of incoherent particles of secondary phases (oxides, nitrides), having high binding energies with these particles.

  8. Molecular properties and intermolecular forces--factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions.

    PubMed

    Terzyk, Artur P

    2004-07-01

    Presented paper recapitulates the results of 6 years' study concerning the effect of carbon surface chemical composition on adsorption of paracetamol, phenol, acetanilide, and aniline from dilute aqueous solutions on carbons. Adsorption-desorption isotherms, enthalpy, and kinetics of adsorption data are shown for the measurements performed at three temperatures (300, 310, and 320 K) at two pH levels (1.5 and 7) on commercial activated carbons. The data were obtained for four carbons: the initial carbon D43/1 and forms modified by applying concentrated HNO3, fuming H2SO4, and gaseous NH3. The modification procedures do not change the porosity in a drastic way, but lead to drastic changes of the composition of carbon surface layer. By applying MOPAC (a general-purpose semiempirical molecular orbital package), the physicochemical constants characterizing the molecules of adsorbates are calculated, including the distribution of the Mulliken charges, the dipole moments and ionization potentials, and the energies of interaction with the unique positive and negative charges. They are correlated with the parameters characterizing the adsorption (and kinetics) process of studied molecules on the mentioned above carbons. The mechanisms proposed in the literature for the description of adsorption from dilute aqueous solutions are verified, and a general mechanism of adsorption is proposed. PMID:15158374

  9. Effects of rice husk diluted dietary switching on the phenotypic change of gastrointestinal tract in adult ganders.

    PubMed

    Lu, J; Shi, S R; Wang, Z Y; Yang, H M; Zou, J M

    2011-06-01

    1. An experiment was conducted to test the directionality, scaling and reversibility of phenotypic responses of the gastrointestinal tract (GIT) of adult ganders to rice husk (RH) diluted dietary switching. 2. A total of 96 140-d-old ganders were acclimatised to a basal diet for 2 weeks. The birds were randomly assigned to 4 treatments. On d 1, diets in the experimental groups were switched from the basal diet to diets which contained 200, 400 or 600 g/kg RH by mass, with no RH in the basal diet. After 21 d, the diet of all the experimental birds was switched back to the basal diet until d 42. 3. Increasing RH content significantly increased feed intake, and a decreased trend appeared after diet-switching. The weights of geese fed on the 600 g/kg RH diet for 21 d reduced, and were significantly less than those of the other three groups, while body weights (BW) of the geese in all groups increased after diet-switching back to the basal diet. At d 21, significantly heavier relative weights of proventriculus, gizzard and all gut components, except duodenum, were observed in birds fed on a 600 g/kg RH diet, and significantly heavier relative weights of gizzard were observed in birds given a 400 g/kg RH diet. Thickness of the two gastric walls, gizzard length and all gut components lengths increased significantly in birds given a 600 g/kg RH diet compared with the other three groups. At d 42, no significant differences were noted in the relative weights or lengths of GIT, except for the caeca, which were significantly heavier in birds fed on 600 g/kg RH diet. 4. The results of the experiment were in accordance with the predictions of the hypothesis that there is matching between loads and capacities. The observed phenotypic responses were directional and scaled to the demands. PMID:21732880

  10. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  11. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  12. Temperature and Pinning Effects on Driving a 2D Electron System on a Helium Film: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo F.; Dasilva, Cláudio José; Rino, José Pedro; Cândido, Ladir

    2010-07-01

    Using numerical simulations we investigated the dynamic response to an externally driven force of a classical two-dimensional (2D) electron system on a helium film at finite temperatures. A potential barrier located at the center of the system behaves as a pinning center that results in an insulator state below a threshold driving force. We have found that the current-voltage characteristic obeys the scaling relation I= f ξ , with ξ ranging from ˜(1.0-1.7) for different pinning strengths and temperatures. Our results may be used to understand the spread range of ξ in experiments with typical characteristic of plastic depinning.

  13. Equation of state of metallic helium

    SciTech Connect

    Shvets, V. T.

    2013-01-15

    The effective ion-ion interaction, free energy, pressure, and electric resistance of metallic liquid helium have been calculated in wide density and temperature ranges using perturbation theory in the electron-ion interaction potential. In the case of conduction electrons, the exchange interaction has been taken into account in the random-phase approximation and correlations have been taken into account in the local-field approximation. The solid-sphere model has been used for the nuclear subsystem. The diameter of these spheres is the only parameter of this theory. The diameter and density of the system at which the transition of helium from the singly ionized to doubly ionized state occurs have been estimated by analyzing the pair effective interaction between helium atoms. The case of doubly ionized helium atoms has been considered. Terms up to the third order of perturbation theory have been taken into account in the numerical calculations. The contribution of the third-order term is significant in all cases. The electric resistance and its temperature dependence for metallic helium are characteristic of simple divalent metals in the liquid state. The thermodynamic parameters-temperature and pressure densities-are within the ranges characteristic of the central regions of giant planets. This makes it possible to assume the existence of helium in the metallic state within the solar system.

  14. Effects of raw and diluted municipal sewage effluent with micronutrient foliar sprays on the growth and nutrient concentration of foxtail millet in southeast Iran

    PubMed Central

    Asgharipour, Mohammad Reza; Reza Azizmoghaddam, Hamid

    2012-01-01

    In this study, the effect of irrigation with raw or diluted municipal sewage effluent accompanied by foliar micronutrient fertilizer sprays was examined on the growth, dry matter accumulation, grain yield, and mineral nutrients in foxtail millet plants. The experimental design was a split plot with three irrigation sources: raw sewage, 50% diluted sewage, and well water comprising the main treatments, and four combinations of Mn and Zn foliar sprays as sub-treatments that were applied with four replications. The experiment was conducted in 2009 at the Zabol University research farm in Zabol, south Iran. The applied municipal sewage effluent contained higher levels of micronutrients and macronutrients and exhibited greater degrees of electrical conductivity compared to well water. Because of the small scale of industrial activities in Zabol, the amount of heavy metals in the sewage was negligible (below the limits set for irrigation water in agricultural lands); these contaminants would not be severely detrimental to crop growth. The experimental results indicated that irrigation of plants with raw or diluted sewage stimulates the measured growth and productivity parameters of foxtail millet plants. The concentrations of micronutrients and macronutrients were also positively affected. These stimulations were attributed to the presence of high levels of such essential nutrients as N, P, and organic matter in wastewater. Supplied in sewage water alone, Mn and Zn were not able to raise the productivity of millet to the level obtained using fertilizers at the recommended values; this by itself indicated that additional nutrients from fertilizers are required to obtain higher levels of millet productivity with sewage farming. Despite the differences in nutrient concentrations among the different irrigation water sources, the micronutrient foliar sprays did not affect the concentrations of micronutrients and macronutrients in foxtail millet plants. These results suggested

  15. Effect of breathing of a helium-oxygen mixture on adaptation to effort in humans during high-altitude hypoxia.

    PubMed

    Debiński, W; Kłossowski, M; Gembicka, D

    1986-01-01

    The study was carried out on 17 healthy males aged 20-27 years subjected for 15 minutes to submaximal effort on a cycle ergometer (Elema-Schonander) under conditions of breathing ambient atmospheric air or a helium-oxygen mixture (20% O2 + 80% He) and under hypobaric pressure simulating an altitude of 3500 m above sea level. During the experiment the heart rate was recorded with ECG, and determinations were performed of the minute volume, respiratory rate, tidal volume and systolic arterial blood pressure. In the serum of venous blood obtained before and 3 minutes after the exercise the concentrations were measured of lactate (LA), pyruvate (PA) and glucose. High-altitude hypoxia caused unifavourable changes in the adaptation to effort manifesting themselves as an increase of the values of the determined physiological and biochemical indices. On the other hand, favourable changes were observed of the reaction to exercise while the subjects were breathing the helium-oxygen mixture during high-altitude hypoxia. The minute volume increased owing to increased tidal volume, and the exercise-induced rise of lactate (LA), pyruvate (PA) and the LA/PA ratio was lower. This may suggest reduced energy cost of respiration and reduced anaerobic metabolism under these conditions. PMID:3788607

  16. Swelling, microstructural development and helium effects in type 316 stainless steel irradiated in HFIR and EBR-II

    SciTech Connect

    Maziasz, P.J.; Grossbeck, M.L.

    1981-01-01

    This work examines the swelling and microstructural development of a single heat of 20%-cold-worked type 316 stainless steel irradiated to produce displacement damage and a high, continuous helium generation rate, in the High Flux Isotope Reactor (HFIR). Similar irradiation of the same heat of steel in the Experimental Breeder Reactor (EBR)-II is used as a base line for comparing displacement damage accompanying a very low continuous helium generation rate. At temperatures above and below the void swelling regime (approx. 350 to 625/sup 0/C) swelling is greater in HFIR than in EBR-II. In the temprature range of 350 to 625/sup 0/C, cavity formation, precipitation and dislocation recovery are both enhanced and accelerated in HFIR, often causing swelling at lower dose than in EBR-II. In HFIR, however, cavities appear to be bubbles rather than voids. They are about 10 times smaller and 20 to 50 times more numerous than voids in EBR-II. Thus, the swelling becomes greater in EBR-II than in HFIR for 20%-CW 316 in the void swelling temperature ranges as fluence increases. Such differences in swelling and microstructural behavior must be understood in order to anticipate the behavior of materials during fusion irradiation.

  17. Effects of Temperature on the Interactions of Helium-Vacancy Clusters with Gliding Edge Dislocations in α-Fe

    SciTech Connect

    Yang, Li; Zhu, Zi Qiang; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Heinisch, Howard L.; Kurtz, Richard J.; Gao, Fei

    2013-10-15

    The interaction of helium-vacancy (He-V) clusters with a gliding a/2<111>{110} edge dislocation in a-Fe is investigated by molecular dynamics methods under a constant strain rate at temperatures of 100 to 600 K. A number of small HenVm (n/m = 0~4) clusters initially placed at different positions relative to the slip plane are comparatively studied. The results show that the interaction of He-V clusters with gliding edge dislocations depends on the helium-to-vacancy (He/V) ratio, the position of the clusters relative to the slip plane, the cluster size, and also temperature. The obstacle strength of the He-V clusters relevant to the dislocation motion generally increases with increasing He/V ratio at the same temperature, but decreases slightly with increasing temperature for the same He-V cluster. One of the interesting results is that He-V clusters do not move along with the dislocation, even at 600 K.

  18. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    PubMed

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. PMID:24412855

  19. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  20. Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions

    NASA Astrophysics Data System (ADS)

    Cui, Z. Y.; Liu, Z. Y.; Wang, L. W.; Ma, H. C.; Du, C. W.; Li, X. G.; Wang, X.

    2015-11-01

    In this work, effects of pH value on the electrochemical and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the dilute bicarbonate solutions were investigated using electrochemical measurements, slow strain rate tensile tests and surface analysis techniques. Decrease of the solution pH from 6.8 to 6.0 promotes the anodic dissolution and cathodic reduction simultaneously. Further decrease of the pH value mainly accelerates the cathodic reduction of X70 pipeline steel. As a result, when the solution pH decreases form 6.8 to 5.5, SCC susceptibility decreases because of the enhancement of the anodic dissolution. When the solution pH decreases from 5.5 to 4.0, SCC susceptibility increases gradually because of the acceleration of cathodic reactions.

  1. A review of helium-hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding

    NASA Astrophysics Data System (ADS)

    Marian, Jaime; Hoang, Tuan; Fluss, Michael; Hsiung, Luke L.

    2015-07-01

    Under fusion reactor conditions, large quantities of irradiation defects and transmutation gases are produced per unit time by neutrons, resulting in accelerated degradation of structural candidate ferritic (F) and ferritic/martensitic (F/M) steels. Due to the lack of a suitable fusion neutron testing facility, we must rely on high-dose-rate ion-beam experiments and present-day crude modeling estimates. Of particular interest is the possibility of synergistic (positive feedback) effects on materials properties due to the simultaneous action of He, H, and displacement damage (dpa) during operation. In this paper we discuss the state-of-the-art in terms of the experimental understanding of synergistic effects and carry out simulations of triple-species irradiation under ion-beam conditions using first-of-its-kind modeling techniques. Although, state-of-the-art modeling and simulation is not sufficiently well developed to shed light on the experimental uncertainties, we are able to conclude that it is not clear whether synergistic effects, the evidence of which is still not conclusive, will ultimately play a critical role in material performance under fusion energy conditions. We review here some of the evidence for the synergistic effects of hydrogen in the presence of helium and displacement damage, and also include some recent data from our research. While the experimental results to date suggest possible mechanisms for the observed synergistic effects, it is only with more advanced modeling that we can hope to understand the details underlying the experimental observations. By employing modeling and simulation we propose an interaction model that is qualitatively consistent with experimental observations of dpa/He/H irradiation behavior. Our modeling, the results of which should be helpful to researchers going forward, points to gaps and voids in the current understanding of triple ion-beam irradiation effects (displacement damage produced simultaneously with

  2. Blackbody-radiation correction to the polarizability of helium

    SciTech Connect

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-04-15

    The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.

  3. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    PubMed Central

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  4. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    NASA Astrophysics Data System (ADS)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-06-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  5. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions.

    PubMed

    Stanford, Michael G; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R; Mandrus, David G; Duscher, Gerd; Rondinone, Adam J; Ivanov, Ilia N; Ward, T Zac; Rack, Philip D

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  6. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  7. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    DOE PAGESBeta

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam Justin; Ivanov, Ilia N.; Ward, Thomas Zac; Rack, Philip D.; Pudasaini, Pushpa Raj; et al

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuningmore » the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  8. Gluconeogenesis from labeled carbon: estimating isotope dilution

    SciTech Connect

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.

  9. Minimal Coital Dilution in Accra, Ghana

    PubMed Central

    Jenness, Samuel M.; Biney, Adriana A. E.; Ampofo, William Kwabena; Dodoo, F. Nii-Amoo; Cassels, Susan

    2015-01-01

    Background Coital dilution, the reduction in the coital frequency per partner when an additional ongoing partner is added, may reduce the transmission potential of partnership concurrency for HIV and other sexually transmitted infections. Empirical estimates of dilution, especially dilution of sexual acts unprotected by condoms, are needed to inform prevention research. Methods Sexually active adults in Accra, Ghana were recruited in a multi-stage household probability sample. Degree (number of ongoing partners), total acts, and unprotected acts were measured retrospectively for each month in the past year through an event-history calendar. Random effects negative binomial models estimated the association between degree and coital frequency. Results Compared to person-months with a single partner (monogamy), 2.06 times as many total acts and 1.94 times as many unprotected acts occurred in months with 2 partners. In months with 3 partners, 2.90 times as many total acts and 2.39 times as many unprotected acts occurred compared to monogamous months. Total acts but not unprotected acts also declined with partnership duration. Conclusions No dilution was observed for total acts with up to three concurrent partners, but a small amount of dilution was observed for unprotected acts for months with multiple concurrencies. This suggests moderate selective condom use in months with multiple concurrencies. The implications of the observed dilution for future HIV transmission must be investigated with mathematical models. PMID:25622062

  10. Helium isotopes: Lower geyser basin, Yellowstone National Park

    SciTech Connect

    Kennedy, B.M.; Reynolds, J.H.; Smith, S.P.; Truesdell, A.H.

    1987-11-10

    High /sup 3/He//sup 4/He ratios associated with the Yellowstone caldera reflect the presence of a magmatic helium component. This component is ultimately derived from a mantle plume capped by a cooling batholith underlying the caldera. In surface hot springs, fumaroles, etc., the /sup 3/He//sup 4/He ratio varies from approx.1 to 16 tims the air ratio. The variations are produced by varying degrees of dilution of the magmatic component with radiogenic helium. The radiogenic helium is crustal-derived and is thought to be scavenged from aquifers in which the hydrothermal fluids circulate. We determined the helium iosotopic composition in 12 different springs from the Lower Geyser Basin, a large hydrothermal basin with the caldera. The /sup 3/He//sup 4/He ratio was found to vary from approx.2.7 to 7.7 times the air ratio. The variations correlate with variations in water chemistry. Specifically, the /sup 3/He//sup 4/He ratio increased with total bicarbonate concentration. The dissolved bicarbonate is from gas-water-rock interactions involving CO/sub 2/ and Na silicates. The concentration of bicarbonate is a function of the availability of dissolved CO/sub 2/, which, in turn, is a function of deep boiling with phase separation prior to CO/sub 2/-bicarbonate conversion. The correlation of high /sup 3/He//sup 4/He ratios with high bicarbonate is interpreted as the result of deep dilution of a single thermal fluid with cooler water during ascent to the surface. The dilution and cooling deters deep boiling, and therefore both CO/sub 2/ and /sup 3/He are retained in the rising fluid. Fluids that are not diluted with boil to a greater extent, losing a large proportion of /sup 3/He, as well as CO/sub 2/, leaving a helium-poor residual fluid in which the isotopic composition of helium will be strongly affected by the addition of radiogenic helium.

  11. Automatic diluter for bacteriological samples.

    PubMed

    Trinel, P A; Bleuze, P; Leroy, G; Moschetto, Y; Leclerc, H

    1983-02-01

    The described apparatus, carrying 190 tubes, allows automatic and aseptic dilution of liquid or suspended-solid samples. Serial 10-fold dilutions are programmable from 10(-1) to 10(-9) and are carried out in glass tubes with screw caps and split silicone septa. Dilution assays performed with strains of Escherichia coli and Bacillus stearothermophilus permitted efficient conditions for sterilization of the needle to be defined and showed that the automatic dilutions were as accurate and as reproducible as the most rigorous conventional dilutions. PMID:6338826

  12. Automatic diluter for bacteriological samples.

    PubMed Central

    Trinel, P A; Bleuze, P; Leroy, G; Moschetto, Y; Leclerc, H

    1983-01-01

    The described apparatus, carrying 190 tubes, allows automatic and aseptic dilution of liquid or suspended-solid samples. Serial 10-fold dilutions are programmable from 10(-1) to 10(-9) and are carried out in glass tubes with screw caps and split silicone septa. Dilution assays performed with strains of Escherichia coli and Bacillus stearothermophilus permitted efficient conditions for sterilization of the needle to be defined and showed that the automatic dilutions were as accurate and as reproducible as the most rigorous conventional dilutions. Images PMID:6338826

  13. Effect of electric fields on the decay branching ratio of {sup 1}P{sup e} doubly excited states in helium measured by time-resolved fluorescence

    SciTech Connect

    Zitnik, Matjaz; Mihelic, A.; Bucar, K.; Penent, F.; Lablanquie, P.; Richter, R.; Alagia, M.; Stranges, S.

    2006-11-15

    We have measured the lifetimes of {sup 1}P{sup e} (n=9-12) doubly excited states in static electric fields (1-6 kV/cm) by observing the decay of the fluorescence signal as a function of time. The effects of the field on these helium states below the second ionization threshold are twofold: their excitation becomes possible due to the Stark mixing with the optically allowed {sup 1}P{sup o} series, and their lifetime is strongly modified by the opening of the autoionization channel, not accessible in zero field. Although the electric field represents only a tiny perturbation of the atomic potential, a substantial shortening of the lifetimes below 100 ps is observed. This is the simplest quantum system where the ratio of autoionization to fluorescence decay probability can be effectively controlled by an electric field of moderate strength.

  14. TH-A-19A-05: Modeling Physics Properties and Biologic Effects Induced by Proton and Helium Ions

    SciTech Connect

    Taleei, R; Titt, U; Peeler, C; Guan, F; Mirkovic, D; Grosshans, D; Mohan, R

    2014-06-15

    Purpose: Currently, proton and carbon ions are used for cancer treatment. More recently, other light ions including helium ions have shown interesting physical and biological properties. The purpose of this work is to study the biological and physical properties of helium ions (He-3) in comparison to protons. Methods: Monte Carlo simulations with FLUKA, GEANT4 and MCNPX were used to calculate proton and He-3 dose distributions in water phantoms. The energy spectra of proton and He-3 beams were calculated with high resolution for use in biological models. The repair-misrepairfixation (RMF) model was subsequently used to calculate the RBE. Results: The proton Bragg curve calculations show good agreement between the three general purpose Monte Carlo codes. In contrast, the He-3 Bragg curve calculations show disagreement (for the magnitude of the Bragg peak) between FLUKA and the other two Monte Carlo codes. The differences in the magnitude of the Bragg peak are mainly due to the discrepancy in the secondary fragmentation cross sections used by the codes. The RBE for V79 cell lines is about 0.96 and 0.98 at the entrance of proton and He-3 ions depth dose respectively. The RBE increases to 1.06 and 1.59 at the Bragg peak of proton and He-3 ions. The results demonstrated that LET, microdosimetric parameters (such as dose-mean lineal energy) and RBE are nearly constant along the plateau region of Bragg curve, while all parameters increase within the Bragg peak and at the distal edge for both proton and He-3 ions. Conclusion: The Monte Carlo codes should revise the fragmentation cross sections to more accurately simulate the physical properties of He-3 ions. The increase in RBE for He-3 ions is higher than for proton beams at the Bragg peak.

  15. Release-active dilutions of diclofenac enhance anti-inflammatory effect of diclofenac in carrageenan-induced rat paw edema model.

    PubMed

    Sakat, Sachin S; Mani, Kamaraj; Demidchenko, Yulia O; Gorbunov, Evgeniy A; Tarasov, Sergey A; Mathur, Archna; Epstein, Oleg I

    2014-02-01

    The study was aimed to investigate the effect of technologically treated diclofenac (release-active dilutions of diclofenac (RAD of diclofenac)) on anti-inflammatory activity of diclofenac in carrageenan-induced rat paw edema model. Ninety male Wistar albino rats (6-8 weeks) divided into nine groups (n = 10) were used. Anti-inflammatory activity was assessed at 1, 2, 3, 4, and 6 h after subplantar injection of carrageenan (0.1 ml of a 1 % solution in normal saline). Diclofenac alone was studied at 5 and 20 mg/kg, RAD of diclofenac alone at 7.5 ml/kg and their combination at 5 and 7.5 ml/kg, respectively. Diclofenac reduced (p < 0.05 at least) paw edema at all time points. RAD of diclofenac enhanced (p < 0.05) anti-inflammatory effect of diclofenac (5 mg/kg) at 2, 4, and 6 h on concurrent and at 2 and 4 h on sequential administration. Moreover at 2 h, anti-inflammatory effect of combination treatment reached values comparable to those of diclofenac (20 mg/kg). In conclusion, RAD of diclofenac enhanced anti-inflammatory effect of diclofenac. PMID:24005897

  16. ON QUANTIFICATION OF HELIUM EMBRITTLEMENT IN FERRITIC/MARTENSITIC STEELS

    SciTech Connect

    Gelles, David S.

    2000-12-01

    Helium accumulation due to transmutation has long been considered a potential cause for embrittlement in ferritic/martensitic steels. Three Charpy impact databases involving nickel- and boron-doped alloys are quantified with respect to helium accumulation, and it is shown that all predict a very large effect of helium production on embrittlement. If these predictions are valid, use of Ferritic/Martensitic steels for Fusion first wall applications is highly unlikely. It is therefore necessary to reorient efforts regarding development of these steels for fusion applications to concentrate on the issue of helium embrittlement.

  17. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    NASA Technical Reports Server (NTRS)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  18. Variation in Atmospheric Helium Isotopes

    NASA Astrophysics Data System (ADS)

    Mabry, J. C.; Marty, B.; Burnard, P.; Blard, P.

    2010-12-01

    Anthropogenic activity such as oil and gas exploitation releases crustal helium, which has excess 4He compared to atmospheric helium. This may give rise to both spatial and temporal variations in the atmospheric 3He/4He. Helium is present in trace quantities in the air (5 ppm) and has a very low ratio (3He/4Heair = 1.38 x 10-6), consequently high precision measurements of atmospheric He presents a significant analytical challenge. Recent work by Sano et al. [1] has endeavored to experimentally quantify these potential variations in the atmospheric 3He/4He by measuring the helium isotopes from air samples collected around the globe and from samples of ancient trapped atmosphere. Their results indicate an increase in the atmospheric 3He/4He from northern to southern latitudes of the order 2 - 4 ‰, which they attribute to greater use of fossil fuels in the northern hemisphere. However, since most of their data points overlap at the 2-3 ‰ (2σ) level, additional measurements (with increased precision if possible) are needed. We have constructed an automated extraction line dedicated to measuring He in samples of air which can rapidly switch between measuring aliquots of sample with standards. It additionally features an adjustable bellows on the sample aliquot volume that enables us to adjust the size of a sample aliquot to precisely match the standard, eliminating biases arising from nonlinear pressure effects in the mass spectrometer. The measurements are made using a Helix SFT multi-collector mass spectrometer. At present, repeat measurements of 3He/4He from our standard (purified air) have a reproducibility of 2‰ (2σ), while measurements of local (Nancy, France) air samples have a reproducibility of 3He/4He of 3‰ (2σ), which are at a similar level to the uncertainties reported by Sano. Modifications are underway to improve 3He measurements which are the principal source of error. We have collected atmospheric samples from around the globe over a wide

  19. Helium and Sulfur Hexafluoride in Musical Instruments

    ERIC Educational Resources Information Center

    Forinash, Kyle; Dixon, Cory L.

    2014-01-01

    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  20. Helium as a Dynamical Tracer in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Thayer, J. P.; Liu, X.; Wang, W.; Burns, A. G.

    2014-12-01

    Helium has been a missing constituent in current thermosphere general circulation models. Although typically a minor gas relative to the more abundant major gasses, its unique properties of being chemically inert and light make it an excellent tracer of thermosphere dynamics. Studying helium can help simplify understanding of transport effects. This understanding can then be projected to other gasses whose overall structure and behavior are complex but, by contrasting with helium, can be evaluated for its transport dependencies. The dynamical influences on composition impact estimates of thermosphere mass density, where helium during solar minima can have a direct contribution, as well as ionosphere electron density. Furthermore, helium estimates in the upper thermosphere during solar minima have not been observed since the 1976 minimum. Indirect estimates of helium in the upper thermosphere during the recent extreme solar minimum indicates winter-time helium concentrations exceeded NRL-MSISE00 estimates by 30%-70% during periods of quiet geomagnetic activity. For times of active geomagnetic conditions, helium concentrations near ~450 km altitude are estimated to decrease while oxygen concentrations increase. An investigation of the altitude structure in thermosphere mass density storm-time perturbations reveal the important effects of composition change with maximum perturbation occurring near the He/O transition region and a much weaker maximum occurring near the O/N2 transition region. However, evaluating helium behavior and its role as a dynamical tracer is not straightforward and model development is necessary to adequately establish the connection to specific dynamical processes. Fortunately recent efforts have led to the implementation of helium modules in the NCAR TIEGCM and TIME-GCM. In this invited talk, the simulated helium behavior and structure will be shown to reproduce observations (such as the wintertime helium bulge and storm-time response) and its

  1. Temperature Rises In Pumps For Superfluid Helium

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1990-01-01

    Report discusses increases in temperature of superfluid helium in centrifugal and fountain-effect pumps. Intended for use in transfers of superfluid helium in outer space. Increases in temperature significantly affect losses during transfers and are important in selection of temperatures of supply tanks. Purpose of study, increase in temperature in fountain-effect pump calculated on basis of thermodynamic considerations, starting from assumption of ideal pump. Results of recent tests of ceramic material intended for use in such pumps support this assumption. Overall, centrifugal pumps more effective because it produces smaller rise in temperature.

  2. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  3. Is solid helium a supersolid?

    SciTech Connect

    Hallock, Robert

    2015-05-15

    Recent experiments suggest that helium-4 atoms can flow through an experimental cell filled with solid helium. But that incompletely understood flow is quite different from the reported superfluid-like motion that so excited physicists a decade ago.

  4. Mutual passivation effects in Si-doped diluted In{sub y}Ga{sub 1-y}As{sub 1-x}N{sub x} alloys

    SciTech Connect

    Wu, J.; Yu, K.M.; Walukiewicz, W.; He, G.; Haller, E.E.; Mars, D.E.; Chamberlin, D.R.

    2003-07-21

    We report systematic investigations of the mutual passivation effects of Si hydrogenic donors and isovalent nitrogen in dilute InGaAs{sub 1-x}N{sub x} alloys. Upon thermal annealing at temperatures above {approx}650 C, the Si atoms diffuse assisted by the formation and migration of Ga vacancies. When they find nitrogen atoms, they form stable Si{sub Ga}-N{sub As} nearest-neighbor pairs. As a result of the pair formation, the electrical activity of Si{sub Ga} donors is passivated. At the same time, the effect of an equal number of N{sub As} atoms is also deactivated. The passivation of the shallow donors and the N{sub As} atoms is manifested in a drastic reduction in the free electron concentration and, simultaneously, an increase in the fundamental band gap. Analytical calculations of the passivation process based on Ga vacancies mediated diffusion show good agreement with the experimental results. Monte Carlo simulations have also been performed for a comparison with these results. The effects of mutual passivation on the mobility of free electrons are quantitatively explained on the basis of the band anticrossing model. Optical properties of annealed Si-doped InGaAs{sub 1-x}N{sub x} samples are also discussed.

  5. Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet

    NASA Astrophysics Data System (ADS)

    Mu-Yang, Qian; Cong-Ying, Yang; Zhen-dong, Wang; Xiao-Chang, Chen; San-Qiu, Liu; De-Zhen, Wang

    2016-01-01

    A numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet is presented. The generation and loss mechanisms of the OH radicals in a positive half-cycle of the applied voltage are studied and discussed. It is found that the peak OH density increases with water content in air (varying from 0% to 1%) and reaches 6.3×1018 m-3 when the water content is 1%. Besides, as the water content increases from 0.01% to 1%, the space-averaged reaction rate of three-body recombination increases dramatically and is comparable to those of main OH generation reactions. Project supported by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  6. Torsional Oscillator Studies on Solid Helium

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Chan, Moses H. W.

    2014-03-01

    In 2004, the series of torsional oscillator (TO) experiments by Kim and Chan initiated considerable research activities on the supersolidity of helium. However, recent experiments in rigid torsional oscillators which reduce the effect of stiffening of bulk solid helium at low temepratures showed very small or negligible changes in the resonant period. A new TO experiment of solid helium confined in porous Vycor glass with no bulk solid helium in the sample cell show no evidence of supersolidity. Moreover, we have repeated an earlier experiment on hcp 3He solid, which shows similar low temperature stiffening like hcp 4He. We found that the small drop of the resonant period measured in the hcp 3He samples is comparable to that measured in the hcp 4He samples. These results confirm that the resonant period drops in torsional oscillators are consequence of the shear modulus stiffening effect in solid helium. Remaining issues and open questions on the supersolidity will be discussed. Support for this experiment was provided by NSF Grants No. DMR 1103159.

  7. Band anticrossing in dilute nitrides

    SciTech Connect

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  8. On Helium Anions in Helium Droplets: Interpreting Recent Experiments

    NASA Astrophysics Data System (ADS)

    Mauracher, Andreas; Huber, Stefan E.

    2014-10-01

    Helium droplets provide an ideal environment to study elementary processes in atomic systems at very low temperatures. Here, we discuss properties of charged and neutral, atomic and molecular helium species formed in helium droplets upon electron impact. By studying their interaction with atomic ground state helium we find that He, He2 and excited (metastable) He*- are well bound within the helium droplet. In comparison, He* , He2* and He2* are found to be squeezed out due to energetic reasons. We also present the formation pathways of atomic and molecular helium anions in helium droplets. Transition barriers in the energetic lowest He*- - He interaction potentials prevent molecule formation at the extremely low temperatures in helium droplets. In contrast, some excited states allow a barrier-free formation of molecular helium (anions). With these theoretical results at hand we can interpret recent experiments in which the resonant formation of atomic and molecular helium anions was observed. Furthermore, we give an outlook on the implications of the presence of these anionic species in doped helium droplets with regard to charge transfer reactions. Austrian Fund Agency (FWF, I 978-N20, DK+ project Computational Interdisciplinary Modelling W1227-N16)/Austrian Ministry of Science (BMWF, Konjunkturpaket II, UniInfrastrukturprogramm of the Focal Point Scientific Computing).

  9. Overview of recent studies and modifications being made to RHIC to mitigate the effects of a potential failure to the helium distribution system

    SciTech Connect

    Tuozzolo, J.; Bruno, D.; DiLieto, A.; Heppner, G.; Karol, R.; Lessard,E.; Liaw, C-J; McIntyre, G; Mi, C.; Reich, J.; Sandberg, J.; Seberg, S.; Smart, L.; Tallerico, T.; Theisen, C.; Todd, R.; Zapasek R.

    2011-03-28

    In order to cool the superconducting magnets in RHIC, its helium refrigerator distributes 4.5 K helium throughout the tunnel along with helium distribution for the magnet line recoolers, the heat shield, and the associated return lines. The worse case for failure would be a release from the magnet distribution line which operates at 3.5 to 4.5 atmospheres and contains the energized magnet but with a potential energy of 70 MJoules should the insulation system fail or an electrical connection opens. Studies were done to determine release rate of the helium and the resultant reduction in O{sub 2} concentration in the RHIC tunnel and service buildings. Equipment and components were also reviewed for design and reliability and modifications were made to reduce the likelihood of failure and to reduce the volume of helium that could be released.

  10. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    SciTech Connect

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls the access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.

  11. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    DOE PAGESBeta

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls themore » access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.« less

  12. Effective pretreatment of dilute NaOH-soaked chestnut shell with glycerol-HClO4-water media: structural characterization, enzymatic saccharification, and ethanol fermentation.

    PubMed

    He, Yu-Cai; Liu, Feng; Di, Jun-Hua; Ding, Yun; Gao, Da-Zhou; Zhang, Dan-Ping; Tao, Zhi-Cheng; Chong, Gang-Gang; Huang, Mei-Zi; Ma, Cui-Luan

    2016-04-01

    In this study, an effective pretreatment of dilute NaOH-soaked chestnut shell (CNS) with glycerol-HClO4-water (88.8:1.2:10, w/w/w) media at 130 °C for 30 min was successfully demonstrated. Results revealed that the combination pretreatment removed 66.0 % of lignin and 73.7 % of hemicellulose in untreated CNS. The changes in the structural features (crystallinity, morphology, and porosity) of the solid residue of CNS were characterized with Fourier transform infrared spectroscopy, fluorescent microscope, scanning electron microscopy, and X-ray diffraction. Biotransformation of glycerol-HClO4-water pretreated-NaOH-soaked CNS (50 g/L) with a cocktail of enzymes for 72 h, the reducing sugars and glucose were 39.7 and 33.4 g/L, respectively. Moreover, the recovered hydrolyzates containing 20 g/L glucose had no inhibitory effects on the ethanol-fermenting microorganism, and the ethanol production was 0.45 g/g glucose within 48 h. In conclusion, this combination pretreatment shows promise as pretreatment solvent for wheat straw, although the in-depth exploration of this subject is needed. PMID:26753831

  13. Dilution jet mixing program

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Johnson, K.

    1984-01-01

    Parametric tests were conducted to quantify the mixing of opposed rows of jets (two-sided injection) in a confined cross flow. Results show that jet penetrations for two sided injections are less than that for single-sided injections, but the jet spreading rates are faster for a given momentum ratio and orifice plate. Flow area convergence generally enhances mixing. Mixing characteristics with asymmetric and symmetric convergence are similar. For constant momentum ratio, the optimum S/H(0) with in-line injections is one half the optimum value for single sided injections. For staggered injections, the optimum S/H(0) is twice the optimum value for single-sided injection. The correlations developed predicted the temperature distributions within first order accuracy and provide a useful tool for predicting jet trajectory and temperature profiles in the dilution zone with two-sided injections.

  14. The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions

    NASA Astrophysics Data System (ADS)

    Fornari, W.; Formenti, A.; Picano, F.; Brandt, L.

    2016-03-01

    We study the effect of varying the mass and volume fraction of a suspension of rigid spheres dispersed in a turbulent channel flow. We performed several direct numerical simulations using an immersed boundary method for finite-size particles changing the solid to fluid density ratio R, the mass fraction χ, and the volume fraction ϕ. We find that varying the density ratio R between 1 and 10 at constant volume fraction does not alter the flow statistics as much as when varying the volume fraction ϕ at constant R and at constant mass fraction. Interestingly, the increase in overall drag found when varying the volume fraction is considerably higher than that obtained for increasing density ratios at same volume fraction. The main effect at density ratios R of the order of 10 is a strong shear-induced migration towards the centerline of the channel. When the density ratio R is further increased up to 1000, the particle dynamics decouple from that of the fluid. The solid phase behaves as a dense gas and the fluid and solid phase statistics drastically change. In this regime, the collision rate is high and dominated by the normal relative velocity among particles.

  15. Investigating the effect of additional gases in an atmospheric-pressure helium plasma jet using ambient mass spectrometry

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu; Bradley, James W.

    2015-01-01

    Using ambient mass spectrometry, positive and negative ions created in an atmospheric-pressure plasma jet have been detected for a variation of different traces gases (Ar, N2, and O2) added to the flow, downstream of the main helium discharge plasma. We find that such additions can change the chemistry in the outflow plasma plume. For instance, small amounts of O2 increases the formation of positive ion clusters, e.g., water clusters H+(H2O)n (with n up to 5) through hydration reactions, but decreases the intensity of heavy negative ions detected. With the addition of Ar and N2 we see a marked decrease in the intensity of negative ions in the plume but with increased Ar+ and nitrous oxide ions (e.g., N2O+) for the two cases respectively. From broadband optical emission measurements of the glowing plasma we see that the relative emission intensity of OH radical were changed with addition of the four different gases but the emission spectra were not changed. A calculation of rotational temperature of OH radicals, indicates that the gas temperatures is about 290 K for the four different gas mixture cases.

  16. Effects of helium ion damage on the two-band superconductivity in MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Greene, L. H.; Park, W. K.; Lu, X.; Moeckly, B.; Singh, R.; Newman, N.; Rowell, J. M.

    2006-03-01

    While the two-band superconductivity in MgB2 has been well established, it remains controversial whether disorder in the Mg and B planes causes enhanced interband scattering, band filling or both. To address this, we have performed electronic transport and point-contact spectroscopy measurements on helium-ion irradiated MgB2 thin films. Two sets of samples are prepared using: a) 1 MeV He^+ ions with uniform doses ranging from 1x10^15 to 1x10^17 ions/cm^2; b) 2 MeV alpha particles with gradient doses. The resistivity (Tc) is observed to increase (decrease) monotonically with increasing dose. The conductance spectra are taken from point-contact junctions between MgB2 thin films and Au tips. The Tc is determined by the onset of enhanced conductance at zero bias. Our preliminary results show that the two gaps tend to merge into one gap with increasing ion damage. Detailed results including Tc vs. energy gap will be presented and discussed in terms of the electronic structure change caused by ion-induced point defects. WKP acknowledges Pavel Krasnochtchekov and Robert Averback for ion irradiation experiments at UIUC. This work is supported by the DoE DEFG02-91ER45439, through the FSMRL and the Center for Microanalysis of Materials at UIUC.

  17. Atomic cascade of muonic and pionic helium atoms

    SciTech Connect

    Landua, R.; Klempt, E.

    1982-06-21

    The cascade of muonic and pionic helium atoms in targets of arbitrary density is investigated. The calculation does not use any free parameters except for strong interaction effects. All measured x-ray intensities are reproduced, in particular also the K/sub ..beta..//K/sub ..cap alpha../ intensity ratios in pionic helium.

  18. Helium anion formation inside helium droplets

    NASA Astrophysics Data System (ADS)

    Jabbour Al Maalouf, Elias; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed.

  19. Understanding the Effects of Dilute Sulfur Additions, and Metallization, on the Thermoelectric Properties of Pnictogen Chalcogenides and their Interfaces

    NASA Astrophysics Data System (ADS)

    Devender

    Realizing materials with high thermoelectric figure-of-merit ZT is an exacting challenge because it entails simultaneously obtaining a high Seebeck coefficient, a high electrical conductivity, and a low thermal conductivity, while these properties are usually unfavorably coupled. This thesis demonstrates multifold enhancements in the power factor in sulfur-doped binary and ternary pnictogen chalcogenide nanocrystals and assemblies, and describes the property enhancement mechanisms. The correlations between interfacial thermal and electronic transport, and interfacial diffusion and phase formation in metallized n- and p-type pnictogen chalcogenide structures are also revealed. We show that 400 ppm to 2 at.% sulfur doping can increase both Seebeck coefficient and electrical conductivity, while maintaining low thermal conductivity. Our results show that sulfur-induced property enhancements in Bi2Te 2Se are underpinned by increased density of states effective mass, unlike the mechanism of diminished bipolar charge carrier transport prevalent in sulfur-doped Bi2Te3. Exploiting such effects is anticipated to be attractive for realizing higher ZT nanomaterials. We also show that electrical contact conductivity in metallized pnictogen chalcogenide interfaces is sensitive to metal diffusion and telluride formation. In particular, Ni contacts yield the highest electrical contact conductivity and Cu the lowest, correlating with extent of metal diffusion and p-type metal-telluride formation. We finally show that pnictogen chalcogenides metallized with Sn-Ag-Cu/Ni solder-barrier bilayers exhibit ten-fold higher interfacial thermal conductance than that obtained with In/Ni bilayer metallization. Decreased interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher interfacial thermal conductance. Our findings should facilitate the design and development of pnictogen chalcogenide-based thermoelectric materials and devices.

  20. Effect of collisions on the dispersed phase fluctuation in a dilute tube flow: Experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Caraman, N.; Borée, J.; Simonin, O.

    2003-12-01

    Measurements of particle fluctuation in a fully developed pipe flow at moderate Reynolds number is performed in this study. The present data are obtained by using a two-component phase Doppler anemometer. The radial profiles are measured at a distance of 0.2 diameter downstream the exit of the tube. At this location, the core flow still carries all the properties of the tube turbulence. A low mass loading of partly responsive particles is considered. The Stokes number of these partly responsive particles is of order 3 when the integral turbulent time scale on the axis of the tube flow is used. The velocity statistics are analyzed up to the third-order moments and we show that the radial turbulent transport of fluctuating kinetic energy is much higher for the particles than for the fluid. Radial balances of longitudinal and radial kinetic stresses of the particles are examined. Particle-particle collisions have a negligible direct effect on the evolution of the longitudinal fluctuating velocity. However, even at this low mass loading, we prove that particle-particle collisions and redistribution from the very large streamwise velocity variance to the radial velocity variance in the near wall region strongly influence the radial fluctuation of the particles. In the core region, a quadrant analysis enables the detection of low streamwise velocities focusing toward the axis and the corresponding quadrants are strongly dominant for the glass beads. We expect that the partly responsive particles, because of their inertia, keep some memory of the lower streamwise velocity existing in the near wall region while they fly across the tube. The collisions in the near wall region are, therefore, expected to have a strong indirect influence on the whole kinetic-energy balance in the tube by partly driving the radial transport of the fluctuating kinetic energy of the particles. This effect should be particularly strong in this circular geometry because events from any azimuthal

  1. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  2. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  3. BASG thermomechanical pump helium 2 transfer tests

    NASA Technical Reports Server (NTRS)

    Mills, G. L.; Newell, D. A.; Urbach, A. R.

    1990-01-01

    The purpose of the effort described was to perform experiments and calculations related to using a thermomechanical pump in the space-based resupply of the Space Infrared Telescope Facility (SIRTF) with Helium 2. Thermomechanical (fountain effect) pumps have long been suggested as a means for pumping large quantities of Helium 2. The unique properties of Helium 2 have made it useful for cooling space instruments. Several space science missions, including SIRTF, are now being planned which would benefit greatly from on-orbit resupply of Helium 2. A series of experiments were performed to demonstrate that large volumes of Helium 2 can be transferred with a thermomechanical pump at high flow rates and at high efficiency from one dewar to another through valves and lines that are similar to the plumbing arrangement that would be necessary to accomplish such a transfer on-orbit. In addition, temperature, pressure, and flow rate data taken during the tests were used to verify and refine a computer model which was developed.

  4. Towards a controlled photopolymerization of dental dimethacrylate monomers: EPR studies on effects of dilution, filler loading, storage and aging.

    PubMed

    Pereira, S G; Telo, J P; Nunes, T G

    2008-09-01

    Electron paramagnetic resonance (EPR) was used to study the kinetics of methacrylate radical formation in the monomer mixture 2,2-bis [4-(2-hydroxy-3-methacryloxyprop-1-oxy) phenyl] propane (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA), in the presence of a photo-initiator system (camphorquinone, CQ/N,N-dimethyl-p-toluidine, DET). Curing-time dependences on the filler (0-40 wt%) and TEGDMA content (15-90 wt%) were evaluated; the influence of irradiation protocol, uncured sample storage time and aging of cured systems were also studied. EPR enabled observing at least two different kinetic regimes during polymerization. The final radical concentration decreased both with Bis-GMA and filler content. However, a reverse trend was obtained when the relative photo-initiator concentrations were considered. Filler also showed a significant effect on the radical life-time reduction. Irradiation protocol and storage time of uncured matrices showed to affect the free radical concentration. The observed changes on the EPR signal lineshape with post-curing time suggests that the distribution of CH(2) conformations also changes with time. PMID:18415003

  5. The Effects of Buoyancy and Dilution on the Structure and Lift-off of Coflow Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin T.; Long, Marshall B.; Smooke, Mitchell D.

    1999-01-01

    The ability to predict the coupled effects of complex transport phenomena with detailed chemical kinetics in diffusion flames is critical in the modeling of turbulent reacting flows and in understanding the processes by which soot formation and radiative transfer take place. In addition, an understanding of the factors that affect flame extinction in diffusion flames is critical in the suppression of fires and in improving engine efficiency. The goal of our characterizations of coflow laminar diffusion flames is to bring to microgravity the multidimensional diagnostic tools available in normal gravity, and in so doing provide a broader understanding of the successes and limitations of current combustion models. This will lead to a more detailed understanding of the interaction of convection, diffusion and chemistry in both buoyant and nonbuoyant environments. As a sensitive marker of changes in the flame shape, the number densities of excited-state CH (A(exp 2)delta, denoted CH*), and excited-state OH (A(exp 2)Sigma, denoted OH*) are measured in mu-g and normal gravity. Two-dimensional CH* and OH* number densities are deconvoluted from line-of-sight chemiluminescence measurements made on the NASA KC-135 reduced-gravity aircraft. Measured signal levels are calibrated, post-flight, with Rayleigh scattering. Although CH* and OH* kinetics are not well understood, the CH*, OH*, and ground-state CH distributions are spatially coincident in the flame anchoring region. Therefore, the ground-state CH distribution, which is easily computed, and the readily measured CH*/OH* distributions can be used to provide a consistent and convenient way of measuring lift-off height and flame shape in the diffusion flame under investigation. Given that the fuel composition affects flame chemistry and that buoyancy influences the velocity profile of the flow, we have the opportunity to computationally and experimentally study the roles of fluids and chemistry. In performing this

  6. Effects of pressure and nitrogen dilution on flame/stretch interactions of laminar premixed H{sub 2}/O{sub 2}/N{sub 2} flames

    SciTech Connect

    Aung, K.T.; Hassan, M.I.; Faeth, G.M.

    1998-01-01

    Effects of positive flame stretch on the laminar burning velocities of H{sub 2}/O{sub 2}/N{sub 2} flames at normal temperatures and various pressures and nitrogen dilutions were studied both experimentally and computationally. Measurements and numerical simulations considered freely (outwardly)-propagating spherical laminar premixed flames at both stable and unstable preferential-diffusion conditions with fuel-equivalence ratios in the range 0.45--4.00, pressures in the range 0.35--4.00 atm, volumetric oxygen concentrations in the nonfuel gas in the range 0.125--0.210, and Karlovitz numbers in the range 0.0--0.6. For these conditions, both measured and predicted ratios of unstretched (plane flames) to stretched laminar burning velocities varied linearly with Karlovitz numbers, yielding Markstein numbers that were independent of Karlovitz numbers for a particular pressure and reactant mixture. Measured Markstein numbers were in the range {minus}4 to 6, implying strong flame/stretch interactions. For hydrogen/air flames, the neutral preferential-diffusion condition shifted toward fuel-rich conditions with increasing pressure. Predictions of stretch-corrected laminar burning velocities and Markstein numbers, using typical contemporary chemical reaction mechanisms, were in reasonably good agreement with the measurements.

  7. Effects of Gravity on the Double-Diffusive Convection during Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe

    NASA Technical Reports Server (NTRS)

    Bune, Andris; Gillies, Donald; Lehoczky, Sandor

    1999-01-01

    General 2-D and 3-D finite element model of non-dilute alloy solidification was used to simulate growth of HgCdTe in terrestrial and microgravity conditions. Parametric research was undertaken to investigate effects of gravity level, gravity vector orientation and growth velocity on the pattern of melt convection, shape of crystal/melt interface and radial thermal gradient. Verification of the model was undertaken by comparison with previously published results. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures obtained from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. For gravity levels higher then 10(exp -7) of terrestrial one it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by 50% by choosing proper orientation of the ampoule. The predicted interface shape is in agreement with one obtained experimentally by quenching.

  8. Effects of Gravity on the Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to HgCdTe

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1999-01-01

    A general 2-D and 3-D finite element model of non-dilute alloy solidification was used to simulate growth of HgCdTe in terrestrial and microgravity conditions. Verification of the 3-D model was undertaken by comparison with previously published results on convection in an inclined cylinder. For low growth velocities, plane front solidification occurs. The location and the shape of the interface were determined using melting temperatures obtained from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes a thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion due to the combined effects of composition and temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors, dimensional rather than non-dimensional modeling was performed. the predicted interface shape is in agreement with one obtained experimentally by quenching.

  9. The Effects of Dilute Polymer Solutions on the Shape, Size, and Roughness of Abrasive Slurry Jet Micromachined Channels and Holes in Brittle and Ductile Materials

    NASA Astrophysics Data System (ADS)

    Kowsari, Kavin

    The present study investigated the effect of dilute polymer solutions on the size, shape, and roughness of channels and holes, machined in metal and glass using a novel abrasive slurry-jet micro-machining (ASJM) apparatus. The apparatus consisted of a slurry pump and a pulsation damper connected to an open reservoir tank to generate a 140-micron turbulent jet containing 1 wt% 10-micron alumina particles. With the addition of 50 wppm of 8-M (million) molecular weight polyethylene oxide (PEO), the widths of the channels and diameters of holes machined in glass decreased by an average amount of 25%. These changes were accompanied by approximately a 20% decrease in depth and more V-shaped profiles compared with the U-shape of the reference channels and holes machined without additives. The present results demonstrate that a small amount of a high-molecular-weight polymer can significantly decrease the size of machined channels and holes for a given jet diameter.

  10. The in vitro effective antiviral action of povidone-iodine (PVP-I) may also have therapeutic potential by its intravenous administration diluted with Ringer's solution.

    PubMed

    Sabracos, Labros; Romanou, Solomi; Dontas, Ismene; Coulocheri, Stavroula; Ploumidou, Kathrin; Perrea, Despina

    2007-01-01

    The use of povidone-iodine (PVP-I) is well known in clinical medical practice. In vitro studies of cell cultures infected by HIV and H5N1 virus have shown that PVP-I has an antiviral action, while the cell hosts were not affected and survived. It is therefore worth investigating whether PVP-I, diluted with Ringer's solution, may have a therapeutic effect by parenteral administration. Specifically, the question is whether small concentrations of intravenous PVP-I could be well tolerated by the human organism, and in addition, if it would be possible to detect a beneficial activity. Its intravenous use may have a potential value against infections (by microbes, viruses, fungi and parasites), as well as an anti-inflammatory activity, especially in cases where antibiotics are ineffective. It could be used as a blood disinfectant, for treating burns, for the prevention of cancer, for the therapy of H5N1 influenza after its mutation, and other potential applications. PMID:17113717

  11. Analysis of pH and buffer effects on flucytosine activity in broth dilution susceptibility testing of Candida albicans in two synthetic media.

    PubMed Central

    Calhoun, D L; Galgiani, J N

    1984-01-01

    We examined the influences of different pH levels and three different buffers on flucytosine activity against 12 isolates of Candida albicans in two synthetic media, yeast nitrogen base (YNB) and synthetic amino acid medium-fungal (SAAMF), using broth dilution techniques and measuring the endpoints of visual MICs and turbidimetric 50% inhibitory concentrations. The two media were originally prepared as follows: YNB, unbuffered, pH 5.6; SAAMF, buffered with morpholinepropanesulfonic acid-Tris, pH 7.4; the resultant geometric mean MIC and 50% inhibitory concentration of 5-FC were 78- and 32-fold higher, respectively, in SAAMF. Raising the pH of YNB or lowering the pH of SAAMF had virtually no effect on these differences in MIC and 50% inhibitory concentration in the two media. In contrast, virtually all of the discrepancy appeared to be due to morpholinepropanesulfonic acid-Tris, which exerted concentration-dependent inhibition of flucytosine activity not evident when N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid or phosphate buffer systems were substituted. In other turbidimetric studies, growth was slowed more than 50% in YNB as the pH was raised to 7.4, regardless of which buffer was used. Based on our studies, we recommend modifying the composition of SAAMF by substituting a nonantagonistic buffer if any buffer is to be used with SAAMF in the testing of flucytosine. With this modification, SAAMF warrants further study as a generally applicable medium for fungal-susceptibility testing. PMID:6391370

  12. Characterization of an anaerobic baffled reactor treating dilute aircraft de-icing fluid and long term effects of operation on granular biomass.

    PubMed

    Marin, Juan; Kennedy, Kevin J; Eskicioglu, Cigdem

    2010-04-01

    Successful treatment of dilute ethylene glycol based-aircraft de-icing fluid (ADF) was achieved using a four compartment, anaerobic baffled reactor (ABR). Three ADF concentrations (0.04, 0.07, and 0.13%v/v) were continuously fed at different hydrological retention times (HRTs; 24, 12, 6 and 3h) with concomitant organic loading rates (OLRs) varying between 0.3 and 6 kg chemical oxygen demand (COD)/m(3)/d. ABR achieved over 75% soluble COD removal and an average methane production potential of 0.30+/-0.05LCH(4)/gCOD(removed) at 33 degrees C for the experimental conditions evaluated. The different experimental conditions tested and a four-month summer shut-down simulation had no significant effect on reactor performance or on the settling characteristics of the granular biomass, which remained almost constant during the study. Biomass specific acetoclastic activity however, changed through the study; increasing two fold for the last three compartments and decreasing almost the same magnitude for the first compartment compared to inoculum, suggesting that a new distribution of microbial consortia was established in each compartment of the reactor by the end of the study. PMID:20005091

  13. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids

    PubMed Central

    Tokumasu, Fuyuki; Crivat, Georgeta; Ackerman, Hans; Hwang, Jeeseong; Wellems, Thomas E.

    2014-01-01

    ABSTRACT Plasmodium falciparum (Pf) infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM), a parasitophorous vacuole membrane (PVM), a tubulovesicular network (TVN), and Maurer's clefts (MC). Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA) and hemoglobin S-containing (HbAS, HbAS) erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM) experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC) decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM). Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes. PMID:24876390

  14. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    PubMed

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively. PMID:27010341

  15. Residual Resistivity of Dilute Alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    The residual resistivity for 156 dilute alloys of 19 hosts of different groups of the periodic table has been studied on the basis of the single parametric model potential formalism. Ashcroft's empty core model (EMC) potential is explored for the first time with five different local field correction functions, viz, Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) to investigate the effect of the exchange and correlation on the aforesaid properties. The comparison of the presently computed outcomes with the available theoretical and experimental data is highly encouraging. The investigation of residual resistivity is found to be quite sensitive to the selection of local field correction function, showing a significant variation with the change in the function.

  16. High accuracy thermal conductivity measurements near the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbank, William M.; Lipa, John A.

    1989-01-01

    Over the past few years extensive thermal conductivity measurements near the lambda point of helium were made. The original goal of measuring the thermal conductivity with a resolution of t = T/T sub lambda -1 of 3 x 10(-8) was reached, but with somewhat less accuracy than was hoped. Subtle effects in the apparatus near the transition were observed which reduced the ability to interpret the results. Nevertheless, for resolution of t is greater than or equal to 10(-7) reliable data was obtained, extending previous measurements by more than an order of magnitude. Deviations from theoretical predictions were observed for t is less than or equal to 3 x 10(-6) leading to the question of the validity of the present renormalization group analysis of transport properties, at least for the case of helium. This anomaly led to closer examination of the boundary effects in the measurements. During the experiments a totally unexpected effect in the very dilute He-3 - He-4 mixtures was observed which led to the explanation of the anomalous results. The concentration dependence of the thermal conductivity near T sub lambda in the superfluid phase was found to deviate strongly from the predictions. The results gave an independent verification of this behavior and caused reanalysis of the Khalatnikov theory of hydrodynamics of the mixtures. An alternative solution was found which is in better agreement with the experiment.

  17. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  18. Double photoionization of helium with synchrotron x-rays: Proceedings

    SciTech Connect

    Not Available

    1994-01-01

    This report contains papers on the following topics: Overview and comparison of photoionization with charged particle impact; The ratio of double to single ionization of helium: the relationship of photon and bare charged particle impact ionization; Double photoionization of helium at high energies; Compton scattering of photons from electrons bound in light elements; Electron ionization and the Compton effect in double ionization of helium; Elimination of two atomic electrons by a single energy photon; Double photoionization of helium at intermediate energies; Double Photoionization: Gauge Dependence, Coulomb Explosion; Single and Double Ionization by high energy photon impact; The effect of Compton Scattering on the double to single ionization ratio in helium; and Double ionization of He by photoionization and Compton scattering. These papers have been cataloged separately for the database.

  19. Dislocation Interactions with Voids and Helium Bubbles in FCC Metals

    SciTech Connect

    Robertson, I; Robach, J; Wirth, B; Young, J

    2003-11-18

    The formation of a high number density of helium bubbles in FCC metals irradiated within the fusion energy environment is well established. Yet, the role of helium bubbles in radiation hardening and mechanical property degradation of these steels remains an outstanding issue. In this paper, we present the results of a combined molecular dynamics simulation and in-situ straining transmission electron microscopy study, which investigates the interaction mechanisms between glissile dislocations and nanometer-sized helium bubbles. The molecular dynamics simulations, which directly account for dislocation core effects through semi-empirical interatomic potentials, provide fundamental insight into the effect of helium bubble size and internal gas pressure on the dislocation/bubble interaction and bypass mechanisms. The combination of simulation and in-situ straining experiments provides a powerful approach to determine the atomic to microscopic mechanisms of dislocation-helium bubble interactions, which govern the mechanical response of metals irradiated within the fusion environment.

  20. Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture.

    PubMed Central

    Shi, Y; Weimer, P J

    1992-01-01

    The ruminal cellulolytic bacterium Ruminococcus flavefaciens FD-1 was grown in cellulose-fed continuous culture with 20 different combinations of pH and dilution rate (D); the combinations were selected according to the physiological pH range of the organism (6.0 to 7.1) and growth rate of the organism on cellulose (0.017 to 0.10 h-1). A response surface analysis was used to characterize the effects of pH and D on the extent of cellulose consumption, growth yield, soluble sugar concentration, and yields of fermentation products. The response surfaces indicate that pH and D coordinately affect cellulose digestion and growth yield in this organism. As expected, the net cellulose consumption increased with increasing D while the fraction of added cellulose that was utilized decreased with increasing D. The effect of changes in pH within the physiological range on cellulose consumption was smaller than that of changes in D. Cellulose degradation was less sensitive to low pH than to high pH. At low Ds (longer retention times), cellulose degradation did not follow first-order kinetics. This decreased rate of cellulose digestion was not due to poor mixing, limitation by other medium components, or preferential utilization of the more amorphous fraction of the cellulose. The cell yield increased from 0.13 to 0.18 mg of cells per mg of cellulose with increasing Ds from 0.02 to 0.06 h-1 and decreased when the pH was shifted from the optimum of 6.5 to 6.8. The effect of pH on cell yield increased with increasing D. The reduced cell yield at low pH appears to be due to both an increase in maintenance energy requirements and a decrease in true growth yield. PMID:1514805

  1. Survival capacity of Mycoplasma agalactiae and Mycoplasma mycoides subsp capri in the diluted semen of goat bucks and their effects on sperm quality.

    PubMed

    Gómez-Martín, A; Uc, N; Vieira, L A; Gadea, J; Cadenas, J; Sánchez, A; De la Fe, C

    2015-03-15

    This study examines the viability of Mycoplasma agalactiae (Ma) and Mycoplasma mycoides subsp capri (Mmc) during 150 minutes of incubation at 37 °C in contaminated diluted semen (DS) doses. The effects of the presence of both microorganisms on sperm viability, motility, and morphology were also examined. In a second experiment, the viability of Ma and its effects on sperm viability were determined in ejaculate samples and skimmed milk semen extender samples. Ma and Mmc were able to survive in DS at concentrations considered infectious, and no significant differences in mean concentrations were detected (7.1 log colony-forming units [CFU]/mL). However, initial concentration of Ma declined (P < 0.05) from 7.5 to 6.9 log CFU/mL and Mmc declined (P < 0.05) from 7.7 to 7.1 log CFU/mL after incubation. Conversely, ejaculate concentrations of Ma increased significantly (from 7.1 to 7.4 log CFU/mL, P < 0.05). These observations suggest that the natural breeding medium is more suitable for Ma than the medium used for artificial insemination (AI). The presence of Mmc slightly reduced sperm viability in the DS (from 21.7% to 16.6%, P < 0.05). The absence of major effects on sperm quality could lead to the unnoticed use of semen contaminated with Ma and Mmc for AI. As both bacteria were able to survive the conditions of ejaculates and semen doses, these findings suggest a risk of venereal transmission of contagious agalactia and support the use of mycoplasma-free semen samples for (AI). PMID:25543157

  2. Helium in Earth's Early Core

    NASA Astrophysics Data System (ADS)

    Jephcoat, A. P.; Bouhifd, M. A.; Heber, V.; Kelley, S. P.

    2006-12-01

    The high 3He/4He ratios for some ocean-island basalts, and more recent observations for solar components of the other rare gases (Ne, Ar and possibly Xe), continue to raise questions on primordial source reservoirs as well as on accretionary and incorporation processes of rare gases. A number of geochemical mantle models have been made to explain the observed 3He/4He ratios, the most popular of which has been an undegassed primordial reservoir. Isotope systematics of other radiogenic elements do not support such an isolated source and changes in the accepted models of mantle convection style have made it harder to rely on the deep mantle as a reservoir. The core has remained a particularly unfavourable location either because of difficulty in constructing a retention mechanism during planetary accretion or simply because of a lack of data: Partitioning studies at pressure are rare and complicated by the difficulty in reproducing not only absolute concentrations, but confinement of gas in high-pressure apparatus and post-run analysis. We present experiments on helium solubility and partitioning between molten silicates and Fe-rich metal liquids up to 16 GPa and 3000 K, with the laser-heated diamond-anvil cell, and the quenched run products analysed by ultra-violet laser ablation mass spectrometry (UVLAMP). Our results indicate a significantly higher partition coefficient for He between molten silicates and Fe-rich alloy liquids of about 10-2 at 16 GPa and 3000~K -- two orders of magnitude more helium is measured in the metal phase compared to the only previous data of Matsuda et al., (1993). The solubility mechanism is varied and involves a distinguishable bulk component and an apparent surface signature (that may be the result of the quench process). Whether surface effects are included or not, the early Earth's core would have incorporated non-negligible amounts of primordial helium if its segregation took place under mid-depth, magma-ocean conditions. The process

  3. Stress in dilute suspensions

    NASA Technical Reports Server (NTRS)

    Passman, Stephen L.

    1989-01-01

    Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.

  4. Applications of Groundwater Helium

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  5. Excitation of helium ion by positron impact

    SciTech Connect

    Khan, P.; Ghosh, A.S.

    1986-01-01

    Three (1s,2s,2p) and five (1s,2s,2p,3s-bar,3p-bar) -state close-coupling methods have been employed to calculate the n = 2 excitation cross sections of helium ion by positron impact. The effect of pseudostate is found to be very pronounced in the case of 1s-2s excitation.

  6. Effect of simultaneous cooling on microwave-assisted wet digestion of biological samples with diluted nitric acid and O2 pressure.

    PubMed

    Bizzi, Cezar A; Nóbrega, Joaquim A; Barin, Juliano S; Oliveira, Jussiane S S; Schmidt, Lucas; Mello, Paola A; Flores, Erico M M

    2014-07-21

    The present work evaluates the influence of vessel cooling simultaneously to microwave-assisted digestion performed in a closed system with diluted HNO3 under O2 pressure. The effect of outside air flow-rates (60-190 m(3) h(-1)) used for cooling of digestion vessels was evaluated. An improvement in digestion efficiency caused by the reduction of HNO3 partial pressure was observed when using higher air flow-rate (190 m(3) h(-1)), decreasing the residual carbon content for whole milk powder from 21.7 to 9.3% (lowest and highest air flow-rate, respectively). The use of high air flow-rate outside the digestion vessel resulted in a higher temperature gradient between liquid and gas phases inside the digestion vessel and improved the efficiency of sample digestion. Since a more pronounced temperature gradient was obtained, it contributed for increasing the condensation rate and thus allowed a reduction in the HNO3 partial pressure of the digestion vessel, which improved the regeneration of HNO3. An air flow-rate of 190 m(3) h(-1) was selected for digestion of animal fat, bovine liver, ground soybean, non fat milk powder, oregano leaves, potato starch and whole milk powder samples, and a standard reference material of apple leaves (NIST 1515), bovine liver (NIST 1577) and whole milk powder (NIST 8435) for further metals determination by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results were in agreement with certified values and no interferences caused by matrix effects during the determination step were observed. PMID:25000853

  7. Effect of linoleic acid albumin in a dilution solution and long-term equilibration for freezing of bovine spermatozoa with poor freezability.

    PubMed

    Takahashi, T; Itoh, R; Nishinomiya, H; Katoh, M; Manabe, N

    2012-02-01

    Despite normal eucrasia, mating desire and semen quality, sire bulls sometimes have spermatozoa with poor freezing tolerance. This study assessed effects of the addition of linoleic acid albumin (LAA) and long-term (LT) equilibrium to frozen semen on their sperm freezing tolerance. Immediately after collection using an artificial vagina and a breeding mount, semen was diluted with yolk citrate buffer; then, it was cooled slowly to 4°C during more than 5 h. Equilibrium treatment at 4°C was applied using the same extender supplemented with glycerol. Semen of bull A, with low sperm freezing tolerance, was treated with 1 mg/ml of LAA added to the first extender. The equilibrium treatment at 4°C was prolonged to 30 h. Significantly higher motility rates were obtained for the LT + LAA-treated sperm before and after freezing-thawing. However, for semen of bulls B and C with normal sperm freezing tolerance, the LT + LAA treatment barely exhibited a small effect on the motility rate. Almost no difference was found among bulls A, B and C in the motility rates of LT + LAA-treated sperm after freezing-thawing. No difference of fertility was apparent on LT + LAA-treated frozen sperm in comparison with normal sperm in embryonic collection and in vitro fertilization. It was not an aberration of fertility in vivo or in vitro. In addition, the conception rate of artificial insemination did not have a difference, and a normal calf was obtained. Results show that addition of LAA to an extender for frozen bovine spermatozoa and 30 h of low-temperature equilibrium might improve the motility of freezing-thawing spermatozoa with poor freezability. Sperm exhibited normal fertilization capability and ontogenic capability. PMID:21635578

  8. Diluting ferric carboxymaltose in sodium chloride infusion solution (0.9% w/v) in polypropylene bottles and bags: effects on chemical stability

    PubMed Central

    Philipp, Erik; Braitsch, Michaela; Bichsel, Tobias; Mühlebach, Stefan

    2016-01-01

    Objectives This study was designed to assess the physicochemical stability of colloidal ferric carboxymaltose solution (Ferinject) when diluted and stored in polypropylene (PP) bottles and bags for infusion. Methods Two batches of ferric carboxymaltose solution (Ferinject) were diluted (500 mg, 200 mg and 100 mg iron in 100 mL saline) in PP bottles or bags under aseptic conditions. The diluted solutions were stored at 30°C and 75%±5% relative humidity (rH) for 72 h, and samples were withdrawn aseptically at preparation and after 24 h, 48 h and 72 h. Multiple parameters were used to test stability-related measures (pH, total iron and iron (II) content, molecular weight range determination, microbial contamination and particles count ≥10 μm). Results Overall, Ferinject diluted in 0.9% (w/v) NaCl solution and stored in PP bottles and bags was stable within the specifications for the complex and the acceptability limits set for all assays. In both containers, total iron content remained stable, within 10% of the theoretical iron content, and levels of iron (II) remained far below the threshold of acceptability. All preparations were free from sediments, particle numbers were acceptable and there was no microbial contamination. The molecular weight distribution and polydispersity index were also acceptable. Conclusions Under the tested experimental conditions, colloidal ferric carboxymaltose solution (Ferinject) diluted in saline in PP infusion bottles or bags demonstrated physical and chemical stability for up to 72 h at 30°C and 75% rH. Because of the lack of additional clinical data, when using ferric carboxymaltose, physicians/pharmacists should refer to the dilution and storing recommendations given in the product's summary of product characteristics. PMID:26835007

  9. Helium anion formation inside helium droplets

    NASA Astrophysics Data System (ADS)

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  10. The effect of helium on microstructural evolution and mechanical properties of Fe-Cr-Ni alloys as determined in a spectral tailoring experiment

    SciTech Connect

    Sekimura, N. ); Garner, F.A. ); Griffin, R.D. )

    1991-11-01

    Fe-15Cr-XNi alloys irradiated at both low (0.66 to 1.2) and very high (27 to 58) helium/dpa levels exhibit significantly different levels of strengthening due to an unprecedented refinement of cavity microstructure at the very high helium levels. When compounded with the nickel dependence of helium generation, the cavity distribution for some irradiation conditions and alloy compositions can be driven below the critical radius for bubble-to-void conversion, leading to a delay in swelling. The critical radius also appears to be dependent on the nickel level. The refinement may not have resulted from the high helium levels alone, however but also may have been influenced by differences in displacement rate and temperature history in the two experiments.

  11. THE DILUTION/FLUSHING TECHNIQUE IN LAKE RESTORATION

    EPA Science Inventory

    Dilution/flushing has been documented as an effective restoration technique for Moses and Green Lakes in Washington State. The dilution water added in both lakes was low in nitrogen and phosphorus content relative to the lake or normal input water. Consequently, lake nutrient con...

  12. Helium in the Martian atmosphere - Thermal loss considerations

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Keating, G. M.; Prior, E. J.

    1974-01-01

    Helium concentrations in the Martian atmosphere are estimated assuming that the helium production on Mars (comparable to its production on earth) via the radioactive decay of uranium and thorium is in steady state equilibrium with its thermal escape. Although nonthermal losses would tend to reduce the estimated concentrations, these concentrations are not necessarily an upper limit since higher production rates and/or a possibly lower effective exospheric temperature over the solar activity cycle could increase them to even higher values. The computed helium concentration at the Martian exobase (200 km) is 8 million atoms/cu cm. Through the lower exosphere, the computed helium concentrations are 30-200 times greater than the Mariner-measured atomic hydrogen concentrations. It follows that helium may be the predominant constituent in the Martian lower exosphere and may well control the orbital lifetime of Mars-orbiting spacecraft.

  13. The effect of river fluctuation frequencies and amplitudes on the extent of the river-aquifer mixing zone and on the dilution of substances

    NASA Astrophysics Data System (ADS)

    Derx, Julia; Blaschke, Alfred Paul

    2010-05-01

    The river-aquifer mixing zone has been identified in the past by both observations in the field and by applying coupled groundwater models. Its implications are important e.g. for macrozoobenthos or fish eggs, which react sensitively to changes in flow velocities. The groundwater quality is also strongly affected due to the transport of substances from the river into the aquifer and can be altered due to these mixing processes. At a field site east of Vienna, we recently found that the Danube River surface level fluctuations induce circular flow patterns within the mixing zone and cause a greater dispersion of substances dissolved in groundwater. This has possibly important implications for river management, for example, in the case of anthropogenic river level fluctuations. In this paper, we investigate these findings more generally for groundwater-river interaction with different river fluctuation amplitudes and frequencies. We apply an unsaturated-saturated groundwater model and perform an extensive systematic model analysis to identify the effects of river fluctuation frequencies and amplitudes on the extent and location of the mixing zone. Thereby we investigate the influence of the river bank slopes, the hydraulic aquifer properties and the exchange conditions (infiltration and groundwater exfiltration). The estimated extents and locations of the mixing zone are presented for a range of river fluctuation frequencies and amplitudes, for aquifers of high to low permeabilities, for flat and steep riverbanks and for infiltration and groundwater exfiltration. These parameters demonstrate the significant correlation to the extent of the mixing zone and can help to give an estimate for management strategies. Furthermore, we give an overview of how much a non-reactive substance dissolved in groundwater is diluted, due to dispersion within the mixing zone, for the full set of scenarios performed during our systematic model analysis.

  14. Comparison of the Effectiveness of Exposure to Low-LET Helium Particles ((4)He) and Gamma Rays ((137)Cs) on the Disruption of Cognitive Performance.

    PubMed

    Rabin, Bernard M; Carrihill-Knoll, Kirsty L; Shukitt-Hale, Barbara

    2015-09-01

    In this study, the effects of radiation exposure on cognitive performance were evaluated. Rats were exposed to either helium ((4)He) particles (1,000 MeV/n; 0.1-10 cGy; head only) or cesium (137)Cs gamma rays (50-400 cGy; whole body), after which their cognitive performance was evaluated. The results indicated that exposure to doses of (4)He particles as low as 0.1 cGy disrupted performance in a variety of cognitive tasks, including plus-maze performance (baseline anxiety), novel location recognition (spatial performance) and operant responding on an ascending fixed-ratio reinforcement schedule (motivation and responsiveness to changes in environmental contingencies) but not on novel object recognition performance (learning and memory). In contrast, after exposure to (137)Cs gamma rays only plus-maze performance was affected. There were no significant effects on any other task. Because exposure to both types of radiation produce oxidative stress, these results indicate that radiation-produced oxidative stress may be a necessary condition for the radiation-induced disruption of cognitive performance, but it is not a sufficient condition. PMID:26284421

  15. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  16. Steer Weight Gain and Physiological Responses to Feeding Soybean Hulls on Toxic Tall Fescue: Dilution of Ergot Alkaloids or Additive Effect on Weight Gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stocker cattle grazing toxic tall fescue (Festuca arundinacea Schreb.) consume ergot alkaloids produced by an endophyte that can lead to the “fescue toxicosis” malady. One approach to alleviating fescue toxicosis is to dilute the alkaloids by interseeding clovers or by feeding concentrates; however...

  17. Helium jet dispersion to atmosphere

    NASA Astrophysics Data System (ADS)

    Khan, Hasna J.

    On the event of loss of vacuum guard of superinsulated helium dewar, high rate of heat transfer into the tank occurs. The rapid boiling of liquid helium causes the burst disk to rupture at four atmospheres and consequently the helium passes to the atmosphere through vent lines. The gaseous helium forms a vertical buoyant jet as it exits the vent line into a stagnant environment. Characterization of the gaseous jet is achieved by detailed analysis of the axial and radial dependence of the flow parameters.

  18. Helium cryopumping for fusion applications

    SciTech Connect

    Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1988-05-01

    Large quantities of helium and hydrogen isotopes will be exhausted continuously from fusion power reactors. This paper summarizes two development programs undertaken to address vacuum pumping for this application: (i) A continuous duty cryopump for pumping helium and/or hydrogen species using charcoal sorbent and (ii) a cryopump configuration with an alternative shielding arrangement using charcoal sorbent or argon spray. A test program evaluated automatic pumping of helium, helium pumping by charcoal cryosorption and with argon spray, and cryosorption of helium/hydrogen mixtures. The continuous duty cryopump pumped helium continuously and conveniently. Helium pumping speed was 7.7 l/s/cm/sup 2/ of charcoal, compared to 5.8 l/s/cm/sup 2/ for the alternative pump. Helium speed using argon spray was 18% of that obtained by charcoal cryosorption in the same (W-panel) pump. During continuous duty cryopump mixture tests with helium and hydrogen copumped on charcoal, gas was released sporadically. Testing was insufficient to explain this unacceptable event.

  19. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  20. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2014) (a)...

  1. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  2. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  3. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a)...

  4. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  5. Intermittency in dilute granular flows

    NASA Astrophysics Data System (ADS)

    Guo, Wenxuan; Zhang, Qiang; Wylie, Jonathan J.

    2016-07-01

    In this letter, we show that dilute granular systems can exhibit a type of intermittency that has no analogue in gas dynamics. We consider a simple system in which a very dilute set of granular particles falls under gravity through a nozzle. This setting is analogous to the classical problem of high-speed nozzle flow in the study of compressible gases. It is well known that very dilute granular systems exhibit behavior qualitatively similar to gases, and that gas flowing through a nozzle does not exhibit intermittency. Nevertheless, we show that the intermittency in dilute granular nozzle flows can occur and corresponds to complicated transitions between supersonic and subsonic regimes. We also provide detailed explanations of the mechanism underlying this phenomenon.

  6. Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 2: morphological and structural substrate analysis

    PubMed Central

    2014-01-01

    Background Lignocellulosic biomass is a renewable, naturally mass-produced form of stored solar energy. Thermochemical pretreatment processes have been developed to address the challenge of biomass recalcitrance, however the optimization, cost reduction, and scalability of these processes remain as obstacles to the adoption of biofuel production processes at the industrial scale. In this study, we demonstrate that the type of reactor in which pretreatment is carried out can profoundly alter the micro- and nanostructure of the pretreated materials and dramatically affect the subsequent efficiency, and thus cost, of enzymatic conversion of cellulose. Results Multi-scale microscopy and quantitative image analysis was used to investigate the impact of different biomass pretreatment reactor configurations on plant cell wall structure. We identify correlations between enzymatic digestibility and geometric descriptors derived from the image data. Corn stover feedstock was pretreated under the same nominal conditions for dilute acid pretreatment (2.0 wt% H2SO4, 160°C, 5 min) using three representative types of reactors: ZipperClave® (ZC), steam gun (SG), and horizontal screw (HS) reactors. After 96 h of enzymatic digestion, biomass treated in the SG and HS reactors achieved much higher cellulose conversions, 88% and 95%, respectively, compared to the conversion obtained using the ZC reactor (68%). Imaging at the micro- and nanoscales revealed that the superior performance of the SG and HS reactors could be explained by reduced particle size, cellular dislocation, increased surface roughness, delamination, and nanofibrillation generated within the biomass particles during pretreatment. Conclusions Increased cellular dislocation, surface roughness, delamination, and nanofibrillation revealed by direct observation of the micro- and nanoscale change in accessibility explains the superior performance of reactors that augment pretreatment with physical energy. PMID:24690534

  7. Irradiation hardening of Fe-9Cr-based alloys and ODS Eurofer: Effect of helium implantation and iron-ion irradiation at 300 °C including sequence effects

    NASA Astrophysics Data System (ADS)

    Heintze, C.; Bergner, F.; Hernández-Mayoral, M.; Kögler, R.; Müller, G.; Ulbricht, A.

    2016-03-01

    Single-beam, dual-beam and sequential iron- and/or helium-ion irradiations are widely accepted to emulate more application-relevant but hardly accessible irradiation conditions of generation-IV fission and fusion candidate materials for certain purposes such as material pre-selection, identification of basic mechanisms or model calibration. However, systematic investigations of sequence effects capable to critically question individual approaches are largely missing. In the present study, sequence effects of iron-ion irradiations at 300 °C up to 5 dpa and helium implantations up to 100 appm He are investigated by means of post-irradiation nanoindentation of an Fe9%Cr model alloy, ferritic/martensitic 9%Cr steels T91 and Eurofer97 and oxide dispersion strengthened (ODS) Eurofer. Different types of sequence effects, both synergistic and antagonistic, are identified and tentative interpretations are suggested. It is found that different accelerated irradiation approaches have a great impact on the mechanical hardening. This stresses the importance of experimental design in attempts to emulate in-reactor conditions.

  8. Energetic helium particles trapped in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng; Guzik, T. Gregory; Sang, Yeming; Wefel, John P.; Cooper, John F.

    1994-01-01

    High energy (approximately 40-100 MeV/nucleon) geomagnetically trapped helium nuclei have been measured, for the first time, by the ONR-604 instrument during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission. The helium events observed at L less than 2.3 have a pitch angle distribution peaking perpendicular to the local magnetic field and are contained in peaks located at L = 1.2 and 1.9. The events in each peak can be characterized by power law energy spectra with indices of 10.0 +/- 0.7 for L = 1.9-2.3 and 6.8 +/- 1.0 for L = 1.15-1.3, before the large storm of 24 March 1991. CRRES was active during solar maximum when the anomalous component is excluded from the inner heliosphere, making it unlikely that the observed events derived from the anomalous component. The trapped helium counting rates decrease gradually with time indicating that these high energy ions were not injected by flares during the 1990/91 mission. Flare injection prior to mid-1990 may account for the highest energy particles, while solar wind injection during magnetic storms and subsequent acceleration could account for the helium at lower energies.

  9. Helium soil-gas survey of the aurora uranium deposit, McDermitt Caldera Complex, Oregon

    SciTech Connect

    Reimer, G.M.

    1986-11-10

    Two soil gas helium surveys were carried out in a section of the McDermitt caldera complex of mineralized volcanic rocks in Oregon. A regional helium anomaly was found and is thought to be associated with uranium-rich tuffaceous fill of the caldera and the Aurora uranium deposit, which occurs near the northeastern rim of the Caldera. Local hydrology may have an effect on the displacement of the helium anomaly from the uranium deposit and be a carrier of helium from sources at depth. This study suggests that helium surveys may be useful in a volcanic environment by helping to select areas for exploratory drilling for uranium deposits.

  10. Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant

    NASA Astrophysics Data System (ADS)

    Li, Hailing; Wang, Qing; Ba, Dechun

    2014-11-01

    The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS, FTIR and optical emission spectroscopy analysis. XPS data indicate that helium ions have broken Si-C bonds, leading to Si-C scission with C(1s) lost seriously. The Si(2p), O(1s), peak obviously shifted to higher binding energies, indicating an increasingly oxidized Si(2p). FTIR data also show that the silanol formation increased with longer exposure time up to a week. Contrarily, the CH3 stretch, Si-C stretching bond and the ratio of the Si-O-Si cage and Si-O-Si network peak sharply decreased upon exposure to helium plasma. The OES result indicates that monovalent helium ions in plasma play a key role in damaging carbon doped silica film. So it can be concluded that the monovalent helium ions besides VUV photons can break the weak Si-C bonds to create Si dangling bonds and free methyl radicals, and the latter easily reacts with O2 from the atmosphere to generate CO2 and H2O. The bonds change is due to the Si dangling bonds combining with H2O, thereby, increasing the dielectric constant k value.

  11. Transport simulations of the ignited ITER with high helium fraction

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1994-04-01

    Computer simulations with special versions of the one dimensional BALDUR predictive transport code are carried out to investigate the particle confinement of helium and hydrogen, the energy confinement and the burn control in the high density scenario of the ITER (CDA) physics phase. The code uses empirical transport coefficients for ELMy H mode plasmas, an improved model of the scrape-off layer (SOL), an impurity radiation model for helium and iron, and fast burn control by neutral beam injection feedback. A self-sustained thermonuclear burn is achieved for hundreds of seconds. The necessary radiation corrected energy confinement time τE is found to be 4.2 s, which is attainable according to the ITER H mode scaling. In the ignited ITER, a significant dilution of the DT fuel by helium takes place. Steady state helium fractions of up to 8% are obtained, which are found to be compatible with self-sustained burn. The SOL model yields self-consistent electron densities and temperatures at the separatrix (ne = 5.8 × 1019 m-3, Te = 80 eV)

  12. Soft x-ray spectroscopy in atmospheric pressure helium

    SciTech Connect

    Roper, M.D.; van der Laan, G.; Flaherty, J.V.; Padmore, H.A. )

    1992-01-01

    We report on an environmental chamber, which is attached to a UHV beamline, in which soft x-ray measurements can be done at atmospheric pressure in helium. X-ray measurements in air can only be performed at energies above about 3 keV because of the strong absorption of soft x rays by oxygen and nitrogen. However, a low-{ital Z} scatterer such as helium has a long absorption length for soft x rays even at atmospheric pressure. Thus, this new chamber allows soft x-ray experiments to be performed on samples with physical properties that are incompatible with UHV conditions, e.g., liquid and frozen aqueous solutions, corrosive materials, etc. A helium-tight tank has been installed behind the vacuum experimental chamber of the double crystal beamline 3.4 at the Daresbury SRS. The tank is purged with helium at atmospheric pressure and the gas in the tank is isolated from the high vacuum of the rest of the beamline by a thin mylar window which is supported on a capillary array. The tank contains a sample stage, two ionization chambers and a parallel-plate gas proportional counter for fluorescence detection of dilute samples, which has produced good results on the {ital K} edges of Cl, S, and P.

  13. A helium regenerative compressor

    SciTech Connect

    Swift, W.L.; Nutt, W.E.; Sixsmith, H.

    1994-12-31

    This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors.

  14. Optical Forces on Metastable Helium

    NASA Astrophysics Data System (ADS)

    Corder, Christopher Scott

    Optical forces using lasers allow precise control over the motion of atoms. The bichromatic optical force (BF) is unique in its large magnitude and velocity range, arising from the absorption and stimulated emission processes. These properties were used to transversely collimate a beam of metastable helium (He*) using the 23S - 23P transition. The collimation created a very bright beam of He*, allowing experiments of neutral atom lithography. The He* beam was used to pattern material surfaces using a resist-based lithography technique, where the pattern was determined by either mechanical or optical masks. The optical masks produced features with a separation of half the wavelength of the light used. Patterning was successfully demonstrated with both IR and UV optical masks. The etched pattern resolution was ˜ 100 nm and limited by the material surface. Further experiments were performed studying the ability of the bichromatic force to cool. The finite velocity range of the BF allows estimation of a characteristic cooling time which is independent of the excited state lifetime, only depending on the atomic mass and optical transition energy. Past experiments, including the helium collimation used for neutral atom lithography, have demonstrated that the BF can collimate and longitudinally slow atomic beams, but required long interaction times that included many spontaneous emission (SE) events. The effect of SE can be mitigated, and is predicted to not be necessary for BF cooling. Since the BF cooling time is not related to the excited state lifetime, a transition can be chosen such that the cooling time is shorter than the SE cycle time, allowing direct laser cooling on atoms and molecules that do not have cycling transitions. Experiments using the helium 2 3S-3P transition were chosen because the BF cooling time (285 ns) is on the order of the average SE cycle time (260 ns). Numerical simulations of the experimental system were run predicting compression of the

  15. First-principles study of the threshold effect in the electronic stopping power of LiF and SiO2 for low-velocity protons and helium ions

    NASA Astrophysics Data System (ADS)

    Mao, Fei; Zhang, Chao; Dai, Jinxia; Zhang, Feng-Shou

    2014-02-01

    Nonadiabatic dynamics simulations are performed to investigate the electronic stopping power of LiF and SiO2-cristobalite-high crystalline thin films when protons and helium ions are hyperchanneling in the <001> axis. In this theoretical framework, ab initio time-dependent density-functional theory calculations for electrons are combined with molecular dynamics simulations for ions in real time and real space. The energy transfer process between the ions and the electronic subsystem of LiF and SiO2 nanostructures is studied. The velocity-proportional stopping power of LiF and SiO2 for protons and helium ions is predicted in the low-energy range. The measured velocity thresholds of protons in LiF and SiO2, and helium ions in LiF are reproduced. The convergence of the threshold effect with respect to the separation of grid points is confirmed. The underlying physics of the threshold effect is clarified by analyzing the conduction band electron distribution. In addition, the electron transfer processes between the projectile ions and solid atoms in hyperchanneling condition are studied, and its effects on the energy loss is investigated.

  16. Endogenous N-losses in broilers estimated by a [15N]-isotope dilution technique: effect of dietary fat type and xylanase addition.

    PubMed

    Dänicke, S; Jeroch, H; Simon, O

    2000-01-01

    Male broilers were given a low protein diet (15.5% CP) spiked with [15N]H4HCO3 from day 12 to day 18 of age to label the endogenous N-constituents. Experimental diets were subsequently fed from day 19 to day 24 of age and consisted of a rye based diet (56% dietary inclusion) which contained either 10% soya oil (S) or 10% beef tallow (T), each of which was either unsupplemented (-) or supplemented (+) with a xylanase containing enzyme preparation (2700 IU/kg at pH 5.3). [15N]-atom percent excess (APE) of excreta, faeces and urine were monitored on a daily basis during both experimental periods. Furthermore, APE was measured in various tissues at the end of the experiment. The APE of urine on the last day of the experiment was between the APE of the pancreas and that of the jejunal tissue, an observation which supported the usefulness of using urinary APE as an indicator for the endogenous N-pool. Endogenous N-proportions were estimated by an isotope dilution technique at the end of the experiment by examination of the ratio of APE in faeces and urine. The endogenous N-proportion in the faeces was greatest in birds receiving the T(-) diet. The proportions were 0.321, 0.319, 0.451 and 0.289 in S(-), S(+), T(-) and T(+) fed groups, respectively. Xylanase addition reduced endogenous N-proportion, a factor which was used to correct apparent crude protein digestibility (85.6, 86.2, 84.3 and 88.5% in S(-), S(+), T(-) and T(+) fed birds, respectively) for endogenous losses resulting in almost equal true digestibilities of crude protein for all treatments (90.3, 90.6, 90.4 and 91.5%). The amounts of endogenous N in faces were estimated to be 87, 69, 244 and 81 mg per day per kg0.67 body weight in S(-), S(+), T(-) and T(+) fed birds, respectively. It was concluded that xylanase supplementation of a rye based broiler diet does not change endogenous N-secretions when the supplemental fat is soya oil. However, addition of tallow rather than soya oil increased these N

  17. Retroviral sequences located within an intron of the dilute gene alter dilute expression in a tissue-specific manner.

    PubMed Central

    Seperack, P K; Mercer, J A; Strobel, M C; Copeland, N G; Jenkins, N A

    1995-01-01

    The murine dilute coat color locus encodes an unconventional myosin heavy chain that is thought to be required for the elaboration or maintenance of dendrites or organelle transport in melanocytes and neurons. In previous studies we showed that the d mutation carried by many inbred strains of mice (now referred to as dilute viral, dv), is caused by the integration of an ecotropic murine leukemia virus (Emv-3) into the dilute gene and that phenotypic revertants of dv (termed d+) result from viral excision; a solo viral long terminal repeat (LTR) is all that remains in revertant DNA. In the studies described here we show that Emv-3 sequences are located within an intron of the dilute gene in a region of the C-terminal tail that is differentially spliced. We also show that these Emv-3 sequences result in the production of shortened and abnormally spliced dilute transcripts and that the level of this effect varies among tissues. This tissue-specific effect on dilute expression likely accounts for the absence of neurological abnormalities observed in dv mice. Surprisingly, we also found that the solo viral LTR present in revertant d+ DNA produces a tissue-specific effect on dilute expression, although this effect is less dramatic than with the full-length provirus and produces no obvious mutant phenotype. These findings have important implications for understanding the effects of viral sequences on mammalian gene expression. Images PMID:7774591

  18. Dynamics of superfluid helium in zero gravity. [Spacelab 2 investigation

    NASA Technical Reports Server (NTRS)

    Mason, P. V.

    1981-01-01

    The Spacelab 2 superfluid helium experiment was designed to: (1) examine the behavior of capillary waves and measure their velocity and dampling; (2) study the sloshing motion of bulk superfluid helium in near-zero gravity in order to determine its effects on sensors and attitude control systems for far infrared telescopes; and (3) determine the temperature distributions in the liquid and their correlation with bulk motion. The experiment system includes a helium cryostat with a sensor head and a microcomputer to provide electrical excitation and gather and transmit resultant responses to the experiment teams on the ground. Astronaut intervention is possible.

  19. Tensile behavior of helium charged VTiCrSi type alloys

    NASA Astrophysics Data System (ADS)

    Satou, M.; Koide, H.; Hasegawa, A.; Abe, K.; Kayano, H.; Matsui, H.

    1996-10-01

    Helium effect on the mechanical properties of the alloy V5Ti5Cr1SiAl,Y (nominal) was studied, adopting various helium charging methods and helium-to-dpa ratio. The first method was helium ion implantation using a cyclotron accelerator at Tohoku University, where helium and displacement levels were 50 appm and 0.02 dpa, respectively. The second, helium was charged by tritium trick technique and following neutron irradiation in FFTF/MOTA-2A, associated with about 80 appm He and 43 dpa. The third was dynamic helium charging experiment (DHCE) conducted in FFTF/MOTA-2B, where helium was generated within specimens during neutron irradiation by tritium decay, and the helium-to-dpa ratio was adjusted to simulate the fusion reactor condition, that is, 177 appm He and 24 dpa. The effect of helium on tensile properties of the VTiCrSiAl,Y alloy depended on the helium charging methods. The uniform elongation of the alloy was 3.2% and total elongation was 8.3% at DHCE condition, which was the most fusion relevant condition of the methods. It is important that tensile properties of the present alloy could be acceptable for fusion reactor component materials.

  20. Helium-oxygen therapy in the emergency department.

    PubMed

    McGee, D L; Wald, D A; Hinchliffe, S

    1997-01-01

    Helium is an inert gas with unique physical properties that allow it to be used for various respiratory emergencies. Because of its low specific gravity and low viscosity, the passage of helium through the respiratory tract is smoother, more laminar, and less turbulent than either air or oxygen. These properties have prompted the use of helium and oxygen in patients with airway obstructions due to tumor, foreign body, edema, or bronchoconstriction. Helium-oxygen has been used to facilitate bronchoscopy through small diameter endotracheal tubes and to increase the effectiveness of high-frequency jet ventilation. Helium has been successful in the treatment of spinal cord decompression sickness seen in divers. Helium-oxygen mixtures are commercially available and may be useful in the emergency department to treat patients with airway obstruction. This article reviews literature concerning the use of helium-oxygen gas mixtures in the emergency department. Additional research conducted in the future may further define the use of this unique gas mixture in the emergency department. PMID:9258776