Science.gov

Sample records for helium-cooled divertor finger

  1. Optimal thermal-hydraulic performance for helium-cooled divertors

    SciTech Connect

    Izenson, M.G.; Martin, J.L.

    1996-07-01

    Normal flow heat exchanger (NFHX) technology offers the potential for cooling divertor panels with reduced pressure drops (<0.5% {Delta}p/p), reduced pumping power (<0.75% pumping/thermal power), and smaller duct sizes than conventional helium heat exchangers. Furthermore, the NFHX can easily be fabricated in the large sizes required for divertors in large tokamaks. Recent experimental and computational results from a program to develop NFHX technology for divertor coolings using porous metal heat transfer media are described. We have tested the thermal and flow characteristics of porous metals and identified the optimal heat transfer material for the divertor heat exchanger. Methods have been developed to create highly conductive thermal bonds between the porous material and a solid substrate. Computational fluid dynamics calculations of flow and heat transfer in the porous metal layer have shown the capability of high thermal effectiveness. An 18-kW NFHX, designed to meet specifications for the international Thermonuclear Experimental Reactor divertor, has been fabricated and tested for thermal and flow performance. Preliminary results confirm design and fabrication methods. 11 refs., 12 figs., 1 tab.

  2. Development of a helium-cooled divertor: Material choice and technological studies

    NASA Astrophysics Data System (ADS)

    Norajitra, P.; Boccaccini, L. V.; Gervash, A.; Giniyatulin, R.; Holstein, N.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Kuznetsov, V.; Makhankov, A.; Mazul, I.; Moeslang, A.; Ovchinnikov, I.; Rieth, M.; Zeep, B.

    2007-08-01

    Within the framework of the EU power plant conceptual study (PPCS), a He-cooled divertor concept has been investigated at Forschungszentrum Karlsruhe in cooperation with the Efremov Institute. The design goal is to remove a high heat load of at least 10 MW/m 2. The design is based on a modular construction of cooling finger unit that helps reduce thermal stresses. The divertor finger unit, which is cooled by high pressure helium, consists of a tungsten tile as thermal shield and sacrificial layer, and a thimble made of tungsten alloy. The success of this design depends strongly on the effectiveness of the cooling technology and on the availability of appropriate structural materials such as tungsten alloy and oxide-dispersion-strengthened (ODS) steel as well as the related fabrication and joining technology. Results of this investigation are discussed in the paper.

  3. Helium-cooled divertor for DEMO: Manufacture and high heat flux tests of tungsten-based mock-ups

    NASA Astrophysics Data System (ADS)

    Norajitra, P.; Gervash, A.; Giniyatulin, R.; Hirai, T.; Janeschitz, G.; Krauss, W.; Kuznetsov, V.; Makhankov, A.; Mazul, I.; Ovchinnikov, I.; Reiser, J.; Widak, V.

    2009-04-01

    A helium-cooled divertor concept for DEMO has been investigated extensively at the Forschungszentrum Karlsruhe under the EU power plant conceptual study, the goal being to demonstrate performance under heat flux of 10 MW/m 2 at least. Work covers different areas ranging from conceptual design to analysis, materials and fabrication issues to experiments. Meanwhile, the He-cooled modular divertor concept with jet cooling (HEMJ) has been proposed as reference design. In cooperation with the Efremov Institute, manufacture and high heat flux testing of divertor elements was performed for design verification and proof-of-principle. This paper focuses on the technological study of the fabrication of mock-ups from W/W alloy and Eurofer steel supporting structure material. The high heat flux test results of 2006 and 2007 are summarised and discussed.

  4. Current state-of-the-art manufacturing technology for He-cooled divertor finger

    NASA Astrophysics Data System (ADS)

    Norajitra, P.; Antusch, S.; Giniyatulin, R.; Mazul, I.; Ritz, G.; Ritzhaupt-Kleissl, H.-J.; Spatafora, L.

    2011-10-01

    A divertor concept for DEMO has been investigated at Karlsruhe Institute of Technology (KIT) which has to withstand a heat flux of 10 MW/m 2. The design utilizes small finger module composed of a small tungsten tile brazed on a thimble made from tungsten alloy. The divertor finger is cooled by helium jet impingement at 10 MPa and 600 °C. The subject of this paper is technological studies on machining and braze joining the divertor components. Goal of this task, which is considered an important R&D issue, is to find out appropriate manufacturing methods to ensure high functionality and high reliability of the divertor as well as to meet the economic aspect. One of the major requirements for manufacturing is micro-crack-free surface of tungsten parts, since crack propagations in tungsten were observed in the previous high-heat-flux tests at Efremov. Different manufacturing methods and the corresponding results are discussed in the following report.

  5. Helium-cooled high temperature reactors

    SciTech Connect

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  6. Thermal Performance of a Dual-Channel, Helium-Cooled, Tungsten Heat Exchanger

    SciTech Connect

    YOUCHISON,DENNIS L.; NORTH,MART T.

    2000-11-22

    Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion. Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m{sup 2} and reached a maximum surface temperature of 593 C for uniform power loading of 3 kW absorbed on a 2-cm{sup 2} area. An impressive 10 kW of power was absorbed on an area of 24 cm{sup 2}. Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum RTDs for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels. The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m{sup 2} using 50 C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented.

  7. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    SciTech Connect

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-07-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m{sup 2}. The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m{sup 2} while maintaining a surface temperature below 400{degree}C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m{sup 2} and surface temperatures near 533{degree}C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m{sup 2} and reached a surface temperature of 740{degree}C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m{sup 2} and reached a maximum surface temperature of 690{degree}C. 11refs., 20 figs., 3 tabs.

  8. Overview of Helium Cooled System Applications with RELAP at ENEA

    SciTech Connect

    Meloni, Paride; Casamirra, Maddalena

    2006-07-01

    Some years ago, within the framework of the study for the International Thermonuclear Experimental Reactor (ITER), ENEA assessed the RELAP5 code capability to simulate Helium cooled systems on the experimental data provided by the helium facility HEFUS3 (Brasimone, Italy). This activity allowed acquiring a certain experience on the limits and capabilities of the code that, in the following years, was used for a wide range of applications concerning transient and accident analysis of helium cooled systems. At first the paper summarizes the results of the assessment activity, then describes the accident analyses performed for the conceptual study of the Fusion Power Reactor with Helium-Cooled Pebble Bed Blanket (HCPBB) and the studies to support the safety design of the gas cooled Accelerator Driven System (ADS) concept. The paper concludes highlighting the RELAP adaptations to realize within the framework of the feasibility studies for a combined cycle concept of the Very High Temperature Reactor (VHTR). (authors)

  9. Experimental and numerical investigation of the thermal performance of gas-cooled divertor modules

    NASA Astrophysics Data System (ADS)

    Crosatti, Lorenzo

    Divertors are in-vessel, plasma-facing, components in magnetic-confinement fusion reactors. Their main function is to remove the fusion reaction ash (alpha-particles), unburned fuel, and eroded particles from the reactor, which adversely affect the quality of the plasma. A significant fraction (˜15 %) of the total fusion thermal power is removed by the divertor coolant and must, therefore, be recovered at elevated temperature in order to enhance the overall thermal efficiency. Helium is the leading coolant because of its high thermal conductivity, material compatibility, and suitability as a working fluid for power conversion systems using a closed high temperature Brayton cycle. Peak surface heat fluxes on the order of 10 MW/m2 are anticipated with surface temperatures in the region of 1,200 °C to 1,500 °C. Recently, several helium-cooled divertor designs have been proposed, including a modular T-tube design and a modular "finger" configuration with jet impingement cooling from perforated end caps. Design calculations performed using the FLUENTRTM CFD software package have shown that these designs can accommodate a peak heat load of 10 MW/m2. Extremely high heat transfer coefficients (˜50,000 W/(m2•K)) were predicted by these calculations. Since these values of heat transfer coefficient are considered to be "outside of the experience base" for gas-cooled systems, an experimental investigation has been undertaken to validate the results of the numerical simulations. Attention has been focused on the thermal performance of the T-tube and the "finger" divertor designs. Experimental and numerical investigations have been performed to support both divertor geometries. Excellent agreement has been obtained between the experimental data and model predictions, thereby confirming the predicted performance of the leading helium-cooled divertor designs for near- and long-term magnetic fusion reactor designs. The results of this investigation provide confidence in the

  10. The evolution of US helium-cooled blankets

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Cheng, E. T.; Schultz, K. R.

    1991-08-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America. These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket confirmation for helium-cooled fusion power and experimental reactors.

  11. Helium cooling systems for large superconducting physics detector magnets

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    The large superconducting detector magnets used for high energy physics experiments are virtually all indirectly cooled. In general, these detector magnets are not cryogenically stabilized. Therefore, there are a number of choices for cooling large indirectly cooled detector magnets. These choices include; 1) forced two-phase helium cooling driven by the helium refrigerator J-T circuit, 2) forced two-phase helium cooling driven by a helium pump, and 3) a peculation gravity feed cooling system which uses liquid helium from a large storage dewar. The choices for the cooling of a large detector magnet are illustrated by applying these concepts to a 4.2 meter diameter 0.5 tesla thin superconducting solenoid for an experiment at the Relativistic Heavy Ion Collider (RHIC).

  12. Evaluation of US demo helium-cooled blanket options

    SciTech Connect

    Wong, C.P.C.; McQuillan, B.W.; Schleicher, R.W.

    1995-10-01

    A He-V-Li blanket design was developed as a candidate for the U.S. fusion demonstration power plant. This paper presents an 18 MPa helium-cooled, lithium breeder, V-alloy design that can be coupled to the Brayton cycle with a gross efficiency of 46%. The critical issue of designing to high gas pressure and the compatibility between helium impurities and V-alloy are addressed.

  13. High capacity 30 K remote helium cooling loop

    NASA Astrophysics Data System (ADS)

    Trollier, T.; Tanchon, J.; Icart, Y.; Ravex, A.

    2014-01-01

    Absolut System has built several 50 K remote helium cooling loops used as high capacity and very low vibration cooling source into large wavelength IR detectors electro-optical characterization test benches. MgB2 based superconducting electro-technical equipment's under development require also distributed high cooling power in the 20-30 K temperature range. Absolut System has designed, manufactured and tested a high capacity 30 K remote helium cooling loop. The equipment consists of a CRYOMECH AL325 type cooler, a CP830 type compressor package used as room temperature circulator and an intermediate LN2 bath cooling used between two recuperator heat exchangers (300 K-77 K and 77 K-20 K). A cooling capacity of 30 W @ 20 K or 80 W @ 30 K has been demonstrated on the application heat exchanger, with a 4-meter remote distance ensured by a specifically designed gas circulation flexible line. The design and the performance will be reported in this paper.

  14. Design of a helium-cooled molten salt fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; DeVan, J.H.

    1985-02-01

    A new conceptual blanket design for a fusion reactor produces fissile material for fission power plants. Fission is suppressed by using beryllium, rather than uranium, to multiply neutrons and also by minimizing the fissile inventory. The molten-salt breeding media (LiF + BeF/sub 2/ + TghF/sub 4/) is circulated through the blanket and on to the online processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket including the steel pipes containing the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion rate by molten salt. We estimate the breeder, having 3000 MW of fusion power, produces 6400 kg of /sup 233/U per year, which is enough to provide make up for 20 GWe of LWR per year (or 14 LWR plants of 4440 MWt) or twice that many HTGRs or CANDUs. Safety is enhanced because the afterheat is low and the blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times an LWR of the same power. The estimated present value cost of the /sup 2/anumber/sup 3/U produced is $40/g if utility financed or $16/g if government financed.

  15. Development of a feed monitor system for a helium-cooled Michelson intererometer for the Spacelab

    NASA Technical Reports Server (NTRS)

    Essenwanger, P.

    1980-01-01

    A Michelson interferometer feed monitor system developed for Spacelab is described. The device is helium cooled and is to be used to measure far infrared radiation sources in space. Performance data and development sequence are presented.

  16. Liquid helium-cooled MOSFET preamplifier for use with astronomical bolometer

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.

    1977-01-01

    A liquid helium-cooled p-channel enhancement mode MOSFET, the 3N167, is found to have sufficiently low noise for use as a preamplifier with helium-cooled bolometers that are used in infrared astronomy. Its characteristics at 300, 77, and 4.2 K are presented. It is also shown to have useful application with certain photoconductive and photovoltaic infrared detectors.

  17. Helium-cooled molten-salt fusion breeder

    SciTech Connect

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.

    1984-12-01

    We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

  18. Helium-Cooled Black Shroud for Subscale Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Jackson, Michael; DiPirro, Michael; Francis, John

    2011-01-01

    This shroud provides a deep-space simulating environment for testing scaled-down models of passively cooling systems for spaceflight optics and instruments. It is used inside a liquid-nitrogen- cooled vacuum chamber, and it is cooled by liquid helium to 5 K. It has an inside geometry of approximately 1.6 m diameter by 0.45 m tall. The inside surfaces of its top and sidewalls have a thermal absorptivity greater than 0.96. The bottom wall has a large central opening that is easily customized to allow a specific test item to extend through it. This enables testing of scale models of realistic passive cooling configurations that feature a very large temperature drop between the deepspace-facing cooled side and the Sun/Earth-facing warm side. This shroud has an innovative thermal closeout of the bottom wall, so that a test sample can have a hot (room temperature) side outside of the shroud, and a cold side inside the shroud. The combination of this closeout and the very black walls keeps radiated heat from the sample s warm end from entering the shroud, reflecting off the walls and heating the sample s cold end. The shroud includes 12 vertical rectangular sheet-copper side panels that are oriented in a circular pattern. Using tabs bent off from their edges, these side panels are bolted to each other and to a steel support ring on which they rest. The removable shroud top is a large copper sheet that rests on, and is bolted to, the support ring when the shroud is closed. The support ring stands on four fiberglass tube legs, which isolate it thermally from the vacuum chamber bottom. The insides of the cooper top and side panels are completely covered with 25- mm-thick aluminum honeycomb panels. This honeycomb is painted black before it is epoxied to the copper surfaces. A spiral-shaped copper tube, clamped at many different locations to the outside of the top copper plate, serves as part of the liquid helium cooling loop. Another copper tube, plumbed in a series to the

  19. Divertor detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, Sergei

    2015-11-01

    The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.

  20. Deep Burn Develpment of Transuranic Fuel for High-Temperature Helium-Cooled Reactors - July 2010

    SciTech Connect

    Snead, Lance Lewis; Besmann, Theodore M; Collins, Emory D; Bell, Gary L

    2010-08-01

    The DB Program Quarterly Progress Report for April - June 2010, ORNL/TM/2010/140, was distributed to program participants on August 4. This report discusses the following: (1) TRU (transuranic elements) HTR (high temperature helium-cooled reactor) Fuel Modeling - (a) Thermochemical Modeling, (b) 5.3 Radiation Damage and Properties; (2) TRU HTR Fuel Qualification - (a) TRU Kernel Development, (b) Coating Development, (c) ZrC Properties and Handbook; and (3) HTR Fuel Recycle - (a) Recycle Processes, (b) Graphite Recycle, (c) Pyrochemical Reprocessing - METROX (metal recovery from oxide fuel) Process Development.

  1. A liquid helium cooled mid-infrared imaging Fabry-Perot spectrometer

    NASA Astrophysics Data System (ADS)

    Watarai, H.; Chaen, K.; Matsuhara, H.; Matsumoto, T.; Takahashi, H.

    1994-03-01

    A liquid helium cooled mid-infrared imaging Fabry-Perot spectrometer has been under development. A Si:P 5x5 detector array is used for this instrument. Although the array system has small format, but combination with junction field effect transistor (JFET) array will provide noise equivalent line flux of 1.0 x 10-21 w/sq cm(1000 sec, 10 sigma). This sensitivity is comparable with the short wavelength spectrometer (SWS) of the Infrared Space Observatory (ISO).

  2. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    SciTech Connect

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flow perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the

  3. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE PAGESBeta

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  4. Is cold better ? - exploring the feasibility of liquid-helium-cooled optics.

    SciTech Connect

    Assoufid, L.; Mills, D.; Macrander, A.; Tajiri, G.

    1999-09-30

    Both simulations and recent experiments conducted at the Advanced Photon Source showed that the performance of liquid-nitrogen-cooled single-silicon crystal monochromators can degrade in a very rapid nonlinear fashion as the power and for power density is increased. As a further step towards improving the performance of silicon optics, we propose cooling with liquid helium, which dramatically improves the thermal properties of silicon beyond that of liquid nitrogen and brings the performance of single silicon-crystal-based synchrotrons radiation optics up to the ultimate limit. The benefits of liquid helium cooling as well as some of the associated technical challenges will be discussed, and results of thermal and structural finite elements simulations comparing the performance of silicon monochromators cooled with liquid nitrogen and helium will be given.

  5. The Helium Cooling System and Cold Mass Support System for theMICE Coupling Solenoid

    SciTech Connect

    Wang, L.; Wu, H.; Li, L.K.; Green, M.A.; Liu, C.S.; Li, L.Y.; Jia, L.X.; Virostek, S.P.

    2007-08-27

    The MICE cooling channel consists of alternating threeabsorber focus coil module (AFC) and two RF coupling coil module (RFCC)where the process of muon cooling and reacceleration occurs. The RFCCmodule comprises a superconducting coupling solenoid mounted around fourconventional conducting 201.25 MHz closed RF cavities and producing up to2.2T magnetic field on the centerline. The coupling coil magnetic fieldis to produce a low muon beam beta function in order to keep the beamwithin the RF cavities. The magnet is to be built using commercialniobium titanium MRI conductors and cooled by pulse tube coolers thatproduce 1.5 W of cooling capacity at 4.2 K each. A self-centering supportsystem is applied for the coupling magnet cold mass support, which isdesigned to carry a longitudinal force up to 500 kN. This report willdescribe the updated design for the MICE coupling magnet. The cold masssupport system and helium cooling system are discussed indetail.

  6. A liquid-helium-cooled absolute reference cold load for long-wavelength radiometric calibration

    NASA Technical Reports Server (NTRS)

    Bensadoun, Marc; Witebsky, Chris; Smoot, George; De Amici, Giovanni; Kogut, AL; Levin, Steve

    1992-01-01

    Design, radiometric and thermal performance, and operation of a large diameter (78 cm) liquid-helium-cooled blackbody absolute reference cold load (CL) for the calibration of microwave radiometers is described. CL provides an absolute calibration near the liquid-helium (LHe) boiling point, with total uncertainty in the radiometric temperature of less than 30 mK over the 2.5-23 cm wavelength operating range. CL was used at several wavelengths at the South Pole, Antarctica and the White Mountain Research Center, California. Results show that, for the instruments operated at 20-, 12-, 7.9-, and 4.0 cm wavelength at the South Pole, the total corrections to the LHe boiling-point temperature (about 3.8 K) were 48 +/-23, 18 +/-10, 10 +/-18, and 15 +/-mK.

  7. A Liquid-Helium-Cooled Absolute Reference Cold Load forLong-Wavelength Radiometric Calibration

    SciTech Connect

    Bensadoun, M.; Witebsky, C.; Smoot, George F.; De Amici,Giovanni; Kogut, A.; Levin, S.

    1990-05-01

    We describe a large (78-cm) diameter liquid-helium-cooled black-body absolute reference cold load for the calibration of microwave radiometers. The load provides an absolute calibration near the liquid helium (LHe) boiling point, accurate to better than 30 mK for wavelengths from 2.5 to 25 cm (12-1.2 GHz). The emission (from non-LHe temperature parts of the cold load) and reflection are small and well determined. Total corrections to the LHe boiling point temperature are {le} 50 mK over the operating range. This cold load has been used at several wavelengths at the South Pole and at the White Mountain Research Station. In operation, the average LHe loss rate was {le} 4.4 l/hr. Design considerations, radiometric and thermal performance and operational aspects are discussed. A comparison with other LHe-cooled reference loads including the predecessor of this cold load is given.

  8. A robust helium-cooled shield/blanket design for ITER

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Bourque, R. F.; Baxi, C. B.; Colleraine, A. P.; Grunloh, H. J.; Letchenberg, T.; Leuer, J. A.; Reis, E. E.; Redler, K.; Will, R.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding; its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology.

  9. Helium-cooled, FLiBe-breeder, beryllium-multiplier blanket for MINIMARS

    SciTech Connect

    Moir, R.W.; Lee, J.D.

    1986-06-01

    We adapted the helium-cooled, FLiBe-breeder blanket to the commercial tandem-mirror fusion-reactor design, MINIMARS. Vanadium was used to achieve high performance from the high-energy-release neutron-capture reactions and from the high-temperature operation permitted by the refractory property of the material, which increases the conversion efficiency and decreases the helium-pumping power. Although this blanket had the highest performance among the MINIMARS blankets designs, measured by Mn/sub th/ (blanket energy multiplication times thermal conversion efficiency), it had a cost of electricity (COE) 18% higher than the University of Wisconsin (UW) blanket design (42.5 vs 35.9 mills/kW.h). This increased cost was due to using higher-cost blanket materials (beryllium and vanadium) and a thicker blanket, which resulted in higher-cost central-cell magnets and the need for more blanket materials. Apparently, the high efficiency does not substantially affect the COE. Therefore, in the future, we recommend lowering the helium temperature so that ferritic steel can be used. This will result in a lower-cost blanket, which may compensate for the lower performance resulting from lower efficiency.

  10. Forced two-phase helium cooling scheme for the Mu2e transport solenoid

    NASA Astrophysics Data System (ADS)

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.; Evbota, D.; Lopes, M.; Nicol, T.; Sanders, R.; Schmitt, R.; Voirin, E.

    2015-12-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids.

  11. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    SciTech Connect

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael; Walker, Matthew

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  12. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    SciTech Connect

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.; Evbota, D.; Lopes, M.; Nicol, T.; Sanders, R.; Schmitt, R.; Voirin, E.

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids

  13. THE VALUE OF HELIUM-COOLED REACTOR TECHNOLOGIES OF NUCLEAR WASTE

    SciTech Connect

    C. RODRIGUEZ; A. BAXTER

    2001-03-01

    Helium-cooled reactor technologies offer significant advantages in accomplishing the waste transmutation process. They are ideally suited for use with thermal, epithermal, or fast neutron energy spectra. They can provide a relatively hard thermal neutron spectrum for transmutation of fissionable materials such as Pu-239 using ceramic-coated transmutation fuel particles, a graphite moderator, and a non-fertile burnable poison. These features (1) allow deep levels of transmutation with minimal or no intermediate reprocessing, (2) enhance passive decay heat removal via heat conduction and radiation, (3) allow operation at relatively high temperatures for a highly efficient generation of electricity, and (4) discharge the transmuted waste in a form that is highly resistant to corrosion for long times. They also offer the possibility for the use of epithermal neutrons that can interact with transmutable materials more effectively because of the large atomic cross sections in this energy domain. A fast spectrum may be useful for deep burnup of certain minor actinides. For this application, helium is essentially transparent to neutrons, does not degrade neutron energies, and offers the hardest possible neutron energy environment. In this paper, we report results from recent work on materials transmutation balances, safety, value to a geological repository, and economic considerations.

  14. A Helium-Cooled Absolute Cavity Radiometer For Solar And Laboratory Irradiance Measurement

    NASA Astrophysics Data System (ADS)

    Foukal, P.; Miller, P.

    1983-09-01

    We describe the design and testing of a helium-cooled absolute radiometer (HCAR) devel-oped for highly reproducible measurements of total solar irradiance and ultraviolet flux, and for laboratory standards uses. The receiver of this cryogenic radiometer is a blackened cone of pure copper whose temperature is sensed by a germanium resistance thermometer. During a duty cycle, radiant power input is compared to electrical heating in an accurate resistor wound on the receiver, as in conventional self-calibrating radiometers of the PACRAD and ACR type. But operation at helium temperatures enables us to achieve excellent radia-tive shielding between the receiver and the radiometer thermal background. This enables us to attain a sensitivity level of 10-7 watts at 30 seconds integration time, at least 10 times better than achieved by room temperature cavities. The dramatic drop of copper specific heat at helium temperatures reduces the time constant for a given mass of receiver, by a factor of 103. Together with other cryogenic materials properties such as electrical superconductivity and the high thermal conductivity of copper, this can be used to greatly reduce non-equivalence errors between electrical and radiant heating, that presently limit the absolute accuracy of radiometers to approximately 0,2%. Absolute accuracy of better than 0.01% has been achieved with a similar cryogenic radiometer in laboratory measurements of the Stefan-Boltzmann constant at NPL in the U.K. Electrical and radiometric tests con-ducted so far on our prototype indicate that comparable accuracy and long-term reproducibility can be achieved in a versatile instrument of manageable size for Shuttle flight and laboratory standards uses. This work is supported at AER under NOAA contract NA8ORAC00204 and NSF grant DMR-8260273.

  15. A helium-cooled blanket design of the low aspect ratio reactor

    SciTech Connect

    Wong, C.P.; Baxi, C.B.; Reis, E.E.; Cerbone, R.; Cheng, E.T.

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh.

  16. Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights October 2010

    SciTech Connect

    Snead, Lance Lewis; Besmann, Theodore M; Collins, Emory D; Bell, Gary L

    2010-11-01

    The DB Program monthly highlights report for September 2010, ORNL/TM-2010/252, was distributed to program participants by email on October 26. This report discusses: (1) Core and Fuel Analysis; (2) Spent Fuel Management; (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor); (4) TRU (transuranic elements) HTR Fuel Qualification; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle.

  17. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    NASA Astrophysics Data System (ADS)

    Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun

    2014-04-01

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.

  18. Divertor parameters and divertor operation in ASDEX

    NASA Astrophysics Data System (ADS)

    Fussmann, G.; Ditte, U.; Eckstein, W.; Grave, T.; Keilhacker, M.; McCormick, K.; Murmann, H.; Röhr, H.; Elshaer, M.; Steuer, K.-H.; Szymanski, Z.; Wagner, F.; Becker, G.; Bernhardi, K.; Eberhagen, A.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Gruber, O.; Haas, G.; Hesse, M.; Janeschitz, G.; Karger, F.; Kissel, S.; Klüber, O.; Kornherr, M.; Lisitano, G.; Mayer, H. M.; Meisel, D.; Müller, E. R.; Poschenrieder, W.; Ryter, F.; Rapp, H.; Schneider, F.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Stäbler, A.; Vollmer, O.

    1984-12-01

    Recent measurements of plasma boundary and divertor scrape-off parameters for ohmically and neutral injection heated plasmas are presented. For these data the power flow onto the divertor plates and the sputtering rates at the plates are calculated and compared with separate measurements. The impurity behaviour in front of the plates is also discussed.

  19. Features and Initial Results of the DIII-D Advanced Tokamak Radiative Divertor

    SciTech Connect

    R.C. O'Neill; A.S. Bozek; M.E. Friend; C.B. Baxi; E.E. Reis; M.A. Mahdavi; D.G. Nilson; S.L. Allen; W.P. West

    1999-11-01

    The Radiative Divertor Program of DIII-D is in its final phase with the installation of the cryopump and baffle structure (Phase 1B Divertor) in the upper inner radius of the DIII-D vacuum vessel at the end of this calendar year. This divertor, in conjunction with the Advanced Divertor and the Phase 1A Divertor, located in the lower and upper outer radius of the DIII-D vacuum vessel respectively, provides pumping for density control of the plasma while minimizing the effects on the core confinement. Each divertor consists of a cryobelium cooling ring and a shielded protective structure. The cryo/helium-cooled pumps of all three diverters exhaust helium from the plasma. The protective shielded structure or baffle structure, in the case of the diverters located at the top of the vacuum vessel, provides baffling of neutral charged particles and minimize the flow of impurities back into the core of the plasma. The baffles, which consist of water-cooled panels that allow for the attachment of tiles of various sizes and shapes, house gas puff systems. The intent of the puffing systems is to inject gas in and around the divertor to minimize the heat flux on specific areas on the divertor and its components. The reduction of the heat flux on the divertor minimizes the impurities that are generated from excess heat on divertor components, specifically tiles. Experiments involving the gas puff systems and the divertor structures have shown the heat flux can be spread over a large area of the divertor, reducing the peak heat flux in specific areas. The three diverters also incorporate a variety of diagnostic tools such as halo current monitors, magnetic probes and thermocouples to monitor certain plasma characteristics as well as determine the effectiveness of the cryopumps and baffle configurations. The diverters were designed to optimize pumping performance and to withstand the electromagnetic loads from both halo currents and toroidal induced currents. Incorporated also

  20. Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights September 2010

    SciTech Connect

    Snead, Lance Lewis; Besmann, Theodore M; Collins, Emory D; Bell, Gary L

    2010-10-01

    The DB Program monthly highlights report for August 2010, ORNL/TM-2010/184, was distributed to program participants by email on September 17. This report discusses: (1) Core and Fuel Analysis - (a) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Prismatic Design (Logos), (b) Core Design Optimization in the HTR Pebble Bed Design (INL), (c) Microfuel analysis for the DB HTR (INL, GA, Logos); (2) Spent Fuel Management - (a) TRISO (tri-structural isotropic) repository behavior (UNLV), (b) Repository performance of TRISO fuel (UCB); (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor) - Synergy with other reactor fuel cycles (GA, Logos); (4) TRU (transuranic elements) HTR Fuel Qualification - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle - (a) Graphite Recycle (ORNL), (b) Aqueous Reprocessing, (c) Pyrochemical Reprocessing METROX (metal recovery from oxide fuel) Process Development (ANL).

  1. Thermo-mechanical testing of Li?ceramic for the helium cooled pebble bed (HCPB) breeding blanket

    NASA Astrophysics Data System (ADS)

    Dell'Orco, G.; Ancona, A.; DiMaio, A.; Simoncini, M.; Vella, G.

    2004-08-01

    The helium cooled pebble bed (HCPB) Test blanket module (TBM) for the DEMO Reactor foresees the utilization of lithiate ceramics as breeder in form of pebble beds. The pebbles are organized in several layers alternatively stacked among couples of cooling plates (CP). ENEA has launched an experimental programme for the out-of-pile thermo-mechanical testing of mock-ups simulating a portion of the HCPB-TBM. The programme foresees the fabrication and testing of different mock-ups, to be tested in the HE-FUS3 facility at ENEA Brasimone. The paper describes the HELICHETTA III campaign carried-out in 2003. In particular, the test section layout, the pebble filling procedure, the experimental set-up and the results of the relevant thermo-mechanical test are herewith presented.

  2. Finger pain

    MedlinePlus

    Pain - finger ... Nearly everyone has had finger pain at some time. You may have: Tenderness Burning Stiffness Numbness Tingling Coldness Swelling Change in skin color Redness Many conditions, such ...

  3. Divertor efficiency in ASDEX

    NASA Astrophysics Data System (ADS)

    Engelhardt, W.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gierke, G. V.; Glock, E.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; KlÜber, O.; Kornherr, M.; Lisitano, G.; Mayer, H.-M.; Meisel, D.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Schneider, F.; Siller, G.; Steuer, K.-H.; Venus, G.; Vernickel, H.; Wagner, F.

    1982-12-01

    The divertor efficiency in ASDEX is discussed for ohmically heated plasmas. The parameters of the boundary layer both in the torus midplane and the divertor chamber have been measured. The results are reasonably well understood in terms of parallel and perpendicular transport. A high pressure of neutral hydrogen builds up in the divertor chamber and Franck-Condon particles recycle back through the divertor throat. Due to dissociation processes the boundary plasma is effectively cooled before it reaches the neutralizer plates. The shielding property of the boundary layer against impurity influx is comparable to that of a limiter plasma. The transport of iron is numerically simulated for an iron influx produced by sputtering of charge exchange neutrals at the wall. The results are consistent with the measured iron concentration. First results from a comparison of the poloidal divertor with toroidally closed limiters (stainless steel, carbon) are given. Diverted discharges are considerably cleaner and easier to create.

  4. Models for poloidal divertors

    SciTech Connect

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done.

  5. Spectroscopy of divertor plasmas

    SciTech Connect

    Isler, R.C.

    1995-12-31

    The requirements for divertor spectroscopy are treated with respect to instrumentation and observations on present machines. Emphasis is placed on quantitative measurements.of impurity concentrations from the interpretation of spectral line intensities. The possible influence of non-Maxwellian electron distributions on spectral line excitation in the divertor is discussed. Finally the use of spectroscopy for determining plasma temperature, density, and flows is examined.

  6. Transmutation and activation analysis for divertor materials in a HCLL-type fusion power reactor

    NASA Astrophysics Data System (ADS)

    Fischer, U.; Pereslavtsev, P.; Möslang, A.; Rieth, M.

    2009-04-01

    The activation and transmutation of tungsten and tantalum as plasma facing materials was assessed for a helium cooled divertor irradiated in a typical fusion power reactor based on the use of Helium-cooled Lithium Lead (HCLL) blankets. 3D activation calculations were performed by applying a programme system linking the Monte Carlo transport code MCNP and the fusion inventory code FISPACT through an appropriate interface. Special attention was given to the proper treatment of the resonance shielding of tungsten and tantalum by using reaction rates provided directly by MCNP on the basis of continuous energy activation cross-section data. It was shown that the long-term activation behaviour is dominated by activation products of the assumed tramp material while the short-term behaviour is due to the activation of the stable Ta and W isotopes. The recycling limit for remote handling of 100 mSv/h can be achieved after decay times of 10 and 50 years for Ta and W, respectively. The elemental transmutation rates of Ta and W were shown to be on a moderate level for the HCLL-type fusion power reactor.

  7. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    SciTech Connect

    Contescu, Cristian I

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  8. Mallet finger - aftercare

    MedlinePlus

    Baseball finger - aftercare; Drop finger - aftercare; Avulsion fracture - mallet finger - aftercare ... Mallet finger occurs when you cannot straighten your finger: when you try to straighten it, the tip of your ...

  9. The snowflake divertor

    DOE PAGESBeta

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-17

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation tomore » the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.« less

  10. The snowflake divertor

    SciTech Connect

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-17

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.

  11. Finger Stiffness.

    PubMed

    Oosterhoff, Thijs C H; Nota, Sjoerd P F T; Ring, David

    2015-06-01

    Background Finger stiffness varies substantially in patients with hand and upper extremity illness and can be notably more than expected for a given pathophysiology. In prior studies, pain intensity and magnitude of disability consistently correlate with coping strategies such as catastrophic thinking and kinesiophobia, which can be characterized as overprotectiveness. In this retrospective study we address the primary research question whether patients with finger stiffness are more often overprotective when the primary pathology is outside the hand (e.g. distal radius fracture) than when it is located within the hand. Methods In an orthopaedic hand surgery department 160 patients diagnosed with more finger stiffness than expected for a given pathophysiology or time point of recovery between December 2006 and September 2012 were analyzed to compare the proportion of patients characterized as overprotective for differences by site of pathology: (1) inside the hand, (2) outside the hand, and (3) psychiatric etiology (e.g. clenched fist). Results Among 160 subjects with more finger stiffness than expected, 132 (82 %) were characterized as overprotective including 88 of 108 (81 %) with pathology in the hand, 39 of 44 (89 %) with pathology outside the hand, and 5 of 8 (63 %) with psychiatric etiology. These differences were not significant. Conclusions Overprotectiveness is common in patients with more finger stiffness than expected regardless the site and type of primary pathology. It seems worthwhile to recognize and treat maladaptive coping strategies early during recovery to limit impairment, symptoms, and disability. PMID:26078497

  12. Far-Infrared Photometry with an 0.4-Meter Liquid Helium Cooled Balloon-Borne Telescope. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jacobson, M. R.

    1977-01-01

    A 0.4-meter aperture, liquid helium cooled multichannel far-infrared balloon-borne telescope was constructed to survey the galactic plane. Nine new sources, above a 3-sigma confidence level of 1300 Jy, were identified. Although two-thirds of the scanned area was more than 10 degrees from the galactic plane, no sources were detected in that region; all nine fell within 10 degrees and eight of those within 4 degrees of the galactic equator. Correlations with visible, compact H lines associated with radio continuum and with sources displaying spectra steeply rising between 11 and 20 microns were noted, while stellar objects were not detected.

  13. Finger Multiplication

    ERIC Educational Resources Information Center

    Holmes, Bill

    2010-01-01

    The author has been prompted to write this article about finger multiplication for a number of reasons. Firstly there are a number of related articles in past issues of "Mathematics Teaching" ("MT") which have connections to this algorithm. Secondly, very few of his primary teaching students and professional colleagues appear to be aware of the…

  14. Divertor plasma detachment

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Kukushkin, A. S.; Pshenov, A. A.

    2016-05-01

    Regime with the plasma detached from the divertor targets (detached divertor regime) is a natural continuation of the high recycling conditions to higher density and stronger impurity radiation loss. Both the theoretical considerations and experimental data show clearly that the increase of the impurity radiation loss and volumetric plasma recombination causes the rollover of the plasma flux to the target when the density increases, which is the manifestation of detachment. Plasma-neutral friction (neutral viscosity effects), although important for the sustainment of high density/pressure plasma upstream and providing the conditions for efficient recombination and power loss, is not directly involved in the reduction of the plasma flux to the targets. The stability of detachment is also discussed.

  15. The snowflake divertor

    SciTech Connect

    Ryutov, D. D.; Soukhanovskii, V. A.

    2015-11-15

    The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. Among potential beneficial effects of this geometry are: increased volume of a low poloidal field around the null, increased connection length, and the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described.

  16. Finger Injuries and Disorders

    MedlinePlus

    You use your fingers and thumbs to do everything from grasping objects to playing musical instruments to typing. When there is something wrong ... the skin of your palm. It causes the fingers to stiffen and bend. Trigger finger - an irritation ...

  17. Asymmetric divertor biasing in MAST

    NASA Astrophysics Data System (ADS)

    Helander, P.; Cohen, R.; Counsell, G. C.; Ryutov, D. D.

    2002-11-01

    Experiments are being carried out on the Mega-Ampere Spherical Tokamak (MAST) where the divertor tiles are electrically biased in a toroidally alternating way. The aim is to induce convective cells in the divertor plasma, broaden the SOL and reduce the divertor heat load. This paper describes the underlying theory and experimental results. Criteria are presented for achieving strong broadening and exciting shear-flow turbulence in the SOL, and properties of the expected turbulence are derived. It is also shown that magnetic shear near the X-point is likely to confine the potential perturbations to the divertor region, leaving the part of the SOL that is in direct contact with the core plasma intact. Preliminary comparison of the theory with MAST data is encouraging: the distortion of the heat deposition pattern, its broadening, and the incremental heat load are qualitatively in agreement; quantitative comparisons are underway.

  18. Noncontacting Finger Seal

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P. (Inventor); Steinetz, Bruce M. (Inventor)

    2004-01-01

    An annular finger seal is adapted to be interposed between a high pressure upstream region and a lower pressure downstream region to provide noncontact sealing along a rotatable member. The finger seal comprises axially juxtaposed downstream and upstream finger elements, each having integrally spaced fingers. The downstream fingers each have a lift pad, whereas the upstream fingers lack a pad. Each pad extends in a downstream direction. Each upstream finger is spaced from the rotating member a greater distance than each pad. Upon sufficient rotational speed of the rotating member, each pad is operative to lift and ride on a thin film of fluid intermediate the rotating member and the Pad.

  19. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  20. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  1. The design and fabrication of a toroidally continuous cryocondensation pump for the D3-D advanced divertor

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Baxi, C. B.; Reis, E.; Schaffer, M. J.; Schaubel, K. M.; Menon, M. M.

    1991-11-01

    A cryocondensation pump will be installed in the baffle chamber of the DIII-D tokamak in the spring of 1992. The design is complete and fabrication of this pump is in progress. The purpose of the pump is to study plasma density control by pumping the divertor. The pump is toroidally continuous, approximately 10 m long, in the lower outer corner of the vacuum vessel interior. It consists of a 1 m(exp 2) liquid helium cooled surface surrounded by a liquid nitrogen cooled shield to limit the heat load on the helium cooled surface. The stainless steel liquid nitrogen shell has a copper coating on it to enhance thermal conductivity, but the coating is broken to keep the toroidal electrical resistance high. The liquid nitrogen cooled surface is surrounded by a radiation/particle shield to prevent energetic particles from impacting and releasing condensed water molecules. The whole pump is supported off the water cooled vacuum vessel wall. Key design considerations were: how to accommodate the temperature differences between the various components, developing low heat leak paths for the various supports, and maintaining electrical insulation in a low pressure environment in the presence of induced voltage spikes. A single point ground for the system was used to limit disruption induced currents and the resulting electro-mechanical forces on the pump. A testing program was used to develop coating techniques to enhance heat transfer and emissivity of the various surfaces. Fabrication tests were done to determine the best method of attaching the liquid nitrogen flow tubes to their shield surfaces. A prototype sector of the pump was built to verify fabrication and assembly techniques.

  2. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  3. Hand and Finger Exercises

    MedlinePlus

    Hand and Finger Exercises  Place your palm flat on a table. Raise and lower your fingers one ... times for ____ seconds.  Pick up objects with your hand. Start out with larger objects. Repeat ____ times for ____ ...

  4. UEDGE Simulation of Triple-X Divertors

    NASA Astrophysics Data System (ADS)

    Wiley, J.; Kotschenreuther, M.; Valanju, P.; Pekker, M.; Rognlien, T.

    2006-04-01

    Novel magnetic divertors with additional X-points downstream from the main plasma X-point have been proposed to overcome reactor heat flux limitations. These divertor designs may allow a fully detached state at the divertor plate - without the poor confinement and disruptive tendencies by avoiding x-point MARFEs found in conventional divertor magnetic geometries. These new configurations are examined using UEDGE for existing machines that are considering experimental implementation of these divertors: PEGASUS, MAST, and EAST(China's new long-pulse, superconducting tokamak) as well as proposed reactor designs.

  5. Advanced fuels modeling: Evaluating the steady-state performance of carbide fuel in helium-cooled reactors using FRAPCON 3.4

    NASA Astrophysics Data System (ADS)

    Hallman, Luther, Jr.

    Uranium carbide (UC) has long been considered a potential alternative to uranium dioxide (UO2) fuel, especially in the context of Gen IV gas-cooled reactors. It has shown promise because of its high uranium density, good irradiation stability, and especially high thermal conductivity. Despite its many benefits, UC is known to swell at a rate twice that of UO2. However, the swelling phenomenon is not well understood, and we are limited to a weak empirical understanding of the swelling mechanism. One suggested cladding for UC is silicon carbide (SiC), a ceramic that demonstrates a number of desirable properties. Among them are an increased corrosion resistance, high mechanical strength, and irradiation stability. However, with increased temperatures, SiC exhibits an extremely brittle nature. The brittle behavior of SiC is not fully understood and thus it is unknown how SiC would respond to the added stress of a swelling UC fuel. To better understand the interaction between these advanced materials, each has been implemented into FRAPCON, the preferred fuel performance code of the Nuclear Regulatory Commission (NRC); additionally, the material properties for a helium coolant have been incorporated. The implementation of UC within FRAPCON required the development of material models that described not only the thermophysical properties of UC, such as thermal conductivity and thermal expansion, but also models for the swelling, densification, and fission gas release associated with the fuel's irradiation behavior. This research is intended to supplement ongoing analysis of the performance and behavior of uranium carbide and silicon carbide in a helium-cooled reactor.

  6. Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    SciTech Connect

    Jiang, J.; Yuan, B.; Jin, M.; Wang, M.; Long, P.; Hu, L.

    2012-07-01

    Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate the demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)

  7. Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake

    SciTech Connect

    Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh

    2013-10-15

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.

  8. Kinetic Modeling of Divertor Plasma

    NASA Astrophysics Data System (ADS)

    Ishiguro, Seiji; Hasegawa, Hiroki; Pianpanit, Theerasarn

    2015-11-01

    Particle-in-Cell (PIC) simulation with the Monte Carlo collisions and the cumulative scattering angle coulomb collision can present kinetic dynamics of divertor plasmas. We are developing two types of PIC codes. The first one is the three dimensional bounded PIC code where three dimensional kinetic dynamics of blob is studied and current flow structures related to sheath formation are unveiled. The second one is the one spatial three velocity space dimensional (1D3V) PIC code with the Monte Carlo collisions where formation of detach plasma is studied. First target of our research is to construct self-consistent full kinetic simulation modeling of the linear divertor simulation experiments. This work is performed with the support and under the auspices of NIFS Collaboration Research program (NIFS15KNSS059, NIFS14KNXN279, and NIFS13KNSS038) and the Research Cooperation Program on Hierarchy and Holism in Natural Science at NINS.

  9. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  10. Finger snapping during seizures.

    PubMed

    Overdijk, M J; Zijlmans, M; Gosselaar, P H; Olivier, A; Leijten, F S S; Dubeau, F

    2014-01-01

    We describe two patients who showed snapping of the right hand fingers during invasive intracranial EEG evaluation for epilepsy surgery. We correlated the EEG changes with the finger-snapping movements in both patients to determine the underlying pathophysiology of this phenomenon. At the time of finger snapping, EEG spread from the supplementary motor area towards the temporal region was seen, suggesting involvement of these sites. PMID:25667884

  11. Fingers that change color

    MedlinePlus

    ... conditions can cause fingers or toes to change color: Buerger disease Chilblains. Painful inflammation of small blood vessels. Cryoglobulinemia Frostbite Necrotizing vasculitis Peripheral artery disease ...

  12. Effect of Divertor Shaping on Divertor Plasma Behavior on DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Leonard, A. W.; Luce, T. C.; Mahdavi, M. A.; Holcomb, C. T.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Watkins, J. G.; Moyer, R. A.; Stangeby, P. C.

    2012-10-01

    Recent experiments examined the dependence of divertor density (nTAR), temperature (TTAR), and heat flux at the outer divertor separatrix target on changes in the divertor separatrix geometry. The responses of nTAR and TTAR to changes in the parallel connection length in the scrape-off layer (SOL) (L||) are consistent with the predictions of the Two Point Model (TPM). However, nTAR and TTAR display a more complex response to changes in the radial location of the outer divertor strike point (RTAR) than expected based on the TPM. SOLPS transport analysis indicates that small differences in divertor geometry can change neutral trapping sufficient to explain differences between experiment and TPM predictions. The response of the core and divertor plasmas to changes in L|| and RTAR, under both radiating and non-radiating divertor conditions, will be shown.

  13. Rolling friction robot fingers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1992-01-01

    A low friction, object guidance, and gripping finger device for a robotic end effector on a robotic arm is disclosed, having a pair of robotic fingers each having a finger shaft slideably located on a gripper housing attached to the end effector. Each of the robotic fingers has a roller housing attached to the finger shaft. The roller housing has a ball bearing mounted centering roller located at the center, and a pair of ball bearing mounted clamping rollers located on either side of the centering roller. The object has a recess to engage the centering roller and a number of seating ramps for engaging the clamping rollers. The centering roller acts to position and hold the object symmetrically about the centering roller with respect to the X axis and the clamping rollers act to position and hold the object with respect to the Y and Z axis.

  14. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  15. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  16. Finger and toenail onycholysis.

    PubMed

    Zaias, N; Escovar, S X; Zaiac, M N

    2015-05-01

    Onycholysis - the separation of the nail plate from the nail bed occurs in fingers and toenails. It is diagnosed by the whitish appearance of the separated nail plate from the nail bed. In fingers, the majority is caused by trauma, manicuring, occupational or self-induced behavior. The most common disease producing fingernail onycholysis is psoriasis and pustular psoriasis. Phototoxic dermatitis, due to drugs can also produce finger onycholysis. Once the separation occurs, the environmental flora sets up temporary colonization in the available space. Finger onycholysis is most common in women. Candida albicans is often recovered from the onycholytic space. Many reports, want to associate the yeast as cause and effect, but the data are lacking and the treatment of the candida does not improve finger onycholysis. A reasonable explanation for the frequent isolation of Candida and Pseudomonas in fingernail onycholysis in women, is the close proximity the fingers have to the vaginal and gastrointestinal tract. Fifty per cent of humans harbour C. albicans in the GI tract and it is frequently carried to the vagina during hygienic practices. Finger onycholysis is best treated by drying the nail 'lytic' area with a hair blower, since all colonizing biota are moisture loving and perish in a dry environment. Toenail onycholysis has a very different etiology. It is mechanical, the result of pressure on the toes from the closed shoes, while walking, because of the ubiquitous uneven flat feet producing an asymmetric gait with more pressure on the foot with the flatter sole. PMID:25512134

  17. Multiple Fingers - One Gestalt.

    PubMed

    Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut

    2016-01-01

    The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration. PMID:26863671

  18. Dust divertor for a tokamak fusion reactor

    SciTech Connect

    Tang, X Z; Delzanno, G L

    2009-01-01

    Micron-size tungsten particulates find equilibrium position in the magnetized plasma sheath in the normal direction of the divertor surface, but are convected poloidally and toroidally by the sonic-ion-flow drag parallel to the divertor surface. The natural circulation of dust particles in the magnetized plasma sheath can be used to set up a flowing dust shield that absorbs and exhausts most of the tokamak heat flux to the divertor. The size of the particulates and the choice of materials offer substantial room for optimization.

  19. Fingering in Confined Elastic Layers

    NASA Astrophysics Data System (ADS)

    Biggins, John; Mahadevan, L.; Wei, Z.; Saintyves, Baudouin; Bouchaud, Elizabeth

    2015-03-01

    Fingering has recently been observed in soft highly elastic layers that are confined between and bonded to two rigid bodies. In one case an injected fluid invades the layer in finger-like protrusions at the layer's perimeter, a solid analogue of Saffman-Taylor viscous fingering. In a second case, separation of the rigid bodies (with maintained adhesion to the layer) leads air to the formation of similar fingers at the layer's perimeter. In both cases the finger formation is reversible: if the fluid is removed or the separation reduced, the fingers vanish. In this talk I will discuss a theoretical model for such elastic fingers that shows that the origin of the fingers is large-strain geometric non-linearity in the elasticity of soft solids. Our simplified elastic model unifies the two types of fingering and accurately estimates the thresholds and wavelengths of the fingers.

  20. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  1. Stochasticity about a poloidal divertor separatrix

    SciTech Connect

    Skinner, D.A.; Osborne, T.H.; Prager, S.C.; Park, W.

    1986-10-01

    The stochasticization of the magnetic separatrix due to the presence of a helical perturbation in a poloidal divertor tokamak is illustrated by a numerical computation which traces magnetic field lines.

  2. Stochasticity about a poloidal divertor separatrix

    SciTech Connect

    Skinner, D.A.; Osborne, T.H.; Prager, S.C.; Park, W.

    1987-04-01

    The stochasticization of the magnetic separatrix caused by the presence of a helical perturbation in a poloidal divertor tokamak is illustrated by a numerical computation that traces magnetic field lines.

  3. High flux expansion divertor studies in NSTX

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Maqueda, R; Menard, J E; Mueller, D; Paul, S F; Raman, R; Roquemore, A L

    2009-06-29

    Projections for high-performance H-mode scenarios in spherical torus (ST)-based devices assume low electron collisionality for increased efficiency of the neutral beam current drive. At lower collisionality (lower density), the mitigation techniques based on induced divertor volumetric power and momentum losses may not be capable of reducing heat and material erosion to acceptable levels in a compact ST divertor. Divertor geometry can also be used to reduce high peak heat and particle fluxes by flaring a scrape-off layer (SOL) flux tube at the divertor plate, and by optimizing the angle at which the flux tube intersects the divertor plate, or reduce heat flow to the divertor by increasing the length of the flux tube. The recently proposed advanced divertor concepts [1, 2] take advantage of these geometry effects. In a high triangularity ST plasma configuration, the magnetic flux expansion at the divertor strike point (SP) is inherently high, leading to a reduction of heat and particle fluxes and a facilitated access to the outer SP detachment, as has been demonstrated recently in NSTX [3]. The natural synergy of the highly-shaped high-performance ST plasmas with beneficial divertor properties motivated a further systematic study of the high flux expansion divertor. The National Spherical Torus Experiment (NSTX) is a mid-sized device with the aspect ratio A = 1.3-1.5 [4]. In NSTX, the graphite tile divertor has an open horizontal plate geometry. The divertor magnetic configuration geometry was systematically changed in an experiment by either (1) changing the distance between the lower divertor X-point and the divertor plate (X-point height h{sub X}), or by (2) keeping the X-point height constant and increasing the outer SP radius. An initial analysis of the former experiment is presented below. Since in the divertor the poloidal field B{sub {theta}} strength is proportional to h{sub X}, the X-point height variation changed the divertor plasma wetted area due to

  4. Osseointegrated finger prostheses.

    PubMed

    Doppen, P; Solomons, M; Kritzinger, S

    2009-02-01

    Amputation of a digit can lead to functional and psychological problems and patients can benefit from digital prostheses. Unfortunately, standard prostheses are often unstable, particularly when fitted over short amputation stumps. Prosthesis fixation by osseointegration is widely used in oral and extraoral applications and may help avoid the problem of instability. This paper reports the results of four patients with five finger amputations who were treated with osseointegrated implants to attach finger prostheses. One implant failed to osseointegrate and the procedure was abandoned. Three patients were successfully treated to completion of three finger prostheses and are extremely satisfied with their outcomes, both cosmetically and functionally, with osseoperception reported by all three patients. PMID:19091736

  5. Multi-fingered robotic hand

    NASA Technical Reports Server (NTRS)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  6. Snowflake divertor configuration studies for NSTX-Upgrade

    SciTech Connect

    Soukhanovskii, V A

    2011-11-12

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  7. Repair of webbed fingers - slideshow

    MedlinePlus

    ... gov/ency/presentations/100096.htm Repair of webbed fingers - series—Normal anatomy To use the sharing features ... Health Solutions, Ebix, Inc. Related MedlinePlus Health Topics Finger Injuries and Disorders A.D.A.M., Inc. ...

  8. Three-Fingered Robot Hand

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.; Salisbury, J. K.

    1984-01-01

    Mechanical joints and tendons resemble human hand. Robot hand has three "human-like" fingers. "Thumb" at top. Rounded tips of fingers covered with resilient material provides high friction for griping. Hand potential as prosthesis for humans.

  9. Spiral viscous fingering.

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hayashi, Atsushi; Kato, Yoshihito; Tada, Yutaka

    2006-11-01

    When a less-viscous fluid displaces a more-viscous fluid in a radial Hele-Shaw cell, viscous fingering pattern is believed to develop in a radial direction. We performed experiments on viscous fingering in a radial Hele-Shaw cell when a polymer solution, a sodium polyacrylate (SPA) solution is used as the more-viscous fluid and the trivalent iron (Fe^3+) solution is as the less-viscous fluid. The experiment was done by varying the concentration of Fe^3+, cFe3+. We have found that viscous fingering pattern develops spirally when cFe3+ is larger than a threshold value, while the pattern develops in a radial direction for small cFe3+. We confirmed from different experiments that an instantaneous chemical reaction takes place between SPA solution and Fe^3+ solution. The chemical reaction produces precipitation and significantly reduces the viscosity of the SPA solution. The quantity of the precipitation is increased with cFe3+. We will make a discussion on the relationship between the formation of spiral viscous fingering and the chemical reaction taking place between the two fluids.

  10. A "Snowflake" Divertor and its Properties

    SciTech Connect

    Ryutov, D

    2007-06-21

    Handling the power and particle exhaust in fusion reactors based on tokamaks is a challenging problem [1,2]. To bring the energy flux to the divertor plates to an acceptable level (< 10 MW/m2), it is desirable to significantly increase poloidal flux expansion in the divertor area. Some recent ideas include that of a so-called X divertor [3] and a 'snowflake' divertor [4]. We use an acronym SF to designate the latter. In this paper we concentrate on the SF divertor. The general idea behind this configuration is that, by a proper selection of divertor (poloidal field) coils, one can make the null point of the second, not of the first order as in the standard divertor. The separatrix in the vicinity of the X point then acquires a characteristic hexapole structure (Fig. 1), reminiscent of a snowflake, whence the name. The fact that the field has a second-order null, leads to a significant increase of the flux expansion. It was noted in Ref. [4] that the SF configuration is topologically unstable: if the current in the divertor coils is somewhat higher than the one that provides the SF configuration, it becomes a single-null X-point configuration. Conversely, if the coil current becomes somewhat lower, there appear two separate X-points. To solve this problem, one can operate the divertor at the current by roughly 5% higher than the value needed to create the second-order null. Then, configuration becomes robust enough and the shape of the separatrix does not change significantly if the coil current varies by 2-3%. At the same time, the flux expansion still remained by a factor of {approx}3 larger compared to a 'canonical' divertor. Following Ref. [4], we call this configuration a 'SF-plus' configuration. Specific examples in Ref. [4] were given for simple magnetic geometries The aim of this paper is to demonstrate that the SF concept will also work for a strongly shaped plasma. The other set of issues considered in the present paper relates to the possible presence of

  11. Impurity-induced divertor plasma oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  12. Impurity-induced divertor plasma oscillations

    DOE PAGESBeta

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  13. Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Jaervinen, A. E.; Brezinsek, S.; Giroud, C.; Groth, M.; Guillemaut, C.; Belo, P.; Brix, M.; Corrigan, G.; Drewelow, P.; Harting, D.; Huber, A.; Lawson, K. D.; Lipschultz, B.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Moulton, D.; Stamp, M. F.; Wiesen, S.; Contributors, JET

    2016-04-01

    Radiative divertor operation in JET high confinement mode plasmas with the ITER-like wall has been experimentally investigated and simulated with EDGE2D-EIRENE in horizontal and vertical low field side (LFS) divertor configurations. The simulations show that the LFS divertor heat fluxes are reduced with N2-injection in similar fashion in both configurations, qualitatively consistent with experimental observations. The simulations show no substantial difference between the two configurations in the reduction of the peak LFS heat flux as a function of divertor radiation, nitrogen concentration, or pedestal Zeff. Consistently, experiments show similar divertor radiation and nitrogen injection levels for similar LFS peak heat flux reduction in both configurations. Nevertheless, the LFS strike point is predicted to detach at 20% lower separatrix density in the vertical than in the horizontal configuration. However, since the peak LFS heat flux in partial detachment in the vertical configurations is shifted towards the far scrape-off layer (SOL), the simulations predict no benefit in the reduction of LFS peak heat flux for a given upstream density in the vertical configuration relative to a horizontal one. A factor of 2 reduction of deuterium ionization source inside the separatrix is observed in the simulations when changing to the vertical configuration. The simulations capture the experimentally observed particle and heat flux reduction at the LFS divertor plate in both configurations, when adjusting the impurity injection rate to reproduce the measured divertor radiation. However, the divertor D α -emissions are underestimated by a factor of 2-5, indicating a short-fall in radiation by the fuel species. In the vertical configuration, detachment is experimentally measured and predicted to start next to the strike point, extending towards the far SOL with increasing degree of detachment. In contrast, in the horizontal configuration, the entire divertor particle flux

  14. Designing divertor targets for uniform power load

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2015-08-01

    Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.

  15. Liquid metal cooled divertor for ARIES

    SciTech Connect

    Muraviev, E.

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

  16. Safe Finger Tourniquet--Ideas.

    PubMed

    Wei, Lin-Gwei; Chen, Chieh-Feng; Hwang, Chun-Yuan; Chang, Chiung-Wen; Chiu, Wen-Kuan; Li, Chun-Chang; Wang, Hsian-Jenn

    2016-03-01

    Tourniquets are often needed for optimized phalangeal surgeries. However, few surgeons forget to remove them and caused ischemic injuries. We have a modified method to create a safe finger tourniquet for short duration finger surgeries, which can avoid such tragedy. It is done by donning a glove, cutting the tip of the glove over the finger of interest, and rolling the glove finger to the base. From 2010 to 2013, approximately 54 patients underwent digital surgical procedures with our safe finger tourniquet. Because the glove cannot be forgotten to be removed, the tourniquet must be released and removed. This is a simple and efficient way to apply a safe finger tourniquet by using hand rubber glove for a short-term bloodless finger surgery and can achieve an excellent surgical result. PMID:26855166

  17. Characteristics of divertor detachment for ITER conditions

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. S.; Pacher, H. D.; Pitts, R. A.

    2015-08-01

    The relative role of particle balance vs. momentum balance in the phenomenon of divertor plasma detachment in tokamaks is re-assessed. Ion removal from the plasma flow by volumetric recombination and/or cross-field transport is identified as the key element in the formation of the rollover of the ion saturation current on the targets, whereas "momentum removal" (friction) is responsible for maintaining high plasma pressure upstream. The deterioration of neutral particle confinement in the divertor as particle throughput increases is the primary cause of the solution collapse typically seen when deep detachment is modelled for present day experiments.

  18. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  19. Heat Load on Divertors in NCSX

    NASA Astrophysics Data System (ADS)

    Kaiser, T. B.; Hill, D. N.; Maingi, R.; Monticello, D.; Zarnstorff, M.; Grossman, A.

    2006-10-01

    We have continued our study[1-3] of the effect of divertors in NCSX, using magnetic field data generated by both the PIES and VMEC/MFBE equilibrium codes. Results for comparable equilibria from the two codes agree to within statistical uncertainty. We follow field lines from a surface just outside and conformal with the LCMS until they strike a divertor plate or the first wall, or exceed 1000m in length, with effects of particle scattering mimicked by field-line diffusion. Current candidate divertor designs efficiently collect field lines, allowing fewer than 0.1% to reach the wall. The sensitivity of localized power deposition, assumed to be proportional to the density of field- line strike-points, to adjustments in the divertor configuration is under investigation.1. T.B. Kaiser, et al, Bull. Am. Phys. Soc., 48, paper RP1-20, 2003.2. T.B. Kaiser, et al, Bull. Am. Phys. Soc., 49, paper PP1-73, 2004.3. R. Maingi, et al, EPS Conf. Rome, Italy, paper P5.116, 2006.

  20. Divertor target for magnetic containment device

    DOEpatents

    Luzzi, Jr., Theodore E.

    1982-01-01

    In a plasma containment device of a type having superconducting field coils for magnetically shaping the plasma into approximately the form of a torus, an improved divertor target for removing impurities from a "scrape off" region of the plasma comprises an array of water cooled swirl tubes onto which the scrape off flux is impinged. Impurities reflected from the divertor target are removed from the target region by a conventional vacuum getter system. The swirl tubes are oriented and spaced apart within the divertor region relative to the incident angle of the scrape off flux to cause only one side of each tube to be exposed to the flux to increase the burnout rating of the target. The divertor target plane is oriented relative to the plane of the path of the scrape off flux such that the maximum heat flux onto a swirl tube is less than the tube design flux. The containment device is used to contain the plasma of a tokamak fusion reactor and is applicable to other long pulse plasma containment systems.

  1. An X-point ergodic divertor

    SciTech Connect

    Chu, M.S.; Jensen, T.H.; La Haye, R.J.; Taylor, T.S.; Evans, T.E.

    1991-10-01

    A new ergodic divertor is proposed. It utilizes a system of external (n = 3) coils arranged to generate overlapping magnetic islands in the edge region of a diverted tokamak and connect the randomized field lines to the external (cold) divertor plate. The novel feature in the configuration is the placement of the external coils close to the X-point. A realistic design of the external coil set is studied by using the field line tracing method for a low aspect ratio (A {approx equal} 3) tokamak. Two types of effects are observed. First, by placing the coils close to the X-point, where the poloidal magnetic field is weak and the rational surfaces are closely packed only a moderate amount of current in the external coils is needed to ergodize the edge region. This ergodized edge enhances the edge transport in the X-point region and leads to the potential of edge profile control and the avoidance of edge localized modes (ELMs). Furthermore, the trajectories of the field lines close to the X-point are modified by the external coil set, causing the hit points on the external divertor plates to be randomized and spread out in the major radius direction. A time-dependent modulation of the currents in the external (n = 3) coils can potentially spread the heat flux more uniformly on the divertor plate avoiding high concentration of the heat flux. 10 refs., 9 figs.

  2. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  3. Divertor Coil Design and Implementation on Pegasus

    NASA Astrophysics Data System (ADS)

    Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.

    2012-10-01

    An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.

  4. Recent results from tokamak divertor plasma measurements

    SciTech Connect

    Allen, S.L.

    1996-05-01

    New diagnostics have been developed to address key divertor physics questions, including: target plate heat flux reduction by radiation, basic edge transport issues, and plasma wall interactions (PWI) such as erosion. A system of diagnostics measures the target plate heat flux (imaging IR thermography) and particle flux (probes, pressure and Penning gauges, and visible emission arrays). Recently, T{sub e},n{sub e}, and P{sub e} (electron pressure) have been measured in 2-D with divertor Thomson Scattering. During radiative divertor operation T{sub e} is less than 2 eV, indicating that new atomic processes are important. Langmuir probes measure higher T{sub e} in some cases. In addition, the measured P{sub e} near the separatrix at the target plate is lower than the midplane pressure, implying radial momentum transport. Bolometer arrays, inverted with reconstruction algorithms, provide the 2-D core and divertor radiation profiles. Spectroscopic measurements identify the radiating species and provide information on impurity transport; both absolute chordal measurements and tomographic reconstructions of images are used. Either intrinsic carbon or an inert species (e.g., injected Ne) are usually observed, and absolute particle inventories are obtained. Computer codes are both benchmarked with the experimental data and provide important consistency checks. Several techniques are used to measure fundamental plasma transport and fluctuations, including probes and reflectometry. PWI issues are studied with in-situ coupons and insertable samples (DiMES). Representative divertor results from DIII-D with references to results on other tokamaks will be presented.

  5. Finger Forces in Clarinet Playing

    PubMed Central

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low–high; tempo: slow–fast, dynamics: soft–loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low–high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean) and peak force (Fmax) were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N). Such sensor instruments provide useful insights into player

  6. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas M. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2013-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  7. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert J., Jr. (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2014-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  8. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-06-01

    Results from three-dimensional modeling of plasma edge transport and plasma–wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q  =  10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95  =  4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced

  9. Gert Finger Becomes Emeritus Physicist

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.; Lucuix, C.; Péron, M.

    2016-03-01

    Gert Finger has retired after almost 33 years service and he has been made the first Emeritus Physicist at ESO. An appreciation of some of his many achievements in the development of infrared instrumentation and detector controllers is given. A retirement party for Gert Finger was held in February 2016.

  10. Electron beam facility for divertor target experiments

    SciTech Connect

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-12-31

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m{sup 3}), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts.

  11. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  12. Performance of the INTOR poloidal divertor

    SciTech Connect

    Post, D.E.; Petravic, M.; Schmidt, J.A.; Heifetz, D.

    1981-10-01

    The next generation of large tokamak experiments is expected to have large particle and heat outfluxes (approx. 10/sup 23/ particles/sec and 80 MW). These outfluxes must be controlled to provide adequate pumping of the helium ash and to minimize the sputtering erosion of the vacuum vessel walls, limiters, and neutralizer plates. A poloidal divertor design to solve these problems for INTOR has been done using a two-dimensional code which models the plasma as a fluid and solves equations for the flow of particles, momentum and energy, and calculates the neutral gas transport with Monte-Carlo techniques. These calculations show that there is a regime of operation where the density in the divertor is high and the temperature is low, thus easing the heat load and erosion problems. The neutral pressure at the plate is high, resulting in high gas throughputs, with modest pumping speeds.

  13. Flute mode fluctuations in the divertor mirror cell

    SciTech Connect

    Katanuma, I.; Yagi, K.; Nakashima, Y.; Ichimura, M.; Imai, T.

    2010-03-15

    The computer code by reduced magnetohydrodynamic equations were made which can simulate the flute interchange modes (similar to the Rayleigh-Taylor instability) and the instability associated with the presence of nonuniform plasma flows (similar to the Kelvin-Helmholtz instability). This code is applied to a model divertor and the GAMMA10 [M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985)] with divertor in order to investigate the flute modes in these divertor cells. The linear growth rate of the flute instability determined by the nonlocal linear analysis agrees with that in the linear phase of the simulations. There is a stable nonlinear steady state in both divertor cells, but the nonlinear steady state is different between the model divertor and the GAMMA10 with divertor.

  14. Modeling detachment physics in the NSTX snowflake divertor

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Soukhanovskii, V. A.; Bell, R. E.; Diallo, A.; Kaita, R.; LeBlanc, B. P.; McLean, A. G.; Podestà, M.; Rognlien, T. D.; Scotti, F.

    2015-08-01

    The snowflake divertor is a proposed technique for coping with the tokamak power exhaust problem in next-step experiments and eventually reactors, where extreme power fluxes to material surfaces represent a leading technological and physics challenge. In lithium-conditioned National Spherical Torus Experiment (NSTX) discharges, application of the snowflake divertor typically induced partial outer divertor detachment and severalfold heat flux reduction. UEDGE is used to analyze and compare conventional and snowflake divertor configurations in NSTX. Matching experimental upstream profiles and divertor measurements in the snowflake requires target recycling of 0.97 vs. 0.91 in the conventional case, implying partial saturation of the lithium-based pumping mechanism. Density scans are performed to analyze the mechanisms that facilitate detachment in the snowflake, revealing that increased divertor volume provides most of the parallel heat flux reduction. Also, neutral gas power loss is magnified by the increased wetted area in the snowflake, and plays a key role in generating volumetric recombination.

  15. JET divertor coils, manufacture, assembly and testing

    NASA Astrophysics Data System (ADS)

    Dolgetta, N.; Bertolini, E.; D'Urzo, C.; Last, J. R.; Laurenti, A.; Presle, P.; Sannazzaro, G.; Tait, J.; Tesini, A.

    1994-07-01

    Four coils have been built and installed in the JET vacuum vessel to produce divertor plasmas. The coils are copper with glass epoxy insulation and are enclosed in vacuum tight Inconel cases. At the coil contractor's factory, the coil parts were manufactured and process techniques qualified. In the JET vacuum vessel the conductor bars were brazed to form the coils, which were inserted in the casings and impregnated and cured with epoxy resin.

  16. Divertor and scoop limiter experiments on PDX

    SciTech Connect

    McGuire, K.; Beiersdorfer, P.; Bell, M.; Bol, K.; Boyd, D.; Buchenauer, D.; Budny, R.; Cavallo, A.; Couture, P.; Crowley, T.

    1985-01-01

    Routine operation in the enhanced energy confinement (or H-mode) regime during neutral beam injection was achieved by modifying the PDX divertor hardware to inhibit the influx of neutral gas from the divertor region to the main plasma chamber. A particle scoop limiter has been studied as a mechanical means of controlling particles at the plasma edge, and neutral beam heated discharges with this limiter show similar confinement times (normalized to tau/sub E//I/sub p/) to average H-mode plasmas. Two new instabilities are observed near the plasma edge in PDX during H-mode operation. The first, a quasicoherent fluctuation, occurred in bursts at well-defined frequencies (..delta omega../..omega.. less than or equal to 0.1) in the range 50 to 180 kHz, and had no obvious effects on confinement. The second instability, the edge relaxation phenomena (ERP), did cause deterioration in the global confinement time. The ERP's are characterized by sharp spikes in the divertor plasma density, H/sub ..cap alpha../ emission, and on the x-ray signals they appear as sawtoothlike relaxations at the plasma edge with an inversion radius near the separatrix. Attempts to obtain high ..beta../sub T/ in the H-mode discharges were hampered by a deterioration in the H-mode confinement and major disruptions which limited the achievable ..beta../sub T/. A study of the stability of both the limiter L-mode and divertor H-mode discharges close to the theoretical ..beta.. boundary, showed that the major disruptions observed there are sometimes caused by a fast growing m/n = 1/1 mode with no observable external precursor oscillations.

  17. THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR

    SciTech Connect

    C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER

    2000-10-01

    The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m{sup 2}. A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m{sup 2}. The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements.

  18. Constrained ripple optimization of Tokamak bundle divertors

    SciTech Connect

    Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.

    1983-02-01

    Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.

  19. ADX - Advanced Divertor and RF Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  20. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  1. Divertor bypass in the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Pitcher, C. S.; LaBombard, B.; Danforth, R.; Pina, W.; Silveira, M.; Parkin, B.

    2001-01-01

    The Alcator C-Mod divertor bypass has for the first time allowed in situ variations to the mechanical baffle design in a tokamak. The design utilizes small coils which interact with the ambient magnetic field inside the vessel to provide the torque required to control small flaps of a Venetian blind geometry. Plasma physics experiments with the bypass have revealed the importance of the divertor baffling to maintain high divertor gas pressures. These experiments have also indicated that the divertor baffling has only a limited effect on the main chamber pressure in C-Mod.

  2. Divertor heat flux mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V. A.; Maingi, R.; Gates, D.A.; Menard, J.E.; Bush, C.E.

    2009-01-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono , Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m(-2) to 0.5-2 MW m(-2) in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  3. Fingering Instabilities in Dewetting Nanofluids

    NASA Astrophysics Data System (ADS)

    Pauliac-Vaujour, E.; Stannard, A.; Martin, C. P.; Blunt, M. O.; Notingher, I.; Moriarty, P. J.; Vancea, I.; Thiele, U.

    2008-05-01

    The growth of fingering patterns in dewetting nanofluids (colloidal solutions of thiol-passivated gold nanoparticles) has been followed in real time using contrast-enhanced video microscopy. The fingering instability on which we focus here arises from evaporatively driven nucleation and growth in a nanoscopically thin precursor solvent film behind the macroscopic contact line. We find that well-developed isotropic fingering structures only form for a narrow range of experimental parameters. Numerical simulations, based on a modification of the Monte Carlo approach introduced by Rabani et al. [Nature (London)NATUAS0028-0836 426, 271 (2003)10.1038/nature02087], reproduce the patterns we observe experimentally.

  4. Fingering instabilities in dewetting nanofluids.

    PubMed

    Pauliac-Vaujour, E; Stannard, A; Martin, C P; Blunt, M O; Notingher, I; Moriarty, P J; Vancea, I; Thiele, U

    2008-05-01

    The growth of fingering patterns in dewetting nanofluids (colloidal solutions of thiol-passivated gold nanoparticles) has been followed in real time using contrast-enhanced video microscopy. The fingering instability on which we focus here arises from evaporatively driven nucleation and growth in a nanoscopically thin precursor solvent film behind the macroscopic contact line. We find that well-developed isotropic fingering structures only form for a narrow range of experimental parameters. Numerical simulations, based on a modification of the Monte Carlo approach introduced by Rabani et al. [Nature (London) 426, 271 (2003)10.1038/nature02087], reproduce the patterns we observe experimentally. PMID:18518311

  5. Finger-Circumference-Measuring Device

    NASA Technical Reports Server (NTRS)

    Le, Suy

    1995-01-01

    Easy-to-use device quickly measures circumference of finger (including thumb) on human hand. Includes polytetrafluoroethylene band 1/8 in. wide, bent into loop and attached to tab that slides on scale graduated in millimeters. Sliding tab preloaded with constant-force tension spring, which pulls tab toward closure of loop. Designed to facilitate measurements at various points along fingers to obtain data for studies of volumetric changes of fingers in microgravity. Also used in normal Earth gravity studies of growth and in assessment of diseases like arthritis.

  6. Finger Forces in Clarinet Playing.

    PubMed

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low-high; tempo: slow-fast, dynamics: soft-loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low-high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (F mean ) and peak force (F max ) were calculated. The overall finger forces were low (F mean = 1.17 N, F max = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (F mean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (F mean = 0.54 N). Such sensor instruments provide useful insights into player

  7. The DIII-D Radiative Divertor Project: Status and plans

    SciTech Connect

    Smith, J.P.; Baxi, C.B.; Bozek, A.S.

    1996-10-01

    New divertor hardware is being designed and fabricated for the Radiative Divertor modification of the DIII-D tokamak. The installation of the hardware has been separated into two phases, the first phase starting in October of 1996 and the second and final phase, in 1998. The phased approach enables the continuation of the divertor characterization research in the lower divertor while providing pumping for density control in high triangularity, single- or double-null advanced tokamak discharges. When completed, the Radiative Divertor Project hardware will provide pumping at all four strike points of a double-null, high triangularity discharge and provide baffling of the neutral particles from transport back to the core plasma. By puffing neutral gas into the divertor region, a reduction in the heat flux on the target plates will be be demonstrated without a large rise in core density. This reduction in heat flux is accomplished by dispersing the power with radiation in the divertor region. Experiments and modeling have formed the basis for the new design. The capability of the DIII-D cryogenic system is being upgraded as part of this project. The increased capability of the cryogenic system will allow delivery of liquid helium and nitrogen to three new cryopumps. Physics studies on the effects of slot width and length can be accomplished easily with the design of the Radiative Divertor. The slot width can be varied by installing graphite tiles of different geometry. The change in slot length, the distance from the X-point to the target plate, requires relocating the structure vertically and can be completed in about 6-8 weeks. Radiative Divertor diagnostics are being designed to provide comprehensive measurements for diagnosing the divertor. Required diagnostic modifications will be minimal for Phase 1, but extensive for Phase 2 installation. These Phase 2 diagnostics will be required to fully diagnose the high triangularity discharges in the divertor slots.

  8. Neural correlates of finger gnosis.

    PubMed

    Rusconi, Elena; Tamè, Luigi; Furlan, Michele; Haggard, Patrick; Demarchi, Gianpaolo; Adriani, Michela; Ferrari, Paolo; Braun, Christoph; Schwarzbach, Jens

    2014-07-01

    Neuropsychological studies have described patients with a selective impairment of finger identification in association with posterior parietal lesions. However, evidence of the role of these areas in finger gnosis from studies of the healthy human brain is still scarce. Here we used functional magnetic resonance imaging to identify the brain network engaged in a novel finger gnosis task, the intermanual in-between task (IIBT), in healthy participants. Several brain regions exhibited a stronger blood oxygenation level-dependent (BOLD) response in IIBT than in a control task that did not explicitly rely on finger gnosis but used identical stimuli and motor responses as the IIBT. The IIBT involved stronger signal in the left inferior parietal lobule (IPL), bilateral precuneus (PCN), bilateral premotor cortex, and left inferior frontal gyrus. In all regions, stimulation of nonhomologous fingers of the two hands elicited higher BOLD signal than stimulation of homologous fingers. Only in the left anteromedial IPL (a-mIPL) and left PCN did signal strength decrease parametrically from nonhomology, through partial homology, to total homology with stimulation delivered synchronously to the two hands. With asynchronous stimulation, the signal was stronger in the left a-mIPL than in any other region, possibly indicating retention of task-relevant information. We suggest that the left PCN may contribute a supporting visuospatial representation via its functional connection to the right PCN. The a-mIPL may instead provide the core substrate of an explicit bilateral body structure representation for the fingers that when disrupted can produce the typical symptoms of finger agnosia. PMID:24990921

  9. Divertor for use in fusion reactors

    DOEpatents

    Christensen, Uffe R.

    1979-01-01

    A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.

  10. Comparison of ELM heat loads in snowflake and standard divertors

    SciTech Connect

    Rognlien, T D; Cohen, R H; Ryutov, D D; Umansky, M V

    2012-05-08

    An analysis is given of the impact of the tokamak divertor magnetic structure on the temporal and spatial divertor heat flux from edge localized modes (ELMs). Two configurations are studied: the standard divertor where the poloidal magnetic field (B{sub p}) varies linearly with distance (r) from the magnetic null and the snowflake where B{sub p} varies quadratrically with r. Both one and two-dimensional models are used to analyze the effect of the longer magnetic field length between the midplane and the divertor plate for the snowflake that causes a temporal dilation of the ELM divertor heat flux. A second effect discussed is the appearance of a broad region near the null point where the poloidal plasma beta can substantially exceed unity, especially for the snowflake configuration during the ELM; such a condition is likely to drive additional radial ELM transport.

  11. Super-X divertors and high power density fusion devices

    SciTech Connect

    Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.; Canik, J.

    2009-05-15

    The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source 'battery' small enough to fit inside a conventional fission blanket.

  12. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  13. OEDGE Modeling of Divertor Fueling at DIII-D

    NASA Astrophysics Data System (ADS)

    Bray, B. D.; Leonard, A. W.; Elder, J. D.; Stangeby, P. C.

    2015-11-01

    Onion-skin-modeling (OSM) is used to assess the affect of divertor closure on pedestal fueling sources. The OSM includes information from a wide range of diagnostic measurements at DIII-D to constrain the model background plasma for better simulation of neutrals and impurity ions and spectroscopy to compare to the results of the simulation. DIII-D has open lower divertor and closed upper divertor configurations which can be run with similar discharges. Progress toward modeling the pedestal fueling in low density plasmas for these cases will be presented as well as initial comparisons of recent lower single null discharges with the outer leg on the divertor shelf (fully open) and divertor floor (partially open). Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  14. Multi-finger interaction during involuntary and voluntary single finger force changes

    PubMed Central

    Martin, J.R.; Zatsiorsky, V.M.; Latash, M.L.

    2011-01-01

    Two types of finger interaction are characterized by positive co-variation (enslaving) or negative co-variation (error compensation) of finger forces. Enslaving reflects mechanical and neural connections among fingers, while error compensation results from synergic control of fingers to stabilize their net output. Involuntary and voluntary force changes by a finger were used to explore these patterns. We hypothesized that synergic mechanisms will dominate during involuntary force changes, while enslaving will dominate during voluntary finger force changes. Subjects pressed with all four fingers to match a target force that was 10% of their maximum voluntary contraction (MVC). One of the fingers was unexpectedly raised 5.0 mm at a speed of 30.0 mm/s. During finger raising the subject was instructed “not to intervene voluntarily”. After the finger was passively lifted and a new steady-state achieved, subjects pressed down with the lifted finger, producing a pulse of force voluntarily. The data were analyzed in terms of finger forces and finger modes (hypothetical commands to fingers reflecting their intended involvement). The target finger showed an increase in force during both phases. In the involuntary phase, the target finger force changes ranged between 10.71 ± 1.89% MVC (I-finger) and 16.60 ± 2.26% MVC (L-finger). Generally, non-target fingers displayed a force decrease with a maximum amplitude of −1.49 ± 0.43% MVC (L-finger). Thus, during the involuntary phase, error compensation was observed – non-lifted fingers showed a decrease in force (as well as in mode magnitude). During the voluntary phase, enslaving was observed – non-target fingers showed an increase in force and only minor changes in mode magnitude. The average change in force of non-target fingers ranged from 21.83 ± 4.47% MVC for R-finger (M-finger task) to 0.71 ± 1.10 % MVC for L-finger (I-finger task). The average change in mode of non-target fingers was between −7.34 ± 19

  15. A super-cusp divertor configuration for tokamaks

    DOE PAGESBeta

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough controlmore » that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.« less

  16. A super-cusp divertor configuration for tokamaks

    SciTech Connect

    Ryutov, D. D.

    2015-08-26

    Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.

  17. SOLPS Modeling of Slot Divertor Configuration on DIII-D

    NASA Astrophysics Data System (ADS)

    Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; Lao, L. L.

    2015-11-01

    A major thrust of the DIII-D boundary/PMI initiative is to develop an advanced divertor configuration for next-step devices, such as FNSF and DEMO. We are adopting an integrated approach by optimizing both divertor structure and magnetic shape. Initial SOLPS modeling was carried out to optimize divertor structure shape to enhance divertor power dissipation, focusing on slot configurations. In particular, four different slot divertor structures, i.e., orthogonal-target slot, slanted-target slot, very narrow slot and v-shaped slot have been analyzed and comparisons made with an open divertor structure. It is found that the slot helps to trap recycling neutrals and impurities thus increasing radiative power dissipation in the divertor, reducing the electron temperature Te and the perpendicular heat flux q⊥ at the target plate. As expected, a narrower slot leads to lower Te and q⊥ than a less narrow one. The v-shaped slot appears to be especially effective at redirecting and concentrating recycling neutrals and impurities near the separatrix, thus promoting detachment at a lower upstream density than the other configurations. Work supported by US DOE under DE-FC02-04ER54698.

  18. Current and Potential Distribution in a Divertor with Torioidally-Asymmetric Biasing of the Divertor Plate

    SciTech Connect

    Cohen, R H; Ryutov, D D; Counsell, G F; Helander, P

    2006-06-06

    Toroidally-asymmetric biasing of the divertor plate may increase convective cross-field transport in SOL and thereby reduce the divertor heat load. Experiments performed with the MAST spherical tokamak generally agree with a simple theory of non-axisymmetric biasing. However, some of the experimental results have not yet received a theoretical explanation. In particular, existing theory seems to overestimate the asymmetry between the positive and the negative biasing. Also lacking a theoretical explanation is experimentally observed increase of the average floating potential in the main SOL in the presence of biasing. In this paper we attempt to solve these problems by accounting for the closing of the currents (driven by the biasing) in a strong-shear region near the X-point. We come up with the picture which, at least qualitatively, agrees with these experimental results.

  19. Fluid mixing from viscous fingering.

    PubMed

    Jha, Birendra; Cueto-Felgueroso, Luis; Juanes, Ruben

    2011-05-13

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or viscous fingering, provides a powerful mechanism to increase fluid-fluid interfacial area and enhance mixing. Here we describe the dissipative structure of miscible viscous fingering, and propose a two-equation model for the scalar variance and its dissipation rate. Our analysis predicts the optimum range of viscosity contrasts that, for a given Péclet number, maximizes interfacial area and minimizes mixing time. In the spirit of turbulence modeling, the proposed two-equation model permits upscaling dissipation due to fingering at unresolved scales. PMID:21668165

  20. Mesofluidic controlled robotic or prosthetic finger

    SciTech Connect

    Lind, Randall F; Jansen, John F; Love, Lonnie J

    2013-11-19

    A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.

  1. Modeling impurities and tilted plates in the ITER divertor

    SciTech Connect

    Rensink, M.E.; Rognlien, T.D.

    1996-07-29

    The UEDGE 2-D edge transport code is used to model the effect of impurities and tilted divertor plates for the ITER SOL/divertor region. The impurities are modeled as individual charge states using either the FMOMBAL 21-moment description or parallel force balance. Both helium and neon impurities are used together with a majority hydrogenic species. A fluid description of the neutrals is used that includes parallel inertia and neutral-neutral collisions. Effects of geometry are analyzed by using the nonorthogonal mesh capability of UEDGE to obtain solutions with the divertor plate tilted at various angles.

  2. Optics design of the divertor infrared television of KSTAR.

    PubMed

    Oh, S; Lee, K; Lee, H H; Wi, H M; Kim, Y S; Kang, C S

    2014-11-01

    The divertor Infrared television (IR TV) system for monitoring the temperature of a divertor and localized hot spots will be installed on the upper port of the N-port in the Korea Superconducting Tokamak Advanced Research (KSTAR). The cassette of KSTAR makes a periscope inevitable for the divertor IR TV. In this article, 4 design concepts for the periscope were examined, and the design based on Keplerian was shown to have better stabilities in alignment and the vibration. The final optics design based on an f-theta lens, Keplerian, and telecentric lens was derived. PMID:25430316

  3. A review of ELMs in divertor tokamaks

    SciTech Connect

    Hill, D.N.

    1996-05-23

    This paper reviews what is known about edge localized modes (ELMs), with an emphasis on their effect on the scrape-off layer and divertor plasmas. ELM effects have been measured in the ASDEX-U, C-Mod, COMPASS-D, DIII-D, JET, JFT-2M,JT-60U, and TCV tokamaks and are reported here. At least three types of ELMs have been identified and their salient features determined. Type-1 giant ELMs can cause the sudden loss of up to 10-15% of the plasma stored energy but their amplitude ({Delta}W/W) does not increase with increasing power. Type- 3 ELMs are observed near the H-mode power threshold and produce small energy dumps (1-3% of the stored energy). All ELMs increase the scrape- off layer plasma and produce particle fluxes on the divertor targets which are as much as ten times larger that the quiescent phase between ELMs. The divertor heat pulse is largest on the inner target, unlike that of L-Mode or quiescent H-mode; some tokamaks report radial structure in the heat flux profile which is suggestive of islands or helical structures. The power scaling of Type-1 ELM amplitude and frequency have been measured in several tokamaks and has recently been applied to predictions of the ELM Size in ITER. Concern over the expected ELM amplitude has led to a number of experiments aimed at demonstrating active control of ELMs. Impurity gas injection with feedback control on the radiation loss in ASDEX-U suggests that a promising mode of operation (the CDH-mode) with a very small type-3 ELMs can be maintained with heating power sell above the H-mode threshold, where giant type-1 ELMs can be maintained with heating power well above the H-mode threshold, where Giant type-1 ELMs are normally observed. While ELMs have many potential negative effects, the beneficial effect of ELMs in providing density control and limiting the core plasma impurity content in high confinement H- mode discharges should not be overlooked.

  4. Potential collector surface materials for divertors

    NASA Astrophysics Data System (ADS)

    Prebble, H. E.; Forty, C. B. A.; Butterworth, G. J.

    1992-09-01

    Twelve refractory materials have been investigated to assess their suitability for use as collector target materials for divertors. The steady state limiting heat flux to avoid melting of the collector material has been calculated as a function of thickness using a simple one-dimensional thermal-hydraulics model. Similarly, the limiting heat flux to avoid melting following a plasma disruption has been calculated as a function of collector surface temperature just prior to the disruption event. Finally, the resistance of each collector material to thermal shock was estimated. The calculations indicate diamond, graphite and tungsten as favourable materials, BN, AlN, TiN, V 2C and beryllium as unsuitable and BeO, SiC, TiC and TIB 2 as exhibiting combinations of favourable and unfavourable properties.

  5. Divertor IR thermography on Alcator C-Mod.

    PubMed

    Terry, J L; LaBombard, B; Brunner, D; Payne, J; Wurden, G A

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings. PMID:21034041

  6. Divertor IR thermography on Alcator C-Mod

    SciTech Connect

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-15

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6 deg. toroidal sector has been given a 2 deg. toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  7. Divertor IR thermography on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  8. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  9. Compatibility of detached divertor operation with robust edge pedestal performance

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.; Makowski, M. A.; McLean, A. G.; Osborne, T. H.; Snyder, P. B.

    2015-08-01

    The compatibility of detached radiative divertor operation with a robust H-mode pedestal is examined in DIII-D. A density scan produced low temperature plasmas at the divertor target, Te ⩽ 2 eV, with high radiation leading to a factor of ⩾4 drop in peak divertor heat flux. The cold radiative plasma was confined to the divertor and did not extend across the separatrix in X-point region. A robust H-mode pedestal was maintained with a small degradation in pedestal pressure at the highest densities. The response of the pedestal pressure to increasing density is reproduced by the EPED pedestal model. However, agreement of the EPED model with experiment at high density requires an assumption of reduced diamagnetic stabilization of edge Peeling-Ballooning modes.

  10. Local Effects of Biased Electrodes in the Divertor of NSTX

    SciTech Connect

    Zweben, S.; Campanell, M. D.; Lyons, B. C.; Maqueda, R. J.; Raitses, Y.; Roquemore, A. L.; Scotti, F.

    2012-05-07

    The goal of this paper is to characterize the effects of small non-axisymmetric divertor plate electrodes on the local scrape-off layer plasma. Four small rectangular electrodes were installed into the outer divertor plates of NSTX. When the electrodes were located near the outer divertor strike point and biased positively, there was an increase in the nearby probe currents and probe potentials and an increase in the LiI light emission at the large major radius end of these electrodes. When an electrode located farther outward from the outer divertor strike point was biased positively, there was sometimes a significant decrease in the LiI light emission at the small major radius end of this electrode, but there were no clear effects on the nearby probes. No non-local effects were observed with the biasing of these electrodes.

  11. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  12. Structural design of the DIII-D radiative divertor

    SciTech Connect

    Reis, E.E.; Smith, J.P.; Baxi, C.B.; Bozek, A.S.; Chin, E.; Hollerbach, M.A.; Laughon, G.J.; Sevier, D.L.

    1996-10-01

    The divertor of the DIII-D tokamak is being modified to operate as a slot type, dissipative divertor. This modification, called the Radiative Divertor Program (RDP) is being carried out in two phases. The design and analysis is complete and hardware is being fabricated for the first phase. This first phase consists of an upper divertor baffle and cryopump to provide some density control for high triangularity, single or double null discharges. Installation of the first phase is scheduled to start in October, 1996. The second phase provides pumping at all four divertor strike points of double null high triangularity discharges and baffling of the neutral particles from transport back to the core plasma. Studies of the effects of varying the slot length and width of the divertor can be easily accomplished with the design of RDP hardware. Static and dynamic analyses of the baffle structures, new cryopumps, and feedlines were performed during the preliminary and final design phases. Disruption loads and differential thermal displacements must be accommodated in the design of these components. With the full RDP hardware installed, the plasma current in DIII-D will be a maximum of 3.0 MA. Plasma disruptions induce toroidal currents in the cryopump, producing complex dynamic loads. Simultaneously, the vacuum vessel vibrations impose a sinusoidal base excitation to the supports for the cryopump. Static and dynamic analyses of the cryopump demonstrate that the stresses due to disruption and thermal loadings satisfy the stress and deflection criteria.

  13. Development of a radiative divertor for DIII-D

    SciTech Connect

    Allen, S.L.; Brooks, N.H.; Campbell, R.B.

    1994-07-01

    We have used experiments and modeling to develop a new radiative divertor configuration for DIII-D. Gas puffing experiments with the existing open divertor have shown the creation of a localized ({approximately}10 cm diameter) radiation zone which results in substantial reduction (3--10) in the divertor heat flux while {delta}{sub E} remains {approximately}2 times ITER-89P scaling. However, ne increases with D{sub 2} puffing, and Z{sub eff} increases with neon puffing. Divertor structures are required to minimize the effects on the core plasma. The UEDGE fluid code, benchmarked with DIII-D data, and the DEGAS neutrals transport code are used to estimate the effectiveness of divertor configurations; slots reduce the core ionization more than baffles. The overall divertor shape is set by confinement studies which indicate that high triangularity ({delta} {approximately}0.8) is important for high {tau}{sub E} VH-modes. Results from engineering feasibility studies, including diagnostic access, will be presented.

  14. Long-finger pollicization for macrodactyly of the thumb and index finger.

    PubMed

    Donohue, Kenneth W; Zlotolow, Dan A; Kozin, Scott H

    2014-01-01

    Pollicization of the long finger is rarely performed, and previously described for treating traumatic thumb and index finger loss. Because the long finger lacks the independence of motion and muscular attachments of the index finger, pollicization of the long finger requires modifications of the technique. We present the case of a 3-year-old girl with progressive macrodactyly of the thumb and index finger associated with a lipofibromatous hamartoma of the median nerve. The involved digits were severely enlarged, stiff, and nonfunctional. The child was treated with first and second ray resection followed by long-finger pollicization. Surgical pearls and pitfalls are discussed. PMID:24919138

  15. From viscous fingering to bulk elastic fingering in soft materials

    NASA Astrophysics Data System (ADS)

    Saintyves, Baudouin; Biggins, John; Wei, Zhiyan; Mora, Serge; Dauchot, Olivier; Mahadevan, L.; Bouchaud, Elisabeth

    2014-03-01

    Systematic experiments have been performed in purely elastic polyacrylamide gels in Hele-Shaw cells. We have shown that a bulk fingering instability arises in the highly deformable confined elastomers. It shares some similarities with the famous Saffman-Taylor instability, but a systematic study shows that surface tension is not relevant. This instability is sub-critical, with a clear hysteretic behavior. Our experimental observations have been compared very favorably to theoretical and finite element simulations results. In particular, the instability wavelength and the critical front advance have been shown to be proportional to the distance between the two glass plates constituting the cell. We have also shown that in Maxwell viscoelastic fluids, one crosses over continuously from a viscous to an elastic fingering instability.

  16. Mechanical model of a single tendon finger

    NASA Astrophysics Data System (ADS)

    Rossi, Cesare; Savino, Sergio

    2013-10-01

    The mechanical model of a single tendon three phalanxes finger is presented. By means of the model both kinematic and dynamical behavior of the finger itself can be studied. This finger is a part of a more complex mechanical system that consists in a four finger grasping device for robots or in a five finger human hand prosthesis. A first prototype has been realized in our department in order to verify the real behavior of the model. Some results of both kinematic and dynamical behavior are presented.

  17. Spectroscopic Measurement System for ITER Divertor Plasma: Impurity Influx Monitor (divertor)

    SciTech Connect

    Sugie, Tatsuo; Ogawa, Hiroaki; Kusama, Yoshinori; Kasai, Satoshi

    2008-03-12

    The detailed design of the Impurity Influx Monitor (divertor) has been carried out to provide the measurement capability in the harsh environment such as higher irradiation levels of neutron, gamma-ray and particles than in present devices. The in-situ calibration system using a micro retro-reflector array has been developed to monitor the sensitivity change of the optical system due to the environmental effects. The optical alignment system for the Monitor has been developed by using a dedicated optics for alignment in the collection optics for measurement.

  18. Impact of Finger Type in Fingerprint Authentication

    NASA Astrophysics Data System (ADS)

    Gafurov, Davrondzhon; Bours, Patrick; Yang, Bian; Busch, Christoph

    Nowadays fingerprint verification system is the most widespread and accepted biometric technology that explores various features of the human fingers for this purpose. In general, every normal person has 10 fingers with different size. Although it is claimed that recognition performance with little fingers can be less accurate compared to other finger types, to our best knowledge, this has not been investigated yet. This paper presents our study on the topic of influence of the finger type into fingerprint recognition performance. For analysis we employ two fingerprint verification software packages (one public and one commercial). We conduct test on GUC100 multi sensor fingerprint database which contains fingerprint images of all 10 fingers from 100 subjects. Our analysis indeed confirms that performance with small fingers is less accurate than performance with the others fingers of the hand. It also appears that best performance is being obtained with thumb or index fingers. For example, performance deterioration from the best finger (i.e. index or thumb) to the worst fingers (i.e. small ones) can be in the range of 184%-1352%.

  19. Does finger sense predict addition performance?

    PubMed

    Newman, Sharlene D

    2016-05-01

    The impact of fingers on numerical and mathematical cognition has received a great deal of attention recently. However, the precise role that fingers play in numerical cognition is unknown. The current study explores the relationship between finger sense, arithmetic and general cognitive ability. Seventy-six children between the ages of 5 and 12 participated in the study. The results of stepwise multiple regression analyses demonstrated that while general cognitive ability including language processing was a predictor of addition performance, finger sense was not. The impact of age on the relationship between finger sense, and addition was further examined. The participants were separated into two groups based on age. The results showed that finger gnosia score impacted addition performance in the older group but not the younger group. These results appear to support the hypothesis that fingers provide a scaffold for calculation and that if that scaffold is not properly built, it has continued differential consequences to mathematical cognition. PMID:26993292

  20. Comment on "Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake" [Phys. Plasmas 20, 102507 (2013)

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.

    2014-05-01

    In the recently published paper "Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake" [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor "quality" is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake "two-null" prescription.

  1. Comment on “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)

    SciTech Connect

    Ryutov, D. D. Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.

    2014-05-15

    In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription.

  2. Design, R&D and commissioning of EAST tungsten divertor

    NASA Astrophysics Data System (ADS)

    Yao, D. M.; Luo, G. N.; Zhou, Z. B.; Cao, L.; Li, Q.; Wang, W. J.; Li, L.; Qin, S. G.; Shi, Y. L.; Liu, G. H.; Li, J. G.

    2016-02-01

    After commissioning in 2005, the EAST superconducting tokamak had been operated with its water cooled divertors for eight campaigns up to 2012, employing graphite as plasma facing material. With increase in heating power over 20 MW in recent years, the heat flux going to the divertors rises rapidly over 10 MW m-2 for steady state operation. To accommodate the rapid increasing heat load in EAST, the bolting graphite tile divertor must be upgraded. An ITER-like tungsten (W) divertor has been designed and developed; and firstly used for the upper divertor of EAST. The EAST upper W divertor is modular structure with 80 modules in total. Eighty sets of W/Cu plasma-facing components (PFC) with each set consisting of an outer vertical target (OVT), an inner vertical target (IVT) and a DOME, are attached to 80 stainless steel cassette bodies (CB) by pins. The monoblock W/Cu-PFCs have been developed for the strike points of both OVT and IVT, and the flat type W/Cu-PFCs for the DOME and the baffle parts of both OVT and IVT, employing so-called hot isostatic pressing (HIP) technology for tungsten to CuCrZr heat sink bonding, and electron beam welding for CuCrZr to CuCrZr and CuCrZr to other material bonding. Both monoblock and flat type PFC mockups passed high heat flux (HHF) testing by means of electron beam facilities. The 80 divertor modules were installed in EAST in 2014 and results of the first commissioning are presented in this paper.

  3. Carbon flows in attached divertor plasmas

    SciTech Connect

    Isler, R.C.; Brooks, N.H.; West, W.P.; Porter, G.D. |; The DIII-D Divertor Team

    1999-05-01

    Parallel flow velocities of carbon ions in the DIII-D divertor [J. Luxon {ital et al.}, {ital Plasma Physics Controlled Nuclear Fusion Research}, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; S. L. Allen {ital et al.}, {ital Controlled Fusion and Plasma Physics}, 1987 (Proc. 24th European Conf. Berchtesgaden, 1997), Vol. 21 A, Part III, p. 1129] have been studied under various operating conditions: L-mode (low-confinement mode), H-mode (high-confinement mode) with low-frequency ELMs (edge-localized modes), and H-mode with high-frequency ELMs. Both normal and reversed flows (toward the target plate and away from the target plate, respectively) are observed under all conditions, with the reversed speeds being as much as a factor of four greater than normal speeds. Magnitudes are approximately the same for L-mode and H-mode operation with high-frequency ELMs. In H-mode conditions with low-frequency ELMs, normal velocities are frequently observed to decline while reversed velocities increase in comparison to the other two conditions. {copyright} {ital 1999 American Institute of Physics.}

  4. Radiative snowflake divertor studies in DIII-D

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Kolemen, E.; Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.

    2015-08-01

    Recent DIII-D experiments assessed the snowflake divertor (SF) configuration in a radiative regime in H-mode discharges with D2 seeding. The SF configuration was maintained for many energy confinement times (2-3 s) in H-mode discharges (Ip = 1.2 MA, PNBI = 4- 5 MW, and B × ∇B down (favorable direction toward the divertor)), and found to be compatible with high performance operation (H98y2 ⩾ 1). The two studied SF configurations, the SF-plus and the SF-minus, have a small finite distance between the primary X-point and the secondary Bp null located in the private flux region or the common flux region, respectively. In H-mode discharges with the SF configurations (cf. H-mode discharges with the standard divertor with similar conditions) the stored energy lost per the edge localized mode (ELM) was reduced, and significant divertor heat flux reduction between and during ELMs was observed over a range of collisionalities, from lower density conditions toward a higher density H-modes with the radiative SF divertor.

  5. Initial Development of the NSTX-U Snowflake Divertor Control

    NASA Astrophysics Data System (ADS)

    Vail, Patrick; Kolemen, Egemen; Welander, Anders; Lanctot, Matthew

    2015-11-01

    A feedback control system has been implemented at NSTX-U for real-time detection and manipulation of snowflake divertor (SFD) magnetic configurations. The SFD is an alternative magnetic divertor concept that is characterized by a second-order null formed by two x-points in close proximity. The SFD is an attractive option for heat flux mitigation for NSTX-U in which unmitigated peak heat fluxes in standard divertor operation near 20 MW/m2 may compromise plasma-facing components. The real-time control system at NSTX-U is capable of simultaneous control of multiple SFD parameters, such as the separation between the two x-points in the divertor region and their orientation. Control of SFD configurations in NSTX-U has been simulated in TOKSYS using the upgraded sets of poloidal field coils in both the upper and lower divertor regions. Performance of the real-time control system and its effect on plasma performance will be assessed experimentally as an initial step toward the development of the SFD concept at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.

  6. Current status of ultrasonography of the finger

    PubMed Central

    2016-01-01

    The recent development of advanced high-resolution transducers has enabled the fast, easy, and dynamic ultrasonographic evaluation of small, superficial structures such as the finger. In order to best exploit these advances, it is important to understand the normal anatomy and the basic pathologies of the finger, as exemplified by the following conditions involving the dorsal, volar, and lateral sections of the finger: sagittal band injuries, mallet finger, and Boutonnière deformity (dorsal aspect); flexor tendon tears, trigger finger, and volar plate injuries (volar aspect); gamekeeper’s thumb (Stener lesions) and other collateral ligament tears (lateral aspect); and other lesions. This review provides a basis for understanding the ultrasonography of the finger and will therefore be useful for radiologists. PMID:26753604

  7. On the fly finger knuckle print authentication

    NASA Astrophysics Data System (ADS)

    Abe, Narishige; Shinzaki, Takashi

    2014-05-01

    Finger knuckle print authentication has been researched not only as a supplemental authentication modality to fingerprint recognition but also as a method for logging into a PC or entering a building. However, in previous works, some specific devices were necessary to capture a finger knuckle print and users had to keep their fingers perfectly still to capture their finger knuckle. In this paper, we propose a new on the fly finger knuckle print authentication system using a general web camera. In our proposed authentication system, users can input their finger knuckle prints without needing their hand to remain motionless during image capture. We also evaluate the authentication accuracy of the proposed system, achieving an 7% EER under best conditions.

  8. Solid tungsten Divertor-III for ASDEX Upgrade and contributions to ITER

    NASA Astrophysics Data System (ADS)

    Herrmann, A.; Greuner, H.; Jaksic, N.; Balden, M.; Kallenbach, A.; Krieger, K.; de Marné, P.; Rohde, V.; Scarabosio, A.; Schall, G.; the ASDEX Upgrade Team

    2015-06-01

    ASDEX Upgrade became a full tungsten experiment in 2007 by coating its graphite plasma facing components with tungsten. In 2013 a redesigned solid tungsten divertor, Div-III, was installed and came into operation in 2014. The redesign of the outer divertor geometry provided the opportunity to increase the pumping efficiency in the lower divertor by increasing the gap between divertor and vessel. In parallel, a by-pass was installed into the cryo-pump in the divertor region allowing adapting of the pumping speed to the required edge density. Safe divertor operation and heat removal becomes more and more significant for future fusion devices. This requires developing ‘tools’ for divertor heat load control and to optimize the divertor design. The new divertor manipulator, DIM-II, allows retracting a relevant part of the outer divertor into a target exchange box without venting ASDEX Upgrade. Different front-ends can be installed and exposed to the plasma. At present, front-ends for probe exposition, gas puffing, electrical probes and actively cooled prototype targets are under construction. The installation of solid tungsten, the control of the pumping speed and the flexibility for testing divertor modifications on a weekly base is a unique feature of ASDEX Upgrade and offers together with the extended set of diagnostics the possibility to investigate dedicated questions for a future divertor design.

  9. A novel approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Baelmans, M.; Dekeyser, W.; Gauger, N. R.; Reiter, D.

    2015-08-01

    Divertor exhaust system design and analysis tools are crucial to evolve from experimental fusion reactors towards commercial power plants. In addition to material research and dedicated vessel geometry design, improved magnetic configurations can contribute to sustaining the diverted heat loads. Yet, computational design of the magnetic divertor is a challenging process involving a magnetic equilibrium solver, a plasma edge grid generator and a computationally demanding plasma edge simulation. In this paper, an integrated approach to efficient sensitivity calculations is discussed and applied to a set of slightly reduced divertor models. Sensitivities of target heat load performance to the shaping coil currents are directly evaluated. Using adjoint methods, the cost for a sensitivity evaluation is reduced to about two times the simulation cost of one specific configuration. Further, the use of these sensitivities in an optimal design framework is illustrated by a case with realistic Joint European Torus (JET) configurational parameters.

  10. Radiative divertor plasmas with convection in DIII-D

    SciTech Connect

    Leornard, A.W.; Porter, G.D.; Wood, R.D.

    1998-01-01

    The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features.

  11. A survey of problems in divertor and edge plasma theory

    SciTech Connect

    Boozer, A. ); Braams, B.; Weitzner, H. . Courant Inst. of Mathematical Sciences); Cohen, R. ); Hazeltine, R. . Inst. for Fusion Studies); Hinton, F. ); Houlberg, W. (Oak

    1992-12-22

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician's point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.

  12. A survey of problems in divertor and edge plasma theory

    SciTech Connect

    Boozer, A.; Braams, B.; Weitzner, H.; Cohen, R.; Hazeltine, R.; Hinton, F.; Houlberg, W.; Oktay, E.; Sadowski, W.; Post, D.; Sigmar, D.; Wootton, A.

    1992-12-22

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician`s point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.

  13. Plasma transport in a simulated magnetic-divertor configuration

    SciTech Connect

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  14. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  15. Prosthetic Hand With Two Gripping Fingers

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Belcher, Jewell B.; Vest, Thomas W.; Carden, James R.

    1993-01-01

    Prosthetic hand developed for amputee who retains significant portion of forearm. Outer end of device is end effector including two fingers, one moved by rotating remaining part of forearm about its longitudinal axis. Main body of end effector is end member supporting fingers, roller bearing assembly, and rack-and-pinion mechanism. Advantage of rack-and-pinion mechanism enables user to open or close gap between fingers with precision and force.

  16. Toroidally symmetric plasma vortex at tokamak divertor null point

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; Ryutov, D. D.

    2016-03-01

    Reduced MHD equations are used for studying toroidally symmetric plasma dynamics near the divertor null point. Numerical solution of these equations exhibits a plasma vortex localized at the null point with the time-evolution defined by interplay of the curvature drive, magnetic restoring force, and dissipation. Convective motion is easier to achieve for a second-order null (snowflake) divertor than for a regular x-point configuration, and the size of the convection zone in a snowflake configuration grows with plasma pressure at the null point. The trends in simulations are consistent with tokamak experiments which indicate the presence of enhanced transport at the null point.

  17. Non-ambipolar transport in a magnetic divertor

    SciTech Connect

    Strawitch, C M; Emmert, G A

    1980-02-01

    Plasma transport is studied in a simulated magnetic divertor in the Wisconsin single ring DC machine. The transport perpendicular and parallel to the magnetic field is shown to be non-ambipolar by a variety of measurements, but can be forced to be ambipolar by an appropriately designed divertor target plate. The density profile in the scrape-off zone agrees with the predictions of a one-dimensional diffusion equation that assumes classical cross-field transport and plasma flow parallel to the field at the local ion acoustic velocity.

  18. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  19. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  20. Error compensation during finger force production after one- and four-finger voluntarily fatiguing exercise.

    PubMed

    Kruger, Eric S; Hoopes, Josh A; Cordial, Rory J; Li, Sheng

    2007-08-01

    The effect of muscle fatigue on error compensation strategies during multi-finger ramp force production tasks was investigated. Thirteen young, healthy subjects were instructed to produce a total force with four fingers of the right hand to accurately match a visually displayed template. The template consisted of a 3-s waiting period, a 3-s ramp force production [from 0 to 30% maximal voluntary contraction (MVC)], and a 3-s constant force production. A series of 12 ramp trials was performed before and after fatigue. Fatigue was induced by a 60-s maximal isometric force production with either the index-finger only or with all four fingers during two separate testing sessions. The average percent of drop was 38.2% in the MVC of the index finger after index-finger fatiguing exercise and 38.3% in the MVC of all fingers after four-finger fatiguing exercise. The ability of individual fingers to compensate for each other's errors in order for the total force to match the preset template was quantified as the error compensation index (ECI), i.e., the ratio of the sum of variances of individual finger forces and the variance of the total force. By comparing pre- and post-fatigue performance during four-finger ramp force production, we observed that the variance of the total force was not significantly changed after one- or four-finger fatiguing exercise. The ECI significantly decreased after four-finger fatiguing exercise, especially during the last second of the ramp; while the ECI remained unchanged after index finger single-finger fatiguing exercise. These results suggest that the central nervous system is able to utilize the abundant degrees of freedom to compensate for partial impairment of the motor apparatus induced by muscle fatigue to maintain the desired performance. However, this ability is significantly decreased when all elements of the motor apparatus are impaired. PMID:17443316

  1. Creating Number Semantics through Finger Movement Perception

    ERIC Educational Resources Information Center

    Badets, Arnaud; Pesenti, Mauro

    2010-01-01

    Communication, language and conceptual knowledge related to concrete objects may rely on the sensory-motor systems from which they emerge. How abstract concepts can emerge from these systems is however still unknown. Here we report a functional interaction between a specific meaningful finger movement, such as a finger grip closing, and a concept…

  2. Taming the plasma-material interface with the snowflake divertor.

    SciTech Connect

    Soukhanovskii, V A

    2015-04-24

    Experiments in several tokamaks have provided increasing support for the snowflake configuration as a viable tokamak heat exhaust concept. This white paper summarizes the snowflake properties predicted theoretically and studied experimentally, and identifies outstanding issues to be resolved in existing and future facilities before the snowflake divertor can qualify for the reactor interface.

  3. Modeling results for a linear simulator of a divertor

    SciTech Connect

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-06-23

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach {approximately} 1 Gw/m{sup 2} along the magnetic fieldlines and > 10 MW/m{sup 2} on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report.

  4. Neoclassical and Initial Divertor-Geometry Tests of COGENT

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Dorf, M.; Compton, J. C.; Dorr, M.; Rognlien, T. D.; Colella, P.; McCorquodale, P.; Angus, J.; Krasheninnikov, S.

    2012-03-01

    COGENT is a full-f continuum kinetic code being developed for study of edge physics phenomena in tokamaks. The code is distinguished by 4th order conservative discretization and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. We discuss a number of recent neoclassical results in closed-flux-surface geometry, in particular self-consistent neoclassical simulations with increasingly complete collision operators (Lorentz, full test-particle, and adding model momentum- and energy-conserving terms). We also examine the effects of strong radial electric fields on neoclassical transport and decay of geodesic acoustic modes (GAM's). The code is being upgraded to full single-null divertor geometry, with numerical geometric coefficients imported from an external MHD equilibrium calculation. We discuss several initial tests of the divertor code: advection of phase-space blobs through the x-point region, and neoclassical transport and flows in the presence of divertor losses. We also summarize progress on code-development activities needed to complete the divertor code.

  5. Theoretical design of a compact energy recovering divertor

    NASA Astrophysics Data System (ADS)

    Baver, D. A.

    2015-11-01

    An energy recovering divertor (ERD) is a type of plasma direct converter (PDC) designed to fit in the divertor channel of a tokamak. Such a device reduces the heat load to the divertor plate by converting a portion of it into electrical energy. This recovered energy can then be used for auxiliary heating and current drive, fundamentally altering the relationship between scientific and engineering breakeven and reducing dependence on bootstrap current. Previous work on the ERD concept focused on amplification of Alfven waves in a manner similar to a free-electron laser. While conceptually straightforward, this concept was also bulky, thus limiting its applicability to existing tokamak experiments. A design is presented for an ERD based on sheath-localized waves. This makes possible a device sufficiently compact to fit in the divertor channel of many existing tokamak experiments, and moreover requires no new shaping coils to achieve the desired magnetic geometry or topology. In addition, incidental advantages of this concept will be discussed.

  6. Analysis and treatment of finger sucking.

    PubMed Central

    Ellingson, S A; Miltenberger, R G; Stricker, J M; Garlinghouse, M A; Roberts, J; Galensky, T L; Rapp, J T

    2000-01-01

    We analyzed and treated the finger sucking of 2 developmentally typical children aged 7 and 10 years. The functional analysis revealed that the finger sucking of both children was exhibited primarily during alone conditions, suggesting that the behavior was maintained by automatic reinforcement. An extended analysis provided support for this hypothesis and demonstrated that attenuation of stimulation produced by the finger sucking resulted in behavior reductions for both children. Treatment consisted of having each child wear a glove on the relevant hand during periods when he or she was alone. Use of the glove produced zero levels of finger sucking for 1 participant, whereas only moderate reductions were obtained for the other. Subsequently, an awareness enhancement device was used that produced an immediate reduction in finger sucking. PMID:10738951

  7. Fingering in Stochastic Growth Models

    PubMed Central

    Aristotelous, Andreas C.; Durrett, Richard

    2015-01-01

    Motivated by the widespread use of hybrid-discrete cellular automata in modeling cancer, two simple growth models are studied on the two dimensional lattice that incorporate a nutrient, assumed to be oxygen. In the first model the oxygen concentration u(x, t) is computed based on the geometry of the growing blob, while in the second one u(x, t) satisfies a reaction-diffusion equation. A threshold θ value exists such that cells give birth at rate β(u(x, t) − θ)+ and die at rate δ(θ − u(x, t)+. In the first model, a phase transition was found between growth as a solid blob and “fingering” at a threshold θc = 0.5, while in the second case fingering always occurs, i.e., θc = 0. PMID:26430353

  8. Differing Dynamics of Intrapersonal and Interpersonal Coordination: Two-finger and Four-Finger Tapping Experiments

    PubMed Central

    Kodama, Kentaro; Furuyama, Nobuhiro; Inamura, Tetsunari

    2015-01-01

    Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure. PMID:26070119

  9. Finger wear detection for production line battery tester

    DOEpatents

    Depiante, Eduardo V.

    1997-01-01

    A method for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change.

  10. Finger wear detection for production line battery tester

    DOEpatents

    Depiante, E.V.

    1997-11-18

    A method is described for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change. 9 figs.

  11. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. PMID:22882155

  12. Diagnostic options for radiative divertor feedback control on NSTX-U

    SciTech Connect

    Soukhanovskii, V. A.; McLean, A. G.; Gerhardt, S. P.; Kaita, R.; Raman, R.

    2012-10-15

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q{sub peak} Less-Than-Or-Slanted-Equal-To 15 MW/m{sup 2}), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D{sub 2} or CD{sub 4} gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m{sup 2}, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic 'security' monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  13. Diagnostic options for radiative divertor feedback control on NSTX-Ua)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Gerhardt, S. P.; Kaita, R.; McLean, A. G.; Raman, R.

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (qpeak ⩽ 15 MW/m2), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D2 or CD4 gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m2, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic "security" monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  14. Fingered core structure of nematic boojums

    NASA Astrophysics Data System (ADS)

    Kralj, Samo; Rosso, Riccardo; Virga, Epifanio G.

    2008-09-01

    Using the Landau-de Gennes phenomenological approach, we study the fine biaxial core structure of a boojum residing on the surface of a nematic liquid crystal phase. The core is formed by a negatively uniaxial finger, surrounded by a shell with maximal biaxiality. The characteristic finger’s length and the shell’s width are comparable to the biaxial correlation length. The finger tip is melted for topological reasons. Upon decreasing the surface anchoring strength below a critical value, the finger gradually leaves the bulk and it is expelled through the surface.

  15. Modeling of divertor geometry effects in China fusion engineering testing reactor by SOLPS/B2-Eirene

    SciTech Connect

    Zhao, M. L.; Chen, Y. P.; Li, G. Q.; Luo, Z. P.; Guo, H. Y.; Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031; General Atomics, P.O. Box 85608, San Diego, California 92186 ; Ye, M. Y.; Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 ; Tendler, M.

    2014-05-15

    The China Fusion Engineering Testing Reactor (CFETR) is currently under design. The SOLPS/B2-Eirene code package is utilized for the design and optimization of the divertor geometry for CFETR. Detailed modeling is carried out for an ITER-like divertor configuration and one with relatively open inner divertor structure, to assess, in particular, peak power loading on the divertor target, which is a key issue for the operation of a next-step fusion machine, such as ITER and CFETR. As expected, the divertor peak heat flux greatly exceeds the maximum steady-state heat load of 10 MW/m{sup 2}, which is a limit dictated by engineering, for both divertor configurations with a wide range of edge plasma conditions. Ar puffing is effective at reducing divertor peak heat fluxes below 10 MW/m{sup 2} even at relatively low densities for both cases, favoring the divertor configuration with more open inner divertor structure.

  16. Aesthetic finger prosthesis with silicone biomaterial

    PubMed Central

    Raghu, K M; Gururaju, C R; Sundaresh, K J; Mallikarjuna, Rachappa

    2013-01-01

    The fabrication of finger prosthesis is as much an art as it is science. The ideally constructed prosthesis must duplicate the missing structures so precisely that patients can appear in public without fear of attracting unwanted attraction. A 65-years-old patient reported with loss of his right index finger up to the second phalanx and wanted to get it replaced. An impression of the amputated finger and donor were made. A wax pattern of the prosthesis was fabricated using the donor impression; a trial was performed and flasked. Medical grade silicone was intrinsically stained to match the skin tone, following which it was packed, processed and finished. This clinical report describes a method of attaining retention by selective scoring of the master cast of partially amputated finger to enhance the vacuum effect at par with the proportional distribution of the positive forces on the tissues exerted by the prosthesis. PMID:23975917

  17. Detached divertor operation in DIII-D helium plasmas

    SciTech Connect

    Hill, D. N., LLNL

    1998-05-01

    This paper presents results from operating helium plasmas in DIII-D in which helium gas puffing is used to reduce the peak divertor heat flux by factors of four or more. The threshold density for achieving these conditions is nearly the same as for deuterium plasmas, which is surprising given the fact that lack of chemical sputtering reduces the carbon concentration in the plasma by more than a factor of five. Spectroscopic analysis shows that helium becomes the primary radiation in these plasmas, which is possible because, unlike carbon, it is the primary species present. These plasmas differ from the usual partially detached divertor (PDD) plasmas in that there is no concomitant reduction in target plate ion flux with target plate heat flux in the scrape off later outside the separatrix.

  18. Innovative tokamak DEMO first wall and divertor material concepts

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.

    2009-06-01

    ITER has selected Be as the first wall and C and W as the divertor surface materials. When extrapolated to the DEMO design, C and Be layers will not be suitable due to radiation damage. The remaining material, W, could also suffer radiation damage from helium ion implantation and experience blistering at the first wall and form submicron fine structure at the divertor. In this paper we introduce a new concept called the boron W-mesh (BW-mesh) in which B is infiltrated into a W-mesh. The goal is to use a thin coating of B to protect the W-mesh from helium ion damage and to maintain a sufficient amount of B to protect the W from transient events like edge localized modes (ELMs) and disruptions. Critical issues and corresponding development of this BW-mesh concept have been identified, including the need for real time boronization.

  19. Investigation of tokamak solid divertor target options. Final report

    SciTech Connect

    McMurray, J.M.

    1981-05-26

    Analysis of survival constraints on the design of solid targets for tokamak bundle divertors is presented. Previous target design efforts are reviewed. Considerations of heat removal, surface erosion, and fatigue life are included in a generalized design window methodology which facilitates target selection. Using subcooled water as coolant, eight possible target materials are evaluated for use in tubular and plate targets as substrates, coatings, and claddings. Subject to the severe environment of the tokamak plasma, the most promising conventional designs are identified. A thermally bonded, mechanically unbonded laminated design is proposed and evaluated as a target design well suited to the divertor target environment. Due to fatigue and sputtering erosion this configuration has limited life, but appears to constitute an upper bound for the capabilities of a solid target design. Needs for experimental work are identified.

  20. An automated approach to magnetic divertor configuration design

    NASA Astrophysics Data System (ADS)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  1. Divertor heat and particle control experiments on the DIII-D tokamak

    SciTech Connect

    Mahdavi, M.A; Baker, D.R.; Allen, S.L.

    1994-05-01

    In this paper we present a summary of recent DIII-D divertor physics activity and plans for future divertor upgrades. During the past year, DIII-D experimental effort was focused on areas of active heat and particle control and divertor target erosion studies. Using the DIII-D Advanced Divertor system we have succeeded for the first time to control the plasma density and demonstrate helium exhaust in H-mode plasmas. Divertor heat flux control by means of D{sub 2} gas puffing and impurity injection were studied separately and in, both cases up to a factor of five reduction of the divertor peak heat flux was observed. Using the DiMES sample transfer system we have obtained erosion data on various material samples in well diagnosed plasmas and compared the results with predictions of numerical models.

  2. Finger Cooling During Cold Air Exposure.

    NASA Astrophysics Data System (ADS)

    Tikuisis, Peter

    2004-05-01

    This paper presents a method for predicting the onset of finger freezing. It is an extension of a tissue-cooling model originally developed to predict the onset of cheek freezing. The extension to the finger is presented as a more conservative warning of wind chill. Indeed, guidance on the risk of finger freezing is important not only to safeguard the finger, but also because it pertains more closely to susceptible facial features, such as the nose, than if only the risk of cheek freezing was provided. The importance of blood flow to the finger and the modeling of vaso-constriction are demonstrated through cooling predictions that agree reasonably well with several reported observations. Differences in the prediction between the present physiologic-based model and the engineering model used to develop the wind chill index are also discussed. New wind chill charts are presented that tabulate the mean cooling rates and corresponding onset times to freezing of the finger for various combinations of air temperature and wind speed. Results indicate that the surface of the finger cools to its freezing point in approximately one-eighth of the time predicted for the cheek. For combinations that result in the same wind chill temperature (WCT), the rate of finger cooling is faster at the higher wind speed. This asymmetry was previously disclosed through the application of the model to cheek cooling, and it reiterates the ambiguity associated with the reporting of WCT. It is further emphasized that the reporting of onset times to freezing, or safe exposure limits, is a more logical and meaningful alternative to the WCT.

  3. DiMES divertor erosion experiments on DIII-D

    SciTech Connect

    Whyte, D.G.; Brooks, J.N.; Wong, C.P.C.; West, W.P.; Bastasz, R.; Wampler, W.R.; Rubinstein, J.

    1996-06-01

    The DiMES (Divertor Material Evaluation Studies) mechanism allows insertion of material samples to the lower divertor floor of the DIII-D tokamak. The main purpose of these studies is to measure erosion rates and redeposition mechanisms under tokamak divertor plasma conditions in order to obtain a physical understanding of the erosion/redeposition processes and to determine its implications for fusion power plant plasma facing components. Thin metal films of Be, W, V, and Mo, were deposited on a Si depth-marked graphite sample and exposed to the steady-state outer strike point on DIII-D. A variety of surface analysis techniques are used to determine the erosion/redeposition of the metals and the carbon after 5--15 seconds of exposure. These short exposure times ensure controlled exposure conditions and the extensive array of DIII-D divertor diagnostics provide a well characterized plasma for modeling efforts. Erosion rates and redeposition lengths are found to decrease with the atomic number of the metallic species, as expected. Under these conditions, the peak net erosion rate for carbon is {approximately} 4 nm/s, with the erosion following the ion flux profile. Comparisons of the measured carbon erosion with REDEP code calculations show good agreement for both the absolute net erosion rate and its spatial variation. Measured erosion rates of the metals are smaller than predicted for sputtering from a bare metal surface, apparently due to effects of carbon deposition on the metal surface. Visible spectroscopic measurements of singly ionized Be have determined that the erosion process reaches steady-state during the exposure.

  4. Tokamak power exhaust with the snowflake divertor: Present results and outstanding issues

    DOE PAGESBeta

    Soukhanovskii, V. A.; Xu, X.

    2015-09-15

    Here, a snowflake divertor magnetic configuration (Ryutov in Phys Plasmas 14(6):064502, 2007) with the second-order poloidal field null offers a number of possible advantages for tokamak plasma heat and particle exhaust in comparison with the standard poloidal divertor with the first-order null. Results from snowflake divertor experiments are briefly reviewed and future directions for research in this area are outlined.

  5. Impurity Transport in a Simulated Gas Target Divertor

    NASA Astrophysics Data System (ADS)

    Blush, L. M.; Luckhardt, S.; Seraydarian, R.; Whyte, D.; Conn, R. W.; Schmitz, L.

    1997-11-01

    Previous simulated gas target divertor experiments in the PISCES-A linear plasma device (n <= 3 × 10^19 m-3, kTe <= 20 eV) indicated enhanced impurity retention near the target in comparison to a high recycling divertor regime. A 1 1\\over2-D fluid modeling code suggested that impurities are impeded from transporting away from the target by friction with the neutral and ionized hydrogen. In recent experiments with a PISCES-A ``slot-type'' divertor configuration, we have implemented a spectroscopic detection system to measure the axial density profiles of several impurity charge states. Moreover, we envision adding two extended cylindrical baffles spanning a pumped vacuum section to achieve strong differential pumping. This arrangement will isolate the plasma source from the gas target region and allow us to seed the background hydrogen plasma with higher impurities concentrations and investigate a regime dominated by impurity radiation. In preliminary design experiments, PISCES-A was successfully operated with an electrically isolated, copper baffle (d=5 cm, l=33.5 cm) mounted to reduce the vacuum conductance between the source and target regions. This work supported by US-DoE contract DE-FG03-95ER-54301.

  6. Analytical calculations for impurity seeded partially detached divertor conditions

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Bernert, M.; Dux, R.; Reimold, F.; Wischmeier, M.; ASDEX Upgrade Team

    2016-04-01

    A simple analytical formula for the impurity seeded partially detached divertor operational point has been developed using 1D modelling. The inclusion of charge exchange momentum loss terms improves the 1D modelling for ASDEX Upgrade conditions and its extrapolation to larger devices. The investigations are concentrated around a partially detached divertor working point of low heat flux and an electron temperature around 2.5 eV at the target which are required to maintain low sputtering rates at a tungsten target plate. An experimental formula for the onset of detachment by nitrogen seeding in ASDEX Upgrade is well reproduced, and predictions are given for N, Ne and Ar seeding for variable device size. Moderate deviations from a linear {{P}\\text{sep}}/R size dependence of the detachment threshold are seen in the modelling caused by upstream radiation at longer field line lengths. The presented formula allows the prediction of the neutral gas or seed impurity pressure which is required to achieve partial detachment for a given {{P}\\text{sep}} in devices with a closed divertor similar to the geometry in ASDEX Upgrade.

  7. UEDGE modeling of divertor geometry effects in NSTX

    NASA Astrophysics Data System (ADS)

    Izacard, Olivier; Soukhanovskii, Vlad; Scotti, Filippo

    2015-11-01

    We report efforts toward the modeling of divertor geometry effects using the fluid code UEDGE and NSTX experimental equilibria with different X-point heights. A variation of the geometry generates a competition between the poloidal magnetic flux expansion, which reduces the peak of the deposited heat flux and homogenizes its profile at divertor plates, and the proximity of the X-point to the divertor plates, which decreases the connection length and increases the peak heat flux. Our simulations use fixed fraction of carbon impurity, poloidally and radially constant transport coefficients, and high recycling boundary conditions, with a scan of density and pressure boundary conditions, and impurity fraction. Our simulations support the experimental observation that the poloidal flux expansion dominates the deposit heat flux over the parallel connection length effect. In opposite to experimental observation, detachment seems independent to the elevation. Improvement of the model is required. Supported by U.S. Department of Energy Contract No. DE-AC52-07NA27344.

  8. Assessment of issues for the MAST divertor biasing experiment

    NASA Astrophysics Data System (ADS)

    Helander, P.; Cohen, R. H.; Fielding, S.; Ryutov, D.

    2001-10-01

    A biasing experiment is being undertaken in the MAST scrape-off layer; the goal is to induce intense convection by a toroidally alternating biasing of divertor tiles. This would lead to a thickening of the SOL and a reduction of the heat load on the divertor plates. In addition, by studying the reaction of a plasma to a varying bias, one can collect new information regarding pre-existing SOL turbulence. We consider the following issues: 1. The bias amplitude required to produce significant SOL broadening; 2. Excitation of shear-flow turbulence in convective cells; 3. The role of magnetic shear; 4. Effects of electrostatic sheaths at the divertor plates; 5. Redistribution of heat fluxes during biasing. We show that a significant effect of the biasing on the SOL structure can be reached at relatively small bias voltages 30 V. We also show that the potential perturbations will be limited to a zone between the X-point and the biased tiles, and will be essentially decoupled from the main SOL plasma. Preliminary experimental results may be shown.

  9. Fast reciprocating Langmuir probe for the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Hunter, J.; Tafoya, B.; Ulrickson, M.; Watson, R.D.; Moyer, R.A.; Cuthbertson, J.W.; Gunner, G.; Lehmer, R.; Luong, P.; Hill, D.N.; Mascaro, M.; Robinson, J.I.; Snider, R.; Stambaugh, R.

    1997-01-01

    A new reciprocating Langmuir probe was used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X point on the DIII-D Tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for scrap-off layer and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition, and power supply systems will be described. Initial measurements will also be presented. {copyright} {ital 1997 American Institute of Physics.}

  10. Island Divertor Plate Modeling for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Massidda, S. D.; Ennis, D. A.; Knowlton, S. F.; Maurer, D. A.; Bader, A.

    2015-11-01

    Edge magnetic island divertors can be used as a method of plasma particle and heat exhaust in long pulse stellarator experiments. Detailed power loading on these structures and its relationship to the long connection length scrape off layer physics is a new Compact Toroidal Hybrid (CTH) research thrust. CTH is a five field period, l = 2 torsatron with R0 = 0 . 75 m, ap ~ 0 . 2 m, and | B | <= 0 . 7 T. For these studies CTH is configured as a pure stellarator using a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH. We report the results of EMC3-EIRENE modeling of divertor plates near magnetic island structures. The edge rotational transform is varied by adjusting the ratio of currents in the helical and toroidal field coils. A poloidal field coil adjusts the shear of the rotational transform profile, and width of the magnetic island, while the phase of the island is rotated with a set of five error coils producing an n = 1 perturbation. For the studies conducted, a magnetic configuration with a large n = 1 , m = 3 magnetic island at the edge is generated. Results from multiple potential divertor plate locations will be presented and discussed. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  11. New Finger Biometric Method Using Near Infrared Imaging

    PubMed Central

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  12. Finger multibiometric cryptosystems: fusion strategy and template security

    NASA Astrophysics Data System (ADS)

    Peng, Jialiang; Li, Qiong; Abd El-Latif, Ahmed A.; Niu, Xiamu

    2014-03-01

    We address two critical issues in the design of a finger multibiometric system, i.e., fusion strategy and template security. First, three fusion strategies (feature-level, score-level, and decision-level fusions) with the corresponding template protection technique are proposed as the finger multibiometric cryptosystems to protect multiple finger biometric templates of fingerprint, finger vein, finger knuckle print, and finger shape modalities. Second, we theoretically analyze different fusion strategies for finger multibiometric cryptosystems with respect to their impact on security and recognition accuracy. Finally, the performance of finger multibiometric cryptosystems at different fusion levels is investigated on a merged finger multimodal biometric database. The comparative results suggest that the proposed finger multibiometric cryptosystem at feature-level fusion outperforms other approaches in terms of verification performance and template security.

  13. Scattering Removal for Finger-Vein Image Restoration

    PubMed Central

    Yang, Jinfeng; Zhang, Ben; Shi, Yihua

    2012-01-01

    Finger-vein recognition has received increased attention recently. However, the finger-vein images are always captured in poor quality. This certainly makes finger-vein feature representation unreliable, and further impairs the accuracy of finger-vein recognition. In this paper, we first give an analysis of the intrinsic factors causing finger-vein image degradation, and then propose a simple but effective image restoration method based on scattering removal. To give a proper description of finger-vein image degradation, a biological optical model (BOM) specific to finger-vein imaging is proposed according to the principle of light propagation in biological tissues. Based on BOM, the light scattering component is sensibly estimated and properly removed for finger-vein image restoration. Finally, experimental results demonstrate that the proposed method is powerful in enhancing the finger-vein image contrast and in improving the finger-vein image matching accuracy. PMID:22737028

  14. Scattering removal for finger-vein image restoration.

    PubMed

    Yang, Jinfeng; Zhang, Ben; Shi, Yihua

    2012-01-01

    Finger-vein recognition has received increased attention recently. However, the finger-vein images are always captured in poor quality. This certainly makes finger-vein feature representation unreliable, and further impairs the accuracy of finger-vein recognition. In this paper, we first give an analysis of the intrinsic factors causing finger-vein image degradation, and then propose a simple but effective image restoration method based on scattering removal. To give a proper description of finger-vein image degradation, a biological optical model (BOM) specific to finger-vein imaging is proposed according to the principle of light propagation in biological tissues. Based on BOM, the light scattering component is sensibly estimated and properly removed for finger-vein image restoration. Finally, experimental results demonstrate that the proposed method is powerful in enhancing the finger-vein image contrast and in improving the finger-vein image matching accuracy. PMID:22737028

  15. Comparison of Ne and Ar seeded radiative divertor plasmas in JT-60U

    NASA Astrophysics Data System (ADS)

    Nakano, T.

    2015-08-01

    In H-mode plasmas with Ne, Ar and a mixture of Ne and Ar injection, the divertor radiation power fractions amongst these impurities in addition to an intrinsic impurity, C, are investigated. In plasmas with the inner divertor plasma attached, carbon is the biggest radiator, whichever impurity, Ne, Ar or a mixture of Ar and Ne is injected. In contrast, in plasmas with the inner divertor plasma detached, Ne is the biggest radiator due to a significantly high recombination radiation from Ne VIII. Ar is always a minor contributor in plasmas with the inner divertor both attached and detached.

  16. Active control of divertor asymmetry on EAST by localized D2 and Ar puffing

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng; Guo, Houyang; Wang, Huiqian; Luo, Guangnan; Wu, Zhenwei; Wu, Jinhua; Gao, Wei; Wang, Liang; Li, Qiang; East Team

    2011-03-01

    The divertor asymmetry in particle and power fluxes has been investigated on the EAST superconducting tokamak [S. Wu and EAST Team, Fusion Eng. Des. 82, 463 (2007)] for both single null (SN) and double null (DN) divertor configurations. D2 and Ar puffing at various divertor locations has also been explored as an active means to reduce peak target heat load and control divertor asymmetry. For SN, peak heat load on the outer divertor target is 2-3 times that on the inner divertor target under typical ohmic plasma conditions. DN operation leads to a stronger in-out asymmetry favoring the outer divertor. D2 and Ar puffing promotes partial detachment near the strike points, greatly reducing peak target heat load (over 50%), while the far-SOL divertor plasma remains attached. What is remarkable is that the particle flux is even increased away from the strike points when the B×∇B drift is directed toward the divertor target, thus facilitating particle removal.

  17. Modelling of radiative divertor operation towards detachment in experimental advanced superconducting tokamak

    SciTech Connect

    Chen Yiping; Wang, F. Q.; Hu, L. Q.; Guo, H. Y.; Wu, Z. W.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Zha, X. J.

    2013-02-15

    In order to actively control power load on the divertor target plates and study the effect of radiative divertor on plasma parameters in divertor plasmas and heat fluxes to the targets, dedicated experiments with Ar impurity seeding have been performed on experimental advanced superconducting tokamak in typical L-mode discharge with single null divertor configuration, ohmic heating power of 0.5 MW, and lower hybrid wave heating power of 1.0 MW. Ar is puffed into the divertor plasma at the outer target plate near the separatrix strike point with the puffing rate 1.26 Multiplication-Sign 10{sup 20} s{sup -1}. The radiative divertor is formed during the Ar puffing. The SOL/divertor plasma in the L-mode discharge with radiative divertor has been modelled by using SOLPS5.2 code package [V. Rozhansky et al., Nucl. Fusion 49, 025007 (2009)]. The modelling shows the cooling of the divertor plasma due to Ar seeding and is compared with the experimental measurement. The changes of peak electron temperature and heat fluxes at the targets with the shot time from the modelling results are similar to the experimental measurement before and during the Ar impurity seeding, but there is a major difference in time scales when Ar affects the plasma in between experiment and modelling.

  18. Active control of divertor asymmetry on EAST by localized D{sub 2} and Ar puffing

    SciTech Connect

    Wang Dongsheng; Luo Guangnan; Guo Houyang; Wang Huiqian; Wu Zhenwei; Wu Jinhua; Gao Wei; Wang Liang; Li Qiang

    2011-03-15

    The divertor asymmetry in particle and power fluxes has been investigated on the EAST superconducting tokamak [S. Wu and EAST Team, Fusion Eng. Des. 82, 463 (2007)] for both single null (SN) and double null (DN) divertor configurations. D{sub 2} and Ar puffing at various divertor locations has also been explored as an active means to reduce peak target heat load and control divertor asymmetry. For SN, peak heat load on the outer divertor target is 2-3 times that on the inner divertor target under typical ohmic plasma conditions. DN operation leads to a stronger in-out asymmetry favoring the outer divertor. D{sub 2} and Ar puffing promotes partial detachment near the strike points, greatly reducing peak target heat load (over 50%), while the far-SOL divertor plasma remains attached. What is remarkable is that the particle flux is even increased away from the strike points when the Bx{nabla}B drift is directed toward the divertor target, thus facilitating particle removal.

  19. Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Groth, M.; Brezinsek, S.; Belo, P.; Brix, M.; Calabro, G.; Chankin, A.; Clever, M.; Coenen, J. W.; Corrigan, G.; Drewelow, P.; Guillemaut, C.; Harting, D.; Huber, A.; Jachmich, S.; Järvinen, A.; Kruezi, U.; Lawson, K. D.; Lehnen, M.; Maggi, C. F.; Marchetto, C.; Marsen, S.; Maviglia, F.; Meigs, A. G.; Moulton, D.; Silva, C.; Stamp, M. F.; Wiesen, S.

    2015-08-01

    Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.

  20. Anthropomorphic finger antagonistically actuated by SMA plates.

    PubMed

    Engeberg, Erik D; Dilibal, Savas; Vatani, Morteza; Choi, Jae-Won; Lavery, John

    2015-10-01

    Most robotic applications that contain shape memory alloy (SMA) actuators use the SMA in a linear or spring shape. In contrast, a novel robotic finger was designed in this paper using SMA plates that were thermomechanically trained to take the shape of a flexed human finger when Joule heated. This flexor actuator was placed in parallel with an extensor actuator that was designed to straighten when Joule heated. Thus, alternately heating and cooling the flexor and extensor actuators caused the finger to flex and extend. Three different NiTi based SMA plates were evaluated for their ability to apply forces to a rigid and compliant object. The best of these three SMAs was able to apply a maximum fingertip force of 9.01N on average. A 3D CAD model of a human finger was used to create a solid model for the mold of the finger covering skin. Using a 3D printer, inner and outer molds were fabricated to house the actuators and a position sensor, which were assembled using a multi-stage casting process. Next, a nonlinear antagonistic controller was developed using an outer position control loop with two inner MOSFET current control loops. Sine and square wave tracking experiments demonstrated minimal errors within the operational bounds of the finger. The ability of the finger to recover from unexpected disturbances was also shown along with the frequency response up to 7 rad s(-1). The closed loop bandwidth of the system was 6.4 rad s(-1) when operated intermittently and 1.8 rad s(-1) when operated continuously. PMID:26292164

  1. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play

    PubMed Central

    2014-01-01

    Background This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero®a. The goal was to make FINGER capable of assisting with motions where precise timing is important. Methods FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero® while connected to FINGER. Results Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (−3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject’s success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects’ effort and finger individuation while playing the game. Conclusions Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke. PMID:24495432

  2. Ultrafast High-Resolution Mass Spectrometric Finger Pore Imaging in Latent Finger Prints

    NASA Astrophysics Data System (ADS)

    Elsner, Christian; Abel, Bernd

    2014-11-01

    Latent finger prints (LFPs) are deposits of sweat components in ridge and groove patterns, left after human fingers contact with a surface. Being important targets in biometry and forensic investigations they contain more information than topological patterns. With laser desorption mass spectrometry imaging (LD-MSI) we record `three-dimensional' finger prints with additional chemical information as the third dimension. Here we show the potential of fast finger pore imaging (FPI) in latent finger prints employing LD-MSI without a classical matrix in a high- spatial resolution mode. Thin films of gold rapidly sputtered on top of the sample are used for desorption. FPI employing an optical image for rapid spatial orientation and guiding of the desorption laser enables the rapid analysis of individual finger pores, and the chemical composition of their excretions. With this approach we rapidly detect metabolites, drugs, and characteristic excretions from the inside of the human organism by a minimally-invasive strategy, and distinguish them from chemicals in contact with fingers without any labeling. The fast finger pore imaging, analysis, and screening approach opens the door for a vast number of novel applications in such different fields as forensics, doping and medication control, therapy, as well as rapid profiling of individuals.

  3. Ultrafast High-Resolution Mass Spectrometric Finger Pore Imaging in Latent Finger Prints

    PubMed Central

    Elsner, Christian; Abel, Bernd

    2014-01-01

    Latent finger prints (LFPs) are deposits of sweat components in ridge and groove patterns, left after human fingers contact with a surface. Being important targets in biometry and forensic investigations they contain more information than topological patterns. With laser desorption mass spectrometry imaging (LD-MSI) we record ‘three-dimensional' finger prints with additional chemical information as the third dimension. Here we show the potential of fast finger pore imaging (FPI) in latent finger prints employing LD-MSI without a classical matrix in a high- spatial resolution mode. Thin films of gold rapidly sputtered on top of the sample are used for desorption. FPI employing an optical image for rapid spatial orientation and guiding of the desorption laser enables the rapid analysis of individual finger pores, and the chemical composition of their excretions. With this approach we rapidly detect metabolites, drugs, and characteristic excretions from the inside of the human organism by a minimally-invasive strategy, and distinguish them from chemicals in contact with fingers without any labeling. The fast finger pore imaging, analysis, and screening approach opens the door for a vast number of novel applications in such different fields as forensics, doping and medication control, therapy, as well as rapid profiling of individuals. PMID:25366032

  4. Ultrafast high-resolution mass spectrometric finger pore imaging in latent finger prints.

    PubMed

    Elsner, Christian; Abel, Bernd

    2014-01-01

    Latent finger prints (LFPs) are deposits of sweat components in ridge and groove patterns, left after human fingers contact with a surface. Being important targets in biometry and forensic investigations they contain more information than topological patterns. With laser desorption mass spectrometry imaging (LD-MSI) we record 'three-dimensional' finger prints with additional chemical information as the third dimension. Here we show the potential of fast finger pore imaging (FPI) in latent finger prints employing LD-MSI without a classical matrix in a high- spatial resolution mode. Thin films of gold rapidly sputtered on top of the sample are used for desorption. FPI employing an optical image for rapid spatial orientation and guiding of the desorption laser enables the rapid analysis of individual finger pores, and the chemical composition of their excretions. With this approach we rapidly detect metabolites, drugs, and characteristic excretions from the inside of the human organism by a minimally-invasive strategy, and distinguish them from chemicals in contact with fingers without any labeling. The fast finger pore imaging, analysis, and screening approach opens the door for a vast number of novel applications in such different fields as forensics, doping and medication control, therapy, as well as rapid profiling of individuals. PMID:25366032

  5. Reconstruction of Extensive Volar Finger Defects with Double Cross-Finger Flaps

    PubMed Central

    Buehrer, Gregor; Arkudas, Andreas; Ludolph, Ingo; Horch, Raymund E.

    2016-01-01

    Summary: Cross-finger flaps still represent a viable option to reconstruct small- to medium-sized full-thickness finger defects but they are not commonly used if larger areas have to be covered. We present 2 cases showing a simple and pragmatic approach with homodigital double cross-finger flaps to reconstruct extensive volar finger soft-tissue defects. We observed very low donor-site morbidity and excellent functional and aesthetic outcomes. Furthermore, there is no need for microsurgical techniques or equipment when using this method. Although this case report only addresses volar defects, one might also think of applying this concept to dorsal defects using reversed double cross-finger flaps. PMID:27200255

  6. Perceiving fingers in single-digit arithmetic problems.

    PubMed

    Berteletti, Ilaria; Booth, James R

    2015-01-01

    In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense. PMID:25852582

  7. Finger millet [Eleusine coracana (L.) Gaertn].

    PubMed

    Ceasar, Stanislaus Antony; Ignacimuthu, Savarimuthu

    2015-01-01

    Millets are the primary food source for millions of people in tropical regions of the world supplying mineral nutrition and protein. In this chapter, we describe an optimized protocol for the Agrobacterium-mediated transformation of finger millet variety GPU 45. Agrobacterium strain LBA4404 harboring plasmid pCAMBIA1301 which contains hygromycin phosphotransferase (hph) as selectable marker gene and β-glucuronidase (GUS) as reporter gene has been used. This protocol utilizes the shoot apex explants for the somatic embryogenesis and regeneration of finger millet after the transformation by Agrobacterium. Desiccation of explants during cocultivation helps for the better recovery of transgenic plants. This protocol is very useful for the efficient production of transgenic plants in finger millet through Agrobacterium-mediated transformation. PMID:25300836

  8. Axon reflexes in human cold exposed fingers.

    PubMed

    Daanen, H A; Ducharme, M B

    2000-02-01

    Exposure of fingers to severe cold induces cold induced vasodilatation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in water at either 5 degrees C or 35 degrees C. Axon reflexes were pronounced in the middle finger of the hand in warm water, but absent from the hand in cold water, even though the stimulation was rated as "rather painful" to "painful". These results showed that axon reflexes do not occur in a cold-exposed hand and thus are unlikely to explain the CIVD phenomenon. PMID:10638384

  9. Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode

    NASA Astrophysics Data System (ADS)

    Sieglin, B.; Eich, T.; Faitsch, M.; Herrmann, A.; Scarabosio, A.; the ASDEX Upgrade Team

    2016-05-01

    Power exhaust is one of the major challenges for the development of a fusion power plant. Predictions based upon a multimachine database give a scrape-off layer power fall-off length {λq}≤slant 1 mm for large fusion devices such as ITER. The power deposition profile on the target is broadened in the divertor by heat transport perpendicular to the magnetic field lines. This profile broadening is described by the power spreading S. Hence both {λq} and S need to be understood in order to estimate the expected divertor heat load for future fusion devices. For the investigation of S and {λq} L-Mode discharges with stable divertor conditions in hydrogen and deuterium were conducted in ASDEX Upgrade. A strong dependence of S on the divertor electron temperature and density is found which is the result of the competition between parallel electron heat conductivity and perpendicular diffusion in the divertor region. For high divertor temperatures it is found that the ion gyro radius at the divertor target needs to be considered. The dependence of the in/out asymmetry of the divertor power load on the electron density is investigated. The influence of the main ion species on the asymmetric behaviour is shown for hydrogen, deuterium and helium. A possible explanation for the observed asymmetry behaviour based on vertical drifts is proposed.

  10. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak.

    PubMed

    Soukhanovskii, V A; McLean, A G; Allen, S L

    2014-11-01

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and Te monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800-2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma Te, ne estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000-1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor Te monitoring aimed at divertor detachment real-time feedback control. PMID:25430325

  11. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamak

    SciTech Connect

    Soukhanovskii, V. A. McLean, A. G.; Allen, S. L.

    2014-11-15

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and T{sub e} monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800–2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma T{sub e}, n{sub e} estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000–1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor T{sub e} monitoring aimed at divertor detachment real-time feedback control.

  12. Magnetic turbulence and resistive MHD instabilities in a 0. 6 < q < 3 poloidal divertor tokamak

    SciTech Connect

    Agim, Y.Z.; Callen, J.D.; Chang, Z.; Dexter, R.N.; Goetz, J.A.; Graessle, D.E.; Haines, E.; Kortbawi, D.; LaPointe, M.A.; Moyer, R.A.

    1988-09-01

    Detailed statistical properties of internal magnetic turbulence, and internal disruptions in magnetically- and materially-limited discharges, are studied in the Tokapole II poloidal divertor tokamak over the safety factor range 0.6 < q{sub a} < 3. A nonlinear MHD code treats tearing modes in the divertor geometry. 9 refs., 2 figs.

  13. Near-infrared spectroscopy for divertor plasma diagnosis and control in DIII-D tokamaka)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; McLean, A. G.; Allen, S. L.

    2014-11-01

    New near infrared (NIR) spectroscopic measurements performed in the DIII-D tokamak divertor plasma suggest new viable diagnostic applications: divertor recycling and low-Z impurity flux measurements, a spectral survey for divertor Thomson scattering (DTS) diagnostic, and Te monitoring for divertor detachment control. A commercial 0.3 m spectrometer coupled to an imaging lens via optical fiber and a InGaAs 1024 pixel array detector enabled deuterium and impurity emission measurements in the range 800-2300 nm. The first full NIR survey identified D, He, B, Li, C, N, O, Ne lines and provided plasma Te, ne estimates from deuterium Paschen and Brackett series intensity and Stark line broadening analysis. The range 1.000-1.060 mm was surveyed in high-density and neon seeded divertor plasmas for spectral background emission studies for λ = 1.064 μm laser-based DTS development. The ratio of adjacent deuterium Paschen-α and Brackett Br9 lines in recombining divertor plasmas is studied for divertor Te monitoring aimed at divertor detachment real-time feedback control.

  14. Study on Axially Distributed Divertor Magnetic Field Configuration in a Mirror Cell

    SciTech Connect

    Islam, M.K.; Nakashima, Y.; Higashizono, Y.; Katanuma, I.; Cho, T

    2005-01-15

    A mirror magnetic field configuration (MFC) is studied in which a divertor is distributed axially using multipole coils. Both configurations of divertor and minimum-B are obtained in a mirror cell. Magnetohydrodynamic (MHD) instability of a mirror cell can be eliminated in this way. Concept of the design and properties of the MFC are discussed.

  15. Alcator C-Mod: A high-field divertor tokamak

    NASA Astrophysics Data System (ADS)

    Lipschultz, B.; Becker, H.; Bonoli, P.; Coleman, J.; Fiore, C.; Golovato, S.; Granetz, R.; Greenwald, M.; Gwinn, D.; Humphries, D.; Hutchinson, I.; Irby, J.; Marmar, E.; Montgomery, D. B.; Najmabadi, F.; Parker, R.; Porkolab, M.; Rice, J.; Sevillano, E.; Takase, Y.; Terry, J.; Watterson, R.; Wolfe, S.

    1989-04-01

    The Alcator C-Mod tokamak is a new device presently under construction at Massachusetts Institute of Technology (M.I.T.) which is scheduled to begin operation in mid-1990. The projected operating parameters are as follows: Toroidal field of 9 T; Ip ≤ 3 MA, R = 66.5 cm, a = 21 cm, κ ≤ 2.0, δ ≤ 0.5, ne ≤ 10 21m-3, PICRF ≤ 6 MW. The divertor configuration includes mechanical baffling as opposed to an 'open' geometry. Under strictly ohmic heating conditions, central Ti and Te are predicted to be in the range 2.5-3.5 keV over the density range (4-8) × 10 20m-3. With the addition of 6 MW of ICRF heating, Ti should vary from 4-8 keV over the same density range (assuming either Kaye-Goldston or Neo-Alcator scalings for electron confinement). Based on edge plasma characterizations from Alcator-C and divertor tokamaks, the scrape-off layer (SOL) properties are predicted to be: λn ≈ 10mm, density at the divertor plate < 2 × 10 21m-3, H 0 ionization mean free path between 1 and 10 mm. Maximum heat loads on various internal components are predicted to be in the range 5-10 MW/m 2. The flexibility of the poloidal field system in forming a number of flux surface geometries will provide further comparisons of the relative impurity control capabilities of double-null, single-null and limiter plasmas.

  16. A reverse flow cross finger pedicle skin flap from hemidorsum of finger.

    PubMed

    Mishra, Satyanarayan; Manisundaram, S

    2010-04-01

    A reverse-flow cross-finger pedicle skin flap raised from the hemidorsum has been used, which is a modification of the distally based dorsal cross-finger flap. The flap is raised from the hemidorsum at a plane above the paratenon, the distal-most location of the base being at the level of the distal interphalangeal joint. Thirty-two flaps were used from as many fingers of as many patients. Of these, 31 (97%) flaps survived fully; there was stiffness of finger in one (3%) patient and the two-point discrimination was 4-8mm (n=14). Follow-up period was 2 months to 3 years, the median being 1 year and 3 months. The advantages of this flap are that there is less disruption of veins and less visible disfigurement of the dorsum of the finger when compared to other pedicled cross-finger skin flaps. The disadvantage of this flap is its restricted width. It is recommended as the cross-finger pedicle skin flap of choice when the defect is not wide. PMID:19386561

  17. Thermoregulatory control of finger blood flow

    NASA Technical Reports Server (NTRS)

    Wenger, C. B.; Roberts, M. F.; Nadel, E. R.; Stolwijk, J. A. J.

    1975-01-01

    In the present experiment, exercise was used to vary internal temperature and ambient air heat control was used to vary skin temperature. Finger temperature was fixed at about 35.7 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at different skin sites. Finger blood flow was measured by electrocapacitance plethysmography. An equation in these quantities is given which accounts for the data garnered.

  18. Ballooning Modes in the Systems Stabilized by Divertors

    SciTech Connect

    Arsenin, V.V.; Skovoroda, A.A.; Zvonkov, A.V.

    2005-01-15

    MHD stability of a plasma in systems with closed magnetic field lines and open systems containing the nonparaxial stabilizing cells with large field lines curvature, in particular, divertors is analyzed. It is shown that population of particles trapped in such cells has a stabilizing effect not only on flute modes, but also on ballooning modes that determine the {beta} limit. At kinetic description that accounts for different effect of trapped and passing particles on perturbations, {beta} limit permitted by stability may be much greater then it follows from MHD model.

  19. Crossed-field divertor for a plasma device

    DOEpatents

    Kerst, Donald W.; Strait, Edward J.

    1981-01-01

    A divertor for removal of unwanted materials from the interior of a magnetic plasma confinement device includes the division of the wall of the device into segments insulated from each other in order to apply an electric field having a component perpendicular to the confining magnetic field. The resulting crossed-field drift causes electrically charged particles to be removed from the outer part of the confinement chamber to a pumping chamber. This method moves the particles quickly past the saddle point in the poloidal magnetic field where they would otherwise tend to stall, and provides external control over the rate of removal by controlling the magnitude of the electric field.

  20. Performance characteristics of the DIII-D advanced divertor cryopump

    SciTech Connect

    Menon, M.M.; Maingi, R.; Wade, M.R.; Baxi, C.B.; Campbell, G.L.; Holtrop, K.L.; Hyatt, A.W.; Laughon, G.J.; Makariou, C.C.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Schaubel, K.M.; Scoville, J.T.; Smith, J.P.; Stambaugh, R.D.

    1993-10-01

    A cryocondensation pump, cooled by forced flow of two-phase helium, has been installed for particle exhaust from the divertor region of the DIII-D tokamak. The Inconel pumping surface is of coaxial geometry, 25.4 mm in outer diameter and 11.65 m in length. Because of the tokamak environment, the pump is designed to perform under relatively high pulsed heat loads (300 Wm{sup {minus}2}). Results of measurements made on the pumping characteristics for D{sub 2}, H{sub 2}, and Ar are discussed.

  1. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    SciTech Connect

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed.

  2. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    NASA Astrophysics Data System (ADS)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  3. Reconstruction of Detached Divertor Plasma Conditions in DIII-D Using Spectroscopic and Probe Data

    SciTech Connect

    Stangeby, P; Fenstermacher, M

    2004-12-03

    For some divertor aspects, such as detached plasmas or the private flux zone, it is not clear that the controlling physics has been fully identified. This is a particular concern when the details of the plasma are likely to be important in modeling the problem--for example, modeling co-deposition in detached inner divertors. An empirical method of ''reconstructing'' the plasma based on direct experimental measurements may be useful in such situations. It is shown that a detached plasma in the outer divertor leg of DIII-D can be reconstructed reasonably well using spectroscopic and probe data as input to a simple onion-skin model and the Monte Carlo hydrogenic code, EIRENE. The calculated 2D distributions of n{sub e} and T{sub e} in the detached divertor were compared with direct measurements from the divertor Thomson scattering system, a diagnostic capability unique to DIII-D.

  4. Interaction of finger enslaving and error compensation in multiple finger force production

    PubMed Central

    Martin, Joel R.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2009-01-01

    Previous studies have documented two patterns of finger interaction during multi-finger pressing tasks, enslaving and error compensation, which do not agree with each other. Enslaving is characterized by positive correlation between instructed (master) and non-instructed (slave) finger(s) while error compensation can be described as a pattern of negative correlation between master and slave fingers. We hypothesize that pattern of finger interaction, enslaving or compensation, depends on the initial force level and the magnitude of the targeted force change. Subjects were instructed to press with four fingers (I - index, M - middle, R - ring, and L - little) from a specified initial force to a target forces following a ramp target line. Force-force relations between master and each of three slave fingers were analyzed during the ramp phase of trials by calculating correlation coefficients within each master-slave pair and then 2-factor ANOVA was performed to determine effect of initial force and force increase on the correlation coefficients. It was found that, as initial force increased, the value of the correlation coefficient decreased and in some cases became negative, i.e. the enslaving transformed into error compensation. Force increase magnitude had a smaller effect on the correlation coefficients. The observations support the hypothesis that the pattern of inter-finger interaction—enslaving or compensation—depends on the initial force level and, to a smaller degree, on the targeted magnitude of the force increase. They suggest that the controller views tasks with higher steady-state forces and smaller force changes as implying a requirement to avoid large changes in the total force. PMID:18985331

  5. Fingerspell: Let Your Fingers Do the Talking

    ERIC Educational Resources Information Center

    Scarlatos, Tony; Nesterenko, Dmitri

    2004-01-01

    In this article we discuss an application that translates hand gestures of the American Sign Language (ASL) alphabet and converts them to text. The FingerSpell application addresses the communication barrier of the deaf and the hearing-impaired by eliminating the need for a third party with knowledge of the American Sign Language, allowing a user…

  6. Fingers Make a Comeback in Math

    ERIC Educational Resources Information Center

    Brooks, Andree

    1978-01-01

    Describes a new idea in finger-counting developed by 31 year old Hang Young Pai, a Korean teacher living in New York. It is called Chisanbop and it comes from a more advanced hand-calculation system used in the Orient in conjunction with the abacus. It is applicable for both elementary students and for more advanced mathematical applications, such…

  7. Finger arterial pressure measurement with Finapres.

    PubMed

    Wesseling, K H

    1996-01-01

    Finger arterial pressure measurement with Finapres has been available since a decade. Its availability has promoted at least 300 methodological and research papers over these years, outlining the usefulness and the limitations of the method and the device. Finapres is based on the volume clamp method of Peñáz and the Physiocal criteria of Wesseling. Tracking of intraarterial pressure is usually satisfactory even under conditions of strongly changing hemodynamics and high and very low blood pressures. Finapres accuracy is similar to that of other non-invasive methods. Systolic pressure levels scatter more than mean and diastolic levels. One source of error is physiologic and determined by the peripheral measurement site of the finger, causing pulse waveform distortion and a pressure gradient. The Finapres waveform can be filtered, however, to obtain a brachial pressure wave. This decreases systolic scatter under vaso-constrictive drug infusion and dynamic exercise to exhaustion, conditions where precision of systolic tracking has been criticized in the literature. Recently, level correction techniques were found which shift finger pressure up or down based on a regression equation with finger systolic and diastolic pressures. This procedure requires no additional measurements yet improves systolic, diastolic and mean level accuracy and precision remarkably. Finally, we show how to judge the quality of a Finapres recording from the behavior of Physiocal. PMID:8896298

  8. Viscous fingering with partial miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2015-11-01

    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Studies of viscous fingering have focused on fluids that are either fully miscible or perfectly immiscible. In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other. Following our recent work for miscible (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a Hele-Shaw cell, when the two fluids have limited (but nonzero) solubility in one another. Partial miscibility is characterized through the design of thermodynamic free energy of the two-fluid system. We elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution.

  9. Fjord geometry observed in viscous fingering*

    NASA Astrophysics Data System (ADS)

    Thrasher, Matt; Ristroph, Leif; Swinney, Harry L.; Mineev-Weinstein, Mark

    2004-11-01

    Injecting a less viscous fluid (air) into a more viscous fluid (oil) produces an unstable finger of air penetrating into the oil. For sufficiently large forcing, the tip of a finger splits. The region of oil left between adjacent fingers is called a fjord. We characterize the width, widening, and bending of fjords in experiments in a rectangular Hele-Shaw cell. The channel confines air and 50 cS silicone oil between two glass plates, which are 2500 mm long and 250 mm wide with a separation of 0.5 mm. The width of the base of a fjord is found to be approximately one-half of the capillary length scale. From this base, the fjords open with a distribution of angles having a mean of about 9 ^rc, which contradicts theoretical predictions of an opening angle of 0 ^rc (parallel sides). Finally, the centerline of a fjord bends. Lajeunesse and Couder [1] account for the bending of a fjord on a single, one-half width finger. We test the validity of their idea on the tip-splitting of more complicated interfaces and on the widening of fjords. *Supported by ONR [1] E. Lajeunesse and Y. Couder, J. Fluid. Mech. 419, 125 (2000).

  10. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2016-05-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  11. Compact Tactile Sensors for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  12. Sticky fingers: Adhesive properties of human fingertips.

    PubMed

    Spinner, Marlene; Wiechert, Anke B; Gorb, Stanislav N

    2016-02-29

    Fingertip friction is a rather well studied subject. Although the phenomenon of finger stickiness is known as well, the pull-off force and the adhesive strength of human finger tips have never been previously quantified. For the first time, we provided here characterization of adhesive properties of human fingers under natural conditions. Human fingers can generate a maximum adhesive force of 15mN on a smooth surface of epoxy resin. A weak correlation of the adhesive force and the normal force was found on all test surfaces. Up to 300mN load, an increase of the normal force leads to an increase of the adhesive force. On rough surfaces, the adhesive strength is significantly reduced. Our data collected from untreated hands give also an impression of an enormous scattering of digital adhesion depending on a large set of inter-subject variability and time-dependent individual factors (skin texture, moisture level, perspiration). The wide inter- and intra-individual range of digital adhesion should be considered in developing of technical and medical products. PMID:26892897

  13. Axisymmetric curvature-driven instability in a model divertor geometry

    SciTech Connect

    Farmer, W. A.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 ; Ryutov, D. D.

    2013-09-15

    A model problem is presented which qualitatively describes a pressure-driven instability which can occur near the null-point in the divertor region of a tokamak where the poloidal field becomes small. The model problem is described by a horizontal slot with a vertical magnetic field which plays the role of the poloidal field. Line-tying boundary conditions are applied at the planes defining the slot. A toroidal field lying parallel to the planes is assumed to be very strong, thereby constraining the possible structure of the perturbations. Axisymmetric perturbations which leave the toroidal field unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability threshold is determined by the energy principle. Because of the boundary conditions, the Euler equation is, in general, non-separable except at marginal stability. This problem may be useful in understanding the source of heat transport into the private flux region in a snowflake divertor which possesses a large region of small poloidal field, and for code benchmarking as it yields simple analytic results in an interesting geometry.

  14. Power deposition in the JET divertor during ELMs

    NASA Astrophysics Data System (ADS)

    Clement, S.; Chankin, A.; Ciric, D.; Coad, J. P.; Falter, J.; Gauthier, E.; Lingertat, J.; Puppin, S.

    The power deposited in the JET divertor during ELMs has been evaluated using an infrared camera specifically designed for fast measurements. The first results [E. Gauthier, A. Charkin, S. Clement et al., Proc. 24th Euro. conf. on contr. Fusion and Plasma Phys., Berchtesgaden, 1997 (European Physical Society, 1998), vol. 21A, p. 61.] indicated that during type I ELMs, surface temperatures in excess of 2000°C were measured, leading to peak power fluxes in the order of 4 GW/m 2. The time integrated power flux exceeded the measured plasma energy loss per ELM by a factor of four. The reasons for this discrepancy are studied in this paper. Redeposited carbon layers of up to 40 μm have been found on the divertor surface in the places where the highest temperatures are measured. The impact of such layers on the power flux evaluation has been studied with numerical calculations, and a controlled simulation of ELM heating has been performed in the JET neutral beam test facility. It is found that neglecting the existence of layers on the surface in a 2D calculation can lead to overestimating the power by a factor of 3, whereas the error in the calculation of the energy is much smaller. An energy based calculation reduces the peak power during type I ELMs to values around 1.2 GW/m 2.

  15. Ballooning modes localized near the null point of a divertor

    SciTech Connect

    Farmer, W. A.

    2014-04-15

    The stability of ballooning modes localized to the null point in both the standard and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series expansion of the flux function is performed in the vicinity of the null point with the lowest, non-vanishing term retained for each divertor configuration. The energy principle is used with a trial function to determine a sufficient instability threshold. It is shown that this threshold depends on the orientation of the flux surfaces with respect to the major radius with a critical angle appearing due to the convergence of the field lines away from the null point. When the angle the major radius forms with respect to the flux surfaces exceeds this critical angle, the system is stabilized. Further, the scaling of the instability threshold with the aspect ratio and the ratio of the scrape-off-layer width to the major radius is shown. It is concluded that ballooning modes are not a likely candidate for driving convection in the vicinity of the null for parameters relevant to existing machines. However, the results place a lower bound on the width of the heat flux in the private flux region. To explain convective mixing in the vicinity of the null point, new consideration should be given to an axisymmetric mixing mode [W. A. Farmer and D. D. Ryutov, Phys. Plasmas 20, 092117 (2013)] as a possible candidate to explain current experimental results.

  16. ALPS - advanced limiter-divertor plasma-facing systems.

    SciTech Connect

    Allain, J. P.; Bastasz, R.; Brooks, J. N.; Evans, T.; Hassanein, A.; Luckhardt, S.; Maingi, R.; Mattas, R. F.; McCarthy, K.; Mioduszewski, P.; Mogahed, E.; Moir, R.; Molokov, S.; Morely, N.; Nygren, R.; Reed, C.; Rognlien, T.; Ruzic, D.; Sviatoslavsky, I.; Sze, D.; Tillack, M.; Ulrickson, M.; Wade, P. M.; Wong, C.; Wooley, R.

    1999-09-15

    The Advanced Limiter-divertor Plasma-facing Systems (ALPS) program was initiated in order to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/divertor systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2},elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies. The current emphasis for the work is on the effects of free surface liquids on plasma edge performance.

  17. Finger force perception during ipsilateral and contralateral force matching tasks

    PubMed Central

    Park, Woo-Hyung; Leonard, Charles T.; Li, Sheng

    2010-01-01

    The aims of the present study were to compare matching performance between ipsilateral and contralateral finger force matching tasks and to examine the effect of handedness on finger force perception. Eleven subjects were instructed to produce reference forces by an instructed finger (index – I or little – L finger) and to reproduce the same amount force by the same or a different finger within the hand (i.e., ipsilateral matching task), or by a finger of the other hand (i.e., contralateral matching task). The results of the ipsilateral and contralateral tasks in the present study commonly showed that 1) the reference and matching forces were matched closely when the two forces were produced by the same or homologous finger(s) such as I/I task; 2) the weaker little finger underestimated the magnitude of reference force of the index finger (I/L task), even with the higher level of effort (relative force), but the two forces were matched when considering total finger forces; 3) the stronger index finger closely matched the reference force of the little finger with the lower level of relative force (i.e., L/I task); 4) when considering the constant errors, I/L tasks showed an underestimation and L/I tasks showed an overestimation compared to I/I tasks. There was no handedness effect during ipsilateral tasks. During the contralateral task, the dominant hand overestimated the force of the non-dominant hand, while the non-dominant hand attempted to match the absolute force of the dominant hand. The overall results support the notion that the absolute, rather than relative, finger force is perceived and reproduced during ipsilateral and contralateral finger force matching tasks, indicating the uniqueness of finger force perception. PMID:18488212

  18. An exploration of advanced X-divertor scenarios on ITER

    NASA Astrophysics Data System (ADS)

    Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.

    2014-07-01

    It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created

  19. Setting tool with retractable torque fingers

    SciTech Connect

    Nevels, D.L.; Baugh, J.L.

    1986-07-08

    A method is described of setting a liner in a well bore using a setting tool of the type adapted to be made up in a pipe string for releasably engaging a setting sleeve in a well bore, comprising the steps of: connecting a mandrel in the pipe string which has a setting nut with external connecting threads for engaging mating connecting threads located on the interior of a setting sleeve disposed about the mandrel, the mandrel being slidably disposed within the setting nut when the setting nut is engaging the setting sleeve, the mandrel being slidable between an extended, running-in position and a weight set-down position; mounting a torque collar on the mandrel exterior, the torque collar having at least one torque finger mounted thereon which is axially slidable on an external surface of the torque collar in a plane which is parallel to the longitudinal axis of the tool, the setting sleeve having at least one end notch adapted to receive the axially slidable torque finger; initially latching the mandrel to the setting sleeve with each torque finger received within its respective end notch; setting weight down on the pipe string from the well surface to release the latch and allow relative movement between the connecting threads of the setting nut and setting sleeve; applying right hand torque to the pipe string to release the connecting threads of the setting nut from the setting sleeve; temporarily lifting the pipe string and setting tool to test the disengagement of the setting nut; again resting the setting tool on the setting sleeve; rotating the pipe string to realign the torque finger and the setting sleeve end notch and reengage the torque finger with the end notch; and continuing to rotate to the right to rotate the setting sleeve during subsequent well bore operations.

  20. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device...

  1. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device...

  2. A dowel exercise tool to improve finger range of motion.

    PubMed

    Zavala, Paul

    2014-01-01

    A new clinical and home dowel exercise tool to reduce joint stiffness of the fingers is introduced, along with the fabrication and the exercises that are used with it. Patients may utilize it to improve their finger joint range of motion, and facilitate tendon glide by isolating the targeted stiff joints of the fingers. PMID:24044953

  3. Robot-assisted Guitar Hero for finger rehabilitation after stroke.

    PubMed

    Taheri, Hossein; Rowe, Justin B; Gardner, David; Chan, Vicky; Reinkensmeyer, David J; Wolbrecht, Eric T

    2012-01-01

    This paper describes the design and testing of a robotic device for finger therapy after stroke: FINGER (Finger Individuating Grasp Exercise Robot). FINGER makes use of stacked single degree-of-freedom mechanisms to assist subjects in moving individual fingers in a naturalistic grasping pattern through much of their full range of motion. The device has a high bandwidth of control (-3dB at approximately 8 Hz) and is backdriveable. These characteristics make it capable of assisting in grasping tasks that require precise timing. We therefore used FINGER to assist individuals with a stroke (n= 8) and without impairment (n= 4) in playing a game similar to Guitar Hero©. The subjects attempted to move their fingers to target positions at times specified by notes that were graphically streamed to popular music. We show here that by automatically adjusting the robot gains, it is possible to use FINGER to modulate the subject's success rate at the game, across a range of impairment levels. Modulating success rates did not alter the stroke subject's effort, although the unimpaired subjects exerted more force when they were made less successful. We also present a novel measure of finger individuation that can be assessed as individuals play Guitar Hero with FINGER. The results demonstrate the ability of FINGER to provide controlled levels of assistance during an engaging computer game, and to quantify finger individuation after stroke. PMID:23366783

  4. Pressure Balanced, Low Hysteresis Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Arora, Gul K.; Proctor, Margaret; Steinetz, Bruce M.; Delgado, Irebert R.

    2000-01-01

    The purpose of this presentation is to demonstrate: low cost photoetching fabrication technique; pressure balanced finger seal design; and finger seal operation. The tests and analyses includes: finger seal air leakage analysis; rotor-run out and endurance tests; and extensive analytical work and rig testing.

  5. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device...

  6. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Finger joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification. A finger joint polymer constrained prosthesis is a device...

  7. Left hand finger force in violin playing: tempo, loudness, and finger differences.

    PubMed

    Kinoshita, Hiroshi; Obata, Satoshi

    2009-07-01

    A three-dimensional force transducer was installed in the neck of a violin under the A string at the D5 position in order to study the force with which the violinist clamps the string against the fingerboard under normal playing conditions. Violinists performed repetitive sequences of open A- and fingered D-tones using the ring finger at tempi of 1, 2, 4, 8, and 16 notes/s at mezzo-forte. At selected tempi, the effects of dynamic level and the use of different fingers were investigated as well. The force profiles were clearly dependent on tempo and dynamic level. At slow tempi, the force profiles were characterized by an initial pulse followed by a level force to the end of the finger contact period. At tempi higher than 2 Hz, only pulsed profiles were observed. The peak force exceeded 4.5 N at 1 and 2 Hz and decreased to 1.7 N at 16 Hz. All force and impulse values were lower at softer dynamic levels, and when using the ring or little finger compared to the index finger. PMID:19603895

  8. Divertor Experiments with MBI and Strong Gas Puffing on HL-2A

    NASA Astrophysics Data System (ADS)

    Duan, Xuru; Ding, Xuantong; Yang, Qingwei; Yan, Longwen; Yao, Lianghua; Hong, Wenyu; Xuan, Weimin; Liu, Dequan; Chen, Liaoyuan; Song, Xianming; Zhang, Jinhua; Cao, Zeng; Cui, Zhengying; Li, Wei; Liu, Yi; Pan, Yudong; Pan, Li; Zheng, Yinjia; Zhou, Yan; Mao, Weicheng; Liu, Yong; HL-2A Team

    2006-01-01

    In the HL-2A 2004 experiment campaign, pulsed molecular beam injection (MBI) and strong hydrogen gas puffing under the divertor configuration were used for gas fueling. The experimental results show that the MBI of hydrogen can reduce the heat flux to the divertor target plate. The electron temperature measured by the Langmuir probe array decreases significantly during the injection of the molecular beam whereas the electron density increases. This indicates that the plasma pressure near the target plates tends to be constant at a new equilibrium level. In the divertor plasmas with strong hydrogen gas puffing a high plasma density up to 4.4 × 1019 m-3 was achieved. In addition, a phenomenon similar to the partially detached divertor regime was observed, which is being studied in open divertor tokamaks such as DIII-D to reduce the peak heat flux on the target plates near the separatrix. After a strong gas puffing the electron temperature measured on the outer divertor target plate near the separatrix decreases till below 5 eV or even lower, but that of the farther outer divertor target plate does not change obviously; and the CIII and the Hα emissions at the plasma edge decrease as expected, but the Hα emission near the X-point increases. These results reflects some interesting characteristics, which needs to be studied by further modeling and experiments.

  9. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    NASA Astrophysics Data System (ADS)

    Sizyuk, V.; Hassanein, A.

    2015-01-01

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  10. A comprehensive 2-D divertor data set from DIII-D for edge theory validation

    SciTech Connect

    Fenstermacher, M.E.; Allen, S.L.; Hill, D.N.

    1996-02-01

    A comprehensive set of experiments has been carried out on the DIII-D tokamak to measure the 2-D (R,Z) structure of the divertor plasma in a systematic way using new diagnostics. Measurements cover the divertor radially from inside the X-point to the outer target plate and vertically from the target plate to above the X-point. Identical, repeatable shots were made, each having radial sweeps of the X-point and divertor strike points, to allow complete plasma and radiation profile measurements. Data have been obtained in ohmic, L-mode, ELMing H-mode, and reversed B{sub T} operation ({gradient}B drift away from the X-point). In addition, complete measurements were made of radiative divertor plasmas with a Partially Detached Divertor (PDD) induced by D{sub 2} injection and with a Radiating Mantle induced by Impurity injection (RMI) using neon and nitrogen. The data set includes first observations of the radial and poloidal profiles of the X-point, inner and outer leg plasmas in PDD and RMI radiative divertor operation. Preliminary data analysis shows that intrinsic impurities play a critical role in determining the SOL and divertor conditions.

  11. Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing

    SciTech Connect

    Park, Jin Woo; Na, Y. S.; Hong, S. H.; Ahn, J.W.; Kim, D. K.; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June

    2012-01-01

    Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D (alpha) emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m(2) in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, similar to 1.0 x 10(20) /s and similar to 5.0 x 10(18) /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

  12. Design and testing of a superfluid liquid helium cooling loop

    SciTech Connect

    Gavin, L.M.; Green, M.A.; Levin, S.M.; Smoot, G.F.; Witebsky, C.

    1989-07-01

    This paper describes the design and preliminary testing of a cryogenic cooling loop that uses a thermomechanical pump to circulate superfluid liquid helium. The cooling loop test apparatus is designed to prove forced liquid helium flow concepts that will be used on the Astromag superconducting magnet facility. 3 refs., 2 figs.

  13. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  14. Fingering dynamics driven by a precipitation reaction: Nonlinear simulations

    NASA Astrophysics Data System (ADS)

    Shukla, Priyanka; De Wit, A.

    2016-02-01

    A fingering instability can develop at the interface between two fluids when the more mobile fluid is injected into the less-mobile one. For example, viscous fingering appears when a less viscous (i.e., more mobile) fluid displaces a more viscous (and hence less mobile) one in a porous medium. Fingering can also be due to a local change in mobility arising when a precipitation reaction locally decreases the permeability. We numerically analyze the properties of the related precipitation fingering patterns occurring when an A +B →C chemical reaction takes place, where A and B are reactants in solution and C is a solid product. We show that, similarly to reactive viscous fingering patterns, the precipitation fingering structures differ depending on whether A invades B or vice versa. This asymmetry can be related to underlying asymmetric concentration profiles developing when diffusion coefficients or initial concentrations of the reactants differ. In contrast to reactive viscous fingering, however, precipitation fingering patterns appear at shorter time scales than viscous fingers because the solid product C has a diffusivity tending to zero which destabilizes the displacement. Moreover, contrary to reactive viscous fingering, the system is more unstable with regard to precipitation fingering when the high-concentrated solution is injected into the low-concentrated one or when the faster diffusing reactant displaces the slower diffusing one.

  15. The Shape of a Gravity Finger

    SciTech Connect

    Zhan, Lang; Yortsos, Yanis

    2000-09-11

    A new gravity finger model was proposed in this report in the absence of interfacial tension but in the presence of gravities. This model considered differences in density and viscosity of the two fluids. Thus, it was able to represent both stable and unstable displacements, and the finger development along either the upper or the bottom walls of a channel. This solution recovers the Saffman - Taylar solution if gravity is neglected. The results of the solution are very similar to the solutions proposed by Brener et al. for the gravity number up to 10. The solution provided in this work only has one free parameter while the solution of Brener et al. has three.

  16. Nylon-muscle-actuated robotic finger

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  17. Performance of JT-60SA divertor Thomson scattering diagnostics

    SciTech Connect

    Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato; Enokuchi, Akito

    2015-08-15

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.

  18. Performance of JT-60SA divertor Thomson scattering diagnostics.

    PubMed

    Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Enokuchi, Akito; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato

    2015-08-01

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views. PMID:26329196

  19. Is Carbon a Realistic Choice for ITER's Divertor?

    SciTech Connect

    C.H. Skinner; G. Federici

    2005-05-13

    Tritium retention by co-deposition with carbon on the divertor target plate is predicted to limit ITER's DT burning plasma operations (e.g. to about 100 pulses for the worst conditions) before the in-vessel tritium inventory limit, currently set at 350 g, is reached. At this point, ITER will only be able to continue its burning plasma program if technology is available that is capable of rapidly removing large quantities of tritium from the vessel with over 90% efficiency. The removal rate required is four orders of magnitude faster than that demonstrated in current tokamaks. Eighteen years after the observation of co-deposition on JET and TFTR, such technology is nowhere in sight. The inexorable conclusion is that either a major initiative in tritium removal should be funded or that research priorities for ITER should focus on metal alternatives.

  20. Articular synovial chondromatosis of the finger.

    PubMed

    Sano, Kazufumi; Hashimoto, Tomohisa; Kimura, Kazumasa; Ozeki, Satoru

    2014-10-01

    A 40-year-old woman presented with a six-month history of synovial chondromatosis of the metacarpophalangeal joint of the right ring finger, which was resected through both dorsal and volar incisions. To our knowledge there have been only 17 reported cases of articular synovial chondromatosis of the digital joint so far. We present a case affecting the metacarpophalangeal joint with a review of scattered information found in other 17 reports. PMID:23596991

  1. Low-Friction Joint for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.

    1985-01-01

    Mechanical linkage allows adjacent parts to move relative to each other with low friction and with no chatter, slipping, or backlash. Low-friction joint of two surfaces in rolling contact, held in alinement by taut flexible bands. No sliding friction or "stick-slip" motion: Only rolling-contact and bending friction within bands. Proposed linkage intended for finger joints in mechanical hands for robots and manipulators.

  2. Vibration white finger: a follow up study.

    PubMed Central

    Ekenvall, L; Carlsson, A

    1987-01-01

    To study the course of vibration white finger (VWF) 55 men were re-examined three and a half to six years after the first examination. The patients were interviewed and finger systolic pressure after general body and local finger cooling was measured. The test results at the two examinations were compared. At the follow up examination some patients experienced a subjective improvement of VWF symptoms but not until more than three years had passed after they had stopped working with vibrating tools. To study the effect of diminished cold exposure on subjective symptoms, vibration exposed outdoor workers who changed to unexposed indoor work were studied separately. In this subgroup also improvement was reported only when more than three years has passed after the change of work, indicating that diminished cold exposure is not the primary explanation for the improvement. The cold provocation test, however, showed no tendency towards a diminished reaction of the vessels to cooling. Patients who continue to work with vibrating tools report a subjective increase in symptoms. This subjective impairment was reflected in an increased reaction to cold as measured in the cold provocation test. PMID:3620371

  3. Visual Foraging With Fingers and Eye Gaze

    PubMed Central

    Thornton, Ian M.; Smith, Irene J.; Chetverikov, Andrey; Kristjánsson, Árni

    2016-01-01

    A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a) The fact that a sizeable number of observers (in particular during gaze foraging) had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b) While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints. PMID:27433323

  4. Pacifier Use, Finger Sucking, and Infant Sleep.

    PubMed

    Butler, Rachel; Moore, Melisa; Mindell, Jodi A

    2016-01-01

    Few studies to date have investigated the relationship between pacifier use or finger sucking and infant sleep. One hundred and four mothers of infants (ages 0-11 months) completed the Brief Infant Sleep Questionnaire (BISQ). Infants who engaged in finger sucking had fewer night wakings and longer stretches of nighttime sleep, although less daytime sleep. There were no significant differences in sleep patterns between pacifier users and infants who did not engage in nonnutritive sucking. Furthermore, no significant differences were found across groups for sleep ecology, including parental involvement at bedtime and following night wakings. Finally, infants were consistently able to retrieve their pacifiers independently by 7 months of age, although this did not appear to be associated with sleep outcomes. Results suggest that when parents are deciding whether to give their infant a pacifier, sleep may not be a critical factor. In contrast, parents of finger and thumb suckers should be reassured that this nonnutritive sucking is beneficial to sleep, at least in the first year of life. PMID:26548755

  5. Multi-finger Prehension: An overview

    PubMed Central

    Zatsiorsky, Vladimir M.; Latash, Mark L.

    2009-01-01

    This paper reviews the available experimental evidence on what people do when they grasp an object with several digits and then manipulate it. In addition to the Introduction, the paper includes three parts each addressing a specific aspect of multi-finger prehension. Part II discusses manipulation forces, i.e. the resultant force and moment of force exerted on the object, and the digits contribution to such force production. Part III deals with internal forces defined as forces that cancel each other and do not disturb object equilibrium. The role of the internal forces in maintaining the object stability is discussed with respect to such issues as slip prevention, tilt prevention and resistance to perturbations. Part IV is devoted to the motor control of prehension. It covers such topics as prehension synergies, chain effects, the principle of superposition, inter-finger connection matrices and reconstruction of neural commands, mechanical advantage of the fingers, and the simultaneous digit adjustment to several mutually reinforcing or conflicting demands. PMID:18782719

  6. Palm to Finger Ulnar Sensory Nerve Conduction

    PubMed Central

    Davidowich, Eduardo; Orsini, Marco; Pupe, Camila; Pessoa, Bruno; Bittar, Caroline; Pires, Karina Lebeis; Bruno, Carlos; Coutinho, Bruno Mattos; de Souza, Olivia Gameiro; Ribeiro, Pedro; Velasques, Bruna; Bittencourt, Juliana; Teixeira, Silmar; Bastos, Victor Hugo

    2015-01-01

    Ulnar neuropathy at the wrist (UNW) is rare, and always challenging to localize. To increase the sensitivity and specificity of the diagnosis of UNW many authors advocate the stimulation of the ulnar nerve (UN) in the segment of the wrist and palm. The focus of this paper is to present a modified and simplified technique of sensory nerve conduction (SNC) of the UN in the wrist and palm segments and demonstrate the validity of this technique in the study of five cases of type III UNW. The SNC of UN was performed antidromically with fifth finger ring recording electrodes. The UN was stimulated 14 cm proximal to the active electrode (the standard way) and 7 cm proximal to the active electrode. The normal data from amplitude and conduction velocity (CV) ratios between the palm to finger and wrist to finger segments were obtained. Normal amplitude ratio was 1.4 to 0.76. Normal CV ratio was 0.8 to 1.23.We found evidences of abnormal SNAP amplitude ratio or substantial slowing of UN sensory fibers across the wrist in 5 of the 5 patients with electrophysiological-definite type III UNW. PMID:26788268

  7. The creation of the artificial RING finger from the cross-brace zinc finger by {alpha}-helical region substitution

    SciTech Connect

    Miyamoto, Kazuhide; Togiya, Kayo

    2010-04-16

    The creation of the artificial RING finger as ubiquitin-ligating enzyme (E3) has been demonstrated. In this study, by the {alpha}-helical region substitution between the EL5 RING finger and the Williams-Beuren syndrome transcription factor (WSTF) PHD finger, the artificial E3 (WSTF PHD{sub R}ING finger) was newly created. The experiments of the chemical modification of residues Cys and the circular dichroism spectra revealed that the WSTF PHD{sub R}ING finger binds two zinc atoms and adopts the zinc-dependent ordered-structure. In the substrate-independent ubiquitination assay, the WSTF PHD{sub R}ING finger functions as E3 and was poly- or mono-ubiquitinated. The present strategy is very simple and convenient, and consequently it might be widely applicable to the creation of various artificial E3 RING fingers with the specific ubiquitin-conjugating enzyme (E2)-binding capability.

  8. Flute instability and the associated radial transport in the tandem mirror with a divertor mirror cell

    SciTech Connect

    Katanuma, I.; Yagi, K.; Haraguchi, Y.; Ichioka, N.; Masaki, S.; Ichimura, M.; Imai, T.

    2010-11-15

    The flute instability and the associated radial transport are investigated in the tandem mirror with a divertor mirror cell (the GAMMA10 A-divertor) with help of computer simulation, where GAMMA10 is introduced [Inutake et al., Phys. Rev. Lett. 55, 939 (1985)]. The basic equations used in the simulation were derived on the assumption of an axisymmetric magnetic field. So the high plasma pressure in a nonaxisymmetric minimum-B anchor mirror cell, which is important for the flute mode stability, is taken into account by redefining the specific volume of a magnetic field line. It is found that the flute modes are stabilized by the minimum-B magnetic field even with a divertor mirror although its stabilizing effects are weaker than that without the divertor mirror. The flute instability enhances the radial transport by intermittently repeating the growing up and down of the Fourier amplitude of the flute instability in time.

  9. Design of a diagnostic residual gas analyzer for the ITER divertor

    SciTech Connect

    Klepper, C Christopher; Biewer, T. M.; Graves, Van B; Andrew, P.; Marcus, Chris; Shimada, M.; Hughes, S.; Boussier, B.; Johnson, D. W.; Gardner, W. L.; Hillis, D. L.; Vayakis, G.; Vayakis, G.; Walsh, M.

    2015-01-01

    One of the ITER diagnostics having reached an advanced design stage is a diagnostic RGA for the divertor, i.e. residual gas analysis system for the ITER divertor, which is intended to sample the divertor pumping duct region during the plasma pulse and to have a response time compatible with plasma particle and impurity lifetimes in the divertor region. Main emphasis is placed on helium (He) concentration in the ducts, as well as the relative concentration between the hydrogen isotopes (H2, D2, T2). Measurement of the concentration of radiative gases, such as neon (Ne) and nitrogen (N2), is also intended. Numerical modeling of the gas flow from the sampled region to the cluster of analysis sensors, through a long (~8m long, ~110mm diameter) sampling pipe terminating in a pressure reducing orifice, confirm that the desired response time (~1s for He or D2) is achieved with the present design.

  10. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U.

    PubMed

    McLean, A G; Soukhanovskii, V A; Allen, S L; Carlstrom, T N; LeBlanc, B P; Ono, M; Stratton, B C

    2014-11-01

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, Te, and density, ne, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring Te to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma. PMID:25430390

  11. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    SciTech Connect

    McLean, A. G. Soukhanovskii, V. A.; Allen, S. L.; Carlstrom, T. N.; LeBlanc, B. P.; Ono, M.; Stratton, B. C.

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.

  12. Development of microwave interferometer system for divertor simulation experiments in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Kohagura, J.; Wang, X.; Kanno, S.; Yoshikawa, M.; Kuwahara, D.; Nagayama, Y.; Shima, Y.; Chikatsu, M.; Nojiri, K.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Mase, A.

    2015-12-01

    Microwave interferometer has newly been installed on GAMMA 10/PDX for divertor simulation study. A divertor simulation experimental module (D-module) is used to investigate the physics of divertor in the end-cell of GAMMA 10/PDX where an open magnetic field configuration is formed. D-module has a rectangular chamber with an inlet aperture. Two tungsten target plates are mounted in V-shape inside the chamber. In order to develop understandings of divertor simulation experiments the microwave interferometer using heterodyne scheme and a 1D horn-antenna mixer array (HMA) is applied to obtain electron density and density distribution inside the V-shaped target plates. Line-averaged electron density distributions inside D-module are first observed in H2 gas injection experiments.

  13. Modeling divertor concepts for spherical tokamaks NSTX-U and ST-FNSF

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Gerhardt, S.; Menard, J. E.; Rognlien, T. D.; Soukhanovskii, V. A.

    2015-08-01

    The compact nature of the spherical tokamak (ST) presents an economically attractive path to fusion commercialization, but concentrates power exhaust, threatening the integrity of plasma-facing components. To address this challenge, experimentally constrained divertor modeling in the National Spherical Torus Experiment (NSTX) is extrapolated to investigate divertor concepts for future ST devices. Analysis of NSTX Upgrade with UEDGE shows that the secondary snowflake X-point position can be adjusted for favorable neutral transport, enabling stable partial detachment at reduced core densities. For a notional ST-based Fusion Nuclear Science Facility, divertor concepts are identified that provide heat flux mitigation (<10 MW m-2) and low temperatures (<10 eV) compatible with high-Z targets. This research provides guidance for upcoming experiments and a basis for continued development of predictive capability for divertor performance in STs.

  14. Viscous fingering with partially miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, X.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Experimental and numerical studies of viscous fingering have focused on fluids that are either fully miscible (e.g. water and glycerol) or perfectly immiscible (e.g. water and oil). In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other (e.g. CO2 and water). Following our recent work for miscible systems (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a porous medium, when the two fluids have limited (but nonzero) solubility in one another. In our model, partial miscibility is characterized through the design of the thermodynamic free energy of the two-fluid system. We express the model in dimensionless form and elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution. Figure caption: final snapshots in simulations of viscous fingering with a two-fluid system mimicking that of CO2 and water. The colormap corresponds to the concentration of CO2. A band of less viscous gas phase rich in CO2 (red) displaces through the more viscous liquid phase that is undersaturated with CO2 (blue). At the fluid interface, an exchange of CO2 occurs as a result of local chemical potentials that drives the system towards thermodynamic equilibrium. This results in a shrinkage of gas phase as well as a local increase in

  15. Triple-X Divertor Coil Designs for EAST, PEGASUS, MAST, and Reactors

    NASA Astrophysics Data System (ADS)

    Valanju, Prashant; Kotschenreuther, Michael; Wiley, James; Pekker, Mikhail; Rowan, William; He, Huang

    2006-04-01

    Novel magnetic divertor with additional X-points downstream from main plasma X-point have been proposed to overcome reactor heat flux limitations. PEGASUS, MAST, and EAST(China's new long-pulse, superconducting tokamak) are considering experimental implementation of these divertors. MHD equilibria, optimized coil designs, sensitivity to plasma motion, stresses, and heating will be presented for these machines as well as for some reactor designs.

  16. Overview of Stellarator Divertor Studies: Final Report of LDRD Project 01-ERD-069

    SciTech Connect

    Fenstermacher, M E; Rognlien, T D; Koniges, A; Unmansky, M; Hill, D N

    2003-01-21

    A summary is given of the work carried out under the LDRD project 01-ERD-069 entitled Stellarator Divertor Studies. This project has contributed to the development of a three-dimensional edge-plasma modeling and divertor diagnostic design capabilities at LLNL. Results are demonstrated by sample calculations and diagnostic possibilities for the edge plasma of the proposed U.S. National Compact Stellarator Experiment device. Details of the work are contained in accompanying LLNL reports that have been accepted for publication.

  17. Design and analysis of the DII-D radiative divertor water-cooled structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-10-01

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electromagnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 {degrees}C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed.

  18. Design and analysis of the DIII-D radiative divertor water-cooled structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek, A.S.; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-12-31

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electro-magnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed.

  19. Numerical simulations of resistive magnetohydrodynamic instabilities in a poloidal divertor tokamak

    NASA Astrophysics Data System (ADS)

    Uchimoto, E.

    1988-03-01

    A new 3-D resistive MHD initial value code RPD has been successfully developed from scratch to study the linear and nonlinear evolution of long wavelength resistive MHD instabilities in a square cross-section tokamak with or without a poloidal divertor. The code numerically advances the full set of compressible resistive MHD equations in a toroidal geometry, with an important option of permitting the divertor separatrix and the region outside it to be in the computational domain. A severe temporal step size restriction for numerical stability imposed by the fast compressional waves was removed by developing and implementing a new, efficient semi-implicit scheme extending one first proposed by Harned and Kerner. As a result, the code typically runs faster than that with a mostly explicit scheme by a factor of about the aspect ratio. The equilibrium input for RPD is generated by a new 2-D code EQPD that is based on the Chodura-Schluter method. The RPD code, as well as the new semi-implicit scheme, has passed very extensive numerical tests in both divertor and divertorless geometries. Linear and nonlinear simulations in a divertorless geometry have reproduced the standard, previously known results. In a geometry with a four-node divertor the m = 2, n = 1 (2/1) tearing mode tends to be linearly stabilized as the q = 2 surface approaches the divertor separatrix. However, the m = 1, n = 1 (1/1) resistive kink mode remains relatively unaffected by the nearness of the q = 1 surface to the divertor separatrix. When plasma current is added to the region outside the divertor separatrix, the 2/1 tearing mode is linearly stabilized not by this current, but by the profile modifications induced near the q = 2 surface and the divertor separatrix. A similar stabilization effect is seen for the 1/1 resistive kink mode, but to a lesser extent.

  20. Survivability of dust in tokamaks: Dust transport in the divertor sheath

    SciTech Connect

    Delzanno, Gian Luca; Tang, Xianzhu

    2014-02-15

    The survivability of dust being transported in the magnetized sheath near the divertor plate of a tokamak and its impact on the desired balance of erosion and redeposition for a steady-state reactor are investigated. Two different divertor scenarios are considered. The first is characterized by an energy flux perpendicular to the plate q{sub 0}≃1 MW/m{sup 2} typical of current short-pulse tokamaks. The second has q{sub 0}≃10 MW/m{sup 2} and is relevant to long-pulse machines like ITER or Demonstration Power Plant. It is shown that micrometer dust particles can survive rather easily near the plates of a divertor plasma with q{sub 0}≃1 MW/m{sup 2} because thermal radiation provides adequate cooling for the dust particle. On the other hand, the survivability of micrometer dust particles near the divertor plates is drastically reduced when q{sub 0}≃10 MW/m{sup 2}. Micrometer dust particles redeposit their material non-locally, leading to a net poloidal mass migration across the divertor. Smaller particles (with radius ∼0.1 μm) cannot survive near the divertor and redeposit their material locally. Bigger particle (with radius ∼10 μm) can instead survive partially and move outside the divertor strike points, thus causing a net loss of divertor material to dust accumulation inside the chamber and some non-local redeposition. The implications of these results for ITER are discussed.

  1. Speed invariance of independent control of finger movements in pianists

    PubMed Central

    Soechting, John F.

    2012-01-01

    Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. Principal component analysis and cluster analysis using an expectation-maximization algorithm determined three distinct patterns of finger movement coordination for a keypress with each of the index, middle, ring, and little fingers at each of the two tempi. The finger kinematics of each coordination pattern was overall similar across the tempi. Tone sequences assigned into each cluster were also similar for both tempi. A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists. PMID:22815403

  2. Investigation on a three-cold-finger pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Tang, Qingjun; Chen, Houlei; Cai, Jinghui

    2015-09-01

    This paper introduces a new type of pulse tube cryocooler, three-cold-finger pulse tube cryocooler (TCFPTC), which consists of one linear compressor and three cold fingers, i.e., CFA, CFB and CFC. Those three cold fingers are driven by the linear compressor simultaneously. This paper investigates two aspects. First, it studies the mass flow distribution among the three cold fingers by varying the input electrical power. The cooling powers of the three cold fingers at constant cooling temperatures and the cooling temperatures of the three cold fingers at constant cooling powers with various input electrical powers are investigated. Secondly, the interaction among the three cold fingers is investigated by varying the heating power of any one cold finger. Generally, if the heating power applied on one cold finger increases, with its cold head temperature rising up, the cold head temperatures of the others will decrease. But, when the cooling power of CFC has been 4 W, the cold head temperature of whichever cold finger increases, the cold head temperature of CFA or CFB will seldom change if its heating power keeps constant.

  3. Does finger training increase young children's numerical performance?

    PubMed

    Gracia-Bafalluy, Maria; Noël, Marie-Pascale

    2008-04-01

    Butterworth (1999) suggested that fingers are important in representing numerosities. Furthermore, scores on a finger gnosis test are a better predictor of numerical performance up to 3 years later than intellectual measures (Marinthe et al., 2001; Noël, 2005). We hypothesised that training in finger differentiation would increase finger gnosis and might also improve numerical performance. Accordingly, 47 first-grade children were selected and divided into 3 groups: children with poor finger gnosis who followed the finger-differentiation training programme (G1), a control-intervention who were trained in story comprehension (G2), and a group with high finger gnosis scores who just continued with normal school lessons (G3). The finger training consisted of 2 weekly sessions of half an hour each, for 8 weeks. Before the training period, children in G3 performed better in finger gnosis and enumeration than children in the two other groups. After the training period this pattern remained for the children in G2 and G3, but the children in G1 were significantly better than those in G2 at finger gnosis, representation of numerosities with fingers, and quantification tasks; they also tended to be better at the processing of Arabic digits. These results indicate that improving finger gnosis in young children is possible and that it can provide a useful support to learning mathematics. Such an approach could be particularly appropriate for children with a developmental Gerstmann syndrome. Theoretically, these results are important because they suggest a functional link between finger gnosis and number skills. PMID:18387567

  4. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Schmitz, O.; Waters, I.; Canal, G. P.; Evans, T. E.; Feng, Y.; Soukhanovskii, V. A.

    2016-06-01

    The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (Edge Localized Modes) (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads is so called "advanced divertors" which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which are related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.

  5. Divertor Target Heat Load Reduction by Electrical Biasing, and Application to COMPASS-D

    SciTech Connect

    Fielding, S J; Cohen, R H; Helander, P; Ryutov, D D

    2001-03-07

    A toroidally-asymmetric potential structure in the scrape-off layer (SOL) plasma may be formed by toroidally distributed electrical biasing of the divertor target tiles. The resulting ExB convective motions should increase the plasma radial transport in the SOL and thereby reduce the heat load at the divertor [1]. In this paper we develop theoretical modeling and describe the implementation of this concept to the COMPASS-D divertor. We show that strong magnetic shear near the X-point should cause significant squeezing of the convective cells preventing convection from penetrating above the X-point. This should result in reduced heat load at the divertor target without increasing the radial transport in the portion of the SOL in direct contact with the core plasma, potentially avoiding any confinement degradation. implementation of divertor biasing is in hand on COMPASS-D involving insulation of, and modifications to, the present divertor tiles. Calculations based on measured edge parameters suggest that modest currents {approx} 8 A/tile are required, at up to 150V, to drive the convection. A technical test is preceeding full bias experiments.

  6. Linear peeling-ballooning mode simulations in snowflake-like divertor configuration using BOUT++ code

    NASA Astrophysics Data System (ADS)

    Ma, J. F.; Xu, X. Q.; Dudson, B. D.

    2014-03-01

    We present linear characteristics of peeling-ballooning (P-B) modes in the pedestal region of DIII-D tokamak with snowflake (SF) plus divertor configuration using edge two-fluid code BOUT++. A set of reduced magnetohydrodynamics (MHD) equations is found to simulate the linear P-B mode in both snowflake plus and standard (STD) single-null divertor configurations. Further analysis shows that the implementation of snowflake geometry changes the local magnetic shear in the pedestal region, which leads to different linear behaviours of the P-B mode in STD and SF divertor configuration. Primary linear simulation results are the following. (1) The growth rate of the coupled P-B mode in SF-plus divertor geometry is larger than that in STD divertor geometry. (2) The global linear mode structures are more radially extended yet less poloidally extended in SF-plus divertor geometry, especially for moderate and high toroidal mode numbers. (3) The current-gradient drive (the kink term) dominates the P-B mode for low n, while the pressure gradient drive (ballooning) dominates for n > 25. In addition, constraints on poloidal field and central solenoid coils for snowflake geometry are briefly discussed based on conclusions in this paper.

  7. A Fast Visible Camera Divertor-Imaging Diagnostic on DIII-D

    SciTech Connect

    Roquemore, A; Maingi, R; Lasnier, C; Nishino, N; Evans, T; Fenstermacher, M; Nagy, A

    2007-06-19

    In recent campaigns, the Photron Ultima SE fast framing camera has proven to be a powerful diagnostic when applied to imaging divertor phenomena on the National Spherical Torus Experiment (NSTX). Active areas of NSTX divertor research addressed with the fast camera include identification of types of EDGE Localized Modes (ELMs)[1], dust migration, impurity behavior and a number of phenomena related to turbulence. To compare such edge and divertor phenomena in low and high aspect ratio plasmas, a multi-institutional collaboration was developed for fast visible imaging on NSTX and DIII-D. More specifically, the collaboration was proposed to compare the NSTX small type V ELM regime [2] and the residual ELMs observed during Type I ELM suppression with external magnetic perturbations on DIII-D[3]. As part of the collaboration effort, the Photron camera was installed recently on DIII-D with a tangential view similar to the view implemented on NSTX, enabling a direct comparison between the two machines. The rapid implementation was facilitated by utilization of the existing optics that coupled the visible spectral output from the divertor vacuum ultraviolet UVTV system, which has a view similar to the view developed for the divertor tangential TV camera [4]. A remote controlled filter wheel was implemented, as was the radiation shield required for the DIII-D installation. The installation and initial operation of the camera are described in this paper, and the first images from the DIII-D divertor are presented.

  8. Erosion and deposition in the JET divertor during the first ILW campaign

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Krat, S.; Van Renterghem, W.; Baron-Wiechec, A.; Brezinsek, S.; Bykov, I.; Coad, P.; Gasparyan, Yu; Heinola, K.; Likonen, J.; Pisarev, A.; Ruset, C.; de Saint-Aubin, G.; Widdowson, A.; Contributors, JET

    2016-02-01

    Erosion and deposition were studied in the JET divertor during the first JET ITER-like wall campaign 2011 to 2012 using marker tiles. An almost complete poloidal section consisting of tiles 0, 1, 3, 4, 6, 7, 8 was studied. The data from divertor tile surfaces were completed by the analysis of samples from remote divertor areas and from the inner wall cladding. The total mass of material deposited in the divertor decreased by a factor of 4-9 compared to the deposition of carbon during all-carbon JET operation before 2010. Deposits in 2011 to 2012 consist mainly of beryllium with 5-20 at.% of carbon and oxygen, respectively, and small amounts of Ni, Cr, Fe and W. This decrease of material deposition in the divertor is accompanied by a decrease of total deuterium retention inside the JET vessel by a factor of 10 to 20. The detailed erosion/deposition pattern in the divertor with the ITER-like wall configuration shows rigorous changes compared to the pattern with the all-carbon JET configuration.

  9. Compatibility of the Radiating Divertor with High Performance Plasmas in DIII-D

    SciTech Connect

    Petrie, T W; Wade, M R; Brooks, N H; Fenstermacher, M E; Groth, M; Hyatt, A W; Isler, R C; Lasnier, C J; Leonard, A W; Mahdavi, M A; Porter, G D; Schaffer, M J; Watkins, J G; West, W P

    2006-05-18

    A radiating divertor approach was successfully applied to high performance 'hybrid' plasmas [M.R. Wade, et al., Proc. 20th IAEA Fusion Energy Conf., Vilamoura, (2004)]. Our technique included: (1) injecting argon near the outer divertor target, (2) enhancing the plasma flow into the inner and outer divertors by a combination of particle pumping and deuterium gas puffing upstream of the divertor targets, and (3) isolating the inner divertor from the outer by a structure in the private flux region. Good hybrid conditions were maintained, as the peak heat flux at the outer divertor target was reduced by a factor of 2.5; the peak heat flux at the inner target decreased by 20%. This difference was caused by a higher concentration of argon at the outer target than at the inner target. Argon accumulation in the main plasma was modest (n{sub AR}/n{sub e} {le}0.004 on axis), although the argon profile was more peaked than the electron profile.

  10. Critical need for MFE: the Alcator DX advanced divertor test facility

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  11. Finger synergies during multi-finger cyclic production of moment of force

    PubMed Central

    Zhang, Wei; Zatsiorsky, Vladimir M.

    2010-01-01

    We investigated multi-finger synergies stabilizing the total moment of force and the total force when the subjects produced a quick cyclic change in the total moment of force. The seated subjects performed the task with the fingers of the dominant arm while paced by the metronome at 1.33 Hz. They were required to produce a rhythmic, sine-like change in the total pronation–supination moment of force computed with respect to the midpoint between the middle and ring fingers. The framework of the uncontrolled manifold hypothesis was used to compute indices of stabilization of the total moment and of the total force across 20 cycles. Variance of the total moment showed a cyclic pattern with peaks close to the peak rate of the moment change. Variance of the total force was maximal close to peak moment into supination. Higher magnitudes of the moment directed against the required moment direction (antagonist moment) were produced by individual fingers during supination efforts as compared to pronation efforts. Indices of multi-finger synergies showed across-trials stabilization of the total moment over the whole cycle but not of the total force. These indices were smaller during supination efforts. We conclude that the central nervous system facilitates multi-finger synergies stabilizing the total rotational action across a variety of tasks. Synergies stabilizing the total force are not seen in tasks that do not explicitly require accurate force control. Pronation efforts are performed more efficiently and with better stabilization of the action. PMID:16944107

  12. The Role of Vision in the Development of Finger-Number Interactions: Finger-Counting and Finger-Montring in Blind Children

    ERIC Educational Resources Information Center

    Crollen, Virginie; Mahe, Rachel; Collignon, Olivier; Seron, Xavier

    2011-01-01

    Previous research has suggested that the use of the fingers may play a functional role in the development of a mature counting system. However, the role of developmental vision in the elaboration of a finger numeral representation remains unexplored. In the current study, 14 congenitally blind children and 14 matched sighted controls undertook…

  13. Torque Control of Underactuated Tendon-driven Robotic Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Wampler, Charles W. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Bridgwater, Lyndon (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  14. In–out asymmetry of divertor particle flux in H-mode with edge localized modes on EAST

    NASA Astrophysics Data System (ADS)

    Liu, J. B.; Guo, H. Y.; Wang, L.; Xu, G. S.; Xia, T. Y.; Liu, S. C.; Xu, X. Q.; Li, Jie; Chen, L.; Yan, N.; Wang, H. Q.; Xu, J. C.; Feng, W.; Shao, L. M.; Deng, G. Z.; Liu, H.; EAST Probe Team

    2016-06-01

    The in–out divertor asymmetry in the Experimental Advanced Superconducting Tokamak (EAST), as manifested by particle fluxes measured by the divertor triple Langmuir probe arrays, is significantly enhanced during type-I edge localized modes (ELMs), favoring the inner divertor in lower single null (LSN) for the normal toroidal field (B t) direction, i.e. with the ion B  ×  \

  15. Reciprocating and fixed probe measurements of n{sub e} and T{sub e} in the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Moyer, R.A.; Cuthbertson, J.W.; Buchenauer, D.A.; Carlstrom, T.N.; Hill, D.N.; Ulrickson, M.

    1996-11-01

    This paper describes divertor density and temperature measurements using both a new reciprocating Langmuir probe (XPT-RCP) which plunges vertically above the divertor floor up to the X-point height and swept, single, Langmuir probes fixed horizontally across the divertor floor. These types of measurements are important for testing models of the SOL and divertor which then are used to design plasma facing components in reactor size tokamaks. This paper presents an overview of the new divertor probe measurements and how they compare with the new divertor Thomson scattering system. The fast time response of the probe measurements allows detailed study of ELMs.

  16. Visualization and Quantification of Fingering Flow Using Light Transmission Method

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Roth, K.

    2007-12-01

    With the aim of studying the physical process concerning the unstable fingering phenomena in two dimensions, experiments of vertical infiltration through layered sand were carried out in the laboratory using Hele-Shaw cells. We developed a light transmission method to measure the dynamics of water saturation within flow fingers in great detail with high spatial and temporal resolution. The method was calibrated using X-ray absorption. We improved the measured light transmission with correction for scattering effects through deconvolution with a point spread function which allows us to obtain quantitative high spatial resolution measurements. After fingers had fully developed, we added a dye tracer in order to distinguish mobile and immobile water fractions. Fully developed fingers consist of a tip, a core with mobile water, and a hull with immobile water. We analyzed the dynamics of water saturation within the finger tip, along the finger core behind the tip, and within the fringe of the fingers during radial growth. Our results confirm previous findings of saturation overshoot in the finger tips and revealed a saturation minimum behind the tip as a new feature. The finger development was characterized by a gradual increase in water content within the core of the finger behind this minimum and a gradual widening of the fingers to a quasi-stable state which evolves at time scales that are orders of magnitude longer than those of fingers' evolution. In this state, a sharp separation into a core with fast convective flow and a fringe with exceedingly slow flow was detected. All observed phenomena, with the exception of saturation overshoot, could be consistently explained based on the hysteretic behavior of the soil-water characteristic.

  17. Experimental study of fingered flow through initially dry sand

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Vogel, H.-J.; Roth, K.

    2006-08-01

    Water infiltration into coarse textured dry porous media becomes instable depending on flow conditions characterized through dimensionless quantities, i.e. the Bond number and the Capillary number. Instable infiltration fronts break into flow fingers which we investigate experimentally using Hele-Shaw cells. We further developed a light transmission method to measure the dynamics of water within flow fingers in great detail with high spatial and temporal resolution. The method was calibrated using x-ray absorption and the measured light transmission was corrected for scattering effects through deconvolution with a point spread function. Additionally we applied a dye tracer to visualize the velocity field within flow fingers. We analyzed the dynamics of water within the finger tips, along the finger core behind the tip, and within the fringe of the fingers during radial growth. Our results confirm previous findings of saturation overshoot in the finger tips and revealed a saturation minimum behind the tip as a new feature. The finger development was characterized by a gradual increase in water content within the core of the finger behind this minimum and a gradual widening of the fingers to a quasi-stable state which evolves on time scales that are orders of magnitudes longer than those of fingers' evolution. In this state, a sharp separation into a core with fast convective flow and a fringe with exceedingly slow flow was detected. All observed phenomena could by consistently explained based on the hysteretic behavior of the soil- water characteristic and on the positive pressure induced at the finger tip by the high flow velocity.

  18. Fingering instabilities in Newtonian and non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Kennedy, Kristi E.

    Fingering has been studied in different fluid systems. Viscous fingering, which is driven by a difference in viscosity between fluids, has been studied by both experiments and numerical simulations. We used a single fluid with a temperature-dependent viscosity and studied the instability for a range of inlet pressures and viscosity ratios. The spreading and fingering of a fluid drop subjected to a centrifugal force, known as spin coating, has also been studied for a range of drop volumes and rotation speeds, both for a Newtonian and a non-Newtonian fluid. Experiments on viscous fingering with a single fluid, glycerine, show that an instability occurs at the boundary separating hot and cold fluid. The results indicate that the instability is similar to that which occurs between two miscible fluids. Fingering only occurs for high enough values of the inlet pressure and viscosity ratio. The wavelength of the fingering pattern is found to be proportional to the cell width for the two smallest cell widths used. The fingering patterns seen in the simulations are very similar to the experimental patterns, although there are some quantitative differences. In particular, the wavelength of the instability is seen to depend only weakly on the cell width. The spreading of silicone oil, a Newtonian fluid, during spin coating follows the time dependence predicted theoretically, although with a shift in the scaled time variable. Once the radius of the spreading silicone oil drop becomes large enough, fingers form around the perimeter of the drop for all experimental conditions studied. The number of fingers and the growth rate of the fingers are in agreement with theoretical predictions. Fingers are also observed to form for high enough drop volumes and rotation speeds during the spinning of a non-Newtonian fluid drop, Carbopol, which possesses a yield stress. In this case the fingering is a localized effect, occuring once the stress on the drop exceeds the yield stress, rather

  19. Simultaneous dislocation of both interphalangeal joints in the middle finger.

    PubMed

    Hester, Thomas; Mahmood, Shoib; Morar, Yateen; Singh, Ravi

    2015-01-01

    Simultaneous dorsal dislocation of both interphalangeal joints (IPJs) in one finger is an uncommon injury. This injury usually occurs on the ulnar side of the hand involving ring and little fingers. We report a case of simultaneous dislocation of both IPJs in the middle finger. Closed reduction and splinting with the IPJs in extension provided a good result with full range of motion at the patient's final follow-up. PMID:25979959

  20. Ion cyclotron resonance heating in the divertor tokamak ASDEX

    SciTech Connect

    Steinmetz, K.; Wesner, F.; Niedermeyer, H.; Becker, G.; Braun, F.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.

    1986-05-01

    The main topics of ICRF investigations in ASDEX are the influence of the divertor on impurity production and transport in ICRH heated discharges, and the heating efficiency and plasma confinement in various scenarios (minority and harmonics regimes). The first experiments were conducted in November 1984 at 67 MHz, corresponding to second harmonic heating of a hydrogen plasma at B/sub 0/ = 2.2 T. A transmitted power of 2.5 MW has been reached so far, the total capability being 3 MW. A linear increase of the central electron and ion temperature with the rf power is observed in Ohmically preheated plasmas (..delta..T/sub e/approx.280 eV, ..delta..T/sub i/approx.500 eV, ..delta..W/sub p/approx.17 kJ at a power of 1.2 MW coupled to the plasma and n-bar/sub e/ = 3.5 x 10/sup 13/ cm/sup -3/). The total radiation increases linearly with the power, too, and the ratio P/sub rad//P/sub tot/approx.0.35 stays approximately constant. However, first investigations indicate that with a divertor, ICRF operation is also accompanied by a significant increase in impurity production. The presence of neutral beam injection in addition to ICRH clearly enhances the absorption of the wave energy from about 50% to up to 90% with respect to the coupled power. With neutral beam injection (P/sub NI/< or =3.5 MW) the increment of the plasma energy content due to ICRH (P/sub rf/< or =2 MW) is found to be almost twice as large as in case OH+ICRH. Global heating efficiencies of up to 3 x 10/sup 13/ eV/kW cm/sup 3/ compare quite well with other ICRH experiments. First observations indicate a degradation of plasma confinement with ICRH to values in between L-type and OH confinement.

  1. Bilateral Volleyball-Related Deformity of the Little Fingers: Mallet Finger and Clinodactyly Mimic

    PubMed Central

    Uslu, Mustafa; Solak, Kazim; Ozsahin, Mustafa; Uzun, Hakan

    2011-01-01

    A 14-year-old male high school volleyball player was seen to evaluate right- and left-hand little-finger distal interphalangeal joint deformity and pain. His symptoms began during his second season of competitive play. The distal interphalangeal (DIP) joints of the little fingers flexed 20-30°, and a 10-15° valgus deformity was seen at the same joints. Pain was relieved with rest but returned immediately after playing volleyball, so plain radiographs were obtained. The flexion and valgus deformity was obvious on plain radiographs and through a clinical examination. Thus, a bilateral little-finger distal phalanx base epiphysis injury was seen. This injury is characterized by a biplanar Salter Harris physeal injury; type 5 on anteroposterior radiographs and type 2 on lateral plain radiographs. The deformity occurred as a result of competitive volleyball play. To our knowledge, this is the first reported case of a bilateral biplanar physial injury of the base of distal phalanges of the little fingers. Flexion and valgus deformities of DIP joints are a result of repeated micro traumas around the physis. Key points As a result of repeated micro traumas to the physial region, flexion and valgus deformities of the distal interphalangeal (DIP) joints should be occurred. Sports injuries to the hand often require treatment in orthopedic departments to avoid permanent deformities. Short- or long-term functional results can be gained by simple splinting procedures and abstention from play. PMID:24149318

  2. Stick-slip instability for viscous fingering in a gel

    NASA Astrophysics Data System (ADS)

    Puff, N.; Debrégeas, G.; di Meglio, J.-M.; Higgins, D.; Bonn, D.; Wagner, C.

    2002-05-01

    The growth dynamics of an air finger injected in a visco-elastic gel (a PVA/borax aqueous solution) is studied in a linear Hele-Shaw cell. Besides the standard Saffman-Taylor instability, we observe—with increasing finger velocities—the existence of two new regimes: (a) a stick-slip regime for which the finger tip velocity oscillates between 2 different values, producing local pinching of the finger at regular intervals; (b) a "tadpole" regime where a fracture-type propagation is observed. A scaling argument is proposed to interpret the dependence of the stick-slip frequency with the measured rheological properties of the gel.

  3. Multiple trigger fingers in a musician: a case report.

    PubMed

    Yavari, Masoud; Hassanpour, Seyed Esmail; Mosavizadeh, Seyed Mehdi

    2010-05-01

    Trigger finger is a common disease which particularly occurs in middle-aged women. We present a rare case of a male musician with six trigger fingers (five in the left hand and one in the right hand). Mostly these fingers had been used for playing the guitar. The patient had previously been treated with local steroid injections in his fingers, however no response was seen. Therefore, we performed a surgical procedure. Four weeks after surgery, the patient could play the guitar without discomfort in his hands. PMID:20433233

  4. Vibration white finger and digital systolic pressure during cooling.

    PubMed Central

    Ekenvall, L; Lindblad, L E

    1986-01-01

    A cold provocation test (measurement of finger systolic pressure during combined body and local finger cooling) was performed on 111 male patients exposed to vibration and with a typical history of cold induced white finger. A new method of calculating the test result is described--namely, digital systolic blood pressure in the cooled test finger as a percentage of the systolic pressure in the arm (DP%). The conventional way of calculating the result, the systolic pressure in the cooled test finger as a percentage of the systolic pressure in the test finger when heated to 30 degrees C, corrected for changes in systemic pressure by the use of a reference finger (FSP%), requires the measurement of the systolic pressure in a reference finger. The two ways of calculating the test results give a similar sensitivity (74% for FSP%, 79% for DP% if all histories are regarded as true) but the new method does not require pressure measurements in a reference finger. This makes the test easier to perform and the result easier to understand. PMID:3964577

  5. Numerical Simulations and an Experimental Investigation of a Finger Seal

    NASA Technical Reports Server (NTRS)

    Braun, Minel; Pierson, Hazel; Li, H.; Dong, Dingeng

    2006-01-01

    Besides sealing, the other main goal of a successful finger seal design is to exhibit appropriate compliance to outside forces. The ability of the seal to ride or float along the rotor without rubbing or excessive heating is essential to the successful operation of the seal. The compliance of the finger must only occur in the radial plane; The seal needs to be as sturdy as possible in the axial direction. The compliant finger that moves radially outward with rotor growth and motion has to be able to ride the rotor back down as the rotor diameter recovers or the rotor moves "away". Thus there is an optimum stiffness for the finger.

  6. Extrinsic versus intrinsic hand muscle dominance in finger flexion.

    PubMed

    Al-Sukaini, A; Singh, H P; Dias, J J

    2016-05-01

    This study aims to identify the patterns of dominance of extrinsic or intrinsic muscles in finger flexion during initiation of finger curl and mid-finger flexion. We recorded 82 hands of healthy individuals (18-74 years) while flexing their fingers and tracked the finger joint angles of the little finger using video motion tracking. A total of 57 hands (69.5%) were classified as extrinsic dominant, where the finger flexion was initiated and maintained at proximal interphalangeal and distal interphalangeal joints. A total of 25 (30.5%) were classified as intrinsic dominant, where the finger flexion was initiated and maintained at the metacarpophalangeal joint. The distribution of age, sex, dominance, handedness and body mass index was similar in the two groups. This knowledge may allow clinicians to develop more efficient rehabilitation regimes, since intrinsic dominant individuals would not initiate extrinsic muscle contraction till later in finger flexion, and might therefore be allowed limited early active motion. For extrinsic dominant individuals, by contrast, initial contraction of extrinsic muscles would place increased stress on the tendon repair site if early motion were permitted. PMID:26744509

  7. Impact of artificial "gummy" fingers on fingerprint systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tsutomu; Matsumoto, Hiroyuki; Yamada, Koji; Hoshino, Satoshi

    2002-04-01

    Potential threats caused by something like real fingers, which are called fake or artificial fingers, should be crucial for authentication based on fingerprint systems. Security evaluation against attacks using such artificial fingers has been rarely disclosed. Only in patent literature, measures, such as live and well detection, against fake fingers have been proposed. However, the providers of fingerprint systems usually do not mention whether or not these measures are actually implemented in emerging fingerprint systems for PCs or smart cards or portable terminals, which are expected to enhance the grade of personal authentication necessary for digital transactions. As researchers who are pursuing secure systems, we would like to discuss attacks using artificial fingers and conduct experimental research to clarify the reality. This paper reports that gummy fingers, namely artificial fingers that are easily made of cheap and readily available gelatin, were accepted by extremely high rates by 11 particular fingerprint devices with optical or capacitive sensors. We have used the molds, which we made by pressing our live fingers against them or by processing fingerprint images from prints on glass surfaces, etc. We describe how to make the molds, and then show that the gummy fingers, which are made with these molds, can fool the fingerprint devices.

  8. The design and development of a finger joint simulator.

    PubMed

    Joyce, Thomas J

    2016-05-01

    Artificial finger joints lack the long-term clinical success seen with hip and knee prostheses. In part, this can be explained by the challenges of rheumatoid arthritis, a progressive disease which attacks surrounding tissues as well as the joint itself. Therefore, the natural finger joints' biomechanics are adversely affected, and consequently, this imbalance due to subluxing forces further challenges any prosthesis. Many different designs of finger prosthesis have been offered over a period of greater than 50 years. Most of these designs have failed, and it is likely that many of these failures could have been identified had the prostheses been appropriately tested prior to implantation into patients. While finger joint simulators have been designed, arguably only those from a single centre have been able to reproduce clinical-type failures of the finger prostheses tested in them. This article describes the design and development of a finger simulator at Durham University, UK. It explains and justifies the engineering decisions made and thus the evolution of the finger simulator. In vitro results and their linkage to clinical-type failures are outlined to help to show the effectiveness of the simulator. Failures of finger implants in vivo continue to occur, and the need for appropriate in vitro testing of finger prostheses remains strong. PMID:26833697

  9. Finger-Vein Verification Based on Multi-Features Fusion

    PubMed Central

    Qin, Huafeng; Qin, Lan; Xue, Lian; He, Xiping; Yu, Chengbo; Liang, Xinyuan

    2013-01-01

    This paper presents a new scheme to improve the performance of finger-vein identification systems. Firstly, a vein pattern extraction method to extract the finger-vein shape and orientation features is proposed. Secondly, to accommodate the potential local and global variations at the same time, a region-based matching scheme is investigated by employing the Scale Invariant Feature Transform (SIFT) matching method. Finally, the finger-vein shape, orientation and SIFT features are combined to further enhance the performance. The experimental results on databases of 426 and 170 fingers demonstrate the consistent superiority of the proposed approach. PMID:24196433

  10. Comprehensive 2D measurements of radiative divertor plasmas in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Wood, R.D.; Allen, S.L.; Hill, D.N.

    1997-07-01

    This paper presents a comparison of the total radiated power profile and impurity line emission distributions in the SOL and divertor of DIII-D. This is done for ELMing H-mode plasmas with heavy deuterium injection (Partially Detached Divertor operation, PDD) and those without deuterium puffing. Results are described from a series of dedicated experiments performed on DIII-D to systematically measure the 2-D (R,Z) structure of the divertor plasma. The discharges were designed to optimize measurements with new divertor diagnostics including a divertor Thomson scattering system. Discharge sequences were designed to produce optimized data sets against which SOL and divertor theories and simulation codes could be benchmarked. During PDD operation the regions of significant radiated power shift from the inner divertor leg and SOL to the outer leg and X-point regions. D{alpha} emission shifts from the inner strikepoint to the outer strikepoint. Carbon emissions (visible CII and CIII) shift from the inner SOL near the X-point to a distributed region from the X-point to partially down the outer leg during moderate D2 puffing. In heavy puffing discharges the carbon emission coalesces on the outer separatrix near the X-point and for very heavy puffing it appears inside the last closed flux surface above the X-point. Calibrated spectroscopic measurements indicate that hydrogenic and carbon radiation can account for all of the radiated power. L{alpha} and CIV radiation are comparable and when combined account for as much as 90% of the total radiated power along chords viewing the significant radiating regions of the outer leg.

  11. The two-dimensional structure of radiative divertor plasmas in the DIII-D tokamak

    SciTech Connect

    Fenstermacher, M.E.; Allen, S.L.; Brooks, N.H.; Buchenauer, D.A.; Carlstrom, T.N.; Cuthbertson, J.W.; Doyle, E.J.; Evans, T.E.; Garbet, P.; Harvey, R.W.; Hill, D.N.; Hyatt, A.W.; Isler, R.C.; Jackson, G.; James, R.A.; Jong, R.; Klepper, C.C.; Lasnier, C.J.; Leonard, A.W.; Mahdavi, M.A.; Maingi, R.; Meyer, W.H.; Moyer, R.A.; Nilson, D.G.; Petrie, T.W.; Porter, G.D.; Rhodes, T.L.; Schaffer, M.J.; Stambaugh, R.D.; Thomas, D.M.; Tugarinov, S.; Wade, M.R.; Watkins, J.G.; West, W.P.; Whyte, D.G.; Wood, R.D.

    1997-05-01

    Recent measurements of the two-dimensional (2-D) spatial profiles of divertor plasma density, temperature, and emissivity in the DIII-D tokamak [J. Luxon {ital et al.}, in {ital Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion} (International Atomic Energy Agency, Vienna, 1987), p. 159] under highly radiating conditions are presented. Data are obtained using a divertor Thomson scattering system and other diagnostics optimized for measuring the high electron densities and low temperatures in these detached divertor plasmas (n{sub e}{le}10{sup 21}m{sup {minus}3}, 0.5eV{le}T{sub e}). D{sub 2} gas injection in the divertor increases the plasma radiation and lowers T{sub e} to less than 2 eV in most of the divertor volume. Modeling shows that this temperature is low enough to allow ion{endash}neutral collisions, charge exchange, and volume recombination to play significant roles in reducing the plasma pressure along the magnetic separatrix by a factor of 3{endash}5, consistent with the measurements. Absolutely calibrated vacuum ultraviolet spectroscopy and 2-D images of impurity emission show that carbon radiation near the X-point, and deuterium radiation near the target plates contribute to the reduction in T{sub e}. Uniformity of radiated power (P{sub rad}) (within a factor of 2) along the outer divertor leg, with peak heat flux on the divertor target reduced fourfold, was obtained. A comparison with 2-D fluid simulations shows good agreement when physical sputtering and an {ital ad hoc} chemical sputtering source (0.5{percent}) from the private flux region surface are used. {copyright} {ital 1997 American Institute of Physics.}

  12. Teleoperation of Robonaut Using Finger Tracking

    NASA Technical Reports Server (NTRS)

    Champoux, Rachel G.; Luo, Victor

    2012-01-01

    With the advent of new finger tracking systems, the idea of a more expressive and intuitive user interface is being explored and implemented. One practical application for this new kind of interface is that of teleoperating a robot. For humanoid robots, a finger tracking interface is required due to the level of complexity in a human-like hand, where a joystick isn't accurate. Moreover, for some tasks, using one's own hands allows the user to communicate their intentions more effectively than other input. The purpose of this project was to develop a natural user interface for someone to teleoperate a robot that is elsewhere. Specifically, this was designed to control Robonaut on the international space station to do tasks too dangerous and/or too trivial for human astronauts. This interface was developed by integrating and modifying 3Gear's software, which includes a library of gestures and the ability to track hands. The end result is an interface in which the user can manipulate objects in real time in the user interface. then, the information is relayed to a simulator, the stand in for Robonaut, at a slight delay.

  13. Rehabilitation for bilateral amputation of fingers

    USGS Publications Warehouse

    Stapanian, Martin A.; Stapanian, Adrienne M.P.; Staley, Keith E.

    2010-01-01

    We describe reconstructive surgeries, therapy, prostheses, and adaptations for a patient who experienced bilateral amputation of all five fingers of both hands through the proximal phalanges in January 1992. The patient made considerable progress in the use of his hands in the 10 mo after amputation, including nearly a 120% increase in the active range of flexion of metacarpophalangeal joints. In late 1992 and early 1993, the patient had "on-top plasty" surgeries, in which the index finger remnants were transferred onto the thumb stumps, performed on both hands. The increased web space and functional pinch resulting from these procedures made many tasks much easier. The patient and occupational therapists set challenging goals at all times. Moreover, the patient was actively involved in the design and fabrication of all prostheses and adaptations or he developed them himself. Although he was discharged from occupational therapy in 1997, the patient continues to actively find new solutions for prehension and grip strength 18 yr after amputation.

  14. Lipid Gymnastics: Tethers and Fingers in membrane

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Miller, Gregory; Parikh, Atul

    2009-03-01

    A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.

  15. Response of NSTX Liquid Lithium divertor to High Heat Loads

    SciTech Connect

    Abrams, Tyler; Kallman, J; Kaitaa, R; Foley, E L; Grayd, T K; Kugel, H; Levinton, F; McLean, A G; Skinner, C H

    2012-07-18

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ~1.5 MW/m2 for 1-3 seconds. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the "bare" sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface. __________________________________________________

  16. Plasma flow interaction with ITER divertor related surfaces

    NASA Astrophysics Data System (ADS)

    Dojčinović, Ivan P.

    2010-11-01

    It has been found that the plasma flow generated by quasistationary plasma accelerators can be used for simulation of high energy plasma interaction with different materials of interest for fusion experiments. It is especially important for the studies of the processes such as ELMs (edge localized modes), plasma disruptions and VDEs (vertical displacement events), during which a significant part of the confined hot plasma is lost from the core to the SOL (scrape off layer) enveloping the core region. Experiments using plasma guns have been used to assess erosion from disruptions and ELMs. Namely, in this experiment modification of different targets, like tungsten, molybdenum, CFC and silicon single crystal surface by the action of hydrogen and nitrogen quasistationary compression plasma flow (CPF) generated by magnetoplasma compressor (MPC) has been studied. MPC plasma flow with standard parameters (1 MJ/m2 in 0.1 ms) can be used for simulation of transient peak thermal loads during Type I ELMs and disruptions. Analysis of the targets erosion, brittle destruction, melting processes, and dust formation has been performed. These surface phenomena are results of specific conditions during CPF interaction with target surface. The investigations are related to the fundamental aspects of high energy plasma flow interaction with different material of interest for fusion. One of the purposes is a study of competition between melting and cleavage of treated solid surface. The other is investigation of plasma interaction with first wall and divertor component materials related to the ITER experiment.

  17. Current understanding of divertor detachment: experiments and modelling

    SciTech Connect

    Wischmeier, W; Groth, M; Kallenbach, A; Chankin, A; Coster, D; Dux, R; Herrmann, A; Muller, H; Pugno, R; Reiter, D; Scarabosio, A; Watkins, J; Team, T D; Team, A U

    2008-05-23

    A qualitative as well as quantitative evaluation of experimentally observed plasma parameters in the detached regime proves to be difficult for several tokamaks. A series of ohmic discharges have been performed in ASDEX Upgrade and DIII-D at similar as possible plasma parameters and at different line averaged densities, {bar n}{sub e}. The experimental data represent a set of well diagnosed discharges against which numerical simulations are compared. For the numerical modeling the fluid-code B2.5 coupled to the Monte Carlo neutrals transport code EIRENE is used. Only the combined enhancement of effects, such as geometry, drift terms, neutral conductance, increased radial transport and divertor target composition, explains a significant fraction of the experimentally observed asymmetries of the ion fluxes as a function of {bar n}{sub e} to the inner and outer target plates in ASDEX Upgrade. The relative importance of the mechanisms leading to detachment are different in DIII-D and ASDEX Upgrade.

  18. Geometrical Effects in Plasma Stability and Dynamics of Coherent Structures in the Divertor

    SciTech Connect

    Ryutov, D D; Cohen, R H

    2007-05-16

    Plasma dynamics in the divertor region is strongly affected by a variety of phenomena associated with the magnetic field geometry and the shape of the divertor plates. One of the most universal effects is the squeezing of a normal cross-section of a thin magnetic flux-tube on its way from the divertor plate to the main SOL. It leads to decoupling of the most unstable perturbations in the divertor legs from those in the main SOL. For perturbations on either side of the X-point, this effect can be cast as a boundary condition at some 'control surface' situated near the X-point. We discuss several boundary conditions proposed thus far and assess the influence of the magnetic field geometry on them. Another set of geometrical effects is related to the transformation of a flux-tube that occurs when it is displaced in such a way that its central magnetic field line coincides with some other field line, and the magnetic field is not perturbed. These flute-like displacements are of a particular interest for the low-beta edge plasmas. It turns out that this transformation may also lead to a considerable deformation of a flux-tube cross-section; in addition, the distance between plasma particles occupying the flux-tube may change significantly even if there is no parallel plasma motion. We present expressions describing aforementioned transformations for the general tokamak geometry and simplify them for the divertor region (using the proximity of the X-point). We also discuss the effects associated with the shape of the plasma-limiting surfaces, both those designed to intercept the plasma (like divertor plates and limiters) and those that can be hit in some 'abnormal' events, e.g., in the course of a radial motion of an isolated plasma filament. The orientation of the limiting surface with respect to the magnetic field affects the plasma dynamics via the sheath boundary conditions. One can enhance or suppress plasma instabilities in the divertor legs by tilting the divertor

  19. Intermittent Divertor Filaments in the National Spherical Torus Experiment and Their Relation to Midplane Blobs

    SciTech Connect

    R.J. Maqueda, D.P. Stotler and the NSTX Team.

    2010-05-19

    While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in Dα; e.g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of ‘magnetic shear disconnection’ due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621).

  20. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  1. Conceptual design of divertor and first wall for DEMO-FNS

    NASA Astrophysics Data System (ADS)

    Sergeev, V. Yu.; Kuteev, B. V.; Bykov, A. S.; Gervash, A. A.; Glazunov, D. A.; Goncharov, P. R.; Dnestrovskij, A. Yu.; Khayrutdinov, R. R.; Klishchenko, A. V.; Lukash, V. E.; Mazul, I. V.; Molchanov, P. A.; Petrov, V. S.; Rozhansky, V. A.; Shpanskiy, Yu. S.; Sivak, A. B.; Skokov, V. G.; Spitsyn, A. V.

    2015-11-01

    Key issues of design of the divertor and the first wall of DEMO-FNS are presented. A double null closed magnetic configuration was chosen with long external legs and V-shaped corners. The divertor employs a cassette design similar to that of ITER. Water-cooled first wall of the tokamak is made of Be tiles and CuCrZr-stainless steel shells. Lithium injection and circulation technologies are foreseen for protection of plasma facing components. Simulations of thermal loads onto the first wall and divertor plates suggest a possibility to distribute heat loads making them less than 10 MW m-2. Evaluations of sputtering and evaporation of plasma-facing materials suggest that lithium may protect the first wall. To prevent Be erosion at the outer divertor plates either the full detached divertor operation or arrangement of the renewal lithium flow on targets should be implemented. Test bed experiments on the Tsefey-M facility with the first wall mockup coated by Ве tiles and cooled by water are presented. The temperature of the surface of tiles reached 280-300 °С at 5 MW m-2 and 600-650 °С at 10.5 MW m-2. The mockup successfully withstood 1000 cycles with the lower thermal loading and 100 cycles with higher thermal loading.

  2. TRANSPORT OF ELM ENERGY AND PARTICLES INTO THE SOL AND DIVERTOR OF DIII-D

    SciTech Connect

    LEONARD, A.W.; BOEDO, J.A.; FENSTERMACHER, M.E.; GROEBNER, R.J.; GROTH, M.; LASNIER, C.J.; MAHDAVI, M.A.; OSBORNE, T.H.; RUDAKOV, D.L.; PETRIE, T.W.; WATKINS, J.G.

    2002-06-01

    We report on DIII-D data that reveal the underlying processes responsible for transport of energy and particles from the edge pedestal to the divertor target during edge-localized modes (ELMs). The separate convective and conductive transport of energy due to an ELM is determined by Thomson scattering measurements of electron density and temperature in the pedestal. Conductive transport is measured as a drop in pedestal temperature and decreases with increasing density. The convective transport of energy, measured as a loss of density from the pedestal, however, remains constant as a function of density. From the SOL ELM energy is quickly carried to the divertor target. An expected sheath limit to the ELM heat flux set by the slower arrival of pedestal ions is overcome by additional ionization of neutrals generated from the divertor target as evidenced by a fast, {approx}100 {micro}s, rise in divertor density. A large in/out asymmetry of the divertor ELM heat flux is observed at high density, but becomes nearly symmetric at low density.

  3. Impact of Resonant Magnetic Perturbation Fields on NSTX-U Advanced Divertor Topologies

    NASA Astrophysics Data System (ADS)

    Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Soukhanovskii, Vlad

    2015-11-01

    Explorations are under way to optimize the magnetic topology in the plasma edge of NSTX-U with the goal of improving neutral and impurity fueling and exhaust. The use of magnetic perturbation fields is being considered to spread heat and particle fluxes in the divertor, adjust plasma refueling, control impurity transport, and improve coupling to the exhaust systems. Also, advanced divertor configurations are being considered to improve peak heat loads on divertors. An assessment is made of the topologies of a number of representative NSTX-U advanced divertor configurations: lower single null, exact snowflake, and snowflake minus. Wall to wall magnetic connection lengths for each configuration are assessed in both their perturbed and axisymmetric configurations with perturbation coil currents of 1kA and 3kA. The magnetic perturbations yield complex strike patterns on divertor elements that are expected to be resolvable experimentally. The EMC3-EIRENE fluid plasma and kinetic neutral transport code will be used to study neutral and impurity transport and exhaust in these topologies. This work was funded in part by the Department of Energy under grant DE-SC0012315 and by startup funds of the Department of Engineering Physics at the University of Wisconsin-Madison.

  4. 21 CFR 888.3230 - Finger joint polymer constrained prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Finger joint polymer constrained prosthesis. 888.3230 Section 888.3230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3230 Finger joint polymer constrained prosthesis. (a) Identification....

  5. Handedness and index finger movements performed on a small touchscreen.

    PubMed

    Aoki, Tomoko; Rivlis, Gil; Schieber, Marc H

    2016-02-01

    Many studies of right/left differences in motor performance related to handedness have employed tasks that use arm movements or combined arm and hand movements rather than movements of the fingers per se, the well-known exception being rhythmic finger tapping. We therefore explored four simple tasks performed on a small touchscreen with relatively isolated movements of the index finger. Each task revealed a different right/left performance asymmetry. In a step-tracking Target Task, left-handed subjects showed greater accuracy with the index finger of the dominant left hand than with the nondominant right hand. In a Center-Out Task, right-handed subjects produced trajectories with the nondominant left hand that had greater curvature than those produced with the dominant right hand. In a continuous Circle Tracking Task, slips of the nondominant left index finger showed higher jerk than slips of the dominant right index finger. And in a continuous Complex Tracking Task, the nondominant left index finger showed shorter time lags in tracking the relatively unpredictable target than the dominant right index finger. Our findings are broadly consistent with previous studies indicating left hemisphere specialization for dynamic control and predictable situations vs. right hemisphere specialization for impedance control and unpredictable situations, the specialized contributions of the two hemispheres being combined to different degrees in the right vs. left hands of right-handed vs. left-handed individuals. PMID:26683065

  6. Toward a Phonetic Representation of Hand Configuration: The Fingers

    ERIC Educational Resources Information Center

    Johnson, Robert E.; Liddell, Scott K.

    2011-01-01

    In this article we describe a componential, articulatory approach to the phonetic description of the configuration of the four fingers. Abandoning the traditional holistic, perceptual approach, we propose a system of notational devices and distinctive features for the description of the four fingers proper (index, middle, ring, and pinky).…

  7. Rediscovering Ruth Faison Shaw and Her Finger-Painting Method

    ERIC Educational Resources Information Center

    Mayer, Veronica

    2005-01-01

    Ruth Faison Shaw was an art educator who developed a nontraditional educational perspective of teaching and a different vision about children's art. As such, she is considered by some to be the initiator of finger-painting in America (The History of Art Education Timeline 1930-1939, 2002.) Shaw developed the technique of finger-painting and a…

  8. Robust Finger Vein ROI Localization Based on Flexible Segmentation

    PubMed Central

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-01-01

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769

  9. Population Structure and Diversity in Finger Millet (Eleusine coracana) Germplasm.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genotypic analysis of 79 finger millet accessions (E. coracana subsp. coracana) from 11 African and 5 Asian countries, plus 14 wild E. coracana subsp. africana lines collected in Uganda and Kenya was conducted with 45 SSR markers distributed across the finger millet genome. Phylogenetic and popula...

  10. Finger vein extraction using gradient normalization and principal curvature

    NASA Astrophysics Data System (ADS)

    Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan

    2009-02-01

    Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.

  11. Coordination of bowing and fingering in violin playing.

    PubMed

    Baader, Andreas P; Kazennikov, Oleg; Wiesendanger, Mario

    2005-05-01

    Playing string instruments implies motor skills including asymmetrical interlimb coordination. How special is musical skill as compared to other bimanually coordinated, non-musical skillful performances? We succeeded for the first time to measure quantitatively bimanual coordination in violinists playing repeatedly a simple tone sequence. A motion analysis system was used to record finger and bow trajectories for assessing the temporal structure of finger-press, finger-lift (left hand), and bow stroke reversals (right arm). The main results were: (1) fingering consisted of serial and parallel (anticipatory) mechanisms; (2) synchronization between finger and bow actions varied from -12 ms to 60 ms, but these 'errors' were not perceived. The results suggest that (1) bow-finger synchronization varied by about 50 ms from perfect simultaneity, but without impairing auditory perception; (2) the temporal structure depends on a number of combinatorial mechanisms of bowing and fingering. These basic mechanisms were observed in all players, including all amateurs. The successful biomechanical measures of fingering and bowing open a vast practical field of assessing motor skills. Thus, objective assessment of larger groups of string players with varying musical proficiency, or of professional string players developing movement disorders, may be helpful in music education. PMID:15820650

  12. [The mallet finger in children and adolescents].

    PubMed

    Schmidt, B; Weinberg, A; Friedrich, H

    2008-06-01

    The "mallet finger" in childhood and adolescence differs from the "mallet finger" in adults because of an open or gradually closing epiphysial plate. Thus, our results of conservative and operative treatment were evaluated particularly in consideration of an open growth plate. We analysed retrospectively the data of all patients who suffered a lesion at the extensor tendon insertion between 1996 and 2005 and were treated at our hospital. The coding was done according to age, sex, localisation, typing by Doyle, therapy and functional outcome. The typing by Doyle was extended through dividing type IV A into A1 (=Aitken I) and A2 (=Aitken II). Depending on extension deficits, the results were evaluated as very good (0 degrees ), medium (<15 degrees) and bad (>15 degrees). 76 patients, 45 boys and 31 girls aged 1 to 17 years (average age: 11.3) were studied. In consideration of the modified typing by Doyle, following distribution arose: type I (n=16), type II (n=14), type III (n=0), type IV A1 (n=17), type IV A2 (n=6), type IV B (n=21) and type IV C (n=2). A total of 50 patients was treated conservatively. Out of 26 operatively treated patients, 4 could be classified as type I, 12 as type II, 1 as type IV A1, 2 as type IV A2, 5 as type IV B, and 2 as type IV C. In 81.5 % of all patients no functional extension deficit was seen at the end of treatment; in patients treated conservatively, the percentage rate was 94 %. 6 patients, who were treated primarily operatively, showed poor functional outcome. 2 of these developed a suture track infection, in 2 cases chondral and osseous damage in the joint existed additionally, in one patient there was a comminuted fracture and in one patient a technical operative problem. Even in adolescence, conservative treatment of types I, IV A1 and A2, as well as IV B injuries is promising. A prerequisite is a consequent splint treatment and strict regular lateral X-ray control of the fracture fragment. At the beginning of treatment, we

  13. Finger vein image quality evaluation using support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-02-01

    In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.

  14. A new algorithmic approach for fingers detection and identification

    NASA Astrophysics Data System (ADS)

    Mubashar Khan, Arslan; Umar, Waqas; Choudhary, Taimoor; Hussain, Fawad; Haroon Yousaf, Muhammad

    2013-03-01

    Gesture recognition is concerned with the goal of interpreting human gestures through mathematical algorithms. Gestures can originate from any bodily motion or state but commonly originate from the face or hand. Hand gesture detection in a real time environment, where the time and memory are important issues, is a critical operation. Hand gesture recognition largely depends on the accurate detection of the fingers. This paper presents a new algorithmic approach to detect and identify fingers of human hand. The proposed algorithm does not depend upon the prior knowledge of the scene. It detects the active fingers and Metacarpophalangeal (MCP) of the inactive fingers from an already detected hand. Dynamic thresholding technique and connected component labeling scheme are employed for background elimination and hand detection respectively. Algorithm proposed a new approach for finger identification in real time environment keeping the memory and time constraint as low as possible.

  15. Bulk elastic fingering in soft materials

    NASA Astrophysics Data System (ADS)

    Saintyves, Baudouin; Biggins, John; Wei, Zhiyan; Bouchaud, Elisabeth; Mahadevan, L.; Harvard University Team; Ec2M/Espci Collaboration; Cambridge University Collaboration

    2014-11-01

    Systematic experiments have been performed in purely elastic polyacrylamide gels in Hele-Shaw cells. We have shown that a bulk fingering instability arises in the highly deformable confined elastomers. A systematic study shows that surface tension is not relevant. This instability is sub-critical, with a clear hysteretic behavior. Our experimental observations have been compared very favorably to theoretical and finite element simulations results. In particular, the instability wavelength and the critical front advance have been shown to be proportional to the distance between the two glass plates constituting the cell. A very important feature is that elasticity doesn't influence this lengthscale, making this instability very generic. We will also show some new results about an elastic counterpart experiment of the famous Saffman-Taylor experiment, where we push a soft gel in a stiff one.

  16. Task specificity of finger dexterity tests.

    PubMed

    Berger, Monique A M; Krul, Arno J; Daanen, Hein A M

    2009-01-01

    Finger dexterity tests are generally used to assess performance decrease due to gloves, cold and pathology. It is generally assumed that the O'Connor and Purdue Pegboard test yield similar results. In this experiment we compared these two tests for dry conditions without gloves, and for dry and wet conditions with two types of Nytril gloves. In line with previous observations, wearing gloves caused a decrease in performance of about 12% for the O'Connor test and 9% for the Purdue test. Wetting the gloves prior to the test had no effect on the Purdue score. However, wetting the gloves increased the O'Connor performance significantly by 11%. The results show that the O'Connor and Purdue tests do not yield similar results and should be used selectively for specific tasks. PMID:18339353

  17. Bulk Elastic Fingering in Soft Materials

    NASA Astrophysics Data System (ADS)

    Saintyves, Baudouin; Biggins, John; Wei, Zhiyan; Mora, Serge; Mahadevan, L.; Bouchaud, Elisabeth; Harvard University Team; Espci-Paristech Collaboration; Cambridge University Collaboration; Montpellier 2 University Collaboration

    2015-03-01

    Systematic experiments have been performed in purely elastic polyacrylamide gels in Hele-Shaw cells. We have shown that a bulk fingering instability arises in the highly deformable confined elastomers. A systematic study shows that surface tension is not relevant. This instability is sub-critical, with a clear hysteretic behavior. Our experimental observations have been compared very favorably to theoretical and finite element simulations results. In particular, the instability wavelength and the critical front advance have been shown to be proportional to the distance between the two glass plates constituting the cell. A very important feature is that elasticity doesn't influence this lengthscale, making this instability very generic. We will also show some new results about an elastic counterpart experiment of the famous Saffman-Taylor experiment, where we push a soft gel in a stiff one.

  18. Mechanics of finger-tip electronics

    NASA Astrophysics Data System (ADS)

    Su, Yewang; Li, Rui; Cheng, Huanyu; Ying, Ming; Bonifas, Andrew P.; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang

    2013-10-01

    Tactile sensors and electrotactile stimulators can provide important links between humans and virtual environments, through the sensation of touch. Soft materials, such as low modulus silicones, are attractive as platforms and support matrices for arrays sensors and actuators that laminate directly onto the fingertips. Analytic models for the mechanics of three dimensional, form-fitting finger cuffs based on such designs are presented here, along with quantitative validation using the finite element method. The results indicate that the maximum strains in the silicone and the embedded devices are inversely proportional to the square root of radius of curvature of the cuff. These and other findings can be useful in formulating designs for these and related classes of body-worn, three dimensional devices.

  19. Surface Tension and Fingering of Miscible Interfaces

    NASA Technical Reports Server (NTRS)

    Abib, Mohammed; Liu, Jian-Bang; Ronney, Paul D.

    1999-01-01

    Experiments on miscible, buoyantly unstable reaction-diffusion fronts and non-reacting displacement fronts in Hele-Shaw cells show a fingering-type instability whose wavelengths (lambda*) are consistent with an interfacial tension (sigma) at the front caused by the change in chemical composition, even though the solutions are miscible in all proportions. In conjunction with the Saffman-Taylor model, the relation sigma = K/tau, where tau is the interface thickness and K approximately equal 4 +/- 2 x 10(exp -6) dyne, enables prediction of our measured values of lambda* as well as results from prior experiments on miscible interfaces. These results indicate that even for miscible fluids, surface tension is generally a more significant factor than diffusion in interfacial stability and flow characteristics.

  20. Optimization of tungsten castellated structures for the ITER divertor

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Hellwig, M.; Matveev, D.; Komm, M.; van den Berg, M.; De Temmerman, G.; Rudakov, D.; Ding, F.; Luo, G.-N.; Krieger, K.; Sugiyama, K.; Pitts, R. A.; Petersson, P.

    2015-08-01

    In ITER, the plasma-facing components (PFCs) of the first wall and the divertor armor will be castellated to improve their thermo-mechanical stability and to limit forces due to induced currents. The fuel accumulation in the gaps may significantly contribute to the in-vessel fuel inventory. Castellation shaping may be the most straightforward way to minimize the fuel inventory and to alleviate the thermal loads onto castellations. A new castellation shape was proposed and comparative modeling of conventional (rectangular) and shaped castellation was performed for ITER conditions. Shaped castellation was predicted to be capable to operate under stationary heat load of 20 MW/m2. An 11-fold decrease of beryllium (Be) content in the gaps of the shaped cells alone with a 7-fold decrease of carbon content was predicted. In order to validate the predictive capabilities of modeling tools used for ITER conditions, the dedicated modeling with the same codes was made for existing tokamaks and benchmarked with the results of multi-machine experiments. For the castellations exposed in TEXTOR and DIII-D, the carbon amount in the gaps of shaped cells was 1.9-2.3 times smaller than that of rectangular ones. Modeling for TEXTOR conditions yielded to 1.5-fold decrease of carbon content in the gaps of shaped castellation outlining fair agreement with the experiment. At the same time, a number of processes, like enhanced erosion of molten layer yet need to be implemented in the codes in order to increase the accuracy of predictions for ITER.

  1. Plasma Flow Interaction With Iter Divertor Related Surfaces

    NASA Astrophysics Data System (ADS)

    Dojcinovic, I. P.

    2010-07-01

    It has been found that the plasma flow generated by quasistationary plasma accelerators can be used for simulation of high energy plasma interaction with different materials of interest for fusion experiments (Arkhipov et al. 2000, Federici et al. 2005). It is especially important for the studies of the processes such as ELMs (edge localized modes), plasma disruptions and VDEs (vertical displacement events), during which a significant part of the confined hot plasma is lost from the core to the SOL (scrape off layer) enveloping the core region. Experiments using plasma guns have been used to assess erosion from disruptions and ELMs. Namely, in this experiment modification of different targets, like molybdenum, CFC and silicon single crystal surface by the action of hydrogen and nitrogen quasistationary compression plasma flow (CPF) generated by magnetoplasma compressor (MPC) has been studied. MPC plasma flow with standard parameters (1 MJ/m^2 in 0.1 ms) can be used for simulation of transient peak thermal loads during Type I ELMs and disruptions (Dojcinovic et al. 2007). Analysis of the targets erosion, brittle destruction, melting processes, and dust formation has been performed (Dojcinovic et al. 2006). These surface phenomena are results of specific conditions during CPF interaction with target surface. The investigations are related to the fundamental aspects of high energy plasma flow interaction with different material of interest for fusion. One of the purposes is a study of competition between melting and cleavage of treated solid surface. The other is investigation of plasma interaction with first wall and divertor component materials related to the ITER experiment.

  2. Flute instability in the tandem mirror with the divertor/dipole regions

    SciTech Connect

    Katanuma, I.; Masaki, S.; Sato, S.; Sekiya, K.; Ichimura, M.; Imai, T.

    2011-11-15

    The numerical simulation is performed in GAMMA10 A-divertor magnetic configuration, which is a candidate of remodeled device of the GAMMA10 tandem mirror [M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985)]. Both divertor and dipole regions are included in the numerical calculation, which is a new point. The electron short circuit effect along x-point, therefore, is not assumed so that it is not used the boundary condition of the electrostatic perturbations being zero at the separatrix on which the magnetic field lines pass through x-point. The simulation results reveal that the dipole field plays a role of a good magnetic field line curvature to the GAMMA10 A-divertor, and so the flute modes are stabilized without help of electron short circuit effects.

  3. Observation And Modeling Of Inner Divertor Re-attachment In Discharges With Lithium Coatings in NSTX

    SciTech Connect

    Scotti, Filippo; Soukhanovskii, V. A.; Adams, M. L.; Scott, H. A.; Kugel, H. W.; Kaita, R.; Roquemore, A. L.

    2011-01-04

    In the National Spherical Torus Experiment (NSTX), modifications to the inner divertor plasma regimes are observed in high triangularity, H-mode, NBI heated discharges due to lithium coatings evaporated on the plasma facing components. In particular, the drop in the recombination rate, the reduced neutral pressure and the reduced electron density (inferred from Stark broadening measurements of high-n deuterium Balmer lines) suggested that the inner divertor, which is usually detached in discharges without lithium, re-attached. Experimental results are compared to simulations obtained with a 1D partially ionized plasma transport model integrated in the non-local thermodynamic equilibrium radiation transport code CRETIN to understand how the reduced recycling affects the divertor parameters in NSTX discharges with lithium coatings.

  4. Investigation of SOL parameters and divertor particle flux from electric probe measurements in KSTAR

    NASA Astrophysics Data System (ADS)

    Bak, J. G.; Kim, H. S.; Bae, M. K.; Juhn, J. W.; Seo, D. C.; Bang, E. N.; Shim, S. B.; Chung, K. S.; Lee, H. J.; Hong, S. H.

    2015-08-01

    The upstream scrape-off layer (SOL) profiles and downstream particle fluxes are measured with a fast reciprocating Langmuir probe assembly (FRLPA) at the outboard mid-plane and a fixed edge Langmuir probe array (ELPA) at divertor region, respectively in the KSTAR. It is found that the SOL has a two-layer structure in the outboard wall-limited (OWL) ohmic and L-mode: a near SOL (∼5 mm zone) with a narrow feature and a far SOL with a broader profile. The near SOL width evaluated from the SOL profiles in the OWL plasmas is comparable to the scaling for the L-mode divertor plasmas in the JET and AUG. In the SOL profiles and the divertor particle flux profile during the ELMy H-modes, the characteristic e-folding lengths of electron temperature, plasma density and particle flux during an ELM phase are about two times larger than ones at the inter ELM.

  5. Divertor with a third-order null of the poloidal field

    SciTech Connect

    Ryutov, D. D.; Umansky, M. V.

    2013-09-15

    A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, the configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed.

  6. Modification of divertor heat and article flux profiles with applied 3D fields in NSTX H-mode plasmas

    SciTech Connect

    Ahn, Joon-Wook; Canik, John; Soukhanovskii, V. A.; Maingi, Rajesh; Battaglia, D. J.

    2010-04-01

    Externally imposed non-axisymmetric magnetic perurbations are observed to alter divertor heat and particle flux profiles in the National Spherical Torus Experiment (NSTX). The divertor profiles are foud to have a modust level of multiple local peaks, characteristic of strike poimt splitting or the "magnetis lob" structure, even before the application of the 3D fields in some (but not all) NSTX discharges. This is thought to be due to the intrinsic error fields. The applied 3D fields augmented the intrinsic strike point splitting, making the ampliture of local peaks, and valleys larger in the divertor profile and striations at the divertor surface brighter. The measured heat flux profile shows that the radial location and spacing of the strations are qualitativel consistent witth a vacuum field tracing calcultion. 3D field application did not change the peak divertor heat and particle fluxes at the toroidal location of measurement. Spatial characteristics of the observed patterns are also reported in the paper.

  7. ELM PARTICLE AND ENERGY TRANSPORT IN THE SOL AND DIVERTOR OF DIII-D

    SciTech Connect

    FENSTERMACHER,ME; LEONARD,AW; SNYDER,PB; BOEDO,JA; COLCHIN,RJ; GROEBNER,RJ; GRAY,DS; GROTH,M; HOLLMANN,E; LASNIER,CJ; OSBORNE,TH; PETRIE,TW; RUDAKOV,DL; TAKAHASHI,H; WATKINS,JG; ZENG,L

    2003-04-01

    A271 ELM PARTICLE AND ENERGY TRANSPORT IN THE SOL AND DIVERTOR OF DIII-D. Results from a series of dedicated experiments measuring the effect of particle and energy pulses from Type-I Edge Localized Modes (ELMs) in the DIII-D scrape-off layer (SOL) and divertor are compared with a simple model of ELM propagation in the boundary plasma. The simple model asserts that the propagation of ELM particle and energy perturbations is dominated by ion parallel convection along SOL fields lines and the recovery from the ELM perturbation is determined by recycling physics. Time scales associated with the initial changes of boundary plasma parameters are expected to be on the order of the ion transit time from the outer midplane, where the ELM instability is initiated, to the divertor targets. To test the model, the ion convection velocity is changed in the experiment by varying the plasma density. At moderate to high density, n{sub e}/n{sub Gr} = 0.5-0.8, the delays in the response of the boundary plasma to the midplane ELM pulses, the density dependence of those delays and other observations are consistent with the model. However, at the lowest densities, n{sub e}/n{sub Gr} {approx} 0.35, small delays between the response sin the two divertors, and changes in the response of the pedestal thermal energy to ELM events, indicate that additional factors including electron conduction in the SOL, the pre-ELM condition of the divertor plasma, and the ratio of ELM instability duration to SOL transit time, may be playing a role. The results show that understanding the response of the SOL and divertor plasmas to ELMs, for various pre-ELM conditions, is just as important to predicting the effect of ELM pulses on the target surfaces of future devices as is predicting the characteristics of the ELM perturbation of the core plasma.

  8. Fabrication and installation of the DIII-D radiative divertor structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.

    1997-11-01

    Phase 1A of the Radiative Divertor Program (RDP) is now installed in the DIII-D tokamak located at General Atomics. This hardware was added to enhance both the Divertor and Advanced Tokamak research elements of the DIII-D program. This installation consists of a divertor baffle enveloping a cryocondensation pump at the upper outer divertor target of DIII-D. The divertor baffle consists of two toroidally continuous Inconel 625 water-cooled rings and a toroidal array of discontinuous radiatively-cooled plates. The water-cooled rings are each comprised of four quadrants, mechanically formed, chem.-milled, and resistance and TIG welded Inconel 625 panels. The supports attaching the panels to the vessel wall are designed to accommodate the differential thermal expansion between the rings and vessel during bake and to react the electromagnetic loads induced during disruptions. They are made from either Inconel 625 or Inconel 718 depending on the stress levels predicted in Finite Element Analysis. Gas seals are designed to limit the leakage from the baffle chamber back to the core plasma to 2,500 {ell}/s and incorporate plasma sprayed alumina to minimize currents flowing through them. The bulk of the water-cooled ring fabrication was performed by a vendor, however, the final machining of penetrations in the conical ring for diagnostic access was performed in-house using a unique machining configuration. This configuration, and the machining of the diagnostic cutouts is described. Graphite tiles were machined from ATJ graphite to form a smooth plasma-facing surface. The installation of all divertor components required only four weeks.

  9. Finger movements and fingers postures in pre-term infants are not a good indicator of brain damage.

    PubMed

    Konishi, Y; Prechtl, H F

    1994-02-01

    The aim of the study was to analyse, with a more detailed classification the occurrence of movements and postures of the fingers in normal and brain damaged pre-term infants. To this end the same videorecordings of normal subjects of the study described by Cioni and Prechtl and those with defined brain lesions from the investigation by Ferrari et al. have been reanalysed. In three general movements, selected randomly from each infant, we assessed the finger movement. There was no systematic trend with age and the repertoire of finger patterns per observation varied between different individuals. Only one or two finger(s) move (pattern B) and synchronized finger opening-closing (pattern D) and the complex and variable movement of three or more fingers (pattern E) are all more often or even only seen during arm movements. Fisting without arm movement (pattern A-) was only seen less frequently in the control cases, in the infants with flares and one-sided lesions. On the other hand, the two latter groups had more often pattern C+ (opening of all fingers with arm movement) while B+ (only one or two fingers move with arm movement) and E+ (three or more fingers move variably with arm movement) was less frequent in the severely damaged infants. Albeit significant differences, the plotted data immediately show the large overlap of the findings between the groups. There was no difference in the fisting between low-risk and neurologically abnormal pre-term infants. These findings corroborate the conclusions that abnormal movements and postures are not useful in the diagnosis of pre-term infants with confirmed brain lesions because of the wide overlap between the values for normal and brain damaged infants. PMID:8200324

  10. Gas fueling with an axisymmetric magnetic divertor in the Tara tandem mirror

    SciTech Connect

    Post, R.S.; Brau, K.; Horne, S.; Casey, J.; Golovato, S.; Sevillano, E.; Shuy, G.; Smith, D.K.

    1987-07-01

    An axisymmetric divertor has been installed at the central cell midplane of Tara to provide magnetohydrodynamics stability and to generate a high-density halo at the edge of the plasma. A dense halo aids sloshing ion buildup in the plug cells and increases shielding of the core plasma from charge exchange recombination. Separate gas fueling of the halo in the divertor allows for the different fueling requirements of the potential-confined core plasma and the flow-confined edge during plugged operation.

  11. Nonlinear Impact of Edge Localized Modes on Carbon Erosion in the Divertor of the JET Tokamak

    SciTech Connect

    Kreter, A.; Esser, H. G.; Brezinsek, S.; Kirschner, A.; Philipps, V.; Coad, J. P.; Fundamenski, W.; Widdowson, A.; Pitts, R. A.

    2009-01-30

    The impact of edge localized modes (ELMs) carrying energies of up to 450 kJ on carbon erosion in the JET inner divertor is assessed by means of time resolved measurements using an in situ quartz microbalance diagnostic. The inner target erosion is strongly nonlinearly dependent on the ELM energy: a single 400 kJ ELM produces the same carbon erosion as ten 150 kJ events. The ELM-induced enhanced erosion is attributed to the presence of codeposited carbon-deuterium layers on the inner divertor target, which are thermally decomposed under the impact of ELMs.

  12. Fluctuations in Saffman-Taylor fingers with quenched disorder

    NASA Astrophysics Data System (ADS)

    Torralba, M.; Ortín, J.; Hernández-Machado, A.; Corvera Poiré, E.

    2006-04-01

    We make an experimental characterization of the effect that static disorder has on the shape of a normal Saffman-Taylor finger. We find that static noise induces a small amplitude and long wavelength instability on the sides of the finger. Fluctuations on the finger sides have a dominant wavelength, indicating that the system acts as a selective amplifier of static noise. The dominant wavelength does not seem to be very sensitive to the intensity of static noise present in the system. On the other hand, at a given flow rate, rms fluctuations of the finger width, decrease with decreasing intensity of static noise. This might explain why the sides of the fingers are flat for typical Saffman-Taylor experiments. Comparison with previous numerical studies of the effect that temporal noise has on the Saffman-Taylor finger, leads to conclude that the effect of temporal noise and static noise are similar. The behavior of fluctuations of the finger width found in our experiments, is qualitatively similar to one recently reported, in the sense that, the magnitude of the width fluctuations decays as a power law of the capillary number, at low flow rates, and increases with capillary number for larger flow rates.

  13. Response to reflected-force feedback to fingers in teleoperations

    NASA Technical Reports Server (NTRS)

    Sutter, P. H.; Iatridis, J. C.; Thakor, N. V.

    1989-01-01

    Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues.

  14. Dendrites, viscous fingers, and the theory of pattern formation

    NASA Technical Reports Server (NTRS)

    Langer, J. S.

    1989-01-01

    Recent developments in the theory of pattern formation in dendritic crystal growth and viscous fingering in fluids are reviewed. Consideration is given to the discovery that weak capillary forces act as singular perturbations which lead to selection mechanisms in dendritic crystal growth and fingering patterns. Other topics include the conventional thermodynamic model of the solidification of a pure substance from its melt, fingering instability, pattern selection, the solvability theory, dendritic growth rates, the bubble effect discovered by Couder et al. (1986), the dynamics of pattern-forming systems, and snowflake formation.

  15. Narrow fingers in the Saffman-Taylor instability

    NASA Astrophysics Data System (ADS)

    Couder, Y.; Gerard, N.; Rabaud, M.

    1986-12-01

    Saffman-Taylor fingers with a relative width much smaller than the classical limit lambda = 0.5 are found when a small isolated bubble is located at their tip. These solutions are members of a family found by Saffman and Taylor (1958) neglecting superficial tension. Recent theories have shown that when capillary forces are taken into account an unphysical cusplike singularity would appear at the tip of all the fingers with lambda less than 0.5. Conversely, here the replacement of the tip by a small bubble makes these solutions possible. At large velocity these fingers show dendritic instability.

  16. Plasmonic "nano-fingers on nanowires" as SERS substrates.

    PubMed

    Sharma, Yashna; Dhawan, Anuj

    2016-05-01

    A surface-enhanced Raman scattering (SERS) substrate based on plasmonics-active metallic nano-finger arrays grown on arrays of triangular-shaped metal-coated silicon nanowire arrays is proposed. Finite-difference time-domain modeling is employed to numerically calculate the effect of the inter-finger gap and the growth angle of the nano-fingers on the magnitude of SERS enhancement and the plasmon resonance wavelength. Additionally, the polarization dependence of the SERS signals from these novel substrates has been studied. A protocol for the fabrication of the proposed SERS substrate is also discussed. PMID:27128080

  17. Finger rafting: a generic instability of floating elastic sheets.

    PubMed

    Vella, Dominic; Wettlaufer, J S

    2007-02-23

    Colliding ice floes are often observed to form a series of interlocking fingers. We show that this striking phenomenon is not a result of some peculiar property of ice but rather a general and robust mechanical phenomenon reproducible in the laboratory with other floating materials. We determine the theoretical relationship between the width of the resulting fingers and the material's mechanical properties and present experimental results along with field observations to support the theory. The generality of this "finger rafting" suggests that analogous processes may be responsible for creating the large-scale structures observed at the boundaries between Earth's convergent tectonic plates. PMID:17359135

  18. A hierarchical classification method for finger knuckle print recognition

    NASA Astrophysics Data System (ADS)

    Kong, Tao; Yang, Gongping; Yang, Lu

    2014-12-01

    Finger knuckle print has recently been seen as an effective biometric technique. In this paper, we propose a hierarchical classification method for finger knuckle print recognition, which is rooted in traditional score-level fusion methods. In the proposed method, we firstly take Gabor feature as the basic feature for finger knuckle print recognition and then a new decision rule is defined based on the predefined threshold. Finally, the minor feature speeded-up robust feature is conducted for these users, who cannot be recognized by the basic feature. Extensive experiments are performed to evaluate the proposed method, and experimental results show that it can achieve a promising performance.

  19. Monte Carlo simulations of tungsten redeposition at the divertor target

    NASA Astrophysics Data System (ADS)

    Chankin, A. V.; Coster, D. P.; Dux, R.

    2014-02-01

    Recent modeling of controlled edge-localized modes (ELMs) in ITER with tungsten (W) divertor target plates by the SOLPS code package predicted high electron temperatures (>100 eV) and densities (>1 × 1021 m-3) at the outer target. Under certain scenarios W sputtered during ELMs can penetrate into the core in quantities large enough to cause deterioration of the discharge performance, as was shown by coupled SOLPS5.0/STRAHL/ASTRA runs. The net sputtering yield, however, was expected to be dramatically reduced by the ‘prompt redeposition’ during the first Larmor gyration of W1+ (Fussman et al 1995 Proc. 15th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research (Vienna: IAEA) vol 2, p 143). Under high ne/Te conditions at the target during ITER ELMs, prompt redeposition would reduce W sputtering by factor p-2 ˜ 104 (with p ≡ τionωgyro ˜ 0.01). However, this relation does not include the effects of multiple ionizations of sputtered W atoms and the electric field in the magnetic pre-sheath (MPS, or ‘Chodura sheath’) and Debye sheath (DS). Monte Carlo simulations of W redeposition with the inclusion of these effects are described in the paper. It is shown that for p ≪ 1, the inclusion of multiple W ionizations and the electric field in the MPS and DS changes the physics of W redeposition from geometrical effects of circular gyro-orbits hitting the target surface, to mainly energy considerations; the key effect is the electric potential barrier for ions trying to escape into the main plasma. The overwhelming majority of ions are drawn back to the target by a strong attracting electric field. It is also shown that the possibility of a W self-sputtering avalanche by ions circulating in the MPS can be ruled out due to the smallness of the sputtered W neutral energies, which means that they do not penetrate very far into the MPS before ionizing; thus the W ions do not gain a large kinetic energy as they are accelerated back to the surface by the

  20. Combination of helical ferritic-steel inserts and flux-tube-expansion divertor for the heat control in tokamak DEMO reactor

    NASA Astrophysics Data System (ADS)

    Takizuka, T.; Tokunaga, S.; Hoshino, K.; Shimizu, K.; Asakura, N.

    2015-08-01

    Edge localized modes (ELMs) in the H-mode operation of tokamak reactors may be suppressed/mitigated by the resonant magnetic perturbation (RMP), but RMP coils are considered incompatible with DEMO reactors under the strong neutron flux. We propose an innovative concept of the RMP without installing coils but inserting ferritic steels of the helical configuration. Helically perturbed field is naturally formed in the axisymmetric toroidal field through the helical ferritic steel inserts (FSIs). When ELMs are avoided, large stationary heat load on divertor plates can be reduced by adopting a flux-tube-expansion (FTE) divertor like an X divertor. Separatrix shape and divertor-plate inclination are similar to those of a simple long-leg divertor configuration. Combination of the helical FSIs and the FTE divertor is a suitable method for the heat control to avoid transient ELM heat pulse and to reduce stationary divertor heat load in a tokamak DEMO reactor.

  1. Examiner's finger-mounted fetal tissue oximetry

    NASA Astrophysics Data System (ADS)

    Kanayama, Naohiro; Niwayama, Masatsugu

    2014-06-01

    The best way to assess fetal condition is to observe the oxygen status of the fetus (as well as to assess the condition of infants, children, and adults). Previously, several fetal oximeters have been developed; however, no instrument has been utilized in clinical practice because of the low-capturing rate of the fetal oxygen saturation. To overcome the problem, we developed a doctor's finger-mounted fetal tissue oximeter, whose sensor volume is one hundredth of the conventional one. Additionally, we prepared transparent gloves. The calculation algorithm of the hemoglobin concentration was derived from the light propagation analysis based on the transport theory. We measured neonatal and fetal oxygen saturation (StO2) with the new tissue oximeter. Neonatal StO was measured at any position of the head regardless of amount of hair. Neonatal StO was found to be around 77%. Fetal StO was detected in every position of the fetal head during labor regardless of the presence of labor pain. Fetal StO without labor pain was around 70% in the first stage of labor and around 60% in the second stage of labor. We concluded that our new concept of fetal tissue oximetry would be useful for detecting fetal StO in any condition of the fetus.

  2. Finger cold-induced vasodilation: a review.

    PubMed

    Daanen, H A M

    2003-06-01

    Cold-induced vasodilation (CIVD) in the finger tips generally occurs 5-10 min after the start of local cold exposure of the extremities. This phenomenon is believed to reduce the risk of local cold injuries. However, CIVD is almost absent during hypothermia, when survival of the organism takes precedence over the survival of peripheral tissue. Subjects that are often exposed to local cold (e.g. fish filleters) develop an enhanced CIVD response. Also, differences between ethnic groups are obvious, with black people having the weakest CIVD response. Many other factors affect CIVD, such as diet, alcohol consumption, altitude, age and stress. CIVD is probably caused by a sudden decrease in the release of neurotransmitters from the sympathetic nerves to the muscular coat of the arterio-venous anastomoses (AVAs) due to local cold. AVAs are specific thermoregulatory organs that regulate blood flow in the cold and heat. Their relatively large diameter enables large amounts of blood to pass and convey heat to the surrounding tissue. Unfortunately, information on the quantity of AVAs is lacking, which makes it difficult to estimate the full impact on peripheral blood flow. This review illustrates the thermospecificity of the AVAs and the close link to CIVD. CIVD is influenced by many parameters, but controlled experiments yield information on how CIVD protects the extremities against cold injuries. PMID:12712346

  3. Finger Length Ratios in Serbian Transsexuals

    PubMed Central

    Vujović, Svetlana; Popović, Srdjan; Mrvošević Marojević, Ljiljana; Ivović, Miomira; Tančić-Gajić, Milina; Stojanović, Miloš; Marina, Ljiljana V.; Barać, Marija; Barać, Branko; Kovačević, Milena; Duišin, Dragana; Barišić, Jasmina; Djordjević, Miroslav L.; Micić, Dragan

    2014-01-01

    Atypical prenatal hormone exposure could be a factor in the development of transsexualism. There is evidence that the 2nd and 4th digit ratio (2D : 4D) associates negatively with prenatal testosterone and positively with estrogens. The aim was to assess the difference in 2D : 4D between female to male transsexuals (FMT) and male to female transsexuals (MFT) and controls. We examined 42 MFT, 38 FMT, and 45 control males and 48 control females. Precise measurements were made by X-rays at the ventral surface of both hands from the basal crease of the digit to the tip using vernier calliper. Control male and female patients had larger 2D : 4D of the right hand when compared to the left hand. Control male's left hand ratio was lower than in control female's left hand. There was no difference in 2D : 4D between MFT and control males. MFT showed similar 2D : 4D of the right hand with control women indicating possible influencing factor in embryogenesis and consequently finger length changes. FMT showed the lowest 2D : 4D of the left hand when compared to the control males and females. Results of our study go in favour of the biological aetiology of transsexualism. PMID:24982993

  4. Ubiquitin interactions of NZF zinc fingers

    PubMed Central

    Alam, Steven L; Sun, Ji; Payne, Marielle; Welch, Brett D; Blake, B Kelly; Davis, Darrell R; Meyer, Hemmo H; Emr, Scott D; Sundquist, Wesley I

    2004-01-01

    Ubiquitin (Ub) functions in many different biological pathways, where it typically interacts with proteins that contain modular Ub recognition domains. One such recognition domain is the Npl4 zinc finger (NZF), a compact zinc-binding module found in many proteins that function in Ub-dependent processes. We now report the solution structure of the NZF domain from Npl4 in complex with Ub. The structure reveals that three key NZF residues (13TF14/M25) surrounding the zinc coordination site bind the hydrophobic ‘Ile44' surface of Ub. Mutations in the 13TF14/M25 motif inhibit Ub binding, and naturally occurring NZF domains that lack the motif do not bind Ub. However, substitution of the 13TF14/M25 motif into the nonbinding NZF domain from RanBP2 creates Ub-binding activity, demonstrating the versatility of the NZF scaffold. Finally, NZF mutations that inhibit Ub binding by the NZF domain of Vps36/ESCRT-II also inhibit sorting of ubiquitylated proteins into the yeast vacuole. Thus, the NZF is a versatile protein recognition domain that is used to bind ubiquitylated proteins during vacuolar protein sorting, and probably many other biological processes. PMID:15029239

  5. From frictional fingers to stick slip bubbles

    NASA Astrophysics Data System (ADS)

    Sandnes, Bjørnar; Jørgen Måløy, Knut; Flekkøy, Eirik; Eriksen, Jon

    2014-05-01

    Gas intrusion into wet porous/deformable/granular media occurs in a wide range of natural and engineered settings. Examples include hydrocarbon recovery, carbon dioxide geo-sequestration, gas venting in sediments and volcanic eruptions. In the case where the intruding gas is able to displace particles and grains, local changes in granular packing fraction govern the evolution of flow paths, resulting in complex pattern formation of the displacement flow. Here we investigate flow patterning as a compressed gas displaces a granular mixture confined in the narrow gap of a Hele-Shaw cell. We find a surprising variety of different pattern formation dynamics, and present a unified phase diagram of the flow morphologies we observe. This talk will focus on one particular transition the system undergoes: from frictional fingers to stick slip bubbles. We show that the frictional fluid flow patterns depend on granular mass loading and system elasticity, analogous to the behaviour of the well-known spring-block sliding friction problem.

  6. Development of Functional Recovery Training Device for Hemiplegic Fingers with Finger-expansion Facilitation Exercise by Stretch Reflex

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Iwashita, Hisashi; Kawahira, Kazumi; Hayashi, Ryota

    This paper develops a functional recovery training device to perform repetition facilitating exercise for hemiplegic finger rehabilitation. On the facilitation exercise, automatic finger expansion can be realized and facilitated by stretch reflex, where a stimulation forces is applied instantaneously on flexion finger for making strech reflex and resistance forces are applied for maintaining the strech reflex. In this paper, novel parallel mechanisms, force sensing system with high sensitivity and resistance accompanying cooperation control method are proposed for sensing, controlling and realizing the stimulation force, resistance forces, strech reflex and repetition facilitating exercise. The effectivities and performances of the device are shown by some experiments.

  7. Parametric analysis of the thermal effects on the divertor in tokamaks during plasma disruptions

    SciTech Connect

    Bruhn, M.L.

    1988-04-01

    Plasma disruptions are an ever present danger to the plasma-facing components in today's tokamak fusion reactors. This threat results from our lack of understanding and limited ability to control this complex phenomenon. In particular, severe energy deposition occurs on the divertor component of the double-null configured tokamak reactor during such disruptions. A hybrid computational model developed to estimate and graphically illustrate global thermal effects of disruptions on the divertor plates is described in detail. The quasi-two-dimensional computer code, TADDPAK (Thermal Analysis Divertor during Disruptions PAcKage), is used to conduct parametric analysis for the TIBER II Tokamak Engineering Test Reactor Design. The dependence of these thermal effects on divertor material choice, disruption pulse length, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is investigated for this reactor design. Results and conclusions from this analysis are presented. Improvements to this model and issues that require further investigation are discussed. Cursory analysis for ITER (International Thermonuclear Experimental Reactor) is also presented in the appendix. 75 refs., 49 figs., 10 tabs.

  8. Evaluation of performance for the EAST upgraded divertor targets during type I ELMy H-mode

    NASA Astrophysics Data System (ADS)

    Qian, X. Y.; Peng, X. B.; Wang, L.; Song, Y. T.; Ye, M. Y.; Zhang, J. W.; Li, W. X.; Zhu, C. C.

    2016-02-01

    The long-pulse high-confinement (H-mode) plasma regime is considered to be a preferable scenario in future fusion devices, and in the period of normal operation during H-mode, edge-localised modes (ELMs) are one of the most serious threats to the performance and capability of divertor targets. The EAST recently achieved a variety of H-mode regimes with ELMs. For the purpose of studying the performance of the EAST upgraded divertor during type I ELMs, a series of simulations were performed by using three-dimensional (3D) finite element code. To make a visible outcome of the direct ELM impact on the divertor targets, a preliminary evaluation system with three indices to exhibit the influence has been developed. The indices that comprise temperature evolution, thermal penetration depth and crack initiation life, which could reveal the process of micro-crack formation, are calculated in both low and high-power scenarios for type I ELMs. The initial results indicate that the transient heat load has a significant influence in a very short thickness layer along the direction perpendicular to the plasma-facing surface throughout its duration. The conclusion could offer a pertinent guide to the next-step high-power long-pulse operation in EAST and would also be helpful for scientifically studying the damage and fatigue mechanism of the divertor in ITER and future fusion power reactors.

  9. Numerical Simulation on Subcooled Boiling Heat Transfer Characteristics of Water-Cooled W/Cu Divertors

    NASA Astrophysics Data System (ADS)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-04-01

    In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  10. L to H mode transitions and associated phenomena in divertor tokamaks

    SciTech Connect

    Punjabi, A. )

    1990-09-01

    This is the final report for the research project titled L to H Mode Transitions and Associated Phenomena in Divertor Tokamaks.'' The period covered by this project is the fiscal year 1990. This report covers the development of Advanced Two Chamber Model.

  11. Outline of optical design and viewing geometry for divertor Thomson scattering on MAST upgrade

    NASA Astrophysics Data System (ADS)

    Hawke, J.; Scannell, R.; Harrison, J.; Huxford, R.; Bohm, P.

    2013-11-01

    The super-X divertor on MAST Upgrade will be diagnosed by a Thomson scattering diagnostic. A preliminary design of the collection optics and calculations of the diagnostic's performance are discussed in this paper. As part of the design the location and size of the collection cell were optimized to minimize vignetting, especially in the region of interest close to the divertor strike point. The design process was complicated by the limited access available in the closed divertor geometry. In the study of the diagnostic's performance, the radial resolution, projection of the laser image onto the fiber bundle, and impact of depth of field with a multiple laser system were investigated. In this design there is a trade-off between the resolution of the system and the lifetime of the beam dump. For this reason the beam has its focal point at the start of the viewing region and diverges in width to approximately five millimeters near the divertor tile. The effect of this large variation in beam width is examined primarily at the two extremes by means of ray trace modeling. This model takes an object with dimensions of the beam width imaged onto the fiber bundle to investigate the effect of misalignment for a narrow or broad laser image. In a similar manner ray tracing was performed to determine the effects of depth of field for four and two laser systems. As the electron density of the system may be low, performance analysis considers firing multiple lasers simultaneously to improve photon statistics.

  12. SPIRAL field mapping on NSTX for comparison to divertor RF heat deposition

    NASA Astrophysics Data System (ADS)

    Hosea, J. C.; Perkins, R.; Jaworski, M. A.; Kramer, G. J.; Ahn, J.-W.; Bertelli, N.; Gerhardt, S.; Gray, T. K.; LeBlanc, B. P.; Maingi, R.; Phillips, C. K.; Roquemore, L.; Ryan, P. M.; Sabbagh, S.; Taylor, G.; Tritz, K.; Wilson, J. R.; NSTX Team

    2014-02-01

    Field-aligned losses of HHFW power in the SOL of NSTX have been studied with IR cameras and probes, but the interpretation of the data depends somewhat on the magnetic equilibrium reconstruction. Both EFIT02 and LRDFIT04 magnetic equilibria have been used with the SPIRAL code to provide field mappings in the scrape off layer (SOL) on NSTX from the midplane SOL in front of the HHFW antenna to the divertor regions, where the heat deposition spirals are measured. The field-line mapping spiral produced at the divertor plate with LRDFIT04 matches the HHFW-produced heat deposition best, in general. An independent method for comparing the field-line strike patterns on the outer divertor for the two equilibria is provided by measuring Langmuir probe characteristics in the vicinity of the outer vessel strike radius (OVSR) and observing the effect on floating potential, saturation current, and zero-probe-voltage current (IV=0) with the crossing of the OVSR over the probe. Interestingly, these comparisons also reveal that LRDFIT04 gives the more accurate location of the predicted OVSR, and confirm that the RF power flow in the SOL is essentially along the magnetic field lines. Also, the probe characteristics and IV=0 data indicate that current flows under the OVSR in the divertor tiles in most cases studied.

  13. Divertor heat loads in RMP ELM controlled H-mode plasmas on DIII-D*

    SciTech Connect

    Jakubowski, M; Lasnier, C; Schmitz, O; Evans, T; Fenstermacher, M; Groth, M; Watkins, J; Eich, T; Moyer, R; Wolf, R; Baylor, L; Boedo, J; Burrell, K; Frerichs, H; deGrassie, J; Gohil, P; Joseph, I; Lehnen, M; Leonard, A; Petty, C; Pinsker, R; Reiter, D; Rhodes, T; Samm, U; Snyder, P; Stoschus, H; Osborne, T; Unterberg, B; West, W

    2008-10-13

    In this paper the manipulation of power deposition on divertor targets at DIII-D by application of resonant magnetic perturbations (RMPs) is analyzed. It has been found that heat transport shows a different reaction to the applied RMP depending on the plasma pedestal collisionality. At pedestal electron collisionality above 0.5 the heat flux during the ELM suppressed phase is of the same order as the inter-ELM in the non-RMP phase. Below this collisionality value we observe a slight increase of the total power flux to the divertor. This can be caused by much more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area and/or so called pump out effect. In the second part we discuss modification of ELM behavior due to the RMP. It is shown, that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns seem to be controlled by the externally induced magnetic perturbation. D{sub 2} pellets injected into the plasma bulk during ELM-free RMP H-mode lead in some cases to a short term small transients, which have very similar properties to ELMs in the initial RMP-on phase.

  14. Mechanical design issues associated with mounting, maintenance, and handling of an ITER divertor

    SciTech Connect

    Goranson, P.L.; Fogarty, P.J.; Jones, G.H.

    1991-01-01

    Several designs that address plasma-facing plate configurations and thermal-hydraulic design issues have been developed for the ITER divertor. Design criteria growing out of physics requirements, physical constraints, and remote handling requirements impose severe mechanical requirements on the support structure and its attachments. These pose a challenge to the mechanical design of a divertor, which must be addressed before a functional divertor is practical -- that is, one that can be remotely handled, aligned, and maintained; that functions reliably under thermal loading and disruptions; and that gives the required life in the nuclear environment predicted for ITER. This paper discusses the design criteria for the divertor mounting structure and identifies the mechanical design issues that need to be addressed. Achieving the criteria may require the development of new components and innovative configurations, specifically a new class of remote fasteners and electrically resistant material for mounts. The possible design of such components and an R D program to develop them are described, and issues specific to the high-aspect-ratio design (HARD) configuration are summarized. Analysis and experiments that will resolve these issues and concerns and lead to a final ITER design are identified. 2 refs., 2 figs.

  15. Melt damage to the JET ITER-like Wall and divertor

    NASA Astrophysics Data System (ADS)

    Matthews, G. F.; Bazylev, B.; Baron-Wiechec, A.; Coenen, J.; Heinola, K.; Kiptily, V.; Maier, H.; Reux, C.; Riccardo, V.; Rimini, F.; Sergienko, G.; Thompson, V.; Widdowson, A.; Contributors, JET

    2016-02-01

    In October 2014, JET completed a scoping study involving high power scenario development in preparation for DT along with other experiments critical for ITER. These experiments have involved intentional and unintentional melt damage both to bulk beryllium main chamber tiles and to divertor tiles. This paper provides an overview of the findings of concern for machine protection in JET and ITER, illustrating each case with high resolution images taken by remote handling or after removal from the machine. The bulk beryllium upper dump plate tiles and some other protection tiles have been repeatedly flash melted by what we believe to be mainly fast unmitigated disruptions. The flash melting produced in this way is seen at all toroidal locations and the melt layer is driven by j × B forces radially outward and upwards against gravity. In contrast, the melt pools caused while attempting to use MGI to mitigate deliberately generated runaway electron beams are localized to several limiters and the ejected material appears less influenced by j × B forces and shows signs of boiling. In the divertor, transient melting of bulk tungsten by ELMs was studied in support of the ITER divertor material decision using a specially prepared divertor module containing an exposed edge. Removal of the module from the machine in 2015 has provided improved imaging of the melt and this confirms that the melt layers are driven by ELMs. No other melt damage to the other 9215 bulk tungsten lamellas has yet been observed.

  16. Dust in the divertor sheath: a problem or a possible solution to a problem?

    NASA Astrophysics Data System (ADS)

    Delzanno, Gian Luca; Tang, Xianzhu

    2012-03-01

    In this work, we will present results on dust transport in the magnetized sheath near the divertor plate for micron-sized dust. We consider conditions relevant to present short-pulse tokamak machines as well as conditions for long-pulse ITER/DEMO reactors. We solve the dust charging equation, the dust equation of motion and the equations for dust heating and mass loss in the magnetized sheath. We present parametric studies changing the divertor plasma conditions and the angle of the equilibrium magnetic field relative to the wall. Our main result is that, for conditions relavant to DEMO, the stronger heat flux to the wall severely limits the dust survivability and mobility. We discuss the implications of this result for the divertor plates of long-pulse fusion reactors. We will also discuss two fusion technology solutions to DEMO PFC, the dust patch and the dust shield, based on externally introduced solid particulates to patch areas of net erosion and to provide the primary heat exhaust for the divertor.

  17. A helical hydrogen-MARFE-like phenomenon in the divertor of the Wendelstein 7-AS stellarator

    NASA Astrophysics Data System (ADS)

    Wenzel, U.; König, R.; Pedersen, T. Sunn; the W7-AS Team

    2015-01-01

    In the island divertor of the W7-AS stellarator a high-density zone (HDZ) near the divertor plates was discovered some years ago (Ramasubramanian et al 2004 Nucl. Fusion 44 992-8) with electron densities up to 7 × 1020 m-3. We shed further light on this phenomenon by determining the poloidal and radial location of this zone and discussing potential implications of these findings. The HDZ is in the vicinity of, but clearly separated from the nearest X-point line. The carbon emission is clearly spatially separated, residing near or at the X-point lines. The HDZ shows many similarities with the hydrogen or wall MARFE in Textor-94 (Samm et al 1999 J. Nucl. Mater. 266-269 666). The structure is associated with a strongly increased neutral pressure, thus enabling efficient pumping. This offers the possibility for a very efficient exhaust regime in a stellarator with island divertor such as W7-X, simultaneously with significantly reduced convective heat loads onto the divertor itself. The spatial separation of the HDZ and the carbon radiation region may imply that such a state can be reached even in a non-carbon machine, and might therefore be DEMO-relevant.

  18. A tangentially viewing visible TV system for the DIII-D divertor

    SciTech Connect

    Fenstermacher, M.E.; Meyer, W.H.; Wood, R.D.

    1996-02-01

    A video camera system has been installed on the DIII-D tokamak for 2-D spatial studies of line emission in the lower divertor region. The system views the divertor tangentially from an outer port at approximately the height of the X-point. At the tangency plane the entire divertor from inner wall to outside the DIII-D bias ring is viewed with spatial resolution of approximately 1 cm. The image contains information from approximately 90 degrees of toroidal angle. In a recent upgrade, remotely controllable filter changers were added which have produced images from nominally identical shots using a series of spectral lines. Software was developed to calculate the response function matrix using distributed computing techniques and assuming toroidal symmetry. Standard sparse matrix algorithms are then used to invert the 3-D images onto a poloidal plane. Spatial resolution of the inverted images is 2 cm; higher resolution simply increases the size of the response function matrix. Initial results from a series of experiments with multiple identical shots show that the emission from CII and CIII, which appears along the inner scrape-off layer above and below the X-point during ELMing H-mode, moves outward and becomes localized near the X-point in Partially Detached Divertor (PDD) operation.

  19. A procedure for generating quantitative 3-D camera views of tokamak divertors

    SciTech Connect

    Edmonds, P.H.; Medley, S.S.

    1996-05-01

    A procedure is described for precision modeling of the views for imaging diagnostics monitoring tokamak internal components, particularly high heat flux divertor components. These models are required to enable predictions of resolution and viewing angle for the available viewing locations. Because of the oblique views expected for slot divertors, fully 3-D perspective imaging is required. A suite of matched 3-D CAD, graphics and animation applications are used to provide a fast and flexible technique for reproducing these views. An analytic calculation of the resolution and viewing incidence angle is developed to validate the results of the modeling procedures. The calculation is applicable to any viewed surface describable with a coordinate array. The Tokamak Physics Experiment (TPX) diagnostics for infrared viewing are used as an example to demonstrate the implementation of the tools. For the TPX experiment the available locations are severely constrained by access limitations at the end resulting images are marginal in both resolution and viewing incidence angle. Full coverage of the divertor is possible if an array of cameras is installed at 45 degree toroidal intervals. Two poloidal locations are required in order to view both the upper and lower divertors. The procedures described here provide a complete design tool for in-vessel viewing, both for camera location and for identification of viewed surfaces. Additionally these same tools can be used for the interpretation of the actual images obtained by the actual diagnostic.

  20. Poloidal divertor experiment with applied E vector x B vector/B/sup 2/ drift

    SciTech Connect

    Strait, E J

    1980-05-01

    It has been proposed that the E vector x B vector/B/sup 2/ drift arising from an externally applied electric field could be used in a tokamak or other toroidal device to remove plasma and impurities from the region near the wall and to reduce the amount of plasma striking the wall, either assisting or replacing a conventional magnetic field divertor. A poloidal magnetic divertor (without pumping chamber) was added to the Wisconsin Levitated Toroidal Octupole, and the octupole was operated with a tokamak-like magnetic field configuration (q = 0.7). A radial electric field was applied in the scrape-off zone, causing an E vector x B vector/B/sup 2/ drift with a large poloidal component. This reduced plasma flux reaching the wall of the toroid by up to a factor of 5 beyond the effect of the magnetic divertor, for divertor configurations with both high and low magnetic mirror ratios, in good agreement with a simple theoretical model. Plasma density and density scale length were also reduced in the scrape-off zone, in qualitative agreement with the model. This was not accompanied by any new instabilities in the scrape-off zone, nor by any appreciable degradation of confinement of the central plasma.

  1. Thermal Analysis to Calculate the Vessel Temperature and Stress in Alcator C-Mod Due to the Divertor Upgrade

    SciTech Connect

    Han Zhang, Peter H. Titus, Robert Ellis, Soren Harrison and Rui Vieira

    2012-08-29

    Alcator C-Mod is planning an upgrade to its outer divertor. The upgrade is intended to correct the existing outer divertor alignment with the plasma, and to operate at elevated temperatures. Higher temperature operation will allow study of edge physics behavior at reactor relevant temperatures. The outer divertor and tiles will be capable of operating at 600oC. Longer pulse length, together with the plasma and RF heat of 9MW, and the inclusion of heater elements within the outer divertor produces radiative energy which makes the sustained operation much more difficult than before. An ANSYS model based on ref. 1 was built for the global thermal analysis of C-Mod. It models the radiative surfaces inside the vessel and between the components, and also includes plasma energy deposition. Different geometries have been simulated and compared. Results show that steady state operation with the divertor at 600oC is possible with no damage to major vessel internal components. The differential temperature between inner divertor structure, or "girdle" and inner vessel wall is ~70oC. This differential temperature is limited by the capacity of the studs that hold the inner divertor backing plates to the vessel wall. At a 70oC temperature differential the stress on the studs is within allowable limits. The thermal model was then used for a stress pass to quantify vessel shell stresses where thermal gradients are significant.

  2. The generation of zinc finger proteins by modular assembly

    PubMed Central

    Bhakta, Mital; Segal, David J.

    2015-01-01

    The modular assembly (MA) method of generating engineered zinc finger proteins (ZFPs) was the first practical method for creating custom DNA-binding proteins. As such, MA has enabled a vast exploration of sequence-specific methods and reagents, ushering in the modern era of zinc finger-based applications that are described in this volume. The first zinc finger nuclease to cleave an endogenous site was created using MA, as was the first artificial transcription factor to enter phase II clinical trials. In recent years, other excellent methods have been developed that improved the affinity and specificity of the engineered ZFPs. However, MA is still used widely for many applications. This chapter will describe methods and give guidance for the creation of ZFPs using MA. Such ZFPs might be useful as starting materials to perform other methods described in this volume. Here, we also describe a single-strand annealing recombination assay for the initial testing of zinc finger nucleases. PMID:20680825

  3. L'index significant (The Pointed Index Finger).

    ERIC Educational Resources Information Center

    Calbris, G.

    1979-01-01

    In the framework of a study of nonverbal communication, the various meanings attached to the pointed index finger are analyzed. The question is raised as to what extent the findings hold for cultures other than French. (AMH)

  4. Seal finger: A case report and review of the literature

    PubMed Central

    White, Colin P; Jewer, David D

    2009-01-01

    A recent case of seal finger which was misdiagnosed and hence mistreated at the patient’s first presentation is described. The patient was eventually referred to a hand specialist and after the correct treatment with tetracycline, responded well without any long-term sequelae. Seal finger is an occupational injury that occurs to those who work directly or indirectly with seals. The disease entity has been described in both Scandinavian and Canadian literature. The causative microorganism was unknown until 1991, when Mycoplasma phocacerebrale was isolated from both the finger of a patient with seal finger and from the mouth of a seal that bit the patient. Although rare, the disease is not uncommon in marine workers, biologists and veterinarians. Prompt identification based on patient history and treatment with oral tetracycline is pendant to a favourable patient outcome. PMID:21119845

  5. Finger vein recognition based on local directional code.

    PubMed

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  6. Finger Vein Recognition Based on Local Directional Code

    PubMed Central

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  7. Finger Growth in Surfactant Solution in Hele-Shaw Cells

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takehiro; Yamashita, Atsushi; Nakamura, Yousuke; Hashimoto, Takamasa; Mori, Noriyasu

    2006-05-01

    Viscous fingering in surfactant solutions was experimentally studied. Aqueous solutions of cetyltrimethylammonium bromide (CTAB) with sodium salicylate (NaSal) as a counter ion were used as test fluids. Excess of counter ion was added into a surfactant solution of CTAB to configure network structures of wormlike micelles. The experiments were mainly carried out using a square Hele-Shaw cell. The structure of fingering pattern was dimensionally analyzed to classify the patterns into three types. In addition, growth phenomena distinguishing for the viscous finger in the CTAB/NaSal solutions were observed: surface instabilities with dendrites, and a sudden protrusion from a cuspidate shaped finger tip. The dependence of the sudden protrusion on the shear rate was confirmed by the experiment using a rectangular cell.

  8. Tension Distribution in a Tendon-Driven Robotic Finger

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor)

    2013-01-01

    A method is provided for distributing tension among tendons of a tendon-driven finger in a robotic system, wherein the finger characterized by n degrees of freedom and n+1 tendons. The method includes determining a maximum functional tension and a minimum functional tension of each tendon of the finger, and then using a controller to distribute tension among the tendons, such that each tendon is assigned a tension value less than the maximum functional tension and greater than or equal to the minimum functional tension. The method satisfies the minimum functional tension while minimizing the internal tension in the robotic system, and satisfies the maximum functional tension without introducing a coupled disturbance to the joint torques. A robotic system includes a robot having at least one tendon-driven finger characterized by n degrees of freedom and n+1 tendons, and a controller having an algorithm for controlling the tendons as set forth above.

  9. Suppression of viscous fingering in nonflat Hele-Shaw cells.

    PubMed

    Brandão, Rodolfo; Fontana, João V; Miranda, José A

    2014-11-01

    Viscous fingering formation in flat Hele-Shaw cells is a classical and widely studied fluid mechanical problem. Recently, instead of focusing on the development of the fingering instability, researchers have devised different strategies aiming to suppress its appearance. In this work, we study a protocol that intends to inhibit the occurrence of fingering instabilities in nonflat (spherical and conical) Hele-Shaw cell geometries. By using a mode-coupling theory to describe interfacial evolution, plus a variational controlling technique, we show that viscous fingering phenomena can be minimized in such a confined, curved environment by properly manipulating a time-dependent injection flow rate Q(t). Explicit expressions for Q(t) are derived for the specific cases of spherical and conical cells. The suitability of the controlling method is verified for linear and weakly nonlinear stages of the flow. PMID:25493877

  10. The effects of vibration-reducing gloves on finger vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  11. Fingered bola body, bola with same, and methods of use

    NASA Technical Reports Server (NTRS)

    Dzenitis, John M. (Inventor); Billica, Linda W. (Inventor)

    1994-01-01

    The present invention discloses bola bodies, bolas, and a snaring method which makes use such devices. A bola body, according to the present invention, is nonspherical or irregular in shape rather than a smooth sphere or ovoid body. One or more fingers extends from the bola body. These fingers may be relatively straight or they may have crooked or bent portions to enhance entanglement with a bola line or lines or with each other. Two or more of such fingers may be used and may be regularly or irregularly spaced apart on a bola body. A bola with such bodies includes lines which are connected to the other bodies. In one particular embodiment of a bola body, according to the present invention, the body has an irregular shape with a bottom rectangular portion and a top pyramid portion forming a nose. A plurality of fingers is extended from the pyramidal top portion with one finger extended up and away from each of four corners of the top portion. Such a bola body tends to be initially oriented with its nose and fingers against an object being snared since the body is pulled nose first when a bola line is secured at the tip of the pyramidal portion of the bola body. With such a bola, an unwrapping bola body can slip around a target member so that two of the rod-shaped fingers catch a bola line and guide it into an area or crook between the fingers and a side of the top pyramidal portion of the bola body. Tension on the bola line maintains the line in the crook and tends to press the fingers against the unwrapped target member to stabilize the wrapping of the line about the target member. With such a bola, it is difficult for two or more lines unwrapping in different directions to move past one another without being forced together by line tension. Also, the fingers of such bola bodies may hook and hold each other. The fingers may also hook or entangle some object on or portion of the target member. A probable known target member has known dimensions and shapes so that

  12. Finger blood content, light transmission, and pulse oximetry errors.

    PubMed

    Craft, T M; Lawson, R A; Young, J D

    1992-01-01

    The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry. PMID:1536406

  13. Assessment of erosion and surface tritium inventory issues for the ITER divertor

    SciTech Connect

    Brooks, J.N.; Causey, R.; Federici, G.; Ruzic, D.N.

    1996-08-01

    The authors analyzed sputtering erosion and tritium codeposition for the ITER vertical target divertor design using erosion and plasma codes (WBC/REDEP/DEGAS+) coupled to available materials data. Computations were made for a beryllium, carbon, and tungsten coated divertor plate, and for three edged plasma regimes. New data on tritium codeposition in beryllium was obtained with the TPE facility. This shows codeposited H/Be ratios of the order of 10% for surface temperatures {le} 300 C, beryllium thereby being similar to carbon in this respect. Hydrocarbon transport calculations show significant loss (10--20%) of chemically sputtered carbon for detached conditions (T{sub e} {approx} 1 eV at the divertor), compared to essentially no loss (100% redeposition) for higher temperature plasmas. Calculations also show a high, non-thermal, D-T molecular flux for detached conditions. Tritium codeposition rates for carbon are very high for detached conditions ({approximately} 20g-T/1000 s discharge), due to buildup of chemically sputtered carbon on relatively cold surfaces of the divertor cassette. Codeposition is lower ({approximately} 10X) for higher edge temperatures ({approximately} 8--30 eV) and is primarily due to divertor plate buildup of physically sputtered carbon. Peak net erosion rates for carbon are of order 30 cm/burn-yr. Erosion and codeposition rates for beryllium are much lower than for carbon at detached conditions, but are similar to carbon for the higher temperatures. Both erosion and tritium codeposition are essentially nil for tungsten for the regimes studied.

  14. ELM-resolved divertor erosion in the JET ITER-Like Wall

    NASA Astrophysics Data System (ADS)

    Den Harder, N.; Brezinsek, S.; Pütterich, T.; Fedorczak, N.; Matthews, G. F.; Meigs, A.; Stamp, M. F.; van de Sanden, M. C. M.; Van Rooij, G. J.; Contributors, JET

    2016-02-01

    Tungsten erosion in H-mode plasmas is quantified in the outer divertor of the JET ITER-Like Wall environment with optical emission spectroscopy on the 400.9 nm atomic neutral tungsten line. A novel cross-calibration procedure is developed to link slow, high spectral resolution spectroscopy and fast photomultiplier tube measurements in order to obtain ELM-resolved photon fluxes. Inter-ELM W erosion is exclusively impurity sputtering by beryllium because of the high sputter threshold for deuterons. Low beryllium concentrations resulted in low inter-ELM sputter yields of around 10-4 with respect to the total flux. Intra-ELM W sources, which dominate the total W tungsten source, vary independently from the inter-ELM source. The amount of W erosion could only be partly explained by beryllium sputtering, indicating that during ELMs sputtering by fuel species is important. The total W outer divertor source is found to linearly increase with the power crossing the separatrix, whilst excessive divertor fueling can break this trend. The influence of the W source rate on the tungsten content of the core plasma is investigated using soft x-ray emission to determine the tungsten content. At low source rates the content is determined by the source, but at higher source rates, other phenomena determine the total tungsten content. Indications of impurity flushing by ELMs is seen at ELM frequencies above approximately 40 Hz. The inner/outer divertor asymmetry of the W source during ELMs is investigated, and the outer divertor W source is larger by a factor of 1.8+/- 0.7 .

  15. Utilization of vanadium alloys in the DIII-D Radiative Divertor Program

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1995-10-01

    Vanadium alloys are attractive candidate structural materials for fusion power plants because of their potential for minimum environmental impact due to low neutron activation and rapid activation decay. They also possess favorable material properties for operation in a fusion environment. General Atomics (GA), in conjunction with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan for the utilization of vanadium alloys as part of the Radiative Divertor (RD) upgrade for the DIII-D tokamak. The plan will be carried out in conjunction with General Atomics and the Materials Program of the US Department of Energy (DOE). This application of a vanadium alloy will provide a meaningful step in the development of advanced materials for fusion power devices by: (1) developing necessary materials processing technology for the fabrication of large vanadium alloy components, and (2) demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak environment. The program consists of three phases: first, small vanadium alloy coupon samples will be exposed in DIII-D at positions in the vessel floor and within the pumping plenum region of the existing divertor structure; second, a small vanadium alloy component will be installed in the existing divertor, and third, during the forthcoming Radiative Divertor modification, scheduled for completion in mid-1997, the upper section of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. This program also includes research and development (R and D) efforts to support fabrication development and to resolve key issues related to environmental effects.

  16. Detecting overblown flute fingerings from the residual noise spectrum.

    PubMed

    Verfaille, Vincent; Depalle, Philippe; Wanderley, Marcelo M

    2010-01-01

    Producing a tone by increasing the blowing pressure to excite a higher frequency impedance minimum, or overblowing, is widely used in standard flute technique. In this paper, the effect of overblowing a fingering is explored with spectral analysis, and a fingering detector is designed based on acoustical knowledge and pattern classification techniques. The detector performs signal analysis of the strong broadband signal, that is, spectrally shaped by the pipe impedance, and measures the spectral energy during the attack around multiples of the fundamental frequency sub-multiples over the first octave and a half. It is trained and evaluated on sounds recorded with four expert performers. They played six series of tones from overblown and regular fingerings, with frequencies that are octave- and non-octave-related to the playing frequency. The best of the four proposed sound descriptors allows for a detection error below 1.3% for notes with two and three fingerings (C(5), D(5), C(6), and Cmusical sharp(6)) and below 14% for four (E(6)) or five fingerings (G(6)). The error is shown to dramatically increase when two fingerings' impedance become too similar (E(6) and A(4) and G(6) and C(5)). PMID:20058998

  17. Biomechanical Analysis of Force Distribution in Human Finger Extensor Mechanisms

    PubMed Central

    Hu, Dan; Ren, Lei; Howard, David; Zong, Changfu

    2014-01-01

    The complexities of the function and structure of human fingers have long been recognised. The in vivo forces in the human finger tendon network during different activities are critical information for clinical diagnosis, surgical treatment, prosthetic finger design, and biomimetic hand development. In this study, we propose a novel method for in vivo force estimation for the finger tendon network by combining a three-dimensional motion analysis technique and a novel biomechanical tendon network model. The extensor mechanism of a human index finger is represented by an interconnected tendinous network moving around the phalanx's dorsum. A novel analytical approach based on the “Principle of Minimum Total Potential Energy” is used to calculate the forces and deformations throughout the tendon network of the extensor mechanism when subjected to an external load and with the finger posture defined by measurement data. The predicted deformations and forces in the tendon network are in broad agreement with the results obtained by previous experimental in vitro studies. The proposed methodology provides a promising tool for investigating the biomechanical function of complex interconnected tendon networks in vivo. PMID:25126576

  18. Fluidic Channels Produced by Electro Hydrodynamic Viscous Fingering

    NASA Astrophysics Data System (ADS)

    Behler, Kristopher; Wetzel, Eric

    2010-03-01

    Viscous fingering is a term describing fingerlike extensions of liquid from a column of low viscosity liquid that has been injected into a more viscous liquid. The modification of viscous fingering, known as electro hydrodynamic viscous fingering (EHVF), utilizes large electrical potentials of 10-60 kV. The fingers see a reduction in size and increase in branching behavior due to the potential applied to the system. The resulting finely structured patterns are analogous to biological systems such as blood vessels and the lymphatic system. In this study silicone oils and water were studied in thin channel Hele-Shaw cells. The interfacial tension was optimized by altering the surfactant concentration in the silicone oils. EHVF of liquid filled packed beds consisting of beads and silicone oils showed retardation of the relaxation of the fingers after the voltage was turned off. Decreased relaxation provides a means to solidify patterns into a curable material, such as polydimethylsiloxane (PDMS). After the water is evacuated from the fingers, the cured materials then possess hollow channels that can be refilled and emptied, thus creating an artificial circulatory system.

  19. Integrating optical finger motion tracking with surface touch events.

    PubMed

    MacRitchie, Jennifer; McPherson, Andrew P

    2015-01-01

    This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction. PMID:26082732

  20. Integrating optical finger motion tracking with surface touch events

    PubMed Central

    MacRitchie, Jennifer; McPherson, Andrew P.

    2015-01-01

    This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction. PMID:26082732

  1. Biomechanical analysis of force distribution in human finger extensor mechanisms.

    PubMed

    Hu, Dan; Ren, Lei; Howard, David; Zong, Changfu

    2014-01-01

    The complexities of the function and structure of human fingers have long been recognised. The in vivo forces in the human finger tendon network during different activities are critical information for clinical diagnosis, surgical treatment, prosthetic finger design, and biomimetic hand development. In this study, we propose a novel method for in vivo force estimation for the finger tendon network by combining a three-dimensional motion analysis technique and a novel biomechanical tendon network model. The extensor mechanism of a human index finger is represented by an interconnected tendinous network moving around the phalanx's dorsum. A novel analytical approach based on the "Principle of Minimum Total Potential Energy" is used to calculate the forces and deformations throughout the tendon network of the extensor mechanism when subjected to an external load and with the finger posture defined by measurement data. The predicted deformations and forces in the tendon network are in broad agreement with the results obtained by previous experimental in vitro studies. The proposed methodology provides a promising tool for investigating the biomechanical function of complex interconnected tendon networks in vivo. PMID:25126576

  2. Viscous Fingering Induced Flow Instability in Multidimensional Liquid Chromatography

    SciTech Connect

    Mayfield, Kirsty; Shalliker, R. Andrew; Catchpoole, Heather J.; Sweeney, Alan P.; Wong, Victor; Guiochon, Georges A

    2005-07-01

    Viscous fingering is a flow instability phenomenon that results in the destabilisation of the interface between two fluids of differing viscosities. The destabilised interface results in a complex mixing of the two fluids in a pattern that resembles fingers. The conditions that enhance this type of flow instability can be found in coupled chromatographic separation systems, even when the solvents used in each of the separation stages have seemingly similar chemical and physical properties (other than viscosity). For example, the viscosities of acetonitrile and methanol are sufficiently different that instability at the interface between these two solvents can be established and viscous fingering results. In coupled chromatographic systems, the volume of solvent transported from one separation dimension to the second often exceeds the injection volume by two or more orders of magnitude. As a consequence, viscous fingering may occur, when otherwise following the injection of normal analytical size injection plugs viscous fingering would not occur. The findings in this study illustrate the onset of viscous fingering in emulated coupled chromatographic systems and show the importance of correct solvent selection for optimum separation performance.

  3. Enhancement of finger motion range with compliant anthropomorphic joint design.

    PubMed

    Çulha, Utku; Iida, Fumiya

    2016-04-01

    Robotic researchers have been greatly inspired by the human hand in the search to design and build adaptive robotic hands. Especially, joints have received a lot of attention upon their role in maintaining the passive compliance that gives the fingers flexibility and extendible motion ranges. Passive compliance, which is the tendency to be employed in motion under the influence of an external force, is the result of the stiffness and the geometrical constraints of the joints that define the direction of the motion. Based on its building elements, human finger joints have multi-directional passive compliance which means that they can move in multiple axis of motion under external force. However, due to their complex anatomy, only simplified biomechanical designs based on physiological analysis are preferred in present day robotics. To imitate the human joints, these designs either use fixed degree of freedom mechanisms which substantially limit the motion axes of compliance, or soft materials that can deform in many directions but hinder the fingers' force exertion capacities. In order to find a solution that lies between these two design approaches, we are using anatomically correct finger bones, elastic ligaments and antagonistic tendons to build anthropomorphic joints with multi-directional passive compliance and strong force exertion capabilities. We use interactions between an index finger and a thumb to show that our joints allow the extension of the range of motion of the fingers up to 245% and gripping size to 63% which can be beneficial for mechanical adaptation in gripping larger objects. PMID:26891473

  4. Rapid functional plasticity of the somatosensory cortex after finger amputation.

    PubMed

    Weiss, T; Miltner, W H; Huonker, R; Friedel, R; Schmidt, I; Taub, E

    2000-09-01

    Recent research indicates that areas of the primary somatosensory (SI) and primary motor cortex show massive cortical reorganization after amputation of the upper arm, forearm or fingers. Most of these studies were carried out months or several years after amputation. In the present study, we describe cortical reorganization of areas in the SI of a patient who underwent amputation of the traumatized middle and ring fingers of his right hand 10 days before cortical magnetic source imaging data were obtained. Somatosensory-evoked magnetic fields (SEF) to mechanical stimuli to the finger tips were recorded and single moving dipoles were calculated using a realistic volume conductor model. Results reveal that the dipoles representing the second and fifth fingers of the affected hand were closer together than the comparable dipoles of the unaffected hand. Our findings demonstrate that neural cell assemblies in SI which formerly represented the right middle and ring fingers of this amputee became reorganized and invaded by neighbouring cell assemblies of the index and little finger of the same hand. These results indicate that functional plasticity occurs within a period of 10 days after amputation. PMID:11037286

  5. Recent Progress in the NSTX/NSTX-U Lithium Program and Prospects for Reactor-Relevant Liquid-Lithium Based Divertor Development

    SciTech Connect

    M. Ono, et al.

    2012-10-27

    Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. While tungsten has been identified as the most attractive solid divertor material, the NSTX/NSTX-U lithium (Li) program is investigating the viability of liquid lithium (LL) as a potential reactor compatible divertor plasma facing component (PFC) . In the near term, operation in NSTX-U is projected to provide reactor-like divertor heat loads < 40 MW/m^2 for 5 s. During the most recent NSTX campaign, ~ 0.85 kg of Li was evaporated onto the NSTX PFCs where a ~50% reduction in heat load on the Liquid Lithium Divertor (LLD) was observed, attributable to enhanced divertor bolometric radiation. This reduced divertor heat flux through radiation observed in the NSTX LLD experiment is consistent with the results from other lithium experiments and calculations. These results motivate an LL-based closed radiative divertor concept proposed here for NSTX-U and fusion reactors. With an LL coating, the Li is evaporated from the divertor strike point surface due to the intense heat. The evaporated Li is readily ionized by the plasma due to its low ionization energies, and the ionized Li ions can radiate strongly, resulting in a significant reduction in the divertor heat flux. Due to the rapid plasma transport in divertor plasma, the radiation values can be significantly enhanced up to ~ 11 MJ/cc of LL. This radiative process has the desired function of spreading the focused divertor heat load to the entire divertor chamber facilitating the divertor heat removal. The LL divertor surface can also provide a "sacrificial" surface to protect the substrate solid material from transient high heat flux such as the ones caused by the ELMs. The closed radiative LLD concept has the advantages of providing some degree of partition in terms of plasma disruption forces on the LL, Li particle divertor retention, and strong divertor pumping action from the

  6. Making fingers and words count in a cognitive robot

    PubMed Central

    De La Cruz, Vivian M.; Di Nuovo, Alessandro; Di Nuovo, Santo; Cangelosi, Angelo

    2013-01-01

    Evidence from developmental as well as neuroscientific studies suggest that finger counting activity plays an important role in the acquisition of numerical skills in children. It has been claimed that this skill helps in building motor-based representations of number that continue to influence number processing well into adulthood, facilitating the emergence of number concepts from sensorimotor experience through a bottom-up process. The act of counting also involves the acquisition and use of a verbal number system of which number words are the basic building blocks. Using a Cognitive Developmental Robotics paradigm we present results of a modeling experiment on whether finger counting and the association of number words (or tags) to fingers, could serve to bootstrap the representation of number in a cognitive robot, enabling it to perform basic numerical operations such as addition. The cognitive architecture of the robot is based on artificial neural networks, which enable the robot to learn both sensorimotor skills (finger counting) and linguistic skills (using number words). The results obtained in our experiments show that learning the number words in sequence along with finger configurations helps the fast building of the initial representation of number in the robot. Number knowledge, is instead, not as efficiently developed when number words are learned out of sequence without finger counting. Furthermore, the internal representations of the finger configurations themselves, developed by the robot as a result of the experiments, sustain the execution of basic arithmetic operations, something consistent with evidence coming from developmental research with children. The model and experiments demonstrate the importance of sensorimotor skill learning in robots for the acquisition of abstract knowledge such as numbers. PMID:24550795

  7. Development of a Method for Local Electron Temperature and Density Measurements in the Divertor of the JET Tokamak

    NASA Technical Reports Server (NTRS)

    Jupen, C.; Meigs, A.; Bhatia, A. K.; Brezinsek, S.; OMullane, M.

    2004-01-01

    Plasma volume recombination in the divertor, a process in which charged particles recombine to neutral atoms, contributes to plasma detachment and hence cooling at the divertor target region. Detachment has been observed at JET and other tokamaks and is known to occur at low electron temperatures (T(sub e)<1 eV) and at high electron density (n(sub e)>10(exp 20)/m(exp 3)). The ability to measure such low temperatures is therefore of interest for modelling the divertor. In present work we report development of a new spectroscopic technique for investigation of local electron density (n(sub e)) and temperature (T,) in the outer divertor at JET.

  8. The Use of an MEG/fMRI-Compatible Finger Motion Sensor in Detecting Different Finger Actions

    PubMed Central

    Yong, Xinyi; Li, Yasong; Menon, Carlo

    2016-01-01

    This paper explores the use of a novel device in detecting different finger actions among healthy individuals and individuals with stroke. The device is magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) compatible. It was prototyped to have four air-filled chambers that are made of silicone elastomer, which contains low magnetizing materials. When an individual compresses the device with his/her fingers, each chamber experiences a change in pressure, which is detected by a pressure sensor. In a previous recent work, our device was shown to be MEG/fMRI compatible. In this study, our research effort focuses on using the device to detect different finger actions (e.g., grasping and pinching) in non-shielded rooms. This is achieved by applying a support vector machine to the sensor data collected from the device when participants are resting and executing the different finger actions. The total number of possible finger actions that can be executed using the device is 31. The healthy participants could perform all the 31 different finger actions and the average classification accuracy achieved is 95.53 ± 2.63%. The stroke participants could perform all the 31 different finger actions with their healthy hand and the average classification accuracy achieved is 83.13 ± 6.69%. Unfortunately, the functions of their affected hands are compromised due to stroke. Thus, the number of finger actions they could perform ranges from 2 to 24, depending on the level of impairments. The average classification accuracy for the affected hand is 83.99 ± 16.38%. The ability to identify different finger actions using the device can provide a mean to researchers to label the data automatically in MEG/fMRI studies. In addition, the sensor data acquired from the device provide sensorimotor-­related information, such as speed and force, when the device is compressed. Thus, brain activations can be correlated with this information during different

  9. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability. PMID:27587120

  10. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  11. Extrinsic Finger and Thumb Muscles Command a Virtual Hand to Allow Individual Finger and Grasp Control

    PubMed Central

    Hargrove, Levi J.; Weir, Richard F. ff.; Kuiken, Todd A.

    2015-01-01

    Fine-wire intramuscular electrodes were used to obtain EMG signals from six extrinsic hand muscles associated with the thumb, index, and middle fingers. Subjects’ EMG activity was used to control a virtual three-DOF hand as they conformed the hand to a sequence of hand postures testing two controllers: direct EMG control and pattern recognition control. Subjects tested two conditions using each controller: starting the hand from a pre-defined neutral posture before each new posture and starting the hand from the previous posture in the sequence. Subjects demonstrated their ability to simultaneously, yet individually, move all three DOFs during the direct EMG control trials, however results showed subjects did not often utilize this feature. Performance metrics such as failure rate and completion time showed no significant difference between the two controllers. PMID:25099395

  12. Magic Ring: A Finger-Worn Device for Multiple Appliances Control Using Static Finger Gestures

    PubMed Central

    Jing, Lei; Zhou, Yinghui; Cheng, Zixue; Huang, Tongjun

    2012-01-01

    An ultimate goal for Ubiquitous Computing is to enable people to interact with the surrounding electrical devices using their habitual body gestures as they communicate with each other. The feasibility of such an idea is demonstrated through a wearable gestural device named Magic Ring (MR), which is an original compact wireless sensing mote in a ring shape that can recognize various finger gestures. A scenario of wireless multiple appliances control is selected as a case study to evaluate the usability of such a gestural interface. Experiments comparing the MR and a Remote Controller (RC) were performed to evaluate the usability. From the results, only with 10 minutes practice, the proposed paradigm of gestural-based control can achieve a performance of completing about six tasks per minute, which is in the same level of the RC-based method. PMID:22778612

  13. A study of white finger in the gas industry.

    PubMed Central

    Walker, D D; Jones, B; Ogston, S; Tasker, E G; Robinson, A J

    1985-01-01

    Men engaged in breaking or reinstating road surfaces are exposed to vibration from mechanical tools. In view of the lack of epidemiological information on vibration white finger in such a population, a survey was carried out to identify the prevalence of symptoms of white finger in a sample of men using these tools in the gas industry and to compare the prevalence with that found in a control group not occupationally exposed to vibration. Altogether 905 men (97%) in the gas industry and 552 men (92%) in the control group were interviewed, using a questionnaire from which the presence or absence of white finger symptoms from all causes was noted. The prevalence of white finger was 9.6% in the group exposed to vibration at work compared with 9.5% in the control group. The prevalence in the former group when adjusted for age differences between the survey and control populations was 12.2%, but this difference did not reach statistical significance. In case the approach of comparing prevalences of white finger from all causes might have obscured any contributory effect of vibration, the prevalence of white finger was examined in relation to the number of years vibrating tools had been used, this being the only measure of exposure to vibration available. No direct association was found between the prevalence of symptoms and number of years vibrating tools had been used. In view of this and the absence of a significant excess of white finger symptoms in the group using vibratory tools, the authors conclude that vibration white finger is not a special problem in the gas industry. Nevertheless, experimental tests carried out on the different types of roadbreakers used in the industry and on different road surfaces indicate that the vibration levels exceed the standards advocated in the draft international standard DIS 5349 (1979) at the lower end of the frequency spectrum. That no particular problem has been found may be due to the relatively short exposures to vibration

  14. Impurity transport and retention in a gas target divertor: simulation experiments in PISCES-A and modeling results

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Blush, L.; Chevalier, G.; Lehmer, R.; Hirooka, Y.; Chia, P.; Tynan, G.; Conn, R. W.

    1992-12-01

    Impurity retention in the gaseous divertor regime is investigated in the PISCES-A facility at UCLA. We report measurements and 1 1/2D fluid modeling results of impurity transport for typical tokamak divertor plasma parameters (10 18≤ ne≤3×10 19m -3, kTe≤20 eV). The neutral hydrogen density close to the (simulated) divertor target is 10 20≤ n0≤3×10 21 m -3. Gaseous trace impurities (argon, neon) as well as low- Z and high- Z materials sputtering carbon, tungsten) are studied. It is observed that the impurity retention in a gaseous divertor is substantially improved as compared to conventional divertor operating regimes. The modeling results suggest that the retention of neutral and ionized impurities is mainly due to collisions with hydrogen (deuterium) neutrals and ions streaming towards the divertor target a a velocity of 0.25-0.5 cs. A low level of residual impurity transport, observed at high neutral density, is attributed to a plasma flow reversal close to the radial boundary. Sputtering of a tungsten sample by intrinsic impurities has been shown to decrease substantially for target electron temperatures kTe<5 eV.

  15. Self-consistent treatment of the sheath boundary conditions by introducing anisotropic ion temperatures and virtual divertor model

    NASA Astrophysics Data System (ADS)

    Togo, Satoshi; Takizuka, Tomonori; Nakamura, Makoto; Hoshino, Kazuo; Ibano, Kenzo; Lang, Tee Long; Ogawa, Yuichi

    2016-04-01

    One-dimensional SOL-divertor plasma fluid simulation code which considers anisotropy of ion temperature has been developed so as to deal with sheath theory self-consistently. In our fluid modeling, explicit use of boundary condition for Mach number M at divertor plate, e.g., M = 1, becomes unnecessary. In order to deal with the Bohm condition and the sheath heat transmission factors at divertor plate self-consistently, we introduced a virtual divertor (VD) model which sets an artificial region beyond divertor plates and artificial sinks for particle, momentum and energy there to model the effects of the sheath region in front of the divertor plate. Validity of our fluid model with VD model is confirmed by showing that simulation results agree well with those from a kinetic code regarding the Bohm condition, ion temperature anisotropy and supersonic flow. We also show that the strength of artificial sinks in VD region does not affect profiles in plasma region at least in the steady state and that sheath heat transmission factors can be adjusted to theoretical values by VD model. Validity of viscous flux is also investigated.

  16. Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus Experiment.

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D; Menard, J; Paul, S F; Raman, R; Roquemore, A L; Bell, R E; Bush, C; Kaita, R

    2008-09-22

    Experiments conducted in high-performance 1.0-1.2 MA 6 MW NBI-heated H-mode plasmas with a high flux expansion radiative divertor in NSTX demonstrate that significant divertor peak heat flux reduction and access to detachment may be facilitated naturally in a highly-shaped spherical torus (ST) configuration. Improved plasma performance with high {beta}{sub p} = 15-25%, a high bootstrap current fraction f{sub BS} = 45-50%, longer plasma pulses, and an H-mode regime with smaller ELMs has been achieved in the lower single null configuration with higher-end elongation 2.2-2.4 and triangularity 0.6-0.8. Divertor peak heat fluxes were reduced from 6-12 MW/m{sup 2} to 0.5-2 MW/m{sup 2} in ELMy H-mode discharges using high magnetic flux expansion and partial detachment of the outer strike point at several D{sub 2} injection rates, while good core confinement and pedestal characteristics were maintained. The partially detached divertor regime was characterized by a 30-60% increase in divertor plasma radiation, a peak heat flux reduction by up to 70%, measured in a 10 cm radial zone, a five-fold increase in divertor neutral pressure, and a significant volume recombination rate increase.

  17. High-Speed, High-Temperature Finger Seal Test Evaluated

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2003-01-01

    A finger seal, designed and fabricated by Honeywell Engines, Systems and Services, was tested at the NASA Glenn Research Center at surface speeds up to 1200 ft/s, air temperatures up to 1200 F, and pressures across the seal of 75 psid. These are the first test results obtained with NASA s new High-Temperature, High-Speed Turbine Seal Test Rig (see the photograph). The finger seal is an innovative design recently patented by AlliedSignal Engines, which has demonstrated considerably lower leakage than commonly used labyrinth seals and is considerably cheaper than brush seals. The cost to produce finger seals is estimated to be about half of the cost to produce brush seals. Replacing labyrinth seals with fingers seals at locations that have high-pressure drops in gas turbine engines, typically main engine and thrust seals, can reduce air leakage at each location by 50 percent or more. This directly results in a 0.7- to 1.4-percent reduction in specific fuel consumption and a 0.35- to 0.7-percent reduction in direct operating costs . Because the finger seal is a contacting seal, this testing was conducted to address concerns about its heat generation and life capability at the higher speeds and temperatures required for advanced engines. The test results showed that the seal leakage and wear performance are acceptable for advanced engines.

  18. Fluid-driven fingering instability of a confined elastic meniscus

    NASA Astrophysics Data System (ADS)

    Biggins, John S.; Wei, Z.; Mahadevan, L.

    2015-05-01

    When a fluid is pumped into a cavity in a confined elastic layer, at a critical pressure, destabilizing fingers of fluid invade the elastic solid along its meniscus (Saintyves B. et al., Phys. Rev. Lett., 111 (2013) 047801). These fingers occur without fracture or loss of adhesion and are reversible, disappearing when the pressure is decreased. We develop an asymptotic theory of pressurized highly elastic layers trapped between rigid bodies in both rectilinear and circular geometries, with predictions for the critical fluid pressure for fingering, and the finger wavelength. Our results are in good agreement with recent experimental observations of this elastic interfacial instability in a radial geometry. Our theory also shows that, perhaps surprisingly, this lateral-pressure-driven instability is analogous to a transverse-displacement-driven instability of the elastic layer. We verify these predictions by using non-linear finite-element simulations on the two systems which show that in both cases the fingering transition is first order (sudden) and hence has a region of bistability.

  19. Traumatic Finger Injuries: What the Orthopedic Surgeon Wants to Know.

    PubMed

    Wieschhoff, Ged G; Sheehan, Scott E; Wortman, Jeremy R; Dyer, George S M; Sodickson, Aaron D; Patel, Ketan I; Khurana, Bharti

    2016-01-01

    Traumatic finger injuries account for a substantial number of emergency visits every year. Imaging plays an important role in diagnosis and in directing management of these injuries. Although many injuries can be managed conservatively, some require more invasive interventions to prevent complications and loss of function. Accurate diagnosis of finger injuries can often be difficult, given the complicated soft-tissue anatomy of the hand and the diverse spectrum of injuries that can occur. To best serve the patient and the treating physician, radiologists must have a working knowledge of finger anatomy, the wide array of injury patterns that can occur, the characteristic imaging findings of different finger injuries, and the most appropriate treatment options for each type of injury. This article details the intricate anatomy of the hand as it relates to common finger injuries, illustrates the imaging findings of a range of injuries, presents optimal imaging modalities and imaging parameters for the diagnosis of different injury types, and addresses which findings have important management implications for the patient and the orthopedic surgeon. With this fund of knowledge, radiologists will be able to recommend the most appropriate imaging studies, make accurate diagnoses, convey clinically relevant imaging findings to the referring physician, and suggest appropriate follow-up examinations. In this way, the radiologist will help improve patient care and outcomes. Online supplemental material is available for this article. (©)RSNA, 2016. PMID:27399238

  20. RNA binding by the Wilms tumor suppressor zinc finger proteins.

    PubMed Central

    Caricasole, A; Duarte, A; Larsson, S H; Hastie, N D; Little, M; Holmes, G; Todorov, I; Ward, A

    1996-01-01

    The Wilms tumor suppressor gene WT1 is implicated in the ontogeny of genito-urinary abnormalities, including Denys-Drash syndrome and Wilms tumor of the kidney. WT1 encodes Kruppel-type zinc finger proteins that can regulate the expression of several growth-related genes, apparently by binding to specific DNA sites located within 5' untranslated leader regions as well as 5' promoter sequences. Both WT1 and a closely related early growth response factor, EGR1, can bind the same DNA sequences from the mouse gene encoding insulin-like growth factor 2 (Igf-2). We report that WT1, but not EGR1, can bind specific Igf-2 exonic RNA sequences, and that the zinc fingers are required for this interaction. WT1 zinc finger 1, which is not represented in EGR1, plays a more significant role in RNA binding than zinc finger 4, which does have a counterpart in EGR1. Furthermore, the normal subnuclear localization of WT1 proteins is shown to be RNase, but not DNase, sensitive. Therefore, WT1 might, like the Kruppel-type zinc finger protein TFIIIA, regulate gene expression by both transcriptional and posttranscriptional mechanisms. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755514

  1. Finger Vein Recognition Based on Personalized Weight Maps

    PubMed Central

    Yang, Gongping; Xiao, Rongyang; Yin, Yilong; Yang, Lu

    2013-01-01

    Finger vein recognition is a promising biometric recognition technology, which verifies identities via the vein patterns in the fingers. Binary pattern based methods were thoroughly studied in order to cope with the difficulties of extracting the blood vessel network. However, current binary pattern based finger vein matching methods treat every bit of feature codes derived from different image of various individuals as equally important and assign the same weight value to them. In this paper, we propose a finger vein recognition method based on personalized weight maps (PWMs). The different bits have different weight values according to their stabilities in a certain number of training samples from an individual. Firstly we present the concept of PWM, and then propose the finger vein recognition framework, which mainly consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PWM achieves not only better performance, but also high robustness and reliability. In addition, PWM can be used as a general framework for binary pattern based recognition. PMID:24025556

  2. The biometric recognition on contactless multi-spectrum finger images

    NASA Astrophysics Data System (ADS)

    Kang, Wenxiong; Chen, Xiaopeng; Wu, Qiuxia

    2015-01-01

    This paper presents a novel multimodal biometric system based on contactless multi-spectrum finger images, which aims to deal with the limitations of unimodal biometrics. The chief merits of the system are the richness of the permissible texture and the ease of data access. We constructed a multi-spectrum instrument to simultaneously acquire three different types of biometrics from a finger: contactless fingerprint, finger vein, and knuckleprint. On the basis of the samples with these characteristics, a moderate database was built for the evaluation of our system. Considering the real-time requirements and the respective characteristics of the three biometrics, the block local binary patterns algorithm was used to extract features and match for the fingerprints and finger veins, while the Oriented FAST and Rotated BRIEF algorithm was applied for knuckleprints. Finally, score-level fusion was performed on the matching results from the aforementioned three types of biometrics. The experiments showed that our proposed multimodal biometric recognition system achieves an equal error rate of 0.109%, which is 88.9%, 94.6%, and 89.7% lower than the individual fingerprint, knuckleprint, and finger vein recognitions, respectively. Nevertheless, our proposed system also satisfies the real-time requirements of the applications.

  3. Prior Knowledge Improves Decoding of Finger Flexion from Electrocorticographic Signals

    PubMed Central

    Wang, Z.; Ji, Q.; Miller, K. J.; Schalk, Gerwin

    2011-01-01

    Brain–computer interfaces (BCIs) use brain signals to convey a user’s intent. Some BCI approaches begin by decoding kinematic parameters of movements from brain signals, and then proceed to using these signals, in absence of movements, to allow a user to control an output. Recent results have shown that electrocorticographic (ECoG) recordings from the surface of the brain in humans can give information about kinematic parameters (e.g., hand velocity or finger flexion). The decoding approaches in these studies usually employed classical classification/regression algorithms that derive a linear mapping between brain signals and outputs. However, they typically only incorporate little prior information about the target movement parameter. In this paper, we incorporate prior knowledge using a Bayesian decoding method, and use it to decode finger flexion from ECoG signals. Specifically, we exploit the constraints that govern finger flexion and incorporate these constraints in the construction, structure, and the probabilistic functions of the prior model of a switched non-parametric dynamic system (SNDS). Given a measurement model resulting from a traditional linear regression method, we decoded finger flexion using posterior estimation that combined the prior and measurement models. Our results show that the application of the Bayesian decoding model, which incorporates prior knowledge, improves decoding performance compared to the application of a linear regression model, which does not incorporate prior knowledge. Thus, the results presented in this paper may ultimately lead to neurally controlled hand prostheses with full fine-grained finger articulation. PMID:22144944

  4. Review of Acute Traumatic Closed Mallet Finger Injuries in Adults

    PubMed Central

    Salazar Botero, Santiago; Hidalgo Diaz, Juan Jose; Benaïda, Anissa; Collon, Sylvie; Facca, Sybille

    2016-01-01

    In adults, mallet finger is a traumatic zone I lesion of the extensor tendon with either tendon rupture or bony avulsion at the base of the distal phalanx. High-energy mechanisms of injury generally occur in young men, whereas lower energy mechanisms are observed in elderly women. The mechanism of injury is an axial load applied to a straight digit tip, which is then followed by passive extreme distal interphalangeal joint (DIPJ) hyperextension or hyperflexion. Mallet finger is diagnosed clinically, but an X-ray should always be performed. Tubiana's classification takes into account the size of the bony articular fragment and DIPJ subluxation. We propose to stage subluxated fractures as stage III if the subluxation is reducible with a splint and as stage IV if not. Left untreated, mallet finger becomes chronic and leads to a swan-neck deformity and DIPJ osteoarthritis. The goal of treatment is to restore active DIPJ extension. The results of a six- to eight-week conservative course of treatment with a DIPJ splint in slight hyperextension for tendon lesions or straight for bony avulsions depends on patient compliance. Surgical treatments vary in terms of the approach, the reduction technique, and the means of fixation. The risks involved are stiffness, septic arthritis, and osteoarthritis. Given the lack of consensus regarding indications for treatment, we propose to treat all cases of mallet finger with a dorsal glued splint except for stage IV mallet finger, which we treat with extra-articular pinning. PMID:27019806

  5. Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Abbasi, Almas; Kiani, Kourosh; Al-Shammari, Eiman Tamah

    2015-12-01

    To obtain adaptive finger passive underactuation can be used. Underactuation principle can be used to adapt shapes of the fingers for grasping objects. The fingers with underactuation do not require control algorithm. In this study a kinetostatic model of the underactuated finger mechanism was analyzed. The underactuation is achieved by adding the compliance in every finger joint. Since the contact forces of the finger depend on contact position of the finger and object, it is suitable to make a prediction model for the contact forces in function of contact positions of the finger and grasping objects. In this study prediction of the contact forces was established by a soft computing approach. Adaptive neuro-fuzzy inference system (ANFIS) was applied as the soft computing method to perform the prediction of the finger contact forces.

  6. Development of cylindrical-type finger force measuring system using force sensors and its characteristics evaluation

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon-Min; Yoon, Joungwon; Shin, Hee-Suk; Kim, Gab-Soon

    2012-02-01

    Some patients cannot use their hands because of the paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a plastic cylinder, which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the plastic cylinder. In this paper, the development of two cylindrical-type finger force measuring systems with four force sensors for left hand and right hand were developed. The developed finger force measuring system can measure the grasping force of patients' each finger (forefinger, middle finger, ring finger and little finger), and the measured results could be used to judge the rehabilitation extent of a finger patient. The grasping force tests of men and women were performed using the developed cylindrical-type finger force measuring systems. The tests confirm that the average finger forces of right hand and left hand for men were about 194 N and 179 N, and for women, 108 N and 95 N.

  7. Index and ring finger ratio--a morphologic sex determinant in South-Indian children.

    PubMed

    Kanchan, Tanuj; Pradeep Kumar, G

    2010-12-01

    To investigate the sexual dimorphism of index and ring finger ratio in South Indian children. The index finger length (IFL) and the ring finger length (RFL) were measured in 350 subjects aged between 2 and 12 years using a steel measuring tape. The index and ring finger ratio was computed by dividing index finger length by ring finger length. The data obtained were analyzed statistically using SPSS, version 11.0. Mean RFL was greater than mean IFL in both males and females. The mean ring finger length was longer in males than females and mean index finger length longer in females than males. However, these sex differences observed for index and ring finger length were not significant in both hands. Statistically significant sex differences were observed from the derived index and ring finger ratio. The mean index and ring finger ratio was found to be higher in females than males. Significant correlation was found between age and index and ring finger lengths. Index and ring finger ratio however, did not show any significant correlation with age. This study suggests that among South-Indian children, the index and ring finger ratio of 0.97 and less is indicative of male, and a ratio of more than 0.97 is indicative of female sex. The ratio can be a useful sex indicator irrespective of the age of the individual. PMID:20369311

  8. Erosion damage of nearby plasma-facing components during a disruption on the divertor plate

    SciTech Connect

    Hassanein, A.; Konkashbaev, I.

    1996-09-01

    Intense energy flow from the disrupting plasma during, a thermal quench will cause a sudden vapor cloud to form above the exposed divertor area. The vapor-cloud layer has been proved to significantly reduce the subsequent energy flux of plasma particles to the original disruption location. However, most of the incoming plasma energy is quickly converted to intense photon radiation emitted by heating of the vapor cloud. This radiation energy can cause serious erosion damage of nearby components not directly exposed to the disrupting, plasma. The extent of this ``secondary damage`` will depend on the divertor design, disrupting plasma parameters, and design of nearby components. The secondary erosion damage of these components due to intense radiation can exceed that of the original disruption location.

  9. Retention property of deuterium for fuel recovery in divertor by using hydrogen storage material

    NASA Astrophysics Data System (ADS)

    Mera, Saori; Tonegawa, Akira; Matsumura, Yoshihito; Sato, Kohnosuke; Kawamura, Kazutaka

    2014-10-01

    Magnetic confinement fusion reactor by using Deuterium and Tritium of hydrogen isotope as fuels is suggested as one of the future energy source. Most fuels don't react and are exhausted out of fusion reactor. Especially, Tritium is radioisotope and rarely exists in nature, so fuels recovery is necessary. This poster presentation will explain about research new fuel recovery method by using hydrogen storage materials in divertor simulator TPD-Sheet IV. Samples are tungsten coated with titanium; tungsten of various thickness, and titanium films deposited by ion plating on tungsten substrates. The sample surface temperature is measured by radiation thermometer. Retention property of deuterium after deuterium plasma irradiation was examined with thermal desorption spectroscopy (TDS). As a result, the TDS measurement shows that deuterium is retained in titanium. Therefore, Titanium as a hydrogen storage material expects to be possible to use separating and recovering fuel particles in divertor.

  10. Modelling of passive spectroscopy in the ITER divertor: the first hydrogen Balmer lines

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Kotov, V.; Reiter, D.

    2010-07-01

    The first lines of the hydrogen Balmer series are investigated in ITER divertor conditions using a line shape code and a plasma edge transport code. It is shown that most of the emissivity originates from a localized, cold and dense region close to the divertor target plates, where the plasma is in the recombining regime. We simulate the signal obtained by pointing a spectrometer at this zone. The physical processes which contribute to the spectral line formation are examined, with a special emphasis on the Stark effect, photon absorption and stimulated emission. It is shown that, even though the Stark effect is significant, local information on the Doppler atomic temperature can be obtained from a fitting analysis of the Dα spectral line shape.

  11. The development of in-situ calibration method for divertor IR thermography in ITER

    SciTech Connect

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K.

    2014-08-21

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100–600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5–5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  12. Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor

    SciTech Connect

    Balboa, I.; Arnoux, G.; Kinna, D.; Thomas, P. D.; Morlock, C.; Kruezi, U.; Sergienko, G.; Rack, M.; Collaboration: JET EFDA Contributors

    2012-10-15

    For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 {mu}m and up to sampling frequencies of {approx}20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented.

  13. Appearance of hot spots due to deposits in the JET MKII-HD outer divertor

    NASA Astrophysics Data System (ADS)

    van Rooij, G. J.; Brezinsek, S.; Coad, J. P.; Fundamenski, W.; Philipps, V.; Arnoux, G.; Stamp, M. F.; EFDA contributors, JET

    2009-06-01

    Deposited layers in the JET MKII-HD outer divertor have been investigated on the basis of their transient heating. The Planck radiation in the 400-600 nm wavelength range and IR thermography data were analyzed to correlate the appearance of the layers with plasma conditions. Both methods yielded significantly different surface temperatures: typically >2000 K for the visible light spectroscopy and down to 800 K for the thermography. This is explained by the existence of high temperature emission areas as small as 1-2 mm 2. Analysis of the reoccurrence of hot spots in the outer divertor throughout the 2006 campaigns indicated that the formation is determined by the combination of the outer strike point location and the plasma stored energy. The observations did not indicate any changes in thermal properties nor cyclic formation and disintegration of the layers, i.e. it was stable and so-called hard layers.

  14. The development of in-situ calibration method for divertor IR thermography in ITER

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K.

    2014-08-01

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100-600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5-5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  15. On the possibility of inducing strong plasma convection in the divertor of MAST

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Helander, P.; Cohen, R. H.

    2001-10-01

    In this paper, a theory is developed to describe scrape-off layer (SOL) broadening by inducing convective cells through divertor plate biasing in a tokamak. The theory is applied to the Mega-Ampere Spherical Tokamak, where such experiments are planned in the near future. Criteria are derived for achieving strong broadening and for exciting shear-flow turbulence in the SOL, and these criteria are shown to be attainable in practice. It is also shown that the magnetic shear present in the vicinity of the X-point is likely to confine the potential perturbations to the divertor region below the X-point, leaving the part of the SOL that is in direct contact with the core plasma intact. The current created in the SOL by the biasing and the associated heating power are also calculated and are found to be modest.

  16. Free-boundary ideal MHD stability of W7-X divertor equilibria

    NASA Astrophysics Data System (ADS)

    Nührenberg, C.

    2016-07-01

    Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.

  17. Divertor heat flux footprints in EDA H-mode discharges on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Terry, J. L.; Hughes, J. W.; Brunner, D.; Payne, J.; Reinke, M. L.; Lin, Y.; Wukitch, S.

    2011-08-01

    The physics that sets the width of the power exhaust channel in a tokamak scrape-off layer and its scaling with engineering parameters is of fundamental importance for reactor design, yet it remains to be understood. An extensive array of divertor heat flux diagnostics was recently commissioned in Alcator C-Mod with the aim of improving our understanding. Initial results are reported from EDA H-mode discharges in which plasma current, input power, toroidal field and magnetic topology were varied. The integral width of the outer divertor heat flux footprint is found to lie in the range of 3-5 mm mapped to the mid-plane. Widths are insensitive to single versus double-null topology and the magnitude of toroidal field. Pedestal physics appears to largely determine these widths; a dependence of width on plasma thermal energy is noted, yielding a reduction in width as plasma current is increased for the best EDA H-modes.

  18. Theory Issues for Induced Plasma Convection Experiments in the Divertor of the MAST Spherical Tokamak

    SciTech Connect

    Cohen, R H; Fielding, S; Helander, P; Ryutov, D D

    2001-09-05

    This paper surveys theory issues associated with inducing convective cells through divertor tile biasing in a tokamak to broaden the scrape-off layer (SOL). The theory is applied to the Mega-Ampere Spherical Tokamak (MAST), where such experiments are planned in the near future. Criteria are presented for achieving strong broadening and for exciting shear-flow turbulence in the SOL; these criteria are shown to be attainable in practice. It is also shown that the magnetic shear present in the vicinity of the X-point is likely to confine the potential perturbations to the divertor region below the X-point, leaving the part of the SOL that is in direct contact with the core plasma intact. The current created by the biasing and the associated heating power are found to be modest.

  19. TRANSPORT OF ELM ENERGY AND PARTICLES INTO THE SOL AND DIVERTOR OF DIII-D

    SciTech Connect

    LEONARD,AW; OSBORNE,TH; FENSTERMACHER,ME; GROEBNER,RJ; GROTH,M; LASNIER,CJ; MAHDAVI,MA; PETRIE,TW; SNYDER,PB; WATKINS,JG; ZENG,L

    2002-11-01

    A271 TRANSPORT OF ELM ENERGY AND PARTICLES INTO THE SOL AND DIVERTOR OF DIII-D. The reduction in size of Type I edge localized models (ELMs) with increasing density is explored in DIII-D for the purpose of studying the underlying transport of ELM energy. The separate convective and conductive transport of energy due to an ELM is determined by Thomson scattering measurements of electron density and temperature in the pedestal. The conductive transport from the pedestal during an ELM decreases with increasing density, while the convective transport remains nearly constant. The scaling of the ELM energy loss is compared with an edge stability model. The role of the divertor sheath in limiting energy loss from the pedestal during an ELM is explored. Evidence of outward radial transport to the midplane wall during an ELM is also presented.

  20. Observation of Non-Maxwellian Electron Distributions in th e NSTX Divertor

    SciTech Connect

    M.A. Jaworski, et. al.

    2013-03-07

    The scrape-off layer plasma at the tokamak region is characterized by open field lines and often contains large variations in plasma properties along these field-lines. Proper characterization of local plasma conditions is critical to assessing plasma-material interaction processes occuring at the target. Langmuir probes are frequently employed in tokamak divertors but are challenging to interpretation. A kinetic interpretation for Langmuir probes in NSTX has yielded non-Maxwellian electron distributions in the divertor characterized by cool bulk populations and energetic tail populations with temperatures of 2-4 times the bulk. Spectroscopic analysis and modeling confirms the bulk plasma temperature and density which can only be obtained with the kinetic interpretation

  1. High density Langmuir probe array for NSTX scrape-off layer measurements under lithiated divertor conditions

    SciTech Connect

    Kallman, J.; Jaworski, M. A.; Kaita, R.; Kugel, H.; Gray, T. K.

    2010-10-15

    A high density Langmuir probe array has been developed for measurements of scrape-off layer parameters in NSTX. Relevant scale lengths for heat and particle fluxes are 1-5 cm. Transient edge plasma events can occur on a time scale of several milliseconds, and the duration of a typical plasma discharge is {approx}1 s. The array consists of 99 individual electrodes arranged in three parallel radial rows to allow both swept and triple-probe operation and is mounted in a carbon tile located in the lower outer divertor of NSTX between two segments of the newly installed liquid lithium divertor. Initial swept probe results tracking the outer strike point through probe flux measurements are presented.

  2. 3D effects of edge magnetic field configuration on divertor/scrape-off layer transport and optimization possibilities for a future reactor

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Xu, Y.; Ida, K.; Corre, Y.; Feng, Y.; Schmitz, O.; Frerichs, H.; Tabares, F. L.; Evans, T. E.; Coenen, J. W.; Liang, Y.; Bader, A.; Itoh, K.; Yamada, H.; Ghendrih, Ph.; Ciraolo, G.; Tafalla, D.; Lopez-Fraguas, A.; Guo, H. Y.; Cui, Z. Y.; Reiter, D.; Asakura, N.; Wenzel, U.; Morita, S.; Ohno, N.; Peterson, B. J.; Masuzaki, S.

    2015-10-01

    This paper assesses the three-dimensional (3D) effects of the edge magnetic field structure on divertor/scrape-off layer transport, based on an inter-machine comparison of experimental data and on the recent progress of 3D edge transport simulation. The 3D effects are elucidated as a consequence of competition between transports parallel (\\parallel ) and perpendicular (\\bot ) to the magnetic field, in open field lines cut by divertor plates, or in magnetic islands. The competition has strong impacts on divertor functions, such as determination of the divertor density regime, impurity screening and detachment control. The effects of magnetic perturbation on the edge electric field and turbulent transport are also discussed. Parameterization to measure the 3D effects on the edge transport is attempted for the individual divertor functions. Based on the suggested key parameters, an operation domain of the 3D divertor configuration is discussed for future devices.

  3. Targeted Mutagenesis in Zebrafish Using Customized Zinc Finger Nucleases

    PubMed Central

    Foley, Jonathan E.; Maeder, Morgan L.; Pearlberg, Joseph; Joung, J. Keith; Peterson, Randall T.; Yeh, Jing-Ruey J.

    2009-01-01

    Zebrafish mutants have traditionally been obtained using random mutagenesis or retroviral insertions, methods that cannot be targeted to a specific gene and require laborious gene mapping and sequencing. Recently, we and others have shown that customized zinc finger nucleases (ZFNs) can introduce targeted frame-shift mutations with high efficiency, thereby enabling directed creation of zebrafish gene mutations. Here we describe a detailed protocol for constructing ZFN expression vectors, for generating and introducing ZFN-encoding RNAs into zebrafish embryos, and for identifying ZFN-generated mutations in targeted genomic sites. All of our vectors and methods are compatible with previously described Zinc Finger Consortium reagents for constructing engineered zinc finger arrays. Using these methods, zebrafish founders carrying targeted mutations can be identified within four months. PMID:20010934

  4. Initial results of finger imaging using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    van Es, Peter; Biswas, Samir K.; Moens, Hein J. Bernelot; Steenbergen, Wiendelt; Manohar, Srirang

    2014-06-01

    We present a photoacoustic computed tomography investigation on a healthy human finger, to image blood vessels with a focus on vascularity across the interphalangeal joints. The cross-sectional images were acquired using an imager specifically developed for this purpose. The images show rich detail of the digital blood vessels with diameters between 100 μm and 1.5 mm in various orientations and at various depths. Different vascular layers in the skin including the subpapillary plexus could also be visualized. Acoustic reflections on the finger bone of photoacoustic signals from skin were visible in sequential slice images along the finger except at the location of the joint gaps. Not unexpectedly, the healthy synovial membrane at the joint gaps was not detected due to its small size and normal vascularization. Future research will concentrate on studying digits afflicted with rheumatoid arthritis to detect the inflamed synovium with its heightened vascularization, whose characteristics are potential markers for disease activity.

  5. Prognostic factors on survival rate of fingers replantation

    PubMed Central

    Lima, José Queiroz; Carli, Alberto De; Nakamoto, Hugo Alberto; Bersani, Gustavo; Crepaldi, Bruno Eiras; de Rezende, Marcelo Rosa

    2015-01-01

    Objective: To evaluate the factors that influence the survival rate of replantation and revascularization of the thumb and/or fingers. Methods: We included fifty cases treated in our department from May 2012 to October 2013 with total or partial finger amputations, which had blood perfusion deficit and underwent vascular anastomosis. The parameters evaluated were: age, gender, comorbidities, trauma, time and type of ischemia, mechanism, the injured area, number of anastomosed vessels and use of vein grafts. The results were statistically analyzed and type I error value was set at p <0.05 . Results: Fifty four percent of the 50 performed replantation survived. Of 15 revascularizations performed, the survival rate was 93.3%. The only factor that affected the survival of the amputated limb was the necessity of venous anastomosis. Conclusion: We could not establish contraindications or absolute indications for the replantation and revascularization of finger amputations in this study. Level of Evidence III, Retropective Study. PMID:26327788

  6. Arthropathy, ankylosing spondylitis, and clubbing of fingers in ulcerative colitis

    PubMed Central

    Jalan, K. N.; Prescott, R. J.; Walker, R. J.; Sircus, W.; McManus, J. P. A.; Card, W. I.

    1970-01-01

    In a retrospective study of 399 patients with ulcerative colitis, 27 patients had colitic arthritis, 17 had ankylosing spondylitis, and 20 had clubbing of the fingers. Colitic arthritis and ankylosing spondylitis were not related to severity, extent of involvement, or duration of colitis. A significant association between colitic arthropathy and other complications of ulcerative colitis, such as pseudopolyposis, perianal disease, eye lesions, skin eruptions, aphthous ulceration, and liver disease has been demonstrated. The outcome of the first referred attack of colitis in the presence of colitic arthritis and ankylosing spondylitis remained uninfluenced. Clubbing of fingers was related to severity, extent of involvement, and length of the history of colitis. A significant association between clubbing of the fingers and carcinoma of the colon, pseudopolyposis, toxic dilatation, and arthropathy has been shown. The frequency of surgical intervention in patients with clubbing was higher but the overall mortality was not significantly different from the patients without clubbing. PMID:5473606

  7. High-Speed, High-Temperature Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.

    2002-01-01

    Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.

  8. Regulation of cancer stem cells by RING finger ubiquitin ligases

    PubMed Central

    Sun, Xiao-Hong

    2014-01-01

    Like normal stem cells, cancer stem cells (CSCs) are capable of self-renewal, either by symmetric or asymmetric cell division. They have the exclusive ability to reproduce malignant tumors indefinitely, and to confer resistance in response to radiation or chemotherapy. The ubiquitin modification system plays various roles in physiology and pathology. The key component for the specificity of this system is ubiquitin ligases (E3s). Of these E3s, the majority are RING finger proteins. Many RING finger E3s, such as the Cullin1-Skp1-F-box protein (SCF) E3s, CBL, BRCA1, MDM2 and von Hippel-Lindau tumour suppressor (VHL), are crucial in the regulation of cell-cycle progression and cell differentiation. As a result, many RING finger E3s are implicated in the positive and negative regulation of CSC maintenance. This review summarizes current knowledge in this research field. PMID:27358852

  9. Finger Pricking and Pain: A Never Ending Story

    PubMed Central

    Heinemann, Lutz

    2008-01-01

    Without finger pricking, no self-measurement of blood glucose (SMBG) is possible. However, the number of scientific studies dealing with this topic, which is highly relevant for patients, is surprisingly small. This is in sharp contrast to the number of papers about blood glucose meters and SMBG in general. This article highlights a number of aspects that are relevant when it comes to finger pricking and pain. There is a clear improvement in the technology employed in the many different lancing devices that are on the market nowadays; however, no good head-to-head comparison study has been performed to date. The invention of novel devices for finger pricking will most likely bring more attention to this topic. PMID:19885279

  10. Finger sudorometry and assessment of the sudomotor drive.

    PubMed

    Satchell, P; Ware, S; Barron, J; Tuck, R

    1994-08-01

    Sudorometry of the finger was carried out using the ventilated capsule method, the aim being to use the level of relative humidity within the sudorometer as an indirect measure of the sudomotor drive. Subjects inserted a finger through a diaphragm of a finger-shaped, temperature-controlled chamber which also contained the humidity sensor. Manoeuvres known to alter the sudomotor drive produced changes in chamber humidity. The relative humidity within the sudorometer became constant after local anaesthesia of the digital nerves and after upper limb sympathectomy, suggesting that fluctuations in the sudorometer output were dependent upon an intact autonomic nervous system. In an environment in which temperature was controlled and arousal effects from the process of measurement were minimised, chamber humidity always increased during a Stroop test, providing a rapid means of indirectly assessing sudomotor drive mechanisms. PMID:7823624

  11. Effect of transcranial magnetic stimulation on force of finger pinch

    NASA Astrophysics Data System (ADS)

    Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu

    2009-04-01

    Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.

  12. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  13. Interfacial instabilities and fingering formation in Hele-Shaw flow

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Jun

    1996-10-01

    The interfacial instability of Hele-Shaw flow has been a crucial issue for the understanding of the pattern formation of viscous fingers in a Hele-Shaw cell. By using a unified asymptotic approach, we derive two different types of instability mechanisms for slightly' time-dependent finger solutions; namely, (i) the global-trapped-wave (GTW) instability; and (ii) the zero-frequency (null-f) instability. On the basis of these instability mechanisms, the selection of viscous finger formation is clarified; the apparent contradiction between the previous linearstability analysis by Tanveer (1987, Phys. Fluid 30, 1589) and others and the numerical simulations by DeGregoria & Schwartz (1986, J. Fluid Mech. 164, 383)and the experimental evidence is reconciled.

  14. Predictions for Non-Solenoidal Startup in Pegasus with Lower Divertor Helicity Injectors

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.

    2014-10-01

    Non-solenoidal startup in Pegasus has focused on using arrays of local helicity injectors situated on the outboard midplane to leverage PF induction. In contrast, injector assemblies located in the lower divertor region can provide improved performance. Higher toroidal field at the injector increases the helicity injection rate, providing a higher effective loop voltage. Poloidal flux expansion in the divertor region will increase the Taylor relaxation current limit. Radial position control requirements are lessened, as plasma expansion naturally couples to injectors in the divertor region. Advances in cathode design and plasma-facing guard rings allow operation at bias voltages over 1.5 kV, three times higher than previously available. This results in increased effective loop voltage and reduced impurity generation. Operation of helicity injectors in the high field side elevates the current requirements for relaxation to a tokamak-like state, but these are met through the improved injector design and increased control over the poloidal field structure via the addition of new coil sets. These advances, combined with the relocation of the injectors to the divertor region, will allow access to the operational regime where helicity injection current drive, rather the poloidal induction, dominates the discharge--a prerequisite for scaling to larger devices. Initial estimates indicate that plasma currents of 0.25-0.30 MA are attainable at full toroidal field with 4 injectors of 2 cm2 each and 8 kA total injected current. Work supported by US DOE Grant DE-FG02-96ER54375.

  15. A tangentially viewing VUV TV system for the DIII-D divertor

    SciTech Connect

    Nilson, D.G.; Ellis, R.; Fenstermacher, M.E.; Brewis, G.; Jalufka, N.

    1998-07-01

    A video camera system capable of imaging VUV emission in the 120--160 nm wavelength range, from the entire divertor region in the DIII-D tokamak, was designed. The new system has a tangential view of the divertor similar to an existing tangential camera system which has produced two dimensional maps of visible line emission (400--800 nm) from deuterium and carbon in the divertor region. However, the overwhelming fraction of the power radiated by these elements is emitted by resonance transitions in the ultraviolet, namely the C IV line at 155.0 nm and Ly-{alpha} line at 121.6 nm. To image the ultraviolet light with an angular view including the inner wall and outer bias ring in DIII-D, a 6-element optical system (f/8.9) was designed using a combination of reflective and refractive optics. This system will provide a spatial resolution of 1.2 cm in the object plane. An intermediate UV image formed in a secondary vacuum is converted to the visible by means of a phosphor plate and detected with a conventional CID camera (30 ms framing rate). A single MgF{sub 2} lens serves as the vacuum interface between the primary and secondary vacuums; a second lens must be inserted in the secondary vacuum to correct the focus at 155 nm. Using the same tomographic inversion method employed for the visible TV, they reconstruct the poloidal distribution of the UV divertor light. The grain size of the phosphor plate and the optical system aberrations limit the best focus spot size to 60 {micro}m at the CID plane. The optical system is designed to withstand 350 C vessel bakeout, 2 T magnetic fields, and disruption-induced accelerations of the vessel.

  16. Initial operation of the divertor Thompson scattering diagnostic on DIII-D

    SciTech Connect

    Carlstrom, T.N.; Hsieh, C.L.; Stockdale, R.E.

    1996-05-01

    The first Thomson scattering measurements of n{sub e} and T{sub e} in the divertor region of a tokamak are reported. These data are used as input to boundary physics codes such as UEDGE and DEGAS and to benchmark the predictive capabilities of these codes. These measurements have also contributed to the characterization of tokamak disruptions. A Nd:YAG laser (20 Hz, 1 J, 15 ns, 1064 nm) is directed vertically through the lower divertor region of the DIII-D tokamak. A custom, aspherical collection lens (f /6.8) images the laser beam from 1-21 cm above the target plates into eight spatial channels with 1.5 cm vertical and 0.3 cm radial resolution. 2D mapping of the divertor region is achieved by sweeping the divertor X-point location radially through the fixed laser beam location. Fiber optics carry the light to polychromators whose interference filters have been optimized for low T{sub e} measurements. Silicon avalanche photo diodes measure both the scattered and plasma background light. Temperatures and densities are typically in the range of 5-200 eV and 1 - 10 x 10{sup 19} m{sup -3} respectively. Low temperatures, T{sub e} < 1 eV, and high densities, n{sub e} > 8x10{sup 20} m{sup -3} have been observed in detached plasmas. Background light levels have not been a significant problem. Reduction of the laser stray light permits Rayleigh calibration. Because of access difficulties, no in-vessel vacuum alignment target could be used. Instead, an in situ laser alignment monitor provides alignment information for each laser pulse. Results are compared with Langmuir probe measurements where good agreement is found except for regions of high n{sub e} and low T{sub e} as measured by Thomson scattering.

  17. Steady-state tokamak reactor with non-divertor impurity control: STARFIRE

    SciTech Connect

    Baker, C.C.

    1980-01-01

    STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described.

  18. Custom-Made Finger Guard to Prevent Wire-Stick Injury to the Operator's Finger while Performing Intermaxillary Fixation

    PubMed Central

    Kumaresan, Ramesh; Ponnusami, Karthikeyan; Karthikeyan, Priyadarshini

    2014-01-01

    The treatment of maxillofacial fractures involves different methods from bandages and splinting to methods of open reduction and internal fixation and usually requires control of the dental occlusion with the help of intermaxillary fixation (IMF). Different wiring techniques have been used to aid in IMF including placement of custom-made arch bars, eyelet etc. However, these wiring techniques are with a constant danger of trauma to the surgeon's fingers by their sharp ends. Though there exist a variety of commercially available barrier products and customized techniques to prevent wire-stick injury, cost factor, touch sensitivity, and comfort aspect restrain their acquirement and exploit. This technical note describes the construction of a simple and economical finger guard made of soft thermoplastic material that provides an added protection to fingers from wire-stick type injuries, and its flexible nature permits a comfortable finger flexion movement and acceptable touch sensitivity. This is a simple, economical, reusable puncture, and cut-resistance figure guard by which we can avoid wire-stick type injury to the operator's fingers during wiring technique. PMID:25383158

  19. Computing with liquid crystal fingers: models of geometric and logical computation.

    PubMed

    Adamatzky, Andrew; Kitson, Stephen; Costello, Ben De Lacy; Matranga, Mario Ariosto; Younger, Daniel

    2011-12-01

    When a voltage is applied across a thin layer of cholesteric liquid crystal, fingers of cholesteric alignment can form and propagate in the layer. In computer simulation, based on experimental laboratory results, we demonstrate that these cholesteric fingers can solve selected problems of computational geometry, logic, and arithmetics. We show that branching fingers approximate a planar Voronoi diagram, and nonbranching fingers produce a convex subdivision of concave polygons. We also provide a detailed blueprint and simulation of a one-bit half-adder functioning on the principles of collision-based computing, where the implementation is via collision of liquid crystal fingers with obstacles and other fingers. PMID:22304104

  20. Recent progress in the NSTX/NSTX-U lithium programme and prospects for reactor-relevant liquid-lithium based divertor development

    NASA Astrophysics Data System (ADS)

    Ono, M.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Ahn, J.-W.; Allain, J. P.; Bell, M. G.; Bell, R. E.; Clayton, D. J.; Canik, J. M.; Ding, S.; Gerhardt, S.; Gray, T. K.; Guttenfelder, W.; Hirooka, Y.; Kallman, J.; Kaye, S.; Kumar, D.; LeBlanc, B. P.; Maingi, R.; Mansfield, D. K.; McLean, A.; Menard, J.; Mueller, D.; Nygren, R.; Paul, S.; Podesta, M.; Raman, R.; Ren, Y.; Sabbagh, S.; Scotti, F.; Skinner, C. H.; Soukhanovskii, V.; Surla, V.; Taylor, C. N.; Timberlake, J.; Zakharov, L. E.; the NSTX Research Team

    2013-11-01

    Developing a reactor-compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and other plasma performance benefits. During the 2010 NSTX campaign, application of a relatively modest amount of Li (300 mg prior to the discharge) resulted in a ˜50% reduction in heat load on the liquid lithium divertor (LLD) attributable to enhanced divertor bolometric radiation. These promising Li results in NSTX and related modelling calculations motivated the radiative LLD concept proposed here. Li is evaporated from the liquid lithium (LL) coated divertor strike-point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating the divertor heat removal. The LL coating of divertor surfaces can also provide a ‘sacrificial’ protective layer to protect the substrate solid material from transient high heat flux such as the ones caused by the edge localized modes. By operating at lower temperature than the first wall, the LL covered large divertor chamber wall surfaces can serve as an effective particle pump for the entire reactor chamber, as impurities generally migrate towards lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity (e.g., ˜1 l s-1 for ˜1% level ‘impurities’) is envisioned for a steady-state 1 GW-electric class fusion power plant.

  1. Continuous non-invasive finger blood pressure monitoring in children.

    PubMed

    Tanaka, H; Thulesius, O; Yamaguchi, H; Mino, M; Konishi, K

    1994-06-01

    We evaluated the performance of continuous non-invasive finger arterial pressure measurement using the volume-clamp technique (Finapres). This study was designed to compare finger arterial pressure with brachial blood pressure estimated by the auscultatory method in 217 children (90 boys and 127 girls) aged 4-16 years and in 38 adults (aged 18-45 years). Finger and brachial artery pressure readings were obtained consecutively from the ipsilateral side in the supine position. Finger arterial pressure waveforms were recorded in all children except 4 with small and thin fingers. There was good agreement for systolic pressure with only a slight underestimation of 1.9 mmHg and 5.1 mmHg lower for diastolic pressure. This difference most probably reflects inaccuracy of the auscultatory cuff method rather than an error in the Finapres. There was large inter-individual variability in Finapres recordings which might be due to differences in vasomotor tone, as demonstrated by systolic amplification in 5 patients with anorexia. However, Finapres showed a small within-subject variability (3.8 mmHg for systolic and 4.1 mmHg for diastolic pressure) determined in 5 patients during phenylephrine infusion, and as good reproducibility as the auscultatory method. These results suggest that finger arterial pressure measurement in children older than 6 years of age has similar accuracy as that in adults, and that this method is useful for clinical applications in children, especially for the non-invasive evaluation of autonomic control and cardiovascular reflexes involving transient and rapid blood pressure changes. PMID:7919764

  2. Finger Tendon Travel Associated with Sequential Trigger Nail Gun Use

    PubMed Central

    Lowe, Brian; Albers, James; Hudock, Stephen; Krieg, Edward

    2015-01-01

    TECHNICAL ABSTRACT Background Pneumatic nail guns used in wood framing are equipped with one of two triggering mechanisms. Sequential actuation triggers have been shown to be a safer alternative to contact actuation triggers because they reduce traumatic injury risk. However, the sequential actuation trigger must be depressed for each individual nail fired as opposed to the contact actuation trigger, which allows the trigger to be held depressed as nails are fired repeatedly by bumping the safety tip against the workpiece. As such, concerns have been raised about risks for cumulative trauma injury, and reduced productivity, due to repetitive finger motion with the sequential actuation trigger. Purpose This study developed a method to predict cumulative finger flexor tendon travel associated with the sequential actuation trigger nail gun from finger joint kinematics measured in the trigger actuation and productivity standards for wood-frame construction tasks. Methods Finger motions were measured from six users wearing an instrumented electrogoniometer glove in a simulation of two common framing tasks–wall building and flat nailing of material. Flexor tendon travel was calculated from the ensemble average kinematics for an individual nail fired. Results Finger flexor tendon travel was attributable mostly to proximal interphalangeal and distal interphalangeal joint motion. Tendon travel per nail fired appeared to be slightly greater for a wall-building task than a flat nailing task. The present study data, in combination with construction industry productivity standards, suggest that a high-production workday would be associated with less than 60 m/day cumulative tendon travel per worker (based on 1700 trigger presses/day). Conclusion and Applications These results suggest that exposure to finger tendon travel from sequential actuation trigger nail gun use may be below levels that have been previously associated with high musculoskeletal disorder risk. PMID

  3. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  4. Versatile millimeter-wave interferometer with two frequencies in the divertor region of JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Fukuda, T.; Sakurai, S.; Hosogane, N.; Kodama, K.; Masaki, K.

    1998-09-01

    A millimeter-wave interferometer having a capability of concomitant electron temperature measurement, based on the electron cyclotron absorption (ECA) technique, has been developed for divertor diagnostics in JT-60U. Three lines of sight, which pass through the X point horizontally, the inboard divertor and the outboard divertor, are chosen. Two transmitter/receiver units with frequencies of 217 and 183 GHz are employed in order to eliminate the spurious vibration effect using a two color scheme. The two independent units are also arranged to enable two sight line measurements without the vibration compensation. Furthermore, these units allow us to apply the simultaneous ECA diagnostic. Due to the complexity of the transmission line inside the tokamak, the insertion loss is as large as 65 dB. However, the interferometer system can be operated with the signal-to-noise (S/N) ratio of about 20 dB due to the low equivalent input noise of -90 dB m. The measurements performed for several types of the JT-60U discharges indicate the feasibility of the system and the rapid reduction of the electron density near the X point at the high confinement mode transition is first demonstrated.

  5. Understanding of Neutral Gas Transport in the Alcator C-Mod Tokamak Divertor

    SciTech Connect

    D.P. Stotler; C.S. Pitcher; C.J. Boswell; B. LaBombard; J.L. Terry; J.D. Elder; S. Lisgo

    2002-05-07

    A series of experiments on the effect of divertor baffling on the Alcator C-Mod tokamak provides stringent tests on models of neutral gas transport in and around the divertor region. One attractive feature of these experiments is that a trial description of the background plasma can be constructed from experimental measurements using a simple model, allowing the neutral gas transport to be studied with a stand-alone code. The neutral-ion and neutral-neutral elastic scattering processes recently added to the DEGAS 2 Monte Carlo neutral transport code permit the neutral gas flow rates between the divertor and main chamber to be simulated more realistically than before. Nonetheless, the simulated neutral pressures are too low and the deuterium Balmer-alpha emission profiles differ qualitatively from those measured, indicating an incomplete understanding of the physical processes involved in the experiment. Some potential explanations are examined and opportunities for future exploration a re highlighted. Improvements to atomic and surface physics data and models will play a role in the latter.

  6. A fast reciprocating Langmuir probe for the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Hunter, J.; Tafoya, B.

    1996-11-01

    A new reciprocating Langmuir probe has been used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X-point on the DIII-D tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for SOL and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition and power supply systems design will be described. Initial measurements will also be presented.

  7. Net versus gross erosion of high-Z materials in the divertor of DIII-D

    NASA Astrophysics Data System (ADS)

    Rudakov, D. L.; Stangeby, P. C.; Wampler, W. R.; Brooks, J. N.; Brooks, N. H.; Elder, J. D.; Hassanein, A.; Leonard, A. W.; McLean, A. G.; Moyer, R. A.; Sizyuk, T.; Watkins, J. G.; Wong, C. P. C.

    2014-04-01

    A substantial reduction of net compared to gross erosion of molybdenum and tungsten was observed in experiments conducted in the lower divertor of DIII-D using the divertor material evaluation system. Post-exposure net erosion of molybdenum and tungsten films was measured by Rutherford backscattering (RBS) yielding net erosion rates of 0.4-0.7 nm s-1 for Mo and ˜0.14 nm s-1 for W. Gross erosion was estimated using RBS on a 1 mm diameter sample, where re-deposition is negligible. Net erosion on a 1 cm diameter sample was reduced compared to gross erosion by factors of ˜2 for Mo and ˜3 for W. The experiment was modeled with the REDEP/WBC erosion/re-deposition code package coupled to the Ion Transport in Materials and Compounds—DYNamics mixed-material code, with plasma conditions supplied by the Onion skin modeling + Eirene + Divimp for edGE modeling code with input from divertor Langmuir probes. The code-calculated net/gross erosion rate ratios of 0.46 for Mo and 0.33 for W are in agreement with the experiment.

  8. Exposures of tungsten nanostructures to divertor plasmas in DIII-D

    DOE PAGESBeta

    Rudakov, D. L.; Wong, C. P. C.; Doerner, R. P.; Wright, G. M.; Abrams, T.; Baldwin, M. J.; Boedo, J. A.; Briesemeister, A. R.; Chrobak, C. P.; Guo, H. Y.; et al

    2016-01-22

    Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the divertor material evaluation system. Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by vertical displacement event disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with littlemore » obvious damage except in the areas where unipolar arcing occurred. In conclusion, arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces.« less

  9. Design and operation of a novel divertor cryopumping system in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Beck, B.; Bosco, J.; Childs, R.; Gwinn, D.; Irby, J.; Leccacorvi, R.; Marazita, S.; Mucic, N.; Pierson, S.; Rokhman, Y.; Titus, P.; Vieira, R.; Zaks, J.; Zhukovsky, A.

    2007-11-01

    C-Mod's recently installed upper-divertor cryopump is unique among the world's tokamaks, employing an array of gas-pumping slots that penetrate the upper divertor target. This geometry enables the use of a single toroidal loop of liquid helium, operating in an efficient heat transfer regime with low or no helium flow. A system pumping speed of 9,600 l/sec for D2 gas has been achieved, matching that of a full-scale prototype system. Neutral pressures in the pumping slots during upper-null plasmas (USN) are found to meet or exceed pressures in the lower divertor's private flux region during lower-null (LSN) -- evidence that the pumping-slot geometry is performing as intended. Very high steady-state pumping throughputs (exceeding ˜140 torr-l/s) have been demonstrated in USN. Reliable and efficient operation of the pump has been established, synchronized with the C-Mod shot cycle and consuming 60 to 90 liters of liquid helium during a full day of operation.

  10. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    SciTech Connect

    Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren,R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov L. E.

    2008-09-26

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  11. On the difference of H-mode power threshold in divertor and limiter tokamaks

    NASA Astrophysics Data System (ADS)

    Kalupin, D.; Tokar, M. Z.; Unterberg, B.; Loozen, X.; Pilipenko, D.; Zagorski, R.; Contributors, TEXTOR

    2006-05-01

    The difference in the H-mode power threshold in divertor and limiter configurations is numerically investigated by analysing the effect of boundary conditions imposed on the last closed magnetic surface (LCMS) and given by prescribed density and temperature e-folding lengths, δn and δT, respectively. It is demonstrated that the variation of δn and δT significantly affects the H-mode power threshold. This is explained by the change in the balance between conductive and convective heat losses at the edge. For the ratio δn/δT large enough, when the convective loss does not exceed 45% of the total power, the threshold agrees well with the experimental multi-machine scaling for divertor tokamaks. With reduction in δn/δT and increase in convective loss above this critical level, the power threshold significantly exceeds the scaling, in agreement with observations on different limiter tokamaks. By considering the power and particle balances in the scrape-off layer it is shown that the ratio δn/δT is controlled by the distance which recycling neutrals pass before entering the confined plasma and which is normally much larger in divertor machines than in the limiter ones. The calculations for the limiter tokamak TEXTOR have predicted the experimentally found conditions for the L H transition in advance.

  12. Gyrokinetic study of edge blobs and divertor heat-load footprint

    NASA Astrophysics Data System (ADS)

    Chang, C.-S.; Ku, S.-H.; Churchill, M.; Zweben, S.

    2014-10-01

    In an attempt to better understand the complicated physics of the inter-related ``intermittent plasma objects (blobs)'' and divertor heat-load footprint, the full-function gyrokinetic PIC code XGC1 has been used in realistic diverted geometry. Neoclassical and turbulence physics are simulated together self-consistently in the presence of Monte Carlo neutral particles. Blobs are modeled here as electrostatic nonlinear turbulence phenomenon. It is found that the ``blobs'' are generated, together with the ``holes,'' around the steep density gradient region. XGC1 reasserts the previous findings that blobs move out convectively into the scrape-off layer, while the holes move inward toward plasma core. The measured radial width of the divertor heat load, mapped to the outer midplane, is found to be much less than the median radial size of the intermittent plasma objects, but is rather closer to the width of neoclassical orbit excursion from pedestal to divertor, yielding approximately the 1/Ip-type scaling found from our previous pure neoclassical simulation or a heuristic neoclassical argument by Goldston. However, it also shows some spreading by the intermittent turbulence. In ITER plasma edge, where the ion banana width at separatrix becomes negligibly small compared to the meso-scale blob size, blobs may saturate the 1/Ip scaling.

  13. Detecting divertor damage during steady state operation of Wendelstein 7-X from thermographic measurements

    NASA Astrophysics Data System (ADS)

    Rodatos, A.; Greuner, H.; Jakubowski, M. W.; Boscary, J.; Wurden, G. A.; Pedersen, T. S.; König, R.

    2016-02-01

    Wendelstein 7-X (W7-X) aims to demonstrate the reactor capability of the stellarator concept, by creating plasmas with pulse lengths of up to 30 min at a heating power of up to 10 MW. The divertor plasma facing components will see convective steady state heat flux densities of up to 10 MW/m2. These high heat flux target elements are actively cooled and are covered with carbon fibre reinforced carbon (CFC) as plasma facing material. The CFC is bonded to the CuCrZr cooling structure. Over the life time of the experiment this interface may weaken and cracks can occur, greatly reducing the heat conduction between the CFC tile and the cooling structure. Therefore, there is not only the need to monitor the divertor to prevent damage by overheating but also the need to detect these fatigue failures of the interface. A method is presented for an early detection of fatigue failures of the interface layer, solely by using the information delivered by the IR-cameras monitoring the divertor. This was developed and validated through experiments made with high heat flux target elements prior to installation in W7-X.

  14. Migration of Artificially Introduced Micron Size Carbon Dust in the DIII-D Divertor

    SciTech Connect

    Rudakov, D; West, W; Wong, C; Brooks, N; Evans, T; Fenstermacher, M; Groth, M; Krasheninnikov, S; Lasnier, C; McLean, A; Pigarov, A Y; Solomon, W; Antar, G; Boedo, J; Doerner, R; Hollmann, E; Hyatt, A; Maingi, R; Moyer, R; Nagy, A; Nishino, N; Roquemore, L; Stangeby, P; Watkins, J

    2006-05-15

    Migration of pre-characterized carbon dust in a tokamak environment was studied by introducing about 30 milligrams of dust flakes 5-10 {micro}m in diameter in the lower divertor of DIII-D using the DiMES sample holder. The dust was exposed to high power ELMing Hmode discharges in lower-single-null magnetic configuration with the strike points swept across the divertor floor. When the outer strike point (OSP) passed over the dust holder exposing it to high particle and heat fluxes, part of the dust was injected into the plasma. In about 0.1 sec following the OSP pass over the dust, 1-2% of the total dust carbon content (2-4 x 10{sup 19} carbon atoms, equivalent to a few million dust particles) penetrated the core plasma, raising the core carbon density by a factor of 2-3. When the OSP was inboard of the dust holder, the dust injection continued at a lower rate. Individual dust particles were observed moving at velocities of 10-100 m/s, predominantly in the toroidal direction for deuteron flow to the outer divertor target, consistent with the ion drag force. The observed behavior of the dust is in qualitative agreement with modeling by the 3D DustT code.

  15. High heat flux Langmuir probe array for the DIII-D divertor platesa)

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.

  16. The role of plasma response in divertor footprint modification by 3D fields in NSTX

    NASA Astrophysics Data System (ADS)

    Ahn, Joonwook; Kim, Kimin; Canal, Gustavo; Gan, Kaifu; Gray, Travis; McLean, Adam; Park, Jong-Kyu; Scotti, Filippo

    2015-11-01

    In NSTX, the divertor footprints of both heat and particle fluxes are found to be significantly modified by externally applied 3D magnetic perturbations. Striations on the divertor surface, indicating separatrix splitting and formation of magnetic lobes, are observed for both n = 1 and n = 3 perturbation fields. These striations can lead to localized heating of the divertor plates and to the re-attachment of detached plasmas, both of which have to be avoided in ITER for successful heat flux management. In this work, the role of plasma response on the formation of separatrix splitting has been investigated in the ideal framework by comparing measured heat and particle flux footprints with field line tracing calculations with and without contributions from the plasma response calculated by the ideal code IPEC. Simulations show that, n = 3 fields are slightly shielded by the plasma, with the measured helical pattern of striations in good agreement with the results from the vacuum approximation. The n = 1 fields are, however, significantly amplified by the plasma response, which provides a better agreement with the measurements. Resistive plasma response calculations by M3D-C1 are also in progress and the results will be compared with those from the ideal code IPEC. This work was supported by DoE Contracts: DE-AC05-00OR22725, DE-AC52-07NA27344 and DE-AC02-09CH11466.

  17. Measurements of flows in the DIII-D divertor by Mach probes

    SciTech Connect

    Boedo, J.A.; Lehmer, R.; Moyer, R.A.; Watkins, J.G.; Porter, G.D.; Evans, T.E.; Leonard, A.W.; Schaffer, M.J.

    1998-06-01

    First measurements of Mach number of background plasma in the DIII-D divertor are presented in conjunction with temperature T{sub e} and density n{sub e} using a fast scanning probe array. To validate the probe measurements, the authors compared the T{sub e}, n{sub e} and J{sub sat} data to Thomson scattering data and find good overall agreement in attached discharges and some discrepancy for T{sub e} and n{sub e} in detached discharges. The discrepancy is mostly due to the effect of large fluctuations present during detached plasmas on the probe characteristic; the particle flux is accurately measured in every case. A composite 2-D map of measured flows is presented for an ELMing H-mode discharge and they focus on some of the details. They have also documented the temperature, density and Mach number in the private flux region of the divertor and the vicinity of the X-point, which are important transition regions that have been little studied or modeled. Background parallel plasma flows and electric fields in the divertor region show a complex structure.

  18. Analysis of a multi-machine database on divertor heat fluxesa)

    NASA Astrophysics Data System (ADS)

    Makowski, M. A.; Elder, D.; Gray, T. K.; LaBombard, B.; Lasnier, C. J.; Leonard, A. W.; Maingi, R.; Osborne, T. H.; Stangeby, P. C.; Terry, J. L.; Watkins, J.

    2012-05-01

    A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D, and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip, which all three tokamaks independently demonstrate. An improved Thomson scattering system on DIII-D has yielded very accurate scrape off layer (SOL) profile measurements from which tests of parallel transport models have been made. It is found that a flux-limited model agrees best with the data at all collisionalities, while a Spitzer resistivity model agrees at higher collisionality where it is more valid. The SOL profile measurements and divertor heat flux scaling are consistent with a heuristic drift based model as well as a critical gradient model.

  19. Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method

    SciTech Connect

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2014-12-01

    As magnetic confinement fusion progresses towards the development of first reactor-scale devices, computational tokamak divertor design is a topic of high priority. Presently, edge plasma codes are used in a forward approach, where magnetic field and divertor geometry are manually adjusted to meet design requirements. Due to the complex edge plasma flows and large number of design variables, this method is computationally very demanding. On the other hand, efficient optimization-based design strategies have been developed in computational aerodynamics and fluid mechanics. Such an optimization approach to divertor target shape design is elaborated in the present paper. A general formulation of the design problems is given, and conditions characterizing the optimal designs are formulated. Using a continuous adjoint framework, design sensitivities can be computed at a cost of only two edge plasma simulations, independent of the number of design variables. Furthermore, by using a one-shot method the entire optimization problem can be solved at an equivalent cost of only a few forward simulations. The methodology is applied to target shape design for uniform power load, in simplified edge plasma geometry.

  20. [Seal finger in Denmark diagnosed by PCR-technique].

    PubMed

    Jansen, Louise Charlotte; Justesen, Ulrik Stenz; Roos, Signe Moeslund; Dargis, Rimtas; Jensen, Jørgen Skov; Christensen, Jens Jørgen; Kemp, Michael

    2012-02-13

    Seal finger is an unusual infection in Denmark but is seen quite often in Greenland. A 69 year-old Danish man developed severe infection after cutting his finger on a sea urchin while handling a fishing net. Treatment with beta-lactam antibiotics had no effect. Standard culture from the lesion was negative. A Mycoplasma species was detected by PCR and DNA sequencing and subsequently cultured on special media. Specifically asked about exposure to sea mammals the patient could inform that a dead seal had also been trapped in the fishing net. PMID:22331047