Science.gov

Sample records for hells canyon dam

  1. Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon

    NASA Astrophysics Data System (ADS)

    Braatne, Jeffrey H.; Rood, Stewart B.; Goater, Lori A.; Blair, Charles L.

    2008-02-01

    River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.

  2. Analyzing the impacts of dams on riparian ecosystems: a review of research strategies and their relevance to the Snake River through Hells Canyon.

    PubMed

    Braatne, Jeffrey H; Rood, Stewart B; Goater, Lori A; Blair, Charles L

    2008-02-01

    River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies. PMID:18043964

  3. Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon

    PubMed Central

    Braatne, Jeffrey H.; Goater, Lori A.; Blair, Charles L.

    2007-01-01

    River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies. PMID:18043964

  4. Archive of digital chirp subbottom profile data collected during USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Fosness, Ryan L.; Welcker, Chris; Kelso, Kyle W.

    2014-01-01

    From March 16 - 31, 2013, the U.S. Geological Survey in cooperation with the Idaho Power Company conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, along the Idaho and Oregon border; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report.

  5. Report Summary, Final Hells Canyon Environmental Investigation.

    SciTech Connect

    United States. Bonneville Power Administration.

    1985-01-01

    The Northwest Electric Power Planning and Conservation Act of 1980 provided for the establishment of a Regional Power Planning Council (Regional Council) and mandated the development of a Columbia River Basin Fish and Wildlife Program (F&W Program). The F&W Program was adopted by the Regional Council in November 1982. and is intended to mitigate fish and wildlife losses resulting from the development of hydroelectric dams on the Columbia and Snake Rivers. One element of the FLW Program is the Water Budget. It calls for additional flows in the Columbia and Snake Rivers between April 15 and June 15 to improve the survival of juvenile salmon and steelhead migrating downstream. The Snake River's contribution to the Water Budget is 20,000 cubic feet per second-months (A volume of water equal to a flow of 20.000 cubic feet per second, 24 hours per day, for a period of a month) over and above water that would normally flow for power production. The water for the Water Budget would come out of Idaho Power Company's (IPCo) Hells Canyon Complex and the Corps of Engineers' (Corps) Dvorshak Reservoir. IPCo's Hells Canyon Complex consists of three dams, Brownlee, Oxbow, and Hells Canyon. Brownlee, at the upstream end, contains a large reservoir and controls flow to the lower dams. IPCo's participation in the Water Budget could affect the level of the Brownlee Reservoir and flows downstream of the Hells Canyon Complex on the Snake River. In light of this, Bonneville Power Administration (BPA) and IPCo contracted with the consulting firm of CH2!4 Hill to study the potential changes that could occur to the environment. The Environmental Investigation (EI) takes into account concerns that were expressed by the public at a series of public meetings held in the Snake River area during June 1983 and again during September 1984. Existing information and consultations with agencies which have management responsibilities in the project area formed the basis for the data used in the EI

  6. HELLS CANYON STUDY AREA, OREGON AND IDAHO.

    USGS Publications Warehouse

    Simmons, George C.; Close, Terry J.

    1984-01-01

    The Hells Canyon study area occupies nearly 950 sq mi along and near Hells Canyon of the Snake River in northeast Oregon and west-central Idaho. Geologic, geochemical, aeromagnetic, and mine and prospect investigations to determine the mineral-resource potential of the area were carried out. As a result, 42 sq mi or about 4 percent of the lands, in 21 separate areas, were classified as having probable or substantiated resource potential for base and precious metals, molybdenum, and tungsten. No energy resource potential was identified in this study.

  7. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1997 Annual Report.

    SciTech Connect

    Hoefs, Nancy

    2004-02-01

    During 1997 the first phase of the Nez Perce Tribe White Sturgeon Project was completed and the second phase was initiated. During Phase I the ''Upper Snake River White Sturgeon Biological Assessment'' was completed, successfully: (1) compiling regional white sturgeon management objectives, and (2) identifying potential mitigation actions needed to rebuild the white sturgeon population in the Snake River between Hells Canyon and Lower Granite dams. Risks and uncertainties associated with implementation of these potential mitigative actions could not be fully assessed because critical information concerning the status of the population and their habitat requirements were unknown. The biological risk assessment identified the fundamental information concerning the white sturgeon population that is needed to fully evaluate the effectiveness of alternative mitigative strategies. Accordingly, a multi-year research plan was developed to collect specific biological and environmental data needed to assess the health and status of the population and characterize habitat used for spawning and rearing. In addition, in 1997 Phase II of the project was initiated. White sturgeon were captured, marked, and population data were collected between Lower Granite Dam and the mouth of the Salmon River. During 1997, 316 white sturgeon were captured in the Snake River. Of these, 298 were marked. Differences in the fork length frequency distributions of the white sturgeon were not affected by collection method. No significant differences in length frequency distributions of sturgeon captured in Lower Granite Reservoir and the mid- and upper free-flowing reaches of the Snake River were detected. The length frequency distribution indicated that white sturgeon between 92 and 183 cm are prevalent in the reaches of the Snake River that were sampled. However, white sturgeon >183 have not changed markedly since 1970. I would speculate that some factor other than past over-fishing practices is

  8. White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.

    SciTech Connect

    Nez Perce Tribe Resources Management Staff,

    2005-09-01

    White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates

  9. HELL'S CANYON STUDY, IDAHO AND NEZ PERCE COUNTIES, IDAHO, 1977

    EPA Science Inventory

    In September of 1975 and again in March and June of 1976, water quality survey runs were made in Hells Canyon (17060103, 17060101) to obtain information on the Snake River and its major tributaries within the area. The surveys included 5 Snake River stations from above Johnson B...

  10. Mercury cycling in the Hells Canyon Complex of the Snake River, Idaho and Oregon

    USGS Publications Warehouse

    Clark, Gregory M.; Naymik, Jesse; Krabbenhoft, David P.; Eagles-Smith, Collin A.; Aiken, George R.; Marvin-DiPasquale, Mark C.; Harris, Reed C.; Myers, Ralph

    2016-01-01

    The Hells Canyon Complex (HCC) is a hydroelectric project built and operated by the Idaho Power Company (IPC) that consists of three dams on the Snake River along the Oregon and Idaho border (fig. 1). The dams have resulted in the creation of Brownlee, Oxbow, and Hells Canyon Reservoirs, which have a combined storage capacity of more than 1.5 million acre-feet and span about 90 miles of the Snake River. The Snake River upstream of and through the HCC historically has been impaired by water-quality issues related to excessive contributions of nutrients, algae, sediment, and other pollutants. In addition, historical data collected since the 1960s from the Snake River and tributaries near the HCC have documented high concentrations of mercury in fish tissue and sediment (Harris and Beals, 2013). Data collected from more recent investigations within the HCC continue to indicate elevated concentrations of mercury and methylmercury in the water column, bottom sediments, and biota (Clark and Maret, 1998; Essig, 2010; Fosness and others, 2013). As a result, Brownlee and Hells Canyon Reservoirs are listed as impaired for mercury by the State of Idaho, and the Snake River from the Oregon and Idaho border through the HCC downstream to the Oregon and Washington border is listed as impaired for mercury by the State of Oregon.

  11. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1998 Annual Report.

    SciTech Connect

    Everett, Scott R.; Tuell, Michael A.

    2002-03-01

    In 1998 white sturgeon (Acipenser transmontanus) were captured, marked, and population data were collected in the Snake River between Lower Granite Dam and the mouth of the Salmon River. A total of 13,785 hours of setline effort and 389 hours of hook-and-line effort was employed in 1998. Of the 278 white sturgeon captured in the Snake River, 238 were marked for future identification. Three sturgeon were captured in the Salmon River and none were captured in the Clearwater River. Since 1997, 6.9% of the tagged fish have been recovered. Movement of recaptured white sturgeon ranged from 98.5 kilometers downstream to 60.7 kilometers upstream, however, less than 25% of the fish moved more than 16 kilometers (10 miles). In the Snake River, white sturgeon ranged in total length from 51.5 cm to 286 cm and averaged 118.9 cm. Differences were detected in the length frequency distributions of sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). In addition, the proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 37% since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River.

  12. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2001 Annual Report.

    SciTech Connect

    Everett, Scott R.; Tuell, Michael A.

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2001 annual report covers the fifth year of sampling of this multi-year study. In 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 45,907 hours of setline effort and 186 hours of hook-and-line effort was employed in 2001. A total of 390 white sturgeon were captured and tagged in the Snake River and 12 in the Salmon River. Since 1997, 36.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 42 cm to 307 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 66 cm to 235 cm and averaged 160 cm. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. An additional 10 white sturgeon were fitted with radio-tags during 2001. The locations of 17 radio-tagged white sturgeon were monitored in 2001. The movement of these fish ranged from 38.6 km (24 miles) downstream to 54.7 km (34 miles) upstream; however, 62.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish

  13. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2000 Annual Report.

    SciTech Connect

    Everett, Scott R.; Tuell, Michael A.

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2000 annual report covers the fourth year of sampling of this multi-year study. In 2000 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 53,277 hours of setline effort and 630 hours of hook-and-line effort was employed in 2000. A total of 538 white sturgeon were captured and tagged in the Snake River and 25 in the Salmon River. Since 1997, 32.8 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 48 cm to 271 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 103 cm to 227 cm and averaged 163 cm. Using the Jolly-Seber open population estimator, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,725 fish, with a 95% confidence interval of 1,668-5,783. A total of 10 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 54.7 km (34 miles) downstream to 78.8 km (49 miles) upstream; however, 43.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of

  14. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1999 Annual Report.

    SciTech Connect

    Tuell, Michael A.; Everett, Scott R.

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 1999 annual report covers the third year of sampling of this multi-year study. In 1999 white sturgeon were captured, marked and population data were collected in the Snake and Salmon rivers. A total of 33,943 hours of setline effort and 2,112 hours of hook-and-line effort was employed in 1999. A total of 289 white sturgeon were captured and tagged in the Snake River and 29 in the Salmon River. Since 1997, 11.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 27 cm to 261 cm and averaged 110 cm. In the Salmon River, white sturgeon ranged in total length from 98 cm to 244 cm and averaged 183.5 cm. Using the Jolly-Seber model, the abundance of white sturgeon < 60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 1,823 fish, with a 95% confidence interval of 1,052-4,221. A total of 15 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 6.4 km (4 miles) downstream to 13.7 km (8.5 miles) upstream; however, 83.6 percent of the detected movement was less than 0.8 kilometers (0.5 miles). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River

  15. Evaluate Potenial Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2002 Annual Report.

    SciTech Connect

    Everett, Scott R.; Tuell, Michael A.; Hesse, Jay A.

    2004-02-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This report presents a summary of results from the 1997-2002 Phase II data collection and represents the end of phase II. From 1997 to 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon. A total of 1,785 white sturgeon were captured and tagged in the Snake River and 77 in the Salmon River. Since 1997, 25.8 percent of the tagged white sturgeon have been recaptured. Relative density of white sturgeon was highest in the free-flowing segment of the Snake River, with reduced densities of fish in Lower Granite Reservoir, and low densities the Salmon River. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir, the free-flowing Snake River and the Salmon River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. Total annual mortality rate was estimated to be 0.14 (95% confidence interval of 0.12 to 0.17). A total of 35 white sturgeon were fitted with radio-tags during 1999-2002. The movement of these fish ranged from 53 km (33 miles) downstream to 77 km (48 miles) upstream; however, 38.8 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No

  16. Multibeam Bathymetry to Measure Volumetric Change and Particle Size Distributions in the Snake River through Hells Canyon

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Morehead, M. D.; Anderson, K.; Wilson, T.; Butler, M.; Conner, J. T.; Hocker, B.

    2011-12-01

    Multi-beam bathymetry (MBB) surveys can be used to measure the change in storage and particle size distributions on riverbeds even in the inaccessible and rugged Hells Canyon reach of the Snake River. Our work to date has shown that differencing repeated MBB surveys can be an effective method of measuring volumetric changes in riverbed storage of sediment and that the data can also be used to categorize particle size distributions across the entire riverbed. The volumetric and particle size information allows us to investigate the patterns of sand and salmon spawning gravels and the underlying transport and supply processes. These methods will continue to be refined as part of Idaho Power's long-term compliance monitoring program and will provide a unique, long-term record of sediment transport in a steep, canyon-bound river. The Hells Canyon Reach of the Snake River flows north 95 kilometers from Hells Canyon Dam to the confluence with the Salmon River and forms the border between Idaho and Oregon. The reach contains 15 named rapids (Class II to IV) and has an average slope of approximately 0.002%, an average bankfull width of 75-100 m, and an extreme confinement ratio (bankfull width: floodplain width) of 1. The bankfull flow (recurrence interval of about 2 years) of 1,400 cms has not been changed by the construction of the Hells Canyon Complex (HCC) immediately upstream, because the HCC reservoirs can only store 11% of the mean annual flow and 87% of the upstream drainage area had already been impounded by dams. Most methods of bathymetric surveying and particle size characterization were developed in small, wadeable streams and cannot be used in large, unwadeable channels like Hells Canyon. Many of the previous methods also require too much time or effort to feasibly cover the 950 hectares of riverbed in Hells Canyon. Instead, we have adapted multibeam sonar technology typically used in coastal areas or large, low-gradient rivers to the steep, canyon

  17. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  18. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  19. 77 FR 9265 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  20. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  1. 77 FR 43117 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work Group... other management actions to protect resources downstream of Glen Canyon Dam, consistent with the...

  2. Exhumation Across Hells Canyon and the Arc-continent Boundary of Idaho-Oregon

    NASA Astrophysics Data System (ADS)

    Kahn, M.; Fayon, A. K.; Tikoff, B.

    2015-12-01

    Hells Canyon is located along the Idaho-Oregon border. It is proximal to the Salmon River suture zone, the Cretaceous-age western margin of North America that juxtaposes accreted terranes to the west and cratonic North America to the east. We applied (U-Th)/He zircon and apatite thermochronometry to samples along an EW transect across Hells Canyon. (U-Th)/He zircon and apatite ages record the time at which rocks cool below ~ 200 and 60 °C, respectively, providing information on both the timing and rate at which rocks cooled. Samples were collected with respect to structural position relative to the basal Columbia River basalt flow (Imnaha), dated at ~ 17.4 Ma, with most samples taken <100 m below the contact. Given that all localities were at the Earth's surface - and thus cooled below 60˚C - at ~ 17.4 Ma, the variation in obtained ages are assessed relative to this common datum. The easternmost sites were taken on the western margin of the Idaho batholith at Lava Buttes, ID at ~2,700 m elevation: The (U-Th)/He zircon and apatite ages are 64.9±4.6 Ma and 53.8±4.9 Ma, respectively. The westernmost sites occur in the Wallowa Mountains, Oregon, where the base of the Imnaha flow exists at ~3,000 m: The (U-Th)/He zircon and apatite ages are 136.2±42.8 Ma and 21.7±10.0 Ma. Additionally, the basal basalt contact occurs at ~900 m and ~600 m at the bottom of the Salmon River Canyon and Hells Canyon respectively. The (U-Th)/He zircon and apatite ages are 73.1±14.6 Ma and 20.0±7.4 Ma, respectively, for the Salmon River Canyon and 88.6±2.4 Ma and 3.4±0.6 Ma, respectively, for Hells Canyon. The data indicate that: 1) The western Wallowa (accreted) terrane cooled below ~200 °C prior to the formation of the Idaho batholith; 2) The western side of the Idaho batholith shows a rapid and consistent cooling between ~200 °C and ~60 °C in the Paleogene; and 3) Samples at low elevation in Hells Canyon cooled below 60˚C in the Pliocene, which requires reburial of the rocks

  3. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning Glen Canyon Dam operations and other management actions to protect resources downstream of Glen Canyon...

  4. Identifying and Quantifying Sources of Fall Chinook Salmon Spawning Gravel to the Snake River in Hells Canyon

    NASA Astrophysics Data System (ADS)

    Welcker, C. W.; Burke, M.

    2015-12-01

    The Snake River in Hells Canyon supports a growing population of spawning Fall Chinook Salmon (Oncorhynchus tshawytscha) immediately downstream of the Hells Canyon Complex (HCC) of hydroelectric dams for the last 60 years. The long-term survival of this salmon run depends on the input of spawning gravel (25-150 mm) from local tributaries balancing the losses of spawning gravel through attrition and export out of the reach between the HCC and the Salmon River confluence. We are working to quantify the gravel input of these local tributaries at different time-scales and put this into the context of historical supply and transport. Long-term total sediment production rates of these tributaries estimated through various methods have varied by over 2 orders of magnitude, but we have recently completed 10Be work to constrain these estimates. We are measuring the change in storage of Fall Chinook spawning-size gravel through repeat multibeam echosounder surveys of the riverbed. The limited amount of repeat data collected to date has shown complex patterns of change in the riverbed. One possible driver of this complexity is the episodic and spatially variable nature of sediment inputs from these tributaries. We are attempting to quantify the frequency of the debris flows or floods capable of transporting spawning gravel through digitizing historic imagery of the last 60 years to determine the recurrence interval. We are measuring the magnitude of these events by surveying tributary fans pre and post-event to measure the sediment volume and particle size produced by specific events. These floods and debris flows are driven by extreme rainfall or snowmelt events, so we have also reconstructed historical meteorological conditions to identify the triggering conditions for transport, and identify the areas where snowmelt or rainfall is the more likely trigger. We are currently testing whether the unique bedrock geology of Hells Canyon can be used as a tracer to identify the

  5. Mineral Resources of the Hells Canyon Study Area, Wallowa County, Oregon, and Idaho and Adams Counties, Idaho

    USGS Publications Warehouse

    Simmons, George C.; Gualtieri, James L.; Close, Terry J.; Federspiel, Francis E.; Leszcykowski, Andrew M.

    2007-01-01

    Field studies supporting the evaluation of the mineral potential of the Hells Canyon study area were carried out by the U.S. Geological Survey and the U.S. Bureau of Mines in 1974-76 and 1979. The study area includes (1) the Hells Canyon Wilderness; (2) parts of the Snake River, Rapid River, and West Fork Rapid River Wild and Scenic Rivers; (3) lands included in the second Roadless Area Review and Evaluation (RARE II); and (4) part of the Hells Canyon National Recreation Area. The survey is one of a series of studies to appraise the suitability of the area for inclusion in the National Wilderness Preservation System as required by the Wilderness Act of 1964. The spectacular and mineralized area covers nearly 950 mi2 (2,460 km2) in northeast Oregon and west-central Idaho at the junction of the Northern Rocky Mountains and the Columbia Plateau.

  6. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of Reclamation... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the...

  7. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  8. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  9. 76 FR 54487 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection...

  10. 78 FR 54482 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Bureau of Reclamation Charter Renewal, Glen Canyon Dam Adaptive Management Work Group AGENCY: Bureau of... the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group... Canyon Dam Adaptive Management Work Group is in the public interest in connection with the performance...

  11. Anthropogenic Impacts of Recreational Use on Sandbars in Hells Canyon on the Snake River, Idaho

    NASA Astrophysics Data System (ADS)

    Morehead, M. D.

    2014-12-01

    Sandbars along large rivers are important cultural, recreational, and natural resources. In modern, historic and prehistoric times the sandbars have been used for camping, hunting, fishing and recreational activities. Sandbars are a dynamic geomorphic unit of the river system that stores and exchanges sand with the main river channel. Both natural and anthropogenic changes to river systems affect the size, shape and dynamics of sandbars. During high spring flows, the Snake River can resupply and build the sand bars. During the lower flows of the summer and fall the sand is redistributed to lower levels by natural and anthropogenic forces, where it can be remobilized by the river and exported from the bar. During the summer and fall high use season many people camp and recreate on the bars and redistribute the sand. This study utilizes change detection from repeat high resolution terrestrial LiDAR scanning surveys to study the impacts humans have on the sandbars in Hells Canyon. Nearly a decade of annual LiDAR and Bathymetric surveys were used to place these recreational impacts into the context of overall sandbar dynamics.

  12. A review of proposed Glen Canyon Dam interim operating criteria

    SciTech Connect

    LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

    1992-04-01

    Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

  13. 78 FR 42799 - Glen Canyon Dam Adaptive Management Work Group Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group Meetings AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Glen Canyon Dam Adaptive Management Work... AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and...

  14. Evidence of enhanced atmospheric ammoniacal nitrogen in Hells Canyon national recreation area: implications for natural and cultural resources.

    PubMed

    Geiser, Linda H; Ingersoll, Anne R; Bytnerowicz, Andrzej; Copeland, Scott A

    2008-09-01

    Agriculture releases copious fertilizing pollutants to air sheds and waterways of the northwestern United States. To evaluate threats to natural resources and historic rock paintings in remote Hells Canyon, Oregon and Idaho, deposition of ammonia (NH3), nitrogen oxides (NOx), sulfur dioxide (SO2), and hydrogen sulfide (H2S) at five stations along 60 km of the Snake River valley floor were passively sampled from July 2002 through June 2003, and ozone data and particulate chemistry were obtained from the Interagency Monitoring of Protected Visual Environments (IMPROVE) station at Hells Canyon. NH3 concentrations were high; biweekly averages peaked at 5-19 ppb in spring and summer and the nutrient-laden Snake River is a likely source. Fine particulate ammonium nitrate (NH4NO3) averaged 2.6 microg/m3 during the 20% of worst visibility days with winter drainage of air masses from the Snake River Basin and possibly long distance transport from southern California. Other pollutants were within background ranges. NH3 is corrosive to clay-based pictographs; nitrogen deposition can alter natural biotic communities and terrestrial ecosystem processes at levels reported here. PMID:18817115

  15. Surprise and Opportunity for Learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    NASA Astrophysics Data System (ADS)

    Melis, T. S.; Walters, C. J.; Korman, J.

    2013-12-01

    With a focus on resources of the Colorado River ecosystem downstream of Glen Canyon Dam in Glen Canyon National Recreation Area (GCNRA) and Grand Canyon National Park (GCNP) of northern Arizona, the Glen Canyon Dam Adaptive Management Program has evaluated experimental flow and nonflow policy tests since 1990. Flow experiments have consisted of a variety of water releases from the dam within pre-existing annual downstream delivery agreements. The daily experimental dam operation, termed the Modified Low Fluctuating Flow (MLFF), implemented in 1996 to increase daily low flows and decrease daily peaks were intended to limit daily flow range to conserve tributary sand inputs and improve navigation among other objectives, including hydropower energy. Other flow tests have included controlled floods with some larger releases bypassing the dam's hydropower plant to rebuild and maintain eroded sandbars in GCNP. Experimental daily hydropeaking tests beyond MLFF have also been evaluated for managing the exotic recreational rainbow trout fishery in the dam's GCNRA tailwater. Experimental nonflow policies, such as physical removal of exotic fish below the tailwater, and experimental translocation of endangered native humpback chub from spawning habitats in the Little Colorado River (the largest natal origin site for chub in the basin) to other tributaries within GCNP have also been monitored. None of these large-scale field experiments has yet produced unambiguous results in terms of management prescriptions, owing to inadequate monitoring programs and confounding of treatment effects with effects of ongoing natural changes; most notably, a persistent warming of the river resulting from reduced storage in the dam's reservoir after 2003. But there have been several surprising results relative to predictions from models developed to identify monitoring needs and evaluate experimental design options at the start of the adaptive ecosystem assessment and management program in 1997

  16. 76 FR 47237 - Notice of Public Meeting for the Glen Canyon Dam Adaptive Management Work Group Federal Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Bureau of Reclamation Notice of Public Meeting for the Glen Canyon Dam Adaptive Management Work Group... Canyon Dam Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior..., the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and...

  17. Operation of Glen Canyon Dam. Final environmental impact statement, summary, comments and responses

    SciTech Connect

    1995-03-01

    The Federal action considered in this environmental impact statement (EIS) is the operation of Glen Canyon Dam, Colorado River Storage Project (CRSP), Arizona. The purpose of the reevaluation is to determine specific options that could be implemented to minimize--consistent with law-adverse impacts on the downstream environmental and cultural resources, as well as Native American interests in Glen and Grand Canyons.

  18. 75 FR 44809 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) AGENCY: Bureau of Reclamation.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the Adaptive Management Work Group (AMWG), a technical work group (TWG), a Grand Canyon Monitoring and Research Center,...

  19. 75 FR 439 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) AGENCY: Bureau of Reclamation.... L. 102-575) of 1992. The AMP includes a Federal advisory committee, the Adaptive Management Work Group (AMWG), a Technical Work Group (TWG), a Grand Canyon Monitoring and Research Center,...

  20. 76 FR 584 - Glen Canyon Dam Adaptive Management Program Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Program Work Group (AMWG) AGENCY: Bureau of... Management Work Group (AMWG), a technical work group (TWG), a Grand Canyon Monitoring and Research Center... addition, there will be updates from the Charter Ad Hoc Group and a follow up report on the work done...

  1. Hydropower and the environment: A case study at Glen Canyon Dam

    SciTech Connect

    Wegner, D.L.

    1995-12-31

    The management of hydroelectric resources in the Colorado River requires a balancing of hydrologic, social, natural and cultural resources. The resulting management often has to deal with inherently conflicting objectives, short and long-term goals, time frames and operational flexibility. Glen Canyon Dam, AZ, on the Colorado River, controls the release of water into the Grand Canyon. The dam has been under intense public scrutiny since it was completed in 1963. An Environmental Impact Statement evaluating the future operations and options for Glen Canyon Dam was initiated by the Department of the Interior in 1989 and completed in 1995. An Adaptive Management approach to future operational management has been developed as part of the Glen Canyon Dam Environmental Impact Statement process. Future operations at Glen Canyon Dam will take into consideration the need to balance water movement and hydroelectricity development with natural, recreation, Native American and cultural needs. Future management of rivers requires acknowledgement of the dynamic nature of ecosystems and the need to link scientific information into the decision-making process. Lessons learned and programs developed at Glen Canyon Dam may be applied to other river systems.

  2. An analysis of the potential for Glen Canyon Dam releases to inundate archaeological sites in the Grand Canyon, Arizona

    USGS Publications Warehouse

    Sondossi, Hoda A.; Fairley, Helen C.

    2014-01-01

    The development of a one-dimensional flow-routing model for the Colorado River between Lees Ferry and Diamond Creek, Arizona in 2008 provided a potentially useful tool for assessing the degree to which varying discharges from Glen Canyon Dam may inundate terrestrial environments and potentially affect resources located within the zone of inundation. Using outputs from the model, a geographic information system analysis was completed to evaluate the degree to which flows from Glen Canyon Dam might inundate archaeological sites located along the Colorado River in the Grand Canyon. The analysis indicates that between 4 and 19 sites could be partially inundated by flows released from Glen Canyon Dam under current (2014) operating guidelines, and as many as 82 archaeological sites may have been inundated to varying degrees by uncontrolled high flows released in June 1983. Additionally, the analysis indicates that more of the sites currently (2014) proposed for active management by the National Park Service are located at low elevations and, therefore, tend to be more susceptible to potential inundation effects than sites not currently (2014) targeted for management actions, although the potential for inundation occurs in both groups of sites. Because of several potential sources of error and uncertainty associated with the model and with limitations of the archaeological data used in this analysis, the results are not unequivocal. These caveats, along with the fact that dam-related impacts can involve more than surface-inundation effects, suggest that the results of this analysis should be used with caution to infer potential effects of Glen Canyon Dam on archaeological sites in the Grand Canyon.

  3. A simplified water temperature model for the Colorado River below Glen Canyon Dam

    USGS Publications Warehouse

    Wright, S.A.; Anderson, C.R.; Voichick, N.

    2009-01-01

    Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year-round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first-order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat-exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.58C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam.

  4. 2008 High-Flow Experiment at Glen Canyon Dam Benefits Colorado River Resources in Grand Canyon National Park

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Grams, Paul E.; Rubin, David M.; Wright, Scott A.; Draut, Amy E.; Hazel, Joseph E., Jr.; Ralston, Barbara E.; Kennedy, Theodore A.; Rosi-Marshall, Emma; Korman, Josh; Hilwig, Kara D.; Schmit, Lara M.

    2010-01-01

    On March 5, 2008, the Department of the Interior began a 60-hour high-flow experiment at Glen Canyon Dam, Arizona, to determine if water releases designed to mimic natural seasonal flooding could be used to improve downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park. U.S. Geological Survey (USGS) scientists and their cooperators undertook a wide range of physical and biological resource monitoring and research activities before, during, and after the release. Scientists sought to determine whether or not high flows could be used to rebuild Grand Canyon sandbars, create nearshore habitat for the endangered humpback chub, and benefit other resources such as archaeological sites, rainbow trout, aquatic food availability, and riverside vegetation. This fact sheet summarizes research completed by January 2010.

  5. Water-Temperature Data for the Colorado River and Tributaries Between Glen Canyon Dam and Spencer Canyon, Northern Arizona, 1988-2005

    USGS Publications Warehouse

    Voichick, Nicholas; Wright, Scott A.

    2007-01-01

    The regulation of flow of the Colorado River by Glen Canyon Dam began in 1963. This resulted in significant changes to the downstream ecosystem of the Colorado River in Grand Canyon, contributing to the initiation of the Glen Canyon Environmental Studies program in 1982, followed by establishment of the Glen Canyon Dam Adaptive Management Program in 1996. This report describes a water-temperature dataset collected through these programs for the reach of the Colorado River and selected tributaries between Glen Canyon Dam and Spencer Canyon (approximately 261 river miles) in northern Arizona from 1988 to 2005. The primary purposes of the report are to summarize the methods of data collection, processing, and editing; to present summary statistics; and to make the data described in the report available.

  6. Recent vegetation changes along the Colorado River between Glen Canyon Dam and Lake Mead, Arizona

    USGS Publications Warehouse

    Turner, Raymond Marriner; Karpiscak, Martin M.

    1980-01-01

    Vegetation changes in the canyon of the Colorado River between Glen Canyon Dam and Lake Mead were studied by comparing photographs taken prior to completion of Glen Canyon Dam in 1963 with photographs taken afterwards at the same sites. In general, the older pictures show an absence of riparian plants along the banks of the river. The newer photographs of each pair were taken in 1972 through 1976 and reveal an increased density of many plant species. Exotic species, such as saltcedar and camel-thorn, and native riparian plants such as sandbar willow, arrowweed, desert broom and cattail, now form a new riparian community along much of the channel of the Colorado River between Glen Canyon Dam and Lake Mead. The matched photographs also reveal that changes have occurred in the amount of sand and silt deposited along the banks. Detailed maps are presented showing distribution of 25 plant species along the reach of the Colorado River studied. Data showing changes in the hydrologic regime since completion of Glen Canyon Dam are presented. (Kosco-USGS)

  7. Status and Trends of Resources Below Glen Canyon Dam Update - 2009

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The protection of resources found in Glen Canyon National Recreation Area and Grand Canyon National Park, Arizona, emerged as a significant public concern in the decades following the completion of Glen Canyon Dam in 1963. The dam, which lies about 15 miles upstream from the park, altered the Colorado River's flow, temperature, and sediment-carrying capacity, resulting over time in beach erosion, expansion of nonnative species, and losses of native fish. During the 1990s, in response to public concern, Congress and the Department of the Interior embarked on an ongoing effort to reduce and address the effects of dam operations on downstream resources. In 2005, the U.S. Geological Survey produced a comprehensive report entitled 'The State of the Colorado River Ecosystem in Grand Canyon', which documented the condition and trends of resources downstream of Glen Canyon Dam from 1991 to 2004. This fact sheet updates the 2005 report to extend its findings to include data published through April 2009 for key resources.

  8. K-Ar ages of Pleistocene lava dams in the Grand Canyon in Arizona

    PubMed Central

    Dalrymple, G. Brent; Hamblin, W. K.

    1998-01-01

    At least 13 times during the Pleistocene Epoch lava flowed into the inner gorge of the Grand Canyon and formed lava dams, as high as 600 m, that temporarily blocked the flow of the Colorado River. K-Ar ages on these lava dams indicate that the seven youngest formed within a short period of time between about 0.6 and 0.4 mega-annum (Ma). The physiography of the lava dam remnants within the canyon shows that each dam was destroyed by erosion, the Colorado River rapidly reaching its pre-existing grade level, before the next dam was emplaced by new eruptions. The total time for emplacement and destruction for an individual lava dam was probably as little as 0.01–0.02 million years. The K-Ar ages of the two oldest dams, the Lava Butte dam (0.577 ± 0.054 Ma) and the Prospect dam (0.684 ± 0.051 Ma) are somewhat younger than the physiography of their remnants suggest. PMID:9707546

  9. 75 FR 20381 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group (AMWG) AGENCY: Bureau of Reclamation... technical work group (TWG), a monitoring and research center, and independent review panels. The AMWG makes.... (PDT) to ensure that the connections work properly. The one hour test Web site is:...

  10. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2004-2005 Annual Report.

    SciTech Connect

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2005-08-01

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout in streams using electrofishing. Although the success of electrofishing removal projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. We evaluated the effectiveness of a three-year removal project in reducing brook trout and enhancing native salmonids in 7.8 km of an Idaho stream and looked for brook trout compensatory responses such as decreased natural mortality, increased growth, increased fecundity at length, or earlier maturation. Due to underestimates of the distribution of brook trout in the first year and personnel shortages in the third year, the multiagency watershed advisory group that performed the project fully treated the stream (i.e. multipass removals over the entire stream) in only one year. In 1998, 1999, and 2000, a total of 1,401, 1,241, and 890 brook trout were removed, respectively. For 1999 and 2000, an estimated 88 and 79% of the total number of brook trout in the stream were removed. For the section of stream that was treated in all years, the abundance of age-1 and older brook trout decreased by 85% from 1998 to 2003. In the same area, the abundance of age-0 brook trout decreased 86% from 1998 to 1999 but by 2003 had rebounded to near the original abundance. Abundance of native redband trout Oncorhynchus mykiss decreased for age-1 and older fish but did not change significantly for age-0 fish. Despite high rates of removal, total annual survival rate for brook trout increased from 0.08 {+-} 0.02 in 1998 to 0.20 {+-} 0.04 in 1999 and 0.21 {+-} 0.04 in 2000. Growth of age-0 brook trout was significantly higher in 2000 (the year after their abundance was lowest) compared to other years, and growth of age-1 and age-2 brook trout was significantly lower following the initial removal years but recovered by 2003. Few other brook trout demographic parameters changed appreciably over the course of the project. Electrofishing removals required 210 person-days of effort. Despite experiencing slight changes in abundance, growth, and survival, brook trout in Pikes Fork appeared little affected by three years of intensive removal efforts, most likely because mortality within the population was high prior to initiation of the project such that the removal efforts merely replaced natural mortality with exploitation.

  11. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2001 Annual Report.

    SciTech Connect

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2002-11-01

    We investigated factors affecting the distribution and abundance of Yellowstone cutthroat trout (YCT), the abundance of all trout, and species richness in several drainages in the upper Snake River basin in Idaho. A total of 326 randomly selected sites were visited within the four study drainages, and of these, there was sufficient water to inventory fish and habitat in 56 of the sites in the Goose Creek drainage, 64 in the Raft River drainage, 54 in the Blackfoot River drainage, and 27 in the Willow Creek drainage. Fish were captured in 36, 55, 49, and 22 of the sites, respectively, and YCT were present at 17, 37, 32, and 13 of the sites, respectively. There was little consistency or strength in the models developed to predict YCT presence/absence and density, trout density, or species richness. Typically, the strongest models had the lowest sample sizes. In the Goose Creek drainage, sites with YCT were higher in elevation and lower in conductivity. In the Raft River drainage, trout cover was more abundant at sites with YCT than without YCT. In the Blackfoot River drainage, there was less fine substrate and more gravel substrate at sites with YCT than at sites without YCT. In the Willow Creek drainage, 70% of the sites located on public land contained YCT, but only 35% of private land contained YCT. The differences in variable importance between drainages suggests that factors that influence the distribution of YCT vary between drainages, and that for the most part the variables we measured had little influence on YCT distribution. n sites containing YCT, average cutthroat trout density was 0.11/m{sup 2}, 0.08/m{sup 2}, 0.10/m{sup 2}, and 0.08/m{sup 2} in the Goose Creek, Raft River, Blackfoot River, and Willow Creek drainages, respectively. In sites containing trout in general, average total trout density in these same drainages was 0.16/m{sup 2}, 0.15/m{sup 2}, 0.10/m{sup 2}, and 0.10/m{sup 2}. Models to predict YCT density, total trout density, and species richness were either weak (i.e., explained little variation) or contained small sample sizes. Based on our results, it appears that factors other than those we measured are affecting fish populations in these drainages.

  12. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2003-2004 Annual Report.

    SciTech Connect

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2004-08-01

    Despite the substantial declines in distribution and abundance that the Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri has experienced over the past century, quantitative evaluations of existing population sizes over broad portions of its historical range have not been made. In this study, we estimate trout abundance throughout the Upper Snake River basin in Idaho (and portions of adjacent states), based on stratified sample extrapolations of electrofishing surveys conducted at 961 study sites, the vast majority of which (84%) were selected randomly. Yellowstone cutthroat trout were the most widely distributed species of trout (caught at 457 study sites), followed by brook trout Salvelinus fontinalis (242 sites), rainbow trout O. mykiss and rainbow x cutthroat hybrids (136 sites), and brown trout Salmo trutta (70 sites). Of the sites that contained cutthroat trout, more than half did not contain any other species of trout. Where nonnative trout were sympatric with cutthroat trout, brook trout were most commonly present. In the 11 Geographic Management Units (GMUs) where sample size permitted abundance estimates, there were about 2.2 million trout {ge}100 mm, and of these, about one-half were cutthroat trout. Similarly, we estimated that about 2.0 million trout <100 mm were present, of which about 1.2 million were cutthroat trout. The latter estimate is biased low because our inability to estimate abundance of trout <100 mm in larger-order rivers negated our ability to account for them at all. Cutthroat trout were divided into approximately 70 subpopulations but estimates could be made for only 55 subpopulations; of these, 44 subpopulations contained more than 1,000 cutthroat trout and 28 contained more than 2,500 cutthroat trout. Using a logistic regression model to predict the number of spawning cutthroat trout at a given study site, we estimate that an average of about 30% of the cutthroat trout {ge}100 mm are spawners. We compared visually-based phenotypic assessments of hybridization with subsequent genetic analyses from 55 of the study sites and found that: (1) genetic analysis corroborated our visual determination that hybridization was absent at 37 of 55 sites; (2) at the seven sites where we visually failed to discern genetically-detected hybridization, the percent of rainbow trout alleles in the population was low (<1 %) at all but two locations; and (3) where we detected hybridization both visually and genetically (11 sites), levels of introgression were positively correlated between methods (r{sub 2} = 0.65). Based on this strong agreement, we phenotypically classified cutthroat trout as ''pure'' and ''{ge}90% pure'' at 81% and 90%, respectively, of the study sites within these GMUs. Our results suggest that, despite the presence of nonnative threats (genetic and competitive) in much of their current range in Idaho, Yellowstone cutthroat trout populations remain widely distributed and appear healthy in several river drainages in the Upper Snake River basin. Nevertheless, ongoing efforts to secure core cutthroat trout populations, protect areas from further nonnative invasions, and restore disturbed habitat are recommended for further protection of Yellowstone cutthroat trout in Idaho.

  13. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2002-2003 Annual Report.

    SciTech Connect

    Meyer, Kevin A.; Lamansky, Jr., James A.

    2004-03-01

    We assessed the relationships between specific stream attributes and Yellowstone cutthroat trout Oncorhynchus clarki bouvieri distribution and biomass at 773 stream reaches (averaging 100 m in length) throughout the Upper Snake River Basin in Idaho, in an effort to identify possible limiting factors. Because limiting factors were expected to vary across the range of cutthroat trout distribution in Idaho, separate logistic and multiple regression models were developed for each of the nine major river drainages to relate stream conditions to occurrence and biomass of cutthroat trout. Adequate stream flow to measure fish and habitat existed at 566 sites, and of those, Yellowstone cutthroat trout were present at 322 sites, while rainbow trout O. mykiss (or rainbow x cutthroat hybrids) and brook trout Salvelinus fontinalis occurred at 108 and 181 sites, respectively. In general, cutthroat trout presence at a specific site within a drainage was associated with a higher percentage of public property, higher elevation, more gravel and less fine substrate, and more upright riparian vegetation. However, there was much variation between drainages in the direction and magnitude of the relationships between stream characteristics and Yellowstone cutthroat trout occurrence and biomass, and in model strength. This was especially true for biomass models, in which we were able to develop models for only five drainages that explained more than 50% of the variation in cutthroat trout biomass. Sample size appeared to affect the strength of the biomass models, with a higher explanation of biomass variation in drainages with lower sample sizes. The occurrence of nonnative salmonids was not strongly related to cutthroat trout occurrence, but their widespread distribution and apparent ability to displace native cutthroat trout suggest they may nevertheless pose the largest threat to long-term cutthroat trout persistence in the Upper Snake River Basin.

  14. Assessment of Native Salmonids Above Hells Canyon Dam, Idaho; 1998 Annual Report.

    SciTech Connect

    Meyer, Kevin A.

    1999-03-01

    Native resident salmonids in the western United States are in decline throughout much of their range. The purpose of the multi-phased project is to restore native salmonids in the upper Snake River basin to self-sustaining, harvestable levels.

  15. Use of Composite Fingerprinting Technique to Determine Contribution of Paria River Sediments to Dam-Release Flood Deposits in Marble Canyon, Grand Canyon, Az

    NASA Astrophysics Data System (ADS)

    Chapman, K.; Parnell, R. A.; Smith, M. E.; Grams, P. E.; Mueller, E. R.

    2015-12-01

    The 1963 closure of Glen Canyon Dam drastically reduced the downstream sediment supply and altered daily flow regimes of the Colorado River through Grand Canyon, resulting in significant sandbar erosion downstream of the dam. Dam-release floods, known as High Flow Experiments (HFEs), have occurred six times since 1996 and are intended to rebuild Grand Canyon sandbars using tributary-supplied sediment. In Marble Canyon (first 100 km of Grand Canyon) the targeted tributary is the Paria River which supplies approximately 90% of the annual suspended sediment flux through Marble Canyon; the same input contributed less than 6% prior to the dam. Annual topographic surveys have established that HFEs are effective at rebuilding sandbars. However, the long-term viability of using HFEs for sandbar maintenance is dependent on a sustainable source of sediments comprising HFE deposits. Significant use of non-tributary, main-stem sediments (i.e. pre-dam sand stored in eddies or the channel bed) in HFE deposits would indicate reliance on a limited resource, and diminishing returns in the ability of HFEs to rebuild sandbars. In this study, we sampled vertically throughout 12 bars in Marble Canyon to document temporal and downstream changes in the proportion of sediment sourced from the Paria River during the 2013 and 2014 HFEs. Preliminary data suggest that heavy mineral compositions and concentrations of Ti, S, Cr and Rb, all of which are influenced by grainsize, could be sufficiently capable of differentiating Paria-derived and main-stem sediments when combined into a composite fingerprint (CF). A multivariate mixing model using these CFs quantitatively determines the contribution of Paria-derived sediment in each HFE deposit sample. Mixing model endmembers for non-Paria sand include pre-dam flood deposits in Glen and Marble Canyons, and Marble Canyon dredge samples. These results elucidate the role of contemporary versus legacy sediment in long-term sandbar maintenance.

  16. Influence of a dam on fine-sediment storage in a canyon river

    USGS Publications Warehouse

    Hazel, J.E., Jr.; Topping, D.J.; Schmidt, J.C.; Kaplinski, M.

    2006-01-01

    Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (???17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases without significant input of tributary sediment will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon. Copyright 2006 by the American Geophysical Union.

  17. Colorado River sediment transport 1. Natural sediment supply limitation and the influence of Glen Canyon Dam

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Vierra, L.E., Jr.

    2000-01-01

    Analyses of flow, sediment-transport, bed-topographic, and sedimentologic data suggest that before the closure of Glen Canyon Dam in 1963, the Colorado River in Marble and Grand Canyons was annually supply-limited with respect to fine sediment (i.e., sand and finer material). Furthermore, these analyses suggest that the predam river in Glen Canyon was not supply-limited to the same degree and that the degree of annual supply limitation increased near the head of Marble Canyon. The predam Colorado River in Grand Canyon displays evidence of four effects of supply limitation: (1) seasonal hysteresis in sediment concentration, (2) seasonal hysteresis in sediment grain size coupled to the seasonal hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Analyses of sediment budgets provide additional support for the interpretation that the predam river was annually supply-limited with respect to fine sediment, but it was not supply-limited with respect to fine sediment during all seasons. In the average predam year, sand would accumulate and be stored in Marble Canyon and upper Grand Canyon for 9 months of the year (from July through March) when flows were dominantly below 200-300 m3/s; this stored sand was then eroded during April through June when flows were typically higher. After closure of Glen Canyon Dam, because of the large magnitudes of the uncertainties in the sediment budget, no season of substantial sand accumulation is evident. Because most flows in the postdam river exceed 200-300 m3/s, substantial sand accumulation in the postdam river is unlikely.

  18. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    USGS Publications Warehouse

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  19. The Glen Canyon Dam adaptive management program: progress and immediate challenges

    USGS Publications Warehouse

    Hamill, John F.; Melis, Theodore S.

    2012-01-01

    Adaptive management emerged as an important resource management strategy for major river systems in the United States (US) in the early 1990s. The Glen Canyon Dam Adaptive Management Program (‘the Program’) was formally established in 1997 to fulfill a statutory requirement in the 1992 Grand Canyon Protection Act (GCPA). The GCPA aimed to improve natural resource conditions in the Colorado River corridor in the Glen Canyon National Recreation Area and Grand Canyon National Park, Arizona that were affected by the Glen Canyon dam. The Program achieves this by using science and a variety of stakeholder perspectives to inform decisions about dam operations. Since the Program started the ecosystem is now much better understood and several biological and physical improvements have been achieved. These improvements include: (i) an estimated 50% increase in the adult population of endangered humpback chub (Gila cypha) between 2001 and 2008, following previous decline; (ii) a 90% decrease in non-native rainbow trout (Oncorhynchus mykiss), which are known to compete with and prey on native fish, as a result of removal experiments; and (iii) the widespread reappearance of sandbars in response to an experimental high-flow release of dam water in March 2008.Although substantial progress has been made, the Program faces several immediate challenges. These include: (i) defining specific, measurable objectives and desired future conditions for important natural, cultural and recreational attributes to inform science and management decisions; (ii) implementing structural and operational changes to improve collaboration among stakeholders; (iii) establishing a long-term experimental programme and management plan; and (iv) securing long-term funding for monitoring programmes to assess ecosystem and other responses to management actions. Addressing these challenges and building on recent progress will require strong and consistent leadership from the US Department of the Interior

  20. Three Experimental High-Flow Releases from Glen Canyon Dam, Arizona-Effects on the Downstream Colorado River Ecosystem

    USGS Publications Warehouse

    Melis, Theodore S.; Grams, Paul E.; Kennedy, Theodore A.; Ralston, Barbara E.; Robinson, Christopher T.; Schmidt, John C.; Schmit, Lara M.; Valdez, Richard A.; Wright, Scott A.

    2011-01-01

    Three high-flow experiments (HFEs) were conducted by the U.S. Department of the Interior at Glen Canyon Dam, Arizona, in March 1996, November 2004, and March 2008. Also known as artificial or controlled floods, these scheduled releases of water above the dam's powerplant capacity were designed to mimic pre-dam seasonal flooding on the Colorado River. The goal of the HFEs was to determine whether high flows could be used to benefit important downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park that have been affected by the existence and operation of Glen Canyon Dam. These downstream resources include native fish, particularly endangered humpback chub (Gila cypha), terrestrial and aquatic sandbar habitats, cultural sites, and recreational resources. This Fact Sheet summarizes HFE-related studies published since 1996 and outlines a possible strategy for implementing future HFEs.

  1. Adaptive Management Implementation: Glen Canyon Dam Adaptive Management Program Trinity River Restoration Program

    USGS Publications Warehouse

    Wittler, R.; McBain, S.; Stalnaker, C.

    2003-01-01

    Two adaptive management programs, the Glen Canyon Dam Adaptive Management Program (GCDAMP) and the Trinity River Restoration Program (TRRP) are examined. In both cases, the focus is on managing the aquatic and riparian systems downstream of a large dam and water supply project. The status of the two programs, lessons learned by the program managers and the Adaptive Environmental Assessment and Management (AEAM) evolution of the TRRP are discussed. The Trinity River illustrates some of the scientific uncertainities that a program faces and the ways the program evolves from concept through implementation.

  2. The Influence of Dam Discharge Regime and Canyon Orientation on Ecosystem Metabolism in the Colorado River

    NASA Astrophysics Data System (ADS)

    Kennedy, T. A.; Tietjen, T.; Wright, S.

    2005-05-01

    Since the closure of Glen Canyon Dam and the beginning of flow regulation of the Colorado River in Grand Canyon in 1963, considerable efforts have been directed toward understanding the aquatic ecology of this altered ecosystem. Understanding what controls resource availability has been a central focus of these efforts because the Colorado River supports populations of sport fish and endangered humpback chub, both of which appear to be strongly resource limited. There is evidence that dam discharge regime and canyon orientation influence algal standing crop due to their effects on water velocity (scour) and solar insolation, respectively. We explored whether these physical factors influenced rates of primary production and ecosystem respiration, two different metrics of resource availability, in the clear tailwater section of the Colorado River by conducting whole system metabolism measurements across a range of discharge regimes and in reaches with different orientation (i.e. N-S vs. E-W). We found that while both discharge regime and canyon orientation influence rates of primary production, seasonal changes in light availability appear to have a far stronger influence on rates of primary production in the Colorado River. Water temperature appeared to be the main driver of ecosystem respiration.

  3. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    USGS Publications Warehouse

    Fenton, C.R.; Webb, R.H.; Cerling, T.E.

    2006-01-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 ?? 109 m3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 ?? 105 m3 s-1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 ?? 104 m3 s-1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 ?? 104 m3 s-1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>105 m3 s-1) known worldwide and in the top ten largest floods in North America. ?? 2005 University of Washington. All rights reserved.

  4. Abiotic & biotic responses of the Colorado River to controlled floods at Glen Canyon Dam, Arizona, USA

    USGS Publications Warehouse

    Korman, Josh; Melis, Ted; Kennedy, Theodore A.

    2012-01-01

    Closure of Glen Canyon Dam reduced sand supply to the Colorado River in Grand Canyon National Park by about 94% while its operation has also eroded the park's sandbar habitats. Three controlled floods released from the dam since 1995 suggest that sandbars might be rebuilt and maintained, but only if repeated floods are timed to follow tributary sand deliveries below the dam. Monitoring data show that sandbars are dynamic and that their erosion after bar building is positively related with mean daily discharge and negatively related with tributary sand production after controlled floods. The March 2008 flood affected non-native rainbow trout abundance in the Lees Ferry tailwater, which supports a blue ribbon fishery. Downstream trout dispersal from the tailwater results in negative competitive interactions and predation on endangered humpback chub. Early survival rates of age-0 trout increased more than fourfold following the 2008 flood, and twofold in 2009, relative to prior years (2006-2007). Hatch-date analysis indicated that early survival rates were much higher for cohorts that emerged about 2 months after the 2008 flood relative to cohorts that emerged earlier that year. The 2009 survival data suggest that tailwater habitat improvements persisted for at least a year, but apparently decreased in 2010. Increased early survival rates for trout coincided with the increased availability of higher quality drifting food items after the 2008 flood owing to an increase in midges and black flies, preferred food items of rainbow trout. Repeated floods from the dam might sustainably rebuild and maintain sandbars if released when new tributary sand is available below the tailwater. Spring flooding might also sustain increased trout abundance and benefit the tailwater fishery, but also be a potential risk to humpback chub in Grand Canyon.

  5. The Glen Canyon Dam Adaptive Management Program: An experiment in science-based resource management

    NASA Astrophysics Data System (ADS)

    kaplinski, m

    2001-12-01

    In 1996, Glen Canyon Dam Adaptive Management (GCDAMP) program was established to provide input on Glen Canyon Dam operations and their affect on the Colorado Ecosystem in Grand Canyon. The GCDAMP is a bold experiment in federal resource management that features a governing partnership with all relevant stakeholders sitting at the same table. It is a complicated, difficult process where stakeholder-derived management actions must balance resource protection with water and power delivery compacts, the Endangered Species Act, the National Historical Preservation Act, the Grand Canyon Protection Act, National Park Service Policy, and other stakeholder concerns. The program consists of four entities: the Adaptive Management Workgroup (AMWG), the Technical Workgroup (TWG), the Grand Canyon Monitoring and Research Center (GCMRC), and independent review panels. The AMWG and TWG are federal advisory committees that consists of federal and state resource managers, Native American tribes, power, environmental and recreation interests. The AMWG is develops, evaluates and recommends alternative dam operations to the Secretary. The TWG translates AMWG policy and goals into management objectives and information needs, provides questions that serve as the basis for long-term monitoring and research activities, interprets research results from the GCMRC, and prepares reports as required for the AMWG. The GCMRC is an independent science center that is responsible for all GCDAMP monitoring and research activities. The GCMRC utilizes proposal requests with external peer review and an in-house staff that directs and synthesizes monitoring and research results. The GCMRC meets regularly with the TWG and AMWG and provides scientific information on the consequences of GCDAMP actions. Independent review panels consist of external peer review panels that provide reviews of scientific activities and the program in general, technical advice to the GCMRC, TWG and AMWG, and play a critical

  6. Adaptive Management of Glen Canyon Dam: Two Decades of Large Scale Experimental Treatments Intended to Benefit Resources of the Colorado River in Grand Canyon, USA

    NASA Astrophysics Data System (ADS)

    Melis, Theodore

    2010-05-01

    Glen Canyon Dam was closed in 1963, primarily to store water for the rapidly developing southwestern United States. The dam's hydropower plant, with a generating capacity of up to 1,300 megawatts of electrical energy, was initially operated without daily peaking constraints from 1966 to 1990, resulting in daily tides on the Colorado River through Grand Canyon National Park of up to 4 meters. The influences of Glen Canyon Dam's peaking operations on downstream river resources through Grand Canyon have been intensively studied for nearly four decades. Following experimental reoperation of the dam in summer 1990, and five years of studies associated with a major environmental impact statement, the Glen Canyon Dam Adaptive Management Program was created in 1997, to evaluate whether a new experimental flow regime, combined with other non-flow treatments, can mitigate the detrimental effects of the former hydropeaking flow regime. Experimental flow treatments associated with the program over the last two decades have included the adoption of hourly and daily operating rules that now govern and constrain hydropeaking, periodic release of experimental controlled floods to rebuild sandbar habitats along shorelines and occasional steady flow tests intended to benefit the river's endangered humpback chub; one of the endemic fish of the Colorado River basin that experienced a population decline following dam closure. Other non-flow experimental treatments being evaluated by the program include removal of nonnative fish species, such as rainbow trout and other exotic fish, as well as translocation of humpback chub into other habitats below the dam where they might successfully spawn. Since 1995, three controlled flood experiments have been released from the dam to determine whether the remaining sand supplies that enter the Colorado River below the dam (about 6 to 16 percent of the predam sand supply) can be managed to create and maintain sandbar habitats used by humpback chub

  7. Boater preferences for beach characteristics downstream from Glen Canyon Dam, Arizona.

    PubMed

    Stewart, William; Larkin, Kevin; Orland, Brian; Anderson, Don

    2003-10-01

    Release flow decisions are increasingly being influenced by an array of social values, including those related to river-based recreation. A substantial portion of past recreation research on downstream impacts of dams has focused on variability of instream flows. This study complements past research by assessing user preferences for beach characteristics affected by long-term impacts of flow regimes. Based upon a study of three recreational user groups (private trip leaders, commercial passengers, and river guides) of the Colorado River in Grand Canyon, preferences for beach size, presence of shade on beach, and presence of vegetation on beach are examined. Results indicate that large size beaches with shade from trees are setting characteristics with highly reliable and strong user preferences. The multinomial regression models developed for each user group indicate that 80% of all respondents would choose beach campsites 800 m(2); results were the same regardless of respondents' past boating experience, boat type (i.e. oar or motorized), or group size. In addition, size of beach was consistently reported to be a trip feature of moderate importance to respondents' river trip. Implications of this research are related to future prospects for controlled floods (i.e. spike flows) released from Glen Canyon Dam. PMID:14550663

  8. Specific Conductance in the Colorado River between Glen Canyon Dam and Diamond Creek, Northern Arizona, 1988-2007

    USGS Publications Warehouse

    Voichick, Nicholas

    2008-01-01

    The construction of Glen Canyon Dam, completed in 1963, resulted in substantial physical and biological changes to downstream Colorado River environments between Lake Powell and Lake Mead - an area almost entirely within Grand Canyon National Park, Ariz. In an effort to understand these changes, data have been collected to assess the condition of a number of downstream resources. In terms of measuring water quality, the collection of specific-conductance data is a cost-effective method for estimating salinity. Data-collection activities were initially undertaken by the Bureau of Reclamation's Glen Canyon Environmental Studies (1982-96); these efforts were subsequently transferred to the U.S. Geological Survey's Grand Canyon Monitoring and Research Center (1996 to the present). This report describes the specific-conductance dataset collected for the Colorado River between Glen Canyon Dam and Diamond Creek from 1988 to 2007. Data-collection and processing methods used during the study period are described, and time-series plots of the data are presented. The report also includes plots showing the relation between specific conductance and total dissolved solids. Examples of the use of specific conductance as a natural tracer of parcels of water are presented. Analysis of the data indicates that short-duration spikes and troughs in specific-conductance values lasting from hours to days are primarily the result of flooding in the Paria and Little Colorado Rivers, Colorado River tributaries below Glen Canyon Dam. Specific conductance also exhibits seasonal variations owing to changes in the position of density layers within the reservoir; these changes are driven by inflow hydrology, meteorological conditions, and background stratification. Longer term trends in Colorado River specific conductance are reflective of climatological conditions in the upper Colorado River Basin. For example, drought conditions generally result in an increase in specific conductance in Lake

  9. Flow and Transport Modeling to Support Decision Making in the Management of Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Wilcock, P. R.; Wiele, S. M.; Wright, S. A.

    2006-12-01

    Eddy sand bars are an important ecological, recreational, and archaeological resource along the Colorado River in Grand Canyon and their protection is a key issue in the management and operation of Glen Canyon Dam. Most sediment delivered to the upper 100 km of the system comes from a single tributary and management actions have focused on dam releases to optimize storage of this remaining sand supply. Field experiments to evaluate different management actions will be costly and few. A predictive model is needed to assist in interpreting these experiments and to evaluate a broader range of options. Such a model faces a difficult and interesting suite of challenges. Rates of sand erosion, transport, and deposition are transient, episodic, spatially variable, and locally complex. The length of channel to be modeled is long, access to the river is limited, and the available data, though remarkably rich for the circumstances, are sparse. In these circumstances, a useful model of sand transport and storage should represent the appropriate processes in a simple but realistic, interpretable, and testable form. Management actions are evaluated in a diverse multi-stakeholder environment, emphasizing the importance of ready explanation and interpretation and a model that is evidently robust. We report here on the application of a sand routing model developed to inform decisions regarding dam operations and possible sand augmentation. Water and sand routing are computed using reach-averaged models. Sand exchange with eddies is represented using coupled source/sink functions developed from application of a depth-averaged 2d flow and transport model to a suite of eddy complexes with known topography and sand storage. Applications of the model focus on the magnitude, volume, timing and efficiency of high flows intended to store sediment at high elevations and the magnitude and fluctuation of daily flows intended to conserve sand within the channel until high flows are available

  10. Biological data for water in Lake Powell and from Glen Canyon Dam releases, Utah and Arizona, 1990–2009

    USGS Publications Warehouse

    Vernieu, William S.

    2015-01-01

    The results of these analyses are presented in this report. From this record, further interpretation may be made concerning primary and secondary production in Lake Powell. These data provide a linkage between physical and chemical water-quality data and fisheries investigations in Lake Powell. They also provide information regarding the export of biological material from Glen Canyon Dam.

  11. Effects of three high-flow experiments on the Colorado River ecosystem downstream from Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Melis, Theodore S.

    2011-01-01

    Three high-flow experiments (HFEs) were conducted by the U.S. Department of the Interior at Glen Canyon Dam, Arizona, in March 1996, November 2004, and March 2008. These experiments, also known as artificial or controlled floods, were large-volume, scheduled releases of water from Glen Canyon Dam that were designed to mimic some aspects of pre-dam Colorado River seasonal flooding. The goal of these experiments was to determine whether high flows could be used to benefit important physical and biological resources in Glen Canyon National Recreation Area and Grand Canyon National Park that had been affected by the operation of Glen Canyon Dam. Efforts such as HFEs that seek to maintain and restore downstream resources are undertaken by the U.S. Department of the Interior under the auspices of the Grand Canyon Protection Act of 1992 (GCPA; title XVIII, secs. 1801-1809, of Public Law 102-575). Scientists conducted a wide range of monitoring and research activities before, during, and after the experiments. Initially, research efforts focused on whether HFEs could be used to rebuild and maintain Grand Canyon sandbars, which provide camping beaches for hikers and whitewater rafters, create habitats potentially used by native fish and other wildlife, and are the source of windborne sand that may help to protect some archaeological resources from weathering and erosion. As scientists gained a better understanding of how HFEs affect the physical environment, research efforts expanded to include additional investigations about the effects of HFEs on biological resources, such as native fishes, nonnative sports fishes, riverside vegetation, and the aquatic food web. The chapters that follow summarize and synthesize for decisionmakers and the public what has been learned about HFEs to provide a framework for implementing similar future experiments. This report is a product of the Glen Canyon Dam Adaptive Management Program (GCDAMP), a Federal initiative authorized to ensure

  12. The rate and pattern of bed incision and bank adjustment on the Colorado River in Glen Canyon downstream from Glen Canyon Dam, 1956-2000

    USGS Publications Warehouse

    Grams, P.E.; Schmidt, J.C.; Topping, D.J.

    2007-01-01

    Closure of Glen Canyon Dam in 1963 transformed the Colorado River by reducing the magnitude and duration of spring floods, increasing the magnitude of base flows, and trapping fine sediment delivered from the upper watershed. These changes caused the channel downstream in Glen Canyon to incise, armor, and narrow. This study synthesizes over 45 yr of channel-change measurements and demonstrates that the rate and style of channel adjustment are directly related to both natural processes associated with sediment deficit and human decisions about dam operations. Although bed lowering in lower Glen Canyon began when the first cofferdam was installed in 1959, most incision occurred in 1965 in conjunction with 14 pulsed high flows that scoured an average of 2.6 m of sediment from the center of the channel. The average grain size of bed material has increased from 0.25 mm in 1956 to over 20 mm in 1999. The magnitude of incision at riffles decreases with distance downstream from the dam, while the magnitude of sediment evacuation from pools is spatially variable and extends farther downstream. Analysis of bed-material mobility indicates that the increase in bed-material grain size and reduction in reach-average gradient are consistent with the transformation of an adjustable-bed alluvial river to a channel with a stable bed that is rarely mobilized. Decreased magnitude of peak discharges in the post-dam regime coupled with channel incision and the associated downward shifts of stage-discharge relations have caused sandbar and terrace erosion and the transformation of previously active sandbars and gravel bars to abandoned deposits that are no longer inundated. Erosion has been concentrated in a few pre-dam terraces that eroded rapidly for brief periods and have since stabilized. The abundance of abandoned deposits decreases downstream in conjunction with decreasing magnitude of shift in the stage-discharge relations. In the downstream part of the study area where riffles

  13. Financial Analysis of Experimental Releases Conducted at Glen Canyon Dam during Water Year 2014

    SciTech Connect

    Graziano, D. J.; Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B.

    2015-09-01

    This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year (WY) 2014. It is the sixth report in a series examining the financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011), a report released June 2012 examined water year 2011 (Poch et al. 2012), a report released April 2013 examined water year 2012 (Poch et al. 2013), and a report released June 2014 examined water year 2013 (Graziano et al. 2014).

  14. Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.

    SciTech Connect

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B; Decision and Information Sciences; Western Area Power Administration

    2010-07-31

    On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This ex post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.

  15. Reconstructing western Grand Canyon's lava dams and their failure mechanisms: new insights from geochemical correlation and 40Ar/39Ar dating

    NASA Astrophysics Data System (ADS)

    Crow, R.; Karlstrom, K. E.; McIntosh, W. C.; Peters, L.; Dunbar, N. W.

    2010-12-01

    New geochemical analyzes and 40Ar/39Ar dating of lava dam remnants allows for the more accurate reconstruction of the timing, extent, and structure of western Grand Canyon’s lava dams. Whole-rock major, trace, and rare-earth element (REE) analyzes on over 60 basaltic lava dam remnants, cascades, plugs, and basaltic alluvium, show compositional variation from basanites to alkali basalts to tholeiites. Whitmore Canyon flows, for example, are some of the only tholeiitic flows and have a distinguishable trace and REE composition, which allows for correlation of dam remnants. Over 30 new high-precision 40Ar/39Ar dates also aid in remnant correlation and establish a better-constrained sequence of intra-canyon lava dams. Reliable 40Ar/39Ar dates on western Grand Canyon’s intra-canyon basalts range from ca. 100 ka to 840 ka (new date). The best understood lava dam formed from tholeiitic flows that erupted on the north rim, flowed down Whitmore side canyon and blocked a 6-km-long reach of the Grand Canyon. The youngest of these flows is unique because we know its age (200ka), its composition (tholeiitic), and the exact area where it entered Grand Canyon. The highest flow in the resulting dam, Whitmore Cascade, is capped with very coarse basaltic alluvium that previous workers have attributed to an upstream catastrophic dam failure event at about 200 ka. However, strong similarities between the geochemistry and age of the alluvium with the underlying Whitmore Cascade flow suggest that the alluvial deposit is related to failure of the 200 ka Whitmore Cascade dam itself. Similarly the 100 ka Upper Gray Ledge flow is commonly overlain by a balsaltic alluvium that is indistinguishable in terms of age and geochemistry from the underlying Upper Gray Ledge flow. These observations lead to a new model for Grand Canyon lava dams by which lava dams undergo multi-staged failure where the upstream parts of dams fail quickly (sometimes catastrophically) but downstream parts are

  16. Measured and predicted velocity and longitudinal dispersion at steady and unsteady flow, Colorado River, Glen Canyon Dam to lake mead

    USGS Publications Warehouse

    Graf, J.B.

    1995-01-01

    The effect of unsteadiness or dam releases on velocity and longitudinal dispersion of flow was evaluated by injecting a fluorescent dye into the Colorado River below Glen Canyon Dam and sampling for dye concentration at selected sites downstream. In Glen Canyon, average flow velocity through the study reach increased directly with discharge, but dispersion was greatest at the lowest of the three flows measured. In Grand Canyon, average flow velocity varied slightly from subreach to subreach at both steady and unsteady flow over the entire study reach. Also, longitudinal dispersion was not significantly different during steady and unsteady flow. Absence of tails on the curves shows that, at the measured flows, the eddies that are characteristic of the Grand Canyon reach do not trap water for a significant length of time. Data from the measurements were used to calibrate a one-dimensional now modeland a solute-transport model. The combined set of calibrated flow and solute-transport models was then used to predict velocity and dispersion at potential dam-release patterns.

  17. Late Quaternary Spring-Fed Deposits of the Grand Canyon and Their Implication for Deep Lava-Dammed Lakes

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; O'Brien, Gary; Mead, Jim I.; Bright, Jordon; Umhoefer, Paul

    2002-11-01

    One of the most intriguing episodes in the Quaternary evolution of the Grand Canyon of the Colorado River, Arizona, was the development of vast lakes that are thought to have backed up behind lava erupted into the gorge. Stratigraphic evidence for these deep lava-dammed lakes is expectedly sparse. Possible lacustrine deposits at six areas in the eastern canyon yielded no compelling evidence for sediment deposited in a deep lake. At two of the sites the sediment was associated with late Quaternary spring-fed pools and marshes. Water-lain silt and sand at lower Havasu Creek was deposited ˜3000 cal yr ago. The deposit contains an ostracode assemblage similar to that living in the modern travertine-dammed pools adjacent to the outcrop. The second deposit, at Lees Ferry, formed in a spring-fed marsh ˜43,000 cal yr ago, as determined by 14C and amino acid geochronology. It contains abundant ostracode and mollusk fossils, the richest assemblages reported from the Grand Canyon to date. Our interpretation of these sediments as spring-fed deposits, and their relative youth, provides an alternative to the conventional view that deposits like these were formed in deep lava-dammed lakes that filled the Grand Canyon.

  18. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  19. Quantifying Channel Morphology Changes in Response to the Removal of the Glines Canyon Dam, Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Free, B. J.; Ely, L. L.; Hickey, R.; Flake, R.; Baumgartner, S.

    2014-12-01

    The removal of two dams on the Elwha River, Washington, is the largest dam-removal project in history. Our research documents the sediment deposition, erosion, and channel changes between the dams following the initial sediment release from the removal of the upstream Glines Canyon Dam. Within the first year following the dam removal, the pulse of coarse sediment and large woody debris propagated downstream well over 6 km below the dam. The sediment deposition and altered channel hydraulics caused lateral channel migration where anabranching channels merge around new mid-channel bars and at large bends in the river channel. Documenting the river channel response to this exceptional sediment pulse could improve models of the impacts of future dam removals on similar gravel-bed rivers. We quantified the sediment flux and channel changes at four field sites 2-6 km downstream of Glines Canyon Dam. Topographic changes were surveyed with a terrestrial laser scanner (TLS) on an annual basis from August 2012 - August 2014 and the surface sediment distribution was quantified with bimonthly sediment counts. Differencing the annual TLS data yielded an overall increase in sediment throughout the study reach, with a minimum of 20,000 m3 of deposition on bars and banks exposed above the water surface in each 700-m-long TLS survey reach. The surface sediment distribution decreased from ~18 cm to < 1 mm. Large woody debris transported downstream from the former reservoir contributed to the formation of new sand and gravel bars along the channel margin at two sites as well as the longitudinal growth of several bars throughout the study area. The new bar formations have continued to propagate downstream as new sediment and woody debris have been added and remobilized, increasing the complexity of the river channel. By spring 2013, channel features that were present before the dam removal began to re-emerge due to the remobilizing of sediment through the system.

  20. Planned flooding and Colorado River riparian trade-offs downstream from Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Stevens, Lawrence E.; Ayers, T.J.; Bennett, J.B.; Christensen, K.; Kearsley, M.J.C.; Meretsky, V.J.; Phillips, A. M., III; Parnell, R.A.; Spence, J.; Sogge, M.K.; Springer, A.E.; Wegner, D.L.

    2001-01-01

    Regulated river restoration through planned flooding involves trade-offs between aquatic and terrestrial components, between relict pre-dam and novel post-dam resources and processes, and between management of individual resources and ecosystem characteristics. We review the terrestrial (wetland and riparian) impacts of a 1274 m3/s test flood conducted by the U.S. Bureau of Reclamation in March/April 1996, which was designed to improve understanding of sediment transport and management downstream from Glen Canyon Dam in the Colorado River ecosystem. The test flood successfully restored sandbars throughout the river corridor and was timed to prevent direct impacts to species of concern. A total of 1275 endangered Kanab ambersnail (Oxyloma haydeni kanabensis) were translocated above the flood zone at Vaseys Paradise spring, and an estimated 10.7% of the total snail habitat and 7.7% of the total snail population were lost to the flood. The test flood scoured channel margin wetlands, including potential foraging habitats of endangered Southwestern Willow Flycatcher (Empidonax traillii extimus). It also buried ground-covering riparian vegetation under >1 m of fine sand but only slightly altered woody sandbar vegetation and some return-current channel marshes. Pre-flood control efforts and appropriate flood timing limited recruitment of four common nonnative perennial plant species. Slight impacts on ethnobotanical resources were detected >430 km downstream, but those plant assemblages recovered rapidly. Careful design of planned flood hydrograph shape and seasonal timing is required to mitigate terrestrial impacts during efforts to restore essential fluvial geomorphic and aquatic habitats in regulated river ecosystems.

  1. Hydrologic data, Colorado River and major tributaries, Glen Canyon Dam to Diamond Creek, Arizona, water years 1990-95

    USGS Publications Warehouse

    Rote, John J.; Flynn, Marilyn E.; Bills, D.J.

    1997-01-01

    The U.S. Geological Survey collected hydrologic data at 12 continuous-record stations along the Colorado River and its major tributaries between Glen Canyon Dam and Diamond Creek. The data were collected from October 1989 through September 1995 as part of the Bureau of Reclamation's Glen Canyon Environmental Studies. The data include daily values for streamflow discharge, suspended-sediment discharge, temperature, specific conductance, pH, and dissolved-oxygen concentrations, and discrete values for physical properties and chemical constituents of water. All data are presented in tabular form.

  2. Evidence for the evacuation of fine sediment and fine gravel of the Colorado River below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Kilham, N. E.; Schmidt, J. C.; Wheaton, J. M.; Grams, P. E.

    2010-12-01

    Glen Canyon Dam has fundamentally changed the source, supply, and caliber of sediment carried by the Colorado River through Glen, Marble, and Grand Canyons. The first survey of the thalweg over the 225 river miles (365 km) within these three canyons was led by Luna Leopold in 1965. We digitized this survey and other surveys acquired in 1976, 1984, 1992, 1994, 1995, and 2009 in order to characterize downstream changes in pool depths (and thus changes in sand storage on the bed). Paper traces were photographed, rectified, and converted to vectors in ArcScan and then rescaled by tying to persistent debris flow formed rapids. Prior to 2009, surveys were located using aerial photographs—GPS was not operable in the canyon until the most recent survey. We accounted for uncertainties in boat location (both down- and cross-channel) by randomly sampling high-resolution digital elevation datasets corresponding to six long-term study sites and fluctuating around the path recorded in 2009. Depths were determined by converting each bed elevation to the modern datum, and subtracting this from modeled water surface profiles. We selected the instantaneous discharge at Lees Ferry for the sample time and then routed this to the sample location using a reach-averaged model of wave propagation specifically developed for the Colorado River. Mean and maximum pool depths (defined as above the reach average depth) were then calculated for each study reach in Marble Canyon, and changes in pool characteristics measured over 365 km between 1976 and 2009. Despite the high degree of uncertainty associated with these historic datasets, we were able to resolve patterns of change in pool sand storage downstream of Glen Canyon Dam. Our analysis corroborates observations made in Glen Canyon that pools were evacuated first by the pulse flows released in 1965 and then completely in 1983 following high flows released to prevent overtopping of Glen Canyon Dam. Additional analysis will be used to test

  3. Historical physical and chemical data for water in Lake Powell and from Glen Canyon Dam releases, Utah-Arizona, 1964–2012

    USGS Publications Warehouse

    Vernieu, William S.

    2013-01-01

    This report presents the physical and chemical characteristics of water in Lake Powell and from Glen Canyon Dam releases from 1964 through 2012. These data are available in a several electronic formats. Data have been collected throughout this period by various offices of the Bureau of Reclamation and U.S. Geological Survey and are compiled to represent the existing body of chemical and physical information on Lake Powell and Glen Canyon Dam releases. From this record, further interpretation may be made concerning mixing processes in Lake Powell, the movement and fate of advective inflow currents, effects of climate and hydrological variations, and the effects of the operation and structure of Glen Canyon Dam on the quality of water in Lake Powell and from Glen Canyon Dam releases.

  4. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico

    SciTech Connect

    Reneau, S.L.; Dethier, D.P.

    1996-11-01

    Massive slump complexes composed of Pliocene basaltic rocks and underlying Miocene and Pliocene sediments flank the Rio Grande along 16 km of northern White Rock Canyon, New Mexico. The toe area of at least one slump complex was active in the late Pleistocene, damming the Rio Grande at least four times during the period from 18 to 12 {sup 14}C ka and impounding lakes that extended 10-20 km upriver. Stratigraphic relationships and radiocarbon age constraints indicate that three separate lakes formed between 13.7 and 12.4 {sup 14}C ka. The age and dimensions of the ca. 12.4 ka lake are best constrained; it had an estimated maximum depth of {approx}30 m, a length of {approx}13 km, a surface area of {approx}2.7 km{sup 2}, and an initial volume of {approx}2.5 x 10{sup 7} m{sup 3}. The youngest landslide-dammed lakes formed during a period of significantly wetter regional climate, strongly suggesting that climate changes were responsible for reactivation of the slump complexes. We are not certain about the exact triggering mechanisms for these landslides, but they probably involved removal of lateral support due to erosion of the slope base by the Rio Grande during periods of exceptionally high flood discharge or rapid incision; increased pore pressures associated with higher water tables; higher seepage forces at sites of ground-water discharge; or some combination of these processes. Seismic shaking could also have contributed to triggering of some of the landslides, particularly if aided by wet antecedent conditions. 54 refs., 19 figs., 3 tabs.

  5. Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams

    SciTech Connect

    Carlson, J.L.

    1995-03-01

    Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

  6. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    SciTech Connect

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B.; Decision and Information Sciences; Western Area Power Administration

    2010-04-21

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a ''without experiments'' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was

  7. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.

    SciTech Connect

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B.

    2011-08-22

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. A report released in January 2011 examined the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. This report continues the analysis and examines the financial implications of the experimental flows conducted at the GCD from 2006 to 2010. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area

  8. Financial analysis of experimental releases conducted at Glen Canyon Dam during water year 2011

    SciTech Connect

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B.

    2012-07-16

    This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year 2011. It is the third report in a series examining financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), and a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011). An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and

  9. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen canyon dam and the Colorado River at lees ferry, Arizona

    USGS Publications Warehouse

    White, M.A.; Schmidt, J.C.; Topping, D.J.

    2005-01-01

    Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.

  10. USGS Workshop on Scientific Aspects of a Long-Term Experimental Plan for Glen Canyon Dam, April 10-11, 2007, Flagstaff, Arizona

    USGS Publications Warehouse

    USGS Grand Canyon Monitoring and Research Center

    2008-01-01

    Executive Summary Glen Canyon Dam is located in the lower reaches of Glen Canyon National Recreation Area on the Colorado River, approximately 15 miles upriver from Grand Canyon National Park (fig. 1). In 1992, Congress passed and the President signed into law the Grand Canyon Protection Act (GCPA; title XVIII, sec. 1801?1809, of Public Law 102-575), which seeks ?to protect, mitigate adverse impacts to, and improve the values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established.? The Glen Canyon Dam Adaptive Management Program (GCDAMP) was implemented as a result of the 1996 Record of Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement to ensure that the primary mandate of the GCPA is met through advances in information and resources management (U.S. Department of the Interior, 1995). On November 3, 2006, the Bureau of Reclamation (Reclamation) announced it would develop a long-term experimental plan environmental impact statement (LTEP EIS) for operational activities at Glen Canyon Dam and other management actions on the Colorado River. The purpose of the long-term experimental plan is twofold: (1) to increase the scientific understanding of the ecosystem and (2) to improve and protect important downstream resources. The proposed plan would implement a structured, longterm program of experimentation to include dam operations, potential modifications to Glen Canyon Dam intake structures, and other management actions such as removal of nonnative fish species. The development of the long-term experimental plan continues efforts begun by the GCDAMP to protect resources downstream of Glen Canyon Dam, including Grand Canyon, through adaptive management and scientific experimentation. The LTEP EIS will rely on the extensive scientific studies that have been undertaken as part of the adaptive management program by the U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center (GCMRC

  11. Geologic map of the Glen Canyon Dam 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2013-01-01

    The Glen Canyon Dam 30’ x 60’ quadrangle is characterized by nearly flat lying to gently dipping Paleozoic and Mesozoic sedimentary strata that overlie tilted Proterozoic strata or metasedimentary and igneous rocks similar to those exposed at the bottom of Grand Canyon southwest of the quadrangle. Mississippian to Permian rocks are exposed in the walls of Marble Canyon; Permian strata and minor outcrops of Triassic strata form the surface bedrock of House Rock Valley and Marble Plateau, southwestern quarter of the quadrangle. The Paleozoic strata exposed in Marble Canyon and Grand Canyon south of the map are likely present in the subsurface of the entire quadrangle but with unknown facies and thickness changes. The Mesozoic sedimentary rocks exposed along the Vermilion and Echo Cliffs once covered the entire quadrangle, but Cenozoic erosion has removed most of these rocks from House Rock Valley and Marble Plateau areas. Mesozoic strata remain over much of the northern and eastern portions of the quadrangle where resistant Jurassic sandstone units form prominent cliffs, escarpments, mesas, buttes, and much of the surface bedrock of the Paria, Kaibito, and Rainbow Plateaus. Jurassic rocks in the northeastern part of quadrangle are cut by a sub-Cretaceous regional unconformity that bevels the Entrada Sandstone and Morrison Formation from Cummings Mesa southward to White Mesa near Kaibito. Quaternary deposits, mainly eolian, mantle much of the Paria, Kaibito, and Rainbow Plateaus in the northern and northeastern portion of the quadrangle. Alluvial deposits are widely distributed over parts of House Rock Valley and Marble Plateau in the southwest quarter of the quadrangle. The east-dipping strata of the Echo Cliffs Monocline forms a general north-south structural boundary through the central part of the quadrangle, separating Marble and Paria Plateaus west of the monocline from the Kaibito Plateau east of the monocline. The Echo Cliffs Monocline continues north of

  12. Warm Season Storms, Floods, and Tributary Sand Inputs below Glen Canyon Dam: Investigating Salience to Adaptive Management in the Context of a 10-Year Long Controlled Flooding Experiment in Grand Canyon National Park, AZ, USA

    NASA Astrophysics Data System (ADS)

    Jain, S.; Melis, T. S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J.

    2013-12-01

    The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, maximizing conservation of downstream tributary sand supply, endangered native fish, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on the warm season floods (at point-to-regional scales) has been identified as lead-information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars in Grand Canyon; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of tributary sand input from the Paria and Little Colorado Rivers (located 26 and 124 km below the dam, respectively) into the Colorado River in Grand Canyon National Park. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in the southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm season floods from this relatively small, but prolific sand producing drainage of the semi-arid Colorado Plateau. The coupled variations of the flood-driven sediment input (magnitude and timing) from these two drainages into the Colorado River are also investigated. The physical processes, including diagnosis of storms and moisture sources, are mapped alongside the planning and decision processes for the ongoing experimental flood releases from the Glen Canyon Dam which are aimed at achieving restoration and maintenance of sandbars and instream ecology. The GCDAMP represents one of the most visible and widely recognized

  13. Internal architecture of the proto-Kern Canyon Fault at Engineer's Point, Lake Isabella Dam site, Kern County, California

    NASA Astrophysics Data System (ADS)

    Martindale, Z. S.; Andrews, G. D.; Brown, S. R.; Krugh, W. C.

    2014-12-01

    The core of the Cretaceous (?) proto-Kern Canyon Fault (KCF) is exposed continuously for 1.25 km along Engineer's Point at Lake Isabella, Kern County, California. The proto-KCF is notable for (1) its long and complex history within, and perhaps preceding the Sierra Nevada batholith, and (2) hosting the Quaternary Kern Canyon Fault, an active fault that threatens the integrity of the Lake Isabella auxiliary dam and surrounding communities. We are investigating the internal architecture of the proto-KCF to explore its control on the likely behavior of the modern KCF. The proto-KCF is developed in the Alta Sierra biotite-granodiorite pluton. A traverse across Engineer's Point, perpendicular to the proto-KCF trace, reveals gradational increases in fracture density, fracture length, bulk alteration, and decreases in fracture spacing and grain size toward the fault core. Mapping of the fault core reveals two prominent and laterally extensive zones: (1) continuous foliated blastomylonitic granodiorite with steeply-dipping, anastomosing shear bands and minor mylonite planes, and (2) foliated orange and green fault breccia with intergranular gouge, strong C/S fabric, and a central gouge plane. The fault breccia zone is intruded by a lensoidal, post-deformation dacite dike, probably ca. 105 - 102 Ma (Nadin & Saleeby, 2008) and is weakly overprinted by a set of cross-cutting spaced, short, brittle fractures, often coated in calcite, which we infer to be genetically related to the modern KCF. We present our structural and lithological data that will be supported by mineralogical and geochemical analyses. E. Nadin & J. Saleeby (2008) Disruption of regional primary structure of the Sierra Nevada batholith by the Kern Canyon fault system, California: Geological Society of America Special Paper 438, p. 429-454.

  14. Comparisons of Water Quality and Biological Variables from Colorado River Shoreline Habitats in Grand Canyon, Arizona, under Steady and Fluctuating Discharges from Glen Canyon Dam

    USGS Publications Warehouse

    Ralston, Barbara E.; Lauretta, Matthew V.; Kennedy, Theodore A.

    2007-01-01

    Glen Canyon Dam operations are known to affect mainstem Colorado River temperature and shoreline habitats for native fish. Options for ameliorating the impacts that operations have on young native fish include changing release volumes and/or changing the daily range of releases. Long-term alterations of operations that may produce a measurable biological response can be costly, particularly if the treatment involves reduced power generation. In September and October 2005, a series of two-week releases occurred that alternated between daily fluctuations that varied by 76 m3 s-1 and steady releases. The purpose of these short-term experiments was to study the effect of daily operations on water quality parameters and biotic constituents (phytoplankton, macroinvertebrates, and fishes) of associated shoreline habitats. Our results indicate that measured biological and physical parameters were, in general, unaffected by flow treatments. However, results should be interpreted cautiously as time within and between treatments was likely insufficient to affect measured parameters. These results lead to the recommendation that studies like this may be more amenable to laboratory experiments first and then applied to a large-scale setting, preferably for longer duration.

  15. Use and usability of experimental monitoring data and temperature modeling to inform adaptive management of the Colorado River's thermal regime for native fish conservation below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Melis, T. S.

    2014-12-01

    Seasonal thermal variability of the Colorado River in Grand Canyon was severely decreased by closure of Glen Canyon Dam and filling of Lake Powell reservoir that was achieved in 1980. From 1973 to 2002, downstream summer river temperatures at Lees Ferry were about 18°C below pre-dam conditions, and limited juvenile native fish growth and survival. A large-scale flow experiment to improve the river's thermal regime for spawning and rearing habitat of endangered native humpback chub and other native fish in eastern Grand Canyon was conducted in Water Year 2000. Monitoring revealed warming, but well below the 16-18°C optimum for chub 124 km below the dam near the Little Colorado River confluence, and no measurable chub population increase in Grand Canyon. Fall-timed stable flow experiments to improve shoreline chub nursery habitat (2008-12) were also inconclusive relative to juvenile chub growth and recruitment. Field studies also showed that daytime warming of shoreline habitats used by fish under steady flows is limited by high daily exchange rates with main channel water. Monthly averaged and higher resolution temperature models have also been developed and used to support more recent experimental management planning. Temperature simulations have been useful for screening dam release scenarios under varied reservoir storage conditions with and without use of previously proposed but never constructed multilevel intake structures on the dam's hydroelectric units. Most importantly, modeling revealed the geophysical limits on downstream warming under existing water management and dam operating policies. Hourly unsteady flow simulations in 2006 predicted equivalent levels of average downstream river warming under either fluctuating or steady flows for a given monthly release volume. River warming observed since 2002, has resulted from reduced Lake Powell storage resulting from drier upper basin hydrology. In support of new environmental compliance on dam operations

  16. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  17. Evaluation of Water Year 2011 Glen Canyon Dam Flow Release Scenarios on Downstream Sand Storage along the Colorado River in Arizona

    USGS Publications Warehouse

    Wright, Scott A.; Grams, Paul E.

    2010-01-01

    This report describes numerical modeling simulations of sand transport and sand budgets for reaches of the Colorado River below Glen Canyon Dam. Two hypothetical Water Year 2011 annual release volumes were each evaluated with six hypothetical operational scenarios. The six operational scenarios include the current operation, scenarios with modifications to the monthly distribution of releases, and scenarios with modifications to daily flow fluctuations. Uncertainties in model predictions were evaluated by conducting simulations with error estimates for tributary inputs and mainstem transport rates. The modeling results illustrate the dependence of sand transport rates and sand budgets on the annual release volumes as well as the within year operating rules. The six operational scenarios were ranked with respect to the predicted annual sand budgets for Marble Canyon and eastern Grand Canyon reaches. While the actual WY 2011 annual release volume and levels of tributary inputs are unknown, the hypothetical conditions simulated and reported herein provide reasonable comparisons between the operational scenarios, in a relative sense, that may be used by decision makers within the Glen Canyon Dam Adaptive Management Program.

  18. A Vegetation Database for the Colorado River Ecosystem from Glen Canyon Dam to the Western Boundary of Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Ralston, Barbara E.; Davis, Philip A.; Weber, Robert M.; Rundall, Jill M.

    2008-01-01

    A vegetation database of the riparian vegetation located within the Colorado River ecosystem (CRE), a subsection of the Colorado River between Glen Canyon Dam and the western boundary of Grand Canyon National Park, was constructed using four-band image mosaics acquired in May 2002. A digital line scanner was flown over the Colorado River corridor in Arizona by ISTAR Americas, using a Leica ADS-40 digital camera to acquire a digital surface model and four-band image mosaics (blue, green, red, and near-infrared) for vegetation mapping. The primary objective of this mapping project was to develop a digital inventory map of vegetation to enable patch- and landscape-scale change detection, and to establish randomized sampling points for ground surveys of terrestrial fauna (principally, but not exclusively, birds). The vegetation base map was constructed through a combination of ground surveys to identify vegetation classes, image processing, and automated supervised classification procedures. Analysis of the imagery and subsequent supervised classification involved multiple steps to evaluate band quality, band ratios, and vegetation texture and density. Identification of vegetation classes involved collection of cover data throughout the river corridor and subsequent analysis using two-way indicator species analysis (TWINSPAN). Vegetation was classified into six vegetation classes, following the National Vegetation Classification Standard, based on cover dominance. This analysis indicated that total area covered by all vegetation within the CRE was 3,346 ha. Considering the six vegetation classes, the sparse shrub (SS) class accounted for the greatest amount of vegetation (627 ha) followed by Pluchea (PLSE) and Tamarix (TARA) at 494 and 366 ha, respectively. The wetland (WTLD) and Prosopis-Acacia (PRGL) classes both had similar areal cover values (227 and 213 ha, respectively). Baccharis-Salix (BAXX) was the least represented at 94 ha. Accuracy assessment of the

  19. Sediment Transport During Three Controlled-Flood Experiments on the Colorado River Downstream from Glen Canyon Dam, with Implications for Eddy-Sandbar Deposition in Grand Canyon National Park

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Grams, Paul E.; Griffiths, Ronald E.; Sabol, Thomas A.; Voichick, Nicholas; Tusso, Robert B.; Vanaman, Karen M.; McDonald, Richard R.

    2010-01-01

    Three large-scale field experiments were conducted on the Colorado River downstream from Glen Canyon Dam in 1996, 2004, and 2008 to evaluate whether artificial (that is, controlled) floods released from the dam could be used in conjunction with the sand supplied by downstream tributaries to rebuild and sustainably maintain eddy sandbars in the river in Grand Canyon National Park. Higher suspended-sand concentrations during a controlled flood will lead to greater eddy-sandbar deposition rates. During each controlled flood experiment, sediment-transport and bed-sediment data were collected to evaluate sediment-supply effects on sandbar deposition. Data collection substantially increased in spatial and temporal density with each subsequent experiment. The suspended- and bed-sediment data collected during all three controlled-flood experiments are presented and analyzed in this report. Analysis of these data indicate that in designing the hydrograph of a controlled flood that is optimized for sandbar deposition in a given reach of the Colorado River, both the magnitude and the grain size of the sand supply must be considered. Because of the opposing physical effects of bed-sand area and bed-sand grain size in regulating suspended-sand concentration, larger amounts of coarser sand on the bed can lead to lower suspended-sand concentrations, and thus lower rates of sandbar deposition, during a controlled flood than can lesser amounts of finer sand on the bed. Although suspended-sand concentrations were higher at all study sites during the 2008 controlled-flood experiment (CFE) than during either the 1996 or 2004 CFEs, these higher concentrations were likely associated with more sand on the bed of the Colorado River in only lower Glen Canyon. More sand was likely present on the bed of the river in Grand Canyon during the 1996 CFE than during either the 2004 or 2008 CFEs. The question still remains as to whether sandbars can be sustained in the Colorado River in Grand

  20. Revised financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    SciTech Connect

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B.; Decision and Information Sciences; Western Area Power Administration, Colorado River Storage Project Management Center

    2011-01-11

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was

  1. 2008 High-Flow Experiment at Glen Canyon Dam-Morphologic Response of Eddy-Deposited Sandbars and Associated Aquatic Backwater Habitats along the Colorado River in Grand Canyon National Park

    USGS Publications Warehouse

    Grams, Paul E.; Schmidt, John C.; Andersen, Matthew E.

    2010-01-01

    The March 2008 high-flow experiment (HFE) at Glen Canyon Dam resulted in sandbar deposition and sandbar reshaping such that the area and volume of associated backwater aquatic habitat in Grand Canyon National Park was greater following the HFE. Analysis of backwater habitat area and volume for 116 locations at 86 study sites, comparing one month before and one month after the HFE, shows that total habitat area increased by 30 percent to as much as a factor of 3 and that volume increased by 80 percent to as much as a factor of 15. These changes resulted from an increase in the area and elevation of sandbars, which isolate backwaters from the main channel, and the scour of eddy return-current channels along the bank where the habitat occurs. Because of this greater relief on the sandbars, backwaters were present across a broader range of flows following the HFE than before the experiment. Reworking of sandbars during diurnal fluctuating flow operations in the first 6 months following the HFE caused sandbar erosion and a reduction of backwater size and abundance to conditions that were 5 to 14 percent greater than existed before the HFE. In the months following the HFE, erosion of sandbars and deposition in eddy return-current channels caused reductions of backwater area and volume. However, sandbar relief was still greater in October 2008 such that backwaters were present across a broader range of discharges than in February 2008. Topographic analyses of the sandbar and backwater morphologic data collected in this study demonstrate that steady flows are associated with a greater amount of continuously available backwater habitat than fluctuating flows, which result in a greater amount of intermittently available habitat. With the exception of the period immediately following the HFE, backwater habitat in 2008 was greater for steady flows associated with dam operations of relatively lower monthly volume (about 227 m3/s) than steady flows associated with dam operations

  2. Macroinvertebrate diets reflect tributary inputs and turbidity-driven changes in food availability in the Colorado River downstream of Glen Canyon Dam

    USGS Publications Warehouse

    Wellard Kelly, Holly A.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O., Jr.; Cross, Wyatt F.; Baxter, Colden V.

    2013-01-01

    Physical changes to rivers associated with large dams (e.g., water temperature) directly alter macroinvertebrate assemblages. Large dams also may indirectly alter these assemblages by changing the food resources available to support macroinvertebrate production. We examined the diets of the 4 most common macroinvertebrate taxa in the Colorado River through Glen and Grand Canyons, seasonally, at 6 sites for 2.5 y. We compared macroinvertebrate diet composition to the composition of epilithon (rock and cliff faces) communities and suspended organic seston to evaluate the degree to which macroinvertebrate diets tracked downstream changes in resource availability. Diets contained greater proportions of algal resources in the tailwater of Glen Canyon Dam and more terrestrial-based resources at sites downstream of the 1st major tributary. As predicted, macroinvertebrate diets tracked turbidity-driven changes in resource availability, and river turbidity partially explained variability in macroinvertebrate diets. The relative proportions of resources assimilated by macroinvertebrates ranged from dominance by algae to terrestrial-based resources, despite greater assimilation efficiencies for algal than terrestrial C. Terrestrial resources were most important during high turbidity conditions, which occurred during the late-summer monsoon season (July–October) when tributaries contributed large amounts of organic matter to the mainstem and suspended sediments reduced algal production. Macroinvertebrate diets were influenced by seasonal changes in tributary inputs and turbidity, a result suggesting macroinvertebrate diets in regulated rivers may be temporally dynamic and driven by tributary inputs.

  3. Geomorphic response of sandbars to the March 2008 high-flow experiment on the Colorado River downstream from Glen Canyon Dam

    USGS Publications Warehouse

    Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.; Kaplinski, Matt; Wright, Scott A.; Topping, David J.; Melis, Theodore S.

    2010-01-01

    The completion of Glen Canyon Dam in 1963 drastically altered the downstream flow regime and resulted in more than a 90 percent reduction of sand supply to the Colorado River in Grand Canyon National Park. Sandbars that were maintained by annual floods and a large sediment supply are now fewer in number and smaller in area and volume. Efforts to maintain sandbars in the current era of dam management utilize controlled floods timed to occur during brief periods of sediment enrichment that result from tributary floods. Repeat surveys of 22 sandbars made before and after controlled floods conducted in 1996, 2004, and 2008 document changes in sandbar volume; and repeat surveys at more than 100 sites document changes in sandbar elevation and morphology for the 2008 event. Each of the controlled floods resulted in sandbar deposition that was followed by erosion in the 6-month post-flood period. Erosion rates are positively correlated with post-flood dam release volumes and negatively correlated with post-flood tributary sediment supply volume. October 2008 sandbar volume was similar or larger than sandbar volume in February 1996, before the first of the three controlled floods. Deposition during the 2008 controlled flood was also associated with increases in the quantity of backwater habitat, which is used by native and non-native fish.

  4. Non-native fish control below Glen Canyon Dam - Report from a structured decision-making project

    USGS Publications Warehouse

    Runge, Michael C.; Bean, Ellen; Smith, David; Kokos, Sonja

    2011-01-01

    This report describes the results of a structured decision-making project by the U.S. Geological Survey to provide substantive input to the Bureau of Reclamation (Reclamation) for use in the preparation of an Environmental Assessment concerning control of non-native fish below Glen Canyon Dam. A forum was created to allow the diverse cooperating agencies and Tribes to discuss, expand, and articulate their respective values; to develop and evaluate a broad set of potential control alternatives using the best available science; and to define individual preferences of each group on how to manage the inherent trade-offs in this non-native fish control problem. This project consisted of two face-to-face workshops, held in Mesa, Arizona, October 18-20 and November 8-10, 2010. At the first workshop, a diverse set of objectives was discussed, which represented the range of concerns of those agencies and Tribes present. A set of non-native fish control alternatives ('hybrid portfolios') was also developed. Over the 2-week period between the two workshops, four assessment teams worked to evaluate the control alternatives against the array of objectives. At the second workshop, the results of the assessment teams were presented. Multi-criteria decision analysis methods were used to examine the trade-offs inherent in the problem, and allowed the participating agencies and Tribes to express their individual judgments about how those trade-offs should best be managed in Reclamation`s selection of a preferred alternative. A broad array of objectives was identified and defined, and an effort was made to understand how these objectives are likely to be achieved by a variety of strategies. In general, the objectives reflected desired future conditions over 30 years. A rich set of alternative approaches was developed, and the complex structure of those alternatives was documented. Multi-criteria decision analysis methods allowed the evaluation of those alternatives against the array

  5. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  6. 16. Little Hell Gate Bridge with Big Hell Gate Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Little Hell Gate Bridge with Big Hell Gate Bridge in background. Wards Island, New York Co., NY. Sec. 4207, MP 8.02. - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  7. Effects of the 2008 high-flow experiment on water quality in Lake Powell and Glen Canyon Dam releases, Utah-Arizona

    USGS Publications Warehouse

    Vernieu, William S.

    2010-01-01

    Under the direction of the Secretary of the Interior, the U.S. Geological Survey`s Grand Canyon Monitoring and Research Center (GCMRC) conducted a high-flow experiment (HFE) at Glen Canyon Dam (GCD) from March 4 through March 9, 2008. This experiment was conducted under enriched sediment conditions in the Colorado River within Grand Canyon and was designed to rebuild sandbars, aid endangered humpback chub (Gila cypha), and benefit various downstream resources, including rainbow trout (Oncorhynchus mykiss), the aquatic food base, riparian vegetation, and archaeological sites. During the experiment, GCD discharge increased to a maximum of 1,160 m3/s and remained at that rate for 2.5 days by near-capacity operation of the hydroelectric powerplant at 736 m3/s, augmented by discharge from the river outlet works (ROW) at 424 m3/s. The ROW releases water from Lake Powell approximately 30 m below the powerplant penstock elevation and bypasses the powerplant turbines. During the HFE, the surface elevation of Lake Powell was reduced by 0.8 m. This report describes studies that were conducted before and after the experiment to determine the effects of the HFE on (1) the stratification in Lake Powell in the forebay immediately upstream of GCD and (2) the water quality of combined GCD releases and changes that occurred through the tailwater below the dam. The effects of the HFE to the water quality and stratigraphy in the water column of the GCD forebay and upstream locations in Lake Powell were minimal, compared to those during the beach/habitat-building flow experiment conducted in 1996, in which high releases of 1,273 m3/s were sustained for a 9-day period. However, during the 2008 HFE, there was evidence of increased advective transport of reservoir water at the penstock withdrawal depth and subsequent mixing of this withdrawal current with water above and below this depth. Reservoir hydrodynamics during the HFE period were largely being controlled by a winter inflow

  8. Conditions and processes affecting sand resources at archeological sites in the Colorado River corridor below Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    East, Amy E.; Collins, Brian D.; Sankey, Joel B.; Corbett, Skye C.; Fairley, Helen C.; Caster, Joshua

    2016-01-01

    We conclude that most of the river-corridor archeological sites are at elevated risk of net erosion under present dam operations. In the present flow regime, controlled floods do not simulate the magnitude or frequency of natural floods, and are not large enough to deposit sand at elevations that were flooded at annual to decadal inte

  9. Short-Term Effects of the 2008 High-Flow Experiment on Macroinvertebrates in Colorado River Below Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Kincaid, Dustin W.; Cross, Wyatt F.; Kelly, Holly A.W.; Behn, Kathrine A.; White, Tyler; Hall, Robert O., Jr.; Baxter, Colden V.

    2010-01-01

    Glen Canyon Dam has dramatically altered the physical environment (especially discharge regime, water temperatures, and sediment inputs) of the Colorado River. High-flow experiments (HFE) that mimic one aspect of the natural hydrograph (floods) were implemented in 1996, 2004, and 2008. The primary goal of these experiments was to increase the size and total area of sandbar habitats that provide both camping sites for recreational users and create backwaters (areas of stagnant flow in the lee of return-current eddies) that may be important as rearing habitat for native fish. Experimental flows might also positively or negatively alter the rainbow trout (Oncorhynchus mykiss) sport fishery in the clear tailwater reach below Glen Canyon Dam, Ariz., and native fish populations in downstream reaches (for example, endangered humpback chub, Gila cypha) through changes in available food resources. We examined the short-term response of benthic macroinvertebrates to the March 2008 HFE at three sites [river mile 0 (RM 0, 15.7 miles downriver from the dam), RM 62, and RM 225] along the Colorado River downstream from Glen Canyon Dam by sampling immediately before and then 1, 7, 14, and 30 days after the HFE. We selected these sites because of their importance to management; RM 0 has a valuable trout fishery, and RM 62 is the location of the largest population of the endangered humpback chub in the Grand Canyon. In addition to the short-term collection of samples, as part of parallel investigations, we collected 3 years of monthly (quarterly for RM 62) benthic macroinvertebrate samples that included 15 months of post-HFE data for all three sites, but processing of the samples is only complete for one site (RM 0). At RM 0, the HFE caused an immediate 1.75 g AFDM/m2 (expressed as grams ash-free dry mass, or AFDM) reduction of macroinvertebrate biomass that was driven by significant reductions in the biomass of the two dominant taxa in this reach-Potamopyrgus antipodarum (New

  10. 76 FR 34975 - U.S. Farmers, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ....5-kilovolt- ampere transmission line connecting to the Idaho Power Company's Hell Canyon Dam sub-station at the Hells Canyon Dam; (6) a 10,000-foot-long gravel road. The estimated annual generation...

  11. Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Valdez, R.A.; Hoffnagle, T.L.; McIvor, C.C.; McKinney, T.; Leibfried, W.C.

    2001-01-01

    A beach/habitat-building flow (i.e., test flood) of 1274 m3/s, released from Glen Canyon Dam down the Colorado River through Grand Canyon, had little effect on distribution, abundance, or movement of native fishes, and only short-term effects on densities of some nonnative species Shoreline and backwater catch rates of native fishes, including juvenile humpback chub (Gila cypha), flannelmouth suckers (Catostomus latipinnis), and bluehead suckers (C. discobolus), and all ages of speckled dace (Rhinichthys osculus), were not significantly different before and after the flood. Annual spring spawning migrations of flannelmouth suckers into the Paria River and endangered humpback chub into the Little Colorado River (LCR) took place during and after the flood, indicating no impediment to fish migrations. Pre-spawning adults staged in large slack water pools formed at the mouths of these tributaries during the flood. Net movement and habitat used by nine radio-tagged adult humpback chub during the flood were not significantly different from prior observations. Diet composition of adult humpback chub varied, but total biomass did not differ significantly before, during, and after the flood, indicating opportunistic feeding for a larger array of available food items displaced by the flood. Numbers of nonnative rainbow trout (Oncorhynchus mykiss) <152 mm total length decreased by ???8% in electrofishing samples from the dam tailwaters (0-25 km downstream of the dam) during the flood. Increased catch rates in the vicinity of the LCR (125 km downstream of the dam) and Hell's Hollow (314 km downstream of the dam) suggest that these young trout were displaced downstream by the flood, although displacement distance was unknown since some fish could have originated from local populations associated with intervening tributaries. Abundance, catch rate, body condition, and diet of adult rainbow trout in the dam tailwaters were not significantly affected by the flood, and the flood

  12. Basal Resources in Backwaters of the Colorado River Below Glen Canyon Dam-Effects of Discharge Regimes and Comparison with Mainstem Depositional Environments

    USGS Publications Warehouse

    Behn, Katherine E.; Kennedy, Theodore A.; Hall, Robert O., Jr.

    2010-01-01

    Eight species of fish were native to the Colorado River before the closure of Glen Canyon Dam, but only four of these native species are currently present. A variety of factors are responsible for the loss of native fish species and the limited distribution and abundance of those that remain. These factors include cold and constant water temperatures, predation and competition with nonnative fish species, and food limitation. Backwaters are areas of stagnant flow in a return-current channel and are thought to be critical rearing habitat for juvenile native fish. Backwaters can be warmer than the main channel and may support higher rates of food production. Glen Canyon Dam is a peaking hydropower facility and, as a result, has subdaily variation in discharge because of changes in demand for power. Stable daily discharges may improve the quality of nearshore rearing habitats such as backwaters by increasing warming, stabilizing the substrate, and increasing food production. To evaluate whether backwaters have greater available food resources than main-channel habitats, and how resource availability in backwaters is affected by stable flow regimes, we quantified water-column and benthic food resources in backwaters seasonally for 1 year using both standing (organic matter concentration/density; chlorophyll a concentration/density; zooplankton concentration; benthic invertebrate density and biomass) and process measurements (chamber estimates of ecosystem metabolism). We compared backwater resource measurements with comparable data from main-channel habitats, and compared backwater data collected during stable discharge with data collected when there was subdaily variation in discharge. Rates of primary production in backwaters (mean gross primary production of 1.7 g O2/m2/d) and the main channel (mean gross primary production of 2.0 g O2/m2/d) were similar. Benthic organic matter standing stock (presented as ash-free dry mass-AFDM) was seven times higher in backwaters

  13. Acquisition, calibration, and performance of airborne high-resolution ADS40 SH52 sensor data for monitoring the Colorado River below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Cagney, L. E.; Kohl, K. A.; Gushue, T. M.; Fritzinger, C.; Bennett, G. E.; Hamill, J. F.; Melis, T. S.

    2010-12-01

    Periodically, the Grand Canyon Monitoring and Research Center of the U.S. Geological Survey collects and interprets high-resolution (20-cm), airborne multispectral imagery and digital surface models (DSMs) to monitor the effects of Glen Canyon Dam operations on natural and cultural resources of the Colorado River in Grand Canyon. We previously employed the first generation of the ADS40 in 2000 and the Zeiss-Imaging Digital Mapping Camera (DMC) in 2005. Data from both sensors displayed band-image misregistration owing to multiple sensor optics and image smearing along abrupt scarps due to errors in image rectification software, both of which increased post-processing time, cost, and errors from image classification. Also, the near-infrared gain on the early, 8-bit ADS40 was not properly set and its signal was saturated for the more chlorophyll-rich vegetation, which limited our vegetation mapping. Both sensors had stereo panchromatic capability for generating a DSM. The ADS40 performed to specifications; the DMC failed. In 2009, we employed the new ADS40 SH52 to acquire 11-bit multispectral data with a single lens (20-cm positional accuracy), as well as stereo panchromatic data that provided a 1-m cell DSM (40-cm root-mean-square vertical error at one sigma). Analyses of the multispectral data showed near-perfect registration of its four band images at our 20-cm resolution, a linear response to ground reflectance, and a large dynamic range and good sensitivity (except for the blue band). Data were acquired over a 10-day period for the 450-km-long river corridor in which acquisition time and atmospheric conditions varied considerably during inclement weather. We received 266 orthorectified flightlines for the corridor, choosing to calibrate and mosaic the data ourselves to ensure a flawless mosaic with consistent, realistic spectral information. A linear least-squares cross-calibration of overlapping flightlines for the corridor showed that the dominate factors in

  14. Riparian Vegetation Response to the March 2008 Short-Duration, High-Flow Experiment-Implications of Timing and Frequency of Flood Disturbance on Nonnative Plant Establishment Along the Colorado River Below Glen Canyon Dam

    USGS Publications Warehouse

    Ralston, Barbara E.

    2010-01-01

    Riparian plant communities exhibit various levels of diversity and richness. These communities are affected by flooding and are vulnerable to colonization by nonnative species. Since 1996, a series of three high-flow experiments (HFE), or water releases designed to mimic natural seasonal flooding, have been conducted at Glen Canyon Dam, Ariz., primarily to determine the effectiveness of using high flows to conserve sediment, a limited resource. These experiments also provide opportunities to examine the susceptibility of riparian plant communities to nonnative species invasions. The third and most recent HFE was conducted from March 5 to 9, 2008, and scientists with the U.S. Geological Survey's Grand Canyon Monitoring and Research Center examined the effects of high flows on riparian vegetation as part of the overall experiment. Total plant species richness, nonnative species richness, percent plant cover, percent organic matter, and total carbon measured from sediment samples were compared for Grand Canyon riparian vegetation zones immediately following the HFE and 6 months later. These comparisons were used to determine if susceptibility to nonnative species establishment varied among riparian vegetation zones and if the timing of the HFE affected nonnative plant establishment success. The 2008 HFE primarily buried vegetation rather than scouring it. Percent nonnative cover did not differ among riparian vegetation zones; however, in the river corridor affected by Glen Canyon Dam operations, nonnative species richness showed significant variation. For example, species richness was significantly greater immediately after and 6 months following the HFE in the hydrologic zone farthest away from the shoreline, the area that represents the oldest riparian zone within the post-dam riparian area. In areas closer to the river channel, tamarisk (Tamarix ramosissima X chinensis) seedling establishment occurred (<2 percent cover) in 2008 but not to the extent reported in

  15. HELLS GATE ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Conway, Clay M.; McColly, Robert A.

    1984-01-01

    Although no mineral-resource potential was identified in the Hells Gate Roadless Area during mineral surveys, the area is largely underlain by a regionally extensive Proterozoic granite-rhyolite complex which is tin-bearing. The geologic setting precludes the occurrence of fossil fuel resources and no other energy resources were identified. The potential for tin and associated metals in the Hells Gate Roadless Area and the region cannot be fully evaluated at this point. The granophyre and the upper part of the granite pluton along the northwestern margin of the area should be explored.

  16. Overview of the Colorado River Canyon from the helicopter pad. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Colorado River Canyon from the helicopter pad. View of the Nevada side where new bridge will cross canyon, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  17. Education Hell: Rhetoric vs. Reality

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2009-01-01

    Are America's schools broken? "Education Hell: Rhetoric vs. Reality" seeks to address misconceptions about America's schools by taking on the credo "what can be measured matters." To the contrary, Dr. Bracey makes a persuasive case that much of what matters cannot be assessed on a multiple choice test. The challenge for educators is to deal…

  18. Effects of Glen Canyon Dam discharges on water velocity and temperatures at the confluence of the Colorado and Little Colorado Rivers and implications for habitat for young-of-year humpback chub (Gila cypha-

    USGS Publications Warehouse

    Protiva, Frank R.; Ralston, Barbara E.; Stone, Dennis M.; Kohl, Keith A.; Yard, Michael D.; Haden, G. Allen

    2010-01-01

    Water velocity and temperature are physical variables that affect the growth and survivorship of young-of-year (YOY) fishes. The Little Colorado River, a tributary to the Colorado River in Grand Canyon, is an important spawning ground and warmwater refuge for the endangered humpback chub (Gila cypha) from the colder mainstem Colorado River that is regulated by Glen Canyon Dam. The confluence area of the Little Colorado River and the Colorado River is a site where YOY humpback chub (size 30-90 mm) emerging from the Little Colorado River experience both colder temperatures and higher velocities associated with higher mainstem discharge. We used detailed surveying and mapping techniques in combination with YOY velocity and temperature preferenda (determined from field and lab studies) to compare the areal extent of available habitat for young fishes at the confluence area under four mainstem discharges (227, 368, 504, and 878 m3/s). Comparisons revealed that the areal extent of low-velocity, warm water at the confluence decreased when discharges exceeded 368 m3/s. Furthermore, mainstem fluctuations, depending on the rate of upramp, can affect velocity and temperature dynamics in the confluence area within several hours. The amount of daily fluctuations in discharge can result in the loss of approximately 1.8 hectares of habitat favorable to YOY humpback chub. Consequently, flow fluctuations and the accompanying changes in velocity and temperature at the confluence may diminish the recruitment potential of humpback chub that spawn in the tributary stream. This study illustrates the utility of multiple georeferenced data sources to provide critical information related to the influence of the timing and magnitude of discharge from Glen Canyon Dam on potential rearing environment at the confluence area of the Little Colorado River.

  19. View of the Colorado River Canyon showing lower portal road ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the Colorado River Canyon showing lower portal road in background taken from the rim of Hoover Dam, view south - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  20. Effects of High-Flow Experiments from Glen Canyon Dam on Abundance, Growth, and Survival Rates of Early Life Stages of Rainbow Trout in the Lees Ferry Reach of the Colorado River

    USGS Publications Warehouse

    Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.

    2010-01-01

    High-flow experiments (HFEs) from Glen Canyon Dam are primarily intended to conserve fine sediment and improve habitat conditions for native fish in the Colorado River as it flows through Grand Canyon National Park, Arizona. These experimental flows also have the potential to affect the rainbow trout (Oncorhynchus mykiss) population in the Lees Ferry tailwater reach immediately below the dam, which supports a highly valued recreational fishery and likely influences the abundance of rainbow trout in Grand Canyon. Understanding how flow regimes affect the survival and growth of juvenile rainbow trout is critical to interpreting trends in adult abundance. This study reports on the effects of HFEs in 2004 and 2008 on early life stages of rainbow trout in the Lees Ferry reach on the basis of monthly sampling of redds (egg nests) and the abundance of the age-0 trout (fertilization to about 1 to 2 months from emergence) and their growth during a 7-year period between 2003 and 2009. Multiple lines of evidence indicate that the March 2008 HFE resulted in a large increase in early survival rates of age-0 trout because of an improvement in habitat conditions. A stock-recruitment analysis demonstrated that age-0 abundance in July 2008 was more than fourfold higher than expected, given the number of viable eggs that produced these fish. A hatch-date analysis showed that early survival rates were much higher for cohorts that hatched about 1 month after the 2008 HFE (about April 15, 2008) relative to those fish that hatched before this date. These cohorts, fertilized after the 2008 HFE, would have emerged into a benthic invertebrate community that had recovered, and was possibly enhanced by, the HFE. Interannual differences in growth of age-0 trout, determined on the basis of otolith microstructure, support this hypothesis. Growth rates in the summer and fall of 2008 (0.44 mm/day) were virtually the same as in 2006 (0.46 mm/day), the highest recorded during 6 years, even though

  1. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  2. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.

    SciTech Connect

    McLeod, Bruce

    2004-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  3. Hydrogeology and sources of water to select springs in Black Canyon, south of Hoover Dam, Lake Mead National Recreation Area, Nevada and Arizona

    USGS Publications Warehouse

    Moran, Michael J.; Wilson, Jon W.; Beard, L. Sue

    2015-01-01

    Several major faults, including the Salt Cedar Fault and the Palm Tree Fault, play an important role in the movement of groundwater. Groundwater may move along these faults and discharge where faults intersect volcanic breccias or fractured rock. Vertical movement of groundwater along faults is suggested as a mechanism for the introduction of heat energy present in groundwater from many of the springs. Groundwater altitudes in the study area indicate a potential for flow from Eldorado Valley to Black Canyon although current interpretations of the geology of this area do not favor such flow. If groundwater from Eldorado Valley discharges at springs in Black Canyon then the development of groundwater resources in Eldorado Valley could result in a decrease in discharge from the springs. Geology and structure indicate that it is not likely that groundwater can move between Detrital Valley and Black Canyon. Thus, the development of groundwater resources in Detrital Valley may not result in a decrease in discharge from springs in Black Canyon.

  4. Airborne digital-image data for monitoring the Colorado River corridor below Glen Canyon Dam, Arizona, 2009 - Image-mosaic production and comparison with 2002 and 2005 image mosaics

    USGS Publications Warehouse

    Davis, Philip A.

    2012-01-01

    Airborne digital-image data were collected for the Arizona part of the Colorado River ecosystem below Glen Canyon Dam in 2009. These four-band image data are similar in wavelength band (blue, green, red, and near infrared) and spatial resolution (20 centimeters) to image collections of the river corridor in 2002 and 2005. These periodic image collections are used by the Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey to monitor the effects of Glen Canyon Dam operations on the downstream ecosystem. The 2009 collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits, unlike the image sensors that GCMRC used in 2002 and 2005. This study examined the performance of the SH52 sensor, on the basis of the collected image data, and determined that the SH52 sensor provided superior data relative to the previously employed sensors (that is, an early ADS40 model and Zeiss Imaging's Digital Mapping Camera) in terms of band-image registration, dynamic range, saturation, linearity to ground reflectance, and noise level. The 2009 image data were provided as orthorectified segments of each flightline to constrain the size of the image files; each river segment was covered by 5 to 6 overlapping, linear flightlines. Most flightline images for each river segment had some surface-smear defects and some river segments had cloud shadows, but these two conditions did not generally coincide in the majority of the overlapping flightlines for a particular river segment. Therefore, the final image mosaic for the 450-kilometer (km)-long river corridor required careful selection and editing of numerous flightline segments (a total of 513 segments, each 3.2 km long) to minimize surface defects and cloud shadows. The final image mosaic has a total of only 3 km of surface defects. The final image mosaic for the western end of the corridor has

  5. Grand Canyon

    Atmospheric Science Data Center

    2014-05-15

    article title:  The Grand Canyon     View Larger Image Northern Arizona and the Grand Canyon are captured in this pair of Multi-angle Imaging SpectroRadiometer ... formats available at JPL December 31, 2000 - Grand Canyon and Lake Powell. project:  MISR ...

  6. Effects of Experimental High Flow Releases and Increased Fluctuations in Flow from Glen Canyon Dam on Abundance, Growth, and Survival Rates of Early Life Stages of Rainbow Trout in the Lee's Ferry Reach of the Colorado River

    NASA Astrophysics Data System (ADS)

    Korman, Josh

    2010-05-01

    The abundance of adult fish populations is controlled by the growth and survival rates of early life stages. Evaluating the effects of flow regimes on early life stages is therefore critical to determine how these regimes affect the abundance of adult populations. Experimental high flow releases from Glen Canyon Dam, primarily intended to conserve fine sediment and improve habitat conditions for native fish in the Colorado River in Grand Canyon, AZ, have been conducted in 1996, 2004, and 2008. These flows potentially affect the Lee's Ferry reach rainbow trout population, located immediately downstream of the dam, which supports a highly valued fishery and likely influences the abundance of rainbow trout in Grand Canyon. Due to concerns about negative effects of high trout abundance on endangered native fish, hourly variation in flow from Glen Canyon Dam was experimentally increased between 2003 and 2005 to reduce trout abundance. This study reports on the effects of experimental high flow releases and fluctuating flows on early life stages of rainbow trout in the Lee's Ferry reach based on monthly sampling of redds (egg nests) and the abundance and growth of age-0 trout between 2003 and 2009. Data on spawn timing, spawning elevations, and intergravel temperatures were integrated in a model to estimate the magnitude and seasonal trend in incubation mortality resulting from redd dewatering due to fluctuations in flow. Experimental fluctuations from January through March promoted spawning at higher elevations where the duration of dewatering was longer and intergravel temperatures exceeded lethal thresholds. Flow-dependent incubation mortality rates were 24% (2003) and 50% (2004) in years with higher flow fluctuations, compared to 5-11% under normal operations (2006-2009). Spatial and temporal predictions of mortality were consistent with direct observations of egg mortality determined from the excavation of 125 redds. The amount of variation in backcalculated hatch

  7. Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.

    SciTech Connect

    McLeod, Bruce

    2004-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving

  8. Using high-resolution suspended-sediment measurements to infer changes in the topographic distribution and grain size of bed sediment in the Colorado River downstream from Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Topping, D. J.; Rubin, D. M.; Melis, T. S.; Wright, S. A.

    2004-12-01

    Eddy sandbars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are still important for habitat, protection of archeological sites, and recreation. Recent work has shown that eddy bars are dynamic landforms and represent the bulk of the ecosystem's sand reserves. These deposits began eroding following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94% and are still eroding today. Sand transport in the post-dam river is limited by episodic resupply from tributaries, and is equally regulated by the discharge of water and short-term changes in the grain size of sand available for transport (Rubin and Topping, WRR, 2001). During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. This prohibits the computation of sand-transport rates in the Colorado River using stable relations between water discharge and sand transport (i.e., sediment rating curves) and requires a more continuous method for measuring sand transport. To monitor suspended sediment at higher (i.e., 15-minute) resolutions, we began testing a laser-acoustic system at four locations along the Colorado River in Grand Canyon in August 2002. Because they are much easier to acquire, the high-resolution suspended-sediment datasets collected using the laser-acoustic systems greatly outnumber (by >5 orders of magnitude) direct grain-size measurements of the upstream bed sediment. Furthermore, suspension processes effectively provide an average "sample" of the bed sediment on the perimeter of the upstream channel and the underwater portions of the banks and

  9. Longitudinal Variability of Phosphorus Fractions in Sediments of a Canyon Reservoir Due to Cascade Dam Construction: A Case Study in Lancang River, China

    PubMed Central

    Liu, Qi; Liu, Shiliang; Zhao, Haidi; Deng, Li; Wang, Cong; Zhao, Qinghe; Dong, Shikui

    2013-01-01

    Dam construction causes the accumulation of phosphorus in the sediments of reservoirs and increases the release rate of internal phosphorus (P) loading. This study investigated the longitudinal variability of phosphorus fractions in sediments and the relationship between the contents of phosphorus fractions and its influencing factors of the Manwan Reservoir, Lancang River, Yunnan Province, China. Five sedimentary phosphorus fractions were quantified separately: loosely bound P (ex-P); reductant soluble P (BD-P); metal oxide-bound P (NaOH-P); calcium-bound P (HCl-P), and residual-P. The results showed that the total phosphorus contents ranged from 623 to 899 µg/g and were correlated positively with iron content in the sediments of the reservoir. The rank order of P fractions in sediments of the mainstream was HCl-P>NaOH-P>residual-P>BD-P>ex-P, while it was residual-P>HCl-P>NaOH-P>BD-P>ex-P in those of the tributaries. The contents of bio-available phosphorus in the tributaries, including ex-P, BD-P and NaOH-P, were significantly lower than those in the mainstream. The contents of ex-P, BD-P, NaOH-P showed a similar increasing trend from the tail to the head of the Manwan Reservoir, which contributed to the relatively higher content of bio-available phosphorus, and represents a high bio-available phosphorus releasing risk within a distance of 10 km from Manwan Dam. Correlation and redundancy analyses showed that distance to Manwan Dam and the silt/clay fraction of sediments were related closely to the spatial variation of bio-available phosphorus. PMID:24386180

  10. INTERIOR VIEW OF GLINES CANYON POWERHOUSE FROM TOP OF ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF GLINES CANYON POWERHOUSE FROM TOP OF ENTRANCE STAIRS. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Glines Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  11. View of Nevada side of Colorado River Canyon showing US ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada side of Colorado River Canyon showing US 93, Visitor Center parking lot, transmission lines, and static towers in background, view west - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  12. View of the Colorado River Canyon form the Nevada side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the Colorado River Canyon form the Nevada side showing the Nevada rim towers and portions of US 93, view south - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  13. View of Nevada side of Colorado River Canyon showing US ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada side of Colorado River Canyon showing US 93 in foreground, transmission towers and static towers in background, view west - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  14. View of Nevada side of Colorado River Canyon taken from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada side of Colorado River Canyon taken from Lower Portal Road looking up towards area where new bridge will be located, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  15. View of Arizona side of Colorado River Canyon taken from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Arizona side of Colorado River Canyon taken from Lower Portal Road looking up towards area where new bridge will be located, view northeast - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  16. 3. VIEW OF DIABLO CANYON LOOKING DOWNSTREAM FROM THE VALVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DIABLO CANYON LOOKING DOWNSTREAM FROM THE VALVE HOUSE AT ELEVATION 1044, 1989. - Skagit Power Development, Diablo Dam, On Skagit River, 6.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  17. 1. 'SANTA ANA RIVER IN SANTA ANA CANYON. ORANGE COUNTY.' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 'SANTA ANA RIVER IN SANTA ANA CANYON. ORANGE COUNTY.' This is an oblique aerial view to the northeast taken from the northeast extremity of the canyon, showing, in the middle distance, the confluence of Chino Creek and the Santa Ana River, site of the future Prado Dam. File number written on negative: R & H 80 026. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  18. 1000 dams down and counting

    USGS Publications Warehouse

    O'Connor, James E.; Duda, Jeff J.; Grant, Gordon E.

    2015-01-01

    Forty years ago, the demolition of large dams was mostly fiction, notably plotted in Edward Abbey's novel The Monkey Wrench Gang. Its 1975 publication roughly coincided with the end of large-dam construction in the United States. Since then, dams have been taken down in increasing numbers as they have filled with sediment, become unsafe or inefficient, or otherwise outlived their usefulness (1) (see the figure, panel A). Last year's removals of the 64-m-high Glines Canyon Dam and the 32-m-high Elwha Dam in northwestern Washington State were among the largest yet, releasing over 10 million cubic meters of stored sediment. Published studies conducted in conjunction with about 100 U.S. dam removals and at least 26 removals outside the United States are now providing detailed insights into how rivers respond (2, 3).

  19. Hot Canyon

    ScienceCinema

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  20. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  1. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.

    SciTech Connect

    McLeod, Bruce

    2003-01-01

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving

  2. Factors affecting condition of flannelmouth suckers in the Colorado River, Grand Canyon, Arizona

    USGS Publications Warehouse

    Paukert, C.; Rogers, R.S.

    2004-01-01

    The impoundment of the Colorado River by Glen Canyon Dam, Arizona, in 1963 created a highly regulated environment in the Grand Canyon that altered the native fish populations, including the flannelmouth sucker Catostomus latipinnis. Flannelmouth suckers were sampled from 1991 to 2001 to determine seasonal, annual, and spatial trends in fish condition (i.e., relative weight [Wr]). Mean Wr peaked during the prespawn and spawning periods and was lowest in summer and fall, but it was never lower than 93. Condition was variable throughout the Grand Canyon but was typically greatest at intermediate distances from Glen Canyon Dam, possibly because of the increased number of warmwater tributaries in this reach. Flannelmouth sucker condition in September was positively correlated with Glen Canyon Dam discharge during summer (June-August); this result may be due to the larger euphotic zone and greater macroinvertebrate abundance observed during higher water flows. Increased dam discharge that stimulates river productivity may provide benefits for this native fish.

  3. 78 FR 17389 - Clark Canyon Hydro, LLC; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Power Services on behalf of Clark Canyon Hydro, LLC. e. Name of Project: Clark Canyon Dam Hydroelectric... Energy Regulatory Commission Clark Canyon Hydro, LLC; Notice of Application for Amendment of License and... Power Act, 16 U.S.C. 791a-825r. h. Applicant Contact: Brent Smith, President, Northwest Power...

  4. A sand budget for Marble Canyon, Arizona: implications for long-term monitoring of sand storage change

    USGS Publications Warehouse

    Grams, Paul E.

    2013-01-01

    Recent U.S. Geological Survey research is providing important insights into how best to monitor changes in the amount of tributary-derived sand stored on the bed of the Colorado River and in eddies in Marble Canyon, Arizona. Before the construction of Glen Canyon Dam and other dams upstream, sandbars in Glen, Marble, and Grand Canyons were replenished each year by sediment-rich floods. Sand input into the Colorado River is crucial to protecting endangered native fish, animals, and plants and cultural and recreational resources along the river in Glen Canyon National Recreation Area and Grand Canyon National Park.

  5. Seismic response of arch dams considering infinite radiation damping and joint opening effects

    NASA Astrophysics Data System (ADS)

    Liu, Xinjia; Xu, Yanjie; Wang, Guanglun; Zhang, Chuhan

    2002-06-01

    Effects of two important factors on earthquake response of high arch dams are considered and combined into one program. These factors are: effects of radiation damping of the infinite canyon and local non-linearity of the contraction joint opening between the dam monoliths. For modeling of rock canyon, the discrete parameters are obtained based on a curve fitting, thus allowing the nonlinear dam system to be solved in the time domain. The earthquake uniform free-field input at the dam-canyon interface is used. An engineering example is given to demonstrate the significant effects of the radiation damping on the structure response.

  6. 11. VIEW OF UPSTREAM ELEVATION OF BIG DALTON DAM SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF UPSTREAM ELEVATION OF BIG DALTON DAM SHOWING CONSTRUCTION OF THE ARCH WALLS, TAKEN ON SEPTEMBER 11, 1928 (PHOTOGRAPHER UNKNOWN). PICTURE WAS DEVELOPED FROM COPY NEGATIVES WHICH WERE TAKEN ON 6/5/1973 BY PHOTOGRAPHER GATSON OF L.A. COUNTY PUBLIC WORKS. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA

  7. River resource management in the Grand Canyon

    SciTech Connect

    1996-07-01

    The objective of GCES was to identify and predict the effects of variations in operating strategies on the riverine environment below Glen Canyon Dam within the physical and legal constraints under which the dam must operate. Critical elements for the development of GCES and other such projects include a list of resources directly or indirectly affected by management, a list of management options, and an ecosystem framework showing the causal connections among system components, potential management strategies that include humans as integral parts of the environment.

  8. 14. Hell Gate Bridge south abutment tower. Queens, Queens Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Hell Gate Bridge south abutment tower. Queens, Queens Co., NY. Sec. 4207, MP 7.29. - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  9. Vegetation and substrate on aeolian landscapes in the Colorado River corridor, Cataract Canyon, Utah

    USGS Publications Warehouse

    Draut, Amy E.; Gillette, Elizabeth R.

    2010-01-01

    Vegetation and substrate data presented in this report characterize ground cover on aeolian landscapes of the Colorado River corridor through Cataract Canyon, Utah, in Canyonlands National Park. The 27-km-long Cataract Canyon reach has undergone less anthropogenic alteration than other reaches of the mainstem Colorado River. Characterizing ecosystem parameters there provides a basis against which to evaluate future changes, such as those that could result from the further spread of nonnative plant species or increased visitor use. Upstream dams have less effect on the hydrology and sediment supply in Cataract Canyon compared with downstream reaches in Grand Canyon National Park. For this reason, comparison of these vegetation and substrate measurements with similar data from aeolian landscapes of Grand Canyon will help to resolve the effects of Glen Canyon Dam operations on the Colorado River corridor ecosystem.

  10. Grand Canyon, Lake Powell, and Lake Mead

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A snowfall in the American West provides contrast to the landscape's muted earth tones and indicates changes in topography and elevation across (clockwise from top left) Nevada, Utah, Colorado, New Mexico, Arizona, and California. In Utah, the southern ranges of the Wasatch Mountains are covered in snow, and the Colorado River etches a dark ribbon across the red rock of the Colorado Plateau. In the center of the image is the reservoir created by the Glen Canyon Dam. To the east are the gray-colored slopes of Navaho Mountain, and to the southeast, dusted with snow is the region called Black Mesa. Southwest of Glen Canyon, the Colorado enters the Grand Canyon, which cuts westward through Arizona. At a deep bend in the river, the higher elevations of the Keibab Plateau have held onto snow. At the end of the Grand Canyon lies another large reservoir, Lake Mead, which is formed by the Hoover Dam. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  11. Canyon Dust

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03682 Canyon Dust

    These dust slides are located on the wall of Thithonium Chasma.

    Image information: VIS instrument. Latitude -4.1N, Longitude 275.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Canyon Variety

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03281 Canyon Variety

    This image shows paret of the west end of Melas Chasma. Landslide deposits are visible at the top of the image, with dark dunes appearing at the bottom.

    Image information: VIS instrument. Latitude -8.2N, Longitude 281.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  14. Grand Canyon Humpback Chub Population Improving

    USGS Publications Warehouse

    Andersen, Matthew E.

    2007-01-01

    The humpback chub (Gila cypha) is a long-lived, freshwater fish found only in the Colorado River Basin. Physical adaptations-large adult body size, large predorsal hump, and small eyes-appear to have helped humpback chub evolve in the historically turbulent Colorado River. A variety of factors, including habitat alterations and the introduction of nonnative fishes, likely prompted the decline of native Colorado River fishes. Declining numbers propelled the humpback chub onto the Federal list of endangered species in 1967, and the species is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Ariz., and one in Grand Canyon, Ariz. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center oversees monitoring and research activities for the Grand Canyon population under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP). Analysis of data collected through 2006 suggests that the number of adult (age 4+ years) humpback chub in Grand Canyon increased to approximately 6,000 fish in 2006, following an approximate 40-50 percent decline between 1989 and 2001. Increasing numbers of adult fish appear to be the result of steadily increasing numbers of juvenile fish reaching adulthood beginning in the mid- to late-1990s and continuing through at least 2002.

  15. Subinertial canyon resonance

    NASA Astrophysics Data System (ADS)

    Clarke, Allan J.; Van Gorder, Stephen

    2016-04-01

    Near the bottom of a narrow canyon currents that oscillate back and forth along the bottom slope hx in a stratified ocean of buoyancy frequency N do so with a natural internal gravitational frequency Nhx. From May 2012 to May 2013 Acoustic Doppler Current Profiler measurements were made at 715 m depth in the deep narrow part of the DeSoto Canyon south of Pensacola, Florida, in water with 2π/Nhx ≈ 2.5 days. Above the canyon the flow follows the large-scale isobaths, but beneath the canyon rim the current oscillates along the canyon axis with 2-3 day periodicity, and is much stronger than and uncorrelated with the overlying flow. A simple theoretical model explains the resonant response. Published observations from the Hudson and Gully canyons suggest that the strong subinertial current oscillations observed in these canyons occur close to the relevant local frequency Nhx, consistent with the proposed simple model physics.

  16. 106. DAM EARTH DIKE SUBMERSIBLE DAMS & DIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DAM - EARTH DIKE - SUBMERSIBLE DAMS & DIKE CONN. AT MOVABLE DAM (ML-8-52/2-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  17. Context view of Powerhouse from west slope of canyon showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view of Powerhouse from west slope of canyon showing west facade and inclined railroad tracks. View to east-southeast - Mystic Lake Hydroelectric Facility, Powerhouse, Along West Rosebud Creek, 1 3/4 miles northeast of Mystic Lake Dam, Fishtail, Stillwater County, MT

  18. 4. DARK CANYON SIPHON VIEW ACROSS DARK CANYON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DARK CANYON SIPHON - VIEW ACROSS DARK CANYON AT LOCATION OF SIPHON. VIEW TO NORTHWEST - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  19. 10. New York Connecting RR viaduct approaching Hell Gate Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. New York Connecting RR viaduct approaching Hell Gate Bridge from S. Queens, Queens Co., NY. Sec. 4207, MP 7.29. - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  20. 13. New York Connecting RR: Hell Gate Bridge. Queens, Queens ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. New York Connecting RR: Hell Gate Bridge. Queens, Queens Co., NY. Sec. 4207, MP 7.29. (See HAER No. NY-88 for further documentation on this site). - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  1. 17. New York Connecting Railroad: Little Hell Gate Bridge. Wards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. New York Connecting Railroad: Little Hell Gate Bridge. Wards Island, New York Co., NY. Sec. 4207, MP 8.02. - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  2. 11. New York Connecting RR: Hell Gate Bridge. Queens, Queens ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. New York Connecting RR: Hell Gate Bridge. Queens, Queens Co., NY. Sec. 4207, MP 7.29. (See HAER No. NY-88 for further documentation on this site). - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  3. 12. New York Connecting RR: Hell Gate Bridge. Queens, Queens ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. New York Connecting RR: Hell Gate Bridge. Queens, Queens Co., NY. Sec. 4207, MP 7.29. (See HAER No. NY-88 for further documentation on this site). - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  4. 20. Bronx Kill Bridge with Hell Gate Bridge in background. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Bronx Kill Bridge with Hell Gate Bridge in background. Randalls Island, New York Co., NY. Sec. 4207, MP 8.54. - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  5. 76 FR 22670 - Black Hills National Forest, Hell Canyon Ranger District, South Dakota, Vestal Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... vegetation treatments focused on reducing the threat to ecosystem components including forest resources from... National Forest System lands only. DATES: Comments concerning the scope of the analysis would be most... primary purpose for action in the Vestal project is to reduce the threat to forest resources from...

  6. 107. DAM EARTH DIKE SUBMERSIBLE DAMS PLANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. DAM - EARTH DIKE - SUBMERSIBLE DAMS - PLANS & SECTIONS (ML-8-52/3-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  7. Reviewing the success of intentional flooding of the Grand Canyon

    SciTech Connect

    Wirth, B.D.

    1997-04-01

    A description and evaluation of the results of an intentional flooding experiment at the Grand Canyon are described. The purpose of the 7-day release of flood waters from the Glen Canyon Dam was to determine if managed floods have the ability to predictably restore the riverine environment. A summary of environmental conditions leading to the experiment is provided and flood results are listed. Initial results showed significant improvement in the size and number of the river`s beaches, creation of backwater habitat for endangered species, and no adverse impact to the trout fishery, Indian cultural sites, and other resources.

  8. Effects of River Regulation on Aeolian Landscapes, Grand Canyon National Park, USA

    NASA Astrophysics Data System (ADS)

    Draut, A. E.

    2010-12-01

    Sediment deposits in the Colorado River corridor include fluvial sandbars and aeolian dune fields, and the fluvial deposits are the primary sediment source for sand in the aeolian dunes. This 7-year study examined the effects of river regulation at Glen Canyon Dam (alteration of flow regime, sediment-supply reduction, and consequent loss of fluvial sandbars) on aeolian landscapes downstream in Grand Canyon National Park. A comparative study was developed between aeolian landscapes in Grand Canyon, Arizona, and Cataract Canyon, Utah, upstream of Glen Canyon Dam and its reservoir (Lake Powell), where hydrology and sediment supply of the Colorado River are affected substantially less by artificial river regulation than occurs in Grand Canyon. Before closure of Glen Canyon Dam in 1963, sediment-rich floods (mean annual peak 2400 m3/s) formed sandbars from which wind moved sand inland to form aeolian dunes. After dam operations reduced the amplitude and frequency of high flows, and eliminated the mainstream fluvial sediment supply, Grand Canyon’s fluvial sandbars lost open sand area owing to erosion by river flows and the spread of riparian vegetation. Two types of aeolian landscapes now occur in Grand Canyon: (1) modern fluvial sourced, those downwind of post-dam sandbars; and (2) relict fluvial sourced, whose primary sediment source was deposits from pre-dam floods that were larger than any post-dam flows have been. Sediment supply has been reduced to type (1) dune fields because post-dam sandbars are smaller than in the pre-dam era; new sediment supply to type (2) dune fields essentially has been eliminated. Type 1 aeolian landscapes can receive new windblown sand from sandbars formed by controlled floods (1160 m3/s), which occurred in 1996, 2004, and 2008. Type 1 dune fields, being downwind and within 100 m of controlled-flood sandbars, have significantly higher aeolian sand-transport rates, more open sand, and less biologic soil crust than relict type 2 dune

  9. HELLS HOLE ROADLESS AREA, ARIZONA AND NEW MEXICO.

    USGS Publications Warehouse

    Ratte, James C.; Briggs, John P.

    1984-01-01

    The Hells Hole Roadless Area encompasses about 50 sq mi along the Arizona-New Mexico State line. The area was studied and the southeastern part was determined to have a probable mineral-resource potential for the discovery of base- or precious-metal deposits related to igneous intrusions of middle to late Tertiary age. There also is a probable resource potential for porphyry copper mineralization of Laramide age beneath the Tertiary volcanic rocks that cover the area. There is little promise for the occurrence of energy resources in the area. Additional geochemical and petrological studies of the rocks of the Hells Hole volcanic center and modeling of geophysical anomalies are necessary to adequately appraise the mineral-resource potential of the area.

  10. Analyzing sediment impacts for the Glen Canyon Long-term Experimental and Management Plan EIS

    NASA Astrophysics Data System (ADS)

    Russell, K.; Huang, V.; Varyu, D.; Greimann, B. P.; O'Connor, B. L.

    2013-12-01

    The Department of the Interior is currently evaluating alternatives in the Glen Canyon Dam Long-term Experimental and Management Plan (LTEMP) Environmental Impact Statement (EIS). The purpose of the EIS to evaluate dam operations and identify management actions and experimental options that will provide a framework for adaptively managing operations of Glen Canyon Dam over the next 15 to 20 years. Sediment and sandbars along the Colorado River are important downstream resources in Grand Canyon National Park. Sediment is one of the resources being analyzed for impacts in Marble and Grand Canyon. Since 1963, Glen Canyon Dam has regulated the flow in the Colorado River by decreasing the magnitude of annual flood flows and increasing the magnitude of base flows, and has nearly eliminated main-channel sand supply from the upper Colorado River Basin. These changes disrupted the natural ability of the river to build and maintain sandbars. Grand Canyon sandbars provide camping beaches for river runners and hikers, generate habitat for native fish and vegetation, and supply sediment to protect archaeological resources. In order to measure the impacts of the different alternatives on the sediment resource, several different models are being utilized. A sand budget numerical model that tracks the storage and transport of sand in the Colorado River below Glen Canyon Dam developed by the USGS is utilized. The model uses empirically based rating curves for specific particle sizes. The decision criteria for the high flow experiment environmental assessment is applied to the sand budget model as well as other flow changes incorporated in the alternatives. An empirically based sandbar volume model was also developed for the LTEMP EIS process to address the sandbar resource impacts. Based on the model results, performance criteria have been established to allow for comparisons between the alternatives. The criteria include the changes in the sand mass balance of the system, the

  11. Hell [Höll], Maximilian [Miksa] (1720-92)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Schemnitz, Hungary, became a Jesuit, and worked in Leutschau, Klausenburg and in Vienna where he set up and directed an observatory for Maria Theresa of Austria and Hungary. Somewhat to his own surprise, Hell was invited by Christian VII, king of Denmark, to observe the 1769 transit of Venus from the then Danish island Vardø within the Arctic Circle off the coast of Lapland, all expenses ...

  12. Side-scan sonar imaging of the Colorado River, Grand Canyon

    USGS Publications Warehouse

    Anima, Roberto; Wong, Florence L.; Hogg, David; Galanis, Peter

    2007-01-01

    This paper presents data collection methods and side-scan sonar data collected along the Colorado River in Grand Canyon in August and September of 2000. The purpose of the data collection effort was to image the distribution of sand between Glen Canyon Dam and river mile 87.4 before and after the 31,600 cfs flow of September 6-8. The side-scan sonar imaging focused on pools between rapids but included smaller rapids where possible.

  13. Lava Falls Rapid in Grand Canyon; effects of late Holocene debris flows on the Colorado River

    USGS Publications Warehouse

    Webb, Robert H.; Melis, Theodore S.; Griffiths, Peter G.; Elliott, John G.; Cerling, Thure E.; Poreda, Robert J.; Wise, Thomas W.; Pizzuto, James E.

    1999-01-01

    Lava Falls Rapid is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Debris flows in 1939, 1954, 1955, 1966, and 1995, as well as prehistoric events, completely changed flow through the rapid. Floods cleared out much of the increased constrictions, but releases from Glen Canyon Dam, including the 1996 controlled flood, are now required to remove the boulders deposited by the debris flows.

  14. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    NASA Astrophysics Data System (ADS)

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-12-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  15. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E., Jr.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  16. Critical Climate Controls and Information Needs for the Glen Canyon Adaptive Management Program and Environmental Assessment in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Melis, T. S.; Jain, S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J. K.

    2005-12-01

    Climatic drivers of episodic to interdecadal variations to the observed changes in the flood magnitude, timing and spatial scales affect the sediment inputs to the Colorado River ecosystem. Since the 1963 closure of Glen Canyon Dam, the dominant sole major supplier of sand to the Colorado River in the upper portion of Grand Canyon is the Paria River, which supplies about 6% of the pre-dam supply of sand at the upstream boundary of Grand Canyon National Park. Sand is delivered by the Paria River during short-duration (< 24 hours), large magnitude (up to 300 cubic meters/second) floods that occur primarily during the warm season (July-October). The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCD-AMP) strive to balance numerous, often competing, objectives, such as,water supply, hydropower generation, low flow maintenance, maximizing conservation of the tributary supplied sediment, endangered species recovery, and cultural resources. In this work, we focus on a key concern identified by the AMP, related to the timing and volume of sediment input into Grand Canyon. Adequate sediment inputs into the river ecosystem Canyon combined with active flow management, of the timed in the form of strategically timed bypass releases from Glen Canyon Dam, support the restoration and maintenance of sand bar habitats and instream ecology. Variability in regional precipitation distribution on multiple time scales is diagnosed with emphasis on understanding the relative role of East Pacific tropical storms, North Pacific sea surface temperatures, and subtropical moisture sources. On longer time scales, structured variations in the sediment supply imply a changing baseline for mean ecological and geomorphological conditions in the Canyon, counter to the static view taken in the current environmental impact assessments. Better understanding of the coupled climate-hydrologic variations on multiple time scales is increasingly recognized as critical

  17. 18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF A CANYON IN THE CLEANUP PHASE. CANYONS WERE PROCESSING ROOMS USED TO HOUSE PLUTONIUM HANDLING OPERATIONS THAT WERE NOT CONTAINED WITHIN GLOVE BOXES. CANYONS WERE DESIGNED TO BECOME CONTAMINATED. (5/10/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  18. The Emotional Toll of Hell: Cross-National and Experimental Evidence for the Negative Well-Being Effects of Hell Beliefs

    PubMed Central

    Shariff, Azim F.; Aknin, Lara B.

    2014-01-01

    Though beliefs in Heaven and Hell are related, they are associated with different personality characteristics and social phenomena. Here we present three studies measuring Heaven and Hell beliefs' associations with and impact on subjective well-being. We find that a belief in Heaven is consistently associated with greater happiness and life satisfaction while a belief in Hell is associated with lower happiness and life satisfaction at the national (Study 1) and individual (Study 2) level. An experimental priming study (Study 3) suggests that these differences are mainly driven by the negative emotional impact of Hell beliefs. Possible cultural evolutionary explanations for the persistence of such a distressing religious concept are discussed. PMID:24465514

  19. Climate-Related Flood and Sediment Transport From the Paria River to Grand Canyon: The Role of Multiple Time Scales

    NASA Astrophysics Data System (ADS)

    Jain, S.; Pulwarty, R. S.; Topping, D. J.; Melis, T. S.

    2004-12-01

    Since the 1963 closure of Glen Canyon Dam, the sole major supplier of sand to the Colorado River in the upper portion of Grand Canyon is the Paria River, which supplies about 6% of the pre-dam supply of sand at the upstream boundary of Grand Canyon National Park. Sand is delivered by the Paria River during short-duration (< 24 hours), large magnitude (up to 300 m3s-1) floods that occur primarily during the warm season (July-October). The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (AMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, maximizing conservation of the tributary supplied sediment, endangered species recovery, and cultural resources. In this work, we focus on a key concern identified by the AMP, related to the timing and volume of sediment input into Grand Canyon. Adequate sediment inputs into the Canyon combined with active management of the timed releases from Glen Canyon Dam support the restoration and maintenance of sandbars and instream ecology. For the Paria River, we relate the climatic drivers of episodic to interdecadal variations to the observed changes in the flood magnitude, timing and spatial scales as they affect the sediment inputs to the Colorado River. Variability in regional precipitation distribution on multiple time scales is diagnosed with emphasis on understanding the relative role of East Pacific tropical storms, North Pacific sea surface temperatures, and subtropical moisture sources. Better understanding of the coupled climate-hydrologic variations on multiple time scales is increasingly recognized as critical input for adaptive management (both passive and active). In collaboration with the AMP, this work deliberately identifies the entry-points for predictive hydroclimatic information at appropriate lead times. From the standpoint of this active adaptive management program, lead climate information allows

  20. Dam safety: Morris Sheppard Dam rehabilitation

    SciTech Connect

    Garland, J.D.; Waters, R.H.; Focht, J.A. Jr.

    1995-12-31

    Morris Sheppard Dam is one of the world`s largest flat slab buttress dams. It is located on the Brazos River about 96 km (60 miles) west of Dallas - Fort Worth. Designed by Ambursen Dam Company, the dam was constructed between 1938 and 1941 at a cost of $8.7 million. In 1987, a maximum buttress movement of 114 mm (4.5 inches) was discovered. The dam was successfully rehabilitated between 1987 and 1994 at a cost of $36 million. This paper will describe: (1) the dam`s construction and operational history, (2) the lowering of the reservoir by 3.94 m (13 feet) as an emergency response when the movement was discovered, (3) the initial stabilization of the dam by the addition of relief wells and grouting, (4) the final stabilization using ballast to increase the weight of the dam, (5) the use of actual dam performance as a full-scale, long-term, load test to back-calculate realistic strength parameters, (6) the multiple sets of design stability criteria used to analyze the structure, and (7) the use of model studies to enlarge the dam`s stilling basin and design an emergency spillway to handle the PMF.

  1. 33 CFR 100.1102 - Annual Marine Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... portion of the lower Colorado River on the Arizona side between Thompson Bay and Copper Canyon. 2. Havasu..., AZ. Regulated Area The waters of the lower Colorado River encompassed by the following boundaries... Colorado River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona)....

  2. Colorado River fish monitoring in Grand Canyon, Arizona; 2000 to 2009 summary

    USGS Publications Warehouse

    Makinster, Andrew S.; Persons, William R.; Avery, Luke A.; Bunch, Aaron J.

    2010-01-01

    Long-term fish monitoring in the Colorado River below Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program (GCDAMP). The GCDAMP is a federally authorized initiative to ensure that the primary mandate of the Grand Canyon Protection Act of 1992 to protect resources downstream from Glen Canyon Dam is met. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center is responsible for the program's long-term fish monitoring, which is implemented in cooperation with the Arizona Game and Fish Department, U.S. Fish and Wildlife Service, SWCA Environmental Consultants, and others. Electrofishing and tagging protocols have been developed and implemented for standardized annual monitoring of Colorado River fishes since 2000. In 2009, sampling occurred throughout the river between Lees Ferry and Lake Mead for 38 nights over two trips. During the two trips, scientists captured 6,826 fish representing 11 species. Based on catch-per-unit-effort, salmonids (for example, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta)) increased eightfold between 2006 and 2009. Flannelmouth sucker (Catostomus latipinnis) catch rates were twice as high in 2009 as in 2006. Humpback chub (Gila cypha) catches were low throughout the 10-year sampling period.

  3. A paleolimnological investigation of historical environmental change in East Canyon Reservoir

    NASA Astrophysics Data System (ADS)

    Higby Halseth, Deanna Renee

    East Canyon Reservoir is located 32 km east of Salt Lake City, Utah, and serves as a resource for irrigation, culinary water, and recreation. This research used paleolimnology and historical records to investigate the impacts of multiple stressors, including land clearance, dam construction and enlargement, and climate warming on East Canyon Reservoir. Recently, blue green algal blooms, typically indicative of eutrophication, have been increasing at East Canyon Reservoir despite reductions of nutrients from point sources, so part of the impetus for this study was to understand the forcing mechanisms of these blooms. A multiproxy analysis of three sediment cores retrieved from the reservoir determined changes in nutrient concentrations and sediment composition over time. Percent organics, magnetic susceptibility, and diatom analyses of 210Pb dated cores were compared to measurements of temperature and precipitation as well as records of historical land use, which were determined using remote sensing. Percent organics and magnetic susceptibility showed changes related to dam construction and increased development. Fossil diatom assemblages indicated that East Canyon Reservoir had been eutrophic since origination; however, principal components analyses of the diatom data indicated that the canyon became more P-enriched following dam construction and increased development. Recent increases in Cyclotella diatoms indicate changes related to warming temperatures, and we speculate that this warming is also what is causing blue-green algal blooms to increase.

  4. 19. Photocopy of a photographca. 1923showing the Anyox Dam in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of a photograph--ca. 1923--showing the Anyox Dam in British Columbia, Canada, just prior to completion of final arching. A sudden storm filled the reservoir and water began pouring over the uncompleted arch-ring; the dam was unhurt by the unexpected deluge and Eastwood used this photo as evidence of the great strength of his designs. Courtesy Mr. Charles Allan Whitney.20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK CANYON, WITH DAM AND RESERVOIR AT RIGHT CENTER. PALMDALE-LITTLEROCK DITCH, MARKED BY DENSE VEGETATION, CROSSES ROAD AT LOWER CENTER. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  5. DAM Safety and Deformation Monitoring in Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.

    2013-12-01

    Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the

  6. Sedimentary facies in submarine canyons

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.; Gwiazda, R.; Anderson, K.; Lundsten, E. M.; McGann, M.

    2013-12-01

    Submarine canyons are the major conduits by which sediment, pollutants and nutrients are transported from the continental shelf out into the deep sea. The sedimentary facies within these canyons are remarkably poorly understood because it has proven difficult to accurately sample these heterogeneous and bathymetrically complex environments using traditional ship-based coring techniques. This study exploits a suite of over 100 precisely located vibracores collected using remotely operated vehicles in ten canyons along the northern Californian margin, enabling better understanding of the facies that exist within submarine canyons, their distribution, and the processes responsible for their formation. The dataset reveals three major facies types within the submarine canyons: extremely poorly sorted, coarse-grained sands and gravels with complex and indistinct internal grading patterns and abundant floating clasts; classical normally graded thin bedded turbidites; and a variety of fine-grained muddy deposits. Not all facies are observed within individual canyons, in particular coarse-grained deposits occur exclusively in canyons where the canyon head cuts up to the modern day beach, whereas finer grained deposits have a more complex distribution that relates to processes of sediment redistribution on the shelf. Pairs of cores collected within 30 meters elevation of one another reveal that the coarse-grained chaotic deposits are restricted to the basal canyon floor, with finer-grained deposits at higher elevations on the canyon walls. The remarkable heterogeneity of the facies within these sediment cores illustrate that distinctive processes operate locally within the canyon. In the authors' experience the canyon floor facies represent an unusual facies rarely observed in ancient outcrops, which potentially results from the poor preservation of ancient coarse-grained canyon deposits in the geological record.

  7. Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Webb, Robert H.; Griffiths, Peter G.; Magirl, Christopher S.

    2006-11-01

    Flow regulation by large dams affects downstream flow competence and channel maintenance. Debris flows from 740 tributaries in Grand Canyon, Arizona, transport coarse-grained sediment onto debris fans adjacent to the Colorado River. These debris fans constrict the river to form rapids and are reworked during river flows that entrain particles and transport them downstream. Beginning in 1963, flood control operations of Glen Canyon Dam limited the potential for reworking of aggraded debris fans. We analyzed change in debris fans at the mouths of 75-Mile and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented with ground surveys performed from 1987 to 2005. Our results quantify the debris fan aggradation that resulted from debris flows from 1984 to 2003. Volume, area, and river constriction increased at both debris fans. Profiles of the two debris fans show that net aggradation occurred in the middle of debris fans at stages above maximum dam releases, and surface shape shifted from concave to convex. Dam releases above power plant capacity partially reworked both debris fans, although reworking removed much less sediment than what was added by debris flow deposition. Large dam releases would be required to create additional reworking to limit the rate of debris fan aggradation in Grand Canyon.

  8. Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Yanites, B.J.; Webb, R.H.; Griffiths, P.G.; Magirl, C.S.

    2006-01-01

    Flow regulation by large dams affects downstream flow competence and channel maintenance. Debris flows from 740 tributaries in Grand Canyon, Arizona, transport coarse-grained sediment onto debris fans adjacent to the Colorado River. These debris fans constrict the river to form rapids and are reworked during river flows that entrain particles and transport them downstream. Beginning in 1963, flood control operations of Glen Canyon Dam limited the potential for reworking of aggraded debris fans. We analyzed change in debris fans at the mouths of 75-Mile and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented with ground surveys performed from 1987 to 2005. Our results quantify the debris fan aggradation that resulted from debris flows from 1984 to 2003. Volume, area, and river constriction increased at both debris fans. Profiles of the two debris fans show that net aggradation occurred in the middle of debris fans at stages above maximum dam releases, and surface shape shifted from concave to convex. Dam releases above power plant capacity partially reworked both debris fans, although reworking removed much less sediment than what was added by debris flow deposition. Large dam releases would be required to create additional reworking to limit the rate of debris fan aggradation in Grand Canyon.

  9. Flushing submarine canyons.

    PubMed

    Canals, Miquel; Puig, Pere; de Madron, Xavier Durrieu; Heussner, Serge; Palanques, Albert; Fabres, Joan

    2006-11-16

    The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins. PMID:17108962

  10. Populating a Control Point Database: A cooperative effort between the USGS, Grand Canyon Monitoring and Research Center and the Grand Canyon Youth Organization

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Fritzinger, C.; Wharton, E.

    2004-12-01

    The Grand Canyon Monitoring and Research Center measures the effects of Glen Canyon Dam operations on the resources along the Colorado River from Glen Canyon Dam to Lake Mead in support of the Grand Canyon Adaptive Management Program. Control points are integral for geo-referencing the myriad of data collected in the Grand Canyon including aerial photography, topographic and bathymetric data used for classification and change-detection analysis of physical, biologic and cultural resources. The survey department has compiled a list of 870 control points installed by various organizations needing to establish a consistent reference for data collected at field sites along the 240 mile stretch of Colorado River in the Grand Canyon. This list is the foundation for the Control Point Database established primarily for researchers, to locate control points and independently geo-reference collected field data. The database has the potential to be a valuable mapping tool for assisting researchers to easily locate a control point and reduce the occurrance of unknowingly installing new control points within close proximity of an existing control point. The database is missing photographs and accurate site description information. Current site descriptions do not accurately define the location of the point but refer to the project that used the point, or some other interesting fact associated with the point. The Grand Canyon Monitoring and Research Center (GCMRC) resolved this problem by turning the data collection effort into an educational exercise for the participants of the Grand Canyon Youth organization. Grand Canyon Youth is a non-profit organization providing experiential education for middle and high school aged youth. GCMRC and the Grand Canyon Youth formed a partnership where GCMRC provided the logistical support, equipment, and training to conduct the field work, and the Grand Canyon Youth provided the time and personnel to complete the field work. Two data

  11. First-year dam removal activities in the Elwha River - dam removal, sediment dispersal, and fish relocations

    NASA Astrophysics Data System (ADS)

    Duda, J. J.; McMillan, J. R.; Moses, R.; McHenry, M.; Pess, G. R.; Brenkman, S.; Peters, R.; Zimmerman, M.; Warrick, J. A.; Curran, C. A.; Magirl, C. S.; Beirne, M.; Rubin, S.

    2012-12-01

    After years of anticipation, volumes of Environmental Impact Statements, unprecedented mitigation projects, and the multifaceted collection of pre-dam removal data, the deconstruction phase of the Elwha River restoration project officially began on September 17th, 2011. With their simultaneous decommissioning, the removal of the 64 m tall Glines Canyon Dam and 33 m tall Elwha Dam represents one of the largest such projects of its kind in North America. The nearly 19 million m3 of sediment residing in the dammed reservoirs is being eroded by the river in one of the largest controlled releases of sediment into a river and marine waters in recorded history. The release of sediment and the halting of deconstruction and reservoir draw down activities during "fish windows" are largely determining a deconstruction schedule expected to last about 2 years. High suspended sediment concentrations, modeled to exceed 10,000 mg/L during the highest flows and to exceed 500 mg/L for 39% of the time in year 4 of the project (15% is the recorded background level entering the upper reservoir), could last for up to 3-5 years following dam removal depending on hydrological conditions. Anadromous fish, including three federally listed species (Puget Sound Chinook salmon, steelhead, and bull trout), reside in the river downstream of the Elwha dam for part of their life cycle. All five species of Pacific salmon and steelhead, either locally extirpated (sockeye) or persisting below the impassable Elwha Dam in degraded spawning and rearing habitat, are expected to recolonize the watershed to degrees that will vary spatially and temporally due to life history characteristics and levels of human intervention. During the first year of dam removal, adult coho salmon and steelhead were relocated from areas of high turbidity downstream of the Elwha Dam site to two tributaries upstream, where some of them successfully spawned. Additionally, steelhead were observed to naturally migrate past the

  12. The Whittard Canyon - A case study of submarine canyon processes

    NASA Astrophysics Data System (ADS)

    Amaro, T.; Huvenne, V. A. I.; Allcock, A. L.; Aslam, T.; Davies, J. S.; Danovaro, R.; De Stigter, H. C.; Duineveld, G. C. A.; Gambi, C.; Gooday, A. J.; Gunton, L. M.; Hall, R.; Howell, K. L.; Ingels, J.; Kiriakoulakis, K.; Kershaw, C. E.; Lavaleye, M. S. S.; Robert, K.; Stewart, H.; Van Rooij, D.; White, M.; Wilson, A. M.

    2016-08-01

    Submarine canyons are large geomorphological features that incise continental shelves and slopes around the world. They are often suggested to be biodiversity and biomass hotspots, although there is no consensus about this in the literature. Nevertheless, many canyons do host diverse faunal communities but owing to our lack of understanding of the processes shaping and driving this diversity, appropriate management strategies have yet to be developed. Here, we integrate all the current knowledge of one single system, the Whittard Canyon (Celtic Margin, NE Atlantic), including the latest research on its geology, sedimentology, geomorphology, oceanography, ecology, and biodiversity in order to address this issue. The Whittard Canyon is an active system in terms of sediment transport. The net suspended sediment transport is mainly up-canyon causing sedimentary overflow in some upper canyon areas. Occasionally sediment gravity flow events do occur, some possibly the result of anthropogenic activity. However, the role of these intermittent gravity flows in transferring labile organic matter to the deeper regions of the canyon appears to be limited. More likely, any labile organic matter flushed downslope in this way becomes strongly diluted with bulk material and is therefore of little food value for benthic fauna. Instead, the fresh organic matter found in the Whittard Channel mainly arrives through vertical deposition and lateral transport of phytoplankton blooms that occur in the area during spring and summer. The response of the Whittard Canyon fauna to these processes is different in different groups. Foraminiferal abundances are higher in the upper parts of the canyon and on the slope than in the lower canyon. Meiofaunal abundances in the upper and middle part of the canyon are higher than on adjacent slopes, but lower in the deepest part. Mega- and macrofauna abundances are higher in the canyon compared with the adjacent slope and are higher in the eastern than

  13. Focusing on dam safety

    SciTech Connect

    Lagassa, G.

    1993-01-01

    With increased relicensing activity and a federal emphasis on safety, dam repair and refurbishment is a growing business. Providers of goods and services are gearing up to meet the dam repair and rehabilitation needs that result.

  14. Small-dam rehabs

    SciTech Connect

    Denning, J.

    1993-01-01

    This article examines the economics of maintenance, rehabilitation and improvement for small, aging, high-hazard dams. The topics of the article include raising the height of the spillway and repairing deteriorated concrete in the spillway of Fellows Lake Dam, emergency repair of the outlet conduit and replacement of riprap on the upstream slope of Storrie Lake Dam, and extensive rehabilitation of Reeves Lake Dam.

  15. Canyon in DCS Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 26, 2004 This image shows two representations of the same infra-red image covering a portion of Ganges Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The northern canyon at the top of this image is dominated by a bright red/magenta area consisting primarly basaltic materials on the floor of the canyon and atmospheric dust. Within that area, there are patches of purple, on the walls and in the landslides, that may be due to an olivine rich mineral layer. In the middle of the image, the green on the mesa between the two canyons is from a layer of dust. The patchy blue areas in the southern canyon are likely due to water ice clouds.

    Image information: IR instrument. Latitude -6.6, Longitude 316 East (44 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics

  16. New York Canyon Stimulation

    SciTech Connect

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  17. Hoover Dam Learning Packet.

    ERIC Educational Resources Information Center

    Bureau of Reclamation (Dept. of Interior), Washington, DC.

    This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…

  18. Estimating recruitment dynamics and movement of rainbow trout (Oncorhynchus mykiss) in the Colorado River in Grand Canyon using an integrated assessment model

    USGS Publications Warehouse

    Korman, Josh; Martell, Steven J.D.; Walters, Carl J.; Makinster, Andrew S.; Coggins, Lewis G.; Yard, Michael D.; Persons, William R.

    2012-01-01

    We used an integrated assessment model to examine effects of flow from Glen Canyon Dam, Arizona, USA, on recruitment of nonnative rainbow trout (Oncorhynchus mykiss) in the Colorado River and to estimate downstream migration from Glen Canyon to Marble Canyon, a reach used by endangered native fish. Over a 20-year period, recruitment of rainbow trout in Glen Canyon increased with the annual flow volume and when hourly flow variation was reduced and after two of three controlled floods. The model predicted that approximately 16 000 trout·year–1 emigrated to Marble Canyon and that the majority of trout in this reach originate from Glen Canyon. For most models that were examined, over 70% of the variation in emigration rates was explained by variation in recruitment in Glen Canyon, suggesting that flow from the dam controls in large part the extent of potential negative interactions between rainbow trout and native fish. Controlled floods and steadier flows, which were originally aimed at partially restoring conditions before the dam (greater native fish abundance and larger sand bars), appear to have been more beneficial to nonnative rainbow trout than to native fish.

  19. Colorado River campsite monitoring, Grand Canyon National Park, Arizona, 1998-2012

    USGS Publications Warehouse

    Kaplinski, Matt; Hazel, Joe; Parnell, Rod; Hadley, Daniel R.; Grams, Paul

    2014-01-01

    River rafting trips and hikers use sandbars along the Colorado River in Marble and Grand Canyons as campsites. The U.S. Geological Survey evaluated the effects of Glen Canyon Dam operations on campsite areas on sandbars along the Colorado River in Grand Canyon National Park. Campsite area was measured annually from 1998 to 2012 at 37 study sites between Lees Ferry and Diamond Creek, Arizona. The primary purpose of this report is to present the methods and results of the project. Campsite area surveys were conducted using total station survey methods to outline the perimeter of camping area at each study site. Campsite area is defined as any region of smooth substrate (most commonly sand) with no more than an 8 degree slope and little or no vegetation. We used this definition, but relaxed the slope criteria to include steeper areas near boat mooring locations where campers typically establish their kitchens. The results show that campsite area decreased over the course of the study period, but at a rate that varied by elevation zone and by survey period. Time-series plots show that from 1998 to 2012, high stage-elevation (greater than the 25,000 ft3/s stage-elevation) campsite area decreased significantly, although there was no significant trend in low stage-elevation (15,000–20,000 ft3/s) campsite area. High stage-elevation campsite area increased after the 2004 and 2008 high flows, but decreased in the intervals between high flows. Although no overall trend was detected for low stage-elevation campsite areas, they did increase after high-volume dam releases equal to or greater than about 20,000 ft3/s. We conclude that dam operations have not met the management objectives of the Glen Canyon Adaptive Management program to increase the size of camping beaches in critical and non-critical reaches of the Colorado River between Glen Canyon Dam and Lake Mead.

  20. Owyhee River intracanyon lava flows: does the river give a dam?

    USGS Publications Warehouse

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  1. Cosmogenic 3He ages and frequency of late Holocene debris flows from Prospect Canyon, Grand Canyon, USA

    USGS Publications Warehouse

    Cerling, T.E.; Webb, R.H.; Poreda, R.J.; Rigby, A.D.; Melis, T.S.

    1999-01-01

    Lava Falls Rapid, which was created and is maintained by debris flows from Prospect Canyon, is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Debris flows enter the Colorado River at tributary junctures, creating rapids. The frequency of debris flows is an important consideration when management of regulated rivers involves maintenance of channel morphology. We used cosmogenic 3He, 14C, and historical photographs to date 12 late Holocene and historic debris flows from Prospect Canyon. The highest and oldest deposits from debris flows on the debris fan yielded a 3He date of about 3 ka, which indicates predominately late Holocene aggradation of one of the largest debris fans in Grand Canyon. The deposit, which has a 25-m escarpment caused by river reworking, crossed the Colorado River and raised its base level by 30 m for an indeterminate although likely short period. We mapped depositional surfaces of 11 debris flows that occurred after 3 ka. Two deposits inset against the highest deposit yielded 3He ages of about 2.2 ka, and at least two others followed shortly afterwards. At least one of these debris flows also dammed the Colorado River. The most recent prehistoric debris flow occurred no more than 0.5 ka. The largest historic debris flow, which constricted the river by 80%, occurred in 1939. Five other debris flows occurred after 1939; these debris flows constricted the Colorado River by 35-80%. Assuming the depositional volumes of late Holocene debris flows can be modeled using a lognormal distribution, we calculated recurrence intervals of 15 to more than 2000 years for debris flows from Prospect Canyon.

  2. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Administration and management of the..., MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.7 Administration and... the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development...

  3. Nearshore thermal gradients of the Colorado River near the Little Colorado River confluence, Grand Canyon National Park, Arizona, 2010

    USGS Publications Warehouse

    Ross, Rob; Grams, Paul E.

    2013-01-01

    Construction and operation of Glen Canyon Dam has dramatically impacted the flow of the Colorado River through Glen, Marble, and Grand Canyons. Extremes in both streamflow and water temperature have been suppressed by controlled releases from the dam. Trapping of sediment in Lake Powell, the reservoir formed by Glen Canyon Dam, has also dramatically reduced the supply of suspended sediment entering the system. These changes have altered the riverine ecosystem and the habitat of native species, including fish such as the endangered humpback chub (Gila cypha). Most native fish are adapted to seasonally warm water, and the continuous relatively cold water released by the dam is one of the factors that is believed to limit humpback chub growth and survival. While average mainstem temperatures in the Colorado River are well documented, there is limited understanding of temperatures in the nearshore environments that fish typically occupy. Four nearshore geomorphic unit types were studied between the confluence of the Colorado and Little Colorado Rivers and Lava Canyon in the summer and fall of 2010, for study periods of 10 to 27 days. Five to seven sites were studied during each interval. Persistent thermal gradients greater than the 0.2 °C accuracy of the instruments were not observed in any of the sampled shoreline environments. Temperature gradients between the shoreline and mainstem on the order of 4 °C, believed to be important to the habitat-seeking behavior of native or nonnative fishes, were not detected.

  4. Environmental and human impact on the sedimentary dynamic in the Rhone Delta subaquatic canyons (France-Switzerland)

    NASA Astrophysics Data System (ADS)

    Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.

    2012-04-01

    Deltas are very sensitive environments and highly vulnerable to variations in water discharge and the amount of suspended sediment load provided by the delta-forming currents. Human activities in the watershed, such as building of dams and irrigation ditches, or river bed deviations, may affect the discharge regime and sediment input, thus affecting delta growth. Underwater currents create deeply incised canyons cutting into the delta lobes. Understanding the sedimentary processes in these subaquatic canyons is crucial to reconstruct the fluvial evolution and human impact on deltaic environments and to carry out a geological risk assessment related to mass movements, which may affect underwater structures and civil infractructure. Recently acquired high-resolution multibeam bathymetry on the Rhone Delta in Lake Geneva (Sastre et al. 2010) revealed the complexity of the underwater morphology formed by active and inactive canyons first described by Forel (1892). In order to unravel the sedimentary processes and sedimentary evolution in these canyons, 27 sediment cores were retrieved in the distal part of each canyon and in the canyon floor/levee complex of the active canyon. Geophysical, sedimentological, geochemical and radiometric dating techniques were applied to analyse these cores. Preliminary data show that only the canyon originating at the current river mouth is active nowadays, while the others remain inactive since engineering works in the watershed occurred, confirming Sastre et al. (2010). However, alternating hemipelagic and turbiditic deposits on the easternmost canyons, evidence underflow processes during the last decades as well. Two canyons, which are located close to the Rhone river mouth, correspond to particularly interesting deeply incised crevasse channels formed when the underwater current broke through the outer bend of a meander in the proximal northern levee. In these canyons, turbidites occur in the sediment record indicating ongoing

  5. Does "Examination Hell" Pay Off? A Cost-Benefit Analysis of "Ronin" and College Education in Japan

    ERIC Educational Resources Information Center

    Ono, Hiroshi

    2007-01-01

    College-bound students in Japan undergo a process of intense preparation known as "examination hell." An extreme manifestation of "examination hell" is the "ronin" phenomenon. Typically 30% of students choose the "ronin" option under which they spend years in addition to high school preparing for the next year's college entrance examinations.…

  6. Evolutionary trends in Triceratops from the Hell Creek Formation, Montana

    PubMed Central

    Scannella, John B.; Fowler, Denver W.; Goodwin, Mark B.; Horner, John R.

    2014-01-01

    The placement of over 50 skulls of the well-known horned dinosaur Triceratops within a stratigraphic framework for the Upper Cretaceous Hell Creek Formation (HCF) of Montana reveals the evolutionary transformation of this genus. Specimens referable to the two recognized morphospecies of Triceratops, T. horridus and T. prorsus, are stratigraphically separated within the HCF with the T. prorsus morphology recovered in the upper third of the formation and T. horridus found lower in the formation. Hypotheses that these morphospecies represent sexual or ontogenetic variation within a single species are thus untenable. Stratigraphic placement of specimens appears to reveal ancestor–descendant relationships. Transitional morphologies are found in the middle unit of the formation, a finding that is consistent with the evolution of Triceratops being characterized by anagenesis, the transformation of a lineage over time. Variation among specimens from this critical stratigraphic zone may indicate a branching event in the Triceratops lineage. Purely cladogenetic interpretations of the HCF dataset imply greater diversity within the formation. These findings underscore the critical role of stratigraphic data in deciphering evolutionary patterns in the Dinosauria. PMID:24982159

  7. Evolutionary trends in Triceratops from the Hell Creek Formation, Montana.

    PubMed

    Scannella, John B; Fowler, Denver W; Goodwin, Mark B; Horner, John R

    2014-07-15

    The placement of over 50 skulls of the well-known horned dinosaur Triceratops within a stratigraphic framework for the Upper Cretaceous Hell Creek Formation (HCF) of Montana reveals the evolutionary transformation of this genus. Specimens referable to the two recognized morphospecies of Triceratops, T. horridus and T. prorsus, are stratigraphically separated within the HCF with the T. prorsus morphology recovered in the upper third of the formation and T. horridus found lower in the formation. Hypotheses that these morphospecies represent sexual or ontogenetic variation within a single species are thus untenable. Stratigraphic placement of specimens appears to reveal ancestor-descendant relationships. Transitional morphologies are found in the middle unit of the formation, a finding that is consistent with the evolution of Triceratops being characterized by anagenesis, the transformation of a lineage over time. Variation among specimens from this critical stratigraphic zone may indicate a branching event in the Triceratops lineage. Purely cladogenetic interpretations of the HCF dataset imply greater diversity within the formation. These findings underscore the critical role of stratigraphic data in deciphering evolutionary patterns in the Dinosauria. PMID:24982159

  8. Repainting decontaminated canyon cranes

    SciTech Connect

    Not Available

    1984-08-23

    The paint on the H-area hot canyon crane is expected to be at least partially removed during the planned decontamination with high pressure Freon/reg sign/ blasting. Tests to evaluate two candidate finishes, DuPont Imron/reg sign/ polyurethane enamel and DuPont Colar/reg sign/ epoxy were carried out at Quadrex Co., Oak Ridge, TN, March 1984. Three types of 304L stainless steel surface finishes were included in the test (ASTM No. 1, bead blasted ASTM No. 1, and ASTM No. 2B). Two types of contamination were used (diluted dissolver solution, the type of contamination encountered in existing canyons; and raw sludge plus volatiles, the type of contamination expected in DWPF). Some specimens were coated with the type of grease (Mystic JT-6) used on cranes in SRP separations areas. The results of the test indicate that smoother surfaces are easier to decontaminate than rougher surfaces. Statistical analysis of the data from this experiment by R.L. Postles leads to the following conclusions: There is no statistical difference between the decontamination properties of DuPont Imron/reg sign/ polyurethane enamel and DuPont Colar/reg sign/ epoxy; DuPont Imron/reg sign/ polyurethane enamel and perhaps Type 304L stainless steel with an ASTM No. 2B surface finish are easier to decontaminate than Type 304L stainless steel with an ASTM No. 1 surface finish; dilute dissolver solution is harder to remove than raw sludge plus volatiles; specimens with grease are easier to decontaminate than specimens with no grease; and, Freon/reg sign/ blasting pressure has no statistically significant effect. 2 refs., 1 fig., 4 tabs.

  9. 16. Parker Dam, only top fourth of dam visible, at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Parker Dam, only top fourth of dam visible, at 320' high, Parker Dam is one of the highest in the world. Much of this height is because dam penetrates well below river bottom to fasten to bedrock. - Parker Dam, Spanning Colorado River between AZ & CA, Parker, La Paz County, AZ

  10. Canyon waste dump case study

    SciTech Connect

    Land, M.D.; Brothers, R.R. ); McGinn, C.W. )

    1991-01-01

    This data packet contains the Canyonville Canyon Waste Dump results of the various physical environmental sampling. Core samples were taken from the on site waste material. Vertical grab samples were made from these borings. The waste samples were screened fro volatile organic compounds (VOC) and logged for lithology. Soil samples were also tested for VOC. Composite sediment samples were taken using a coring device known as a clam gun. No surface water was available for testing from the intermittent Canyon Wash. The hydrogeology of the Canyon Waste Dump was inferred from lithologic logs and hydraulic data from the five monitoring wells located along the canyon floor. Groundwater was monitored through five wells. The soil vapor and air screening techniques used were adaptations of the EPA ERT and NIOSH methodologies. 4 figs., 9 tabs.

  11. Elwha River dam removal-Rebirth of a river

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  12. Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2004-01-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlings at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1.09. Of

  13. ANATOMY OF A RIVER, AN EVALUATION OF WATER REQUIREMENTS FOR THE HELL'S CANYON REACH OF THE SNAKE RIVER, IDAHO, 1973

    EPA Science Inventory

    This evaluation began in March 1973, involving more than 30 state and federal agencies and private entities. 79 specialists monitored the effects of 5 controlled flows on the biological community and mans use of the Middle Snake River (17060103, 17060101). The total program inv...

  14. Geomorphic and hydrologic controls on riparian vegetation in the Grand Canyon, Arizona

    SciTech Connect

    Bechtel, D.A.; Stevens, L.E.; Kearsley, M.J.; Ayers, T.J. )

    1993-06-01

    Interactions between geomorphology and hydrology largely control the structure and composition of riparian vegetation in the Grand Canyon. Geologic structure, water table elevation, flooding and sediment deposition collectively create distinctive habitats required by major riparian assemblages in the dam-controlled Colorado River and its unregulated tributaries. Riparian assemblages in dominant geomorphic settings are associated with different combinations of substrata, inundation frequencies, and geomorphic features along this dam-regulated system. Data on recruitment, growth and water potential confirm that physical attributes of geomorphic zones are the causal force behind plant community structure. Alternative biotic hypotheses regarding community organization (e.g. competition, herbivory, dispersal) are discussed and dismissed.

  15. 31. AVALON DAM OUTLET WORKS FROM CREST OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. AVALON DAM - OUTLET WORKS FROM CREST OF DAM INCLUDING SPILLWAY NO. 1 AND CYLINDER GATE DISCHARGE PORTALS. VIEW TO SOUTHEAST - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  16. 9. Excavation work at Pleasant Dam (now called Waddell Dam). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Excavation work at Pleasant Dam (now called Waddell Dam). Photographer unknown, July, 22, 1926. Source: Maricopa County Municipal Water Conservation District Number One (MWD). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  17. Anatomy of La Jolla Canyon

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Caress, D. W.; Ussler, W.; Lundsten, E.; McGann, M. L.; Conrad, J. E.; Edwards, B. D.; Covault, J. A.

    2010-12-01

    High-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) and chirp sub-bottom profiler data collected with an autonomous underwater vehicle (AUV) reveal the fine-scale morphology of La Jolla Canyon, offshore southern California. The AUV was pre-programmed to fly three missions within the canyon while maintaining an altitude of 50 m above bottom in water depths between 365 and 980 m. Sparker seismic reflection profiles define the overall geometry of the canyon and its host sediments. A remotely operated vehicle (ROV) was used to ground truth the AUV surveys by collecting video observations, 25 vibracores ≤1.5 m long and 38 horizontal push cores from outcrops on the canyon walls. These tools outline the shape and near sub-bottom character of the canyon and thus provide insight into the processes that generated the present canyon geomorphology. La Jolla Canyon is ~1.5 km across and contains a smaller-scale sinuous axial channel that varies in width from <50 m to >300 m. The total relief on the canyon walls is ~90 m and most of the elevation changes occur along a few steep faces that separate intervening terraces. Fine scale features include <1 m high steps on the surface of the major terraces and the existence of crescent shaped bedforms within the axial channel. Also notable are the numerous slide scars on the canyon flanks and within its axial channel. The sharpness of the textures seen in the multibeam images and ROV observations suggest the canyon is active and sediment failures play an important role in generating the canyon’s present morphology. Vibracores show that the floor of the axial channel is typically covered with >1 m of medium- to fine-grained sand. While collecting vibracores within the axial channel, the sand within a radius of ~2 m were observed to flow down slope, apparently after becoming fluidized. The ease with which failure can be induced on the relatively gentle slopes (~1.4°) within the

  18. Maximilian Hell and the Northernmost Transit of Venus Expedition of 1769

    NASA Astrophysics Data System (ADS)

    Botez, E.

    2004-12-01

    A short biography of the Jesuit astronomer Maximilian Hell (1720-1792), founder and director of the Astronomical Observatory in Vienna and editor of the Viennese Astronomical Almanac is presented. He was the leader of the expedition to Vardö Island for observing the transit of Venus of 1769. The journey of the participants, the preparations for observing the important phenomenon and its successful observations are described. Hell's scientific merits won him the membership in several European Academies, and his name is found on the lunar maps.

  19. Debris flows in Grand Canyon National Park, Arizona: magnitude, frequency and effects on the Colorado River

    USGS Publications Warehouse

    Melis, Theodre S.; Webb, Robert H.

    1993-01-01

    Debris flows are recurrent sediment-transport processes in 525 tributaries of the Colorado River in Grand Canyon. Arizona. Initiated by slope failures in bedrock and (or) colluvium during intense rainfall, Grand Canyon debris flows are high-magnitude, short-duration floods. Debris flows in these tributaries transport very large boulders into the river where they accumulate on debris fans and form rapids. The frequency of debris flows range from less than 1 per century to 10 or more per century in these tributaries. Before regulation by Glen Canyon Dam in 1963, high-magnitude floods on the Colorado River reworked debris fans by eroding all particles except large boulders. Because flow regulation has substantially decreased the river's competence, debris flows occurring after 1963 have increased accumulation of finer-grained sediments on debris fans and in rapids.

  20. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    SciTech Connect

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M. ); McDonnell, J.R. )

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.

  1. Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.

    SciTech Connect

    Goulet, C. T.; LaGory, K. E.; Environmental Science Division

    2009-10-05

    Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

  2. Geologic framework of thermal springs, Black Canyon, Nevada and Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black

  3. NEW ENGLAND DAMS

    EPA Science Inventory

    With the National Dam Inspection Act (P.L. 92-367) of 1972, Congress authorized the U.S. Army Corps of Engineers (USACE) to inventory dams located in the United States. The Water Resources Development Act of 1986 (P.L 99-662) authorized USACE to maintain and periodically publish...

  4. Dammed or Damned?

    ERIC Educational Resources Information Center

    Hirsch, Philip

    1988-01-01

    Summarizes issues raised at a workshop on "People and Dams" organized by the Society for Participatory Research in Asia. Objectives were to (1) understand problems created by dams for people, (2) consider forces affecting displaced populations and rehabilitation efforts, and (3) gain a perspective on popular education efforts among affected…

  5. High-resolution topography and geomorphology of select archeological sites in Glen Canyon National Recreation Area, Arizona

    USGS Publications Warehouse

    Collins, Brian D.; Corbett, Skye C.; Sankey, Joel B.; Fairley, Helen C.

    2014-01-01

    Along the Colorado River corridor between Glen Canyon Dam and Lees Ferry, Arizona, located some 25 km downstream from the dam, archaeological sites dating from 8,000 years before present through the modern era are located within and on top of fluvial and alluvial terraces of the prehistorically undammed river. These terraces are known to have undergone significant erosion and retreat since emplacement of Glen Canyon Dam in 1963. Land managers and policy makers associated with managing the flow of the Colorado River are interested in understanding how the operations of Glen Canyon Dam have affected the archeological sites associated with these terraces and how dam-controlled flows currently interact with other landscape-shaping processes. In 2012, the U.S. Geological Survey initiated a research project in Glen Canyon to study the types and causes of erosion of the terraces. This report provides the first step towards this understanding by presenting comparative analyses on several types of high-resolution topographic data (airborne lidar, terrestrial lidar, and airborne photogrammetry) that can be used in the future to document and analyze changes to terrace-based archaeological sites. Herein, we present topographic and geomorphologic data of four archaeological sites within a 14 km segment of Glen Canyon using each of the three data sources. In addition to comparing each method’s suitability for adequately representing the topography of the sites, we also analyze the data within each site’s context and describe the geomorphological processes responsible for erosion. Our results show that each method has its own strengths and weaknesses, and that terrestrial and airborne lidar are essentially interchangeable for many important topographic characterization and monitoring purposes. However, whereas terrestrial lidar provides enhanced capacity for feature recognition and gully morphology delineation, airborne methods (whether by way of laser or optical sensors) are

  6. Tiffany Diamonds and Classical Music as Influences on the Performance of "Don Juan in Hell".

    ERIC Educational Resources Information Center

    Johnson, Jim

    This paper analyzes Paul Gregory's 1951 production of "Don Juan in Hell," now considered to be a seminal work in the development of professional and educational readers theatre. The paper contends that the production, which presented a nondramatic work without the usual emphasis on design and spectacle, forced a reexamination of the role of the…

  7. Escape from Management Hell: 12 Tales of Horror, Humor, and Heroism.

    ERIC Educational Resources Information Center

    Gilbreath, Robert D.

    This book offers a set of stories in which corporate executives demonstrate the folly and futility of their own business practices. In the stories, 12 executives are trying to escape from a hell of their own making. The tales provide insights into the management woes with which people at all levels deal on a daily basis. Topics include: the…

  8. When Hell Freezes Over: An Approach To Develop Student Interest and Communication Skills.

    ERIC Educational Resources Information Center

    DeLorenzo, Ron

    1999-01-01

    Describes the use of thought-provoking essay questions such as "How does one determine the temperature at which Hell freezes over?" to promote better communication skills among chemistry students. Makes reference to and suggests other thought-provoking questions. (WRM)

  9. With Dante in Hell on 9/11: "That Day We Read No Further"

    ERIC Educational Resources Information Center

    Rosenstein, Roy

    2015-01-01

    In this article, Roy Rosenstein shares the events that occurred during his first day of teaching the Dante and Medieval Culture course in the fall semester of 2001 at the American University of Paris (AUP). On, September 11, 2001, immediately following Rosenstein's opening statement of "Welcome to hell," the class was alerted to the…

  10. Topographic change detection at select archeological sites in Grand Canyon National Park, Arizona, 2007–2010

    USGS Publications Warehouse

    Collins, Brian D.; Corbett, Skye C.; Fairley, Helen C.; Minasian, Diane L.; Kayen, Robert; Dealy, Timothy P.; Bedford, David R.

    2012-01-01

    Human occupation in Grand Canyon, Arizona, dates from at least 11,000 years before present to the modern era. For most of this period, the only evidence of human occupation in this iconic landscape is provided by archeological sites. Because of the dynamic nature of this environment, many archeological sites are subject to relatively rapid topographic change. Quantifying the extent, magnitude, and cause of such change is important for monitoring and managing these archeological sites. Such quantification is necessary to help inform the continuing debate on whether and how controlled releases from Glen Canyon Dam, located immediately upstream of Grand Canyon National Park, are affecting site erosion rates, artifact transport, and archeological resource preservation along the Colorado River in Grand Canyon. Although long-term topographic change resulting from a variety of natural processes is inherent in the Grand Canyon region, continued erosion of archeological sites threatens both the archeological resources and our future ability to study evidence of past cultural habitation. Thus, this subject is of considerable interest to National Park Service managers and other stakeholders in the Glen Canyon Dam Adaptive Management Program. Understanding the causes and effects of archeological site erosion requires a knowledge of several factors, including the location, timing, and magnitude of the changes occurring in relation to archeological resources, the rates of change, and the relative contribution of potential causes. These potential causes include sediment depletion associated with managed flows from Glen Canyon Dam, site-specific weather and overland flow patterns, visitor impacts, and long-term regional climate change. To obtain this information, highly accurate, spatially specific data are needed from sites undergoing change. Using terrestrial lidar techniques, and building upon three previous surveys of archeological sites performed in 2006 and 2007, we

  11. 1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A GRAVITY SECTION IS THE THIRD DAM BUILT BY SEATTLE CITY LIGHT TO PROVIDE WATER FOR GORGE POWERHOUSE AND WAS COMPLETED IN 1961, 1989. - Skagit Power Development, Gorge High Dam, On Skagit River, 2.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  12. The Role of Late-Cenozoic Lava Flows in the Evolution of the Owyhee River Canyon, Oregon

    NASA Astrophysics Data System (ADS)

    Brossy, C. C.; House, P. K.; Ely, L. L.; O'Connor, J. E.; Safran, E. B.; Bondre, N.; Champion, D. E.; Grant, G.

    2008-12-01

    Over the last 2 Ma, at least six lava flows entered the canyon of the Owyhee River in southeastern Oregon, dramatically and repeatedly altering the river's course and profile. A combination of geochronologic, geochemical, and paleomagnetic analyses accompanied by extensive field mapping shows that these lava flows erupted from upland vents 10s of km from the river, entered the canyon via tributary or rim, and formed blockages sufficient to create lakes. Thick deltas of pillow lavas and rising passage zones in the head of the dams and subaerial lavas downstream of the dam indicate effective damming. The presence of fine grained laminated sediments deposited in the lakes suggests the dams were fairly long lived. Pending OSL dates and ongoing field study of these sediments will shed light on the nature and duration of dam construction and removal. Lava-water interaction during dam construction was extensive, and thick pillow lava deltas are common. In contrast to rivers in other locations, we did not find evidence of pyroclastics such as cinders associated with the dams. The three oldest intracanyon lava flows: the lower undivided Bogus lavas (>1.92 ± 0.22 Ma), the Bogus Rim (1.92 ± 0.22 Ma), and the Greeley Bar lavas (>780 ka), all record the filling of a wide, deep canyon, damming of the Owyhee River, and creation of extensive lakes at elevations 230 to 310 m above the modern river. The three younger lava flows, the Clarks Butte (248 ± 45 ka), the Saddle Butte (~125 ka), and the West Crater (60-90 ka), record the occurrence of similar events but in a narrower, deeper canyon similar to the modern one. Overall, this array of late Cenozoic intracanyon lava flows provides key insights into the long-term incision history of the canyon, possibly including the effect of integration with the Snake River, and supports a model of long-term, regional landscape evolution that is strongly linked to lava-water interactions.

  13. Academy of the Canyons Report, Fall 2002.

    ERIC Educational Resources Information Center

    Meuschke, Daylene M.; Gribbons, Barry C.

    This report analyzes the Academy of the Canyons (AOC) program at College of the Canyons (COC), California. AOC, a middle college high school, is a collaboration between the William S. Hart High School District and College of the Canyons. The program is designed to provide a supportive, flexible, and academically enriched environment for students…

  14. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  15. Sandbar Response in Marble and Grand Canyons, Arizona, Following the 2008 High-Flow Experiment on the Colorado River

    USGS Publications Warehouse

    Hazel, Joseph E., Jr.; Grams, Paul E.; Schmidt, John C.; Kaplinski, Matt

    2010-01-01

    A 60-hour release of water at 1,203 cubic meters per second (m3/s) from Glen Canyon Dam in March 2008 provided an opportunity to analyze channel-margin response at discharge levels above the normal, diurnally fluctuating releases for hydropower plant operations. We compare measurements at sandbars and associated campsites along the mainstem Colorado River, downstream from Glen Canyon Dam, at 57 locations in Marble and Grand Canyons. Sandbar and main-channel response to the 2008 high-flow experiment (2008 HFE) was documented by measuring bar and bed topography at the study sites before and after the controlled flood and twice more in the following 6 months to examine the persistence of flood-formed deposits. The 2008 HFE caused widespread deposition at elevations above the stage equivalent to a flow rate of 227 m3/s and caused an increase in the area and volume of the high-elevation parts of sandbars, thereby increasing the size of campsite areas. In this study, we differentiate between four response styles, depending on how sediment was distributed throughout each study site. Then, we present the longitudinal pattern relevant to the different response styles and place the site responses in context with two previous high-release experiments conducted in 1996 and 2004. We find that (1) nearly every measured sandbar aggraded above the 227-m3/s water-surface elevation, resulting in sandbars as large or larger than occurred following previous high flows; (2) reaches closest to Glen Canyon Dam were characterized by a greater percentage of sites that incurred net erosion, although the total sand volume in all sediment-flux monitoring reaches was greater following the 2008 HFE than following previous high flows; and (3) longitudinal differences in topographic response in eddies and in the channel suggest a greater and more evenly distributed sediment supply than existed during previous controlled floods from Glen Canyon Dam.

  16. Sedimentology and stratigraphy of the Palisades, Lower Comanche, and Arroyo Grande areas of the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Rubin, David M.; Dierker, Jennifer L.; Fairley, Helen C.; Griffiths, Ronald E.; Hazel, Joseph E., Jr.; Hunter, Ralph E.; Kohl, Keith; Leap, Lisa M.; Nials, Fred L.; Topping, David J.; Yeatts, Michael

    2005-01-01

    This report analyzes various depositional environments in three archaeologically significant areas of the Colorado River corridor in Grand Canyon. Archaeological features are built on and buried by fluvial, aeolian, and locally derived sediment, representing a complex interaction between geologic and cultural history. These analyses provide a basis for determining the potential influence of Glen Canyon Dam operations on selected archaeological sites and thus for guiding dam operations in order to facilitate preservation of cultural resources. This report presents initial results of a joint effort between geologists and archaeologists to evaluate the significance of various depositional processes and environments in the prehistoric formation and modern preservation of archaeological sites along the Colorado River corridor in Grand Canyon National Park. Stratigraphic investigations of the Palisades, Lower Comanche, and Arroyo Grande areas of Grand Canyon yield detailed information regarding the sedimentary history at these locations. Reconstruction of past depositional settings is critical to a thorough understanding of the geomorphic and stratigraphic evolution of these three archaeologically significant areas. This examination of past sedimentary environments allows the relative significance of fluvial, aeolian, debris-fan, and slope-wash sedimentary deposits to be identified at each site. In general the proportion of fluvial sediment (number and thickness of flood deposits) is shown to decrease away from the river, and locally derived sediment becomes more significant. Flood sequences often occur as 'couplets' that contain a fluvial deposit overlain by an interflood unit that reflects reworking of fluvial sediment at the land surface by wind and local runoff. Archaeological features are built on and buried by sediment of various depositional environments, implying a complex interaction between geologic and cultural history. Such field analysis, which combines

  17. Thomas Moran: "The Grand Canyon."

    ERIC Educational Resources Information Center

    Brubaker, Ann

    1986-01-01

    Presents a lesson plan for introducing students in grades four through six to Thomas Moran's painting, "The Grand Canyon." The goal of the lesson is to illustrate the importance of the American West as a subject for artists in the nineteenth century. (JDH)

  18. Why SRS Matters - H Canyon

    SciTech Connect

    Hunt, Paul; Lewczyk, Mike; Swain, Mike

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features H Canyon's mission and operations.

  19. The canyon system on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.; Mcewen, A. S.; Clow, G. D.; Geissler, P. E.; Singer, R. B.; Schultz, R. A.; Squyres, S. W.

    1992-01-01

    Individual Martian equatorial troughs are described, and their stratigraphy, geomorphology and structure are discussed. Possible origins and the overall sequence of events are addressed. Wall rock, interior layered deposits, irregular floor deposits, fractured floor material, and surficial deposits are examined. Chasma walls, wall stability, pits and pit chains, tributary canyons, and the transition from troughs to channels are also discussed.

  20. Applicability of terrestrial LIDAR scanning for scientific studies in Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert

    2006-01-01

    In November 2004, an experimental high flow release of water from Glen Canyon Dam into the Colorado River through Grand Canyon National Park in Arizona was conducted. The goal of the experiment was to evaluate the use of high flow events as a management tool for the preservation and restoration of natural resources in the Colorado River below Glen Canyon Dam. The U.S. Geological Survey (USGS), Grand Canyon Monitoring and Research Center (GCMRC) located in Flagstaff, Arizona performed oversight of all aspects of scientific data collection including suspended sediment transport studies, biological population variations, effects on archaeological resources, and morphological studies of river sand bars. As part of the experimental high flow studies, the USGS Coastal and Marine Geology (CMG) team was invited to participate to test the effectiveness of utilizing terrestrial LIDAR technology for gathering morphological data on sand bars, biological habitats, and archaeological sites. The CMG is equipped with a terrestrial LIDAR unit and has used the technique in a variety of terrains to gather high-resolution morphological data. A three-member team from CMG participated in the experiment, joining a GCMRC team on a river trip from November 18 to November 21, 2004. This report begins with a brief description of the LIDAR technique and then outlines the data collected, processing required, and results for three study areas located within the Grand Canyon. Specifically, studies were performed at the Mile 30 Sand Bar, at Vaseys Paradise (Mile 32), and at the Mile 66 Palisades Archaeological Site. Conclusions and recommendations for utilizing terrestrial LIDAR for future studies at each of these sites are also included.

  1. Wildlife Protection, Mitigation, and Enhancement Plans, Anderson Ranch and Black Canyon Facilities: Final Report.

    SciTech Connect

    Meuleman, G. Allyn

    1987-06-01

    Under direction of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, projects have been developed in Idaho to mitigate the impacts to wildlife habitat and production due to the development and operation of the Anderson Ranch and Black Canyon Facilities (i.e., dam, power plant, and reservoir areas). The Anderson Ranch Facility covered about 4812 acres of wildlife habitat while the Black Canyon Facility covered about 1115 acres. These acreages include dam and power plant staging areas. A separate mitigation plan has been developed for each facility. A modified Habitat Evaluation Procedure (HEP) was used to assess the benefits of the mitigation plans to wildlife. The interagency work group used the target species Habitat Units (HU's) lost at each facility as a guideline during the mitigation planning process, while considering the needs of wildlife in the areas. Totals of 9619 and 2238 target species HU's were estimated to be lost in the Anderson Ranch and Black Canyon Facility areas, respectively. Through a series of projects, the mitigation plans will provide benefits of 9620 target species HU's to replace Anderson Ranch wildlife impacts and benefits of 2195 target species HU's to replace Black Canyon wildlife impacts. Target species to be benefited by the Anderson Ranch and/or Black Canyon mitigation plans include the mallard, Canada goose, mink, yellow warbler, black-capped chickadee, ruffed grouse, mule deer, blue grouse, sharp-tailed grouse, ring-necked pheasant, and peregrine falcon.

  2. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  3. Mineral resources of the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas, Grand county, Utah

    SciTech Connect

    Dickerson, R.P.; Gaccetta, J.D.; Kulik, D.M.; Kreidler, T.J.

    1990-01-01

    This paper reports on the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas in the Book and Roan Cliffs in Grand Country, Utah, approximately 12 miles west of the Colorado state line. The wilderness study areas consist of a series of deep, stair-step-sided canyons and high ridges eroded into the flatlying sedimentary rocks of the Book Cliffs. Demonstrated coal reserves totaling 22,060,800 short tons and demonstrated subeconomic coal resources totaling 39,180,000 short tons are in the Coal Canyon Wilderness Study Area. Also, inferred subeconomic coal resources totaling 143,954,000 short tons are within the Coal Canyon Wilderness Study Area. No known deposits of industrial minerals are in any of the study area. All three of the wilderness study areas have a high resource potential for undiscovered deposits of coal and for undiscovered oil and gas.

  4. Dams and Intergovernmental Transfers

    NASA Astrophysics Data System (ADS)

    Bao, X.

    2012-12-01

    Gainers and Losers are always associated with large scale hydrological infrastructure construction, such as dams, canals and water treatment facilities. Since most of these projects are public services and public goods, Some of these uneven impacts cannot fully be solved by markets. This paper tried to explore whether the governments are paying any effort to balance the uneven distributional impacts caused by dam construction or not. It showed that dam construction brought an average 2% decrease in per capita tax revenue in the upstream counties, a 30% increase in the dam-location counties and an insignificant increase in downstream counties. Similar distributional impacts were observed for other outcome variables. like rural income and agricultural crop yields, though the impacts differ across different crops. The paper also found some balancing efforts from inter-governmental transfers to reduce the unevenly distributed impacts caused by dam construction. However, overall the inter-governmental fiscal transfer efforts were not large enough to fully correct those uneven distributions, reflected from a 2% decrease of per capita GDP in upstream counties and increase of per capita GDP in local and downstream counties. This paper may shed some lights on the governmental considerations in the decision making process for large hydrological infrastructures.

  5. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA.

    PubMed

    Walters, David M; Rosi-Marshall, Emma; Kennedy, Theodore A; Cross, Wyatt F; Baxter, Colden V

    2015-10-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17-1.59 μg g(-1) Hg and 1.35-2.65 μg g(-1) Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ(15) N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6-100% and 56-100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. PMID:26287953

  6. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    USGS Publications Warehouse

    Walters, David M.; E.J. Rosi-Marshall; Kennedy, Theodore A.; W.F. Cross; C.V. Baxter

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  7. ECHETA DAM RIPRAP ON RESERVOIR SIDE OF THE DAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ECHETA DAM RIP-RAP ON RESERVOIR SIDE OF THE DAM AT BREACH. VIEW TO NORTH-NORTHEAST. - Echeta Dam & Reservoir, 2.9 miles east of Echeta Road at Echeta Railroad Siding at County Road 293, Echeta, Campbell County, WY

  8. 32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA

  9. Bell Canyon test and results

    SciTech Connect

    Christensen, C. L.; Hunter, T. O.

    1980-01-01

    The purposes of the Borehold Plugging Program are: to identify issues associated with sealing boreholes and shafts; to establish a data base from which to assess the importance of these issues; and to develop sealing criteria, materials, and demonstrative test for the Waste Isolation Pilot Plant (WIPP). The Bell Canyon Test described in this report is one part of that program. Its purpose was to evaluate, in situ, the state of the art in borehole plugs and to identify and resolve problems encountered in evaluating a typical plug installation in anhydrite. The test results are summarized from the work of Peterson and Christensen and divided into two portions: system integrity and wellbore characterization tests prior to plug installation, and a series of tests to evaluate isolation characteristics of the 1.8-m-long plug. Conclusions of the Bell Canyon Test are: brine and fresh-water grouts, with acceptable physical properties in the fluid and hardened states, have been developed; the field data, taken together with laboratory data, suggest that the predominant flow into the test region occurs through the cement plug/borehold interface region, with lesser contributions occurring through the wellbore damage zone, the plug core, and the surrounding undisturbed anhydrite bed; and the 1.8-m-long by 20-cm-diameter grout plug, installed in anhydrite at a depth of 1370 m in the AEC-7 borehole, limits flow from the high pressure Bell Canyon aquifer to 0.6 liters/day.

  10. Regional slope stability of the Truckee River Canyon (drainage system) from Tahoe City, California to Reno, Nevada

    SciTech Connect

    Gates, W.C.B. )

    1993-04-01

    The Truckee River drainage system above Reno, Nevada presents unique examples of complex slope stability problems because of the varied and complex geologic terrane. Several factors control mass wasting and slope stability as the Truckee River flows from the Sierra Nevada to the Basin and Range Physiographic province. A distinct change in climatic conditions occurs. The river passes through Cenozoic jointed and faulted volcanic rocks of various lithologies and competency interspersed with clastics which lend to complex geological problems. The upper canyon is U-shaped and over-steepened by multiple Pleistocene glacial stages. The lower canyon has been incised deeply from periodic outburst flooding originating from glacial dammed lakes in the upper canyon. The area is seismically active which exacerbates the slope instability. These factors together have contributed to approximately five categories of mass wasting.