Science.gov

Sample records for hematopoiesis genetics phenotype

  1. Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis

    SciTech Connect

    Palmer, S.E. |; Dale, D.C.

    1996-12-30

    Cyclic hematopoiesis (CH, or cyclic neutropenia) is a rare disease manifested by transient severe neutropenia that recurs approximately every 21 days. The hematologic profile of families with the autosomal dominant form (ADCH) has not been well characterized, and it is unknown if the phenotype is distinct from the more common sporadic congenital or acquired forms of CH. We studied nine ADCH families whose children displayed typical CH blood patterns. Pedigrees confirmed dominant inheritance without evidence of heterogeneity or decreased penetrance; three pedigrees suggested new mutations. Families were Caucasian with exception of one with a Cherokee Native American founder. A wide spectrum of symptom severity, ranging from asymptomatic to life-threatening illness, was observed within families. The phenotype changed with age. Children displayed typical neutrophil cycles with symptoms of mucosal ulceration, lymphadenopathy, and infections. Adults often had fewer and milder symptoms, sometimes accompanied by mild chronic neutropenia without distinct cycles. While CH is commonly described as {open_quotes}benign{close_quotes}, four children in three of the nine families died of Clostridium or E. coli colitis, documenting the need for urgent evaluation of abdominal pain. Misdiagnosis with other neutropenias was common but can be avoided by serial blood counts in index cases. Genetic counseling requires specific histories and complete blood counts in relatives at risk to assess status regardless of symptoms, especially to determine individuals with new mutations. We propose diagnostic criteria for ADCH in affected children and adults. Recombinant human granulocyte colony-stimulating factor treatment resulted in dramatic improvement of neutropenia and morbidity. The differential diagnosis from other forms of familial neutropenia is reviewed. 45 refs., 4 figs., 1 tab.

  2. Autosomal dominant cyclic hematopoiesis: Genetics, phenotype, and natural history

    SciTech Connect

    Palmer, S.E.; Stephens, K.; Dale, D.C.

    1994-09-01

    Autosomal dominant cyclic hematopoiesis (ADCH; cyclic neutropenia) is a rare disorder manifested by transient neutropenia that recurs every three weeks. To facilitate mapping the ADCH gene by genetic linkage analysis, we studied 9 ADCH families with 42 affected individuals. Pedigrees revealed AD inheritance with no evidence for decreased penetrance. Similar intra- and interfamilial variable expression was observed, with no evidence to support heterogeneity. At least 3 families displayed apparent new mutations. Many adults developed chronic neutropenia, while offspring always cycled during childhood. Children displayed recurrent oral ulcers, gingivitis, lymphadenopathy, fever, and skin and other infections with additional symptoms. Interestingly, there were no cases of neonatal infection. Some children required multiple hospitalizations for treatment. Four males under age 18 died of Clostridium sepsis following necrotizing enterocolitis; all had affected mothers. No other deaths due to ADCH were found; most had improvement of symptoms and infections as adults. Adults experienced increased tooth loss prior to age 30 (16 out of 27 adults, with 9 edentulous). No increase in myelodysplasia, malignancy, or congenital anomalies was observed. Recombinant G-CSF treatment resulted in dramatic improvement of symptoms and infections. The results suggest that ADCH is not a benign disorder, especially in childhood, and abdominal pain requires immediate evaluation. Diagnosis of ADCH requires serial blood counts in the proband and at least one CBC in relatives to exclude similar disorders. Genetic counseling requires specific histories as well as CBCs of each family member at risk to determine status regardless of symptom history, especially to assess apparent new mutations.

  3. Genetic resources for phenotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotyping of structured populations, along with molecular genotyping, will be essential for marker development in peanut. This research is essential for making the peanut genome sequence and genomic tools useful to breeders because it makes the connection between genes, gene markers, genetic maps...

  4. Activated Leukocyte Cell Adhesion Molecule (ALCAM or CD166) Modulates Bone Phenotype and Hematopoiesis

    PubMed Central

    Hooker, R. Adam; Chitteti, Brahmananda R.; Egan, Patrick H.; Cheng, Ying-Hua; Himes, Evan R.; Meijome, Tomas; Srour, Edward F.; Fuchs, Robyn K.; Kacena, Melissa A.

    2015-01-01

    Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166), is expressed on osteoblasts (OB) and hematopoietic stem cells (HSC) residing in the hematopoietic niche, and may have important regulatory roles in bone formation. Because HSC numbers are reduced 77% in CD166−/− mice, we hypothesized that changes in bone phenotype and consequently the endosteal niche may partially be responsible for this alteration. Therefore, we investigated bone phenotype and OB function in CD166−/− mice. Although osteoclastic measures were not affected by loss of CD166, CD166−/− mice exhibited a modest increase in trabecular bone fraction (42%), and increases in osteoid deposition (72%), OB number (60%), and bone formation rate (152%). Cortical bone geometry was altered in CD166−/− mice resulting in up to 81% and 49% increases in stiffness and ultimate force, respectively. CD166−/− OB displayed elevated alkaline phosphatase (ALP) activity and mineralization, and increased mRNA expression of Fra 1, ALP, and osteocalcin. Overall, CD166−/− mice displayed modestly elevated trabecular bone volume fraction with increased OB numbers and deposition of osteoid, and increased OB differentiation in vitro, possibly suggesting more mature OB are secreting more osteoid. This may explain the decline in HSC number in vivo because immature OB are mainly responsible for hematopoiesis enhancing activity. PMID:25730656

  5. Characterizing the ADHD Phenotype for Genetic Studies

    ERIC Educational Resources Information Center

    Stevenson, Jim; Asherson, Phil; Hay, David; Levy, Florence; Swanson, Jim; Thapar, Anita; Willcutt, Erik

    2005-01-01

    The genetic study of ADHD has made considerable progress. Further developments in the field will be reliant in part on identifying the most appropriate phenotypes for genetic analysis. The use of both categorical and dimensional measures of symptoms related to ADHD has been productive. The use of multiple reporters is a valuable feature of the…

  6. Crustacean hematopoiesis.

    PubMed

    Söderhäll, Irene

    2016-05-01

    Crustacean hemocytes are important mediators of immune reactions, and the regulation of hemocyte homeostasis is of utmost importance for the health of these animals. This review discusses the current knowledge on the lineages, synthesis and differentiation of hemocytes in crustaceans. Hematopoietic tissues, their origins, and the regulation of hematopoiesis during molting, seasonal variation and infection are discussed. Furthermore, studies concerning the molecular regulation of hemocyte formation in crustaceans are also described, and the different lineages and their molecular markers are discussed and compared with several insect species. Signaling pathways and the regulation of hematopoiesis by transcription factors are typically conserved among these arthropods, whereas cytokines and growth factors are more variable and species specific. However, considering the great diversity among the crustaceans, one should be cautious in drawing general conclusions from studies of only a few species. PMID:26721583

  7. Mouse genetic and phenotypic resources for human genetics

    PubMed Central

    Schofield, Paul N.; Hoehndorf, Robert; Gkoutos, Georgios V.

    2012-01-01

    The use of model organisms to provide information on gene function has proved to be a powerful approach to our understanding of both human disease and fundamental mammalian biology. Large-scale community projects using mice, based on forward and reverse genetics, and now the pan-genomic phenotyping efforts of the International Mouse Phenotyping Consortium (IMPC), are generating resources on an unprecedented scale which will be extremely valuable to human genetics and medicine. We discuss the nature and availability of data, mice and ES cells from these large-scale programmes, the use of these resources to help prioritise and validate candidate genes in human genetic association studies, and how they can improve our understanding of the underlying pathobiology of human disease. PMID:22422677

  8. Syndactyly: phenotypes, genetics and current classification

    PubMed Central

    Malik, Sajid

    2012-01-01

    Syndactyly is one of the most common hereditary limb malformations depicting the fusion of certain fingers and/or toes. It may occur as an isolated entity or a component of more than 300 syndromic anomalies. Syndactylies exhibit great inter- and intra-familial clinical variability. Even within a subject, phenotype can be unilateral or bilateral and symmetrical or asymmetrical. At least nine non-syndromic syndactylies with additional sub-types have been characterized. Most of the syndactyly types are inherited as autosomal dominant but two autosomal recessive and an X-linked recessive entity have also been described. Whereas the underlying genes/mutations for types II-1, III, IV, V, and VII have been worked out, the etiology and molecular basis of the other syndactyly types remain unknown. In this communication, based on an overview of well-characterized isolated syndactylies, their cardinal phenotypes, inheritance patterns, and clinical and genetic heterogeneities, a ‘current classification scheme' is presented. Despite considerable progress in the understanding of syndactyly at clinical and molecular levels, fundamental questions regarding the disturbed developmental mechanisms leading to fused digits, remain to be answered. PMID:22333904

  9. Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis--Lessons From Pharmacological and Genetic Models.

    PubMed

    Karpova, Darja; Bonig, Halvard

    2015-08-01

    Dominant, although nonexclusive roles of CXCR4 and its chief ligand CXCL12 in bone marrow (BM) retention and preservation of the relative quiescence of hematopoietic stem/progenitor cells (HSPCs), along with their involvement in human immunodeficiency virus infection, in trafficking of mature hematopoietic cells to sites of inflammation and in orderly migration of nonhematopoietic cells during embryogenesis, explain the significant interest of the scientific community in the mode of action of this receptor-ligand pair. In this focused review, we seek to distil from the large body of information that has become available over the years some of the key findings about the role of CXCR4/CXCL12 in normal immature hematopoiesis. It is hoped that understanding the mechanistic insights gained there from will help generate hypotheses about potential avenues in which cancer/leukemia cell behavior can be modified by interference with this pathway. PMID:25966814

  10. A phenotypic null hypothesis for the genetics of personality.

    PubMed

    Turkheimer, Eric; Pettersson, Erik; Horn, Erin E

    2014-01-01

    We review the genetically informed literature on the genetics of personality. Over the past century, quantitative genetic studies, using identical and fraternal twins, have demonstrated that differences in human personality are substantially heritable. We focus on more contemporary questions to which that basic observation has led. We examine whether differences in the heritability of personality are replicable across different traits, samples, and studies; how the heritability of personality relates to its reliability; and how behavior genetics can be employed in studies of validity, and we discuss the stability of personality in genetic and environmental variance. The appropriate null hypothesis in behavior genetics is not that genetic or environmental influence on personality is zero. Instead, we offer a phenotypic null hypothesis, which states that genetic variance is not an independent mechanism of individual differences in personality but rather a reflection of processes that are best conceptualized at the phenotypic level. PMID:24050184

  11. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-01-01

    The ability of a genotype to show diverse phenotypes in different environments is called phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel environments, facilitates adaptation and fuels evolution. However, most studies focus on understanding the genetic basis of phenotypic regulation in specific environments. As a result, while it's evolutionary relevance is well established, genetic mechanisms regulating phenotypic plasticity and their overlap with the environment specific regulators is not well understood. Saccharomyces cerevisiae is highly sensitive to the environment, which acts as not just external stimulus but also as signalling cue for this unicellular, sessile organism. We used a previously published dataset of a biparental yeast population grown in 34 diverse environments and mapped genetic loci regulating variation in phenotypic plasticity, plasticity QTL, and compared them with environment-specific QTL. Plasticity QTL is one whose one allele exhibits high plasticity whereas the other shows a relatively canalised behaviour. We mapped phenotypic plasticity using two parameters-environmental variance, an environmental order-independent parameter and reaction norm (slope), an environmental order-dependent parameter. Our results show a partial overlap between pleiotropic QTL and plasticity QTL such that while some plasticity QTL are also pleiotropic, others have a significant effect on phenotypic plasticity without being significant in any environment independently. Furthermore, while some plasticity QTL are revealed only in specific environmental orders, we identify large effect plasticity QTL, which are order-independent such that whatever the order of the environments, one allele is always plastic and the other is canalised. Finally, we show that the environments can be divided into two categories based on the phenotypic diversity of the population within them and the two categories have differential regulators of

  12. Early hematopoiesis and macrophage development.

    PubMed

    McGrath, Kathleen E; Frame, Jenna M; Palis, James

    2015-12-01

    The paradigm that all blood cells are derived from hematopoietic stem cells (HSCs) has been challenged by two findings. First, there are tissue-resident hematopoietic cells, including subsets of macrophages that are not replenished by adult HSCs, but instead are maintained by self-renewal of fetal-derived cells. Second, during embryogenesis, there is a conserved program of HSC-independent hematopoiesis that precedes HSC function and is required for embryonic survival. The presence of waves of HSC-independent hematopoiesis as well as fetal HSCs raises questions about the origin of fetal-derived adult tissue-resident macrophages. In the murine embryo, historical examination of embryonic macrophage and monocyte populations combined with recent reports utilizing genetic lineage-tracing approaches has led to a model of macrophage ontogeny that can be integrated with existing models of hematopoietic ontogeny. The first wave of hematopoiesis contains primitive erythroid, megakaryocyte and macrophage progenitors that arise in the yolk sac, and these macrophage progenitors are the source of early macrophages throughout the embryo, including the liver. A second wave of multipotential erythro-myeloid progenitors (EMPs) also arises in the yolk sac. EMPs colonize the fetal liver, initiating myelopoiesis and forming macrophages. Lineage tracing indicates that this second wave of macrophages are distributed in most fetal tissues, although not appreciably in the brain. Thus, fetal-derived adult tissue-resident macrophages, other than microglia, appear to predominately derive from EMPs. While HSCs emerge at midgestation and colonize the fetal liver, the relative contribution of fetal HSCs to tissue macrophages at later stages of development is unclear. The inclusion of macrophage potential in multiple waves of hematopoiesis is consistent with reports of their functional roles throughout development in innate immunity, phagocytosis, and tissue morphogenesis and remodeling

  13. Precision Medicine for Continuing Phenotype Expansion of Human Genetic Diseases

    PubMed Central

    Yu, Hui; Zhang, Victor Wei

    2015-01-01

    Determining the exact genetic causes for a patient and providing definite molecular diagnoses are core elements of precision medicine. Individualized patient care is often limited by our current knowledge of disease etiologies and commonly used phenotypic-based diagnostic approach. The broad and incompletely understood phenotypic spectrum of a disease and various underlying genetic heterogeneity also present extra challenges to our clinical practice. With the rapid adaptation of new sequence technology in clinical setting for diagnostic purpose, phenotypic expansions of disease spectrum are becoming increasingly common. Understanding the underlying molecular mechanisms will help us to integrate genomic information into the workup of individualized patient care and make better clinical decisions. PMID:26137492

  14. Identifying genetically driven clinical phenotypes using linear mixed models.

    PubMed

    Mosley, Jonathan D; Witte, John S; Larkin, Emma K; Bastarache, Lisa; Shaffer, Christian M; Karnes, Jason H; Stein, C Michael; Phillips, Elizabeth; Hebbring, Scott J; Brilliant, Murray H; Mayer, John; Ye, Zhan; Roden, Dan M; Denny, Joshua C

    2016-01-01

    We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1-1.2), P=9.8 × 10(-11)) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3-1.6), P=1.3 × 10(-10)). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations. PMID:27109359

  15. Identifying genetically driven clinical phenotypes using linear mixed models

    PubMed Central

    Mosley, Jonathan D.; Witte, John S.; Larkin, Emma K.; Bastarache, Lisa; Shaffer, Christian M.; Karnes, Jason H.; Stein, C. Michael; Phillips, Elizabeth; Hebbring, Scott J.; Brilliant, Murray H.; Mayer, John; Ye, Zhan; Roden, Dan M.; Denny, Joshua C.

    2016-01-01

    We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1–1.2), P=9.8 × 10−11) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3–1.6), P=1.3 × 10−10). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations. PMID:27109359

  16. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish

    PubMed Central

    Hess, Isabell; Boehm, Thomas

    2016-01-01

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-mybI181N mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development. PMID:26777855

  17. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish.

    PubMed

    Hess, Isabell; Boehm, Thomas

    2016-01-01

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-myb(I181N) mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development. PMID:26777855

  18. Behavioral idiosyncrasy reveals genetic control of phenotypic variability

    PubMed Central

    Ayroles, Julien F.; Buchanan, Sean M.; O’Leary, Chelsea; Skutt-Kakaria, Kyobi; Grenier, Jennifer K.; Clark, Andrew G.; Hartl, Daniel L.; de Bivort, Benjamin L.

    2015-01-01

    Quantitative genetics has primarily focused on describing genetic effects on trait means and largely ignored the effect of alternative alleles on trait variability, potentially missing an important axis of genetic variation contributing to phenotypic differences among individuals. To study the genetic effects on individual-to-individual phenotypic variability (or intragenotypic variability), we used Drosophila inbred lines and measured the spontaneous locomotor behavior of flies walking individually in Y-shaped mazes, focusing on variability in locomotor handedness, an assay optimized to measure variability. We discovered that some lines had consistently high levels of intragenotypic variability among individuals, whereas lines with low variability behaved as although they tossed a coin at each left/right turn decision. We demonstrate that the degree of variability is itself heritable. Using a genome-wide association study (GWAS) for the degree of intragenotypic variability as the phenotype across lines, we identified several genes expressed in the brain that affect variability in handedness without affecting the mean. One of these genes, Ten-a, implicates a neuropil in the central complex of the fly brain as influencing the magnitude of behavioral variability, a brain region involved in sensory integration and locomotor coordination. We validated these results using genetic deficiencies, null alleles, and inducible RNAi transgenes. Our study reveals the constellation of phenotypes that can arise from a single genotype and shows that different genetic backgrounds differ dramatically in their propensity for phenotypic variabililty. Because traditional mean-focused GWASs ignore the contribution of variability to overall phenotypic variation, current methods may miss important links between genotype and phenotype. PMID:25953335

  19. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities

    PubMed Central

    Chong, Jessica X.; Buckingham, Kati J.; Jhangiani, Shalini N.; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D.; Harrell, Tanya M.; McMillin, Margaret J.; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H.; Doheny, Kimberly; Scott, Alan F.; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P. Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E.; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V. Reid; Tabor, Holly K.; Leal, Suzanne M.; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A.; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R.; Lifton, Richard P.; Valle, David; Nickerson, Deborah A.; Bamshad, Michael J.

    2015-01-01

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. PMID:26166479

  20. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype

    PubMed Central

    Ceccarelli, Fulvia; Perricone, Carlo; Borgiani, Paola; Ciccacci, Cinzia; Rufini, Sara; Cipriano, Enrica; Alessandri, Cristiano; Spinelli, Francesca Romana; Sili Scavalli, Antonio; Novelli, Giuseppe; Valesini, Guido; Conti, Fabrizio

    2015-01-01

    Genetic factors exert an important role in determining Systemic Lupus Erythematosus (SLE) susceptibility, interplaying with environmental factors. Several genetic studies in various SLE populations have identified numerous susceptibility loci. From a clinical point of view, SLE is characterized by a great heterogeneity in terms of clinical and laboratory manifestations. As widely demonstrated, specific laboratory features are associated with clinical disease subset, with different severity degree. Similarly, in the last years, an association between specific phenotypes and genetic variants has been identified, allowing the possibility to elucidate different mechanisms and pathways accountable for disease manifestations. However, except for Lupus Nephritis (LN), no studies have been designed to identify the genetic variants associated with the development of different phenotypes. In this review, we will report data currently known about this specific association. PMID:26798662

  1. Autophagy Sustains Hematopoiesis Through Targeting Notch.

    PubMed

    Cao, Yan; Cai, Jinyang; Zhang, Suping; Yuan, Na; Fang, Yixuan; Wang, Zhijian; Li, Xin; Cao, Dan; Xu, Fei; Lin, Weiwei; Song, Lin; Wang, Zhen; Wang, Jian; Xu, Xiaoxiao; Zhang, Yi; Zhao, Wenli; Hu, Shaoyan; Zhang, Xueguang; Wang, Jianrong

    2015-11-15

    Autophagy is required for hematopoietic stem cell multilineage differentiation, but the underlying mechanism is unknown. Using a conditional mouse model and human leukemia cells, we uncovered a mechanistic link between autophagy and hematopoietic stem cell differentiation. Loss of autophagy in mouse hematopoietic stem cells diminished the bone marrow generation of functional blood cells, in particular lymphocytes, and resulted in a leukemic phenotype and elevated Notch signaling. Physiological autophagy activity in mice was inversely correlated with Notch signaling during adult hematopoietic stem cell differentiation, while pathologically low autophagy was associated with upregulated Notch signaling in dysfunctional hematopoietic stem cells of acute leukemia patients. Furthermore, we show that autophagy directly degraded intracellular Notch, the active form of Notch receptor cleaved from the full-length Notch molecule by γ-secretase. Finally, we show that hematopoietic multilineage differentiation potential was restored in autophagy defective hematopoietic stem and progenitor cells when their Notch signaling was abrogated either pharmacologically with γ-secretase inhibitor DAPT or genetically with RNA interference of Notch effector RBPJ. Hence, we propose that autophagy sustains hematopoiesis by direct targeting Notch. PMID:26178296

  2. Genetic mechanisms involved in the phenotype of Down syndrome.

    PubMed

    Patterson, David

    2007-01-01

    Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA sequencing and annotation of the long arm of chromosome 21 was a critical step towards understanding the genetics of the phenotype. However, annotation of the chromosome continues and the functions of many genes on chromosome 21 remain uncertain. Recent findings about the structure of the human genome and of chromosome 21, in particular, and studies on mechanisms of gene regulation indicate that various genetic mechanisms may be contributors to the phenotype of DS and to the variability of the phenotype. These include variability of gene expression, the activity of transcription factors both encoded on chromosome 21 and encoded elsewhere in the genome, copy number polymorphisms, the function of conserved nongenic regions, microRNA activities, RNA editing, and perhaps DNA methylation. In this manuscript, we describe current knowledge about these genetic complexities and their likely importance in the context of DS. We identify gaps in current knowledge and suggest priorities to fill these gaps. PMID:17910086

  3. Genetic Mechanisms Involved in the Phenotype of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2007-01-01

    Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA…

  4. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    ERIC Educational Resources Information Center

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  5. The role of phenotypic plasticity in driving genetic evolution.

    PubMed Central

    Price, Trevor D; Qvarnström, Anna; Irwin, Darren E

    2003-01-01

    Models of population divergence and speciation are often based on the assumption that differences between populations are due to genetic factors, and that phenotypic change is due to natural selection. It is equally plausible that some of the differences among populations are due to phenotypic plasticity. We use the metaphor of the adaptive landscape to review the role of phenotypic plasticity in driving genetic evolution. Moderate levels of phenotypic plasticity are optimal in permitting population survival in a new environment and in bringing populations into the realm of attraction of an adaptive peak. High levels of plasticity may increase the probability of population persistence but reduce the likelihood of genetic change, because the plastic response itself places the population close to a peak. Moderate levels of plasticity arise whenever multiple traits, some of which are plastic and others not, form a composite trait involved in the adaptive response. For example, altered behaviours may drive selection on morphology and physiology. Because there is likely to be a considerable element of chance in which behaviours become established, behavioural change followed by morphological and physiological evolution may be a potent force in driving evolution in novel directions. We assess the role of phenotypic plasticity in stimulating evolution by considering two examples from birds: (i) the evolution of red and yellow plumage coloration due to carotenoid consumption; and (ii) the evolution of foraging behaviours on islands. Phenotypic plasticity is widespread in nature and may speed up, slow down, or have little effect on evolutionary change. Moderate levels of plasticity may often facilitate genetic evolution but careful analyses of individual cases are needed to ascertain whether plasticity has been essential or merely incidental to population differentiation. PMID:12965006

  6. The Genetics of Reading Disabilities: From Phenotypes to Candidate Genes

    PubMed Central

    Raskind, Wendy H.; Peter, Beate; Richards, Todd; Eckert, Mark M.; Berninger, Virginia W.

    2013-01-01

    This article provides an overview of (a) issues in definition and diagnosis of specific reading disabilities at the behavioral level that may occur in different constellations of developmental and phenotypic profiles (patterns); (b) rapidly expanding research on genetic heterogeneity and gene candidates for dyslexia and other reading disabilities; (c) emerging research on gene-brain relationships; and (d) current understanding of epigenetic mechanisms whereby environmental events may alter behavioral expression of genetic variations. A glossary of genetic terms (denoted by bold font) is provided for readers not familiar with the technical terms. PMID:23308072

  7. Extramedullary hematopoiesis in pilomatricomas.

    PubMed

    Kaddu, S; Beham-Schmid, C; Soyer, H P; Hödl, S; Beham, A; Kerl, H

    1995-04-01

    We report on seven adult patients with pilomatricomas showing histopathologic findings of extramedullary hematopoiesis. There was no Ovidence of hematological disorders or systemic diseases. Clinically, the lesions appeared to be firm, painless nodules situated on the upper extremities, head, and back. Histopathologically, they represented stereotypical examples of regressive pilomatricomas with relatively small basaloid areas and large masses of cornified eosinophilic material containing shadow cells with variable areas of calcification or ossification. Bone marrow cellular elements, including myeloid and erythroid precursors, and (in two cases) megakaryocytes were present. The finding of extramedullary hematopoiesis in seven (5.8%) of 120 cases of pilomatricomas may suggest that this phenomenon is not uncommon in these neoplasms. Interestingly, hematopoietic infiltrates were histopathologically detected to be contiguous with areas of osseous metaplasia in only two of the seven pilomatricomas in our study. It should further be stressed that extramedullary hematopoiesis in regressive lesions of pilomatricomas is a localized phenomenon and that these findings may not be linked with a systemic hematological disorder. The significance of extramedullary hematopoiesis in pilomatricomas, however, remains to be determined. PMID:8600776

  8. Adolescent irritability: phenotypic associations and genetic links with depressed mood

    PubMed Central

    Stringaris, Argyris; Zavos, Helena; Leibenluft, Ellen; Maughan, Barbara; Eley, Thalia

    2013-01-01

    Objective Irritability has been proposed to underlie the developmental link between oppositional problems and depression. However, little is known about the genetic and environmental influences on irritability and its overlap with depression. This paper tests the hypothesis that the association between irritability and depression is accounted for by genetic factors. As such, it draws on the notion of “generalist genes” i.e., genes of general effect that underlie phenotypic overlap between disorders. Method The G1219 study, a UK-based twin sample (N=2651), was used in a cross-sectional and longitudinal design. Irritable and headstrong/hurtful dimensions of oppositional behavior were derived using factor analysis. Regression was used to estimate the association between depression and delinquency. Multivariate genetic analyses were used to estimate the genetic overlap between irritability versus headstrong/hurtful behaviors with depression and delinquency respectively. Results Irritability showed a significantly stronger phenotypic relationship with depression than delinquency, whereas headstrong/hurtful behaviors were more strongly related to delinquency than depression. In multivariate genetic analyses, the genetic correlation between irritability and depression (0.70; CI: 0.59-0.82) was significantly higher than that between irritability and delinquency (0.57; CI: 0.45-0.69); conversely, the genetic correlation between headstrong/hurtful behaviors and delinquency (0.80; CI: 0.72-0.86) was significantly higher than that between headstrong/hurtful behaviors and depression (0.46; CI: 0.36-0.57). In longitudinal models, the phenotypic association between irritability at Time 1 and depression at Time 2 was accounted for by the genetic association between irritability and depression at Time1. Conclusions The findings are consistent with the theory that genes with general effects underlie the relationship between irritability and depression. PMID:22193524

  9. Hormones as Mediators of Phenotypic and Genetic Integration: an Evolutionary Genetics Approach.

    PubMed

    Cox, Robert M; McGlothlin, Joel W; Bonier, Frances

    2016-08-01

    Evolutionary endocrinology represents a synthesis between comparative endocrinology and evolutionary genetics. This synthesis can be viewed through the breeder's equation, a cornerstone of quantitative genetics that, in its univariate form, states that a population's evolutionary response is the product of the heritability of a trait and selection on that trait (R = h(2)S). Under this framework, evolutionary endocrinologists have begun to quantify the heritability of, and the strength of selection on, a variety of hormonal phenotypes. With specific reference to our work on testosterone and corticosterone in birds and lizards, we review these studies while emphasizing the challenges of applying this framework to hormonal phenotypes that are inherently plastic and mediate adaptive responses to environmental variation. Next, we consider the untapped potential of evolutionary endocrinology as a framework for exploring multivariate versions of the breeder's equation, with emphasis on the role of hormones in structuring phenotypic and genetic correlations. As an extension of the familiar concepts of phenotypic integration and hormonal pleiotropy, we illustrate how the hormonal milieu of an individual acts as a local environment for the expression of genes and phenotypes, thereby influencing the quantitative genetic architecture of multivariate phenotypes. We emphasize that hormones are more than mechanistic links in the translation of genotype to phenotype: by virtue of their pleiotropic effects on gene expression, hormones structure the underlying genetic variances and covariances that determine a population's evolutionary response to selection. PMID:27252188

  10. Genetic neurological channelopathies: molecular genetics and clinical phenotypes

    PubMed Central

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. PMID:26558925

  11. Genetic neurological channelopathies: molecular genetics and clinical phenotypes.

    PubMed

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. PMID:26558925

  12. Obstructive Sleep Apnea Syndrome: From Phenotype to Genetic Basis

    PubMed Central

    Casale, M; Pappacena, M; Rinaldi, V; Bressi, F; Baptista, P; Salvinelli, F

    2009-01-01

    Obstructive sleep apnea syndrome (OSAS) is a complex chronic clinical syndrome, characterized by snoring, periodic apnea, hypoxemia during sleep, and daytime hypersomnolence. It affects 4-5% of the general population. Racial studies and chromosomal mapping, familial studies and twin studies have provided evidence for the possible link between the OSAS and genetic factors and also most of the risk factors involved in the pathogenesis of OSAS are largely genetically determined. A percentage of 35-40% of its variance can be attributed to genetic factors. It is likely that genetic factors associated with craniofacial structure, body fat distribution and neural control of the upper airway muscles interact to produce the OSAS phenotype. Although the role of specific genes that influence the development of OSAS has not yet been identified, current researches, especially in animal model, suggest that several genetic systems may be important. In this chapter, we will first define the OSAS phenotype, the pathogenesis and the risk factors involved in the OSAS that may be inherited, then, we will review the current progress in the genetics of OSAS and suggest a few future perspectives in the development of therapeutic agents for this complex disease entity. PMID:19794884

  13. Hematopoiesis in snakes (Ophidia).

    PubMed

    Dabrowski, Z; Tabarowski, Z; Sano-Martins, I S; Spadacci-Morena, D D; Witkowska-Pelc, E; Krzysztofowicz, E; Spodaryk, K

    2002-01-01

    Locations of the hematopoietic tissue have been described in the following ophidian species: Bothrops jararaca, Bothrops jararacusu, Waglerophis merremii, Elaphe teniura teniura, Boa constrictor, and Python reticulatus. Studies were carried out on perfusion fixed vertebrae, ribs, spleen, liver, thymus, and kidney. Routine histological technique was applied using both light and electron microscopy. Hematopoietic tissue was found in the following locations of the vertebrae: neural spine, neural arch, postzygophysis processes, hypapophysis, vertebral centre. Moreover, intense hematopoiesis was found inside the ribs. In the spleen and thymus, only lymphopoiesis was found. Hematopoietic islets in the spleen were sporadically found only in young specimens. No hematopoiesis was observed in the liver and kidney. In the studied species, there were no differences in the location of hematopoietic tissue. A new model of mature and immature blood cell release to the lumen of marrow sinuses different from that known to operate in higher vertebrates is proposed. PMID:12056654

  14. The Evolution of Human Genetic and Phenotypic Variation in Africa

    PubMed Central

    Campbell, Michael C.

    2010-01-01

    Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral populations into other regions of the world. Indigenous Africans are characterized by high levels of genetic diversity within and between populations. The pattern of genetic variation in these populations has been shaped by demographic events occurring over the last 200,000 years. The dramatic variation in climate, diet, and exposure to infectious disease across the continent has also resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes some recent advances in our understanding of the demographic history and selective pressures that have influenced levels and patterns of diversity in African populations. PMID:20178763

  15. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes

    PubMed Central

    White, Michelle E.; Hayward, Jessica J.; Stokol, Tracy; Boyko, Adam R.

    2015-01-01

    Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS) at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests). After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10−13) was evident between a region of canine chromosome 13 (CFA13) and alanine aminotransferase (ALT), explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies. PMID:26683458

  16. 3-Dimensional Imaging Modalities for Phenotyping Genetically Engineered Mice

    PubMed Central

    Powell, K. A.; Wilson, D.

    2013-01-01

    A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves. PMID:22146851

  17. Improving Phenotypic Prediction by Combining Genetic and Epigenetic Associations.

    PubMed

    Shah, Sonia; Bonder, Marc J; Marioni, Riccardo E; Zhu, Zhihong; McRae, Allan F; Zhernakova, Alexandra; Harris, Sarah E; Liewald, Dave; Henders, Anjali K; Mendelson, Michael M; Liu, Chunyu; Joehanes, Roby; Liang, Liming; Levy, Daniel; Martin, Nicholas G; Starr, John M; Wijmenga, Cisca; Wray, Naomi R; Yang, Jian; Montgomery, Grant W; Franke, Lude; Deary, Ian J; Visscher, Peter M

    2015-07-01

    We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction. PMID:26119815

  18. The phenotypic and genetic signatures of common musculoskeletal pain conditions.

    PubMed

    Diatchenko, Luda; Fillingim, Roger B; Smith, Shad B; Maixner, William

    2013-06-01

    Musculoskeletal pain conditions, such as fibromyalgia and low back pain, tend to coexist in affected individuals and are characterized by a report of pain greater than expected based on the results of a standard physical evaluation. The pathophysiology of these conditions is largely unknown, we lack biological markers for accurate diagnosis, and conventional therapeutics have limited effectiveness. Growing evidence suggests that chronic pain conditions are associated with both physical and psychological triggers, which initiate pain amplification and psychological distress; thus, susceptibility is dictated by complex interactions between genetic and environmental factors. Herein, we review phenotypic and genetic markers of common musculoskeletal pain conditions, selected based on their association with musculoskeletal pain in previous research. The phenotypic markers of greatest interest include measures of pain amplification and 'psychological' measures (such as emotional distress, somatic awareness, psychosocial stress and catastrophizing). Genetic polymorphisms reproducibly linked with musculoskeletal pain are found in genes contributing to serotonergic and adrenergic pathways. Elucidation of the biological mechanisms by which these markers contribute to the perception of pain in these patients will enable the development of novel effective drugs and methodologies that permit better diagnoses and approaches to personalized medicine. PMID:23545734

  19. [Genetic, population and phenotypic characteristics of patients with Hirschsprung disease].

    PubMed

    Ruiz Aja, E; Vega Hernández, L; Martínez Ezquerra, N; De Diego García, E; Pérez Marrodan, A; Alvarez-Buhilla, P López

    2012-07-01

    Hirschsprung disease (HSCR) is caused by the absence of ganglion cells in the intestine due to defects in the migration of enteric nervous system cells during embryologic development. The incidence is one in every 5000 births, more common in men than women. There are two main phenotypes according to the aganglionic segment length: Short (S-HSCR, (80% of patients) and Long (L-HSCR, 20%). Variations have been detected in the coding sequence of the RET proto-oncogene in patients with HSCR, suggesting a genetic predisposition to the disease. Our aim is to find and analyze polymorphisms (SNPs) associated with the disease. We are interested also in stablish an association between sex and type of aganglionic segment. We analyzed the RET promoter as well a polymorphism in exon 13 strongly associated to the disease. The populations for the study were a group of 56 patients with sporadic HSCR and 178 healthy controls. The results obtained show that the disease is more common in men than in women (3:1). The RET genotype shows that alleles A and G of the promoter (c.-200A > G and c.-196C > A) and G of exon 13 (c.2307T > G) are associated with the affected population. Our data suggest neither association between the disease phenotype and the distribution of the polymorphisms analyzed nor with the sex of the patients. The presence of certain polymorphisms in the RET sequence indicates a genetic predisposition (combined with other genetic or environmental factors) to the disease. PMID:23480009

  20. Y genetic variation and phenotypic diversity in health and disease.

    PubMed

    Case, Laure K; Teuscher, Cory

    2015-01-01

    Sexually dimorphic traits arise through the combined effects of sex hormones and sex chromosomes on sex-biased gene expression, and experimental mouse models have been instrumental in determining their relative contribution in modulating sex differences. A role for the Y chromosome (ChrY) in mediating sex differences outside of development and reproduction has historically been overlooked due to its unusual genetic composition and the predominant testes-specific expression of ChrY-encoded genes. However, ample evidence now exists supporting ChrY as a mediator of other physiological traits in males, and genetic variation in ChrY has been linked to several diseases, including heart disease, cancer, and autoimmune diseases in experimental animal models, as well as humans. The genetic and molecular mechanisms by which ChrY modulates phenotypic variation in males remain unknown but may be a function of copy number variation between homologous X-Y multicopy genes driving differential gene expression. Here, we review the literature identifying an association between ChrY polymorphism and phenotypic variation and present the current evidence depicting the mammalian ChrY as a member of the regulatory genome in males and as a factor influencing paternal parent-of-origin effects in female offspring. PMID:25866616

  1. Genetic and phenotypic differentiation of an Andean intermediate altitude population

    PubMed Central

    Eichstaedt, Christina A; Antão, Tiago; Cardona, Alexia; Pagani, Luca; Kivisild, Toomas; Mormina, Maru

    2015-01-01

    Highland populations living permanently under hypobaric hypoxia have been subject of extensive research because of the relevance of their physiological adaptations for the understanding of human health and disease. In this context, what is considered high altitude is a matter of interpretation and while the adaptive processes at high altitude (above 3000 m) are well documented, the effects of moderate altitude (below 3000 m) on the phenotype are less well established. In this study, we compare physiological and anthropometric characteristics as well as genetic variations in two Andean populations: the Calchaquíes (2300 m) and neighboring Collas (3500 m). We compare their phenotype and genotype to the sea-level Wichí population. We measured physiological (heart rate, oxygen saturation, respiration rate, and lung function) as well as anthropometric traits (height, sitting height, weight, forearm, and tibia length). We conducted genome-wide genotyping on a subset of the sample (n = 74) and performed various scans for positive selection. At the phenotypic level (n = 179), increased lung capacity stood out in both Andean groups, whereas a growth reduction in distal limbs was only observed at high altitude. At the genome level, Calchaquíes revealed strong signals around PRKG1, suggesting that the nitric oxide pathway may be a target of selection. PRKG1 was highlighted by one of four selection tests among the top five genes using the population branch statistic. Selection tests results of Collas were reported previously. Overall, our study shows that some phenotypic and genetic differentiation occurs at intermediate altitude in response to moderate lifelong selection pressures. PMID:25948820

  2. The genetic basis of hair whorl, handedness, and other phenotypes

    USGS Publications Warehouse

    Hatfield, J.S.

    2006-01-01

    Evidence is presented that RHO, RHCE, and other RH genes, may be interesting candidates to consider when searching for the genetic basis of hair whorl rotation (i.e., clockwise or counterclockwise), handedness (i.e., right handed, left handed or ambidextrous), speech laterality (i.e., right brained or left brained), speech dyslexia (e.g., stuttering), sexual orientation (i.e., heterosexual, homosexual, bisexual, or transsexual), schizophrenia, bipolar disorder, and autism spectrum disorder. Such evidence involves the need for a genetic model that includes maternal immunization to explain some of the empirical results reported in the literature. The complex polymorphisms present among the maternally immunizing RH genes can then be used to explain other empirical results. Easily tested hypotheses are suggested, based upon genotypic (but not phenotypic) frequencies of the RH genes. In particular, homozygous dominant individuals are expected to be less common or lacking entirely among the alternative phenotypes. If it is proven that RH genes are involved in brain architecture, it will have a profound effect upon our understanding of the development and organization of the asymmetrical vertebrate brain and may eventually lead to a better understanding of the developmental processes which occur to produce the various alternative phenotypes discussed here. In addition, if RH genes are shown to be involved in the production of these phenotypes, then the evolutionary studies can be performed to demonstrate the beneficial effect of the recessive alleles of RHO and RHCE, and why human evolution appears to be selecting for the recessive alleles even though an increase in the frequency of such alleles may imply lower average fecundity among some individuals possessing them.

  3. Phenotype profile of a genetic mouse model for Muenke syndrome

    PubMed Central

    Koyama, Eiki; Agochukwu, Nneamaka B.; Bartlett, Scott P.; Muenke, Maximilian

    2014-01-01

    Purpose The Muenke syndrome mutation (FGFR3P250R), which was discovered 15 years ago, represents the single most common craniosynostosis mutation. Muenke syndrome is characterized by coronal suture synostosis, mid-face hypoplasia, subtle limb anomalies, and hearing loss. However, the spectrum of clinical presentation continues to expand. To better understand the pathophysiology of the Muenke syndrome, we present collective findings from several recent studies that have characterized a genetically equivalent mouse model for Muenke syndrome (FgfR3P244R) and compare them with human phenotypes. Conclusions FgfR3P244R mutant mice show premature fusion of facial sutures, premaxillary and/or zygomatic sutures, but rarely the coronal suture. The mice also lack the typical limb phenotype. On the other hand, the mutant mice display maxillary retrusion in association with a shortening of the anterior cranial base and a premature closure of intersphenoidal and spheno-occipital synchondroses, resembling human midface hypoplasia. In addition, sensorineural hearing loss is detected in all FgfR3P244R mutant mice as in the majority of Muenke syndrome patients. It is caused by a defect in the mechanism of cell fate determination in the organ of Corti. The mice also express phenotypes that have not been previously described in humans, such as reduced cortical bone thickness, hypoplastic trabecular bone, and defective temporomandibular joint structure. Therefore, the FgfR3P244R mouse provides an excellent opportunity to study disease mechanisms of some classical phenotypes of Muenke syndrome and to test novel therapeutic strategies. The mouse model can also be further explored to discover previously unreported yet potentially significant phenotypes of Muenke syndrome. PMID:22872265

  4. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  5. Genetic and phenotypic intra-species variation in Candida albicans

    PubMed Central

    Hirakawa, Matthew P.; Martinez, Diego A.; Sakthikumar, Sharadha; Anderson, Matthew Z.; Berlin, Aaron; Gujja, Sharvari; Zeng, Qiandong; Zisson, Ethan; Wang, Joshua M.; Greenberg, Joshua M.; Berman, Judith

    2015-01-01

    Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity. PMID:25504520

  6. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection

    PubMed Central

    MacDuff, Donna A; Reese, Tiffany A; Kimmey, Jacqueline M; Weiss, Leslie A; Song, Christina; Zhang, Xin; Kambal, Amal; Duan, Erning; Carrero, Javier A; Boisson, Bertrand; Laplantine, Emmanuel; Israel, Alain; Picard, Capucine; Colonna, Marco; Edelson, Brian T; Sibley, L David; Stallings, Christina L; Casanova, Jean-Laurent; Iwai, Kazuhiro; Virgin, Herbert W

    2015-01-01

    Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies. DOI: http://dx.doi.org/10.7554/eLife.04494.001 PMID:25599590

  7. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection.

    PubMed

    MacDuff, Donna A; Reese, Tiffany A; Kimmey, Jacqueline M; Weiss, Leslie A; Song, Christina; Zhang, Xin; Kambal, Amal; Duan, Erning; Carrero, Javier A; Boisson, Bertrand; Laplantine, Emmanuel; Israel, Alain; Picard, Capucine; Colonna, Marco; Edelson, Brian T; Sibley, L David; Stallings, Christina L; Casanova, Jean-Laurent; Iwai, Kazuhiro; Virgin, Herbert W

    2015-01-01

    Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies. PMID:25599590

  8. Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes

    PubMed Central

    Zhang, Wenheng; Kramer, Elena M.; Davis, Charles C.

    2012-01-01

    The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program. PMID:22558314

  9. Molecular-genetic mapping of zebrafish mutants with variable phenotypic penetrance.

    PubMed

    Jain, Roshan A; Wolman, Marc A; Schmidt, Lauren A; Burgess, Harold A; Granato, Michael

    2011-01-01

    Forward genetic screens in vertebrates are powerful tools to generate models relevant to human diseases, including neuropsychiatric disorders. Variability in phenotypic penetrance and expressivity is common in these disorders and behavioral mutant models, making their molecular-genetic mapping a formidable task. Using a 'phenotyping by segregation' strategy, we molecularly map the hypersensitive zebrafish houdini mutant despite its variable phenotypic penetrance, providing a generally applicable strategy to map zebrafish mutants with subtle phenotypes. PMID:22039502

  10. Molecular-Genetic Mapping of Zebrafish Mutants with Variable Phenotypic Penetrance

    PubMed Central

    Schmidt, Lauren A.; Burgess, Harold A.; Granato, Michael

    2011-01-01

    Forward genetic screens in vertebrates are powerful tools to generate models relevant to human diseases, including neuropsychiatric disorders. Variability in phenotypic penetrance and expressivity is common in these disorders and behavioral mutant models, making their molecular-genetic mapping a formidable task. Using a ‘phenotyping by segregation’ strategy, we molecularly map the hypersensitive zebrafish houdini mutant despite its variable phenotypic penetrance, providing a generally applicable strategy to map zebrafish mutants with subtle phenotypes. PMID:22039502

  11. The Autism Simplex Collection: an international, expertly phenotyped autism sample for genetic and phenotypic analyses

    PubMed Central

    2014-01-01

    Background There is an urgent need for expanding and enhancing autism spectrum disorder (ASD) samples, in order to better understand causes of ASD. Methods In a unique public-private partnership, 13 sites with extensive experience in both the assessment and diagnosis of ASD embarked on an ambitious, 2-year program to collect samples for genetic and phenotypic research and begin analyses on these samples. The program was called The Autism Simplex Collection (TASC). TASC sample collection began in 2008 and was completed in 2010, and included nine sites from North America and four sites from Western Europe, as well as a centralized Data Coordinating Center. Results Over 1,700 trios are part of this collection, with DNA from transformed cells now available through the National Institute of Mental Health (NIMH). Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule-Generic (ADOS-G) measures are available for all probands, as are standardized IQ measures, Vineland Adaptive Behavioral Scales (VABS), the Social Responsiveness Scale (SRS), Peabody Picture Vocabulary Test (PPVT), and physical measures (height, weight, and head circumference). At almost every site, additional phenotypic measures were collected, including the Broad Autism Phenotype Questionnaire (BAPQ) and Repetitive Behavior Scale-Revised (RBS-R), as well as the non-word repetition scale, Communication Checklist (Children’s or Adult), and Aberrant Behavior Checklist (ABC). Moreover, for nearly 1,000 trios, the Autism Genome Project Consortium (AGP) has carried out Illumina 1 M SNP genotyping and called copy number variation (CNV) in the samples, with data being made available through the National Institutes of Health (NIH). Whole exome sequencing (WES) has been carried out in over 500 probands, together with ancestry matched controls, and this data is also available through the NIH. Additional WES is being carried out by the Autism Sequencing Consortium (ASC), where the

  12. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism.

    PubMed

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M A; Bodnar, Wanda M; Wishnok, John S; Styblo, Miroslav; Swenberg, James A; Fox, James G; Tannenbaum, Steven R

    2014-02-17

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism. PMID:24490651

  13. Simple phenotypic sweeps hide complex genetic changes in populations.

    PubMed

    Maharjan, Ram P; Liu, Bin; Feng, Lu; Ferenci, Thomas; Wang, Lei

    2015-02-01

    Changes in allele frequencies and the fixation of beneficial mutations are central to evolution. The precise relationship between mutational and phenotypic sweeps is poorly described however, especially when multiple alleles are involved. Here, we investigate these relationships in a bacterial population over 60 days in a glucose-limited chemostat in a large population. High coverage metagenomic analysis revealed a disconnection between smooth phenotypic sweeps and the complexity of genetic changes in the population. Phenotypic adaptation was due to convergent evolution and involved soft sweeps by 7-26 highly represented alleles of several genes in different combinations. Allele combinations spread from undetectably low baselines, indicating that minor subpopulations provide the basis of most innovations. A hard sweep was also observed, involving a single combination of rpoS, mglD, malE, sdhC, and malT mutations sweeping to greater than 95% of the population. Other mutant genes persisted but at lower abundance, including hfq, consistent with its demonstrated frequency-dependent fitness under glucose limitation. Other persistent, newly identified low-frequency mutations were in the aceF, galF, ribD and asm genes, in noncoding regulatory regions, three large indels and a tandem duplication; these were less affected by fluctuations involving more dominant mutations indicating separate evolutionary paths. Our results indicate a dynamic subpopulation structure with a minimum of 42 detectable mutations maintained over 60 days. We also conclude that the massive population-level mutation supply in combination with clonal interference leads to the soft sweeps observed, but not to the exclusion of an occasional hard sweep. PMID:25589261

  14. Genetic and epigenetic contributions to the cortical phenotype in mammals☆

    PubMed Central

    Larsen, DeLaine D.; Krubitzer, Leah

    2008-01-01

    One aspect of cortical organization, cortical field size, is variable both within and across species. The observed variability arises from a variety of sources, including genes intrinsic to the neocortex and a number of extrinsic and epigenetic factors. Genes intrinsic to the cortex are directly involved in the development and specification of cortical fields and are regulated from both signaling centers located outside of the neocortex, which secrete diffusible molecules, and the expression of transcription factors within the neocortex. In addition, extrinsic factors such as the type, location and density of sensory receptor arrays and how these receptor arrays are utilized, are also strongly related to cortical field size. Epigenetic factors including the relative activity patterns generated by the different types of physical stimuli in a given environment also contribute to differences in cortical organization, including cortical field size. Since both genetic and epigenetic factors contribute to cortical organization, some aspects of the cortical phenotype evolve, while other aspects of the cortical phenotype persist only if the environment in which an individual develops is relatively stable. PMID:18331904

  15. Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture.

    PubMed

    Goddard, M E; Kemper, K E; MacLeod, I M; Chamberlain, A J; Hayes, B J

    2016-07-27

    Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement. PMID:27440663

  16. Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture

    PubMed Central

    Goddard, M. E.; Kemper, K. E.; MacLeod, I. M.; Chamberlain, A. J.; Hayes, B. J.

    2016-01-01

    Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement. PMID:27440663

  17. Genetic and phenotypic consequences of introgression between humans and Neanderthals.

    PubMed

    Wills, Christopher

    2011-01-01

    Strong evidence for introgression of Neanderthal genes into parts of the modern human gene pool has recently emerged. The evidence indicates that some populations of modern humans have received infusions of genes from two different groups of Neanderthals. One of these Neanderthal groups lived in the Middle East and Central Europe and the other group (the Denisovans) is known to have lived in Central Asia and was probably more widespread. This review examines two questions. First, how were these introgressions detected and what does the genetic evidence tell us about their nature and extent? We will see that an unknown but possibly large fraction of the entire Neanderthal gene complement may have survived in modern humans. Even though each modern European and Asian carries only a few percent of genes that can be traced back to Neanderthals, different individuals carry different subgroups of these introgressed genes. Second, what is the likelihood that this Neanderthal genetic legacy has had phenotypic effects on modern humans? We examine evidence for and against the possibility that some of the surviving fragments of Neanderthal genomes have been preserved by natural selection, and we explore the ways in which more evidence bearing on this question will become available in the future. PMID:22099691

  18. The Phenotypic and Genetic Underpinnings of Flower Size in Polemoniaceae

    PubMed Central

    Landis, Jacob B.; O'Toole, Rebecca D.; Ventura, Kayla L.; Gitzendanner, Matthew A.; Oppenheimer, David G.; Soltis, Douglas E.; Soltis, Pamela S.

    2016-01-01

    Corolla length is a labile flower feature and has strong implications for pollinator success. However, the phenotypic and genetic bases of corolla elongation are not well known, largely due to a lack of good candidate genes for potential genetic exploration and functional work. We investigate both the cellular phenotypic differences in corolla length, as well as the genetic control of this trait, in Saltugilia (Polemoniaceae). Taxa in this clade exhibit a large range of flower sizes and differ dramatically in pollinator guilds. Flowers of each species were collected from multiple individuals during four stages of flower development to ascertain if cell number or cell size is more important in determining flower size. In Saltugilia, increased flower size during development appears to be driven more by cell size than cell number. Differences in flower size between species are governed by both cell size and cell number, with the large-flowered S. splendens subsp. grantii having nearly twice as many cells as the small-flowered species. Fully mature flowers of all taxa contain jigsaw cells similar to cells seen in sepals and leaves; however, these cells are not typically found in the developing flowers of most species. The proportion of this cell type in mature flowers appears to have substantial implications, comprising 17–68% of the overall flower size. To identify candidate genes responsible for differences in cell area and cell type, transcriptomes were generated for two individuals of the species with the smallest (S. australis) and largest (S. splendens subsp. grantii) flowers across the same four developmental stages visualized with confocal microscopy. Analyses identified genes associated with cell wall formation that are up-regulated in the mature flower stage compared to mid-stage flowers (75% of mature size). This developmental change is associated with the origin of jigsaw cells in the corolla tube of mature flowers. Further comparisons between mature

  19. Insect immunology and hematopoiesis.

    PubMed

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology. PMID:26695127

  20. Predicting Phenotypes from Genetic Crosses: A Mathematical Concept to Help Struggling Biology Students

    ERIC Educational Resources Information Center

    Baurhoo, Neerusha; Darwish, Shireef

    2012-01-01

    Predicting phenotypic outcomes from genetic crosses is often very difficult for biology students, especially those with learning disabilities. With our mathematical concept, struggling students in inclusive biology classrooms are now better equipped to solve genetic problems and predict phenotypes, because of improved understanding of dominance…

  1. Missing heritability of complex diseases: Enlightenment by genetic variants from intermediate phenotypes.

    PubMed

    Blanco-Gómez, Adrián; Castillo-Lluva, Sonia; Del Mar Sáez-Freire, María; Hontecillas-Prieto, Lourdes; Mao, Jian Hua; Castellanos-Martín, Andrés; Pérez-Losada, Jesus

    2016-07-01

    Diseases of complex origin have a component of quantitative genetics that contributes to their susceptibility and phenotypic variability. However, after several studies, a major part of the genetic component of complex phenotypes has still not been found, a situation known as "missing heritability." Although there have been many hypotheses put forward to explain the reasons for the missing heritability, its definitive causes remain unknown. Complex diseases are caused by multiple intermediate phenotypes involved in their pathogenesis and, very often, each one of these intermediate phenotypes also has a component of quantitative inheritance. Here we propose that at least part of the missing heritability can be explained by the genetic component of intermediate phenotypes that is not detectable at the level of the main complex trait. At the same time, the identification of the genetic component of intermediate phenotypes provides an opportunity to identify part of the missing heritability of complex diseases. PMID:27241833

  2. Expanding the Genetic and Phenotypic Spectrum of Popliteal Pterygium Disorders

    PubMed Central

    Leslie, Elizabeth J.; O'Sullivan, James; Cunningham, Michael L.; Singh, Ankur; Goudy, Steven L.; Ababneh, Faroug; Alsubaie, Lamia; Ch'ng, Gaik-Siew; van der Laar, Ingrid M.B.H.; Hoogeboom, A. Jeannette M.; Dunnwald, Martine; Kapoor, Seema; Jiramongkolchai, Pawina; Standley, Jennifer; Manak, J. Robert; Murray, Jeffrey C.; Dixon, Michael J.

    2015-01-01

    The popliteal pterygia syndromes are a distinct subset of the hundreds of Mendelian orofacial clefting syndromes. Popliteal pterygia syndromes have considerable variability in severity and in the associated phenotypic features but are all characterized by cutaneous webbing across one or more major joints, cleft lip and/or palate, syndactyly, and genital malformations. Heterozygous mutations in IRF6 cause popliteal pterygium syndrome (PPS) while homozygous mutations in RIPK4 or CHUK (IKKA) cause the more severe Bartsocas-Papas syndrome (BPS) and Cocoon syndrome, respectively. In this study we report mutations in six pedigrees with children affected with PPS or BPS. Using a combination of Sanger and exome sequencing, we report the first case of an autosomal recessive popliteal pterygium syndrome caused by homozygous mutation of IRF6 and the first case of uniparental disomy of chromosome 21 leading to a recessive disorder. We also demonstrate that mutations in RIPK4 can cause features with a range of severity along the PPS-BPS spectrum and that mutations in IKKA can cause a range of features along the BPS-Cocoon spectrum. Our findings have clinical implications for genetic counseling of families with pterygia syndromes and further implicate IRF6, RIPK4, and CHUK (IKKA) in potentially interconnected pathways governing epidermal and craniofacial development. PMID:25691407

  3. Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis

    PubMed Central

    Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang

    2014-01-01

    Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. PMID:24829209

  4. Diverse genetic architectures lead to the same cryptic phenotype in a yeast cross

    PubMed Central

    Taylor, Matthew B.; Phan, Joann; Lee, Jonathan T.; McCadden, Madelyn; Ehrenreich, Ian M.

    2016-01-01

    Cryptic genetic variants that do not typically influence traits can interact epistatically with each other and mutations to cause unexpected phenotypes. To improve understanding of the genetic architectures and molecular mechanisms that underlie these interactions, we comprehensively dissected the genetic bases of 17 independent instances of the same cryptic colony phenotype in a yeast cross. In eight cases, the phenotype resulted from a genetic interaction between a de novo mutation and one or more cryptic variants. The number and identities of detected cryptic variants depended on the mutated gene. In the nine remaining cases, the phenotype arose without a de novo mutation due to two different classes of higher-order genetic interactions that only involve cryptic variants. Our results may be relevant to other species and disease, as most of the mutations and cryptic variants identified in our study reside in components of a partially conserved and oncogenic signalling pathway. PMID:27248513

  5. The genetics of maternal care: direct and indirect genetic effects on phenotype in the dung beetle Onthophagus taurus.

    PubMed

    Hunt, John; Simmons, Leigh W

    2002-05-14

    While theoretical models of the evolution of parental care are based on the assumption of underlying genetic variance, surprisingly few quantitative genetic studies of this life-history trait exist. Estimation of the degree of genetic variance in parental care is important because it can be a significant source of maternal effects, which, if genetically based, represent indirect genetic effects. A major prediction of indirect genetic effect theory is that traits without heritable variation can evolve because of the heritable environmental variation that indirect genetic effects provide. In the dung beetle, Onthophagus taurus, females provide care to offspring by provisioning a brood mass. The size of the brood mass has pronounced effects on offspring phenotype. Using a half-sib breeding design we show that the weight of the brood mass females produce exhibits significant levels of additive genetic variance due to sires. However, variance caused by dams is considerably larger, demonstrating that maternal effects are also important. Body size exhibited low additive genetic variance. However, body size exerts a strong maternal influence on the weight of brood masses produced, accounting for 22% of the nongenetic variance in offspring body size. Maternal body size also influenced the number of offspring produced but there was no genetic variance for this trait. Offspring body size and brood mass weight exhibited positive genetic and phenotypic correlations. We conclude that both indirect genetic effects, via maternal care, and nongenetic maternal effects, via female size, play important roles in the evolution of phenotype in this species. PMID:11983863

  6. Cooperation between phenotypic plasticity and genetic mutations can account for the cumulative selection in evolution

    PubMed Central

    Nishikawa, Ken; Kinjo, Akira R.

    2014-01-01

    We propose the cooperative model of phenotype-driven evolution, in which natural selection operates on a phenotype caused by both genetic and epigenetic factors. The conventional theory of evolutionary synthesis assumes that a phenotypic value (P) is the sum of genotypic value (G) and environmental deviation (E), P=G+E, where E is the fluctuations of the phenotype among individuals in the absence of environmental changes. In contrast, the cooperative model assumes that an evolution is triggered by an environmental change and individuals respond to the change by phenotypic plasticity (epigenetic changes). The phenotypic plasticity, while essentially qualitative, is denoted by a quantitative value F which is modeled as a normal random variable like E, but with a much larger variance. Thus, the fundamental equation of the cooperative model is given as P=G+F where F includes the effect of E. Computer simulations using a genetic algorithm demonstrated that the cooperative model realized much faster evolution than the evolutionary synthesis. This accelerated evolution was found to be due to the cumulative evolution made possible by a ratchet mechanism due to the epigenetic contribution to the phenotypic value. The cooperative model can well account for the phenomenon of genetic assimilation, which, in turn, suggests the mechanism of cumulative selection. The cooperative model may also serve as a theoretical basis to understand various ideas and phenomena of the phenotype-driven evolution such as genetic assimilation, the theory of facilitated phenotypic variation, and epigenetic inheritance over generations. PMID:27493504

  7. Phenotypic and Evolutionary Consequences of Social Behaviours: Interactions among Individuals Affect Direct Genetic Effects

    PubMed Central

    Trubenová, Barbora; Hager, Reinmar

    2012-01-01

    Traditional quantitative genetics assumes that an individual's phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait expression in a focal individual, indirect genetic effects occur. In this study, we explore the effects of indirect genetic effects on the magnitude and range of phenotypic values in a focal individual in a multi-member model analyzing three possible classes of interactions between individuals. We show that social interactions may not only cause indirect genetic effects but can also modify direct genetic effects. Furthermore, we demonstrate that both direct and indirect genetic effects substantially alter the range of phenotypic values, particularly when a focal trait can influence its own expression via interactions with traits in other individuals. We derive a function predicting the relative importance of direct versus indirect genetic effects. Our model reveals that both direct and indirect genetic effects can depend to a large extent on both group size and interaction strength, altering group mean phenotype and variance. This may lead to scenarios where between group variation is much higher than within group variation despite similar underlying genetic properties, potentially affecting the level of selection. Our analysis highlights key properties of indirect genetic effects with important consequences for trait evolution, the level of selection and potentially speciation. PMID:23226195

  8. Implications of the apportionment of human genetic diversity for the apportionment of human phenotypic diversity

    PubMed Central

    Edge, Michael D.; Rosenberg, Noah A.

    2015-01-01

    Researchers in many fields have considered the meaning of two results about genetic variation for concepts of “race.” First, at most genetic loci, apportionments of human genetic diversity find that worldwide populations are genetically similar. Second, when multiple genetic loci are examined, it is possible to distinguish people with ancestry from different geographical regions. These two results raise an important question about human phenotypic diversity: To what extent do populations typically differ on phenotypes determined by multiple genetic loci? It might be expected that such phenotypes follow the pattern of similarity observed at individual loci. Alternatively, because they have a multilocus genetic architecture, they might follow the pattern of greater differentiation suggested by multilocus ancestry inference. To address the question, we extend a well-known classification model of Edwards (2003) by adding a selectively neutral quantitative trait. Using the extended model, we show, in line with previous work in quantitative genetics, that regardless of how many genetic loci influence the trait, one neutral trait is approximately as informative about ancestry as a single genetic locus. The results support the relevance of single-locus genetic-diversity partitioning for predictions about phenotypic diversity. PMID:25677859

  9. Integrating Multiple Correlated Phenotypes for Genetic Association Analysis by Maximizing Heritability

    PubMed Central

    Zhou, Jin J.; Cho, Michael H.; Lange, Christoph; Lutz, Sharon; Silverman, Edwin K.; Laird, Nan M.

    2015-01-01

    Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing power to detect causal genetic variants. One approach involves assessing the relationship between each phenotype and each single nucleotide polymorphism (SNP) individually and using a Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a multivariate regression or a dimension reduction technique, such as principal component analysis (PCA), and test for the association with the principal components (PC) of the phenotypes rather than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to maximize heritability at individual SNPs, in this paper, we propose to construct a maximally heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-heritability. The heritability and co-heritability only need to be estimated once, therefore our method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the individual phenotypes with increased heritability and power over the phenotypes being combined. Simulations show that the heritability and power achieved agree well with the theory for large samples and two phenotypes. We compare our approach with commonly used methods and assess both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for how to choose the phenotypes for combination. An application of our approach to a COPD genome-wide association study shows the practical relevance. PMID:26111731

  10. Neurocognitive Phenotypes and Genetic Dissection of Disorders of Brain and Behavior

    PubMed Central

    Congdon, Eliza; Poldrack, Russell A.; Freimer, Nelson B.

    2014-01-01

    Summary Elucidating the molecular mechanisms underlying quantitative neurocognitive phenotypes will further our understanding of the brain’s structural and functional architecture and advance the diagnosis and treatment of the psychiatric disorders that these traits underlie. Although many neurocognitive traits are highly heritable, little progress has been made in identifying genetic variants unequivocally associated with these phenotypes. A major obstacle to such progress is the difficulty in identifying heritable neurocognitive measures which are precisely defined, systematically assessed and represent unambiguous mental constructs, yet are amenable to the high-throughput phenotyping necessary to obtain adequate power for genetic association studies. In this perspective we compare the current status of genetic investigations of neurocognitive phenotypes to that of other categories of biomedically relevant traits and suggest strategies for genetically dissecting traits that may underlie disorders of brain and behavior. PMID:20955930

  11. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease

    PubMed Central

    Flint, Jonathan; Timpson, Nicholas; Munafò, Marcus

    2016-01-01

    Intermediate phenotypes are traits positioned somewhere between genetic variation and disease. They represent a target for attempts to find disease-associated genetic variants and elucidation of mechanisms. Psychiatry has been particularly enamored with intermediate phenotypes, due to uncertainty about disease etiology, inconclusive results in early psychiatric genetic studies, and their appeal relative to traditional diagnostic categories. Here, we argue that new genetic findings are relevant to the question of the utility of these constructs. In particular, results from genome-wide association studies of psychiatric disorders now allow an assessment of the potential role of particular intermediate phenotypes. Based on such an analysis, as well as other recent results, we conclude that intermediate phenotypes are likely to be most valuable in understanding mechanism. PMID:25216981

  12. Fractal and Transgenerational Genetic Effects on Phenotypic Variation and Disease Risk

    NASA Astrophysics Data System (ADS)

    Nadeau, Joe

    To understand human biology and to manage heritable diseases, a complete picture of the genetic basis for phenotypic variation and disease risk is needed. Unexpectedly however, most of these genetic variants, even for highly heritable traits, continue to elude discovery for poorly understood reasons. The genetics community is actively exploring the usual explanations for missing heritability. But given the extraordinary work that has already been done and the exceptional magnitude of the problem, it seems likely that unconventional genetic properties are involved.

  13. Development of resources and tools for mapping genetic sources of phenotypic variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial and experimental genetic resources were established and investigated for a range of reproductive and disease susceptibility phenotypes. The phenotyping efforts were accompanied with RNA and whole genome sequencing and novel assemblies of the swine genome. The efforts were complemented wit...

  14. Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypes from the August 2015 US national genetic evaluation were used to compute phenotypic effects of cholesterol deficiency (CD) and 17 other recessive haplotypes in Ayrshire (AY; n=1), Brown Swiss (BS; n = 5), Holstein (HO; n = 10), and Jersey (JE; n = 2) cattle on milk, fat, and protein yield...

  15. Genetic analysis of low BMI phenotype in the Utah Population Database.

    PubMed

    Yates, William R; Johnson, Craig; McKee, Patrick; Cannon-Albright, Lisa A

    2013-01-01

    The low body mass index (BMI) phenotype of less than 18.5 has been linked to medical and psychological morbidity as well as increased mortality risk. Although genetic factors have been shown to influence BMI across the entire BMI, the contribution of genetic factors to the low BMI phenotype is unclear. We hypothesized genetic factors would contribute to risk of a low BMI phenotype. To test this hypothesis, we conducted a genealogy data analysis using height and weight measurements from driver's license data from the Utah Population Data Base. The Genealogical Index of Familiality (GIF) test and relative risk in relatives were used to examine evidence for excess relatedness among individuals with the low BMI phenotype. The overall GIF test for excess relatedness in the low BMI phenotype showed a significant excess over expected (GIF 4.47 for all cases versus 4.10 for controls, overall empirical p-value<0.001). The significant excess relatedness was still observed when close relationships were ignored, supporting a specific genetic contribution rather than only a family environmental effect. This study supports a specific genetic contribution in the risk for the low BMI phenotype. Better understanding of the genetic contribution to low BMI holds promise for weight regulation and potentially for novel strategies in the treatment of leanness and obesity. PMID:24348998

  16. Unperturbed vs. post-transplantation hematopoiesis: both in vivo but different

    PubMed Central

    Busch, Katrin; Rodewald, Hans-Reimer

    2016-01-01

    Purpose of review Hematopoietic stem cell (HSC) transplantation has yielded tremendous information on experimental properties of HSCs. Yet, it remains unclear whether transplantation reflects the physiology of hematopoiesis. A limitation is the difficulty in accessing HSC functions without isolation, in-vitro manipulation and readout for potential. New genetic fate mapping and clonal marking techniques now shed light on hematopoiesis under physiological conditions. Recent findings Transposon-based genetic marks were introduced across the entire hematopoietic system to follow the clonal dynamics of these tags over time. A polyclonal source downstream from stem cells was found responsible for the production of at least granulocytes. In independent experiments, HSCs were genetically marked in adult mice, and the kinetics of label emergence throughout the system was followed over time. These experiments uncovered that during physiological steady-state hematopoiesis large numbers of HSCs yield differentiated progeny. Individual HSCs were active only rarely, indicating their very slow periodicity of differentiation rather than quiescence. Summary Noninvasive genetic experiments in mice have identified a major role of stem and progenitor cells downstream from HSCs as drivers of adult hematopoiesis, and revealed that post-transplantation hematopoiesis differs quantitatively from normal steady-state hematopoiesis. PMID:27213498

  17. A Novel Lung Disease Phenotype Adjusted for Mortality Attrition for Cystic Fibrosis Genetic Modifier Studies

    PubMed Central

    Taylor, Chelsea; Commander, Clayton W.; Collaco, Joseph M.; Strug, Lisa J.; Li, Weili; Wright, Fred A.; Webel, Aaron D.; Pace, Rhonda G.; Stonebraker, Jaclyn R.; Naughton, Kathleen; Dorfman, Ruslan; Sandford, Andrew; Blackman, Scott M.; Berthiaume, Yves; Paré, Peter; Drumm, Mitchell L.; Zielenski, Julian; Durie, Peter; Cutting, Garry R.; Knowles, Michael R.; Corey, Mary

    2011-01-01

    SUMMARY Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment. Using data from the North American Cystic Fibrosis Modifier Consortium (Canadian Consortium for CF Genetic Studies, Johns Hopkins University CF Twin and Sibling Study, and University of North Carolina/Case Western Reserve University Gene Modifier Study), the authors calculated age-specific CF percentile values of FEV1 which were adjusted for CF age-specific mortality data. The phenotype was computed for 2061 patients representing the Canadian CF population, 1137 extreme phenotype patients in the UNC/Case Western study, and 1323 patients from multiple CF sib families in the CF Twin and Sibling Study. Despite differences in ascertainment and median age, our phenotype score was distributed in all three samples in a manner consistent with ascertainment differences, reflecting the lung disease severity of each individual in the underlying population. The new phenotype score was highly correlated with the previously recommended complex phenotype, but the new phenotype is more robust for shorter follow-up and for extreme ages. A disease progression and mortality adjusted phenotype reduces the need for stratification or additional covariates, increasing statistical power and avoiding possible distortions. This approach will facilitate large scale genetic and environmental epidemiological studies which will provide targeted therapeutic pathways for the clinical benefit of patients with CF. PMID:21462361

  18. Conflict between genetic and phenotypic differentiation: the evolutionary history of a 'lost and rediscovered' shorebird.

    PubMed

    Rheindt, Frank E; Székely, Tamás; Edwards, Scott V; Lee, Patricia L M; Burke, Terry; Kennerley, Peter R; Bakewell, David N; Alrashidi, Monif; Kosztolányi, András; Weston, Michael A; Liu, Wei-Ting; Lei, Wei-Pan; Shigeta, Yoshimitsu; Javed, Sálim; Zefania, Sama; Küpper, Clemens

    2011-01-01

    Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus), widely regarded as a subspecies of the Kentish Plover (C. alexandrinus). Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind. PMID:22096515

  19. What monozygotic twins discordant for phenotype illustrate about mechanisms influencing genetic forms of neurodegeneration.

    PubMed

    Ketelaar, M E; Hofstra, E M W; Hayden, M R

    2012-04-01

    As monozygotic (MZ) twins are believed to be genetically identical, discordance for disease phenotype between MZ twins has been used in genetic research to understand the contribution of genetic vs environmental factors in disease development. However, recent studies show that MZ twins can differ both genetically and epigenetically. Screening MZ twins for genetic and/or epigenetic differences could be a useful and novel approach to identify modifying factors influencing phenotypic expression of disease. MZ twins that are phenotypically discordant for monogenic diseases are of special interest. Such occurrences have been described for Huntington's disease, spinocerebellar ataxias, as well as for familial forms of Alzheimer's disease. By comparing MZ twins that are phenotypically discordant, crucial factors influencing the phenotypic expression of the disease could be identified, which may be of relevance for understanding disease pathogenesis and variability in disease phenotype. Overall, understanding the crucial factors in development of a neurodegenerative disorder will have relevance for predictive testing, preventive treatment and could help to identify novel therapeutic targets. PMID:21981075

  20. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

    NASA Astrophysics Data System (ADS)

    Busemeyer, Lucas; Ruckelshausen, Arno; Möller, Kim; Melchinger, Albrecht E.; Alheit, Katharina V.; Maurer, Hans Peter; Hahn, Volker; Weissmann, Elmar A.; Reif, Jochen C.; Würschum, Tobias

    2013-08-01

    To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping.

  1. Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity

    PubMed Central

    Snell-Rood, Emilie C.; Van Dyken, James David; Cruickshank, Tami; Wade, Michael J.; Moczek, Armin P.

    2011-01-01

    Adaptive phenotypic plasticity allows organisms to cope with environmental variability, and yet, despite its adaptive significance, phenotypic plasticity is neither ubiquitous nor infinite. In this review, we merge developmental and population genetic perspectives to explore costs and limits on the evolution of plasticity. Specifically, we focus on the role of modularity in developmental genetic networks as a mechanism underlying phenotypic plasticity, and apply to it lessons learned from population genetic theory on the interplay between relaxed selection and mutation accumulation. We argue that the environmental specificity of gene expression and the associated reduction in pleiotropic constraints drive a fundamental tradeoff between the range of plasticity that can be accommodated and mutation accumulation in alternative developmental networks. This tradeoff has broad implications for understanding the origin and maintenance of plasticity and may contribute to a better understanding of the role of plasticity in the origin, diversification, and loss of phenotypic diversity. PMID:20020499

  2. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

    PubMed Central

    Busemeyer, Lucas; Ruckelshausen, Arno; Möller, Kim; Melchinger, Albrecht E.; Alheit, Katharina V.; Maurer, Hans Peter; Hahn, Volker; Weissmann, Elmar A.; Reif, Jochen C.; Würschum, Tobias

    2013-01-01

    To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping. PMID:23942574

  3. Genetic and Environmental Regulation on Longitudinal Change of Metabolic Phenotypes in Danish and Chinese Adult Twins

    PubMed Central

    Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang; Zhang, Dongfeng; Duan, Haiping; Tan, Qihua; Hjelmborg, Jacob; Kruse, Torben; Dalgård, Christine

    2016-01-01

    Objective The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic, cultural, social-economic backgrounds and geographical environments. Materials and Methods The study covered a relatively large sample of 502 pairs of Danish adult twins followed up for a long period of 12 years with a mean age at intake of 38 years (range: 18–65) and a total of 181 Chinese adult twin pairs traced for about 7 years with a mean baseline age of 39.5 years (range: 23–64). The classical twin models were fitted to the longitudinal change in each phenotypephenotype) to estimate the genetic and environmental contributions to the variation in Δphenotype. Results Moderate to high contributions by the unique environment were estimated for all phenotypes in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycerides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins; low to moderate genetic components were estimated for long-term change in most of the phenotypes in Danish twins except for triglycerides and hip circumference. Compared with Danish twins, the Chinese twins tended to have higher genetic control over the longitudinal changes in lipids (except high density lipoprotein cholesterol) and glucose, higher unique environmental contribution to blood pressure but no genetic contribution to longitudinal change in body mass traits. Conclusion Our results emphasize the major contribution of unique environment to the observed intra-individual variation in all metabolic phenotypes in both samples, and meanwhile reveal differential patterns of genetic and common environmental regulation on changes over time in metabolic phenotypes across the two samples. PMID:26862898

  4. The expanding phenotypic spectra of kidney diseases: insights from genetic studies.

    PubMed

    Stokman, Marijn F; Renkema, Kirsten Y; Giles, Rachel H; Schaefer, Franz; Knoers, Nine V A M; van Eerde, Albertien M

    2016-08-01

    Next-generation sequencing (NGS) has led to the identification of previously unrecognized phenotypes associated with classic kidney disease genes. In addition to improving diagnostics for genetically heterogeneous diseases and enabling a faster rate of gene discovery, NGS has enabled an expansion and redefinition of nephrogenetic disease categories. Findings from these studies raise the question of whether disease diagnoses should be made on clinical grounds, on genetic evidence or a combination thereof. Here, we discuss the major kidney disease-associated genes and gene categories for which NGS has expanded the phenotypic spectrum. For example, COL4A3-5 genes, which are classically associated with Alport syndrome, are now understood to also be involved in the aetiology of focal segmental glomerulosclerosis. DGKE, which is associated with nephrotic syndrome, is also mutated in patients with atypical haemolytic uraemic syndrome. We examine how a shared genetic background between diverse clinical phenotypes can provide insight into the function of genes and novel links with essential pathophysiological mechanisms. In addition, we consider genetic and epigenetic factors that contribute to the observed phenotypic heterogeneity of kidney diseases and discuss the challenges in the interpretation of genetic data. Finally, we discuss the implications of the expanding phenotypic spectra associated with kidney disease genes for clinical practice, genetic counselling and personalized care, and present our recommendations for the use of NGS-based tests in routine nephrology practice. PMID:27374918

  5. Color phenotypes are under similar genetic control in two distantly related species of Timema stick insect.

    PubMed

    Comeault, Aaron A; Carvalho, Clarissa F; Dennis, Stuart; Soria-Carrasco, Víctor; Nosil, Patrik

    2016-06-01

    Ecology and genetics are both of general interest to evolutionary biologists as they can influence the phenotypic and genetic response to selection. The stick insects Timema podura and Timema cristinae exhibit a green/melanistic body color polymorphism that is subject to different ecologically based selective regimes in the two species. Here, we describe aspects of the genetics of this color polymorphism in T. podura, and compare this to previous results in T. cristinae. We first show that similar color phenotypes of the two species cluster in phenotypic space. We then use genome-wide association mapping to show that in both species, color is controlled by few loci, dominance relationships between color alleles are the same, and SNPs associated with color phenotypes colocalize to the same linkage group. Regions within this linkage group that harbor genetic variants associated with color exhibit elevated linkage disequilibrium relative to genome wide expectations, but more strongly so in T. cristinae. We use these results to discuss predictions regarding how the genetics of color could influence levels of phenotypic and genetic variation that segregate within and between populations of T. podura and T. cristinae, drawing parallels with other organisms. PMID:27130287

  6. Toward Diagnostic and Phenotype Markers for Genetically Transmitted Speech Delay

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Lewis, Barbara A.; Tomblin, J. Bruce; McSweeny, Jane L.; Karlsson, Heather B.; Scheer, Alison R.

    2005-01-01

    Converging evidence supports the hypothesis that the most common subtype of childhood speech sound disorder (SSD) of currently unknown origin is genetically transmitted. We report the first findings toward a set of diagnostic markers to differentiate this proposed etiological subtype (provisionally termed "speech delay-genetic") from other…

  7. Longitudinal Investigation into Genetics in the Conservation of Metabolic Phenotypes in Danish and Chinese Twins.

    PubMed

    Li, Shuxia; Kyvik, Kirsten Ohm; Duan, Haiping; Zhang, Dongfeng; Pang, Zengchang; Hjelmborg, Jacob; Tan, Qihua; Kruse, Torben; Dalgård, Christine

    2016-01-01

    Longitudinal twin studies on long term conservation of individual metabolic phenotypes can help to explore the genetic and environmental basis in maintaining metabolic homeostasis and metabolic health. We performed a longitudinal twin study on 12 metabolic phenotypes from Danish twins followed up for 12 years and Chinese twins traced for 7 years. The study covered a relatively large sample of 502 pairs of Danish adult twins with a mean age at intake of 38 years and a total of 181 Chinese adult twin pairs with a mean baseline age of 39.5 years. Bivariate twin models were fitted to the longitudinal measurements taken at two time points (at baseline and follow-up) to estimate the genetic and environmental contributions to phenotype variation and correlation at and between the two time points. High genetic components in the regulation of intra-individual phenotype correlation or stability over time were estimated in both Danish (h2>0.75 except fasting blood glucose) and Chinese (h2>0.72 except blood pressure) twins; moderate to high genetic contribution to phenotype variation at the two time points were also estimated except for the low genetic regulation on glucose in Danish and on blood pressure in Chinese twins. Meanwhile the bivariate twin models estimated shared environmental contributions to the variance and covariance in fasting blood glucose in Danish twins, and in systolic and diastolic blood pressure, low and high density lipoprotein cholesterol in Chinese twins. Overall, our longitudinal twin study on long-term stability of metabolic phenotypes in Danish and Chinese twins identified a common pattern of high genetic control over phenotype conservation, and at the same time revealed population-specific patterns of genetic and common environmental regulation on the variance as well as covariance of glucose and blood pressure. PMID:27618179

  8. Phenotype-Based Genetic Association Studies (PGAS)—Towards Understanding the Contribution of Common Genetic Variants to Schizophrenia Subphenotypes

    PubMed Central

    Ehrenreich, Hannelore; Nave, Klaus-Armin

    2014-01-01

    Neuropsychiatric diseases ranging from schizophrenia to affective disorders and autism are heritable, highly complex and heterogeneous conditions, diagnosed purely clinically, with no supporting biomarkers or neuroimaging criteria. Relying on these “umbrella diagnoses”, genetic analyses, including genome-wide association studies (GWAS), were undertaken but failed to provide insight into the biological basis of these disorders. “Risk genotypes” of unknown significance with low odds ratios of mostly <1.2 were extracted and confirmed by including ever increasing numbers of individuals in large multicenter efforts. Facing these results, we have to hypothesize that thousands of genetic constellations in highly variable combinations with environmental co-factors can cause the individual disorder in the sense of a final common pathway. This would explain why the prevalence of mental diseases is so high and why mutations, including copy number variations, with a higher effect size than SNPs, constitute only a small part of variance. Elucidating the contribution of normal genetic variation to (disease) phenotypes, and so re-defining disease entities, will be extremely labor-intense but crucial. We have termed this approach PGAS (“phenotype-based genetic association studies”). Ultimate goal is the definition of biological subgroups of mental diseases. For that purpose, the GRAS (Göttingen Research Association for Schizophrenia) data collection was initiated in 2005. With >3000 phenotypical data points per patient, it comprises the world-wide largest currently available schizophrenia database (N > 1200), combining genome-wide SNP coverage and deep phenotyping under highly standardized conditions. First PGAS results on normal genetic variants, relevant for e.g., cognition or catatonia, demonstrated proof-of-concept. Presently, an autistic subphenotype of schizophrenia is being defined where an unfortunate accumulation of normal genotypes, so-called pro

  9. Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx homeoproteins in splenic mesenchyme.

    PubMed

    Zewdu, Rediet; Risolino, Maurizio; Barbulescu, Alexandru; Ramalingam, Pradeep; Butler, Jason M; Selleri, Licia

    2016-07-01

    The spleen plays critical roles in immunity and also provides a permissive microenvironment for hematopoiesis. Previous studies have reported that the TALE-class homeodomain transcription factor Pbx1 is essential in hematopoietic stem and progenitor cells (HSPCs) for stem cell maintenance and progenitor expansion. However, the role of Pbx1 in the hematopoietic niche has not been investigated. Here we explored the effects that genetic perturbation of the splenic mesenchymal niche has on hematopoiesis upon loss of members of the Pbx family of homeoproteins. Splenic mesenchyme-specific inactivation of Pbx1 (SKO) on a Pbx2- or Pbx3-deficient genetic background (DKO) resulted in abnormal development of the spleen, which is dysmorphic and severely hypoplastic. This phenotype, in turn, affected the number of HSPCs in the fetal and adult spleen at steady state, as well as markedly impairing the kinetics of hematopoietic regeneration in adult mice after sub-lethal and lethal myelosuppressive irradiation. Spleens of mice with compound Pyx deficiency 8 days following sublethal irradiation displayed significant downregulation of multiple cytokine-encoding genes, including KitL/SCF, Cxcl12/SDF-1, IL-3, IL-4, GM-CSF/Csf2 IL-10, and Igf-1, compared with controls. KitL/SCF and Cxcl12/SDF-1 were recently shown to play key roles in the splenic niche in response to various haematopoietic stresses such as myeloablation, blood loss, or pregnancy. Our results demonstrate that, in addition to their intrinsic roles in HSPCs, non-cell autonomous functions of Pbx factors within the splenic niche contribute to the regulation of hematopoiesis, at least in part via the control of KitL/SCF and Cxcl12/SDF-1. Furthermore, our study establishes that abnormal spleen development and hypoplasia have deleterious effects on the efficiency of hematopoietic recovery after bone marrow injury. PMID:27075259

  10. Discordant patterns of genetic and phenotypic differentiation in five grasshopper species codistributed across a microreserve network.

    PubMed

    Ortego, Joaquín; García-Navas, Vicente; Noguerales, Víctor; Cordero, Pedro J

    2015-12-01

    Conservation plans can be greatly improved when information on the evolutionary and demographic consequences of habitat fragmentation is available for several codistributed species. Here, we study spatial patterns of phenotypic and genetic variation among five grasshopper species that are codistributed across a network of microreserves but show remarkable differences in dispersal-related morphology (body size and wing length), degree of habitat specialization and extent of fragmentation of their respective habitats in the study region. In particular, we tested the hypothesis that species with preferences for highly fragmented microhabitats show stronger genetic and phenotypic structure than codistributed generalist taxa inhabiting a continuous matrix of suitable habitat. We also hypothesized a higher resemblance of spatial patterns of genetic and phenotypic variability among species that have experienced a higher degree of habitat fragmentation due to their more similar responses to the parallel large-scale destruction of their natural habitats. In partial agreement with our first hypothesis, we found that genetic structure, but not phenotypic differentiation, was higher in species linked to highly fragmented habitats. We did not find support for congruent patterns of phenotypic and genetic variability among any studied species, indicating that they show idiosyncratic evolutionary trajectories and distinctive demographic responses to habitat fragmentation across a common landscape. This suggests that conservation practices in networks of protected areas require detailed ecological and evolutionary information on target species to focus management efforts on those taxa that are more sensitive to the effects of habitat fragmentation. PMID:26475782

  11. The DDBJ Japanese Genotype-phenotype Archive for genetic and phenotypic human data

    PubMed Central

    Kodama, Yuichi; Mashima, Jun; Kosuge, Takehide; Katayama, Toshiaki; Fujisawa, Takatomo; Kaminuma, Eli; Ogasawara, Osamu; Okubo, Kousaku; Takagi, Toshihisa; Nakamura, Yasukazu

    2015-01-01

    The DNA Data Bank of Japan Center (DDBJ Center; http://www.ddbj.nig.ac.jp) maintains and provides public archival, retrieval and analytical services for biological information. Since October 2013, DDBJ Center has operated the Japanese Genotype-phenotype Archive (JGA) in collaboration with our partner institute, the National Bioscience Database Center (NBDC) of the Japan Science and Technology Agency. DDBJ Center provides the JGA database system which securely stores genotype and phenotype data collected from individuals whose consent agreements authorize data release only for specific research use. NBDC has established guidelines and policies for sharing human-derived data and reviews data submission and usage requests from researchers. In addition to the JGA project, DDBJ Center develops Semantic Web technologies for data integration and sharing in collaboration with the Database Center for Life Science. This paper describes the overview of the JGA project, updates to the DDBJ databases, and services for data retrieval, analysis and integration. PMID:25477381

  12. Brugada Syndrome and Early Repolarisation: Distinct Clinical Entities or Different Phenotypes of the Same Genetic Disease?

    PubMed Central

    Caputo, Maria Luce; Regoli, François; Moccetti, Tiziano; Brugada, Pedro; Auricchio, Angelo

    2016-01-01

    Brugada and early repolarisation (ER) syndromes are currently considered two distinct inherited electrical disorders with overlapping clinical and electrocardiographic features. A considerable number of patients diagnosed with ER syndrome have a genetic mutation related to Brugada syndrome (BrS). Due to the high variable phenotypic manifestation, patients with BrS may present with inferolateral repolarisation abnormalities only, resembling the ER pattern. Moreover, the complex genotype–phenotype interaction in BrS can lead to the occurrence of mixed phenotypes with ER syndrome. The first part of this review focuses on specific clinical and electrocardiographic features of BrS and ER syndrome, highlighting the similarity shared by the two primary electrical disorders. The genetic background, with emphasis on the complexity of genotype–phenotype interaction, is explored in the second part of this review.

  13. Phenotypic, genetic, and environmental relationships between self-reported talents and measured intelligence.

    PubMed

    Schermer, Julie Aitken; Johnson, Andrew M; Jang, Kerry L; Vernon, Philip A

    2015-02-01

    The relationship between self-report abilities and measured intelligence was examined at both the phenotypic (zero-order) level as well as at the genetic and environmental levels. Twins and siblings (N = 516) completed a timed intelligence test and a self-report ability questionnaire, which has previously been found to produce 10 factors, including: politics, interpersonal relationships, practical tasks, intellectual pursuits, academic skills, entrepreneur/business, domestic skills, vocal abilities, and creativity. At the phenotypic level, the correlations between the ability factor scores and intelligence ranged from 0.01 to 0.42 (between self-report academic abilities and verbal intelligence). Further analyses found that some of the phenotypic relationships between self-report ability scores and measured intelligence also had significant correlations at the genetic and environmental levels, suggesting that some of the observed relationships may be due to common genetic and/or environmental factors. PMID:25662420

  14. Novel Genetic and Phenotypic Heterogeneity in Bordetella bronchiseptica Pertactin

    PubMed Central

    Register, Karen B.

    2001-01-01

    The Bordetella bronchiseptica outer membrane protein pertactin is believed to function as an adhesin and is an important protective immunogen. Previous sequence analysis of the pertactin gene identified two regions predicted to encode amino acid repeat motifs. Recent studies have documented DNA sequence heterogeneity in both regions. The present study describes additional variants in these regions, which form the basis for six novel pertactin types. Immunoblotting demonstrated phenotypic heterogeneity in pertactin consistent with the predicted combined sizes of the repeat regions. A revised system for classifying B. bronchiseptica pertactin variants is proposed. PMID:11179374

  15. Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment

    PubMed Central

    Globa, Evgenia; Zelinska, Nataliya; Mackay, Deborah J.G.; Temple, Karen I.; Houghton, Jayne A.L.; Hattersley, Andrew T.; Flanagan, Sarah E.; Ellard, Sian

    2016-01-01

    Background Neonatal diabetes has not been previously studied in Ukraine. We investigated the genetic etiology in patients with onset of diabetes during the first 9 months of life. Methods We established a Pediatric Diabetes Register to identify patients diagnosed with diabetes before 9 months of age. Genetic testing was undertaken for 42 patients with permanent or transient diabetes diagnosed within the first 6 months of life (n=22) or permanent diabetes diagnosed between 6 and 9 months (n=20). Results We determined the genetic etiology in 23 of 42 (55%) patients; 86% of the patients diagnosed before 6 months and 20% diagnosed between 6 and 9 months. The incidence of neonatal diabetes in Ukraine was calculated to be 1 in 126,397 live births. Conclusions Genetic testing for patients identified through the Ukrainian Pediatric Diabetes Register identified KCNJ11 and ABCC8 mutations as the most common cause (52%) of neonatal diabetes. Transfer to sulfonylureas improved glycemic control in all 11 patients. PMID:26208381

  16. Phenotypic novelty in experimental hybrids is predicted by the genetic distance between species of cichlid fish

    PubMed Central

    2009-01-01

    Background Transgressive segregation describes the occurrence of novel phenotypes in hybrids with extreme trait values not observed in either parental species. A previously experimentally untested prediction is that the amount of transgression increases with the genetic distance between hybridizing species. This follows from QTL studies suggesting that transgression is most commonly due to complementary gene action or epistasis, which become more frequent at larger genetic distances. This is because the number of QTLs fixed for alleles with opposing signs in different species should increase with time since speciation provided that speciation is not driven by disruptive selection. We measured the amount of transgression occurring in hybrids of cichlid fish bred from species pairs with gradually increasing genetic distances and varying phenotypic similarity. Transgression in multi-trait shape phenotypes was quantified using landmark-based geometric morphometric methods. Results We found that genetic distance explained 52% and 78% of the variation in transgression frequency in F1 and F2 hybrids, respectively. Confirming theoretical predictions, transgression when measured in F2 hybrids, increased linearly with genetic distance between hybridizing species. Phenotypic similarity of species on the other hand was not related to the amount of transgression. Conclusion The commonness and ease with which novel phenotypes are produced in cichlid hybrids between unrelated species has important implications for the interaction of hybridization with adaptation and speciation. Hybridization may generate new genotypes with adaptive potential that did not reside as standing genetic variation in either parental population, potentially enhancing a population's responsiveness to selection. Our results make it conceivable that hybridization contributed to the rapid rates of phenotypic evolution in the large and rapid adaptive radiations of haplochromine cichlids. PMID:19961584

  17. Extramedullary hematopoiesis in renal allograft

    PubMed Central

    Chen, Guilan; Ali, Reza; Shuldberg, Mark M.; Bastani, Bahar; Brink, David S.

    2013-01-01

    Extramedullary hematopoiesis (EMH), defined as the presence of hematopoietic elements outside of the medullary cavity of bone, has been reported in patients with various hematopoietic neoplasms including myelofibrosis. EMH commonly occurs in the liver and spleen (resulting in hepatosplenomegaly) and uncommonly involves the kidney. EMH involving the allograft kidney has not been reported in English literature. Herein, we report the first case of EMH in allograft kidney in a patient with myelofibrosis. The clinical and pathological findings are described. Through comparison of the medullary neoplastic infiltrate with the renal allograft infiltrate, we postulate the neoplastic nature of the infiltrate in the allograft kidney. PMID:26120442

  18. Toward diagnostic and phenotype markers for genetically transmitted speech delay.

    PubMed

    Shriberg, Lawrence D; Lewis, Barbara A; Tomblin, J Bruce; McSweeny, Jane L; Karlsson, Heather B; Scheer, Alison R

    2005-08-01

    Converging evidence supports the hypothesis that the most common subtype of childhood speech sound disorder (SSD) of currently unknown origin is genetically transmitted. We report the first findings toward a set of diagnostic markers to differentiate this proposed etiological subtype (provisionally termed speech delay-genetic) from other proposed subtypes of SSD of unknown origin. Conversational speech samples from 72 preschool children with speech delay of unknown origin from 3 research centers were selected from an audio archive. Participants differed on the number of biological, nuclear family members (0 or 2+) classified as positive for current and/or prior speech-language disorder. Although participants in the 2 groups were found to have similar speech competence, as indexed by their Percentage of Consonants Correct scores, their speech error patterns differed significantly in 3 ways. Compared with children who may have reduced genetic load for speech delay (no affected nuclear family members), children with possibly higher genetic load (2+ affected members) had (a) a significantly higher proportion of relative omission errors on the Late-8 consonants; (b) a significantly lower proportion of relative distortion errors on these consonants, particularly on the sibilant fricatives /s/, /z/, and //; and (c) a significantly lower proportion of backed /s/ distortions, as assessed by both perceptual and acoustic methods. Machine learning routines identified a 3-part classification rule that included differential weightings of these variables. The classification rule had diagnostic accuracy value of 0.83 (95% confidence limits = 0.74-0.92), with positive and negative likelihood ratios of 9.6 (95% confidence limits = 3.1-29.9) and 0.40 (95% confidence limits = 0.24-0.68), respectively. The diagnostic accuracy findings are viewed as promising. The error pattern for this proposed subtype of SSD is viewed as consistent with the cognitive-linguistic processing deficits

  19. Phenotypic and genetic diversity of enterococci isolated from Italian cheeses.

    PubMed

    Andrighetto, C; Knijff, E; Lombardi, A; Torriani, S; Vancanneyt, M; Kersters, K; Swings, J; Dellaglio, F

    2001-05-01

    In the present study, 124 enterococcal strains, isolated from traditional Italian cow, goat and buffalo cheeses, were characterized using phenotypic features and randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). The RAPD-PCR profiles obtained with four primers and five different amplification conditions were compared by numerical analysis and allowed an inter- and intraspecific differentiation of the isolates. Whole cell protein analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used as a reference method for species identification. The strains were identified as Enterococcus faecalis (82 strains), E. faecium (27 strains), E. durans (nine strains), E. gallinarum (four strains) and E. hirae (two strains). Species recognition by means of RAPD-PCR was in agreement with the SDS-PAGE results except for eight strains of E. faecium that clustered in separated groups. On the other hand, phenotypic identification based on carbohydrate fermentation profiles, using the rapid ID 32 STREP galleries, gave different results from SDS-PAGE in 12.1% of the cases. The majority of the strains had weak acidifying and proteolytic activities in milk. One E. faecium strain showed vanA (vancomycin resistance) genotype while four strains showed a beta-haemolytic reaction on human blood. Several strains showed antagonistic activity towards indicator strains of Listeria innocua, Clostridium tyrobutyricam and Propionibacterium freudenreichii subsp. shermanii. PMID:11504393

  20. Inherited Platelet Function Disorders: Algorithms for Phenotypic and Genetic Investigation.

    PubMed

    Gresele, Paolo; Bury, Loredana; Falcinelli, Emanuela

    2016-04-01

    Inherited platelet function disorders (IPFDs) manifest with mucocutaneous bleeding and are frequently difficult to diagnose due to their heterogeneity, the complexity of the platelet activation pathways and a lack of standardization of the platelet function laboratory assays and of their use for this purpose. A rational diagnostic approach to IPFDs should follow an algorithm where clinical examination and a stepwise laboratory evaluation play a crucial role. A streamlined panel of laboratory tests, with consecutive steps of increasing level of complexity, allows the phenotypic characterization of most IPFDs. A first-line diagnosis of a significant fraction of the IPFD may be made also at nonspecialized centers by using relatively simple tests, including platelet count, peripheral blood smear, light transmission aggregometry, measurement of platelet granule content and release, and the expression of glycoproteins by flow cytometry. Some of the most complex, second- and third-step tests may be performed only in highly specialized laboratories. Genotyping, including the widespread application of next-generation sequencing, has enabled discovery in the last few years of several novel genes associated with platelet disorders and this method may eventually become a first-line diagnostic approach; however, a preliminary clinical and laboratory phenotypic characterization nowadays still remains crucial for diagnosis of IPFDs. PMID:26962877

  1. Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders.

    PubMed

    Xu, M K; Gaysina, D; Barnett, J H; Scoriels, L; van de Lagemaat, L N; Wong, A; Richards, M; Croudace, T J; Jones, P B

    2015-01-01

    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations. PMID:26125156

  2. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    PubMed Central

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-01-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings. PMID:26051359

  3. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    NASA Astrophysics Data System (ADS)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  4. The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity.

    PubMed

    Crispo, Erika

    2007-11-01

    Two different, but related, evolutionary theories pertaining to phenotypic plasticity were proposed by James Mark Baldwin and Conrad Hal Waddington. Unfortunately, these theories are often confused with one another. Baldwin's notion of organic selection posits that plasticity influences whether an individual will survive in a new environment, thus dictating the course of future evolution. Heritable variations can then be selected upon to direct phenotypic evolution (i.e., "orthoplasy"). The combination of these two processes (organic selection and orthoplasy) is now commonly referred to as the "Baldwin effect." Alternately, Waddington's genetic assimilation is a process whereby an environmentally induced phenotype, or "acquired character," becomes canalized through selection acting upon the developmental system. Genetic accommodation is a modern term used to describe the process of heritable changes that occur in response to a novel induction. Genetic accommodation is a key component of the Baldwin effect, and genetic assimilation is a type of genetic accommodation. I here define both the Baldwin effect and genetic assimilation in terms of genetic accommodation, describe cases in which either should occur in nature, and propose that each could play a role in evolutionary diversification. PMID:17714500

  5. The evolutionary genetics of the genes underlying phenotypic associations for loblolly pine (Pinus taeda, Pinaceae).

    PubMed

    Eckert, Andrew J; Wegrzyn, Jill L; Liechty, John D; Lee, Jennifer M; Cumbie, W Patrick; Davis, John M; Goldfarb, Barry; Loopstra, Carol A; Palle, Sreenath R; Quesada, Tania; Langley, Charles H; Neale, David B

    2013-12-01

    A primary goal of evolutionary genetics is to discover and explain the genetic basis of fitness-related traits and how this genetic basis evolves within natural populations. Unprecedented technological advances have fueled the discovery of genetic variants associated with ecologically relevant phenotypes in many different life forms, as well as the ability to scan genomes for deviations from selectively neutral models of evolution. Theoretically, the degree of overlap between lists of genomic regions identified using each approach is related to the genetic architecture of fitness-related traits and the strength and type of natural selection molding variation at these traits within natural populations. Here we address for the first time in a plant the degree of overlap between these lists, using patterns of nucleotide diversity and divergence for >7000 unique amplicons described from the extensive expressed sequence tag libraries generated for loblolly pine (Pinus taeda L.) in combination with the >1000 published genetic associations. We show that loci associated with phenotypic traits are distinct with regard to neutral expectations. Phenotypes measured at the whole plant level (e.g., disease resistance) exhibit an approximately twofold increase in the proportion of adaptive nonsynonymous substitutions over the genome-wide average. As expected for polygenic traits, these signals were apparent only when loci were considered at the level of functional sets. The ramifications of this result are discussed in light of the continued efforts to dissect the genetic basis of quantitative traits. PMID:24121773

  6. The Evolutionary Genetics of the Genes Underlying Phenotypic Associations for Loblolly Pine (Pinus taeda, Pinaceae)

    PubMed Central

    Eckert, Andrew J.; Wegrzyn, Jill L.; Liechty, John D.; Lee, Jennifer M.; Cumbie, W. Patrick; Davis, John M.; Goldfarb, Barry; Loopstra, Carol A.; Palle, Sreenath R.; Quesada, Tania; Langley, Charles H.; Neale, David B.

    2013-01-01

    A primary goal of evolutionary genetics is to discover and explain the genetic basis of fitness-related traits and how this genetic basis evolves within natural populations. Unprecedented technological advances have fueled the discovery of genetic variants associated with ecologically relevant phenotypes in many different life forms, as well as the ability to scan genomes for deviations from selectively neutral models of evolution. Theoretically, the degree of overlap between lists of genomic regions identified using each approach is related to the genetic architecture of fitness-related traits and the strength and type of natural selection molding variation at these traits within natural populations. Here we address for the first time in a plant the degree of overlap between these lists, using patterns of nucleotide diversity and divergence for >7000 unique amplicons described from the extensive expressed sequence tag libraries generated for loblolly pine (Pinus taeda L.) in combination with the >1000 published genetic associations. We show that loci associated with phenotypic traits are distinct with regard to neutral expectations. Phenotypes measured at the whole plant level (e.g., disease resistance) exhibit an approximately twofold increase in the proportion of adaptive nonsynonymous substitutions over the genome-wide average. As expected for polygenic traits, these signals were apparent only when loci were considered at the level of functional sets. The ramifications of this result are discussed in light of the continued efforts to dissect the genetic basis of quantitative traits. PMID:24121773

  7. Imaging Phenotypes of Major Depressive Disorder: Genetic Correlates

    PubMed Central

    Savitz, Jonathan B; Drevets, Wayne C

    2009-01-01

    Imaging techniques are a potentially powerful method of identifying phenotypes that are associated with, or are indicative of a vulnerability to developing major depressive disorder (MDD). Here we identify seven promising MDD-associated traits identified by magnetic resonance imaging (MRI) or positron emission tomography (PET). We evaluate whether these traits are state-independent, heritable endophenotypes, or state-dependent phenotypes that may be useful markers of treatment efficacy. In MDD, increased activity of the amygdala in response to negative stimuli appears to be a mood-congruent phenomenon, and is likely moderated by the serotonin transporter gene (SLC6A4) promoter polymorphism (5-HTTLPR). Hippocampal volume loss is characteristic of elderly or chronically-ill samples and may be impacted by the val66met brain-derived neurotrophic factor (BDNF) gene variant and the 5-HTTLPR SLC6A4 polymorphism. White matter pathology is salient in elderly MDD cohorts but is associated with cerebrovascular disease, and is unlikely to be a useful marker of a latent MDD diathesis. Increased blood flow or metabolism of the subgenual anterior cingulate cortex (sgACC), together with gray matter volume loss in this region, is a well-replicated finding in MDD. An attenuation of the usual pattern of fronto-limbic connectivity, particularly a decreased temporal correlation in amygdala-anterior cingulate cortex (ACC) activity, is another MDD-associated trait. Concerning neuroreceptor PET imaging, decreased 5-HT1A binding potential in the raphe, medial temporal lobe, and medial prefrontal cortex (mPFC) has been strongly associated with MDD, and may be impacted by a functional single nucleotide polymorphism in the promoter region of the 5-HT1A gene (HTR1A: –1019C/G; rs6295). Potentially indicative of inter-study variation in MDD etiology or mood state, both increased and decreased binding potential of the serotonin transporter has been reported. Challenges facing the field include

  8. Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations.

    PubMed

    Mornet, Etienne

    2015-01-01

    Hypophosphatasia (HPP) is due to deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNAP). This enzyme cleaves extracellular substrates inorganic pyrophosphates (PPi), pyridoxal-5'-phosphate (PLP), phosphoethanolamine (PEA) and nucleotides, and probably other substrates not yet identified. During the last 15 years the role of TNAP in mineralization, and to a less degree in brain, has been investigated, providing hypotheses and explanations for both bone and neuronal HPP phenotypes. ALPL, the gene encoding TNAP, is subject to many mutations, mostly missense mutations. A few number of mutations are recurrently found and may be quite frequent in particular populations. This reflects founder effects. The great variety of mutations results in a great number of compound heterozygous genotypes and in highly variable clinical expressivity. A good correlation was observed between the severity of the disease and in vitro enzymatic activity of the mutant protein measured after site-directed mutagenesis. Many missense mutations found in severe hypophosphatasia produced a mutant protein that failed to reach the cell membrane , was accumulated in the cis-Golgi and was subsequently degraded in the proteasome. Missense mutations located in the catalytic site or in the homodimer interface were often shown by site-directed mutagenesis to have a dominant negative effect. Currently molecular diagnosis of HPP is based on the sequencing of the coding sequence of ALPL that allows detection of approximately 95 % of mutations in severe cases. In addition, other genes, especially genes encoding proteins involved in the regulation of extracellular PPi concentration, could modify the phenotype (modifier genes). PMID:26219705

  9. Genetic and phenotypic characterization of complex hereditary spastic paraplegia.

    PubMed

    Kara, Eleanna; Tucci, Arianna; Manzoni, Claudia; Lynch, David S; Elpidorou, Marilena; Bettencourt, Conceicao; Chelban, Viorica; Manole, Andreea; Hamed, Sherifa A; Haridy, Nourelhoda A; Federoff, Monica; Preza, Elisavet; Hughes, Deborah; Pittman, Alan; Jaunmuktane, Zane; Brandner, Sebastian; Xiromerisiou, Georgia; Wiethoff, Sarah; Schottlaender, Lucia; Proukakis, Christos; Morris, Huw; Warner, Tom; Bhatia, Kailash P; Korlipara, L V Prasad; Singleton, Andrew B; Hardy, John; Wood, Nicholas W; Lewis, Patrick A; Houlden, Henry

    2016-07-01

    The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next

  10. Genetic and phenotypic characterization of complex hereditary spastic paraplegia

    PubMed Central

    Kara, Eleanna; Tucci, Arianna; Manzoni, Claudia; Lynch, David S.; Elpidorou, Marilena; Bettencourt, Conceicao; Chelban, Viorica; Manole, Andreea; Hamed, Sherifa A.; Haridy, Nourelhoda A.; Federoff, Monica; Preza, Elisavet; Hughes, Deborah; Pittman, Alan; Jaunmuktane, Zane; Brandner, Sebastian; Xiromerisiou, Georgia; Wiethoff, Sarah; Schottlaender, Lucia; Proukakis, Christos; Morris, Huw; Warner, Tom; Bhatia, Kailash P.; Korlipara, L.V. Prasad; Singleton, Andrew B.; Hardy, John; Wood, Nicholas W.; Lewis, Patrick A.

    2016-01-01

    The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next

  11. T cell genetic background determines default T helper phenotype development in vitro

    PubMed Central

    1995-01-01

    A host's ability to resist certain pathogens such as Leishmania major can depend upon the phenotype of T helper (Th) subset that develops. Different murine genetic backgrounds are known to significantly alter the direction of Th subset development, although the cellular basis of this influence is poorly understood. To examine the basis of this effect we used an in vitro alpha/beta-T cell receptor (TCR) transgenic system for analysis of Th phenotype development. To control for TCR usage, we derived the DO11.10 alpha/beta-TCR transgene in several genetic backgrounds. Our findings suggest that the effects of genetic background on Th phenotype development reside within the T cell, and not the antigen-presenting cell compartment. Transgenic T cells from both the B10.D2 and BALB/c backgrounds showed development toward either the Th1 or Th2 phenotype under the strong directing influence of interleukin (IL) 12 and IL4, respectively. However, when T cells were activated in vitro under neutral conditions in which exogenous cytokines were not added, B10.D2-derived T cells acquired a significantly stronger Th1 phenotype than T cells from the BALB/c background, correspondent with in vivo Th responses to Leishmania in these strains. Importantly, these cytokine differences resulted in distinct functional properties, because B10.D2- but not BALB/c-derived T cells could induce macrophage production of nitric oxide, an important antimicrobial factor. Thus, the genetically determined default Th phenotype development observed in vitro may correspond to in vivo Th subset responses for pathogens such as Leishmania which do not initiate strong Th phenotype-directing signals. PMID:7836924

  12. Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory.

    PubMed

    Mitchell, Anna L; Dwyer, Andrew; Pitteloud, Nelly; Quinton, Richard

    2011-07-01

    Idiopathic hypogonadotropic hypogonadism (IHH) is defined by absent or incomplete puberty and characterised biochemically by low levels of sex steroids, with low or inappropriately normal gonadotropin hormones. IHH is frequently accompanied by non-reproductive abnormalities, most commonly anosmia, which is present in 50-60% of cases and defines Kallmann syndrome. The understanding of IHH has undergone rapid evolution, both in respect of genetics and breadth of phenotype. Once considered in monogenic Mendelian terms, it is now more coherently understood as a complex genetic condition. Oligogenic and complex genetic-environmental interactions have now been identified, with physiological and environmental factors interacting in genetically susceptible individuals to alter the clinical course and phenotype. These potentially link IHH to ancient evolutionary pressures on the ancestral human genome. PMID:21511493

  13. An interview study of phenotypic characterization of genetically-modified mice.

    PubMed

    Thon, R; Vondeling, H; Lassen, J; Hansen, A K; Ritskes-Hoitinga, M

    2009-07-01

    An interview study was carried out with the aim of clarifying the reasons for the limited use of phenotypic characterization of genetically-modified mice (GMM) and identifying issues hindering its implementation. A total of 15 users of GMM participated in semi-structured face-to-face interviews, which were audio-taped and transcribed. The results were extracted using content analysis by theme. The investigation confirmed that few animals were systematically phenotyped and an observational approach was found to be widespread. The primary interest of the interviewees was phenotyping for impaired animal welfare. The concept of phenotyping was widely understood and perceived as a scientific advantage. The comprehensiveness of the protocols and the resources required for phenotyping were seen as problematic. All participants addressed this issue, be it regarding lack of time, money or expertise. Also, among the negative statements were worries about the capability of the available protocols to produce the information needed by the individual scientist. Phenotyping was predicted to become much more widespread in the future and its success was expected to depend on the development of reliable, fast and inexpensive methods. The study identified different aims of phenotyping and the suitability of the published protocols for these purposes was discussed. The contradiction between the limited use of characterization and its advantages was also discussed and proposals for the improvement of future phenotyping strategies are formulated. PMID:19237456

  14. Butyrylcholinesterase Genetic Variants: Association with Cocaine Dependence and Related Phenotypes

    PubMed Central

    Negrão, André Brooking; Pereira, Alexandre Costa; Guindalini, Camila; Santos, Hadassa Campos; Messas, Guilherme Peres; Laranjeira, Ronaldo; Vallada, Homero

    2013-01-01

    Objective The search for genetic vulnerability factors in cocaine dependence has focused on the role that neuroplasticity plays in addiction. However, like many other drugs, the ability of an individual to metabolize cocaine can also influence susceptibility to dependence. Butyrylcholinesterase (BChE) metabolizes cocaine, and genetic variants of the BChE gene (BCHE) alter its catalytic activity. Therefore, we hypothesize that cocaine users with polymorphisms in BCHE can show diverse addictive behaviors due to differences in effective plasma concentrations of cocaine. Those polymorphisms might also influence users to prefer one of the two main preparations (crack or powder cocaine), despite having equal access to both. The present work investigates polymorphisms in BCHE and if those genetic variants constitute risk factors for cocaine dependence and for crack cocaine use. Methods A total of 1,436 individuals (698 cocaine-dependent patients and 738 controls) were genotyped for three single nucleotide polymorphisms (SNPs) in BCHE: rs1803274, rs4263329, and rs4680662. Results For rs4263329, a nominal difference was found between cases and controls. For rs1803274 (the functional SNP), a statistically significant difference was found between patients who used crack cocaine exclusively and those who used only powder cocaine (P = 0.027; OR = 4.36; 95% CI = 1.18–16.04). Allele frequencies and genotypes related to other markers did not differ between cases and controls or between the two cocaine subgroups. Conclusions Our findings suggest that the AA genotype of rs1803274 is a risk factor for crack cocaine use, which is more addictive than powder cocaine use. Further studies are needed in order to confirm this preliminary result and clarify the role of BCHE and its variants in cocaine dependence. PMID:24312228

  15. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus

    PubMed Central

    Sanchez, Elena; Nadig, Ajay; Richardson, Bruce C; Freedman, Barry I; Kaufman, Kenneth M; Kelly, Jennifer A; Niewold, Timothy B; Kamen, Diane L; Gilkeson, Gary S; Ziegler, Julie T; Langefeld, Carl D; Alarcón, Graciela S; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Brown, Elizabeth E; Kimberly, Robert P; Reveille, John D; Vilá, Luis M; Merrill, Joan T; Anaya, Juan-Manuel; James, Judith A; Pons-Estel, Bernardo A; Martin, Javier; Park, So-Yeon; Bang, So-Young; Bae, Sang-Cheol; Moser, Kathy L; Vyse, Timothy J; Criswell, Lindsey A; Gaffney, Patrick M; Tsao, Betty P; Jacob, Chaim O; Harley, John B; Alarcón-Riquelme, Marta E; Sawalha, Amr H

    2011-01-01

    Objective Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. Materials and methods 4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Results Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Conclusion Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future. PMID:21719445

  16. Genetic and phenotypic analyses of carpel development in Arabidopsis.

    PubMed

    Balanzà, Vicente; Ballester, Patricia; Colombo, Monica; Fourquin, Chloé; Martínez-Fernández, Irene; Ferrándiz, Cristina

    2014-01-01

    Carpels are the female reproductive organs of the flower, organized in a gynoecium, which is arguably the most complex organ of a plant. The gynoecium provides protection for the ovules, helps to discriminate between male gametophytes, and facilitates successful pollination. After fertilization, it develops into a fruit, a specialized organ for seed protection and dispersal. To carry out all these functions, coordinated patterning and tissue specification within the developing gynoecium have to be achieved. In this chapter, we describe different methods to characterize defects in carpel patterning and morphogenesis associated with developmental mutations as well as a list of reporter lines that can be used to facilitate genetic analyses. PMID:24395260

  17. Mining associations between genetic markers, phenotypes, and covariates.

    PubMed

    Sevon, P; Ollikainen, V; Onkamo, P; Toivonen, H T; Mannila, H; Kere, J

    2001-01-01

    We used Haplotype Pattern Mining, HPM [Toivonen et al., Am J Hum Genet 67:133-45, 2000], for gene localization in Genetic Analysis Workshop (GAW) 12 isolate data. In HPM, association is analyzed by searching all trait-associated haplotype patterns. Data mining algorithms are utilized to make the search efficient. The strength of the haplotype-trait associations is measured by a linear model, into which a pre-seelected set of covariates is incorporated. Marker-wise patterns of association are used for predicting the disease gene location. Genome-wide scans of susceptibility genes for affection status as well as for the quantitative traits (Q1-Q5) were performed. First analyses were made with small sample sizes, 63-94 trios per trait, which is compared with a pilot study of a larger complex disease-mapping project. Subsequently, the analysis was repeated with approximately 600 cases and 600 controls per trait to give higher power to the analyses. With small sample sizes, only the susceptibility genes having the strongest effects on the traits could be localized. The larger sample size gave very good results: all susceptibility genes, except one, could be correctly localized. First experiments on candidate genes suggested that HPM is applicable even to fine mapping of mutations in DNA sequence. PMID:11793743

  18. Key concepts in human genetics: understanding the complex phenotype.

    PubMed

    Gibson, William T

    2009-01-01

    The recent sequencing of a reference human genome has generated a large number of DNA-based tools, which are being used to locate genes that contribute to disease. These tools have also enabled studies of the genetics of non-disease traits such as athletic fitness. Sport scientists should keep in mind three major factors when designing such studies and interpreting the literature. First of all, the methods used to assign a biological trait (be it performance related or disease related) to a specific gene are not as powerful as is commonly believed. Second, the methods used are thought to be more robust for disease-related traits than for normal physical characteristics, likely because there are many more biological factors contributing to the latter. Third, additional levels of variability continue to be uncovered in the human genome; these may ultimately contribute more to physical differences between human beings than the levels studied over the past decade. This introductory chapter will aim to equip the reader with the necessary vocabulary to understand and interpret genetic studies targeted to sport fitness and sport-related injury. PMID:19696504

  19. Phenotypic and genetic divergence within a single whitefish form - detecting the potential for future divergence.

    PubMed

    Hirsch, Philipp Emanuel; Eckmann, Reiner; Oppelt, Claus; Behrmann-Godel, Jasminca

    2013-12-01

    Human-induced nutrient input can change the selection regime and lead to the loss of biodiversity. For example, eutrophication caused speciation reversal in polymorphic whitefish populations through a flattening of littoral-pelagic selection gradients. We investigated the current state of phenotypic and genetic diversity in whitefish (Coregonus macrophthalmus) in a newly restored lake whose nutrient load has returned to pre-eutrophication levels and found that whitefish spawning at different depths varied phenotypically and genetically: individuals spawning at shallower depth had fewer gill rakers, faster growth, and a morphology adapted to benthic feeding, and they showed higher degrees of diet specialization than deeper spawning individuals. Microsatellite analyses complemented the phenotype analyses by demonstrating reproductive isolation along different spawning depths. Our results indicate that whitefish still retain or currently regain phenotypic and genetic diversity, which was lost during eutrophication. Hence, the population documented here has a potential for future divergence because natural selection can target phenotypes specialized along re-established littoral-pelagic selection gradients. The biodiversity, however, will have better chances to return if managers acknowledge the evolutionary potential within the local whitefish and adapt fishing and stocking measures. PMID:24478795

  20. The evolution of phenotypic plasticity: genealogy of a debate in genetics.

    PubMed

    Nicoglou, Antonine

    2015-04-01

    The paper describes the context and the origin of a particular debate that concerns the evolution of phenotypic plasticity. In 1965, British biologist A. D. Bradshaw proposed a widely cited model intended to explain the evolution of norms of reaction, based on his studies of plant populations. Bradshaw's model went beyond the notion of the "adaptive norm of reaction" discussed before him by Dobzhansky and Schmalhausen by suggesting that "plasticity"--the ability of a phenotype to be modified by the environment--should be genetically determined. To prove Bradshaw's hypothesis, it became necessary for some authors to identify the pressures exerted by natural selection on phenotypic plasticity in particular traits, and thus to model its evolution. In this paper, I contrast two different views, based on quantitative genetic models, proposed in the mid-1980s: Russell Lande and Sara Via's conception of phenotypic plasticity, which assumes that the evolution of plasticity is linked to the evolution of the plastic trait itself, and Samuel Scheiner and Richard Lyman's view, which assumes that the evolution of plasticity is independent from the evolution of the trait. I show how the origin of this specific debate, and different assumptions about the evolution of phenotypic plasticity, depended on Bradshaw's definition of plasticity and the context of quantitative genetics. PMID:25636689

  1. A molecular genetic study of autism and related phenotypes in extended pedigrees

    PubMed Central

    2013-01-01

    Background Efforts to uncover the risk genotypes associated with the familial nature of autism spectrum disorder (ASD) have had limited success. The study of extended pedigrees, incorporating additional ASD-related phenotypes into linkage analysis, offers an alternative approach to the search for inherited ASD susceptibility variants that complements traditional methods used to study the genetics of ASD. Methods We examined evidence for linkage in 19 extended pedigrees ascertained through ASD cases spread across at least two (and in most cases three) nuclear families. Both compound phenotypes (i.e., ASD and, in non-ASD individuals, the broad autism phenotype) and more narrowly defined components of these phenotypes, e.g., social and repetitive behavior, pragmatic language, and anxiety, were examined. The overarching goal was to maximize the aggregate information available on the maximum number of individuals and to disaggregate syndromic phenotypes in order to examine the genetic underpinnings of more narrowly defined aspects of ASD behavior. Results Results reveal substantial between-family locus heterogeneity and support the importance of previously reported ASD loci in inherited, familial, forms of ASD. Additional loci, not seen in the ASD analyses, show evidence for linkage to the broad autism phenotype (BAP). BAP peaks are well supported by multiple subphenotypes (including anxiety, pragmatic language, and social behavior) showing linkage to regions overlapping with the compound BAP phenotype. Whereas 'repetitive behavior’, showing the strongest evidence for linkage (Posterior Probability of Linkage = 62% at 6p25.2-24.3, and 69% at 19p13.3), appears to be linked to novel regions not detected with other compound or narrow phenotypes examined in this study. Conclusions These results provide support for the presence of key features underlying the complexity of the genetic architecture of ASD: substantial between-family locus heterogeneity, that the BAP appears

  2. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    EPA Science Inventory

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to
    Cadmium-Induced Testicular Injury in Mice

    Jie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2
    and Curtis D. Klaassen1

    ABSTRACT

    Parenteral administrati...

  3. Undiagnosed genetic muscle disease in the north of England: an in depth phenotype analysis.

    PubMed

    Harris, Elizabeth; Laval, Steve; Hudson, Judith; Barresi, Rita; De Waele, Liesbeth; Straub, Volker; Lochmüller, Hanns; Bushby, Kate; Sarkozy, Anna

    2013-01-01

    Advances in the molecular characterisation of genetic muscle disease has been rapid, as demonstrated by a recent analysis of these conditions in the north of England by Norwood et al (2009), in which a genetic diagnosis was achieved for 75.7% of patients. However, there remain many patients with suspected genetic muscle disease in who a diagnosis is not obtained, often despite considerable diagnostic effort, and these patients are now being considered for the application of new technologies such as next generation sequencing. This study aimed to provide an in-depth phenotype analysis of undiagnosed patients referred to the Northern region muscle clinic with suspected genetic muscle disease, with the intention of gaining insight into these conditions, identifing cases with a shared phenotype who may be amenable to collective diagnostic testing or research, and evaluating the strengths and limitations of our current diagnostic strategy. We used two approaches: a review of clinical findings in patients with undiagnosed muscle disease, and a hierarchical cluster analysis to provide an unbiased interpretation of the phenotype data. These joint approaches identified a correlation of phenotypic features according to the age of disease onset and also delineated several interesting groups of patients, as well as highlighting areas of frequent diagnostic difficulty that could benefit from the use of new high-throughput diagnostic techniques. Correspondence to: anna.sarkozy@ncl.ac.uk. PMID:23788081

  4. Undiagnosed Genetic Muscle Disease in the North of England: an in Depth Phenotype Analysis

    PubMed Central

    Harris, Elizabeth; Laval, Steve; Hudson, Judith; Barresi, Rita; De Waele, Liesbeth; Straub, Volker; Lochmüller, Hanns; Bushby, Kate; Sarkozy, Anna

    2013-01-01

    Advances in the molecular characterisation of genetic muscle disease has been rapid, as demonstrated by a recent analysis of these conditions in the north of England by Norwood et al (2009), in which a genetic diagnosis was achieved for 75.7% of patients. However, there remain many patients with suspected genetic muscle disease in who a diagnosis is not obtained, often despite considerable diagnostic effort, and these patients are now being considered for the application of new technologies such as next generation sequencing. This study aimed to provide an in-depth phenotype analysis of undiagnosed patients referred to the Northern region muscle clinic with suspected genetic muscle disease, with the intention of gaining insight into these conditions, identifing cases with a shared phenotype who may be amenable to collective diagnostic testing or research, and evaluating the strengths and limitations of our current diagnostic strategy. We used two approaches: a review of clinical findings in patients with undiagnosed muscle disease, and a hierarchical cluster analysis to provide an unbiased interpretation of the phenotype data. These joint approaches identified a correlation of phenotypic features according to the age of disease onset and also delineated several interesting groups of patients, as well as highlighting areas of frequent diagnostic difficulty that could benefit from the use of new high-throughput diagnostic techniques. Correspondence to: anna.sarkozy@ncl.ac.uk PMID:23788081

  5. Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype.

    PubMed

    Loland, Sigmund

    2015-09-01

    New insights into the genetics of sport performance lead to new areas of application. One area is the use of genetic tests to identify athletic talent. Athletic performances involve a high number of complex phenotypical traits. Based on the ACCE model (review of Analytic and Clinical validity, Clinical utility, and Ethical, legal and social implications), a critique is offered of the lack of validity and predictive power of genetic tests for talent. Based on the ideal of children's right to an open future, a moral argument is given against such tests on children and young athletes. A possible role of genetic tests in sport is proposed in terms of identifying predisposition for injury. In meeting ACCE requirements, such tests could improve individualised injury prevention and increase athlete health. More generally, limitations of science are discussed in the identification of talent and in the understanding of complex human performance phenotypes. An alternative approach to talent identification is proposed in terms of ethically sensitive, systematic and evidence-based holistic observation over time of relevant phenotypical traits by experienced observers. Talent identification in sport should be based on the primacy of the phenotype. PMID:26121951

  6. The ecology and evolution of animal medication: genetically fixed response versus phenotypic plasticity.

    PubMed

    Choisy, Marc; de Roode, Jacobus C

    2014-08-01

    Animal medication against parasites can occur either as a genetically fixed (constitutive) or phenotypically plastic (induced) behavior. Taking the tritrophic interaction between the monarch butterfly Danaus plexippus, its protozoan parasite Ophryocystis elektroscirrha, and its food plant Asclepias spp. as a test case, we develop a game-theory model to identify the epidemiological (parasite prevalence and virulence) and environmental (plant toxicity and abundance) conditions that predict the evolution of genetically fixed versus phenotypically plastic forms of medication. Our model shows that the relative benefits (the antiparasitic properties of medicinal food) and costs (side effects of medicine, the costs of searching for medicine, and the costs of plasticity itself) crucially determine whether medication is genetically fixed or phenotypically plastic. Our model suggests that animals evolve phenotypic plasticity when parasite risk (a combination of virulence and prevalence and thus a measure of the strength of parasite-mediated selection) is relatively low to moderately high and genetically fixed medication when parasite risk becomes very high. The latter occurs because at high parasite risk, the costs of plasticity are outweighed by the benefits of medication. Our model provides a simple and general framework to study the conditions that drive the evolution of alternative forms of animal medication. PMID:25061676

  7. Genetic and phenotypic diversity of Sclerotinia sclerotiorum on a small geographic scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Population structure, genetic and phenotypic diversity of Sclerotinia sclerotiorum were investigated on a small geographic scale. A collection of 40 Sclerotinia isolates from one square meter top layer of soil in a Washington alfalfa field was studied for colony color, Mycelial Compatibility Groupin...

  8. Genetic markers that influence feed efficiency phenotypes also affect cattle temperament as measured by flight speed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The measure of flight speed for cattle has been shown to be a predictive indicator of temperament and has also been associated with feed efficiency phenotypes, thus, genetic markers associated with both traits may assist with the selection of animals with calmer disposition and economic value. Chrom...

  9. Identification of Genetic Loci Underlying the Phenotypic Constructs of Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Liu, Xiao-Qing; Georgiades, Stelios; Duku, Eric; Thompson, Ann; Devlin, Bernie; Cook, Edwin H.; Wijsman, Ellen M.; Paterson, Andrew D.; Szatmari, Peter

    2011-01-01

    Objective: To investigate the underlying phenotypic constructs in autism spectrum disorders (ASD) and to identify genetic loci that are linked to these empirically derived factors. Method: Exploratory factor analysis was applied to two datasets with 28 selected Autism Diagnostic Interview-Revised (ADI-R) algorithm items. The first dataset was from…

  10. Identifying Multimodal Intermediate Phenotypes Between Genetic Risk Factors and Disease Status in Alzheimer's Disease.

    PubMed

    Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Saykin, Andrew J; Zhang, Daoqiang; Shen, Li

    2016-10-01

    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer's disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494

  11. Phenotypic and Genetic Associations between Reading Comprehension, Decoding Skills, and ADHD Dimensions: Evidence from Two Population-Based Studies

    ERIC Educational Resources Information Center

    Plourde, Vickie; Boivin, Michel; Forget-Dubois, Nadine; Brendgen, Mara; Vitaro, Frank; Marino, Cecilia; Tremblay, Richard T.; Dionne, Ginette

    2015-01-01

    Background: The phenotypic and genetic associations between decoding skills and ADHD dimensions have been documented but less is known about the association with reading comprehension. The aim of the study is to document the phenotypic and genetic associations between reading comprehension and ADHD dimensions of inattention and…

  12. Genetic variation in aggregation behaviour and interacting phenotypes in Drosophila.

    PubMed

    Philippe, Anne-Sophie; Jeanson, Raphael; Pasquaretta, Cristian; Rebaudo, Francois; Sueur, Cedric; Mery, Frederic

    2016-03-30

    Aggregation behaviour is the tendency for animals to group together, which may have important consequences on individual fitness. We used a combination of experimental and simulation approaches to study how genetic variation and social environment interact to influence aggregation dynamics inDrosophila To do this, we used two different natural lines ofDrosophilathat arise from a polymorphism in theforaginggene (rovers and sitters). We placed groups of flies in a heated arena. Flies could freely move towards one of two small, cooler refuge areas. In groups of the same strain, sitters had a greater tendency to aggregate. The observed behavioural variation was based on only two parameters: the probability of entering a refuge and the likelihood of choosing a refuge based on the number of individuals present. We then directly addressed how different strains interact by mixing rovers and sitters within a group. Aggregation behaviour of each line was strongly affected by the presence of the other strain, without changing the decision rules used by each. Individuals obeying local rules shaped complex group dynamics via a constant feedback loop between the individual and the group. This study could help to identify the circumstances under which particular group compositions may improve individual fitness through underlying aggregation mechanisms under specific environmental conditions. PMID:27009219

  13. Narcissism predicts impulsive buying: phenotypic and genetic evidence.

    PubMed

    Cai, Huajian; Shi, Yuanyuan; Fang, Xiang; Luo, Yu L L

    2015-01-01

    Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In Study 1, we surveyed an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating 304 twin pairs, Study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship. PMID:26217251

  14. Narcissism predicts impulsive buying: phenotypic and genetic evidence

    PubMed Central

    Cai, Huajian; Shi, Yuanyuan; Fang, Xiang; Luo, Yu L. L.

    2015-01-01

    Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In Study 1, we surveyed an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating 304 twin pairs, Study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship. PMID:26217251

  15. Long noncoding RNAs in hematopoiesis

    PubMed Central

    Zhang, Xu; Hu, Wenqian

    2016-01-01

    Mammalian development is under tight control to ensure precise gene expression. Recent studies reveal a new layer of regulation of gene expression mediated by long noncoding RNAs. These transcripts are longer than 200nt that do not have functional protein coding capacity. Interestingly, many of these long noncoding RNAs are expressed with high specificity in different types of cells, tissues, and developmental stages in mammals, suggesting that they may have functional roles in diverse biological processes. Here, we summarize recent findings of long noncoding RNAs in hematopoiesis, which is one of the best-characterized mammalian cell differentiation processes. Then we provide our own perspectives on future studies of long noncoding RNAs in this field. PMID:27508063

  16. Noncoding Regulatory RNAs in Hematopoiesis.

    PubMed

    Jeong, M; Goodell, M A

    2016-01-01

    Hematopoiesis is a dynamic process in which blood cells are continuously generated from hematopoietic stem cells (HSCs). The regulatory mechanisms controlling HSC fate have been studied extensively over the past several decades. Although many protein-coding genes have been shown to regulate hematopoietic differentiation, additional levels of HSC regulation are not well studied. Advances in deep sequencing have revealed many new classes of regulatory noncoding RNAs (ncRNAs), such as enhancer RNAs and antisense ncRNAs. Functional analysis of some of these ncRNAs has provided insights into the molecular mechanisms that regulate hematopoietic development and disease. In this review, we summarize recent advances in our understanding of functional regulatory ncRNAs associated with hematopoietic self-renewal and differentiation, as well as those dysregulated ncRNAs involved in hematologic malignancies. PMID:27137659

  17. The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant

    PubMed Central

    Austerlitz, Frédéric; Gleiser, Gabriela; Teixeira, Sara; Bernasconi, Giorgina

    2012-01-01

    Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion. PMID:21561968

  18. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis

    PubMed Central

    Gao, Xin; Wu, Tongyu; Johnson, Kirby D.; Lahvic, Jamie L.; Ranheim, Erik A.; Zon, Leonard I.; Bresnick, Emery H.

    2016-01-01

    Summary Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203

  19. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis.

    PubMed

    Gao, Xin; Wu, Tongyu; Johnson, Kirby D; Lahvic, Jamie L; Ranheim, Erik A; Zon, Leonard I; Bresnick, Emery H

    2016-03-01

    Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5(-/-) AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203

  20. Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum

    PubMed Central

    Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael

    2015-01-01

    Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies have tried to provide a formal framework for the description of the adaptive process. Of these, two complementary modeling approaches have emerged: While so-called adaptive-walk models consider adaptation from the successive fixation of de novo mutations only, quantitative genetic models assume that adaptation proceeds exclusively from preexisting standing genetic variation. The latter approach, however, has focused on short-term evolution of population means and variances rather than on the statistical properties of adaptive substitutions. Our aim is to combine these two approaches by describing the ecological and genetic factors that determine the genetic basis of adaptation from standing genetic variation in terms of the effect-size distribution of individual alleles. Specifically, we consider the evolution of a quantitative trait to a gradually changing environment. By means of analytical approximations, we derive the distribution of adaptive substitutions from standing genetic variation, that is, the distribution of the phenotypic effects of those alleles from the standing variation that become fixed during adaptation. Our results are checked against individual-based simulations. We find that, compared to adaptation from de novo mutations, (i) adaptation from standing variation proceeds by the fixation of more alleles of small effect and (ii) populations that adapt from standing genetic variation can traverse larger distances in phenotype space and, thus, have a higher potential for adaptation if the rate of environmental change is fast rather than slow. PMID:26038348

  1. Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum.

    PubMed

    Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael

    2015-08-01

    Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies have tried to provide a formal framework for the description of the adaptive process. Of these, two complementary modeling approaches have emerged: While so-called adaptive-walk models consider adaptation from the successive fixation of de novo mutations only, quantitative genetic models assume that adaptation proceeds exclusively from preexisting standing genetic variation. The latter approach, however, has focused on short-term evolution of population means and variances rather than on the statistical properties of adaptive substitutions. Our aim is to combine these two approaches by describing the ecological and genetic factors that determine the genetic basis of adaptation from standing genetic variation in terms of the effect-size distribution of individual alleles. Specifically, we consider the evolution of a quantitative trait to a gradually changing environment. By means of analytical approximations, we derive the distribution of adaptive substitutions from standing genetic variation, that is, the distribution of the phenotypic effects of those alleles from the standing variation that become fixed during adaptation. Our results are checked against individual-based simulations. We find that, compared to adaptation from de novo mutations, (i) adaptation from standing variation proceeds by the fixation of more alleles of small effect and (ii) populations that adapt from standing genetic variation can traverse larger distances in phenotype space and, thus, have a higher potential for adaptation if the rate of environmental change is fast rather than slow. PMID:26038348

  2. Phenotypic and Genetic Variations in Obligate Parthenogenetic Populations of Eriosoma lanigerum Hausmann (Hemiptera: Aphididae).

    PubMed

    Ruiz-Montoya, L; Zúñiga, G; Cisneros, R; Salinas-Moreno, Y; Peña-Martínez, R; Machkour-M'Rabet, S

    2015-12-01

    The study of phenotypic and genetic variation of obligate parthenogenetic organisms contributes to an understanding of evolution in the absence of genetic variation produced by sexual reproduction. Eriosoma lanigerum Hausmann undergoes obligate parthenogenesis in Mexico City, Mexico, due to the unavailability of the host plants required for sexual reproduction. We analysed the phenotypic and genetic variation of E. lanigerum in relation to the dry and wet season and plant phenology. Aphids were collected on two occasions per season on a secondary host plant, Pyracantha koidzumii, at five different sites in the southern area of Mexico City, Mexico. Thirteen morphological characteristics were measured from 147 to 276 individuals per site and per season. A multivariate analysis of variance was performed to test the effect of the season, site and their interaction on morphological traits. Morphological variation was summarised using a principal component analysis. Genetic variation was described using six enzymatic loci, four of which were polymorphic. Our study showed that the site and season has a significant effect on morphological trait variation. The largest aphids were recorded during cold temperatures with low relative humidity and when the plant was at the end of the fruiting period. The mean genetic diversity was low (mean H e =  .161), and populations were genetically structured by season and site. Morphological and genetic variations appear to be associated with environmental factors that directly affect aphid development and/or indirectly by host plant phenology. PMID:26272633

  3. Blinders, phenotype, and fashionable genetic analysis: a critical examination of the current state of epilepsy genetic studies.

    PubMed

    Greenberg, David A; Subaran, Ryan

    2011-01-01

    Although it is accepted that idiopathic generalized epilepsy (IGE) is strongly, if not exclusively, influenced by genetic factors, there is little consensus on what those genetic influences may be, except for one point of agreement: epilepsy is a "channelopathy." This point of agreement has continued despite the failure of studies investigating channel genes to demonstrate the primacy of their influence on IGE expression. The belief is sufficiently entrenched that the more important issues involving phenotype definition, data collection, methods of analysis, and the interpretation of results have become subordinate to it. The goal of this article is to spark discussion of where the study of epilepsy genetics has been and where it is going, suggesting we may never get there if we continue on the current road. We use the long history of psychiatric genetic studies as a mirror and starting point to illustrate that only when we expand our outlook on how to study the genetics of the epilepsies, consider other mechanisms that could lead to epilepsy susceptibility, and, especially, focus on the critical problem of phenotype definition, will the major influences on common epilepsy begin to be understood. PMID:21219301

  4. Punctuated Emergences of Genetic and Phenotypic Innovations in Eumetazoan, Bilaterian, Euteleostome, and Hominidae Ancestors

    PubMed Central

    Wenger, Yvan; Galliot, Brigitte

    2013-01-01

    Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eukaryotes, we find that 33% human proteins have an ortholog in nonmetazoan species. This premetazoan proteome associates with 43% of all annotated human biological processes. Subsequently, four major waves of innovations can be inferred in the last common ancestors of eumetazoans, bilaterians, euteleostomi (bony vertebrates), and hominidae, largely specific to each epoch, whereas early branching deuterostome and chordate phyla show very few innovations. Interestingly, groups of proteins that act together in their modern human functions often originated concomitantly, although the corresponding human phenotypes frequently emerged later. For example, the three cnidarians Acropora, Nematostella, and Hydra express a highly similar protein inventory, and their protein innovations can be affiliated either to traits shared by all eumetazoans (gut differentiation, neurogenesis); or to bilaterian traits present in only some cnidarians (eyes, striated muscle); or to traits not identified yet in this phylum (mesodermal layer, endocrine glands). The variable correspondence between phenotypes predicted from protein enrichments and observed phenotypes suggests that a parallel mechanism repeatedly produce similar phenotypes, thanks to novel regulatory events that independently tie preexisting conserved genetic modules. PMID:24065732

  5. Phenotypic and genetic variation in longevity of Polish Landrace sows.

    PubMed

    Sobczyńska, M; Blicharski, T

    2015-08-01

    The influence of some production traits on the longevity of Polish Landrace sows was evaluated using survival analysis. Estimates of genetic parameters were obtained from the sire and animal components in linear and survival methodologies. Comparison between survival and linear models was based on heritabilities and ranking of estimated breeding values of sires. The same data set, 13,031 sows, was used for both methodologies, even in the presence of censored observations. The effects of herd*year and year*season of the first farrowing had the largest influence on the risk of culling of sows. Sows born in spring season (March-May) had a 24% (p < 0.001) lower hazard for removal than those born in winter (December-February). The age at first farrowing had a small but significant effect on culling: the hazard regression coefficient for this trait was 0.002 per day. Sows that had more piglets born alive and fewer stillborn in the first litter had a decreased risk of being culled. Within a contemporary group, slower growing gilts had decreased removal risk. The relative risk ratios show a marginal decreased rate of culling for sows with backfat thickness between 9.5 and 11 mm compared to the leaner sows. Loin depth had no effect on sow longevity. Heritability estimates ranged from 0.09 to 0.38 depending on the model and type of analysis. In survival analysis, all heritabilities for longevity were higher when analysed with sire models (0.21 and 0.38) compared to animal models (0.09 and 0.16). The use of animal or sire models in the linear analysis gave similar heritability estimates (0.12 and 0.10). Correlations between breeding values for sires were moderate and high, with absolute values from 0.51 to 0.99, depending on the model fitted and methodology. A stronger correlations within methodologies (0.83-0.99) than within models with different methodologies (0.51-0.63) were obtained. PMID:25882772

  6. Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes

    PubMed Central

    Andreassen, Ole A.; McEvoy, Linda K.; Thompson, Wesley K.; Wang, Yunpeng; Reppe, Sjur; Schork, Andrew J.; Zuber, Verena; Barrett-Connor, Elizabeth; Gautvik, Kaare; Aukrust, Pål; Karlsen, Tom H.; Djurovic, Srdjan; Desikan, Rahul S.; Dale, Anders M.

    2014-01-01

    Blood pressure is a critical determinant of cardiovascular morbidity and mortality. It is affected by environmental factors, but has a strong heritable component. Despite recent large genome-wide association studies, few genetic risk factors for blood pressure have been identified. Epidemiological studies suggest associations between blood pressure and several diseases and traits, which may partly arise from a shared genetic basis (genetic pleiotropy). Using genome-wide association studies summary statistics and a genetic pleiotropy-informed conditional False Discovery Rate method, we systematically investigated genetic overlap between systolic blood pressure and 12 co-morbid traits and diseases. We found significant ‘enrichment’ of single nucleotide polymorphisms associated with systolic blood pressure as a function of their association with body mass index, low density lipoprotein, waist hip ratio, schizophrenia, bone mineral density, type 1 diabetes and celiac disease. In contrast, the magnitude of enrichment due to shared polygenic effects was smaller with the other phenotypes (triglycerides, high density lipoproteins, type 2 diabetes, rheumatoid arthritis, and height). Applying the conditional False Discovery Rate method to the enriched phenotypes, we identified 62 loci associated with systolic blood pressure (False Discovery Rate < 0.01), including 42 novel loci. The observed polygenic overlap between systolic blood pressure and several related disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors, but also reflect an etiological relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to lipid biology and the immune system in systolic blood pressure. PMID:24396023

  7. Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes.

    PubMed

    Andreassen, Ole A; McEvoy, Linda K; Thompson, Wesley K; Wang, Yunpeng; Reppe, Sjur; Schork, Andrew J; Zuber, Verena; Barrett-Connor, Elizabeth; Gautvik, Kaare; Aukrust, Pål; Karlsen, Tom H; Djurovic, Srdjan; Desikan, Rahul S; Dale, Anders M

    2014-04-01

    Blood pressure is a critical determinant of cardiovascular morbidity and mortality. It is affected by environmental factors, but has a strong heritable component. Despite recent large genome-wide association studies, few genetic risk factors for blood pressure have been identified. Epidemiological studies suggest associations between blood pressure and several diseases and traits, which may partly arise from a shared genetic basis (genetic pleiotropy). Using genome-wide association studies summary statistics and a genetic pleiotropy-informed conditional false discovery rate method, we systematically investigated genetic overlap between systolic blood pressure (SBP) and 12 comorbid traits and diseases. We found significant enrichment of single nucleotide polymorphisms associated with SBP as a function of their association with body mass index, low-density lipoprotein, waist/hip ratio, schizophrenia, bone mineral density, type 1 diabetes mellitus, and celiac disease. In contrast, the magnitude of enrichment due to shared polygenic effects was smaller with the other phenotypes (triglycerides, high-density lipoproteins, type 2 diabetes mellitus, rheumatoid arthritis, and height). Applying the conditional false discovery rate method to the enriched phenotypes, we identified 62 loci associated with SBP (false discovery rate <0.01), including 42 novel loci. The observed polygenic overlap between SBP and several related disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors but also reflect an etiologic relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to lipid biology and the immune system in SBP. PMID:24396023

  8. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection.

    PubMed

    Lind, Martin I; Yarlett, Kylie; Reger, Julia; Carter, Mauricio J; Beckerman, Andrew P

    2015-10-01

    Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments. PMID:26423845

  9. Feasibility of a bilateral 4000–6000 Hz notch as a phenotype for genetic association analysis

    PubMed Central

    Phillips, Susan L.; Richter, Scott J.; Teglas, Sandra L.; Bhatt, Ishan S.; Morehouse, Robin C.; Hauser, Elizabeth R.; Henrich, Vincent C.

    2016-01-01

    Objective Noise-induced hearing loss (NIHL) is a worldwide health problem and a growing concern among young people. Although some people appear to be more susceptible to NIHL, genetic association studies lack a specific phenotype. We tested the feasibility of a bilateral 4000–6000 Hz audiometric notch as a phenotype for identifying genetic contributions to hearing loss in young adults. Design A case-control-control study was conducted to examine selected SNPs in 52 genes previously associated with hearing loss and/or expressed in the cochlea. A notch was defined as a minimum of a 15-dB drop at 4000–6000 Hz from the previous best threshold with a 5-dB ‘recovery’ at 8000 Hz. Study sample Participants were 252 individuals of European descent taken from a population of 640 young adults who are students of classical music. Participants were grouped as No-notch (NN), Unilateral Notch (UN), or Bilateral Notch (BN). Results The strongest evidence of a genetic association with the 4000–6000 Hz notch was a nonsynonymous SNP variant in the ESRR? gene (rs61742642:C>T, P386S). Carriers of the minor allele accounted for 26% of all bilateral losses. Conclusion This study indicates that the 4000–6000 Hz bilateral notch is a feasible phenotype for identifying genetic susceptibility to hearing loss. PMID:25938503

  10. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection

    PubMed Central

    Lind, Martin I.; Yarlett, Kylie; Reger, Julia; Carter, Mauricio J.; Beckerman, Andrew P.

    2015-01-01

    Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments. PMID:26423845

  11. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans

    PubMed Central

    Saykin, Andrew J.; Shen, Li; Foroud, Tatiana M.; Potkin, Steven G.; Swaminathan, Shanker; Kim, Sungeun; Risacher, Shannon L.; Nho, Kwangsik; Huentelman, Matthew J.; Craig, David W.; Thompson, Paul M.; Stein, Jason L.; Moore, Jason H.; Farrer, Lindsay A.; Green, Robert C.; Bertram, Lars; Jack, Clifford R.; Weiner, Michael W.

    2010-01-01

    The role of the Alzheimer’s Disease Neuroimaging Initiative Genetics Core is to facilitate the investigation of genetic influences on disease onset and trajectory as reflected in structural, functional, and molecular imaging changes; fluid biomarkers; and cognitive status. Major goals include (1) blood sample processing, genotyping, and dissemination, (2) genome-wide association studies (GWAS) of longitudinal phenotypic data, and (3) providing a central resource, point of contact and planning group for genetics within Alzheimer’s Disease Neuroimaging Initiative. Genome-wide array data have been publicly released and updated, and several neuroimaging GWAS have recently been reported examining baseline magnetic resonance imaging measures as quantitative phenotypes. Other preliminary investigations include copy number variation in mild cognitive impairment and Alzheimer’s disease and GWAS of baseline cerebrospinal fluid biomarkers and longitudinal changes on magnetic resonance imaging. Blood collection for RNA studies is a new direction. Genetic studies of longitudinal phenotypes hold promise for elucidating disease mechanisms and risk, development of therapeutic strategies, and refining selection criteria for clinical trials. PMID:20451875

  12. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases

    PubMed Central

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-01-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases. PMID:26924528

  13. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases.

    PubMed

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-03-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases. PMID:26924528

  14. Destabilizing Protein Polymorphisms in the Genetic Background Direct Phenotypic Expression of Mutant SOD1 Toxicity

    PubMed Central

    Gidalevitz, Tali; Krupinski, Thomas; Garcia, Susana; Morimoto, Richard I.

    2009-01-01

    Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS) cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles. PMID:19266020

  15. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    PubMed

    Gidalevitz, Tali; Krupinski, Thomas; Garcia, Susana; Morimoto, Richard I

    2009-03-01

    Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS) cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles. PMID:19266020

  16. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis

    PubMed Central

    Inoue, Daichi; Bradley, Robert K.; Abdel-Wahab, Omar

    2016-01-01

    Genomic analyses of the myeloid malignancies and clonal disorders of hematopoiesis that may give rise to these disorders have identified that mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are among the most common targets of somatic mutations. These spliceosomal mutations often occur in a mutually exclusive manner with one another and, in aggregate, account for the most frequent class of mutations in patients with myelodysplastic syndromes (MDSs) in particular. Although substantial progress has been made in understanding the effects of several of these mutations on splicing and splice site recognition, functional connections linking the mechanistic changes in splicing induced by these mutations to the phenotypic consequences of clonal and aberrant hematopoiesis are not yet well defined. This review describes our current understanding of the mechanistic and biological effects of spliceosomal gene mutations in MDSs as well as the regulation of splicing throughout normal hematopoiesis. PMID:27151974

  17. Expected time for random genetic drift of a population between stable phenotypic states.

    PubMed Central

    Lande, R

    1985-01-01

    Natural selection and random genetic drift are modeled by using diffusion equations for the mean phenotype of a quantitative (polygenic) character in a finite population with two available adaptive zones or ecological niches. When there is appreciable selection, the population is likely to spend a very long time drifting around the peak in its original adaptive zone. With the mean phenotype initially anywhere near the local optimum, the expected time until a shift between phenotypic adaptive peaks increases approximately exponentially with the effective population size. In comparison, the expected duration of intermediate forms in the actual transition between adaptive peaks is extremely short, generally below the level of resolution in the fossil record, and increases approximately logarithmically with the effective population size. The evolutionary dynamics of this model conform to the pattern of current paleontological concepts of morphological "stasis" and "punctuated equilibria." PMID:3865184

  18. Genetic Similarities between Compulsive Overeating and Addiction Phenotypes: A Case for "Food Addiction"?

    PubMed

    Carlier, Nina; Marshe, Victoria S; Cmorejova, Jana; Davis, Caroline; Müller, Daniel J

    2015-12-01

    There exists a continuous spectrum of overeating, where at the extremes there are casual overindulgences and at the other a 'pathological' drive to consume palatable foods. It has been proposed that pathological eating behaviors may be the result of addictive appetitive behavior and loss of ability to regulate the consumption of highly processed foods containing refined carbohydrates, fats, salt, and caffeine. In this review, we highlight the genetic similarities underlying substance addiction phenotypes and overeating compulsions seen in individuals with binge eating disorder. We relate these similarities to findings from neuroimaging studies on reward processing and clinical diagnostic criteria based on addiction phenotypes. The abundance of similarities between compulsive overeating and substance addictions puts forth a case for a 'food addiction' phenotype as a valid, diagnosable disorder. PMID:26478196

  19. Contribution of genetics and environment to craniofacial anthropometric phenotypes in Belgian nuclear families.

    PubMed

    Jelenkovic, Aline; Poveda, Alaitz; Susanne, Charles; Rebato, Esther

    2008-12-01

    In this study we estimate relative genetic and environmental influences on head-related anthropometric phenotypes. The subject group consisted of 119 nuclear families living in Brussels, Belgium, and included 238 males and 236 females, ages 17 to 72 years. Two factor analyses with varimax rotation (the first one related to facial measurements and the second one to overall head morphology) were used to analyze 14 craniofacial size traits. The resulting four synthetic traits [HFCF, VFCF, HDF1, and HDF2-horizontal (breadth) and vertical (height) facial factors and two head horizontal (breadth) factors, respectively] were used as summary variables. Maximum heritabilities (H2) were estimated for all studied traits, and variance components analysis was applied to determine the contribution of genetics and environment on the four craniofacial factors. In addition, we examined the covariations between the face (HFCF and VFCF) and head-related factors (HDF1 and HDF2), separately. Quantitative genetic analysis showed that HFCF, VFCF, HDF1, and HDF2 variation was appreciably attributable to additive genetic effects, with heritability (h2) estimates of 67.62%, 54.97%, 70.76%, and 65.05%, respectively. The three variance components reflecting a shared familial environment were nonsignificant for these four phenotypes. Bivariate analysis revealed significant additive and residual correlations for both pair of traits. The results confirm the existence of a significant genetic component determining the four craniofacial synthetic traits, and common genetic and environmental effects shared by the two face-related phenotypes and by the head-related ones. PMID:19728541

  20. Evidence of Phenotypic and Genetic Relationships between Sociality, Emotional Reactivity and Production Traits in Japanese Quail

    PubMed Central

    Recoquillay, Julien; Leterrier, Christine; Calandreau, Ludovic; Bertin, Aline; Pitel, Frédérique; Gourichon, David; Vignal, Alain; Beaumont, Catherine; Le Bihan-Duval, Elisabeth; Arnould, Cécile

    2013-01-01

    The social behavior of animals, which is partially controlled by genetics, is one of the factors involved in their adaptation to large breeding groups. To understand better the relationships between different social behaviors, fear behaviors and production traits, we analyzed the phenotypic and genetic correlations of these traits in Japanese quail by a second generation crossing of two lines divergently selected for their social reinstatement behavior. Analyses of results for 900 individuals showed that the phenotypic correlations between behavioral traits were low with the exception of significant correlations between sexual behavior and aggressive pecks both at phenotypic (0.51) and genetic (0.90) levels. Significant positive genetic correlations were observed between emotional reactivity toward a novel object and sexual (0.89) or aggressive (0.63) behaviors. The other genetic correlations were observed mainly between behavioral and production traits. Thus, the level of emotional reactivity, estimated by the duration of tonic immobility, was positively correlated with weight at 17 and 65 days of age (0.76 and 0.79, respectively) and with delayed egg laying onset (0.74). In contrast, a higher level of social reinstatement behavior was associated with an earlier egg laying onset (-0.71). In addition, a strong sexual motivation was correlated with an earlier laying onset (-0.68) and a higher number of eggs laid (0.82). A low level of emotional reactivity toward a novel object and also a higher aggressive behavior were genetically correlated with a higher number of eggs laid (0.61 and 0.58, respectively). These results bring new insights into the complex determinism of social and emotional reactivity behaviors in birds and their relationships with production traits. Furthermore, they highlight the need to combine animal welfare and production traits in selection programs by taking into account traits of sociability and emotional reactivity. PMID:24324761

  1. Complement genetics and susceptibility to inflammatory disease. Lessons from genotype-phenotype correlations.

    PubMed

    de Córdoba, Santiago Rodríguez

    2016-06-01

    Different genome-wide linkage and association studies performed during the last 15 years have associated mutations and polymorphisms in complement genes with different diseases characterized by tissue damage and inflammation. These are complex disorders in which genetically susceptible individuals usually develop the pathology as a consequence of environmental triggers. Although complement dysregulation is a common feature of these pathologies, how the disease phenotype is determined is only partly understood. One way to advance understanding is to focus the research in the analysis of the peculiar genotype-phenotype correlations that characterize some of these diseases. I will review here how understanding the functional consequences of these disease-associated complement genetic variants is providing us with novel insights into the underpinning complement biology and a better knowledge of the pathogenic mechanisms underlying each of these pathologies. These advances have important therapeutic and diagnostic implications. PMID:26004345

  2. Pedimap: Software for the Visualization of Genetic and Phenotypic Data in Pedigrees

    PubMed Central

    2012-01-01

    Pedimap is a user-friendly software tool for visualizing phenotypic and genotypic data for related individuals linked in pedigrees. Genetic data can include marker scores, Identity-by-Descent probabilities, and marker linkage map positions, allowing the visualization of haplotypes through lineages. The pedigrees can accommodate all types of inheritance, including selfing, cloning, and repeated backcrossing, and all ploidy levels are supported. Visual association of the genetic data with phenotypic data simplifies the exploration of large data sets, thereby improving breeding decision making. Data are imported from text files; in addition data exchange with other software packages (FlexQTLTM and GenomeStudioTM) is possible. Instructions for use and an executable version compatible with the Windows platform are available for free from http://www.plantbreeding.wur.nl/UK/software_pedimap.html. PMID:23087384

  3. Fibrodysplasia Ossificans Progressiva: Clinical Course, Genetic Mutations and Genotype-Phenotype Correlation

    PubMed Central

    Hüning, Irina; Gillessen-Kaesbach, Gabriele

    2014-01-01

    Fibrodysplasia ossificans progressiva (FOP, MIM 135100) is a rare autosomal dominant genetic disorder and the most disabling condition of heterotopic (extraskeletal) ossification in humans. Mutations in the ACVR1 gene (MIM 102576) were identified as a genetic cause of FOP [Shore et al., 2006]. Most patients with FOP have the same recurrent single nucleotide change c.617G>A, p.R206H in the ACVR1 gene. Furthermore, 11 other mutations in the ACVR1 gene have been described as a cause of FOP. Here, we review phenotypic and molecular findings of 130 cases of FOP reported in the literature from 1982 to April 2014 and discuss possible genotype-phenotype correlations in FOP patients. PMID:25337067

  4. Variable phenotypic presentation of iron overload in H63D homozygotes: are genetic modifiers the cause?

    PubMed Central

    Aguilar-Martinez, P; Bismuth, M; Picot, M; Thelcide, C; Pageaux, G; Blanc, F; Blanc, P; Schved, J; Larrey, D

    2001-01-01

    BACKGROUND—First considered as a polymorphism of the HFE gene, the H63D mutation is now widely recognised as a haemochromatosis associated allele. But few H63D homozygotes with clinical manifestations of hereditary haemochromatosis (HH) have been reported. Concurrently, an increasing number of genes have been shown to interact with HFE in iron metabolism.
AIMS—To describe the clinical expression of iron overload (IO) associated with H63D homozygosity, and search for potential genetic modifiers (within the HFE or other genes) that could explain the variability of the phenotypes.
PATIENTS AND METHODS—We retrospectively analysed the clinical phenotype of 56 H63D homozygotes referred for a personal or family history of IO. For each subject we examined intragenic HFE haplotypes and transferrin receptor (TfR) gene polymorphisms and searched for the Y250X mutation on the TFR2 gene. Additionally, we sequenced the HFE gene of H63D homozygotes with HH.
RESULTS—Fifty of 56 subjects had biological and/or clinical abnormalities of iron metabolism. Up to two thirds of patients (n=34) had no acquired cause of IO. Among these, 12 had a phenotypic diagnosis of HH. In the iron loaded group there was a strong prevalence of male patients. No correlation was found between the potential genetic modifiers and phenotypes. No additional mutation of HFE was identified.
CONCLUSION—The variable phenotypes associated with H63D homozygosity do not appear to be linked to other HFE mutations, to the TFR2 Y250X mutation, or to HFE or TfR gene intragenic polymorphisms. The exact role of H63D homozygosity in IO and HH needs to be further investigated in unselected populations.


Keywords: haemochromatosis; H63D homozygotes; phenotypic variability; HFE haplotypes; transferrin receptor gene PMID:11358905

  5. Relaxed Genetic Constraint is Ancestral to the Evolution of Phenotypic Plasticity

    PubMed Central

    Leichty, Aaron R.; Pfennig, David W.; Jones, Corbin D.; Pfennig, Karin S.

    2012-01-01

    Phenotypic plasticity––the capacity of a single genotype to produce different phenotypes in response to varying environmental conditions––is widespread. Yet, whether, and how, plasticity impacts evolutionary diversification is unclear. According to a widely discussed hypothesis, plasticity promotes rapid evolution because genes expressed differentially across different environments (i.e., genes with “biased” expression) experience relaxed genetic constraint and thereby accumulate variation faster than do genes with unbiased expression. Indeed, empirical studies confirm that biased genes evolve faster than unbiased genes in the same genome. An alternative hypothesis holds, however, that the relaxed constraint and faster evolutionary rates of biased genes may be a precondition for, rather than a consequence of, plasticity’s evolution. Here, we evaluated these alternative hypotheses by characterizing evolutionary rates of biased and unbiased genes in two species of frogs that exhibit a striking form of phenotypic plasticity. We also characterized orthologs of these genes in four species of frogs that had diverged from the two plastic species before the plasticity evolved. We found that the faster evolutionary rates of biased genes predated the evolution of the plasticity. Furthermore, biased genes showed greater expression variance than did unbiased genes, suggesting that they may be more dispensable. Phenotypic plasticity may therefore evolve when dispensable genes are co-opted for novel function in environmentally induced phenotypes. Thus, relaxed genetic constraint may be a cause––not a consequence––of the evolution of phenotypic plasticity, and thereby contribute to the evolution of novel traits. PMID:22526866

  6. Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype.

    PubMed

    Chaston, John M; Dobson, Adam J; Newell, Peter D; Douglas, Angela E

    2016-01-01

    A wealth of studies has demonstrated that resident microorganisms (microbiota) influence the pattern of nutrient allocation to animal protein and energy stores, but it is unclear how the effects of the microbiota interact with other determinants of animal nutrition, including animal genetic factors and diet. Here, we demonstrate that members of the gut microbiota in Drosophila melanogaster mediate the effect of certain animal genetic determinants on an important nutritional trait, triglyceride (lipid) content. Parallel analysis of the taxonomic composition of the associated bacterial community and host nutritional indices (glucose, glycogen, triglyceride, and protein contents) in multiple Drosophila genotypes revealed significant associations between the abundance of certain microbial taxa, especially Acetobacteraceae and Xanthamonadaceae, and host nutritional phenotype. By a genome-wide association study of Drosophila lines colonized with a defined microbiota, multiple host genes were statistically associated with the abundance of one bacterium, Acetobacter tropicalis. Experiments using mutant Drosophila validated the genetic association evidence and reveal that host genetic control of microbiota abundance affects the nutritional status of the flies. These data indicate that the abundance of the resident microbiota is influenced by host genotype, with consequent effects on nutrient allocation patterns, demonstrating that host genetic control of the microbiome contributes to the genotype-phenotype relationship of the animal host. PMID:26567306

  7. Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype

    PubMed Central

    Chaston, John M.; Dobson, Adam J.; Newell, Peter D.

    2015-01-01

    A wealth of studies has demonstrated that resident microorganisms (microbiota) influence the pattern of nutrient allocation to animal protein and energy stores, but it is unclear how the effects of the microbiota interact with other determinants of animal nutrition, including animal genetic factors and diet. Here, we demonstrate that members of the gut microbiota in Drosophila melanogaster mediate the effect of certain animal genetic determinants on an important nutritional trait, triglyceride (lipid) content. Parallel analysis of the taxonomic composition of the associated bacterial community and host nutritional indices (glucose, glycogen, triglyceride, and protein contents) in multiple Drosophila genotypes revealed significant associations between the abundance of certain microbial taxa, especially Acetobacteraceae and Xanthamonadaceae, and host nutritional phenotype. By a genome-wide association study of Drosophila lines colonized with a defined microbiota, multiple host genes were statistically associated with the abundance of one bacterium, Acetobacter tropicalis. Experiments using mutant Drosophila validated the genetic association evidence and reveal that host genetic control of microbiota abundance affects the nutritional status of the flies. These data indicate that the abundance of the resident microbiota is influenced by host genotype, with consequent effects on nutrient allocation patterns, demonstrating that host genetic control of the microbiome contributes to the genotype-phenotype relationship of the animal host. PMID:26567306

  8. Genetic Differentiation between Resistance Phenotypes in the Phytophagous Flea Beetle, Phyllotreta nemorum

    PubMed Central

    de Jong, Peter W.; Breuker, Casper J.; de Vos, Helene; Vermeer, Kim M.C.A; Oku, Keiko; Verbaarschot, Patrick; Nielsen, Jens Kvist; Brakefield, Paul M.

    2009-01-01

    The flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae) is genetically polymorphic for resistance against the defences of one of its host plants, Barbarea vulgaris R.Br. (Brassicales: Brassicaceae). Whereas resistant flea beetles are able to use B. vulgaris as well as other cruciferous plants as food, non-resistant beetles cannot survive on B. vulgaris. This limitation to host plant use of non-resistant beetles could potentially lead to asymmetric gene flow and some degree of genetic isolation between the different resistance-genotypes. Therefore, we studied the extent of genetic differentiation at neutral allozyme loci between samples of flea beetles that were collected at different locations and first tested for resistance phenotype. Since earlier work has shown a weak, but significant, effect of geographical distance between the samples on their genetic differentiation, in the present study variation at the neutral allozyme loci in P. nemorum was partitioned between geographical distance and resistance-phenotype. Both sources independently contributed statistically significantly to population differentiation. Thus, there appears to be a limitation to genetic exchange between the resistant and non-resistant flea beetles when corrections are made for their geographic differentiation. This is consistent with the presence of some degree of host race formation in this flea beetle. PMID:20053124

  9. Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes.

    PubMed Central

    Gianola, Daniel; Sorensen, Daniel

    2004-01-01

    Multivariate models are of great importance in theoretical and applied quantitative genetics. We extend quantitative genetic theory to accommodate situations in which there is linear feedback or recursiveness between the phenotypes involved in a multivariate system, assuming an infinitesimal, additive, model of inheritance. It is shown that structural parameters defining a simultaneous or recursive system have a bearing on the interpretation of quantitative genetic parameter estimates (e.g., heritability, offspring-parent regression, genetic correlation) when such features are ignored. Matrix representations are given for treating a plethora of feedback-recursive situations. The likelihood function is derived, assuming multivariate normality, and results from econometric theory for parameter identification are adapted to a quantitative genetic setting. A Bayesian treatment with a Markov chain Monte Carlo implementation is suggested for inference and developed. When the system is fully recursive, all conditional posterior distributions are in closed form, so Gibbs sampling is straightforward. If there is feedback, a Metropolis step may be embedded for sampling the structural parameters, since their conditional distributions are unknown. Extensions of the model to discrete random variables and to nonlinear relationships between phenotypes are discussed. PMID:15280252

  10. Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome

    PubMed Central

    Zemojtel, Tomasz; Köhler, Sebastian; Mackenroth, Luisa; Jäger, Marten; Hecht, Jochen; Krawitz, Peter; Graul-Neumann, Luitgard; Doelken, Sandra; Ehmke, Nadja; Spielmann, Malte; Øien, Nancy Christine; Schweiger, Michal R.; Krüger, Ulrike; Frommer, Götz; Fischer, Björn; Kornak, Uwe; Flöttmann, Ricarda; Ardeshirdavani, Amin; Moreau, Yves; Lewis, Suzanna E.; Haendel, Melissa; Smedley, Damian; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.

    2015-01-01

    Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic workflow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients’ phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics. PMID:25186178

  11. Contrasting patterns of genetic and phenotypic differentiation in two invasive salmonids in the southern hemisphere.

    PubMed

    Monzón-Argüello, Catalina; Consuegra, Sofia; Gajardo, Gonzalo; Marco-Rius, Francisco; Fowler, Daniel M; DeFaveri, Jacquelin; Garcia de Leaniz, Carlos

    2014-09-01

    Invasion success may be expected to increase with residence time (i.e., time since first introduction) and secondary releases (i.e., those that follow the original introduction), but this has rarely been tested in natural fish populations. We compared genetic and phenotypic divergence in rainbow trout and brown trout in Chile and the Falkland Islands to test the prediction that adaptive divergence, measured as P ST/F ST, would increase with residence time and secondary releases. We also explored whether interspecific competition between invaders could drive phenotypic divergence. Residence time had no significant effect on genetic diversity, phenotypic divergence, effective population size, or signatures of expansion of invasive trout. In contrast, secondary releases had a major effect on trout invasions, and rainbow trout populations mostly affected by aquaculture escapees showed significant divergence from less affected populations. Coexistence with brown trout had a positive effect on phenotypic divergence of rainbow trout. Our results highlight an important role of secondary releases in shaping fish invasions, but do not support the contention that older invaders are more differentiated than younger ones. They also suggest that exotic trout may not have yet developed local adaptations in these recently invaded habitats, at least with respect to growth-related traits. PMID:25469171

  12. Contrasting patterns of genetic and phenotypic differentiation in two invasive salmonids in the southern hemisphere

    PubMed Central

    Monzón-Argüello, Catalina; Consuegra, Sofia; Gajardo, Gonzalo; Marco-Rius, Francisco; Fowler, Daniel M; DeFaveri, Jacquelin; Garcia de Leaniz, Carlos

    2014-01-01

    Invasion success may be expected to increase with residence time (i.e., time since first introduction) and secondary releases (i.e., those that follow the original introduction), but this has rarely been tested in natural fish populations. We compared genetic and phenotypic divergence in rainbow trout and brown trout in Chile and the Falkland Islands to test the prediction that adaptive divergence, measured as PST/FST, would increase with residence time and secondary releases. We also explored whether interspecific competition between invaders could drive phenotypic divergence. Residence time had no significant effect on genetic diversity, phenotypic divergence, effective population size, or signatures of expansion of invasive trout. In contrast, secondary releases had a major effect on trout invasions, and rainbow trout populations mostly affected by aquaculture escapees showed significant divergence from less affected populations. Coexistence with brown trout had a positive effect on phenotypic divergence of rainbow trout. Our results highlight an important role of secondary releases in shaping fish invasions, but do not support the contention that older invaders are more differentiated than younger ones. They also suggest that exotic trout may not have yet developed local adaptations in these recently invaded habitats, at least with respect to growth-related traits. PMID:25469171

  13. Phenotype with a side of genotype, please: Patients, parents and priorities in rare genetic disease

    PubMed Central

    Collins, Christy

    2016-01-01

    As the parent and caregiver of a child with an ultra-rare disease and advocate for others with the same condition, I discuss the importance of phenotyping in rare disease research. I emphasize the need for more clinical geneticists, deeper and more intentional integration of clinical genetics in complex patient care, and a greater appreciation of patients and families as an informational resource. PMID:27047761

  14. Tetralogy of Fallot and Hypoplastic Left Heart Syndrome – Complex Clinical Phenotypes Meet Complex Genetic Networks

    PubMed Central

    Lahm, Harald; Schön, Patric; Doppler, Stefanie; Dreßen, Martina; Cleuziou, Julie; Deutsch, Marcus-André; Ewert, Peter; Lange, Rüdiger; Krane, Markus

    2015-01-01

    In many cases congenital heart disease (CHD) is represented by a complex phenotype and an array of several functional and morphological cardiac disorders. These malformations will be briefly summarized in the first part focusing on two severe CHD phenotypes, hypoplastic left heart syndrome (HLHS) and tetralogy of Fallot (TOF). In most cases of CHD the genetic origin remains largely unknown, though the complexity of the clinical picture strongly argues against a dysregulation which can be attributed to a single candidate gene but rather suggests a multifaceted polygenetic origin with elaborate interactions. Consistent with this idea, genome-wide approaches using whole exome sequencing, comparative sequence analysis of multiplex families to identify de novo mutations and global technologies to identify single nucleotide polymorphisms, copy number variants, dysregulation of the transcriptome and epigenetic variations have been conducted to obtain information about genetic alterations and potential predispositions possibly linked to the occurrence of a CHD phenotype. In the second part of this review we will summarize and discuss the available literature on identified genetic alterations linked to TOF and HLHS. PMID:26069455

  15. RNAi phenotypes are influenced by the genetic background of the injected strain

    PubMed Central

    2013-01-01

    Background RNA interference (RNAi) is a powerful tool to study gene function in organisms that are not amenable to classical forward genetics. Hence, together with the ease of comprehensively identifying genes by new generation sequencing, RNAi is expanding the scope of animal species and questions that can be addressed in terms of gene function. In the case of genetic mutants, the genetic background of the strains used is known to influence the phenotype while this has not been described for RNAi experiments. Results Here we show in the red flour beetle Tribolium castaneum that RNAi against Tc-importin α1 leads to different phenotypes depending on the injected strain. We rule out off target effects and show that sequence divergence does not account for this difference. By quantitatively comparing phenotypes elicited by RNAi knockdown of four different genes we show that there is no general difference in RNAi sensitivity between these strains. Finally, we show that in case of Tc-importin α1 the difference depends on the maternal genotype. Conclusions These results show that in RNAi experiments strain specific differences have to be considered and that a proper documentation of the injected strain is required. This is especially important for the increasing number of emerging model organisms that are being functionally investigated using RNAi. In addition, our work shows that RNAi is suitable to systematically identify the differences in the gene regulatory networks present in populations of the same species, which will allow novel insights into the evolution of animal diversity. PMID:23324472

  16. Genetic and metabolic determinants of nutritional phenotype in an insect-bacterial symbiosis.

    PubMed

    MacDonald, S J; Thomas, G H; Douglas, A E

    2011-05-01

    The pervasive influence of resident microorganisms on the phenotype of their hosts is exemplified by the intracellular bacterium Buchnera aphidicola, which provides its aphid partner with essential amino acids (EAAs). We investigated variation in the dietary requirement for EAAs among four pea aphid (Acyrthosiphon pisum) clones. Buchnera-derived nitrogen contributed to the synthesis of all EAAs for which aphid clones required a dietary supply, and to none of the EAAs for which all four clones had no dietary requirement, suggesting that low total dietary nitrogen may select for reduced synthesis of certain EAAs in some aphid clones. The sequenced Buchnera genomes showed that the EAA nutritional phenotype (i.e. the profile of dietary EAAs required by the aphid) cannot be attributed to sequence variation of Buchnera genes coding EAA biosynthetic enzymes. Metabolic modelling by flux balance analysis demonstrated that EAA output from Buchnera can be determined precisely by the flux of host metabolic precursors to Buchnera. Specifically, the four EAA nutritional phenotypes could be reproduced by metabolic models with unique profiles of host inputs, dominated by variation in supply of aspartate, homocysteine and glutamate. This suggests that the nutritional phenotype of the symbiosis is determined principally by host metabolism and transporter genes that regulate nutrient supply to Buchnera. Intraspecific variation in the nutritional phenotype of symbioses is expected to mediate partitioning of plant resources among aphid genotypes, potentially promoting the genetic subdivision of aphid populations. In this way, microbial symbioses may play an important role in the evolutionary diversification of phytophagous insects. PMID:21392141

  17. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa

    PubMed Central

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-01-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted “mountain refugia hypothesis” states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity. PMID:24223262

  18. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics.

    PubMed

    Chiaverano, Luciano M; Bayha, Keith W; Graham, William M

    2016-01-01

    For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, "optimal" phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i

  19. Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility.

    PubMed

    Cole, J B; Null, D J; VanRaden, P M

    2016-09-01

    Phenotypes from the August 2015 US national genetic evaluation were used to compute phenotypic effects of 18 recessive haplotypes in Ayrshire (n=1), Brown Swiss (n=5), Holstein (n=10), and Jersey (n=2) cattle on milk, fat, and protein yields, somatic cell score (SCS), single-trait productive life (PL), daughter pregnancy rate (DPR), heifer conception rate (HCR), and cow conception rate (CCR). The haplotypes evaluated were Ayrshire haplotype 1, Brown Swiss haplotypes 1 and 2, spinal dysmyelination, spinal muscular atrophy, Weaver Syndrome, brachyspina, Holstein cholesterol deficiency, Holstein haplotypes 1 to 5, bovine leukocyte adhesion deficiency, complex vertebral malformation, mulefoot (syndactyly), and Jersey haplotypes 1 and 2. When causal variants are unknown and tests are based only on single nucleotide polymorphism haplotypes, it can sometimes be difficult to accurately determine carrier status. For example, 2 Holstein haplotypes for cholesterol deficiency have the same single nucleotide polymorphism genotype, but only one of them carries the causative mutation. Genotyped daughters of carrier bulls included in the analysis ranged from 8 for Weaver Syndrome to 17,869 for Holstein haplotype 3. Lactation records preadjusted for nongenetic factors and direct genomic values (DGV) were used to estimate phenotypic and genetic effects of recessive haplotypes, respectively. We found no phenotypic or genetic differences between carriers and noncarriers of Ayrshire or Brown Swiss defects. Several associations were noted for Holstein haplotypes, including fat and HCR for Holstein haplotype 0 carriers; milk, protein, SCS, PL, and fertility for Holstein haplotype 1; protein, PL, CCR, and HCR for Holstein haplotype 2; milk, protein, and fertility for Holstein haplotype 4; and protein yield and DPR for Holstein haplotype 5. There were no differences among bovine leukocyte adhesion deficiency carriers, but complex vertebral malformation affected fat yield and mulefoot

  20. Association among obesity-related anthropometric phenotypes: analyzing genetic and environmental contribution.

    PubMed

    Jelenkovic, Aline; Rebato, Esther

    2012-04-01

    Obesity has become a public-health and policy problem in many parts of the world. Epidemiological and population studies in this field are usually based on different anthropometric measures; however, common genetic and environmental factors between these phenotypes have been scarcely studied. The objective of this article is to assess the strength of these factors on the covariation among a large set of obesity-related traits. The subject group consisted of 533 nuclear families living in the Greater Bilbao (Spain), and included 1,702 individuals aged 2-61 years. Detailed anthropometric measurements (stature, breadths, circumferences and skinfolds) were carried out in each subject. Bivariate quantitative genetic analyses were performed using a variance-components procedure implemented in the software SOLAR. The results revealed that the majority of these traits is affected by common genetic and environmental factors. All correlations were significantly different from 1 and varied from non-significant to very high (>0.90, P < 0.0001), with clearly lower pleiotropic effects among pairs including fat-distribution traits. Despite the strong common genetic effects detected among phenotypes determining the amount of body fat and mass, there is a residual genetic influence on the local fatness measures that cannot be explained exclusively by the genetic influence on overall fatness. Moreover, the observed relationships confirm a partially different genetic control of truncal and peripheral fat. In conclusion, our findings highlight the relevance of considering different types of traits in the prevention and treatment of obesity, as well as in the search for genes involved in its development. PMID:22708817

  1. Genetic and virulence-phenotype characterization of serotypes 2 and 9 of Streptococcus suis swine isolates.

    PubMed

    Blume, Verena; Luque, Inmaculada; Vela, Ana I; Borge, Carmen; Maldonado, Alfonso; Domínguez, Lucas; Tarradas, Carmen; Fernández-Garayzábal, José F

    2009-09-01

    The aim of this study was to analyze the genetic characteristics and virulence phenotypes of Streptococcus suis, specifically, in clinical isolates of serotypes 2 and 9 (n = 195), obtained from diverse geographical areas across Spain. Pulsed-field gel electrophoresis (PFGE) typing identified 97 genetic profiles, 68% of which were represented by single isolates, indicative of a substantial genetic diversity among the S. suis isolates analyzed. Five PFGE profiles accounted for 33.3% of the isolates and were isolated from 38% of the herds in nine different provinces, indicative of the bacterium's widespread distribution in the Spanish swine population. Representative isolates of the most prevalent PFGE profiles of both serotypes were subjected to multilocus sequence typing (MLST) analysis. The results indicated that serotypes 2 and 9 have distinct genetic backgrounds. Serotype 2 isolates belong to the ST1 complex, a highly successful clone that has spread over most European countries. In accordance with isolates of this complex, most serotype 2 isolates also expressed the phenotype MRP(+)EF(+)SLY(+). Serotype 9 isolates belong to the ST61 complex, which is distantly related to the widespread European ST87 clone. Also, in contrast to most isolates of the European ST87 clone, which express the large variant MRP*, the majority of serotype 9 isolates (97.9%) did not express the protein. PMID:19784922

  2. Prevalence, heritability and genetic correlations of congenital sensorineural deafness and pigmentation phenotypes in the Border Collie.

    PubMed

    De Risio, Luisa; Lewis, Tom; Freeman, Julia; de Stefani, Alberta; Matiasek, Lara; Blott, Sarah

    2011-06-01

    The objectives of this study were to estimate prevalence, heritability and genetic correlations of congenital sensorineural deafness (CSD) and pigmentation phenotypes in the Border Collie. Entire litters of Border Collies that presented to the Animal Health Trust (1994-2008) for assessment of hearing status by brain stem auditory evoked response (BAER) at 4-10 weeks of age were included. Heritability and genetic correlations were estimated using residual maximum likelihood (REML). Of 4143 puppies that met the inclusion criteria, 97.6% had normal hearing status, 2.0% were unilaterally deaf and 0.4% were bilaterally deaf. Heritability of deafness as a trichotomous trait (normal/unilaterally deaf/bilaterally deaf) was estimated at 0.42 using multivariate analysis. Genetic correlations of deafness with iris colour and merle coat colour were 0.58 and 0.26, respectively. These results indicate that there is a significant genetic effect on CSD in Border Collies and that some of the genes determining deafness also influence pigmentation phenotypes. PMID:20570536

  3. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer

    PubMed Central

    Capela, Carlos; Dossou, Ange Dodji; Silva-Gomes, Rita; Sopoh, Ghislain Emmanuel; Makoutode, Michel; Menino, João Filipe; Fraga, Alexandra Gabriel; Cunha, Cristina; Carvalho, Agostinho; Rodrigues, Fernando; Pedrosa, Jorge

    2016-01-01

    Introduction Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection. Objective Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form. Methods Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype) and 300 healthy endemic controls. Results The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR), 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02). Conclusion Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes. PMID:27128681

  4. Phenotypic evolution by distance in fluctuating environments: The contribution of dispersal, selection and random genetic drift.

    PubMed

    Engen, Steinar; Sæther, Bernt-Erik

    2016-06-01

    Here we analyze how dispersal, genetic drift, and adaptation to the local environment affect the geographical differentiation of a quantitative character through natural selection using a spatial dynamic model for the evolution of the distribution of mean breeding values in space and time. The variation in optimal phenotype is described by local Ornstein-Uhlenbeck processes with a given spatial autocorrelation. Selection and drift are assumed to be governed by phenotypic variation within areas with a given mean breeding value and constant additive genetic variance. Between such neighboring areas there will be white noise variation in mean breeding values, while the variation at larger distances has a spatial structure and a spatial scale that we investigate. The model is analyzed by solving balance equations for the stationary distribution of mean breeding values. We also present scaling results for the spatial autocovariance function for mean breeding values as well as that for the covariance between mean breeding value and the optimal phenotype expressing local adaption. Our results show in particular how these spatial scales depend on population density. For large densities the spatial scale of fluctuations in mean breeding values have similarities with corresponding results in population dynamics, where the effect of migration on spatial scales may be large if the local strength of density regulation is small. In our evolutionary model strength of density regulation corresponds to strength of local selection so that weak local selection may produce large spatial scales of autocovariances. Genetic drift and stochastic migration are shown to act through the population size within a characteristic area with much smaller variation in optimal phenotypes than in the whole population. PMID:26855423

  5. Genetic and phenotypic correlations among feed efficiency, production and selected conformation traits in dairy cows.

    PubMed

    Manafiazar, G; Goonewardene, L; Miglior, F; Crews, D H; Basarab, J A; Okine, E; Wang, Z

    2016-03-01

    The difficulties and costs of measuring individual feed intake in dairy cattle are the primary factors limiting the genetic study of feed intake and utilisation, and hence the potential of their subsequent industry-wide applications. However, indirect selection based on heritable, easily measurable, and genetically correlated traits, such as conformation traits, may be an alternative approach to improve feed efficiency. The aim of this study was to estimate genetic and phenotypic correlations among feed intake, production, and feed efficiency traits (particularly residual feed intake; RFI) with routinely recorded conformation traits. A total of 496 repeated records from 260 Holstein dairy cows in different lactations (260, 159 and 77 from first, second and third lactation, respectively) were considered in this study. Individual daily feed intake and monthly BW and body condition scores of these animals were recorded from 5 to 305 days in milk within each lactation from June 2007 to July 2013. Milk yield and composition data of all animals within each lactation were retrieved, and the first lactation conformation traits for primiparous animals were extracted from databases. Individual RFI over 301 days was estimated using linear regression of total 301 days actual energy intake on a total of 301 days estimated traits of metabolic BW, milk production energy requirement, and empty BW change. Pair-wise bivariate animal models were used to estimate genetic and phenotypic parameters among the studied traits. Estimated heritabilities of total intake and production traits ranged from 0.27±0.07 for lactation actual energy intake to 0.45±0.08 for average body condition score over 301 days of the lactation period. RFI showed a moderate heritability estimate (0.20±0.03) and non-significant phenotypic and genetic correlations with lactation 3.5 % fat-corrected milk and average BW over lactation. Among the conformation traits, dairy strength, stature, rear attachment width

  6. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes

    PubMed Central

    Bejar, Rafael; Jaiswal, Siddhartha; Lindsley, R. Coleman; Sekeres, Mikkael A.; Hasserjian, Robert P.; Ebert, Benjamin L.

    2015-01-01

    Recent genetic analyses of large populations have revealed that somatic mutations in hematopoietic cells leading to clonal expansion are commonly acquired during human aging. Clonally restricted hematopoiesis is associated with an increased risk of subsequent diagnosis of myeloid or lymphoid neoplasia and increased all-cause mortality. Although myelodysplastic syndromes (MDS) are defined by cytopenias, dysplastic morphology of blood and marrow cells, and clonal hematopoiesis, most individuals who acquire clonal hematopoiesis during aging will never develop MDS. Therefore, acquisition of somatic mutations that drive clonal expansion in the absence of cytopenias and dysplastic hematopoiesis can be considered clonal hematopoiesis of indeterminate potential (CHIP), analogous to monoclonal gammopathy of undetermined significance and monoclonal B-cell lymphocytosis, which are precursor states for hematologic neoplasms but are usually benign and do not progress. Because mutations are frequently observed in healthy older persons, detection of an MDS-associated somatic mutation in a cytopenic patient without other evidence of MDS may cause diagnostic uncertainty. Here we discuss the nature and prevalence of CHIP, distinction of this state from MDS, and current areas of uncertainty regarding diagnostic criteria for myeloid malignancies. PMID:25931582

  7. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    SciTech Connect

    Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege  G.; Helland, Åslaug; Rye, Inga  H.; Borresen-Dale, Anne -Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin  L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.

  8. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    DOE PAGESBeta

    Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege  G.; Helland, Åslaug; et al

    2014-02-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less

  9. Identification and Characterization of Genes Involved in Embryonic Crystal Cell Formation During Drosophila Hematopoiesis

    PubMed Central

    Milchanowski, Allison B.; Henkenius, Amy L.; Narayanan, Maya; Hartenstein, Volker; Banerjee, Utpal

    2004-01-01

    Parallels between vertebrate and Drosophila hematopoiesis add to the value of flies as a model organism to gain insights into blood development. The Drosophila hematopoietic system is composed of at least three classes of terminally differentiated blood cells: plasmatocytes, crystal cells, and lamellocytes. Recent studies have identified transcriptional and signaling pathways in Drosophila involving proteins similar to those seen in human blood development. To identify additional genes involved in Drosophila hematopoiesis, we have conducted a P-element-based genetic screen to isolate mutations that affect embryonic crystal cell development. Using a marker of terminally differentiated crystal cells, we screened 1040 P-element-lethal lines located on the second and third chromosomes and identified 44 individual lines that affect crystal cell development. Identifying novel genes and pathways involved in Drosophila hematopoiesis is likely to provide further insights into mammalian hematopoietic development and disorders. PMID:15454546

  10. Patients with a phenotype consistent with facioscapulohumeral muscular dystrophy display genetic and epigenetic heterogeneity

    PubMed Central

    Sacconi, Sabrina; Camaño, Pilar; de Greef, Jessica C.; Lemmers, Richard J. L. F.; Salviati, Leonardo; Boileau, Pascal; de Munain Arregui, Adolfo Lopez; van der Maarel, Silvère M.; Desnuelle, Claude

    2013-01-01

    Objective To identify the genetic and epigenetic defects in patients presenting with a facioscapulohumeral (FSHD) clinical phenotype without D4Z4 contractions on chromosome 4q35 tested by linear gel electrophoresis (LGE) and Southern blot analysis. Design and patients We studied 16 patients displaying an FSHD-like phenotype, with normal cardiovascular and respiratory function, a myopathic pattern on EMG, and a muscle biopsy being normal or displaying only mild and a specific dystrophic changes. We sequenced the genes calpain 3 (CAPN3), valosin containing protein (VCP) and four and a half LIM domains protein 1 (FHL1) and we analyzed the D4Z4 repeat arrays by extensive genotyping and DNA methylation analysis. Results We identified one patient carrying a complex rearrangement in the FSHD locus that masked the D4Z4 contraction associated with FSHD1 in standard genetic testing, one patient with somatic mosaicism for the D4Z4 4q35 contraction, six patients that were diagnosed with FSHD2, four patients with CAPN3 mutations, two patients with a VCP mutation, No mutations were detected in FHL1, and in two patients we could not identify the genetic defect. Conclusions In patients presenting an FSHD-like clinical phenotype with a negative molecular testing for FSHD consider: 1) detailed genetic testing including D4Z4 contraction of permissive hybrid D4Z4 repeat arrays, p13E-11 probe deletions, D4Z4 hypomethylation in absence of repeat contraction as observed in FSHD2, 2) mutations in CAPN3 even in the absence of protein deficiency on western blot analysis 3) VCP mutations even in the absence cognitive impairment, Paget disease and typical inclusion in muscle biopsy. PMID:21984748

  11. Working-memory endophenotype and dyslexia-associated genetic variant predict dyslexia phenotype.

    PubMed

    Männel, Claudia; Meyer, Lars; Wilcke, Arndt; Boltze, Johannes; Kirsten, Holger; Friederici, Angela D

    2015-10-01

    Developmental dyslexia, a severe impairment of literacy acquisition, is known to have a neurological basis and a strong genetic background. However, effects of individual genetic variations on dyslexia-associated deficits are only moderate and call for the assessment of the genotype's impact on mediating neuro-endophenotypes by the imaging genetics approach. Using voxel-based morphometry (VBM) in German participants with and without dyslexia, we investigated gray matter changes and their association with impaired phonological processing, such as reduced verbal working memory. These endophenotypical alterations were, together with dyslexia-associated genetic variations, examined on their suitability as potential predictors of dyslexia. We identified two gray matter clusters in the left posterior temporal cortex related to verbal working memory capacity. Regional cluster differences correlated with genetic risk variants in TNFRSF1B. High-genetic-risk participants exhibit a structural predominance of auditory-association areas relative to auditory-sensory areas, which may partly compensate for deficient early auditory-sensory processing stages of verbal working memory. The reverse regional predominance observed in low-genetic-risk participants may in turn reflect reliance on these early auditory-sensory processing stages. Logistic regression analysis further supported that regional gray matter differences and genetic risk interact in the prediction of individuals' diagnostic status: With increasing genetic risk, the working-memory related structural predominance of auditory-association areas relative to auditory-sensory areas classifies participants with dyslexia versus control participants. Focusing on phonological deficits in dyslexia, our findings suggest endophenotypical changes in the left posterior temporal cortex could comprise novel pathomechanisms for verbal working memory-related processes translating TNFRSF1B genotype into the dyslexia phenotype. PMID

  12. Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype

    PubMed Central

    Kunin, William E.; Vergeer, Philippine; Kenta, Tanaka; Davey, Matthew P.; Burke, Terry; Ian Woodward, F.; Quick, Paul; Mannarelli, Maria-Elena; Watson-Haigh, Nathan S.; Butlin, Roger

    2009-01-01

    Range margins are spatially complex, with environmental, genetic and phenotypic variations occurring across a range of spatial scales. We examine variation in temperature, genes and metabolomic profiles within and between populations of the subalpine perennial plant Arabidopsis lyrata ssp. petraea from across its northwest European range. Our surveys cover a gradient of fragmentation from largely continuous populations in Iceland, through more fragmented Scandinavian populations, to increasingly widely scattered populations at the range margin in Scotland, Wales and Ireland. Temperature regimes vary substantially within some populations, but within-population variation represents a larger fraction of genetic and especially metabolomic variances. Both physical distance and temperature differences between sites are found to be associated with genetic profiles, but not metabolomic profiles, and no relationship was found between genetic and metabolomic population structures in any region. Genetic similarity between plants within populations is the highest in the fragmented populations at the range margin, but differentiation across space is the highest there as well, suggesting that regional patterns of genetic diversity may be scale dependent. PMID:19324821

  13. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.

    PubMed

    Zhang-James, Yanli; Faraone, Stephen V

    2016-07-01

    Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc. PMID:26288127

  14. Selecting subsets of genotyped experimental populations for phenotyping to maximize genetic diversity.

    PubMed

    Emma Huang, B; Clifford, David; Cavanagh, Colin

    2013-02-01

    Selective phenotyping is a way of capturing the benefits of large population sizes without the need to carry out large-scale phenotyping and hence is a cost-effective means of capturing information about gene-trait relationships within a population. The diversity within the sample gives an indication of the efficiency of this information capture; less diversity implies greater redundancy of the genetic information. Here, we propose a method to maximize genetic diversity within the selected samples. Our method is applicable to general experimental designs and robust to common problems such as missing data and dominant markers. In particular, we discuss its application to multi-parent advanced generation intercross (MAGIC) populations, where, although thousands of lines may be genotyped as a large population resource, only hundreds may need to be phenotyped for individual studies. Through simulation, we compare our method to simple random sampling and the minimum moment aberration method. While the gain in power over simple random sampling for all tested methods is not large, our method results in a much more diverse sample of genotypes. This diversity can be applied to improve fine mapping resolution once a QTL region has been detected. Further, when applied to two wheat datasets from doubled haploid and MAGIC progeny, our method detects known QTL for small sample sizes where other methods fail. PMID:23052022

  15. Clonal hematopoiesis in acquired aplastic anemia.

    PubMed

    Ogawa, Seishi

    2016-07-21

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1 Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. PMID:27121470

  16. Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile.

    PubMed

    Retamal, Patricio; Fresno, Marcela; Dougnac, Catherine; Gutierrez, Sindy; Gornall, Vanessa; Vidal, Roberto; Vernal, Rolando; Pujol, Myriam; Barreto, Marlen; González-Acuña, Daniel; Abalos, Pedro

    2015-01-01

    Salmonella enterica serotype Enteritidis is a worldwide zoonotic agent that has been recognized as a very important food-borne bacterial pathogen, mainly associated with consumption of poultry products. The aim of this work was to determine genotypic and phenotypic evidence of S. Enteritidis transmission among seabirds, poultry and humans in Chile. Genotyping was performed using PCR-based virulotyping, pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Pathogenicity-associated phenotypes were determined with survival to free radicals, acidic pH, starvation, antimicrobial resistance, and survival within human dendritic cells. As result of PCR and PFGE assays, some isolates from the three hosts showed identical genotypic patterns, and through MLST it was determined that all of them belong to sequence type 11. Phenotypic assays show diversity of bacterial responses among isolates. When results were analyzed according to bacterial host, statistical differences were identified in starvation and dendritic cells survival assays. In addition, isolates from seabirds showed the highest rates of resistance to gentamycin, tetracycline, and ampicillin. Overall, the very close genetic and phenotypic traits shown by isolates from humans, poultry, and seabirds suggest the inter-species transmission of S. Enteritidis bacteria between hosts, likely through anthropogenic environmental contamination that determines infection of seabirds with bacteria that are potentially pathogenic for other susceptible organism, including humans. PMID:26029196

  17. Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile

    PubMed Central

    Retamal, Patricio; Fresno, Marcela; Dougnac, Catherine; Gutierrez, Sindy; Gornall, Vanessa; Vidal, Roberto; Vernal, Rolando; Pujol, Myriam; Barreto, Marlen; González-Acuña, Daniel; Abalos, Pedro

    2015-01-01

    Salmonella enterica serotype Enteritidis is a worldwide zoonotic agent that has been recognized as a very important food-borne bacterial pathogen, mainly associated with consumption of poultry products. The aim of this work was to determine genotypic and phenotypic evidence of S. Enteritidis transmission among seabirds, poultry and humans in Chile. Genotyping was performed using PCR-based virulotyping, pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Pathogenicity-associated phenotypes were determined with survival to free radicals, acidic pH, starvation, antimicrobial resistance, and survival within human dendritic cells. As result of PCR and PFGE assays, some isolates from the three hosts showed identical genotypic patterns, and through MLST it was determined that all of them belong to sequence type 11. Phenotypic assays show diversity of bacterial responses among isolates. When results were analyzed according to bacterial host, statistical differences were identified in starvation and dendritic cells survival assays. In addition, isolates from seabirds showed the highest rates of resistance to gentamycin, tetracycline, and ampicillin. Overall, the very close genetic and phenotypic traits shown by isolates from humans, poultry, and seabirds suggest the inter-species transmission of S. Enteritidis bacteria between hosts, likely through anthropogenic environmental contamination that determines infection of seabirds with bacteria that are potentially pathogenic for other susceptible organism, including humans. PMID:26029196

  18. Combining Human Disease Genetics and Mouse Model Phenotypes towards Drug Repositioning for Parkinson’s disease

    PubMed Central

    Chen, Yang; Cai, Xiaoshu; Xu, Rong

    2015-01-01

    Parkinson’s disease (PD) is a severe neurodegenerative disorder without effective treatments. Here, we present a novel drug repositioning approach to predict new drugs for PD leveraging both disease genetics and large amounts of mouse model phenotypes. First, we identified PD-specific mouse phenotypes using well-studied human disease genes. Then we searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with PD. We demonstrated the validity of our approach using drugs that have been approved for PD: 10 approved PD drugs were ranked within top 10% among 1197 candidates. In predicting novel PD drugs, our approach achieved a mean average precision of 0.24, which is significantly higher (pphenotype data. Comparison of gene expression profiles between PD and top-ranked drug candidates indicates that quetiapine has the potential to treat PD. PMID:26958284

  19. Grocery Store Genetics: A PCR-Based Genetics Lab that Links Genotype to Phenotype

    ERIC Educational Resources Information Center

    Briju, Betsy J.; Wyatt, Sarah E.

    2015-01-01

    Instructors often present Mendelian genetics and molecular biology separately. As a result, students often fail to connect the two topics in a tangible manner. We have adopted a simple experiment to help link these two important topics in a basic biology course, using red and white onions bought from a local grocery store. A lack of red coloration…

  20. Portal hypertension and ascites in extramedullary hematopoiesis.

    PubMed

    Amarapurkar, Pooja; Parekh, Sunil; Amarapurkar, Anjali; Amarapurkar, Deepak

    2012-06-01

    Myeloproliferative diseases (MPD) are clonal stem cell disorders which mainly include polycythemia vera (PV), essential thrombocythemia (ET), and idiopathic myelofibrosis (IMF). They are characterized by leucocytosis, thrombocytosis, erythrocytosis, splenomegaly, and bone marrow hypercellularity. This might also result in extramedullary hematopoiesis. Abdominal manifestation has been recognized as a feature of these disorders. Splenomegaly and hepatomegaly are fairly common as opposed to ascites which is rare. The MPDs mainly affect the hepatic circulatory systems. The common hepatic manifestations are Budd-Chiari syndrome (BCS), portal vein thrombosis (PVT), and nodular regenerative hyperplasia. A few other features seen in MPDs are caused by extramedullary hematopoiesis, increased hepatic blood flow, and secondary hemosiderosis from multiple blood transfusions. Portal hypertension is found in up to 7% of patients. We report a case of portal hypertension with ascites in a patient with extramedullary hematopoiesis treated with transjugular intrahepatic portocaval shunt (TIPS). PMID:25755427

  1. A genomewide association study of autism using the Simons Simplex Collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity?

    PubMed Central

    Chaste, Pauline; Klei, Lambertus; Sanders, Stephan J.; Hus, Vanessa; Murtha, Michael T.; Lowe, Jennifer K.; Willsey, A. Jeremy; Moreno-De-Luca, Daniel; Yu, Timothy W.; Fombonne, Eric; Geschwind, Daniel; Grice, Dorothy E.; Ledbetter, David H.; Mane, Shrikant M.; Martin, Donna M.; Morrow, Eric M.; Walsh, Christopher A.; Sutcliffe, James S.; Martin, Christa Lese; Beaudet, Arthur L.; Lord, Catherine; State, Matthew W.; Cook, Edwin H.; Devlin, Bernie

    2014-01-01

    Background Phenotypic heterogeneity in autism has long been conjectured to be a major hindrance to the discovery of genetic risk factors, leading to numerous attempts to stratify children based on phenotype to increase power of discovery studies. This approach, however, is based on the hypothesis that phenotypic heterogeneity closely maps to genetic variation, which has not been tested. Our study examines the impact of sub-phenotyping of a well-characterized ASD sample on genetic homogeneity and the ability to discover common genetic variants conferring liability to ASD. Methods Genome-wide genotypic data of 2576 families from the Simons Simplex Collection (SSC) were analyzed in the overall sample and phenotypic subgroups defined on the basis of diagnosis, IQ, and symptom profiles. We conducted a family-based association study as well as estimating heritability and evaluating allele scores for each phenotypic subgroup. Results Association analyses revealed no genome-wide significant association signal. Sub-phenotyping did not increase power substantially. Moreover, allele scores built from the most associated SNPs, based on the odds ratio in the full sample, predicted case status in subsets of the sample equally well and heritability estimates were very similar for all subgroups. Conclusions In genome-wide association analysis of the SSC sample, reducing phenotypic heterogeneity had at most a modest impact on genetic homogeneity. Our results are based on a relatively small sample, one with greater homogeneity than the entire population; if they apply more broadly, they imply that analysis of sub-phenotypes is not a productive path forward for discovering genetic risk variants in ASD. PMID:25534755

  2. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype.

    PubMed

    Kere, Juha

    2014-09-19

    Among complex disorders, those concerning neuropsychiatric phenotypes involve particular challenges compared to disorders with more easily distinguished clinical signs and measures. One such common and unusually challenging phenotype to disentangle genetically is developmental dyslexia (DD), or reading disability, defined as the inability to learn to read and write for an otherwise normally intelligent child with normal senses and educational opportunity. There is presently ample evidence for the strongly biological etiology for DD, and a dozen susceptibility genes have been suggested. Many of these genes point to common but previously unsuspected biological mechanisms, such as neuronal migration and cilia functions. I discuss here the state-of-the-art in genomic and neurobiological aspects of DD research, starting with short general background to its history. PMID:25078623

  3. Bayesian Generalized Low Rank Regression Models for Neuroimaging Phenotypes and Genetic Markers

    PubMed Central

    Zhu, Hongtu; Khondker, Zakaria; Lu, Zhaohua; Ibrahim, Joseph G.

    2014-01-01

    We propose a Bayesian generalized low rank regression model (GLRR) for the analysis of both high-dimensional responses and covariates. This development is motivated by performing searches for associations between genetic variants and brain imaging phenotypes. GLRR integrates a low rank matrix to approximate the high-dimensional regression coefficient matrix of GLRR and a dynamic factor model to model the high-dimensional covariance matrix of brain imaging phenotypes. Local hypothesis testing is developed to identify significant covariates on high-dimensional responses. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of GLRR and its comparison with several competing approaches. We apply GLRR to investigate the impact of 1,071 SNPs on top 40 genes reported by AlzGene database on the volumes of 93 regions of interest (ROI) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI). PMID:25349462

  4. Genetic modeling of ovarian phenotypes in mice for the study of human polycystic ovary syndrome.

    PubMed

    Feng, Yi; Li, Xin; Shao, Ruijin

    2013-01-01

    Polycystic ovary syndrome (PCOS) presents with a range of clinical complications including hyperandrogenism, polycystic ovaries, chronic oligo/anovulation, infertility, and metabolic alterations related to insulin resistance. Because the mechanism by which this disorder develops is poorly understood, information from experimental models of human disease phenotypes may help to define the mechanisms for the initiation and development of PCOS-related pathological events. The establishment of animal models compatible with human PCOS is challenging, and applying the lessons learned from these models to human PCOS is often complicated. In this mini-review we provide examples of currently available genetic mouse models, their ovarian phenotypes, and their possible relationship to different aspects of human PCOS. Because of the practical and ethical limitations of studying PCOS-related events in humans, our understanding of the mechanisms that contribute to the etiology of human PCOS may be enhanced through further study of these transgenic and knockout mouse models. PMID:23390562

  5. Approaches for the Identification of Genetic Modifiers of Nutrient Dependent Phenotypes: Examples from Folate

    PubMed Central

    Zinck, John W. R.; MacFarlane, Amanda J.

    2014-01-01

    By combining the sciences of nutrition, bioinformatics, genomics, population genetics, and epidemiology, nutrigenomics is improving our understanding of how diet and nutrient intake can interact with or modify gene expression and disease risk. In this review, we explore various approaches to examine gene–nutrient interactions and the modifying role of nutrient consumption, as they relate to nutrient status and disease risk in human populations. Two common approaches include the use of SNPs in candidate genes to identify their association with nutritional status or disease outcomes, or genome-wide association studies to identify genetic polymorphisms associated with a given phenotype. Here, we examine the results of various gene–nutrient interaction studies, the association of genetic polymorphisms with disease expression, and the identification of nutritional factors that modify gene-dependent disease phenotypes. We have focused on specific examples from investigations of the interactions of folate, B-vitamin consumption, and polymorphisms in the genes of B-vitamin dependent enzymes and their association with disease risk, followed by an examination of the strengths and limitations of the methods employed. We also present suggestions for future studies, including an approach from an on-going large scale study, to examine the interaction of nutrient intake and genotypic variation and their impact on nutritional status. PMID:25988111

  6. Use of Genetic Data to Infer Population-Specific Ecological and Phenotypic Traits from Mixed Aggregations

    PubMed Central

    Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele

    2014-01-01

    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions. PMID:24905464

  7. Use of genetic data to infer population-specific ecological and phenotypic traits from mixed aggregations.

    PubMed

    Moran, Paul; Bromaghin, Jeffrey F; Masuda, Michele

    2014-01-01

    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions. PMID:24905464

  8. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster.

    PubMed

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R; Isaacs, Adrian M; Partridge, Linda; Lu, Bingwei; Kumar, Justin P; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  9. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    PubMed Central

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S.; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R.; Isaacs, Adrian M.; Partridge, Linda; Lu, Bingwei; Kumar, Justin P.; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  10. Genetics of kidney disease and related cardiometabolic phenotypes in Zuni Indians: the Zuni Kidney Project

    PubMed Central

    Laston, Sandra L.; Voruganti, V. Saroja; Haack, Karin; Shah, Vallabh O.; Bobelu, Arlene; Bobelu, Jeanette; Ghahate, Donica; Harford, Antonia M.; Paine, Susan S.; Tentori, Francesca; Cole, Shelley A.; MacCluer, Jean W.; Comuzzie, Anthony G.; Zager, Philip G.

    2015-01-01

    The objective of this study is to identify genetic factors associated with chronic kidney disease (CKD) and related cardiometabolic phenotypes among participants of the Genetics of Kidney Disease in Zuni Indians study. The study was conducted as a community-based participatory research project in the Zuni Indians, a small endogamous tribe in rural New Mexico. We recruited 998 members from 28 extended multigenerational families, ascertained through probands with CKD who had at least one sibling with CKD. We used the Illumina Infinium Human1M-Duo version 3.0 BeadChips to type 1.1 million single nucleotide polymorphisms (SNPs). Prevalence estimates for CKD, hyperuricemia, diabetes, and hypertension were 24%, 30%, 17% and 34%, respectively. We found a significant (p < 1.58 × 10-7) association for a SNP in a novel gene for serum creatinine (PTPLAD2). We replicated significant associations for genes with serum uric acid (SLC2A9), triglyceride levels (APOA1, BUD13, ZNF259), and total cholesterol (PVRL2). We found novel suggestive associations (p < 1.58 × 10-6) for SNPs in genes with systolic (OLFML2B), and diastolic blood pressure (NFIA). We identified a series of genes associated with CKD and related cardiometabolic phenotypes among Zuni Indians, a population with a high prevalence of kidney disease. Illuminating genetic variations that modulate the risk for these disorders may ultimately provide a basis for novel preventive strategies and therapeutic interventions. PMID:25688259

  11. Use of genetic data to infer population-specific ecological and phenotypic traits from mixed aggregations

    USGS Publications Warehouse

    Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele

    2014-01-01

    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.

  12. Joint analysis of multiple phenotypes: summary of results and discussions from the Genetic Analysis Workshop 19.

    PubMed

    Schillert, Arne; Konigorski, Stefan

    2016-01-01

    For Genetic Analysis Workshop 19, 2 extensive data sets were provided, including whole genome and whole exome sequence data, gene expression data, and longitudinal blood pressure outcomes, together with nongenetic covariates. These data sets gave researchers the chance to investigate different aspects of more complex relationships within the data, and the contributions in our working group focused on statistical methods for the joint analysis of multiple phenotypes, which is part of the research field of data integration. The analysis of data from different sources poses challenges to researchers but provides the opportunity to model the real-life situation more realistically.Our 4 contributions all used the provided real data to identify genetic predictors for blood pressure. In the contributions, novel multivariate rare variant tests, copula models, structural equation models and a sparse matrix representation variable selection approach were applied. Each of these statistical models can be used to investigate specific hypothesized relationships, which are described together with their biological assumptions.The results showed that all methods are ready for application on a genome-wide scale and can be used or extended to include multiple omics data sets. The results provide potentially interesting genetic targets for future investigation and replication. Furthermore, all contributions demonstrated that the analysis of complex data sets could benefit from modeling correlated phenotypes jointly as well as by adding further bioinformatics information. PMID:26866608

  13. Posterior mediastinal extramedullary hematopoiesis secondary to hypoxia

    PubMed Central

    Solazzo, A; D’Auria, V; Moccia, LG; Vatrella, A; Bocchino, M; Rea, G

    2016-01-01

    Two mediastinal masses were incidentally detected at high resolution computed tomography (HRCT) of a 72 year-old male patient, former smoker, affected by chronic obstructive pulmonary disease with worsening dyspnea and 2-year medical history of polycythemia secondary to hypoxia. Integration with a multidetector computed tomography (MDCT) scan after administration of intravenous injection contrast medium showed slightly inhomogeneous increase of enhancement of masses, suggesting in the first case potential malignancy. Diagnosis of extramedullary hematopoiesis was achieved by fine needle aspiration citology (FNAC). Extramedullary hematopoiesis must be considered in differential diagnosis in patients with medical history of polycythemia and severe hypoxia. PMID:27326388

  14. Posterior mediastinal extramedullary hematopoiesis secondary to hypoxia.

    PubMed

    Solazzo, A; D'Auria, V; Moccia, L G; Vatrella, A; Bocchino, M; Rea, G

    2016-05-01

    Two mediastinal masses were incidentally detected at high resolution computed tomography (HRCT) of a 72 year-old male patient, former smoker, affected by chronic obstructive pulmonary disease with worsening dyspnea and 2-year medical history of polycythemia secondary to hypoxia. Integration with a multidetector computed tomography (MDCT) scan after administration of intravenous injection contrast medium showed slightly inhomogeneous increase of enhancement of masses, suggesting in the first case potential malignancy. Diagnosis of extramedullary hematopoiesis was achieved by fine needle aspiration citology (FNAC). Extramedullary hematopoiesis must be considered in differential diagnosis in patients with medical history of polycythemia and severe hypoxia. PMID:27326388

  15. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    PubMed

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-01-01

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review. PMID:26329332

  16. Rapid Evolution of Phenotypic Plasticity and Shifting Thresholds of Genetic Assimilation in the Nematode Caenorhabditis remanei

    PubMed Central

    Sikkink, Kristin L.; Reynolds, Rose M.; Ituarte, Catherine M.; Cresko, William A.; Phillips, Patrick C.

    2014-01-01

    Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity. PMID:24727288

  17. Estimate of genetic gain in popcorn after cycles of phenotypic recurrent selection.

    PubMed

    Ematné, H J; Nunes, J A R; Dias, K O G; Prado, P E R; Souza, J C

    2016-01-01

    Popcorn is widely consumed in Brazil, yet there are few breeding programs for this crop. Recurrent selection (RS) is a viable breeding alternative for popcorn; however, the gains achieved must be frequently checked. The aim of this study was to assess the effect of selection for grain type (round and pointed) after four cycles of phenotypic RS on the main agronomic traits of popcorn, to estimate the genetic gain achieved for the trait of expansion volume (EV), and to obtain estimates of phenotypic correlations for the main traits of the crop in the UFLA E and UFLA R populations. The zero, one, two, and three cycles of the UFLA E and UFLA R populations, the fourth cycle, and the controls IAC-112 and IAC-125 were used. The experiments were conducted at the experimental farm of Universidade Federal de Lavras (UFLA; Environment 1) and at the experimental area of the Genetics and Plant Breeding Sector of the Department of Biology at UFLA (Environment 2) in the 2010/11 crop season. Nine agronomic traits were evaluated, including EV and grain yield (GY). The UFLA R and UFLA E populations showed similar behavior for all evaluated traits. The type of grain did not affect the genetic gain for EV, which was 5 and 3.7% in each cycle carried out in the UFLA E and UFLA R population, respectively. Phenotypic selection carried out during recombination for EV is an effective method for increasing expression of the trait. EV and GY did not show a linear association. PMID:27323058

  18. Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    PubMed Central

    Staropoli, John F.; Haliw, Larissa; Biswas, Sunita; Garrett, Lillian; Hölter, Sabine M.; Becker, Lore; Skosyrski, Sergej; Da Silva-Buttkus, Patricia; Calzada-Wack, Julia; Neff, Frauke; Rathkolb, Birgit; Rozman, Jan; Schrewe, Anja; Adler, Thure; Puk, Oliver; Sun, Minxuan; Favor, Jack; Racz, Ildikó; Bekeredjian, Raffi; Busch, Dirk H.; Graw, Jochen; Klingenspor, Martin; Klopstock, Thomas; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Lopez, Edith; Harati, Hayat; Hill, Eric; Krause, Daniela S.; Guide, Jolene; Dragileva, Ella; Gale, Evan; Wheeler, Vanessa C.; Boustany, Rose-Mary; Brown, Diane E.; Breton, Sylvie; Ruether, Klaus; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Cotman, Susan L.

    2012-01-01

    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development. PMID:22701626

  19. Structural and Genetic Assessment of the ABCA4-Associated Optical Gap Phenotype

    PubMed Central

    Nõupuu, Kalev; Lee, Winston; Zernant, Jana; Tsang, Stephen H.; Allikmets, Rando

    2014-01-01

    Purpose. To investigate the developmental stages and genetic etiology of the optical gap phenotype in recessive Stargardt disease (STGD1). Methods. Single and longitudinal data points from 15 patients, including four sibling pairs, exhibiting an optical gap phenotype on spectral-domain optical coherence tomography (SD-OCT) with confirmed disease-causing ABCA4 alleles were retrospectively analyzed. Fundus images with corresponding SD-OCT scans were collected with a confocal scanning laser ophthalmoscope. Structural phenotypes were assigned to three developmental stages according to SD-OCT. The ABCA4 gene was screened in all patients. Results. At least two disease-causing ABCA4 variants where identified in each patient; all except one (91%) were compound heterozygous for the p.G1961E mutation. All patients exhibited structural findings on SD-OCT that grouped into three progressive developmental stages over several years. Stage 1 was characterized by mild disruptions of the ellipsoid zone (EZ) band over the fovea. Stage 2 was a progressive expansion of the EZ band loss resulting in an empty lesion devoid of photoreceptors. Stage 3 observed a structural collapse of the inner retinal layers into the optical gap space leading to involvement and atrophy of the RPE thereafter. Conclusions. The optical gap phenotype in STGD1 can be structurally divided into three progressive stages spanning several years. This particular phenotype also appears to be highly associated with the p.G1961E mutation of ABCA4. Taken together, it appears that a focal loss of photoreceptors sequentially precedes RPE dysfunction in the early development of ABCA4-associated optical gap lesions. PMID:25301883

  20. Towards Systems Genetic Analyses in Barley: Integration of Phenotypic, Expression and Genotype Data into GeneNetwork

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A typical genetical genomics experiment results in three separate data sets: genotype, gene expression, and higher-order phenotypic data. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. The predictive power of these experiments is largely d...

  1. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system. PMID:18637957

  2. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

    PubMed Central

    Cleynen, Isabelle; Boucher, Gabrielle; Jostins, Luke; Schumm, L Philip; Zeissig, Sebastian; Ahmad, Tariq; Andersen, Vibeke; Andrews, Jane M; Annese, Vito; Brand, Stephan; Brant, Steven R; Cho, Judy H; Daly, Mark J; Dubinsky, Marla; Duerr, Richard H; Ferguson, Lynnette R; Franke, Andre; Gearry, Richard B; Goyette, Philippe; Hakonarson, Hakon; Halfvarson, Jonas; Hov, Johannes R; Huang, Hailang; Kennedy, Nicholas A; Kupcinskas, Limas; Lawrance, Ian C; Lee, James C; Satsangi, Jack; Schreiber, Stephan; Théâtre, Emilie; van der Meulen-de Jong, Andrea E; Weersma, Rinse K; Wilson, David C; Parkes, Miles; Vermeire, Severine; Rioux, John D; Mansfield, John; Silverberg, Mark S; Radford-Smith, Graham; McGovern, Dermot P B; Barrett, Jeffrey C; Lees, Charlie W

    2016-01-01

    Summary Background Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34 819 patients (19 713 with Crohn's disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohn's disease, 12 597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for

  3. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics

    PubMed Central

    Chiaverano, Luciano M.; Bayha, Keith W.; Graham, William M.

    2016-01-01

    For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, “optimal” phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i

  4. Blue eyes in lemurs and humans: same phenotype, different genetic mechanism.

    PubMed

    Bradley, Brenda J; Pedersen, Anja; Mundy, Nicholas I

    2009-06-01

    Almost all mammals have brown or darkly-pigmented eyes (irises), but among primates, there are some prominent blue-eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue-eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely-related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166-bp segment corresponding to and flanking the human eye-color-associated region in these lemurs, as well as other primates (human, chimpanzee, orangutan, macaque, ring-tailed lemur, mouse lemur). Aligned sequences indicated that this region is strongly conserved in both Eulemur macaco subspecies as well as the other primates (except blue-eyed humans). Therefore, it is unlikely that this regulatory segment plays a major role in eye color differences among lemurs as it does in humans. Although convergent phenotypes can sometimes come about via the same or similar genetic changes occurring independently, this does not seem to be the case here, as we have shown that the genetic basis of blue eyes in lemurs differs from that of humans. PMID:19278018

  5. Understanding hematopoiesis from a single-cell standpoint.

    PubMed

    Kokkaliaris, Konstantinos D; Lucas, Daniel; Beerman, Isabel; Kent, David G; Perié, Leïla

    2016-06-01

    The cellular diversity of the hematopoietic system has been extensively studied, and a plethora of cell surface markers have been used to discriminate and prospectively purify different blood cell types. However, even within phenotypically identical fractions of hematopoietic stem and progenitor cells or lineage-restricted progenitors, significant functional heterogeneity is observed when single cells are analyzed. To address these challenges, researchers are now using techniques to follow single cells and their progeny to improve our understanding of the underlying functional heterogeneity. On November 19, 2015, Dr. David Kent and Dr. Leïla Perié, two emerging young group leaders, presented their recent efforts to dissect the functional properties of individual cells with a webinar series organized by the International Society for Experimental Hematology. Here, we provide a summary of the presented methods for cell labeling and clonal tracking and discuss how these different techniques have been employed to study hematopoiesis. PMID:26997547

  6. Abnormal hematopoiesis in Gab2 mutant mice

    PubMed Central

    Zhang, Yi; Diaz-Flores, Ernesto; Li, Geqiang; Wang, Zhengqi; Kang, Zizhen; Haviernikova, Eleonora; Rowe, Sara; Qu, Cheng-Kui; Tse, William; Shannon, Kevin M.

    2007-01-01

    Gab2 is an important adapter molecule for cytokine signaling. Despite its major role in signaling by receptors associated with hematopoiesis, the role of Gab2 in hematopoiesis has not been addressed. We report that despite normal numbers of peripheral blood cells, bone marrow cells, and c-Kit+Lin−Sca-1+ (KLS) cells, Gab2-deficient hematopoietic cells are deficient in cytokine responsiveness. Significant reductions in the number of colony-forming units in culture (CFU-C) in the presence of limiting cytokine concentrations were observed, and these defects could be completely corrected by retroviral complementation. In earlier hematopoiesis, Gab2-deficient KLS cells isolated in vitro responded poorly to hematopoietic growth factors, resulting in an up to 11-fold reduction in response to a cocktail of stem cell factor, flt3 ligand, and thrombopoietin. Gab2-deficient c-Kit+Lin− cells also demonstrate impaired activation of extracellular signal-regulated kinase (ERK) and S6 in response to IL-3, which supports defects in activating the phosphatidylinositol-3 kinase (PI-3K) and mitogen-associated protein kinase (MAPK) signaling cascades. Associated with the early defects in cytokine response, competitive transplantation of Gab2−/− bone marrow cells resulted in defective long-term multilineage repopulation. Therefore, we demonstrate that Gab2 adapter function is intrinsically required for hematopoietic cell response to early-acting cytokines, resulting in defective hematopoiesis in Gab2-deficient mice. PMID:17374739

  7. Effects of grazer presence on genetic structure of a phenotypically diverse diatom population.

    PubMed

    Sjöqvist, C; Kremp, A; Lindehoff, E; Båmstedt, U; Egardt, J; Gross, S; Jönsson, M; Larsson, H; Pohnert, G; Richter, H; Selander, E; Godhe, A

    2014-01-01

    Studies of predator-prey systems in both aquatic and terrestrial environments have shown that grazers structure the intraspecific diversity of prey species, given that the prey populations are phenotypically variable. Populations of phytoplankton have traditionally considered comprising only low intraspecific variation, hence selective grazing as a potentially structuring factor of both genetic and phenotypic diversity has not been comprehensively studied. In this study, we compared strain specific growth rates, production of polyunsaturated aldehydes, and chain length of the marine diatom Skeletonema marinoi in both grazer and non-grazer conditions by conducting monoclonal experiments. Additionally, a mesocosm experiment was performed with multiclonal experimental S. marinoi populations exposed to grazers at different levels of copepod concentration to test effects of grazer presence on diatom diversity in close to natural conditions. Our results show that distinct genotypes of a geographically restricted population exhibit variable phenotypic traits relevant to grazing interactions such as chain length and growth rates. Grazer presence affected clonal richness and evenness of multiclonal Skeletonema populations in the mesocosms, likely in conjunction with intrinsic interactions among the diatom strains. Only the production of polyunsaturated aldehydes was not affected by grazer presence. Our findings suggest that grazing can be an important factor structuring diatom population diversity in the sea and emphasize the importance of considering clonal differences when characterizing species and their role in nature. PMID:24272280

  8. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis.

    PubMed

    Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei

    2009-01-01

    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed. PMID:19015126

  9. MSH1-Induced Non-Genetic Variation Provides a Source of Phenotypic Diversity in Sorghum bicolor

    PubMed Central

    Wang, Guomei; Nino-Liu, David O.; Kundariya, Hardik; Wamboldt, Yashitola; Dweikat, Ismail; Mackenzie, Sally A.

    2014-01-01

    MutS Homolog 1 (MSH1) encodes a plant-specific protein that functions in mitochondria and chloroplasts. We showed previously that disruption or suppression of the MSH1 gene results in a process of developmental reprogramming that is heritable and non-genetic in subsequent generations. In Arabidopsis, this developmental reprogramming process is accompanied by striking changes in gene expression of organellar and stress response genes. This developmentally reprogrammed state, when used in crossing, results in a range of variation for plant growth potential. Here we investigate the implications of MSH1 modulation in a crop species. We found that MSH1-mediated phenotypic variation in Sorghum bicolor is heritable and potentially valuable for crop breeding. We observed phenotypic variation for grain yield, plant height, flowering time, panicle architecture, and above-ground biomass. Focusing on grain yield and plant height, we found some lines that appeared to respond to selection. Based on amenability of this system to implementation in a range of crops, and the scope of phenotypic variation that is derived, our results suggest that MSH1 suppression provides a novel approach for breeding in crops. PMID:25347794

  10. Genetic and environmental backgrounds responsible for the changes in the phenotype of MS in Japanese subjects.

    PubMed

    Kira, Jun-Ichi

    2012-10-01

    There are two distinct phenotypes of multiple sclerosis (MS) in Asians, manifesting as opticospinal (OSMS) and conventional (CMS) forms. In Japan, the results of four nationwide surveys of MS conducted between 1972 and 2004 have revealed a four-fold increase in the estimated number of clinically definite MS patients in 2003 compared with 1972; a shift in the peak age at onset from the early 30s in 1989 to the early 20s in 2003; a successive proportional decrease in optic-spinal involvement in clinically definite MS patients; an increase in the number of CMS patients with Barkhof brain lesions with advancing birth year and a decrease in the number of OSMS patients with LESCLs. These findings suggest that MS phenotypes are drastically altered by environmental factors such as latitude and "Westernization". Helicobacter pylori infection rates, reflecting sanitary conditions in infancy, are significantly different between CMS and OSMS patients. Both phenotypes show distinct HLA class II gene associations. Therefore, changes in environmental factors may have differentially influenced susceptibility to each disease subtype, given that disease susceptibility is only partly genetically determined. PMID:25877266

  11. Genetic Determinants of Cardio-Metabolic Risk: A Proposed Model for Phenotype Association and Interaction

    PubMed Central

    Blackett, Piers R; Sanghera, Dharambir K

    2012-01-01

    This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus it follows that the genetics of dyslipidemia, obesity, and non-alcoholic fatty liver (NAFLD) disease are central in triggering progression of the syndrome to overt expression of disease traits, and have become a key focus of interest for early detection and for designing prevention and treatments. To support the “birds’ eye view” approach we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacological targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. PMID:23351585

  12. Phenotypic and genetic evidence for ecological speciation of Aquilegia japonica and A. oxysepala.

    PubMed

    Li, Lin-Feng; Wang, Hua-Ying; Pang, Di; Liu, Ying; Liu, Bao; Xiao, Hong-Xing

    2014-12-01

    Natural selection is thought to be a driving force that can cause the evolution of reproductive isolation. The genus Aquilegia is a model system to address how natural selection promotes the process of speciation. Morphological differences between A. oxysepala, A. japonica and their hybrids were quantified for two vegetative (plant height and leaf area) and three floral morphological (sepal area, corolla length and diameter) traits. We also evaluated the genetic variability of the two species and their hybrids based on two chloroplast (1225 bp), four nuclear (5811 bp) genes and 15 microsatellites. Our results revealed that differentiation of A. japonica and A. oxysepala at the ecological and morphological levels also involved divergence at the genetic level. In addition, the analysis of nucleotide variation patterns showed that the two species possessed numerous fixation sites at nuclear genes gAA4, gA7 and gAA12. Furthermore, we found that all of the phenotypic hybrids also showed a genetically admixed ancestry. These findings suggest that natural selection has indeed facilitated the formation of distinct genetic variation patterns in the two Aquilegia species and habitat adaptation has been driving the ecologically based evolution of reproductive isolation. PMID:25117915

  13. Diverse phenotypic and genetic responses to short-term selection in evolving Escherichia coli populations.

    PubMed

    Dillon, Marcus M; Rouillard, Nicholas P; Van Dam, Brian; Gallet, Romain; Cooper, Vaughn S

    2016-03-01

    Beneficial mutations fuel adaptation by altering phenotypes that enhance the fit of organisms to their environment. However, the phenotypic effects of mutations often depend on ecological context, making the distribution of effects across multiple environments essential to understanding the true nature of beneficial mutations. Studies that address both the genetic basis and ecological consequences of adaptive mutations remain rare. Here, we characterize the direct and pleiotropic fitness effects of a collection of 21 first-step beneficial mutants derived from naïve and adapted genotypes used in a long-term experimental evolution of Escherichia coli. Whole-genome sequencing was able to identify the majority of beneficial mutations. In contrast to previous studies, we find diverse fitness effects of mutations selected in a simple environment and few cases of genetic parallelism. The pleiotropic effects of these mutations were predominantly positive but some mutants were highly antagonistic in alternative environments. Further, the fitness effects of mutations derived from the adapted genotypes were dramatically reduced in nearly all environments. These findings suggest that many beneficial variants are accessible from a single point on the fitness landscape, and the fixation of alternative beneficial mutations may have dramatic consequences for niche breadth reduction via metabolic erosion. PMID:26995338

  14. Genetic analyses, phenotypic adaptability and stability in sugarcane genotypes for commercial cultivation in Pernambuco.

    PubMed

    Dutra Filho, J A; Junior, T C; Simões Neto, D E

    2015-01-01

    In the present study, we assessed the agro-industrial performance of 22 sugarcane genotypes adaptable to edaphoclimatic conditions in production microregions in the State of Pernambuco, Brazil, and we recommended the commercial cultivation of select genotypes. The variables analyzed were as follows: sucrose percentage in cane juice, tonnage of saccharose per hectare (TPH), sugarcane tonnage per hectare (TCH), fiber, solid soluble contents, total recoverable sugar tonnage (ATR), and total recoverable sugar tonnage per hectare (ATR t/ha). A randomized block design with 4 repeats was used. Combined variance of the experiments, genetic parameter estimates, and environment stratification were analyzed. Phenotypic adaptability and stability were analyzed using the Annicchiarico and Wricke methods and analysis of variance. Genetic gain was estimated using the classic index and sum of ranks. Genotype selection was efficient for TPH, TCH, and ATR t/ha. Genotypes presented a great potential for improvement and a similar response pattern in Litoral Norte and Mata Sul microregions for TPH and TCH and Litoral Norte and Litoral Sul microregions for ATR t/ha. Genotypes SP78-4764, RB813804, and SP79-101 showed better productivity and phenotypic adaptability and stability, according to the Wricke and Annicchiarico methods. These genotypes can be recommended for cultivation in the sugarcane belt in the State of Pernambuco. PMID:26505357

  15. Does 3D Phenotyping Yield Substantial Insights in the Genetics of the Mouse Mandible Shape?

    PubMed Central

    Navarro, Nicolas; Maga, A. Murat

    2016-01-01

    We describe the application of high-resolution 3D microcomputed tomography, together with 3D landmarks and geometric morphometrics, to validate and further improve previous quantitative genetic studies that reported QTL responsible for variation in the mandible shape of laboratory mice using a new backcross between C57BL/6J and A/J inbred strains. Despite the increasing availability of 3D imaging techniques, artificial flattening of the mandible by 2D imaging techniques seems at first an acceptable compromise for large-scale phenotyping protocols, thanks to an abundance of low-cost digital imaging systems such as microscopes or digital cameras. We evaluated the gain of information from considering explicitly this additional third dimension, and also from capturing variation on the bone surface where no precise anatomical landmark can be marked. Multivariate QTL mapping conducted with different landmark configurations (2D vs. 3D; manual vs. semilandmarks) broadly agreed with the findings of previous studies. Significantly more QTL (23) were identified and more precisely mapped when the mandible shape was captured with a large set of semilandmarks coupled with manual landmarks. It appears that finer phenotypic characterization of the mandibular shape with 3D landmarks, along with higher density genotyping, yields better insights into the genetic architecture of mandibular development. Most of the main variation is, nonetheless, preferentially embedded in the natural 2D plane of the hemi-mandible, reinforcing the results of earlier influential investigations. PMID:26921296

  16. Inhibitory effects of homeodomain-interacting protein kinase 2 on the aorta-gonad-mapharsen hematopoiesis

    SciTech Connect

    Ohtsu, Naoki; Nobuhisa, Ikuo; Mochita, Miyuki; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-01-01

    Definitive hematopoiesis starts in the aorta-gonad-mesonephros (AGM) region of the mouse embryo. Our previous studies revealed that STAT3, a gp130 downstream transcription factor, is required for AGM hematopoiesis and that homeodomain-interacting protein kinase 2 (HIPK2) phosphorylates serine-727 of STAT3. HIPK2 is a serine/threonine kinase known to be involved in transcriptional repression and apoptosis. In the present study, we examined the role of HIPK2 in hematopoiesis in mouse embryo. HIPK2 transcripts were found in fetal hematopoietic tissues such as the mouse AGM region and fetal liver. In cultured AGM cells, HIPK2 protein was detected in adherent cells. Functional analyses of HIPK2 were carried out by introducing wild-type and mutant HIPK2 constructs into AGM cultures. Production of CD45{sup +} hematopoietic cells was suppressed by forced expression of HIPK2 in AGM cultures. This suppression required the kinase domain and nuclear localization signals of HIPK2, but the kinase activity was dispensable. HIPK2-overexpressing AGM-derived nonadherent cells did not form cobblestone-like colonies in cultures with stromal cells. Furthermore, overexpression of HIPK2 in AGM cultures impeded the expansion of CD45{sup low}c-Kit{sup +} cells, which exhibit the immature hematopoietic progenitor phenotype. These data indicate that HIPK2 plays a negative regulatory role in AGM hematopoiesis in the mouse embryo.

  17. Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series

    PubMed Central

    Webb, T. E. F.; Poulter, M.; Beck, J.; Uphill, J.; Adamson, G.; Campbell, T.; Linehan, J.; Powell, C.; Brandner, S.; Pal, S.; Siddique, D.; Wadsworth, J. D.; Joiner, S.; Alner, K.; Petersen, C.; Hampson, S.; Rhymes, C.; Treacy, C.; Storey, E.; Geschwind, M. D.; Nemeth, A. H.; Wroe, S.; Mead, S.

    2008-01-01

    The largest kindred with inherited prion disease P102L, historically Gerstmann-Sträussler-Scheinker syndrome, originates from central England, with émigrés now resident in various parts of the English-speaking world. We have collected data from 84 patients in the large UK kindred and numerous small unrelated pedigrees to investigate phenotypic heterogeneity and modifying factors. This collection represents by far the largest series of P102L patients so far reported. Microsatellite and genealogical analyses of eight separate European kindreds support multiple distinct mutational events at a cytosine-phosphate diester-guanidine dinucleotide mutation hot spot. All of the smaller P102L kindreds were linked to polymorphic human prion protein gene codon 129M and were not connected by genealogy or microsatellite haplotype background to the large kindred or each other. While many present with classical Gerstmann-Sträussler-Scheinker syndrome, a slowly progressive cerebellar ataxia with later onset cognitive impairment, there is remarkable heterogeneity. A subset of patients present with prominent cognitive and psychiatric features and some have met diagnostic criteria for sporadic Creutzfeldt-Jakob disease. We show that polymorphic human prion protein gene codon 129 modifies age at onset: the earliest eight clinical onsets were all MM homozygotes and overall age at onset was 7 years earlier for MM compared with MV heterozygotes (P = 0.02). Unexpectedly, apolipoprotein E4 carriers have a delayed age of onset by 10 years (P = 0.02). We found a preponderance of female patients compared with males (54 females versus 30 males, P = 0.01), which probably relates to ascertainment bias. However, these modifiers had no impact on a semi-quantitative pathological phenotype in 10 autopsied patients. These data allow an appreciation of the range of clinical phenotype, modern imaging and molecular investigation and should inform genetic counselling of at-risk individuals, with the

  18. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    PubMed

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis. PMID:27265357

  19. What drivers phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation?

    NASA Astrophysics Data System (ADS)

    Yuan, Shan; Ma, Linna; Guo, Chengyuan; Wang, Renzhong

    2016-05-01

    Elucidating the driving factors among-population divergence is an important task in evolutionary biology, however the relative contribution from natural selection and neutral genetic differentiation has been less debated. A manipulation experiment was conducted to examine whether the phenotypic divergence of Leymus chinensis depended on climate variations or genetic differentiations at 18 wild sites along a longitudinal gradient from 114 to 124°E in northeast China and at common garden condition of transplantation. Demographical, morphological and physiological phenotypes of 18 L. chinensis populations exhibited significant divergence along the gradient, but these divergent variations narrowed significantly at the transplantation. Moreover, most of the phenotypes were significantly correlated with mean annual precipitation and temperature in wild sites, suggesting that climatic variables played vital roles in phenotypic divergence of the species. Relative greater heterozygosity (HE), genotype evenness (E) and Shannon-Wiener diversity (I) in western group of populations suggested that genetic differentiation also drove phenotypic divergence of the species. However, neutral genetic differentiation (FST = 0.041) was greatly lower than quantitative differentiation (QST = 0.199), indicating that divergent selection/climate variable was the main factor in determining the phenotypic divergence of the species along the large-scale gradient.

  20. What drivers phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation?

    PubMed Central

    Yuan, Shan; Ma, Linna; Guo, Chengyuan; Wang, Renzhong

    2016-01-01

    Elucidating the driving factors among-population divergence is an important task in evolutionary biology, however the relative contribution from natural selection and neutral genetic differentiation has been less debated. A manipulation experiment was conducted to examine whether the phenotypic divergence of Leymus chinensis depended on climate variations or genetic differentiations at 18 wild sites along a longitudinal gradient from 114 to 124°E in northeast China and at common garden condition of transplantation. Demographical, morphological and physiological phenotypes of 18 L. chinensis populations exhibited significant divergence along the gradient, but these divergent variations narrowed significantly at the transplantation. Moreover, most of the phenotypes were significantly correlated with mean annual precipitation and temperature in wild sites, suggesting that climatic variables played vital roles in phenotypic divergence of the species. Relative greater heterozygosity (HE), genotype evenness (E) and Shannon-Wiener diversity (I) in western group of populations suggested that genetic differentiation also drove phenotypic divergence of the species. However, neutral genetic differentiation (FST = 0.041) was greatly lower than quantitative differentiation (QST = 0.199), indicating that divergent selection/climate variable was the main factor in determining the phenotypic divergence of the species along the large-scale gradient. PMID:27195668

  1. Genetic and phenotypic relationships between blood gas parameters and ascites-related traits in broilers.

    PubMed

    Closter, A M; van As, P; Groenen, M A M; Vereijken, A L J; van Arendonk, J A M; Bovenhuis, H

    2009-03-01

    Ascites, also called pulmonary hypertension syndrome, is a metabolic disorder in chickens that have an insufficient pulmonary vascular capacity. The tendency of broilers to develop ascites is heritable, and successful selection against this susceptibility would benefit from good and easy-to-measure indicator traits. Blood gas parameters have been suggested as indicator traits for ascites susceptibility. Therefore, the aim of the present study was to estimate the heritability of blood gas parameters and the genetic and phenotypic correlations between blood gas parameters, heart ratio (postmortem indicator for ascites), and BW at 2 different ages. For this purpose, blood gas parameters, including the partial pressure of carbon dioxide in venous blood (pvCO(2)), the partial pressure of oxygen in venous blood (pvO(2)), and blood oxygen saturation, were measured at an average age of 22 d in nearly 3,000 broilers. To challenge the resistance of the birds to ascites, they were kept under cold conditions. Heritability for heart ratio was 0.43, and the heritability estimates were low: 0.02 for pvCO(2), 0.03 for pvO(2), and 0.07 for blood oxygen saturation. The estimated heritability for pH was 0.15, for bicarbonate was 0.19, and for total carbon dioxide content was 0.19. The genetic correlations between heart ratio and total carbon dioxide content (0.31 +/- 0.15) and between heart ratio and bicarbonate (0.31 +/- 0.15) were moderate and positive. For pvO(2), the genetic correlation with heart ratio was stronger and negative (-0.62 +/- 0.21); however, this correlation could not be estimated accurately because of the low heritability of pvO(2). For pvCO(2), the genetic correlation with the heart ratio was close to zero (-0.04 +/- 0.45). Phenotypic correlations between traits were, in general, similar to the genetic correlations. Heritabilities for blood gas parameters and the genetic correlations between blood gas parameters and the heart ratio estimated in the present study

  2. Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species

    PubMed Central

    Campbell, Kyle K.; Braile, Thomas

    2016-01-01

    The Philippine Islands are one of the most biologically diverse archipelagoes in the world. Current taxonomy, however, may underestimate levels of avian diversity and endemism in these islands. Although species limits can be difficult to determine among allopatric populations, quantitative methods for comparing phenotypic and genotypic data can provide useful metrics of divergence among populations and identify those that merit consideration for elevation to full species status. Using a conceptual approach that integrates genetic and phenotypic data, we compared populations among 48 species, estimating genetic divergence (p-distance) using the mtDNA marker ND2 and comparing plumage and morphometrics of museum study skins. Using conservative speciation thresholds, pairwise comparisons of genetic and phenotypic divergence suggested possible species-level divergences in more than half of the species studied (25 out of 48). In speciation process space, divergence routes were heterogeneous among taxa. Nearly all populations that surpassed high genotypic divergence thresholds were Passeriformes, and non-Passeriformes populations surpassed high phenotypic divergence thresholds more commonly than expected by chance. Overall, there was an apparent logarithmic increase in phenotypic divergence with respect to genetic divergence, suggesting the possibility that divergence among these lineages may initially be driven by divergent selection in this allopatric system. Also, genetic endemism was high among sampled islands. Higher taxonomy affected divergence in genotype and phenotype. Although broader lineage, genetic, phenotypic, and numeric sampling is needed to further explore heterogeneity among divergence processes and to accurately assess species-level diversity in these taxa, our results support the need for substantial taxonomic revisions among Philippine birds. The conservation implications are profound. PMID:27442510

  3. Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species.

    PubMed

    Campbell, Kyle K; Braile, Thomas; Winker, Kevin

    2016-01-01

    The Philippine Islands are one of the most biologically diverse archipelagoes in the world. Current taxonomy, however, may underestimate levels of avian diversity and endemism in these islands. Although species limits can be difficult to determine among allopatric populations, quantitative methods for comparing phenotypic and genotypic data can provide useful metrics of divergence among populations and identify those that merit consideration for elevation to full species status. Using a conceptual approach that integrates genetic and phenotypic data, we compared populations among 48 species, estimating genetic divergence (p-distance) using the mtDNA marker ND2 and comparing plumage and morphometrics of museum study skins. Using conservative speciation thresholds, pairwise comparisons of genetic and phenotypic divergence suggested possible species-level divergences in more than half of the species studied (25 out of 48). In speciation process space, divergence routes were heterogeneous among taxa. Nearly all populations that surpassed high genotypic divergence thresholds were Passeriformes, and non-Passeriformes populations surpassed high phenotypic divergence thresholds more commonly than expected by chance. Overall, there was an apparent logarithmic increase in phenotypic divergence with respect to genetic divergence, suggesting the possibility that divergence among these lineages may initially be driven by divergent selection in this allopatric system. Also, genetic endemism was high among sampled islands. Higher taxonomy affected divergence in genotype and phenotype. Although broader lineage, genetic, phenotypic, and numeric sampling is needed to further explore heterogeneity among divergence processes and to accurately assess species-level diversity in these taxa, our results support the need for substantial taxonomic revisions among Philippine birds. The conservation implications are profound. PMID:27442510

  4. Dilute passage promotes expression of genetic and phenotypic variants of human immunodeficiency virus type 1 in cell culture.

    PubMed Central

    Sánchez-Palomino, S; Rojas, J M; Martínez, M A; Fenyö, E M; Nájera, R; Domingo, E; López-Galíndez, C

    1993-01-01

    We have studied the extent of genetic and phenotypic diversification of human immunodeficiency virus type 1 (HIV-1) upon 15 serial passages of clonal viral populations in MT-4 cell cultures. Several genetic and phenotypic modifications previously noted during evolution of HIV-1 in infected humans were also observed upon passages of the virus in cell culture. Notably, the transition from non-syncytium-inducing to syncytium-inducing phenotype (previously observed during disease progression) and fixation of amino acid substitutions at the main antigenic loop V3 of gp120 were observed in the course of replication of the virus in MT-4 cell cultures in the absence of immune selection. Interestingly, most genetic and phenotypic alterations occurred upon passage of the virus at a low multiplicity of infection (0.001 infectious particles per cell) rather than at a higher multiplicity of infection (0.1 infectious particles per cell). The degree of genetic diversification attained by HIV-1, estimated by the RNase A mismatch cleavage method and by nucleotide sequencing, is of about 0.03% of genomic sites mutated after 15 serial passages. This value is not significantly different from previous estimates for foot-and-mouth disease virus when subjected to a similar process and analysis. We conclude that several genetic and phenotypic modifications of HIV-1 previously observed in vivo occur also in the constant environment provided by a cell culture system. Dilute passage promotes in a highly significant way the expression of deviant HIV-1 genomes. Images PMID:8474182

  5. Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records.

    PubMed

    Sinnott, Jennifer A; Dai, Wei; Liao, Katherine P; Shaw, Stanley Y; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Karlson, Elizabeth W; Churchill, Susanne; Szolovits, Peter; Murphy, Shawn; Kohane, Isaac; Plenge, Robert; Cai, Tianxi

    2014-11-01

    To reduce costs and improve clinical relevance of genetic studies, there has been increasing interest in performing such studies in hospital-based cohorts by linking phenotypes extracted from electronic medical records (EMRs) to genotypes assessed in routinely collected medical samples. A fundamental difficulty in implementing such studies is extracting accurate information about disease outcomes and important clinical covariates from large numbers of EMRs. Recently, numerous algorithms have been developed to infer phenotypes by combining information from multiple structured and unstructured variables extracted from EMRs. Although these algorithms are quite accurate, they typically do not provide perfect classification due to the difficulty in inferring meaning from the text. Some algorithms can produce for each patient a probability that the patient is a disease case. This probability can be thresholded to define case-control status, and this estimated case-control status has been used to replicate known genetic associations in EMR-based studies. However, using the estimated disease status in place of true disease status results in outcome misclassification, which can diminish test power and bias odds ratio estimates. We propose to instead directly model the algorithm-derived probability of being a case. We demonstrate how our approach improves test power and effect estimation in simulation studies, and we describe its performance in a study of rheumatoid arthritis. Our work provides an easily implemented solution to a major practical challenge that arises in the use of EMR data, which can facilitate the use of EMR infrastructure for more powerful, cost-effective, and diverse genetic studies. PMID:25062868

  6. Cause and effect considerations in diagnostic pathology and pathology phenotyping of genetically engineered mice (GEM).

    PubMed

    McKerlie, Colin

    2006-01-01

    Over the next several decades, biology is embarking on its most ambitious project yet: to annotate the human genome functionally, prioritizing and focusing on those genes relevant to development and disease. Model systems are fundamental prerequisites for this task, and genetically engineered mice (GEM) are by far the most accessible mammalian system because of their anatomical, physiological, and genetic similarity to humans. The scientific utility of GEM has become commonplace since the technology to produce them was established in the early 1980s. Conceptually, however, an efficiently coordinated high-throughput approach that permits correlation between newly discovered genes, functional properties of their protein products, and biological relevance of these products as drug targets has yet to be established. The discipline of veterinary anatomical pathology (hereafter referred to as pathology) is not immune to this requirement for evolution and adaptation, and to address relationships and tissue consequences between tens of thousands of genes and their cognate proteins, novel interdisciplinary technologies and approaches must emerge. Although many of the techniques of pathology are well established, in the context of pathology's contribution to functional annotation of the genome, several conceptually important and unresolved issues remain to be addressed. While an ever-increasing arsenal of genetic and molecular tool-sets are available to evaluate and understand the function of genes and their pathophysiological mechanisms, pathology will continue to play an essential role in confirming cause and effect relationships of gene function in development and disease. This role will continue to be dependent on keen observation, a systematic but disciplined approach, expert knowledge of strain-dependent anatomical differences and incidental lesions, and relevant tissue-based evidence. Miniaturization and high-throughput adaptation of these methods must also continue

  7. CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.

    PubMed

    Chin, Fee Wai; Chan, Soon Choy; Abdul Rahman, Sabariah; Noor Akmal, Sharifah; Rosli, Rozita

    2016-01-01

    The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the

  8. Phenotypic and genetic variation in leptin as determinants of weight regain

    PubMed Central

    Rudich, A; Meiner, V; Schwarzfuchs, D; Sharon, N; Shpitzen, S; Blüher, M; Stumvoll, M; Thiery, J; Fiedler, GM; Friedlander, Y; Leiterstdorf, E; Shai, I

    2016-01-01

    Aims Over 75% of obese subjects fail to maintain their weight following weight loss interventions. We aimed to identify phenotypic and genetic markers associated with weight maintenance/regain following a dietary intervention. Subjects and methods In the 2-year Dietary Intervention Randomized Controlled Trial, we assessed potential predictors for weight changes during the ‘weight loss phase’ (0–6 months) and the ‘weight maintenance/regain phase’ (7–24 months). Genetic variation between study participants was studied using single-nucleotide polymorphisms in the leptin gene (LEP). Results Mean weight reduction was −5.5% after 6 months, with a mean weight regain of 1.2% of baseline weight during the subsequent 7–24 months. In a multivariate regression model, higher baseline high-molecular-weight adiponectin was the only biomarker predictor of greater success in 0- to 6-month weight loss (β = −0.222, P-value = 0.044). In a multivariate regression model adjusted for 6-month changes in weight and various biomarkers, 6-month plasma leptin reduction exhibited the strongest positive association with 6-month weight loss (β = 0.505, P-value<0.001). Conversely, 6-month plasma leptin reduction independently predicted weight regain during the following 18 months (β = −0.131, P-value<.013). Weight regain was higher among participants who had a greater (top tertiles) 6-month decrease in both weight and leptin (+ 3.4% (95% confidence interval 2.1–4.8)) as compared with those in the lowest combined tertiles (+ 0.2% (95% confidence interval −1.1 to 1.4)); P-value<0.001. Weight regain was further significantly and independently associated with genetic variations in LEP (P = 0.006 for both rs4731426 and rs2071045). Adding genetic data to the phenotypic multivariate model increased its predictive value for weight regain by 34%. Conclusion Although greater reduction in leptin concentrations during the initial phase of a dietary intervention is associated with

  9. The Role of Inflammatory Pathway Genetic Variation on Maternal Metabolic Phenotypes during Pregnancy

    PubMed Central

    Urbanek, Margrit; Hayes, M. Geoffrey; Lee, Hoon; Freathy, Rachel M.; Lowe, Lynn P.; Ackerman, Christine; Jafari, Nadereh; Dyer, Alan R.; Cox, Nancy J.; Dunger, David B.; Hattersley, Andrew T.; Metzger, Boyd E.; Lowe, William L.

    2012-01-01

    Background Since mediators of inflammation are associated with insulin resistance, and the risk of developing diabetes mellitus and gestational diabetes, we hypothesized that genetic variation in members of the inflammatory gene pathway impact glucose levels and related phenotypes in pregnancy. We evaluated this hypothesis by testing for association between genetic variants in 31 inflammatory pathway genes in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) cohort, a large multiethnic multicenter study designed to address the impact of glycemia less than overt diabetes on pregnancy outcome. Results Fasting, 1-hour, and 2-hour glucose, fasting and 1-hour C-peptide, and HbA1c levels were measured in blood samples obtained from HAPO participants during an oral glucose tolerance test at 24-32 weeks gestation. We tested for association between 458 SNPs mapping to 31 genes in the inflammatory pathway and metabolic phenotypes in 3836 European ancestry and 1713 Thai pregnant women. The strongest evidence for association was observed with TNF alpha and HbA1c (rs1052248; 0.04% increase per allele C; p-value = 4.4×10−5), RETN and fasting plasma glucose (rs1423096; 0.7 mg/dl decrease per allele A; p-value = 1.1×10−4), IL8 and 1 hr plasma glucose (rs2886920; 2.6 mg/dl decrease per allele T; p-value = 1.3×10−4), ADIPOR2 and fasting C-peptide (rs2041139; 0.55 ug/L decrease per allele A; p-value = 1.4×10−4), LEPR and 1-hour C-peptide (rs1171278; 0.62 ug/L decrease per allele T; p-value = 2.4×10−4), and IL6 and 1-hour plasma glucose (rs6954897; −2.29 mg/dl decrease per allele G, p-value = 4.3×10−4). Conclusions Based on the genes surveyed in this study the inflammatory pathway is unlikely to have a strong impact on maternal metabolic phenotypes in pregnancy although variation in individual members of the pathway (e.g. RETN, IL8, ADIPOR2, LEPR, IL6, and TNF alpha,) may contribute to metabolic phenotypes in pregnant women. PMID

  10. The extent and genetic basis of phenotypic divergence in life history traits in Mimulus guttatus

    PubMed Central

    Friedman, Jannice; Twyford, Alex D; Willis, John H; Blackman, Benjamin K

    2015-01-01

    Differential natural selection acting on populations in contrasting environments often results in adaptive divergence in multivariate phenotypes. Multivariate trait divergence across populations could be caused by selection on pleiotropic alleles or through many independent loci with trait-specific effects. Here, we assess patterns of association between a suite of traits contributing to life history divergence in the common monkey flower, Mimulus guttatus, and examine the genetic architecture underlying these correlations. A common garden survey of 74 populations representing annual and perennial strategies from across the native range revealed strong correlations between vegetative and reproductive traits. To determine whether these multitrait patterns arise from pleiotropic or independent loci, we mapped QTLs using an approach combining high-throughput sequencing with bulk segregant analysis on a cross between populations with divergent life histories. We find extensive pleiotropy for QTLs related to flowering time and stolon production, a key feature of the perennial strategy. Candidate genes related to axillary meristem development colocalize with the QTLs in a manner consistent with either pleiotropic or independent QTL effects. Further, these results are analogous to previous work showing pleiotropy-mediated genetic correlations within a single population of M. guttatus experiencing heterogeneous selection. Our findings of strong multivariate trait associations and pleiotropic QTLs suggest that patterns of genetic variation may determine the trajectory of adaptive divergence. PMID:25403267

  11. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max) Using Association Mapping

    PubMed Central

    Huang, Wen; Yang, Jiyu; Li, Candong; Wen, Zixiang; Li, Yinghui; Guan, Rongxia; Guo, Yong; Chang, Ruzhen; Wang, Dechun; Wang, Shuming; Qiu, Li-Juan

    2016-01-01

    The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS) was exploited to detect the quantitative trait loci (QTL) for number of days to flowering (ETF), number of days from flowering to maturity (FTM), and number of days to maturity (ETM) using 4032 single nucleotide polymorphism (SNP) markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding. PMID:27367048

  12. So many doggone traits: mapping genetics of multiple phenotypes in the domestic dog

    PubMed Central

    Rimbault, Maud; Ostrander, Elaine A.

    2012-01-01

    The worldwide dog population is fragmented into >350 domestic breeds. Breeds share a common ancestor, the gray wolf. The intense artificial selection imposed by humans to develop breeds with particular behaviors and phenotypic traits has occurred primarily in the last 200–300 years. As a result, the number of genes controlling the major differences in body size, leg length, head shape, etc. that define each dog is small, and genetically tractable. This is in comparison to many human complex traits where small amounts of variance are controlled by literally hundreds of genes. We have been interested in disentangling the genetic mechanisms controlling breed-defining morphological traits in the domestic dog. The structure of the dog population, comprised large numbers of pure breeding populations, makes this task surprisingly doable. In this review, we summarize recent work on the genetics of body size, leg length and skull shape, while setting the stage for tackling other traits. It is our expectation that these results will contribute to a better understanding of mammalian developmental processes overall. PMID:22878052

  13. Temporal patterns of genetic and phenotypic variation in the epidemiologically important drone fly, Eristalis tenax.

    PubMed

    Francuski, Lj; Matić, I; Ludoški, J; Milankov, V

    2011-06-01

    Eristalis tenax L. (Diptera: Syrphidae) is commonly known as the drone fly (adult) or rat-tailed maggot (immature). Both adults and immature stages are identified as potential mechanical vectors of mycobacterial pathogens, and early-stage maggots cause accidental myiasis. We compared four samples from Mount Fruška Gora, Serbia, with the aim of obtaining insights into the temporal variations and sexual dimorphism in the species. This integrative approach was based on allozyme loci, morphometric wing parameters (shape and size) and abdominal colour patterns. Consistent sexual dimorphism was observed, indicating that male specimens had lighter abdomens and smaller and narrower wings than females. The distribution of genetic diversity at polymorphic loci indicated genetic divergence among collection dates. Landmark-based geometric morphometrics revealed, contrary to the lack of divergence in wing size, significant wing shape variation throughout the year. In addition, temporal changes in the frequencies of the abdominal patterns observed are likely to relate to the biology of the species and ecological factors in the locality. Hence, the present study expands our knowledge of the genetic diversity and phenotypic plasticity of E. tenax. The quantification of such variability represents a step towards the evaluation of the adaptive potential of this species of medical and epidemiological importance. PMID:21414022

  14. PhenomeCentral: a portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases.

    PubMed

    Buske, Orion J; Girdea, Marta; Dumitriu, Sergiu; Gallinger, Bailey; Hartley, Taila; Trang, Heather; Misyura, Andriy; Friedman, Tal; Beaulieu, Chandree; Bone, William P; Links, Amanda E; Washington, Nicole L; Haendel, Melissa A; Robinson, Peter N; Boerkoel, Cornelius F; Adams, David; Gahl, William A; Boycott, Kym M; Brudno, Michael

    2015-10-01

    The discovery of disease-causing mutations typically requires confirmation of the variant or gene in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due to difficulty identifying second families. To enable the secure sharing of case records by clinicians and rare disease scientists, we have developed the PhenomeCentral portal (https://phenomecentral.org). Each record includes a phenotypic description and relevant genetic information (exome or candidate genes). PhenomeCentral identifies similar patients in the database based on semantic similarity between clinical features, automatically prioritized genes from whole-exome data, and candidate genes entered by the users, enabling both hypothesis-free and hypothesis-driven matchmaking. Users can then contact other submitters to follow up on promising matches. PhenomeCentral incorporates data for over 1,000 patients with rare genetic diseases, contributed by the FORGE and Care4Rare Canada projects, the US NIH Undiagnosed Diseases Program, the EU Neuromics and ANDDIrare projects, as well as numerous independent clinicians and scientists. Though the majority of these records have associated exome data, most lack a molecular diagnosis. PhenomeCentral has already been used to identify causative mutations for several patients, and its ability to find matching patients and diagnose these diseases will grow with each additional patient that is entered. PMID:26251998

  15. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice

    PubMed Central

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Duan, Lingfeng; Chen, Guoxing; Jiang, Ni; Fang, Wei; Feng, Hui; Xie, Weibo; Lian, Xingming; Wang, Gongwei; Luo, Qingming; Zhang, Qifa; Liu, Qian; Xiong, Lizhong

    2014-01-01

    Even as the study of plant genomics rapidly develops through the use of high-throughput sequencing techniques, traditional plant phenotyping lags far behind. Here we develop a high-throughput rice phenotyping facility (HRPF) to monitor 13 traditional agronomic traits and 2 newly defined traits during the rice growth period. Using genome-wide association studies (GWAS) of the 15 traits, we identify 141 associated loci, 25 of which contain known genes such as the Green Revolution semi-dwarf gene, SD1. Based on a performance evaluation of the HRPF and GWAS results, we demonstrate that high-throughput phenotyping has the potential to replace traditional phenotyping techniques and can provide valuable gene identification information. The combination of the multifunctional phenotyping tools HRPF and GWAS provides deep insights into the genetic architecture of important traits. PMID:25295980

  16. Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation.

    PubMed

    Karbassi, Elaheh; Monte, Emma; Chapski, Douglas J; Lopez, Rachel; Rosa Garrido, Manuel; Kim, Joseph; Wisniewski, Nicholas; Rau, Christoph D; Wang, Jessica J; Weiss, James N; Wang, Yibin; Lusis, Aldons J; Vondriska, Thomas M

    2016-08-01

    Expression of a cohort of disease-associated genes, some of which are active in fetal myocardium, is considered a hallmark of transcriptional change in cardiac hypertrophy models. How this transcriptome remodeling is affected by the common genetic variation present in populations is unknown. We examined the role of genetics, as well as contributions of chromatin proteins, to regulate cardiac gene expression and heart failure susceptibility. We examined gene expression in 84 genetically distinct inbred strains of control and isoproterenol-treated mice, which exhibited varying degrees of disease. Unexpectedly, fetal gene expression was not correlated with hypertrophic phenotypes. Unbiased modeling identified 74 predictors of heart mass after isoproterenol-induced stress, but these predictors did not enrich for any cardiac pathways. However, expanded analysis of fetal genes and chromatin remodelers as groups correlated significantly with individual systemic phenotypes. Yet, cardiac transcription factors and genes shown by gain-/loss-of-function studies to contribute to hypertrophic signaling did not correlate with cardiac mass or function in disease. Because the relationship between gene expression and phenotype was strain specific, we examined genetic contribution to expression. Strikingly, strains with similar transcriptomes in the basal heart did not cluster together in the isoproterenol state, providing comprehensive evidence that there are different genetic contributors to physiological and pathological gene expression. Furthermore, the divergence in transcriptome similarity versus genetic similarity between strains is organ specific and genome-wide, suggesting chromatin is a critical buffer between genetics and gene expression. PMID:27287924

  17. Identification of Genetic Suppressors of the Sin3A Knockdown Wing Phenotype

    PubMed Central

    Fox, Stephanie; Gammouh, Sarah; Pile, Lori A.

    2012-01-01

    The role of the Sin3A transcriptional corepressor in regulating the cell cycle is established in various metazoans. Little is known, however, about the signaling pathways that trigger or are triggered by Sin3A function. To discover genes that work in similar or opposing pathways to Sin3A during development, we have performed an unbiased screen of deficiencies of the Drosophila third chromosome. Additionally, we have performed a targeted loss of function screen to identify cell cycle genes that genetically interact with Sin3A. We have identified genes that encode proteins involved in regulation of gene expression, signaling pathways and cell cycle that can suppress the curved wing phenotype caused by the knockdown of Sin3A. These data indicate that Sin3A function is quite diverse and impacts a wide variety of cellular processes. PMID:23166712

  18. Genetically and Phenotypically Distinct Pseudomonas aeruginosa Cystic Fibrosis Isolates Share a Core Proteomic Signature

    PubMed Central

    Penesyan, Anahit; Kumar, Sheemal S.; Kamath, Karthik; Shathili, Abdulrahman M.; Venkatakrishnan, Vignesh; Krisp, Christoph; Packer, Nicolle H.; Molloy, Mark P.; Paulsen, Ian T.

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such

  19. Genetic differences based on a beef terminal index are reflected in future phenotypic performance differences in commercial beef cattle.

    PubMed

    Connolly, S M; Cromie, A R; Berry, D P

    2016-05-01

    The increased demand for animal-derived protein and energy for human consumption will have to be achieved through a combination of improved animal genetic merit and better management strategies. The objective of the present study was to quantify whether differences in genetic merit among animals materialised into phenotypic differences in commercial herds. Carcass phenotypes on 156 864 animals from 7301 finishing herds were used, which included carcass weight (kg), carcass conformation score (scale 1 to 15), carcass fat score (scale 1 to 15) at slaughter as well as carcass price. The price per kilogram and the total carcass value that the producer received for the animal at slaughter was also used. A terminal index, calculated in the national genetic evaluations, was obtained for each animal. The index was based on pedigree index for calving performance, feed intake and carcass traits from the national genetic evaluations. Animals were categorised into four terminal index groups on the basis of genetic merit estimates that were derived before the expression of the phenotypic information by the validation animals. The association between terminal index and phenotypic performance at slaughter was undertaken using mixed models; whether the association differed by gender (i.e. young bulls, steers and heifers) or by early life experiences (animals born in a dairy herd or beef herd) was also investigated. The regression coefficient of phenotypic carcass weight, carcass conformation and carcass fat on their respective estimated breeding values (EBVs) was 0.92 kg, 1.08 units and 0.79 units, respectively, which is close to the expectation of one. Relative to animals in the lowest genetic merit group, animals in the highest genetic merit group had, on average, a 38.7 kg heavier carcass, with 2.21 units greater carcass conformation, and 0.82 units less fat. The superior genetic merit animals were, on average, slaughtered 6 days younger than their inferior genetic merit

  20. Phenotype and polyp landscape in serrated polyposis syndrome: a series of 100 patients from genetics clinics.

    PubMed

    Rosty, Christophe; Buchanan, Daniel D; Walsh, Michael D; Pearson, Sally-Ann; Pavluk, Erika; Walters, Rhiannon J; Clendenning, Mark; Spring, Kevin J; Jenkins, Mark A; Win, Aung K; Hopper, John L; Sweet, Kevin; Frankel, Wendy L; Aronson, Melyssa; Gallinger, Steve; Goldblatt, Jack; Woodall, Sonja; Arnold, Julie; Walker, Neal I; Jass, Jeremy R; Parry, Susan; Young, Joanne P

    2012-06-01

    Serrated polyposis syndrome (SPS), also known as hyperplastic polyposis, is a syndrome of unknown genetic basis defined by the occurrence of multiple serrated polyps in the large intestine and associated with an increased risk of colorectal cancer (CRC). There are a variety of SPS presentations, which may encompass a continuum of phenotypes modified by environmental and genetic factors. To explore the phenotype of SPS, we recorded the histologic and molecular characteristics of multiple colorectal polyps in patients with SPS recruited between 2000 and 2010 from genetics clinics in Australia, New Zealand, Canada, and the United States. Three specialist gastrointestinal pathologists reviewed the polyps, which they classified into conventional adenomas or serrated polyps, with various subtypes, according to the current World Health Organization criteria. Mutations in BRAF and KRAS and mismatch repair protein expression were determined in a subset of polyps. A total of 100 patients were selected for the study, of whom 58 were female and 42 were male. The total polyp count per patient ranged from 6 to 150 (median 30). The vast majority of patients (89%) had polyposis affecting the entire large intestine. From this cohort, 406 polyps were reviewed. Most of the polyps (83%) were serrated polyps: microvesicular hyperplastic polyps (HP) (n=156), goblet cell HP (n=25), sessile serrated adenoma/polyps (SSA/P) (n=110), SSA/P with cytologic dysplasia (n=28), and traditional serrated adenomas (n=18). A further 69 polyps were conventional adenomas. BRAF mutation was mainly detected in SSA/P with dysplasia (95%), SSA/P (85%), microvesicular HP (76%), and traditional serrated adenoma (54%), whereas KRAS mutation was present mainly in goblet cell HP (50%) and in tubulovillous adenoma (45%). Four of 6 SSA/Ps with high-grade dysplasia showed loss of MLH1/PMS2 expression. CRC was diagnosed in 39 patients who were more often found to have a conventional adenoma compared with patients

  1. Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia.

    PubMed

    Alshammari, T K; Alshammari, M A; Nenov, M N; Hoxha, E; Cambiaghi, M; Marcinno, A; James, T F; Singh, P; Labate, D; Li, J; Meltzer, H Y; Sacchetti, B; Tempia, F; Laezza, F

    2016-01-01

    Cognitive processing is highly dependent on the functional integrity of gamma-amino-butyric acid (GABA) interneurons in the brain. These cells regulate excitability and synaptic plasticity of principal neurons balancing the excitatory/inhibitory tone of cortical networks. Reduced function of parvalbumin (PV) interneurons and disruption of GABAergic synapses in the cortical circuitry result in desynchronized network activity associated with cognitive impairment across many psychiatric disorders, including schizophrenia. However, the mechanisms underlying these complex phenotypes are still poorly understood. Here we show that in animal models, genetic deletion of fibroblast growth factor 14 (Fgf14), a regulator of neuronal excitability and synaptic transmission, leads to loss of PV interneurons in the CA1 hippocampal region, a critical area for cognitive function. Strikingly, this cellular phenotype associates with decreased expression of glutamic acid decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) and also coincides with disrupted CA1 inhibitory circuitry, reduced in vivo gamma frequency oscillations and impaired working memory. Bioinformatics analysis of schizophrenia transcriptomics revealed functional co-clustering of FGF14 and genes enriched within the GABAergic pathway along with correlatively decreased expression of FGF14, PVALB, GAD67 and VGAT in the disease context. These results indicate that Fgf14(-/-) mice recapitulate salient molecular, cellular, functional and behavioral features associated with human cognitive impairment, and FGF14 loss of function might be associated with the biology of complex brain disorders such as schizophrenia. PMID:27163207

  2. Genetic algorithm based approach to optimize phenotypical traits of virtual rice.

    PubMed

    Ding, Weilong; Xu, Lifeng; Wei, Yang; Wu, Fuli; Zhu, Defeng; Zhang, Yuping; Max, Nelson

    2016-08-21

    How to select and combine good traits of rice to get high-production individuals is one of the key points in developing crop ideotype cultivation technologies. Existing cultivation methods for producing ideal plants, such as field trials and crop modeling, have some limits. In this paper, we propose a method based on a genetic algorithm (GA) and a functional-structural plant model (FSPM) to optimize plant types of virtual rice by dynamically adjusting phenotypical traits. In this algorithm, phenotypical traits such as leaf angles, plant heights, the maximum number of tiller, and the angle of tiller are considered as input parameters of our virtual rice model. We evaluate the photosynthetic output as a function of these parameters, and optimized them using a GA. This method has been implemented on GroIMP using the modeling language XL (eXtended L-System) and RGG (Relational Growth Grammar). A double haploid population of rice is adopted as test material in a case study. Our experimental results show that our method can not only optimize the parameters of rice plant type and increase the amount of light absorption, but can also significantly increase crop yield. PMID:27179460

  3. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate

    PubMed Central

    Proia, Theresa A.; Keller, Patricia J.; Gupta, Piyush B.; Klebba, Ina; Jones, Ainsley D.; Sedic, Maja; Gilmore, Hannah; Tung, Nadine; Naber, Stephen P.; Schnitt, Stuart; Lander, Eric S.; Kuperwasser, Charlotte

    2011-01-01

    Women with inherited mutations in the BRCA1 gene have increased risk of developing breast cancer, but also exhibit a predisposition for the development of aggressive basal-like breast tumors. We report here that breast epithelial cells derived from patients harboring deleterious mutations in BRCA1 (BRCA1mut/+) give rise to tumors with increased basal differentiation relative to cells from BRCA1+/+ patients. Molecular analysis of disease-free breast tissues from BRCA1mut/+ patients revealed defects in progenitor cell lineage commitment even before cancer incidence. Moreover, we discovered that the transcriptional repressor Slug is an important functional regulator of human breast progenitor cell lineage commitment and differentiation and that it is aberrantly expressed in BRCA1mut/+ tissues. Slug expression is necessary for increased basal-like phenotypes prior to and following neoplastic transformation. These findings demonstrate that the genetic background of patient populations, in addition to affecting incidence rates, significantly impacts progenitor cell fate commitment and, therefore, tumor phenotype. PMID:21295272

  4. Genetic markers that influence feed efficiency phenotypes also affect cattle temperament as measured by flight speed.

    PubMed

    Lindholm-Perry, A K; Kuehn, L A; Freetly, H C; Snelling, W M

    2015-02-01

    Flight speed is a predictive indicator of cattle temperament and is associated with feed efficiency phenotypes. Genetic markers associated with both traits may assist with selection of calmer animals with improved economic value. A preliminary genome-wide association study determined chromosomal regions on BTA9, and 17 were associated with flight speed. The genes quaking (QKI), glutamate receptor, ionotropic, AMPA 2 (GRIA2) and glycine receptor β (GLRB) were identified in these regions as potential functional candidates. Beef steers (n = 1057) were genotyped with SNPs located within and flanking these genes. One SNP located near QKI and one near GRIA2 were nominally associated with flight speed (P ≤ 0.05) although neither was significant after Bonferroni correction. Several studies have shown a correlation between flight speed and feed intake or gain; therefore, we also analyzed SNPs on BTA6:38-39 Mb known to be associated with average daily gain (ADG) and average daily feed intake (ADFI) for association with flight speed. Several SNPs on BTA6 were associated with flight speed (P ≤ 0.005), and three were significant after Bonferroni correction. These results suggest that the genes tested are unlikely to contribute to flight speed variation for our cattle population, but SNPs on BTA6 associated with ADG and ADFI may influence temperament. Use of these markers to select for economically important feed efficiency phenotypes may produce cattle with more desirable temperaments. PMID:25515066

  5. Invited commentary: Personality phenotype and mortality--new avenues in genetic, social, and clinical epidemiology.

    PubMed

    Chapman, Benjamin P

    2013-09-01

    In this issue of the Journal, Jokela et al. (Am J Epidemiol. 2013;178(5):667-675) scrutinize the association between personality phenotype and all-cause mortality in remarkable detail by using an "individual-participant meta-analysis" design. Across 7 large cohorts varying in demographics and methods of personality measurement, they find varying prospective associations for 4 dimensions of the five-factor (or "Big Five") model of personality, but robust and consistent prospective associations for Big Five dimension of "conscientiousness." Jokela et al. place an important exclamation point on a long era of study of this topic and hint directly and indirectly at new avenues for this line of research. I consider the following 3 areas particularly rife for further inquiry: the role of genetics in personality and health studies; the role of personality in social inequalities in health; and the health policy and clinical implications of work like that of Jokela et al., including the potential role of personality phenotype in the evolution of personalized medicine. PMID:23911611

  6. Morphological, genetic and phenotypic comparison between human articular chondrocytes and cultured chondrocytes.

    PubMed

    Mata-Miranda, Mónica Maribel; Martinez-Martinez, Claudia María; Noriega-Gonzalez, Jesús Emmanuel; Paredes-Gonzalez, Luis Enrique; Vázquez-Zapién, Gustavo Jesús

    2016-08-01

    Articular cartilage is an avascular and aneural tissue with limited capacity for regeneration. On large articular lesions, it is recommended to use regenerative medicine strategies, like autologous chondrocyte implantation. There is a concern about morphological changes that chondrocytes suffer once they have been isolated and cultured. Due to the fact that there is little evidence that compares articular cartilage chondrocytes with cultured chondrocytes, in this research we proposed to obtain chondrocytes from human articular cartilage, compare them with themselves once they have been cultured and characterize them through genetic, phenotypic and morphological analysis. Knee articular cartilage samples of 10 mm were obtained, and each sample was divided into two fragments; a portion was used to determine gene expression, and from the other portion, chondrocytes were obtained by enzymatic disaggregation, in order to be cultured and expanded in vitro. Subsequently, morphological, genetic and phenotypic characteristics were compared between in situ (articular cartilage) and cultured chondrocytes. Obtained cultured chondrocytes were rounded in shape, possessing a large nucleus with condensed chromatin and a clear cytoplasm; histological appearance was quite similar to typical chondrocyte. The expression levels of COL2A1 and COL10A1 genes were higher in cultured chondrocytes than in situ chondrocytes; moreover, the expression of COL1A1 was almost undetectable on cultured chondrocytes; likewise, COL2 and SOX9 proteins were detected by immunofluorescence. We concluded that chondrocytes derived from adult human cartilage cultured for 21 days do not tend to dedifferentiate, maintaining their capacity to produce matrix and also retaining their synthesis capacity and morphology. PMID:27094849

  7. Phenotypic and genetic characterization of resistance in Arabidopsis thaliana to the oomycete pathogen Phytophthora parasitica

    PubMed Central

    Meng, Yuling; Huang, Yihua; Wang, Qinhu; Wen, Qujiang; Jia, Jinbu; Zhang, Qiang; Huang, Guiyan; Quan, Junli; Shan, Weixing

    2015-01-01

    The interaction between Arabidopsis thaliana and the oomycete pathogen Phytophthora parasitica emerges as a model for exploring the molecular basis and evolution of recognition and host defense. Phenotypic variation and genetic analysis is essential to dissect the underlying mechanisms in plant–oomycete interaction. In this study, the reaction phenotypes of 28 A. thaliana accessions to P. parasitica strain Pp016 were examined using detached leaf infection assay. The results showed the presence of four distinct groups based on host response and disease development. Of all the accessions examined, Zurich (Zu-1) is highly resistant to P. parasitica. Microscopic characterization showed that rapid and severe hypersensitive response at the primary infection epidermal cells is associated with disease resistance. Furthermore, Zu-1 is resistant to a set of 20 diverse P. parasitica strains, which were collected from different host plants and exhibited differential specificities on a set of tobacco cultivars. However, Zu-1 is susceptible to P. parasitica when the root is inoculated, suggesting differential expression of associated resistance genes in the root and foliar tissues. Genetic analysis by crossing Zu-1 and the susceptible accession Landsberg (Ler) showed that the resistance in Zu-1 to P. parasitica is semi-dominant, as shown by infection assays of F1 progenies, and is likely conferred by a single locus, defined as RPPA1Zu-1 (for Resistance to P. parasitica 1), as shown by analysis of F2 segregating populations. By employing specific-locus amplified fragment sequencing (SLAF-seq) strategy to identify molecular markers potentially linked to the locus, the strongest associated region was determined to be located between 7.1 and 11.2 Mb in chromosome IV. The future cloning of RPPA1Zu-1 locus will facilitate improved understanding of plant broad-spectrum disease resistance to oomycete pathogens. PMID:26074940

  8. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes.

    PubMed

    Bhagirath, Divya; Zhao, Xiangshan; West, William W; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-04-20

    Breast cancer is classified into different subtypes that are associated with different patient survival outcomes, underscoring the importance of understanding the role of precursor cell and genetic alterations in determining tumor subtypes. In this study, we evaluated the oncogenic phenotype of two distinct mammary stem/progenitor cell types designated as K5+/K19- or K5+/K19+ upon introduction of identical combinations of oncogenes-mutant H-Ras (mRas) and mutant p53 (mp53), together with either wild-type ErbB2(wtErbB2) or wild-type EGFR (wtEGFR). We examined their tumor forming and metastasis potential, using both in-vitro and in-vivo assays. Both the combinations efficiently transformed K5+/K19- or K5+/K19+ cells. Xenograft tumors formed by these cells were histologically heterogeneous, with variable proportions of luminal, basal-like and claudin-low type components depending on the cell types and oncogene combinations. Notably, K5+/K19- cells transformed with mRas/mp53/wtEGFR combination had a significantly longer latency for primary tumor development than other cell lines but more lung metastasis incidence than same cells expressing mRas/mp53/wtErbB2. K5+/K19+ cells exhibit shorter overall tumor latency, and high metastatic potential than K5+/K19- cells, suggesting that these K19+ progenitors are more susceptible to oncogenesis and metastasis. Our results suggest that both genetic alterations and cell type of origin contribute to oncogenic phenotype of breast tumors. PMID:25940703

  9. Phenotypic and genetic characterization of a novel phenotype in pigs characterized by juvenile hairlessness and age dependent emphysema

    PubMed Central

    Bruun, Camilla S; Jørgensen, Claus B; Bay, Lene; Cirera, Susanna; Jensen, Henrik E; Leifsson, Páll S; Nielsen, Jens; Christensen, Knud; Fredholm, Merete

    2008-01-01

    Background A pig phenotype characterized by juvenile hairlessness, thin skin and age dependent lung emphysema has been discovered in a Danish pig herd. The trait shows autosomal co-dominant inheritance with all three genotypes distinguishable. Since the phenotype shows resemblance to the integrin β6 -/- knockout phenotype seen in mice, the two genes encoding the two subunits of integrin αvβ6, i.e. ITGB6 and ITGAV, were considered candidate genes for this trait. Results The mutated pig phenotype is characterized by hairlessness until puberty, thin skin with few hair follicles and absence of musculi arrectores pili, and at puberty or later localized areas of emphysema are seen in the lungs. Comparative mapping predicted that the porcine ITGB6 andITGAV orthologs map to SSC15. In an experimental family (n = 113), showing segregation of the trait, the candidate region was confirmed by linkage analysis with four microsatellite markers. Mapping of the porcine ITGB6 and ITGAV in the IMpRH radiation hybrid panel confirmed the comparative mapping information. Sequencing of the ITGB6 and ITGAV coding sequences from affected and normal pigs revealed no evidence of a causative mutation, but alternative splicing of the ITGB6 pre-mRNA was detected. For both ITGB6 and ITGAV quantitative PCR revealed no significant difference in the expression levels in normal and affected animals. In a western blot, ITGB6 was detected in lung protein samples of all three genotypes. This result was supported by flow cytometric analyses which showed comparable reactions of kidney cells from affected and normal pigs with an integrin αvβ6 monoclonal antibody. Also, immunohistochemical staining of lung tissue with an integrin β6 antibody showed immunoreaction in both normal and affected pigs. Conclusion A phenotype resembling the integrin β6 -/- knockout phenotype seen in mice has been characterized in the pig. The candidate region on SSC15 has been confirmed by linkage analysis but molecular

  10. Long segment spinal epidural extramedullary hematopoiesis

    PubMed Central

    Garg, Kanwaljeet; Singh, Pankaj Kumar; Singh, Manmohan; Chandra, P. Sarat; Sharma, Bhawani Shankar

    2013-01-01

    Background: Extramedullary hematopoiesis is defined as the formation of blood cells outside the bone marrow. It is a common manifestation of many chronic hemolytic anemias, and typically involves the liver, spleen, and lymph nodes. Only rarely is the spinal epidural space involved. Methods: We describe a 25-year-old male, known to have thalassemia intermedia, who presented with a 1-month history of stiffness and weakness in both lower extremities. On physical examination, he had palpable splenomegaly accompanied by spinal tenderness at the D5 level, weakness in both lower extremities, hyperactive bilateral Patellar and Achilles reflexes with bilateral Babinski responses, and a graded sensory loss to pin appreciation below D5. Results: The magnetic resonance (MR) study revealed a posterior, isointense and soft tissue epidural mass extending from D2 to D12 on both the T1- and T2-weighted images. These findings were consistent with the diagnosis of “red marrow,” and long-segment spinal epidural extramedullary hematopoiesis. Conclusions: Although extramedullary hematopoiesis is rarely encountered within the spinal canal, it should be considered among the differential diagnoses when a posterior compressive thoracic lesion contributes to myelopathy in a patient with a history of thalassemia intermedia and the accompanying chronic hemolytic anemia. PMID:24404404

  11. Kras is Required for Adult Hematopoiesis.

    PubMed

    Damnernsawad, Alisa; Kong, Guangyao; Wen, Zhi; Liu, Yangang; Rajagopalan, Adhithi; You, Xiaona; Wang, Jinyong; Zhou, Yun; Ranheim, Erik A; Luo, Hongbo R; Chang, Qiang; Zhang, Jing

    2016-07-01

    Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its role in adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow (BM) is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced thrombopoietin (TPO) signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while stem cell factor-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias toward myeloid differentiation in MPPs. Although granulocyte macrophage colony-stimulating factor (GM-CSF)-evoked ERK1/2 activation is only moderately decreased in Kras(-/-) myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9-12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras(-/-) BM cells is greatly compromised, which is attributable to defects in the self-renewal of Kras(-/-) HSCs and defects in differentiated hematopoietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. Stem Cells 2016;34:1859-1871. PMID:26972179

  12. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle.

    PubMed

    Donoghue, K A; Bird-Gardiner, T; Arthur, P F; Herd, R M; Hegarty, R F

    2016-04-01

    Ruminants contribute 80% of the global livestock greenhouse gas (GHG) emissions mainly through the production of methane, a byproduct of enteric microbial fermentation primarily in the rumen. Hence, reducing enteric methane production is essential in any GHG emissions reduction strategy in livestock. Data on 1,046 young bulls and heifers from 2 performance-recording research herds of Angus cattle were analyzed to provide genetic and phenotypic variance and covariance estimates for methane emissions and production traits and to examine the interrelationships among these traits. The cattle were fed a roughage diet at 1.2 times their estimated maintenance energy requirements and measured for methane production rate (MPR) in open circuit respiration chambers for 48 h. Traits studied included DMI during the methane measurement period, MPR, and methane yield (MY; MPR/DMI), with means of 6.1 kg/d (SD 1.3), 132 g/d (SD 25), and 22.0 g/kg (SD 2.3) DMI, respectively. Four forms of residual methane production (RMP), which is a measure of actual minus predicted MPR, were evaluated. For the first 3 forms, predicted MPR was calculated using published equations. For the fourth (RMP), predicted MPR was obtained by regression of MPR on DMI. Growth and body composition traits evaluated were birth weight (BWT), weaning weight (WWT), yearling weight (YWT), final weight (FWT), and ultrasound measures of eye muscle area, rump fat depth, rib fat depth, and intramuscular fat. Heritability estimates were moderate for MPR (0.27 [SE 0.07]), MY (0.22 [SE 0.06]), and the RMP traits (0.19 [SE 0.06] for each), indicating that genetic improvement to reduce methane emissions is possible. The RMP traits and MY were strongly genetically correlated with each other (0.99 ± 0.01). The genetic correlation of MPR with MY as well as with the RMP traits was moderate (0.32 to 0.63). The genetic correlation between MPR and the growth traits (except BWT) was strong (0.79 to 0.86). These results indicate that

  13. Genetic and phenotypic characterization of Saccharomyces spp. strains isolated in distillery plants.

    PubMed

    Úbeda, Juan F; Chacón-Ocaña, Maria; Díaz-Hellín, Patricia; Ramírez-Pérez, Hector; Briones, Ana

    2016-06-01

    In this study, the biodiversity and some interesting phenotypic properties of Saccharomyces wild yeasts isolated in distilleries, at least 100 years old, located in La Mancha (Spain), were determined. Strains were genetically characterized by RFLP-mtDNA, which confirmed a great genetic biodiversity with 73% of strains with different mtDNA profiles, highlighting the large variability found in sweet and fermented piquette substrata. The predominant species identified was S. cerevisiae, followed by S. paradoxus and S. bayanus Due to the residual sugar-alcohol extraction process using warm water, a great number of thermophilic Saccharomyces strains with a great cell vitality were found to have potential use as starters in distillery plants. Interesting technological properties such as cell vitality and growth rate at different temperatures were studied. The thermal washing process for the extraction of alcohol and reducing sugars of some raw materials contributes to the presence of Saccharomyces strains with technologically interesting properties, especially in terms of vitality and resistance to high temperatures. Due to the fact that fermentation is spontaneous, the yeast biota of these environments, Saccharomyces and non-Saccharomyces, is very varied so these ecological niches are microbial reserves of undoubted biotechnological interest. PMID:27189361

  14. Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity

    PubMed Central

    2012-01-01

    Background The genus Dunaliella (Class – Chlorophyceae) is widely studied for its tolerance to extreme habitat conditions, physiological aspects and many biotechnological applications, such as a source of carotenoids and many other bioactive compounds. Biochemical and molecular characterization is very much essential to fully explore the properties and possibilities of the new isolates of Dunaliella. In India, hyper saline lakes and salt pans were reported to bloom with Dunaliella spp. However, except for the economically important D. salina, other species are rarely characterized taxonomically from India. Present study was conducted to describe Dunaliella strains from Indian salinas using a combined morphological, physiological and molecular approach with an aim to have a better understanding on the taxonomy and diversity of this genus from India. Results Comparative phenotypic and genetic studies revealed high level of diversity within the Indian Dunaliella isolates. Species level identification using morphological characteristics clearly delineated two strains of D. salina with considerable β-carotene content (>20 pg/cell). The variation in 18S rRNA gene size, amplified with MA1-MA2 primers, ranged between ~1800 and ~2650 base pairs, and together with the phylogeny based on ITS gene sequence provided a pattern, forming five different groups within Indian Dunaliella isolates. Superficial congruency was observed between ITS and rbcL gene phylogenetic trees with consistent formation of major clades separating Indian isolates into two distinct clusters, one with D. salina and allied strains, and another one with D. viridis and allied strains. Further in both the trees, few isolates showed high level of genetic divergence than reported previously for Dunaliella spp. This indicates the scope of more numbers of clearly defined/unidentified species/sub-species within Indian Dunaliella isolates. Conclusion Present work illustrates Indian Dunaliella strains

  15. PHENOTYPIC AND GENETIC HETEROGENEITY AMONG SUBJECTS WITH MILD AIRFLOW OBSTRUCTION IN COPDGENE

    PubMed Central

    Lee, Jin Hwa; Cho, Michael H.; McDonald, Merry-Lynn N.; Hersh, Craig P.; Castaldi, Peter J.; Crapo, James D.; Wan, Emily S.; Dy, Jennifer G.; Chang, Yale; Regan, Elizabeth A.; Hardin, Megan; DeMeo, Dawn L.; Silverman, Edwin K.

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) is characterized by marked phenotypic heterogeneity. Most previous studies have focused on COPD subjects with FEV1 < 80% predicted. We investigated the clinical and genetic heterogeneity in subjects with mild airflow limitation in spirometry grade 1 defined by the Global Initiative for chronic Obstructive Lung Disease (GOLD 1). Methods Data from current and former smokers participating in the COPDGene Study (NCT00608764) were analyzed. K-means clustering was performed to explore subtypes within 794 GOLD 1 subjects. For all subjects with GOLD 1 and with each cluster, a genome-wide association study and candidate gene testing were performed using smokers with normal lung function as a control group. Combinations of COPD genome-wide significant single nucleotide polymorphisms (SNPs) were tested for association with FEV1 (% predicted) in GOLD 1 and in a combined group of GOLD1 and smoking control subjects. Results K-means clustering of GOLD 1 subjects identified putative “near-normal”, “airway-predominant”, “emphysema-predominant” and “lowest FEV1 % predicted” subtypes. In non-Hispanic whites, the only SNP nominally associated with GOLD 1 status relative to smoking controls was rs7671167 (FAM13A) in logistic regression models with adjustment for age, sex, pack-years of smoking, and genetic ancestry. The emphysema-predominant GOLD 1 cluster was nominally associated with rs7671167 (FAM13A) and rs161976 (BICD1). The lowest FEV1 % predicted cluster was nominally associated with rs1980057 (HHIP) and rs1051730 (CHRNA3). Combinations of COPD genome-wide significant SNPs were associated with FEV1 (% predicted) in a combined group of GOLD 1 and smoking control subjects. Conclusions Our results indicate that GOLD 1 subjects show substantial clinical heterogeneity, which is at least partially related to genetic heterogeneity. PMID:25154699

  16. Genetic Studies of Quantitative MCI and AD Phenotypes in ADNI: Progress, Opportunities, and Plans

    PubMed Central

    Saykin, Andrew J.; Shen, Li; Yao, Xiaohui; Kim, Sungeun; Nho, Kwangsik; Risacher, Shannon L.; Ramanan, Vijay K.; Foroud, Tatiana M.; Faber, Kelly M.; Sarwar, Nadeem; Munsie, Leanne M.; Hu, Xiaolan; Soares, Holly D.; Potkin, Steven G.; Thompson, Paul M.; Kauwe, John S.K.; Kaddurah-Daouk, Rima; Green, Robert C.; Toga, Arthur W.; Weiner, Michael W.

    2015-01-01

    INTRODUCTION Genetic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has been crucial in advancing the understanding of AD pathophysiology. Here we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing (WES, WGS) data have been obtained and disseminated. RESULTS ADNI genetic data have been downloaded thousands of times and over 300 publications have resulted, including reports of large scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies employed ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first WES and WGS data sets and reports in healthy controls, MCI, and AD. DISCUSSION Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data, and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multi-omics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological

  17. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua.

    PubMed

    Brutsaert, Tom D; Parra, Esteban; Shriver, Mark; Gamboa, Alfredo; Palacios, Jose-Antonio; Rivera, Maria; Rodriguez, Ivette; León-Velarde, Fabiola

    2004-04-01

    Forced vital capacity (FVC) and maximal exercise response were measured in two populations of Peruvian males (age, 18-35 years) at 4,338 m who differed by the environment in which they were born and raised, i.e., high altitude (Cerro de Pasco, Peru, BHA, n = 39) and sea level (Lima, Peru, BSL, n = 32). BSL subjects were transported from sea level to 4,338 m, and were evaluated within 24 hr of exposure to hypobaric hypoxia. Individual admixture level (ADMIX, % Spanish ancestry) was estimated for each subject, using 22 ancestry-informative genetic markers and also by skin reflectance measurement (MEL). Birthplace accounted for the approximately 10% larger FVC (P < 0.001), approximately 15% higher maximal oxygen consumption (VO(2)max, ml.min(-1).kg(-1)) (P < 0.001), and approximately 5% higher arterial oxygen saturation during exercise (SpO(2)) (P < 0.001) of BHA subjects. ADMIX was low in both study groups, averaging 9.5 +/- 2.6% and 2.1 +/- 0.3% in BSL and BHA subjects, respectively. Mean underarm MEL was significantly higher in the BSL group (P < 0.001), despite higher ADMIX. ADMIX was not associated with any study phenotype, but study power was not sufficient to evaluate hypotheses of genetic adaptation via the ADMIX variable. MEL and FVC were positively correlated in the BHA (P = 0.035) but not BSL (P = 0.335) subjects. However, MEL and ADMIX were not correlated across the entire study sample (P = 0.282). In summary, results from this study emphasize the importance of developmental adaptation to high altitude. While the MEL-FVC correlation may reflect genetic adaptation to high altitude, study results suggest that alternate (environmental) explanations be considered. PMID:15022366

  18. An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits

    PubMed Central

    Huh, Iksoo; Kwon, Min-Seok; Park, Taesung

    2015-01-01

    Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively. PMID:26406920

  19. Phenotypic characterization and genetic analysis of rice (Oryza sativa L.) with pubescent leaves and glabrous hulls (plgh)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop pubescence (hairs or trichomes), the outermost cell layer covering plant organs, provides an advantage as a plant defense mechanism but can be abrasive to field and processing equipment. All previous studies on the phenotypic and genotypic characterization of rice pubescence have used genetic m...

  20. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth, feed intake, and temperament indicator data, collected over 5 yr on a total of 1,141 to 1,183 mixed-breed steers, were used to estimate genetic and phenotypic parameters. All steers had a portion of either Hereford or Angus or both plus varying percentages also of Simmental, Charolais, Limo...

  1. The influence of gene flow and drift on genetic and phenotypic divergence in two species of Zosterops in Vanuatu

    PubMed Central

    Clegg, Sonya M.; Phillimore, Albert B.

    2010-01-01

    Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago. PMID:20194170

  2. Metabolomic and Gene Expression Profiles Exhibit Modular Genetic and Dietary Structure Linking Metabolic Syndrome Phenotypes in Drosophila

    PubMed Central

    Williams, Stephanie; Dew-Budd, Kelly; Davis, Kristen; Anderson, Julie; Bishop, Ruth; Freeman, Kenda; Davis, Dana; Bray, Katherine; Perkins, Lauren; Hubickey, Joana; Reed, Laura K.

    2015-01-01

    Genetic and environmental factors influence complex disease in humans, such as metabolic syndrome, and Drosophila melanogaster serves as an excellent model in which to test these factors experimentally. Here we explore the modularity of endophenotypes with an in-depth reanalysis of a previous study by Reed et al. (2014), where we raised 20 wild-type genetic lines of Drosophila larvae on four diets and measured gross phenotypes of body weight, total sugar, and total triglycerides, as well as the endophenotypes of metabolomic and whole-genome expression profiles. We then perform new gene expression experiments to test for conservation of phenotype-expression correlations across different diets and populations. We find that transcript levels correlated with gross phenotypes were enriched for puparial adhesion, metamorphosis, and central energy metabolism functions. The specific metabolites L-DOPA and N-arachidonoyl dopamine make physiological links between the gross phenotypes across diets, whereas leucine and isoleucine thus exhibit genotype-by-diet interactions. Between diets, we find low conservation of the endophenotypes that correlate with the gross phenotypes. Through the follow-up expression study, we found that transcript-trait correlations are well conserved across populations raised on a familiar diet, but on a novel diet, the transcript-trait correlations are no longer conserved. Thus, physiological canalization of metabolic phenotypes breaks down in a novel environment exposing cryptic variation. We cannot predict the physiological basis of disease in a perturbing environment from profiles observed in the ancestral environment. This study demonstrates that variation for disease traits within a population is acquired through a multitude of physiological mechanisms, some of which transcend genetic and environmental influences, and others that are specific to an individual’s genetic and environmental context. PMID:26530416

  3. Metabolomic and Gene Expression Profiles Exhibit Modular Genetic and Dietary Structure Linking Metabolic Syndrome Phenotypes in Drosophila.

    PubMed

    Williams, Stephanie; Dew-Budd, Kelly; Davis, Kristen; Anderson, Julie; Bishop, Ruth; Freeman, Kenda; Davis, Dana; Bray, Katherine; Perkins, Lauren; Hubickey, Joana; Reed, Laura K

    2015-12-01

    Genetic and environmental factors influence complex disease in humans, such as metabolic syndrome, and Drosophila melanogaster serves as an excellent model in which to test these factors experimentally. Here we explore the modularity of endophenotypes with an in-depth reanalysis of a previous study by Reed et al. (2014), where we raised 20 wild-type genetic lines of Drosophila larvae on four diets and measured gross phenotypes of body weight, total sugar, and total triglycerides, as well as the endophenotypes of metabolomic and whole-genome expression profiles. We then perform new gene expression experiments to test for conservation of phenotype-expression correlations across different diets and populations. We find that transcript levels correlated with gross phenotypes were enriched for puparial adhesion, metamorphosis, and central energy metabolism functions. The specific metabolites L-DOPA and N-arachidonoyl dopamine make physiological links between the gross phenotypes across diets, whereas leucine and isoleucine thus exhibit genotype-by-diet interactions. Between diets, we find low conservation of the endophenotypes that correlate with the gross phenotypes. Through the follow-up expression study, we found that transcript-trait correlations are well conserved across populations raised on a familiar diet, but on a novel diet, the transcript-trait correlations are no longer conserved. Thus, physiological canalization of metabolic phenotypes breaks down in a novel environment exposing cryptic variation. We cannot predict the physiological basis of disease in a perturbing environment from profiles observed in the ancestral environment. This study demonstrates that variation for disease traits within a population is acquired through a multitude of physiological mechanisms, some of which transcend genetic and environmental influences, and others that are specific to an individual's genetic and environmental context. PMID:26530416

  4. Mice Genetically Depleted of Brain Serotonin do not Display a Depression-like Behavioral Phenotype

    PubMed Central

    Angoa-Pérez, Mariana; Kane, Michael J.; Briggs, Denise I.; Herrera-Mundo, Nieves; Sykes, Catherine E.; Francescutti, Dina M.; Kuhn, Donald M.

    2016-01-01

    Reductions in function within the serotonin (5HT) neuronal system have long been proposed as etiological factors in depression. Serotonin selective reuptake inhibitors (SSRIs) are the most common treatment for depression and their therapeutic effect is generally attributed to their ability to increase the synaptic levels of 5HT. Tryptophan hydroxylase 2 (TPH2) is the initial and rate-limiting enzyme in the biosynthetic pathway of 5HT in the CNS and losses in its catalytic activity lead to reductions in 5HT production and release. The time differential between the onset of 5HT reuptake inhibition by SSRIs (minutes) and onset of their anti-depressant efficacy (weeks to months), when considered with their overall poor therapeutic effectiveness, has cast some doubt on the role of 5HT in depression. Mice lacking the gene for TPH2 are genetically depleted of brain 5HT and were tested for a depression-like behavioral phenotype using a battery of valid tests for affective-like disorders in animals. The behavior of TPH2−/− mice on the sucrose preference test, tail suspension test and forced swim test and their responses in the unpredictable chronic mild stress and learned helplessness paradigms was the same as wild-type controls. While TPH2−/− mice as a group were not responsive to SSRIs, a subset responded to treatment with SSRIs in the same manner as wild-type controls with significant reductions in immobility time on the tail suspension test, indicative of antidepressant drug effects. The behavioral phenotype of the TPH2−/− mouse questions the role of 5HT in depression. Furthermore, the TPH2−/− mouse may serve as a useful model in the search for new medications that have therapeutic targets for depression that are outside of the 5HT neuronal system. PMID:25089765

  5. Dubowitz syndrome is a complex comprised of multiple, genetically distinct and phenotypically overlapping disorders.

    PubMed

    Stewart, Douglas R; Pemov, Alexander; Johnston, Jennifer J; Sapp, Julie C; Yeager, Meredith; He, Ji; Boland, Joseph F; Burdett, Laurie; Brown, Christina; Gatti, Richard A; Alter, Blanche P; Biesecker, Leslie G; Savage, Sharon A

    2014-01-01

    Dubowitz syndrome is a rare disorder characterized by multiple congenital anomalies, cognitive delay, growth failure, an immune defect, and an increased risk of blood dyscrasia and malignancy. There is considerable phenotypic variability, suggesting genetic heterogeneity. We clinically characterized and performed exome sequencing and high-density array SNP genotyping on three individuals with Dubowitz syndrome, including a pair of previously-described siblings (Patients 1 and 2, brother and sister) and an unpublished patient (Patient 3). Given the siblings' history of bone marrow abnormalities, we also evaluated telomere length and performed radiosensitivity assays. In the siblings, exome sequencing identified compound heterozygosity for a known rare nonsense substitution in the nuclear ligase gene LIG4 (rs104894419, NM_002312.3:c.2440C>T) that predicts p.Arg814X (MAF:0.0002) and an NM_002312.3:c.613delT variant that predicts a p.Ser205Leufs*29 frameshift. The frameshift mutation has not been reported in 1000 Genomes, ESP, or ClinSeq. These LIG4 mutations were previously reported in the sibling sister; her brother had not been previously tested. Western blotting showed an absence of a ligase IV band in both siblings. In the third patient, array SNP genotyping revealed a de novo ∼ 3.89 Mb interstitial deletion at chromosome 17q24.2 (chr 17:62,068,463-65,963,102, hg18), which spanned the known Carney complex gene PRKAR1A. In all three patients, a median lymphocyte telomere length of ≤ 1st centile was observed and radiosensitivity assays showed increased sensitivity to ionizing radiation. Our work suggests that, in addition to dyskeratosis congenita, LIG4 and 17q24.2 syndromes also feature shortened telomeres; to confirm this, telomere length testing should be considered in both disorders. Taken together, our work and other reports on Dubowitz syndrome, as currently recognized, suggest that it is not a unitary entity but instead a collection of phenotypically

  6. Dubowitz Syndrome Is a Complex Comprised of Multiple, Genetically Distinct and Phenotypically Overlapping Disorders

    PubMed Central

    Stewart, Douglas R.; Pemov, Alexander; Johnston, Jennifer J.; Sapp, Julie C.; Yeager, Meredith; He, Ji; Boland, Joseph F.; Burdett, Laurie; Brown, Christina; Gatti, Richard A.; Alter, Blanche P.; Biesecker, Leslie G.; Savage, Sharon A.

    2014-01-01

    Dubowitz syndrome is a rare disorder characterized by multiple congenital anomalies, cognitive delay, growth failure, an immune defect, and an increased risk of blood dyscrasia and malignancy. There is considerable phenotypic variability, suggesting genetic heterogeneity. We clinically characterized and performed exome sequencing and high-density array SNP genotyping on three individuals with Dubowitz syndrome, including a pair of previously-described siblings (Patients 1 and 2, brother and sister) and an unpublished patient (Patient 3). Given the siblings' history of bone marrow abnormalities, we also evaluated telomere length and performed radiosensitivity assays. In the siblings, exome sequencing identified compound heterozygosity for a known rare nonsense substitution in the nuclear ligase gene LIG4 (rs104894419, NM_002312.3:c.2440C>T) that predicts p.Arg814X (MAF:0.0002) and an NM_002312.3:c.613delT variant that predicts a p.Ser205Leufs*29 frameshift. The frameshift mutation has not been reported in 1000 Genomes, ESP, or ClinSeq. These LIG4 mutations were previously reported in the sibling sister; her brother had not been previously tested. Western blotting showed an absence of a ligase IV band in both siblings. In the third patient, array SNP genotyping revealed a de novo ∼3.89 Mb interstitial deletion at chromosome 17q24.2 (chr 17:62,068,463–65,963,102, hg18), which spanned the known Carney complex gene PRKAR1A. In all three patients, a median lymphocyte telomere length of ≤1st centile was observed and radiosensitivity assays showed increased sensitivity to ionizing radiation. Our work suggests that, in addition to dyskeratosis congenita, LIG4 and 17q24.2 syndromes also feature shortened telomeres; to confirm this, telomere length testing should be considered in both disorders. Taken together, our work and other reports on Dubowitz syndrome, as currently recognized, suggest that it is not a unitary entity but instead a collection of phenotypically

  7. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  8. Genetic analyses benefit from using less heterogeneous phenotypes: An illustration with the Hospital Anxiety and Depression Scale (HADS)

    PubMed Central

    Laurin, Charles A.; Hottenga, Jouke-Jan; Willemsen, Gonneke; Boomsma, Dorret I.; Lubke, Gitta H.

    2015-01-01

    Phenotypic heterogeneity of depression has been cited as one of causes of the limited success to detect genetic variants in genome-wide studies. The 7-item Hospital Anxiety and Depression Scale (HADS-D) was developed to detect depression in individuals with physical health problems. An initial psychometric analysis showed that a short version (“HADS-4”) is less heterogeneous and hence more reliable than the full scale, and correlates equally strong with a DSM-oriented depression scale. We compared the HADS-D and the HADS-4 to assess the benefits of using less heterogeneous phenotype measures in genetic analyses. We compared HADS-D and HADS-4 in three separate analyses: (1) twin- and family-based heritability estimation, (2) SNP-based heritability estimation using the software GCTA, and (3) a genome-wide association study (GWAS). The twin study resulted in heritability estimates between 18 and 25%, with additive genetic variance being the largest component. There was also evidence for assortative mating and a dominance component of genetic variance, with HADS-4 having slightly lower estimates of assortment. Importantly, when estimating heritability from SNPs, the HADS-D did not show a significant genetic variance component, while for the HADS-4, a statistically significant amount of heritability was estimated. Moreover, the HADS-4 had substantially more SNPs with small p-values in the GWAS analysis than did the HADS-D. Our results underline the benefits of using more homogeneous phenotypes in psychiatric genetic analyses. Homogeneity can be increased by focusing on core symptoms of disorders, thus reducing the noise in aggregate phenotypes caused by substantially different symptom profiles. PMID:25832296

  9. Ovarian structures and uterine environment are associated with phenotypic and genetic merit for performance in lactating dairy cows.

    PubMed

    Fitzgerald, A M; Ryan, D P; Carthy, T R; Evans, R D; Berry, D P

    2014-12-01

    The objective of this study was to estimate the association between detailed reproductive phenotypes for cows categorized as divergent for phenotypic and genetic performance. The hypothesis was that higher yielding animals, either phenotypically or genetically, would have compromised ovarian and uterine reproductive performance. Detailed reproductive traits including multiple ovulations, cystic ovarian structures, corpus luteum (CL) presence, and uterine environment were available on 9675 ultrasound records from 8174 dairy lactating cows, calved between 10 and 70 days. Cows were categorized, within parity, into low, average, or high for each of the performance traits. There was a greater likelihood of multiple ovulations in cows with greater phenotypic yields (odds ratio: 1.53-1.81) and greater genetic merit for yield (odds ratio: 1.31-1.59) relative to lower performing contemporaries. After adjustment for genetic merit, a similar trend of increased odds (odds ratio: 1.29-1.87) of multiple ovulations in higher yielding cows was observed compared with the lowest yielding category. There was no association between either phenotypic milk composition or genetic merit for milk composition with the likelihood of multiple ovulations. The likelihood of cystic ovarian structures was highest in cows with greatest phenotypic milk yields (odds ratio: 2.75-3.24), greater genetic merit for milk yield (odds ratio: 1.30-1.51), and even after adjustment for genetic merit there was a greater likelihood of cystic ovarian structures in cows with the highest milk yields (odds ratio: 2.71-2.95), compared with cows in the lowest category for each of the milk traits. Cows with average phenotypic milk yields were more likely to have a CL, compared with the lowest yielding category (odds ratio: 1.20-1.23), and these associations remained after adjustment for genetic merit of the trait. The likelihood of CL presence was highest in cows with the lowest genetic merit for milk. Lower fat

  10. Severe ocular phenotypes in Rbp4-deficient mice in the C57BL/6 genetic background.

    PubMed

    Shen, Jingling; Shi, Dan; Suzuki, Tomohiro; Xia, Zunping; Zhang, Hanli; Araki, Kimi; Wakana, Shigeharu; Takeda, Naoki; Yamamura, Ken-Ichi; Jin, Shoude; Li, Zhenghua

    2016-06-01

    Retinol-binding protein 4 (RBP4) is a specific carrier for retinol in the blood. In hepatocytes, newly synthesized RBP4 associates with retinol and transthyretin and is secreted into the blood. The ternary transthyretin-RBP4-retinol complex transports retinol in the circulation and delivers it to target tissues. Rbp4-deficient mice in a mixed genetic background (129xC57BL/6J) have decreased sensitivity to light in the b-wave amplitude on electroretinogram. Sensitivity progressively improves and approaches that of wild-type mice at 24 weeks of age. In the present study, we produced Rbp4-deficient mice in the C57BL/6 genetic background. These mice displayed more severe phenotypes. They had decreased a- and b-wave amplitudes on electroretinograms. In accordance with these abnormalities, we found structural changes in these mice, such as loss of the peripheral choroid and photoreceptor layer in the peripheral retinas. In the central retinas, the distance between the inner limiting membrane and the outer plexiform layer was much shorter with fewer ganglion cells and fewer synapses in the inner plexiform layer. Furthermore, ocular developmental defects of retinal depigmentation, optic disc abnormality, and persistent hyaloid artery were also observed. All these abnormalities had not recovered even at 40 weeks of age. Our Rbp4-deficient mice accumulated retinol in the liver but it was undetectable in the serum, indicating an inverse relation between serum and liver retinol levels. Our results suggest that RBP4 is critical for the mobilization of retinol from hepatic storage pools, and that such mobilization is necessary for ocular development and visual function. PMID:26974396

  11. Low-Anxiety Rat Phenotypes Can Be Further Reduced through Genetic Intervention

    PubMed Central

    Granzotto, Natalli; Ramos, André

    2013-01-01

    Background A previous study using an intercross between the inbred rat strains Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) identified a locus on chromosome 4, named Anxrr16, influencing an experimental index of anxiety and showing a transgressive effect, with alleles from the LEW strain (more anxious) decreasing rather than increasing anxiety. Objective To confirm the location and isolate the effect of a rat genome region named Anxrr16 through a planned genomic recombination strategy, where the target locus in SHR rats was replaced with LEW genetic material. Methods A new congenic strain, named SHR.LEW-Anxrr16 (SLA16), was developed from a cross between LEW (donor) and SHR (receptor) rats and then evaluated in several anxiety-related tests. The activity and attention levels of the new strain were also evaluated, since hyperactivity was observed during its construction and because SHR is a model of attention deficit hyperactivity disorder. Results Significant effects of Anxrr16 were found for open field central locomotion, as well as for other indices of anxiety from the light/dark box, triple test and T-maze. In all cases, the low-anxiety levels of SHR rats were further reduced by the insertion of LEW alleles. Differences in locomotor activity were found only in unfamiliar (hence stressful) environments and no genetic effects were observed in indices of attention. Conclusion The SLA16 strain can help in the identification of the molecular pathways involved in experimental anxiety and it demonstrates how apparently extreme phenotypes sometimes hide major opposite-acting genes. PMID:24386249

  12. An investigation into genetic and phenotypic variation in time budgets and yield of dairy cows.

    PubMed

    Løvendahl, Peter; Munksgaard, Lene

    2016-01-01

    Time budgets (TB) of lactating Holstein cows in a freestall loose housing system were recorded twice in early and late lactation to study genetic and phenotypic variation in TB. Time budget traits were recorded using focal animal scanning at 10-min intervals for full 24-h sessions. The study included 243 first-lactation cows, with 389 TB records in early lactation (50 to 123 d in milk) and 403 records in late lactation (152 to 248 d in milk). Milk was recorded at 3-wk intervals during the same periods, and yield was expressed as energy-corrected milk. Time budget traits were analyzed with mixed linear models to obtain estimates of genetic variation (heritability) and permanent animal variance (repeatability). Correlations between TB traits and energy-corrected milk yield were estimated at the individual cow level. In early lactation, the cows spent, on average, 5.0 h eating and 1.8h at feed gates without eating while they were still locked in the gates. Cows lay down for 10.4h and stood in stalls for 3.2h. The cows also spent 2.8h standing in aisles, but only 0.5h in the milking area. In late lactation, cows spent 1h more lying, but less time standing in stalls and less time eating and at the feed gates. Time budget traits were moderately repeatable although highly consistent across lactation stages. Estimates of heritability were moderate for eating time (0.20) but almost zero for lying time. Correlations showed that cows with higher yield spent more time eating and less time lying. As there is a trade-off between lying time and eating time, lying time approached lower limits for cows with highest yields. It is suggested that time is viewed as an important but restricted resource that cows may be short of while trying to maintain high yields. PMID:26519973

  13. Intracranial Extramedullary Hematopoiesis in Beta-Thalassemia

    PubMed Central

    Karki, Bivek; Tamrakar, Karuna; Wu, Yuan-Kui

    2012-01-01

    Extramedullary hematopoiesis (EMH) represents tumor-like proliferation of hemopoietic tissue which complicates chronic hemoglobinopathy. Intracranial EMH is an extremely rare occurrence. Magnetic resonance imaging (MRI) offers a precise diagnosis. It is essential to distinguish EMH from other extradural central nervous system tumors, because treatment and prognosis are totally different. Herein, we report the imaging findings of beta-thalassemia in a 13-year-old boy complaining of weakness of left side of the body and gait disturbance; CT and MRI revealed an extradural mass in the right temporoparietal region. PMID:22438693

  14. Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain.

    PubMed

    Majeed, Muhammed; Nagabhushanam, Kalyanam; Natarajan, Sankaran; Sivakumar, Arumugam; Eshuis-de Ruiter, Talitha; Booij-Veurink, Janine; de Vries, Ynte P; Ali, Furqan

    2016-04-01

    Commercial probiotics preparation containing Bacillus coagulans have been sold in the market for several decades. Due to its high intra-species genomic diversity, it is very likely that B. coagulans strain may alter in different ways over multiple years of production. Therefore, the present study focuses to evaluate the genetic consistency and probiotic potential of B. coagulans MTCC 5856. Phenotypic and genotypic techniques including biochemical profiling, 16S rRNA sequencing, GTG 5″, BOX PCR fingerprinting, and Multi-Locus-Sequence typing (MLST) were carried out to evaluate the identity and consistency of the B. coagulans MTCC 5856. Further, in vitro probiotic potential, safety and stability at ambient temperature conditions of B. coagulans MTCC 5856 were evaluated. All the samples were identified as B. coagulans by biochemical profiling and 16S rRNA sequencing. GTG 5″, BOX PCR fingerprints and MLST studies revealed that the same strain was present over 3 years of commercial production. B. coagulans MTCC 5856 showed resistance to gastric acid, bile salt and exhibited antimicrobial activity in in-vitro studies. Additionally, B. coagulans MTCC 5856 was found to be non-mutagenic, non-cytotoxic, negative for enterotoxin genes and stable at ambient temperature (25 ± 2 °C) for 36 months. The data of the study verified that the same strain of B. coagulans MTCC 5856 was present in commercial preparation over multiple years of production. PMID:26925622

  15. Consistent and reproducible positioning in longitudinal imaging for phenotyping genetically modified swine

    NASA Astrophysics Data System (ADS)

    Hammond, Emily; Dilger, Samantha K. N.; Stoyles, Nicholas; Judisch, Alexandra; Morgan, John; Sieren, Jessica C.

    2015-03-01

    Recent growth of genetic disease models in swine has presented the opportunity to advance translation of developed imaging protocols, while characterizing the genotype to phenotype relationship. Repeated imaging with multiple clinical modalities provides non-invasive detection, diagnosis, and monitoring of disease to accomplish these goals; however, longitudinal scanning requires repeatable and reproducible positioning of the animals. A modular positioning unit was designed to provide a fixed, stable base for the anesthetized animal through transit and imaging. Post ventilation and sedation, animals were placed supine in the unit and monitored for consistent vitals. Comprehensive imaging was performed with a computed tomography (CT) chest-abdomen-pelvis scan at each screening time point. Longitudinal images were rigidly registered, accounting for rotation, translation, and anisotropic scaling, and the skeleton was isolated using a basic thresholding algorithm. Assessment of alignment was quantified via eleven pairs of corresponding points on the skeleton with the first time point as the reference. Results were obtained with five animals over five screening time points. The developed unit aided in skeletal alignment within an average of 13.13 +/- 6.7 mm for all five subjects providing a strong foundation for developing qualitative and quantitative methods of disease tracking.

  16. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method.

    PubMed

    Rietveld, Cornelius A; Esko, Tõnu; Davies, Gail; Pers, Tune H; Turley, Patrick; Benyamin, Beben; Chabris, Christopher F; Emilsson, Valur; Johnson, Andrew D; Lee, James J; de Leeuw, Christiaan; Marioni, Riccardo E; Medland, Sarah E; Miller, Michael B; Rostapshova, Olga; van der Lee, Sven J; Vinkhuyzen, Anna A E; Amin, Najaf; Conley, Dalton; Derringer, Jaime; van Duijn, Cornelia M; Fehrmann, Rudolf; Franke, Lude; Glaeser, Edward L; Hansell, Narelle K; Hayward, Caroline; Iacono, William G; Ibrahim-Verbaas, Carla; Jaddoe, Vincent; Karjalainen, Juha; Laibson, David; Lichtenstein, Paul; Liewald, David C; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McMahon, George; Pedersen, Nancy L; Pinker, Steven; Porteous, David J; Posthuma, Danielle; Rivadeneira, Fernando; Smith, Blair H; Starr, John M; Tiemeier, Henning; Timpson, Nicholas J; Trzaskowski, Maciej; Uitterlinden, André G; Verhulst, Frank C; Ward, Mary E; Wright, Margaret J; Davey Smith, George; Deary, Ian J; Johannesson, Magnus; Plomin, Robert; Visscher, Peter M; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D

    2014-09-23

    We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. PMID:25201988

  17. Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti.

    PubMed Central

    Debellé, F; Rosenberg, C; Vasse, J; Maillet, F; Martinez, E; Dénarié, J; Truchet, G

    1986-01-01

    Rhizobium meliloti nodulation (nod) genes required for specific infection and nodulation of alfalfa have been cloned. Transposon Tn5 mutagenesis defined three nod regions spanning 16 kilobases of the pSym megaplasmid. Genetic and cytological studies of 62 nodulation-defective mutants allowed the assignment of symbiotic developmental phenotypes to common and specific nod loci. Root hair curling was determined by both common (region I) and specific (region III) nod transcription units; locus IIIb (nodH gene) positively controlled curling on the homologous host alfalfa, whereas loci IIIa (nodFE) and IIIb (nodH) negatively controlled curling on heterologous hosts. Region I (nodABC) was required for bacterial penetration and infection thread initiation in shepherd's crooks, and the nodFE transcription unit controlled infection thread development within the alfalfa root hair. In contrast, induction of nodule organogenesis, which can be triggered from a distance, seemed to be controlled by common nodABC genes and not to require specific nod genes nodFE and nodH. Region II affected the efficiency of hair curling and infection thread formation. Images PMID:3023297

  18. Understanding leukemic hematopoiesis as a complex adaptive system

    PubMed Central

    Thomas, Xavier

    2015-01-01

    Normal and abnormal hematopoiesis is working as a complex adaptive system. From this perspective, the development and the behavior of hematopoietic cell lineages appear as a balance between normal and abnormal hematopoiesis in the setting of a functioning or malfunctioning microenvironment under the control of the immune system and the influence of hereditary and environmental events. PMID:26516407

  19. Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians.

    PubMed

    Nan, Hongmei; Kraft, Peter; Hunter, David J; Han, Jiali

    2009-08-15

    (OR, 1.54; 95% CI, 1.08-2.19). These associations remained similar after adjusting for pigmentary phenotypes and MC1R variants. The statistical power of our study was modest and additional studies are warranted to confirm the associations observed in the present study. Our study provides evidence for the contribution of pigmentation genetic variants, in addition to the MC1R variants, to variation in human pigmentary phenotypes and possibly the development of skin cancer. PMID:19384953

  20. German Francisella tularensis isolates from European brown hares (Lepus europaeus) reveal genetic and phenotypic diversity

    PubMed Central

    2013-01-01

    Background Tularemia is a zoonotic disease caused by Francisella tularensis that has been found in many different vertebrates. In Germany most human infections are caused by contact with infected European brown hares (Lepus europaeus). The aim of this study was to elucidate the epidemiology of tularemia in hares using phenotypic and genotypic characteristics of F. tularensis. Results Cultivation of F. tularensis subsp. holarctica bacteria from organ material was successful in 31 of 52 hares that had a positive PCR result targeting the Ft-M19 locus. 17 isolates were sensitive to erythromycin and 14 were resistant. Analysis of VNTR loci (Ft-M3, Ft-M6 and Ft-M24), INDELs (Ftind33, Ftind38, Ftind49, RD23) and SNPs (B.17, B.18, B.19, and B.20) was shown to be useful to investigate the genetic relatedness of Francisella strains in this set of strains. The 14 erythromycin resistant isolates were assigned to clade B.I, and 16 erythromycin sensitive isolates to clade B.IV and one isolate was found to belong to clade B.II. MALDI-TOF mass spectrometry (MS) was useful to discriminate strains to the subspecies level. Conclusions F. tularensis seems to be a re-emerging pathogen in Germany. The pathogen can easily be identified using PCR assays. Isolates can also be identified within one hour using MALDI-TOF MS in laboratories where specific PCR assays are not established. Further analysis of strains requires genotyping tools. The results from this study indicate a geographical segregation of the phylogenetic clade B.I and B.IV, where B.I strains localize primarily within eastern Germany and B.IV strains within western Germany. This phylogeographical pattern coincides with the distribution of biovar I (erythromycin sensitive) and biovar II (erythromycin resistance) strains. When time and costs are limiting parameters small numbers of isolates can be analysed using PCR assays combined with DNA sequencing with a focus on genetic loci that are most likely discriminatory among

  1. Tests of phenotypic and genetic concordance and their application to the conservation of Panamanian golden frogs (Anura, Bufonidae).

    PubMed

    Richards, Corinne L; Knowles, L Lacey

    2007-08-01

    Evolutionarily significant units (ESUs) differ in the extent to which they capture, or even consider, adaptive variation, and most such designations are based solely on neutral genetic differences that may not capture variation relevant to species' adaptabilities to changing environmental conditions. While concordant patterns of divergence among data sets (i.e. neutral and potentially non-neutral characters) can strengthen ESU designations, determining whether such criteria are met for highly variable taxa is especially challenging. This study tests whether previously defined ESUs for endangered Panamanian golden frogs (Atelopus varius and Atelopus zeteki) exhibit concordant variation among multiple phenotypic traits and mitochondrial DNA sequences, and the extent to which such divergence corresponds to environmental differences. Multivariate analyses identify phenotypic and genetic differentiation consistent with proposed ESUs and support the status of A. varius and A. zeteki as separate species. Moreover, the significant association detected between ESU co-membership and genetic similarity, which remained strong after removing the effect of geographic distance, also indicates that genetic differences are not simply due to isolation by distance. Two phenotypic characters (body size and the extent of dorsal black patterning) that differ among ESUs also co-vary with environmental differences, suggesting that to the extent that these phenotypic differences are heritable, variation may be associated with adaptive divergence. Lastly, discriminant function analyses show that the frogs can be correctly assigned to ESUs based on simultaneous analysis of multiple characters. The study confirms the merit of conserving the previously proposed golden frog ESUs as well as demonstrates the utility and feasibility of combined analyses of ecological, morphological and genetic variation in evaluating ESUs, especially for highly variable taxa. PMID:17651191

  2. The Role of Menin in Hematopoiesis

    PubMed Central

    Maillard, Ivan; Hess, Jay L.

    2010-01-01

    In the hematopoietic system, menin was found to interact with MLL, a large protein encoded by the mixed linage leukemia gene that acts as a histone H3 merhyltransferase. The MLL gene is a recurrent target for translocations in both acute myeloid and acute lymphoid leukemias. MLL gene rearrangements involve a variety of translocation partners, giving rise to MLL fusion proteins whose transforming ability is mediated through upregulated expression of Homeobox (Hox) genes as well as other targets. Recent work indicates that menin is an essential partner of MLL fusion proteins in leukemic cells and that it regulates normal hematopoiesis. In the absence of menin, steady-state hematopoiesis is largely preserved; however, menin-deficient hematopoietic stem cells are markedly deficient in situations of hematopoietic stress, such as during recovery after bone marrow transplantation. In leukemias driven by MLL fusion proteins, menin is essential for transformation and growth of the malignant cells. Thus, menin-MLL interactions represent a promising therapeutic target in leukemias with MLL rearrangements. PMID:20175452

  3. DNA methylation in normal and malignant hematopoiesis.

    PubMed

    Celik, Hamza; Kramer, Ashley; Challen, Grant A

    2016-06-01

    The study of DNA methylation has been a rapidly expanding field since its dawn in the 1960s. DNA methylation is an epigenetic modification that plays a crucial role in guiding the differentiation of stem cells to their destined lineage, and in maintaining tissue homeostasis. Moreover, aberrant DNA methylation has been well characterized as a significant contributing factor in the pathogenesis of a variety of cancers. Hematopoiesis is a process that is uniquely susceptible to epigenetic changes due to the small pool of actively cycling stem cells that give rise to the entire mature immune-hematopoietic system. Mutations in DNA methyltransferase enzymes have been shown to be initiating events in the development of hematological malignancies such as acute myeloid leukemia and, therefore, have become targets for improved diagnostics and therapy. The spatial and temporal regulation of DNA methylation in the hematopoietic developmental hierarchy is critical to hematopoietic homeostasis. An improved understanding of the roles that DNA methylation plays in normal and malignant hematopoiesis will have a significant impact on the future of regenerative stem cell therapy and clinical treatment of hematopoietic malignancies. This review aims to highlight current developments in the field and prioritize future research directions. PMID:26943352

  4. The Relative Importance of Genetic Diversity and Phenotypic Plasticity in Determining Invasion Success of a Clonal Weed in the USA and China

    PubMed Central

    Geng, Yupeng; van Klinken, Rieks D.; Sosa, Alejandro; Li, Bo; Chen, Jiakuan; Xu, Cheng-Yuan

    2016-01-01

    Phenotypic plasticity has been proposed as an important adaptive strategy for clonal plants in heterogeneous habitats. Increased phenotypic plasticity can be especially beneficial for invasive clonal plants, allowing them to colonize new environments even when genetic diversity is low. However, the relative importance of genetic diversity and phenotypic plasticity for invasion success remains largely unknown. Here, we performed molecular marker analyses and a common garden experiment to investigate the genetic diversity and phenotypic plasticity of the globally important weed Alternanthera philoxeroides in response to different water availability (terrestrial vs. aquatic habitats). This species relies predominantly on clonal propagation in introduced ranges. We therefore expected genetic diversity to be restricted in the two sampled introduced ranges (the USA and China) when compared to the native range (Argentina), but that phenotypic plasticity may allow the species' full niche range to nonetheless be exploited. We found clones from China had very low genetic diversity in terms of both marker diversity and quantitative variation when compared with those from the USA and Argentina, probably reflecting different introduction histories. In contrast, similar patterns of phenotypic plasticity were found for clones from all three regions. Furthermore, despite the different levels of genetic diversity, bioclimatic modeling suggested that the full potential bioclimatic distribution had been invaded in both China and USA. Phenotypic plasticity, not genetic diversity, was therefore critical in allowing A. philoxeroides to invade diverse habitats across broad geographic areas. PMID:26941769

  5. The Relative Importance of Genetic Diversity and Phenotypic Plasticity in Determining Invasion Success of a Clonal Weed in the USA and China.

    PubMed

    Geng, Yupeng; van Klinken, Rieks D; Sosa, Alejandro; Li, Bo; Chen, Jiakuan; Xu, Cheng-Yuan

    2016-01-01

    Phenotypic plasticity has been proposed as an important adaptive strategy for clonal plants in heterogeneous habitats. Increased phenotypic plasticity can be especially beneficial for invasive clonal plants, allowing them to colonize new environments even when genetic diversity is low. However, the relative importance of genetic diversity and phenotypic plasticity for invasion success remains largely unknown. Here, we performed molecular marker analyses and a common garden experiment to investigate the genetic diversity and phenotypic plasticity of the globally important weed Alternanthera philoxeroides in response to different water availability (terrestrial vs. aquatic habitats). This species relies predominantly on clonal propagation in introduced ranges. We therefore expected genetic diversity to be restricted in the two sampled introduced ranges (the USA and China) when compared to the native range (Argentina), but that phenotypic plasticity may allow the species' full niche range to nonetheless be exploited. We found clones from China had very low genetic diversity in terms of both marker diversity and quantitative variation when compared with those from the USA and Argentina, probably reflecting different introduction histories. In contrast, similar patterns of phenotypic plasticity were found for clones from all three regions. Furthermore, despite the different levels of genetic diversity, bioclimatic modeling suggested that the full potential bioclimatic distribution had been invaded in both China and USA. Phenotypic plasticity, not genetic diversity, was therefore critical in allowing A. philoxeroides to invade diverse habitats across broad geographic areas. PMID:26941769

  6. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    PubMed Central

    Leyton-Mange, Jordan S.; Mills, Robert W.; Macri, Vincenzo S.; Jang, Min Young; Butte, Faraz N.; Ellinor, Patrick T.; Milan, David J.

    2014-01-01

    Summary In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity. PMID:24527390

  7. Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor.

    PubMed

    Leyton-Mange, Jordan S; Mills, Robert W; Macri, Vincenzo S; Jang, Min Young; Butte, Faraz N; Ellinor, Patrick T; Milan, David J

    2014-02-11

    In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity. PMID:24527390

  8. Assessment of the genetic and phenotypic diversity among rhizogenic Agrobacterium biovar 1 strains infecting solanaceous and cucurbit crops.

    PubMed

    Bosmans, Lien; Álvarez-Pérez, Sergio; Moerkens, Rob; Wittemans, Lieve; Van Calenberge, Bart; Kerckhove, Stefan Van; Paeleman, Anneleen; De Mot, René; Rediers, Hans; Lievens, Bart

    2015-08-01

    Rhizogenic Agrobacterium biovar 1 strains have been found to cause extensive root proliferation on hydroponically grown Cucurbitaceae and Solanaceae crops, resulting in substantial economic losses. As these agrobacteria live under similar ecological conditions, infecting a limited number of crops, it may be hypothesized that genetic and phenotypic variation among such strains is relatively low. In this study we assessed the phenotypic diversity as well as the phylogenetic and evolutionary relationships of several rhizogenic Agrobacterium biovar 1 strains from cucurbit and solanaceous crops. A collection of 41 isolates was subjected to a number of phenotypic assays and characterized by MLSA targeting four housekeeping genes (16S rRNA gene, recA, rpoB and trpE) and two loci from the root-inducing Ri-plasmid (part of rolB and virD2). Besides phenotypic variation, remarkable genotypic diversity was observed, especially for some chromosomal loci such as trpE. In contrast, genetic diversity was lower for the plasmid-borne loci, indicating that the studied chromosomal housekeeping genes and Ri-plasmid-borne loci might not exhibit the same evolutionary history. Furthermore, phylogenetic and network analyses and several recombination tests suggested that recombination could be contributing in some extent to the evolutionary dynamics of rhizogenic Agrobacterium populations. Finally, a genomospecies-level identification analysis revealed that at least four genomospecies may occur on cucurbit and tomato crops (G1, G3, G8 and G9). Together, this study gives a first glimpse at the genetic and phenotypic diversity within this economically important plant pathogenic bacterium. PMID:26187479

  9. A flexible likelihood framework for detecting associations with secondary phenotypes in genetic studies using selected samples: application to sequence data

    PubMed Central

    Liu, Dajiang J; Leal, Suzanne M

    2012-01-01

    For most complex trait association studies using next-generation sequencing, in addition to the primary phenotype of interest, many clinically important secondary traits are also available, which can be analyzed to map susceptibility genes. Owing to high sequencing costs, most studies use selected samples, and the sampling mechanisms of these studies can be complicated. When the primary and secondary traits are correlated, analyses of secondary phenotypes can cause spurious associations in selected samples and existing methods are inadequate to adjust for them. To address this problem, a likelihood-based method, MULTI-TRAIT-ASSOCIATION (MTA) was developed. MTA is flexible and can be applied to any study with known sampling mechanisms. It also allows efficient inferences of genetic parameters. To investigate the power of MTA and different study designs, extensive simulations were performed under rigorous population genetic and phenotypic models. It is demonstrated that there are great benefits for analyzing secondary phenotypes in selected samples. In particular, using case–control samples and samples with extreme primary phenotypes can be more powerful than analyzing random samples of equivalent size. One major challenge for sequence-based association studies is that most data sets are not of sufficient size to be adequately powered. By applying MTA, data sets ascertained under distinct mechanisms or targeted at different primary traits can be jointly analyzed to map common phenotypes and greatly increase power. The combined analysis can be performed using freely available data sets from public repositories, for example, dbGaP. In conclusion, MTA will have an important role in dissecting the etiology of complex traits. PMID:22166943

  10. Neuropsychological and dimensional behavioral trait profiles in Costa Rican ADHD sib pairs: Potential intermediate phenotypes for genetic studies.

    PubMed

    Peskin, Viviana A; Ordóñez, Anna; Mackin, R Scott; Delucchi, Kevin; Monge, Silvia; McGough, James J; Chavira, Denise A; Berrocal, Monica; Cheung, Erika; Fournier, Eduardo; Badner, Judith A; Herrera, Luis Diego; Mathews, Carol A

    2015-06-01

    Attention deficit hyperactivity disorder (ADHD) is associated with substantial functional impairment in children and in adults. Many individuals with ADHD have clear neurocognitive deficits, including problems with visual attention, processing speed, and set shifting. ADHD is etiologically complex, and although genetic factors play a role in its development, much of the genetic contribution to ADHD remains unidentified. We conducted clinical and neuropsychological assessments of 294 individuals (269 with ADHD) from 163 families (48 multigenerational families created using genealogical reconstruction, 78 affected sib pair families, and 37 trios) from the Central Valley of Costa Rica (CVCR). We used principal components analysis (PCA) to group neurocognitive and behavioral variables using the subscales of the Child Behavior Checklist (CBCL) and 15 neuropsychological measures, and created quantitative traits for heritability analyses. We identified seven cognitive and two behavioral domains. Individuals with ADHD were significantly more impaired than their unaffected siblings on most behavioral and cognitive domains. The verbal IQ domain had the highest heritability (92%), followed by auditory attention (87%), visual processing speed and problem solving (85%), and externalizing symptoms (81%). The quantitative traits identified here have high heritabilities, similar to the reported heritability of ADHD (70-90%), and may represent appropriate alternative phenotypes for genetic studies. The use of multigenerational families from a genetically isolated population may facilitate the identification of ADHD risk genes in the face of phenotypic and genetic heterogeneity. PMID:25832558

  11. Neuropsychological and Dimensional Behavioral Trait Profiles in Costa Rican ADHD Sib Pairs: Potential Intermediate Phenotypes for Genetic Studies

    PubMed Central

    Peskin, Viviana A.; Ordóñez, Anna; Mackin, R. Scott; Delucchi, Kevin; Monge, Silvia; McGough, James J.; Chavira, Denise A.; Berrocal, Monica; Cheung, Erika; Fournier, Eduardo; Badner, Judith A.; Herrera, Luis Diego; Mathews, Carol A.

    2015-01-01

    Introduction Attention deficit hyperactivity disorder (ADHD) is associated with substantial functional impairment in children and in adults. Many individuals with ADHD have clear neurocognitive deficits, including problems with visual attention, processing speed, and set shifting. ADHD is etiologically complex, and although genetic factors play a role in its development, much of the genetic contribution to ADHD remains unidentified. Methods We conducted clinical and neuropsychological assessments of 294 individuals (269 with ADHD) from 163 families (48 multigenerational families created using genealogical reconstruction, 78 affected sib pair families, and 37 trios) from the Central Valley of Costa Rica (CVCR). We used principal components analysis (PCA) to group neurocognitive and behavioral variables using the subscales of the Child Behavior Checklist (CBCL) and 15 neuropsychological measures, and created quantitative traits for heritability analyses. Results We identified seven cognitive and two behavioral domains. Individuals with ADHD were significantly more impaired than their unaffected siblings on most behavioral and cognitive domains. The verbal IQ domain had the highest heritability (92%), followed by auditory attention (87%), visual processing speed and problem solving (85%), and externalizing symptoms (81%). Conclusions The quantitative traits identified here have high heritabilities, similar to the reported heritability of ADHD (70–90%), and may represent appropriate alternative phenotypes for genetic studies. The use of multigenerational families from a genetically isolated population may facilitate the identification of ADHD risk genes in the face of phenotypic and genetic heterogeneity. PMID:25832558

  12. Phenotypic and genetic relationships of residual feed intake with performance and ultrasound carcass traits in Brangus heifers.

    PubMed

    Lancaster, P A; Carstens, G E; Crews, D H; Welsh, T H; Forbes, T D A; Forrest, D W; Tedeschi, L O; Randel, R D; Rouquette, F M

    2009-12-01

    The objective of this study was to characterize residual feed intake (RFI) and to estimate phenotypic and genetic correlations with performance and ultrasound carcass traits in growing heifers. Four postweaning feed efficiency trials were conducted using 468 Brangus heifers. The complete Brangus pedigree file from Camp Cooley Ranch (Franklin, TX), which included 31,215 animals, was used to generate genetic parameter estimates. The heifer progeny from 223 dams were sired by 36 bulls, whereas the complete pedigree file contained 1,710 sires and 8,191 dams. Heifers were individually fed a roughage-based diet (ME = 1.98 Mcal/kg of DM) using Calan gate feeders for 70 d. Heifer BW was recorded weekly and ultrasound measures of 12th- to 13th-rib fat thickness (BF) and LM area (LMA) obtained at d 0 and 70. Residual feed intake (RFIp) was computed as actual minus predicted DMI, with predicted DMI determined by linear regression of DMI on mid-test BW(0.75) (MBW) and ADG with trial, trial x MBW, and trial x ADG as random effects. Overall means for ADG, DMI, and RFI were 1.01 (SD = 0.15), 9.51 (SD = 1.02), and 0.00 (SD = 0.71) kg/d, respectively. Stepwise regression analysis revealed that inclusion of gain in BF and final LMA into the base model increased the R(2) (0.578 vs. 0.534) and accounted for 9% of the variation in DMI not explained by MBW and ADG (RFIp). Residual feed intake and carcass-adjusted RFI (RFIc) were strongly correlated phenotypically and genetically with DMI and FCR, but not with ADG or MBW. Gain in BF was phenotypically correlated (P < 0.05) with RFIp (0.22), but not with FCR or RFIc; however, final BF was genetically correlated (P < 0.05) with RFIp (0.36) and RFIc (0.39). Gain in LMA was weakly phenotypically correlated with FCR, but not with RFIp or RFIc; however, gain in LMA was strongly genetically correlated with RFIp (0.55) and RFIc (0.77). The Spearman rank correlation between RFIp and RFIc was high (0.96). These results suggest that adjusting RFI

  13. Genetic and Phenotypic Selection Affect Natural (Auto-) Antibody Reactivity of Chickens

    PubMed Central

    de Jong, Britt G.; Lammers, Aart; Oberendorf, Leonora A. A.; Nieuwland, Mike G. B.; Savelkoul, Huub F. J.; Parmentier, Henk K.

    2013-01-01

    Specificity, antibody isotype distribution and levels of natural antibodies (NAb) may be potential informative parameters for immune mediated natural disease resistance, immune modulation, and maintenance of physiological homeostasis. A large proportion of mammalian NAb have affinity for or are directed against self-antigens; so called natural auto antibodies (N(A)Ab). In the present study we showed the presence and typed levels and isotypes (total immunoglobulins, IgG and IgM) of N(A)Ab in plasma binding the ‘auto-antigen’ complex chicken liver cell lysate (CLL) of one-year old chickens from different genotype and phenotype backgrounds by ELISA and quantitative Western blotting. Higher levels of N(A)Ab binding CLL were found in plasma from chickens genetically selected for high specific antibody responses. In all birds, extensive staining patterns of plasma antibodies binding CLL were found for all isotypes, with IgG binding the highest number of CLL antigens and also showing the highest variation in staining patterns between individuals. Patterns of IgM antibodies binding CLL appeared to be more similar in all lines. Significant differences of binding patterns of N(A)Ab (antigen fragments of CLL and staining intensity) were detected between the different chicken lines, and lines could be clustered on the basis of their auto-antibody profile. In addition, also individual differences within lines were found. The present results indicate that analysis of the levels and the N(A)Ab repertoire of poultry like in mammals could provide a new way of distinguishing differences of immune competence and immune maturation between individuals, and could provide tools to select birds for health traits, or optimize hygiene and husbandry procedures. PMID:24039748

  14. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. PMID:23420554

  15. Condition-dependent, phenotype-dependent and genetic-dependent factors in the natal dispersal of a solitary rodent.

    PubMed

    Selonen, Vesa; Hanski, Ilpo K

    2010-09-01

    1. Dispersal can be condition- and phenotype-dependent and related to individual genetic differences. Few studies have addressed the relative importance of these factors on dispersal. We studied the factors behind philopatry and dispersal in juvenile Siberian flying squirrels, Pteromys volans L. 2. The dispersal distance and the distances explored before abandoning the natal nest were not related to any of the condition-dependent factors studied such as the area of high-quality habitat or the number of conspecifics near the natal area. In addition, the body mass (a phenotypic trait) of individuals was not related to philopatry and dispersal in flying squirrels. 3. Genetic variability, measured by microsatellite heterozygosity, was positively correlated with dispersal. The correlation was mainly driven by one locus related to the distances explored before abandoning the natal nest. 4. We conclude that condition- and phenotype-dependent factors did not have detectable effects on philopatry and dispersal, but individual heterozygosity was related to dispersal in flying squirrels. Our results suggest that genetic variability is important behind the dispersal of the species. PMID:20561101

  16. Genetic analysis of mutant chromosomes 3 with similar phenotypic effect from geographically distant populations of Drosophila melanogaster

    SciTech Connect

    Vaisman, N.Y.; Zakharov, I.K.

    1995-07-01

    From geographically distant populations of Drosophila melanogaster, the following mutant phenotypes with a wide spectrum of similar phenotypic variation were isolated: {number_sign}89300 and {number_sign}89386 from a population of Uman` (Ukraine) in 1989, and {number_sign}920017, {number_sign}921314, and {number_sign}921503 from a population of Gorno-Altaisk (Altai) in 1992. A similar mutant phenotype (line {number_sign}i13) was obtained by {gamma}-irradiation of the laboratory line Canton S. Phenotypic changes involve eye shape and structure, morphology of body appendages (wings, legs, and antennae), and fertility. Genetic analysis of mutations {number_sign}89300 and {number_sign}89386 showed that they belong to the third linkage group. Chromosomes 3 of mutants {number_sign}89300 and {number_sign}89386 carry inversions In(3R)92D-98F and In(3R)89F-95A, respectively. A complementation test for allelism of the isolated mutations among themselves and with several laboratory lines was conducted. The mutant phenotypical effect of the chromosomes isolated is assumed to be related to geographic variants of alleles of two closely linked genes, rotund and roughened eye and claret. 10 refs., 1 fig., 2 tabs.

  17. Integrating EMR-Linked and In Vivo Functional Genetic Data to Identify New Genotype-Phenotype Associations

    PubMed Central

    Mosley, Jonathan D.; Van Driest, Sara L.; Weeke, Peter E.; Delaney, Jessica T.; Wells, Quinn S.; Bastarache, Lisa; Roden, Dan M.; Denny, Josh C.

    2014-01-01

    The coupling of electronic medical records (EMR) with genetic data has created the potential for implementing reverse genetic approaches in humans, whereby the function of a gene is inferred from the shared pattern of morbidity among homozygotes of a genetic variant. We explored the feasibility of this approach to identify phenotypes associated with low frequency variants using Vanderbilt's EMR-based BioVU resource. We analyzed 1,658 low frequency non-synonymous SNPs (nsSNPs) with a minor allele frequency (MAF)<10% collected on 8,546 subjects. For each nsSNP, we identified diagnoses shared by at least 2 minor allele homozygotes and with an association p<0.05. The diagnoses were reviewed by a clinician to ascertain whether they may share a common mechanistic basis. While a number of biologically compelling clinical patterns of association were observed, the frequency of these associations was identical to that observed using genotype-permuted data sets, indicating that the associations were likely due to chance. To refine our analysis associations, we then restricted the analysis to 711 nsSNPs in genes with phenotypes in the On-line Mendelian Inheritance in Man (OMIM) or knock-out mouse phenotype databases. An initial comparison of the EMR diagnoses to the known in vivo functions of the gene identified 25 candidate nsSNPs, 19 of which had significant genotype-phenotype associations when tested using matched controls. Twleve of the 19 nsSNPs associations were confirmed by a detailed record review. Four of 12 nsSNP-phenotype associations were successfully replicated in an independent data set: thrombosis (F5,rs6031), seizures/convulsions (GPR98,rs13157270), macular degeneration (CNGB3,rs3735972), and GI bleeding (HGFAC,rs16844401). These analyses demonstrate the feasibility and challenges of using reverse genetics approaches to identify novel gene-phenotype associations in human subjects using low frequency variants. As increasing amounts of rare variant data are

  18. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases

    NASA Astrophysics Data System (ADS)

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-10-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  19. Reverse genetic screening reveals poor correlation between Morpholino-induced and mutant phenotypes in zebrafish

    PubMed Central

    Gupta, A.; Grosse, A. S.; van Impel, A.; Kirchmaier, B. C.; Peterson-Maduro, J.; Kourkoulis, G.; Male, I.; DeSantis, D.F.; Sheppard-Tindell, S.; Ebarasi, L.; Betsholtz, C.; Schulte-Merker, S.; Wolfe, S. A.; Lawson, N. D.

    2014-01-01

    SUMMARY The widespread availability of programmable site-specific nucleases now enables targeted gene disruption in the zebrafish. In this study, we applied site-specific nucleases to generate zebrafish lines bearing individual mutations in more than twenty genes. We found that mutations in only a small proportion of genes caused defects in embryogenesis. Moreover, mutants for ten different genes failed to recapitulate published Morpholino-induced phenotypes (morphants). The absence of phenotypes in mutant embryos was not likely due to maternal effects or failure to eliminate gene function. Consistently, a comparison of published morphant defects with the Sanger Zebrafish Mutation Project revealed that approximately eighty percent of morphant phenotypes were not observed in mutant embryos, similar to our mutant collection. Based on these results, we suggest that mutant phenotypes become the standard metric to define gene function in zebrafish, after which Morpholinos that recapitulate respective phenotypes could be reliably applied for ancillary analyses. PMID:25533206

  20. Spatial genetic structure patterns of phenotype-limited and boundary-limited expanding populations: a simulation study.

    PubMed

    Dai, Qiang; Zhan, Xiangjiang; Lu, Bin; Fu, Jinzhong; Wang, Qian; Qi, Dunwu

    2014-01-01

    Range expansions may create a unique spatial genetic pattern characterized by alternate genetically homogeneous domains and allele frequency clines. Previous attempts to model range expansions have mainly focused on the loss of genetic diversity during expansions. Using individual-based models, we examined spatial genetic patterns under two expansion scenarios, boundary-limited range expansions (BLRE) and phenotype-limited range expansions (PhLRE). Our simulation revealed that the genetic diversity within populations lost quickly during the range expansion, while the genetic difference accumulated between populations. Consequently, accompanying the expansions, the overall diversity featured a slow decrease. Specifically, during BLREs, high speed of boundary motion facilitated the maintenance of total genetic diversity and sharpened genetic clines. Very slight constraints on boundary motion of BLREs drastically narrowed the homogeneous domains and increased the allele frequency fluctuations from those levels exhibited by PhLREs. Even stronger constraints, however, surprisingly brought the width of homogeneous domains and the allele frequency fluctuations back to the normal levels of PhLREs. Furthermore, high migration rates maintained a higher total genetic diversity than low ones did during PhLREs. Whereas, the total genetic diversities during BLREs showed a contrary pattern: higher when migration was low than those when migration was high. Besides, the increase of migration rates helped maintain a greater number of homogeneous domains during PhLREs, but their effects on the number of homogeneous domains during BLREs were not monotonous. Previous studies have showed that the homogenous domains can merge to form a few broad domains as the expansion went on, leading to fewer homogeneous domains. Our simulations, meanwhile, revealed that the range expansions could also rebuild homogeneous domains from the clines during the range expansion. It is possible that that the

  1. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies

    PubMed Central

    Acland, Gregory M.

    2014-01-01

    Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision. PMID:22065099

  2. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes.

    PubMed

    Sheehan, Vivien A; Luo, Zhaoyu; Flanagan, Jonathan M; Howard, Thad A; Thompson, Bruce W; Wang, Winfred C; Kutlar, Abdullah; Ware, Russell E

    2013-07-01

    The recently completed BABY HUG trial investigated the safety and efficacy of hydroxyurea in infants with sickle cell anemia (SCA). To investigate the effects of known genetic modifiers, genomic DNA on 190 randomized subjects were analyzed for alpha thalassemia, beta-globin haplotype, polymorphisms affecting endogenous fetal hemoglobin (HbF) levels (XmnI, BCL11A, and HBS1L-MYB), UGT1A1 promoter polymorphisms, and the common G6PD A(-) mutation. At study entry, infants with alpha thalassemia trait had significantly lower mean corpuscular volume, total bilirubin, and absolute reticulocyte count. Beta-globin haplotypes associated with milder disease had significantly higher hemoglobin and %HbF. BCL11A and XmnI polymorphisms had significant effects on baseline HbF, while UGT1A1 promoter polymorphisms significantly influenced baseline serum bilirubin. At study exit, subjects randomized to placebo still exhibited laboratory effects of alpha thalassemia and other modifiers, while those assigned hydroxyurea had treatment effects that exceeded most genetic influences. The pain phenotype was influenced by HbF modifiers in both treatment groups. These data document that genetic polymorphisms do modify laboratory and clinical phenotypes even in very young patients with SCA. The hydroxyurea effects are more potent, however, indicating that treatment criteria should not be limited to certain genetic subsets, and supporting the use of hydroxyurea for all young patients with SCA. PMID:23606168

  3. Neuropathic pain phenotyping by international consensus (NeuroPPIC) for genetic studies: a NeuPSIG systematic review, Delphi survey, and expert panel recommendations.

    PubMed

    van Hecke, Oliver; Kamerman, Peter R; Attal, Nadine; Baron, Ralf; Bjornsdottir, Gyda; Bennett, David L H; Bennett, Michael I; Bouhassira, Didier; Diatchenko, Luda; Freeman, Roy; Freynhagen, Rainer; Haanpää, Maija; Jensen, Troels S; Raja, Srinivasa N; Rice, Andrew S C; Seltzer, Zeʼev; Thorgeirsson, Thorgeir E; Yarnitsky, David; Smith, Blair H

    2015-11-01

    For genetic research to contribute more fully to furthering our knowledge of neuropathic pain, we require an agreed, valid, and feasible approach to phenotyping, to allow collaboration and replication in samples of sufficient size. Results from genetic studies on neuropathic pain have been inconsistent and have met with replication difficulties, in part because of differences in phenotypes used for case ascertainment. Because there is no consensus on the nature of these phenotypes, nor on the methods of collecting them, this study aimed to provide guidelines on collecting and reporting phenotypes in cases and controls for genetic studies. Consensus was achieved through a staged approach: (1) systematic literature review to identify all neuropathic pain phenotypes used in previous genetic studies; (2) Delphi survey to identify the most useful neuropathic pain phenotypes and their validity and feasibility; and (3) meeting of experts to reach consensus on the optimal phenotype(s) to be collected from patients with neuropathic pain for genetic studies. A basic "entry level" set of phenotypes was identified for any genetic study of neuropathic pain. This set identifies cases of "possible" neuropathic pain, and controls, and includes: (1) a validated symptom-based questionnaire to determine whether any pain is likely to be neuropathic; (2) body chart or checklist to identify whether the area of pain distribution is neuroanatomically logical; and (3) details of pain history (intensity, duration, any formal diagnosis). This NeuroPPIC "entry level" set of phenotypes can be expanded by more extensive and specific measures, as determined by scientific requirements and resource availability. PMID:26469320

  4. Neuropathic pain phenotyping by international consensus (NeuroPPIC) for genetic studies: a NeuPSIG systematic review, Delphi survey, and expert panel recommendations

    PubMed Central

    van Hecke, Oliver; Kamerman, Peter R.; Attal, Nadine; Baron, Ralf; Bjornsdottir, Gyda; Bennett, David L.H.; Bennett, Michael I.; Bouhassira, Didier; Diatchenko, Luda; Freeman, Roy; Freynhagen, Rainer; Haanpää, Maija; Jensen, Troels S.; Raja, Srinivasa N.; Rice, Andrew S.C.; Seltzer, Ze'ev; Thorgeirsson, Thorgeir E.; Yarnitsky, David; Smith, Blair H.

    2015-01-01

    Abstract For genetic research to contribute more fully to furthering our knowledge of neuropathic pain, we require an agreed, valid, and feasible approach to phenotyping, to allow collaboration and replication in samples of sufficient size. Results from genetic studies on neuropathic pain have been inconsistent and have met with replication difficulties, in part because of differences in phenotypes used for case ascertainment. Because there is no consensus on the nature of these phenotypes, nor on the methods of collecting them, this study aimed to provide guidelines on collecting and reporting phenotypes in cases and controls for genetic studies. Consensus was achieved through a staged approach: (1) systematic literature review to identify all neuropathic pain phenotypes used in previous genetic studies; (2) Delphi survey to identify the most useful neuropathic pain phenotypes and their validity and feasibility; and (3) meeting of experts to reach consensus on the optimal phenotype(s) to be collected from patients with neuropathic pain for genetic studies. A basic “entry level” set of phenotypes was identified for any genetic study of neuropathic pain. This set identifies cases of “possible” neuropathic pain, and controls, and includes: (1) a validated symptom-based questionnaire to determine whether any pain is likely to be neuropathic; (2) body chart or checklist to identify whether the area of pain distribution is neuroanatomically logical; and (3) details of pain history (intensity, duration, any formal diagnosis). This NeuroPPIC “entry level” set of phenotypes can be expanded by more extensive and specific measures, as determined by scientific requirements and resource availability. PMID:26469320

  5. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of cellular diversity for genetic and phenotypic features

    PubMed Central

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293

  6. Dataset for phenotypic classification of genetic modifiers of smoothened and Hedgehog.

    PubMed

    Marada, Suresh; Truong, Ashley; Ogden, Stacey K

    2016-06-01

    This data article includes supporting information for the research article entitled "The Small GTPase Rap1 is a Modulator of Hedgehog Signaling" [1]. Drosophila wing phenotypes induced by expression of a dominant negative Smoothened (Smo) mutant were cataloged into five distinct classes. Class distributions observed following expression of dominant negative Smo in control and sensitized backgrounds were quantified to serve as references for strength of phenotypic modification. Shifts in class distribution of Hedgehog (Hh) wing phenotypes resulting from introduction of loss-of-function alleles of select Ras family G protein genes and the Hh pathway regulators Fused and Suppressor of Fused are shown. PMID:27014736

  7. AB077. Clinical symptoms, molecular genetics, genotype and phenotype correlations of children with congenital hyperinsulinism

    PubMed Central

    Duong, Dang Anh; Dung, Vu Chi; Dat, Nguyen Phu; Ngoc, Can Thi Bich; Thao, Bui Phuong; Khanh, Nguyen Ngoc; Dien, Tran Minh

    2015-01-01

    Background and objective Congenital hyperinsulinism (HI) causes severe hypoglycemia in neonates and infants. Molecular genetic results is very important which help clinicians will have suitable treatment. The study aims to describe clinical symptoms, signs of HI patients and to identify mutations in the ABCC8 and KCNJ11, HNF4A and GLUD genes, genotype and phenotype correlations of children with HI. Methods A prospective study was conducted on 68 cases with congenital HI diagnosed and treated in National Hospital of Pediatric from January 2007 to April 2015. Patients were selected by using inclusion criteria of Hussain K [2008]. During the work-up clinical, biochemal was collected. Genomic DNA was extracted from peripheral leukocytes using standard procedures. Single exon of KCNJ11; 39 exons of ABCC8; were amplified & sequenced. Sequencing reactions were analyzed on an ABI 3730 capillary sequencer & were compared to published sequences using Mutation Surveyor version 3.24. Results Major clinical symptoms, signs of HI patients when hypoglycemia are: lethargy (69.12%), poor feeding (66.2%), cyanosis (57.4%), ear hair (52.9%), seizure (42.6%), grunting (42.7%), apnea (23.5%), hypotonia (27.9%), diaphoresis (19.12%), unconsciousness (11.7%), hypothermia (2.9%). Glucose level on admission 0.99±0.94 mmol/L, insulin level and C-peptid when hypoglycemia are 214.2±190.6 pmol/L and 1.78±1.5 nmol/L. Gene mutations were detected in 64.29% of cases including mutation of genes ABCC8 (88.89%), KCNJ11 (8.33%), HNF4A (2.78%). Mutation of ABCC8 included homozygous mutations (25%), compound heterozygous mutation (31.25%), one dominant mutation from father (40.63%), one dominant mutation from mother (3.13%). All cases with homozygous mutations, 83.3% of cases with compound heterozygous mutation and 83.3% of cases with one dominant mutation of ABCC8 gene from father did not respond to diazoxide treatment and required 95% pancreatectomy. Other cases with non-mutation usual respond to

  8. Toward automatic phenotyping of retinal images from genetically determined mono- and dizygotic twins using amplitude modulation-frequency modulation methods

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Davis, B.; Murray, V.; Pattichis, M.; Barriga, S.; Russell, S.

    2010-03-01

    This paper presents an image processing technique for automatically categorize age-related macular degeneration (AMD) phenotypes from retinal images. Ultimately, an automated approach will be much more precise and consistent in phenotyping of retinal diseases, such as AMD. We have applied the automated phenotyping to retina images from a cohort of mono- and dizygotic twins. The application of this technology will allow one to perform more quantitative studies that will lead to a better understanding of the genetic and environmental factors associated with diseases such as AMD. A method for classifying retinal images based on features derived from the application of amplitude-modulation frequency-modulation (AM-FM) methods is presented. Retinal images from identical and fraternal twins who presented with AMD were processed to determine whether AM-FM could be used to differentiate between the two types of twins. Results of the automatic classifier agreed with the findings of other researchers in explaining the variation of the disease between the related twins. AM-FM features classified 72% of the twins correctly. Visual grading found that genetics could explain between 46% and 71% of the variance.

  9. Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer’s disease

    PubMed Central

    Vounou, Maria; Janousova, Eva; Wolz, Robin; Stein, Jason L.; Thompson, Paul M.; Rueckert, Daniel; Montana, Giovanni

    2012-01-01

    Scanning the entire genome in search of variants related to imaging phenotypes holds great promise in elucidating the genetic etiology of neurodegenerative disorders. Here we discuss the application of a penalized multivariate model, sparse reduced-rank regression (sRRR), for the genome-wide detection of markers associated with voxel-wise longitudinal changes in the brain caused by Alzheimer’s disease (AD). Using a sample from the Alzheimer’s Disease Neuroimaging Initiative database, we performed three separate studies that each compared two groups of individuals to identify genes associated with disease development and progression. For each comparison we took a two-step approach: initially, using penalized linear discriminant analysis, we identified voxels that provide an imaging signature of the disease with high classification accuracy; then we used this multivariate biomarker as a phenotype in a genome-wide association study, carried out using sRRR. The genetic markers were ranked in order of importance of association to the phenotypes using a data re-sampling approach. Our findings confirmed the key role of the APOE and TOMM40 genes but also highlighted some novel potential associations with AD. PMID:22209813

  10. Circulating HFMD-Associated Coxsackievirus A16 Is Genetically and Phenotypically Distinct from the Prototype CV-A16

    PubMed Central

    Li, Jingliang; Ren, Sangsang; Wei, Zhenhong; Bao, Wanguo; Hu, Xiaoming; Zhao, Ke; Zhang, Wenyan; Zhou, Yulai; Sun, Fei; Markham, Richard; Yu, Xiao-Fang

    2014-01-01

    Human enteroviruses (HEV) have been linked to hand, foot, and mouth disease (HFMD) in the Pacific and Southeast Asia for decades. Many cases of HFMD have been attributed to coxsackievirus A16 (CV-A16, CA16), based on only partial viral genome determination. Viral phenotypes are also poorly defined. Herein, we have genetically and phenotypically characterized multiple circulating CV-A16 viruses from HFMD patients and determined multiple full-length sequences of these circulating viruses. We discovered that the circulating CV-A16 viruses from HFMD patients are genetically distinct from the proto-type CV-A16 G10. We have also isolated circulating CV-A16 viruses from hospitalized HFMD patients and compared their virological differences. Interestingly, circulating CV-A16 viruses are more pathogenic in a neonatal mouse model than is CV-A16 G10. Thus, we have found circulating recombinant forms of CV-A16 (CRF CV-A16) that are related to, but different from, the prototype CV-A16 G10 that have distinct biological phenotypes. PMID:24736564

  11. Spatial phenotypic and genetic structure of threespine stickleback (Gasterosteus aculeatus) in a heterogeneous natural system, Lake Mývatn, Iceland

    PubMed Central

    Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Árni; Räsänen, Katja

    2013-01-01

    Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow. PMID:24223263

  12. Peruvian Maca (Lepidium peruvianum): (I) Phytochemical and Genetic Differences in Three Maca Phenotypes.

    PubMed

    Meissner, Henry O; Mscisz, Alina; Mrozikiewicz, Mieczyslaw; Baraniak, Marek; Mielcarek, Sebastian; Kedzia, Bogdan; Piatkowska, Ewa; Jólkowska, Justyna; Pisulewski, Pawel

    2015-09-01

    Glucosinolates were previously reported as physiologically-important constituents present in Peruvian Maca (Lepidium peruvianum Chacon) and linked to various therapeutic functions of differently-colored Peruvian Maca hypocotyls. In two separate Trials, three colours of Maca hypocotyls "Black", "Red" and "Yellow" (termed "Maca phenotypes"), were selected from mixed crops of Peruvian Maca for laboratory studies as fresh and after being dried. Individual Maca phenotypes were cultivated in the highlands of the Peruvian Andes at 4,200m a.s.l. (Junin and Ninacaca). Glucosinolate levels, chromatographic HPLC profiles and DNA variability in the investigated Maca phenotypes are presented. Genotypic profiles were determined by the ISSR-PCR and RAPD techniques. Compared to the Black and Red phenotypes, the Yellow phenotype contained much lower Glucosinolate levels measured against Glucotropaeolin and m-methoxy-glucotropaeolin standards, and exhibited different RAPD and ISSR-PCR reactions. The Red Maca phenotype showed the highest concentrations of Glucosinolates as compared to the Black and Yellow Maca. It appears that the traditional system used by natives of the Peruvian Andean highlands in preparing Maca as a vegetable dish (boiling dried Maca after soaking in water), to supplement their daily meals, is as effective as laboratory methods - for extracting Glucosinolates, which are considered to be one of the key bioactive constituents responsible for therapeutic functions of Peruvian Maca phenotypes. It is reasonable to assume that the HPLC and DNA techniques combined, or separately, may assist in determining ID and "Fingerprints" identifying individual Peruvian Maca phenotypes, hence confirming the authenticity of marketable Maca products. The above assumptions warrant further laboratory testing. PMID:26508907

  13. Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder.

    PubMed

    Pagani, Lucia; St Clair, Patricia A; Teshiba, Terri M; Service, Susan K; Fears, Scott C; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Makhinson, Juliana; Lopez, Maria C; Montoya, Gabriel; Montoya, Claudia P; Aldana, Ileana; Navarro, Linda; Freimer, Daniel G; Safaie, Brian; Keung, Lap-Woon; Greenspan, Kiefer; Chou, Katty; Escobar, Javier I; Ospina-Duque, Jorge; Kremeyer, Barbara; Ruiz-Linares, Andres; Cantor, Rita M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Bearden, Carrie E; Takahashi, Joseph S; Freimer, Nelson B

    2016-02-01

    Abnormalities in sleep and circadian rhythms are central features of bipolar disorder (BP), often persisting between episodes. We report here, to our knowledge, the first systematic analysis of circadian rhythm activity in pedigrees segregating severe BP (BP-I). By analyzing actigraphy data obtained from members of 26 Costa Rican and Colombian pedigrees [136 euthymic (i.e., interepisode) BP-I individuals and 422 non-BP-I relatives], we delineated 73 phenotypes, of which 49 demonstrated significant heritability and 13 showed significant trait-like association with BP-I. All BP-I-associated traits related to activity level, with BP-I individuals consistently demonstrating lower activity levels than their non-BP-I relatives. We analyzed all 49 heritable phenotypes using genetic linkage analysis, with special emphasis on phenotypes judged to have the strongest impact on the biology underlying BP. We identified a locus for interdaily stability of activity, at a threshold exceeding genome-wide significance, on chromosome 12pter, a region that also showed pleiotropic linkage to two additional activity phenotypes. PMID:26712028

  14. Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder

    PubMed Central

    Pagani, Lucia; St. Clair, Patricia A.; Teshiba, Terri M.; Service, Susan K.; Fears, Scott C.; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Makhinson, Juliana; Lopez, Maria C.; Montoya, Gabriel; Montoya, Claudia P.; Aldana, Ileana; Navarro, Linda; Freimer, Daniel G.; Safaie, Brian; Keung, Lap-Woon; Greenspan, Kiefer; Chou, Katty; Escobar, Javier I.; Ospina-Duque, Jorge; Kremeyer, Barbara; Ruiz-Linares, Andres; Cantor, Rita M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Bearden, Carrie E.; Takahashi, Joseph S.; Freimer, Nelson B.

    2016-01-01

    Abnormalities in sleep and circadian rhythms are central features of bipolar disorder (BP), often persisting between episodes. We report here, to our knowledge, the first systematic analysis of circadian rhythm activity in pedigrees segregating severe BP (BP-I). By analyzing actigraphy data obtained from members of 26 Costa Rican and Colombian pedigrees [136 euthymic (i.e., interepisode) BP-I individuals and 422 non–BP-I relatives], we delineated 73 phenotypes, of which 49 demonstrated significant heritability and 13 showed significant trait-like association with BP-I. All BP-I–associated traits related to activity level, with BP-I individuals consistently demonstrating lower activity levels than their non–BP-I relatives. We analyzed all 49 heritable phenotypes using genetic linkage analysis, with special emphasis on phenotypes judged to have the strongest impact on the biology underlying BP. We identified a locus for interdaily stability of activity, at a threshold exceeding genome-wide significance, on chromosome 12pter, a region that also showed pleiotropic linkage to two additional activity phenotypes. PMID:26712028

  15. Phenotypic and genetic relationships of feed efficiency with growth performance, ultrasound, and carcass merit traits in Angus and Charolais steers.

    PubMed

    Mao, F; Chen, L; Vinsky, M; Okine, E; Wang, Z; Basarab, J; Crews, D H; Li, C

    2013-05-01

    Feed efficiency is of particular importance to the beef industry, as feed costs represent the single largest variable cost in beef production systems. Selection for more efficient cattle will lead to reduction of feed related costs, but should not have adverse impacts on quality of the carcass. In this study, we evaluated phenotypic and genetic correlations of residual feed intake (RFI), RFI adjusted for end-of-test ultrasound backfat thickness (RFIf), and RFI adjusted for ultrasound backfat thickness and LM area (RFIfr) with growth, ultrasound, and carcass merit traits in an Angus population of 551 steers and in a Charolais population of 417 steers. In the Angus steer population, the phenotypic and genetic correlation of RFI with carcass merit traits including HCW, carcass backfat, carcass LM area, lean meat yield, and carcass marbling were not significant or weak with correlations coefficients ranging from -0.0007 ± 0.05 to 0.18 ± 0.21. In the Charolais steer population, the phenotypic and genetic correlations of RFI with the carcass merit traits were also weak, with correlation coefficients ranging from -0.07 ± 0.06 to 0.19 ± 0.18, except for the genetic correlation with carcass average backfat, which was moderate with a magnitude of 0.42 ± 0.29. Inclusion of ultrasound backfat thickness in the model to predict the expected daily DMI for maintenance explained on average an additional 0.5% variation of DMI in the Angus steers and 2.3% variation of DMI in the Charolais steer population. Inclusion of both the ultrasound backfat and LM area in the model explained only 0.7% additional variance in DMI in the Angus steer population and only 0.6% in the Charolais steer population on top of the RFIf model. We concluded that RFIf adjusted for ultrasound backfat at the end of the test will lead to decreases of both the phenotypic and genetic correlations with carcass backfat and marbling score to a greater extent for late-maturing beef breeds such as Charolais than

  16. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork

    PubMed Central

    Druka, Arnis; Druka, Ilze; Centeno, Arthur G; Li, Hongqiang; Sun, Zhaohui; Thomas, William TB; Bonar, Nicola; Steffenson, Brian J; Ullrich, Steven E; Kleinhofs, Andris; Wise, Roger P; Close, Timothy J; Potokina, Elena; Luo, Zewei; Wagner, Carola; Schweizer, Günther F; Marshall, David F; Kearsey, Michael J; Williams, Robert W; Waugh, Robbie

    2008-01-01

    Background A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Description Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork . GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. Conclusion By integrating barley genotypic, phenotypic and mRNA abundance data

  17. Diverse Renal Phenotypes Observed in a Single Family with a Genetic Mutation in Paired Box Protein 2

    PubMed Central

    Iwafuchi, Yoichi; Morioka, Tetsuo; Morita, Takashi; Yanagihara, Toshio; Oyama, Yuko; Morisada, Naoya; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    A common renal phenotype of paired box protein 2 (PAX2) mutations is renal coloboma syndrome. We report a single family with diverse renal phenotypes associated with PAX2 mutation. The proband presented steroid-resistant focal segmental glomerulosclerosis with optic coloboma, whereas his two sons showed severe renal hypoplasia with end-stage renal disease, with or without optic coloboma. In all three cases, a heterozygous PAX2 genetic mutation was identified (exon 2; NM_003987.3:c.76dupG, p.Val26Glyfs*28). Based on histopathological findings of the proband, we hypothesized that autophagic dysfunction was associated with the pathophysiology of the focal segmental glomerulosclerosis with PAX2 mutation. Detailed funduscopic examination – including the optic disc – might be useful for the diagnosis of renal anomalies associated with PAX2 mutation. PMID:27226968

  18. Diverse Renal Phenotypes Observed in a Single Family with a Genetic Mutation in Paired Box Protein 2.

    PubMed

    Iwafuchi, Yoichi; Morioka, Tetsuo; Morita, Takashi; Yanagihara, Toshio; Oyama, Yuko; Morisada, Naoya; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    A common renal phenotype of paired box protein 2 (PAX2) mutations is renal coloboma syndrome. We report a single family with diverse renal phenotypes associated with PAX2 mutation. The proband presented steroid-resistant focal segmental glomerulosclerosis with optic coloboma, whereas his two sons showed severe renal hypoplasia with end-stage renal disease, with or without optic coloboma. In all three cases, a heterozygous PAX2 genetic mutation was identified (exon 2; NM_003987.3:c.76dupG, p.Val26Glyfs*28). Based on histopathological findings of the proband, we hypothesized that autophagic dysfunction was associated with the pathophysiology of the focal segmental glomerulosclerosis with PAX2 mutation. Detailed funduscopic examination - including the optic disc - might be useful for the diagnosis of renal anomalies associated with PAX2 mutation. PMID:27226968

  19. Genetic variability and diversity of the main resources of lily assessed via phenotypic characters, pollen morphology, and ISSR markers.

    PubMed

    Wang, J M; Ma, S L Y; Li, W Q; Wang, Q; Cao, H Y; Gu, J H; Lu, Y M

    2016-01-01

    Lily (Lilium spp), which belongs to Lilium, is one kind of monocotyledon. As a perennial ornamental plant with extremely high esthetic, edible, and medicinal value, lily has gained much favor due to its mostly showy flowers of various colors and elegant shape. In this research, we studied experimental materials in a sample of 49 individuals including 40 cultivars, nine species of wild lily, and their variants. The collection of 40 cultivars covered all six hybrids in the genus, i.e., Asiatic hybrids, Oriental hybrids, Longiflorum hybrids, LA hybrids, LO hybrids, and OT hybrids. Genetic diversity and inter-relationships were assessed through analysis of phenotypic characteristics, pollen morphology, and ISSR molecular markers. Quantitative characters were selected to analyze phenotypic variation, with results indicating greater variability in petiole length as compared to other characters. Pollen morphological observations suggested that the largest variation coefficient between all hybrids and wild species was the lumina. ISSR makers demonstrated that both cultivars and wild species possess a high level of genetic diversity. Specifically, the genetic diversity of wild lily was higher than cultivars. PMID:27173204

  20. Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl

    PubMed Central

    Lopez, David; Lin, Li; Monaghan, James R.; Cogle, Christopher R.; Bova, Frank J.; Maden, Malcolm

    2014-01-01

    Hematopoietic stem cell (HSC)-derived cells are involved in wound healing responses throughout the body. Unfortunately for mammals, wound repair typically results in scarring and nonfunctional reparation. Among vertebrates, none display such an extensive ability for adult regeneration as urodele amphibians, including 1 of the more popular models: the axolotl. However, a lack of knowledge of axolotl hematopoiesis hinders the use of this animal for the study of hematopoietic cells in scar-free wound healing and tissue regeneration. We used white and cytomegalovirus:green fluorescent protein+ transgenic white axolotl strains to map sites of hematopoiesis and develop hematopoietic cell transplant methodology. We also established a fluorescence-activated cell sorter enrichment technique for major blood lineages and colony-forming unit assays for hematopoietic progenitors. The liver and spleen are both active sites of hematopoiesis in adult axolotls and contain transplantable HSCs capable of long-term multilineage blood reconstitution. As in zebrafish, use of the white axolotl mutant allows direct visualization of homing, engraftment, and hematopoiesis in real time. Donor-derived hematopoiesis occurred for >2 years in recipients generating stable hematopoietic chimeras. Organ segregation, made possible by embryonic microsurgeries wherein halves of 2 differently colored embryos were joined, indicate that the spleen is the definitive site of adult hematopoiesis. PMID:24802774

  1. Peruvian Maca (Lepidium peruvianum): (I) Phytochemical and Genetic Differences in Three Maca Phenotypes

    PubMed Central

    Meissner, Henry O.; Mscisz, Alina; Mrozikiewicz, Mieczyslaw; Baraniak, Marek; Mielcarek, Sebastian; Kedzia, Bogdan; Piatkowska, Ewa; Jólkowska, Justyna; Pisulewski, Pawel

    2015-01-01

    Glucosinolates were previously reported as physiologically-important constituents present in Peruvian Maca (Lepidium peruvianum Chacon) and linked to various therapeutic functions of differently-colored Peruvian Maca hypocotyls. In two separate Trials, three colours of Maca hypocotyls “Black”, “Red” and “Yellow” (termed “Maca phenotypes”), were selected from mixed crops of Peruvian Maca for laboratory studies as fresh and after being dried. Individual Maca phenotypes were cultivated in the highlands of the Peruvian Andes at 4,200m a.s.l. (Junin and Ninacaca). Glucosinolate levels, chromatographic HPLC profiles and DNA variability in the investigated Maca phenotypes are presented. Genotypic profiles were determined by the ISSR-PCR and RAPD techniques. Compared to the Black and Red phenotypes, the Yellow phenotype contained much lower Glucosinolate levels measured against Glucotropaeolin and m-methoxy-glucotropaeolin standards, and exhibited different RAPD and ISSR-PCR reactions. The Red Maca phenotype showed the highest concentrations of Glucosinolates as compared to the Black and Yellow Maca. It appears that the traditional system used by natives of the Peruvian Andean highlands in preparing Maca as a vegetable dish (boiling dried Maca after soaking in water), to supplement their daily meals, is as effective as laboratory methods - for extracting Glucosinolates, which are considered to be one of the key bioactive constituents responsible for therapeutic functions of Peruvian Maca phenotypes. It is reasonable to assume that the HPLC and DNA techniques combined, or separately, may assist in determining ID and “Fingerprints” identifying individual Peruvian Maca phenotypes, hence confirming the authenticity of marketable Maca products. The above assumptions warrant further laboratory testing. PMID:26508907

  2. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco

    PubMed Central

    2010-01-01

    Background Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.). In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco. Results RsaI digestion of PCR amplified 16S rDNA of the 157 sampled isolates, assigned 136 isolates as S. meliloti and the rest as S. medicae. Further phenotyping of these alfalfa rhizobia for tolerance to the environmental stresses revealed a large degree of variation: 55.41%, 82.16%, 57.96% and 3.18% of the total isolates were tolerant to NaCl (>513 mM), water stress (-1.5 MPa), high temperature (40°C) and low pH (3.5), respectively. Sixty-seven isolates of S. meliloti and thirteen isolates of S. medicae that were tolerant to salinity were also tolerant to water stress. Most of the isolates of the two species showed tolerance to heavy metals (Cd, Mn and Zn) and antibiotics (chloramphenicol, spectinomycin, streptomycin and tetracycline). The phenotypic clusters observed by the cluster analysis clearly showed adaptations of the S. meliloti and S. medicae strains to the multiple stresses. Genotyping with rep-PCR revealed higher genetic diversity within these phenotypic clusters and classified all the 157 isolates into 148 genotypes. No relationship between genotypic profiles and the phenotypes was observed. The Analysis of Molecular Variance revealed that largest proportion of significant (P < 0.01) genetic variation was distributed within regions (89%) than among regions (11%). Conclusion

  3. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity

    PubMed Central

    2012-01-01

    Background The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated

  4. Genetic variation in the oxytocin receptor gene is associated with a social phenotype in autism spectrum disorders.

    PubMed

    Harrison, Ashley J; Gamsiz, Ece D; Berkowitz, Isaac C; Nagpal, Shailender; Jerskey, Beth A

    2015-12-01

    Oxytocin regulates social behavior in animal models. Research supports an association between genetic variation in the oxytocin receptor gene (OXTR) and autism spectrum disorders (ASD). In this study, we examine the association between the OXTR gene and a specific social phenotype within ASD. This genotype-phenotype investigation may provide insight into how OXTR conveys risk for social impairment. The current study investigated 10 SNPS in the OXTR gene that have been previously shown to be associated with ASD. We examine the association of these SNPs with both a social phenotype and a repetitive behavior phenotype comprised of behaviors commonly impaired in ASD in the Simons simplex collection (SSC). Using a large sample to examine the association between OXTR and ASD (n = range: 485-1002), we find evidence to support a relation between two OXTR SNPs and the examined social phenotype among children diagnosed with ASD. Greater impairment on the social responsiveness scale standardized total score and on several subdomains was observed among individuals with one or more copies of the minor frequency allele in both rs7632287 and rs237884. Linkage disequilibrium (LD) mapping suggests that these two SNPs are in LD within and overlapping the 3' untranslated region (3'-UTR) of the OXTR gene. These two SNPs were also associated with greater impairment on the repetitive behavior scale. Results of this study indicate that social impairment and repetitive behaviors in ASD are associated with genomic variation in the 3'UTR of the OXTR gene. These variants may be linked to an allele that alters stability of the mRNA message although further work is necessary to test this hypothesis. PMID:26365303

  5. Discordant clinical phenotype in monozygotic twins with Alagille syndrome: Possible influence of non-genetic factors.

    PubMed

    Izumi, Kosuke; Hayashi, Daisuke; Grochowski, Christopher M; Kubota, Noriko; Nishi, Eriko; Arakawa, Michiko; Hiroma, Takehiko; Hatata, Tomoko; Ogiso, Yoshifumi; Nakamura, Tomohiko; Falsey, Alexandra M; Hidaka, Eiko; Spinner, Nancy B

    2016-02-01

    Alagille syndrome is a multisystem developmental disorder characterized by bile duct paucity, congenital heart disease, vertebral anomalies, posterior embryotoxon, and characteristic facial features. Alagille syndrome is typically the result of germline mutations in JAG1 or NOTCH2 and is one of several human diseases caused by Notch signaling abnormalities. A wide phenotypic spectrum has been well documented in Alagille syndrome. Therefore, monozygotic twins with Alagille syndrome provide a unique opportunity to evaluate potential phenotypic modifiers such as environmental factors or stochastic effects of gene expression. In this report, we describe an Alagille syndrome monozygotic twin pair with discordant placental and clinical findings. We propose that environmental factors such as prenatal hypoxia may have played a role in determining the phenotypic severity. PMID:26463753

  6. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    ERIC Educational Resources Information Center

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  7. Estimates of phenotypic and genetic parameters for birth weight of Brown Swiss calves in Turkey using an animal model.

    PubMed

    Sahin, A; Ulutas, Z; Yilmaz Adkinson, A; Adkinson, R W

    2012-06-01

    A study was conducted to assess the influence of genetic and environmental factors on Brown Swiss calf birth weight, and to estimate variance components, genetic parameters, and breeding values. Data were collected on 1,761 Brown Swiss calves born from 1990 to 2005 in the Konuklar State Farm in Turkey. Mean birth weight for all calves was 39.3 ± 0.09 kg. Least squares mean birth weights for male and female Brown Swiss calves were 40.3 ± 0.02 and 39.0 ± 0.02 kg, respectively. Variance components, genetic parameters, and breeding values for birth weight in Brown Swiss calves were estimated by restricted error maximum likelihood (REML)-best linear unbiased prediction(BLUP) procedures using an MTDFREML (multiple trait derivative free restricted maximum likelihood) program employing an animal model. Direct heritability (h(d)(2)), maternal heritability (h(m)(2)), total heritability (h(T)(2)), r(am) and c(am) estimates were 0.12, 0.09, 0.23, -0.58, and -0.06, respectively. The estimated maternal permanent environmental variance expressed as a proportion of the phenotypic variance (c(2)) was 0.05. Breeding values were estimated for the trait and used to evaluate genetic trends across the time period investigated. The genetic trend linear regression was not different from zero. No genetic trend for birth weight was expected, since there had been no direct selection pressure on the trait. Absence of a trend confirms that there was no change due to selection pressure on correlated traits. Genetic and environmental parameter estimates were similar to literature values indicating that effective selection methods used in more developed improvement programs would be effective in Turkey as well. PMID:22203217

  8. Hypothalamic proline rich polypeptide regulates hematopoiesis.

    PubMed

    Bezirganyan, Kristina B; Davtyan, Tigran K; Galoyan, Armen A

    2010-06-01

    The AGAPEPAEPAQPGVY proline-rich polypeptide (PRP-1) was isolated from neurosecretory granules of the bovine neurohypophysis; it is produced by N. supraopticus and N. paraventricularis. It has been shown that PRP-1 has many potentially beneficial biological effects including immunoregulatory, hematopoietic, antimicrobial and anti-neurodegenerative properties. Here we demonstrated that PRP-1 administration influence on redistribution of monocytes, granulocytes and lymphocytes between bone marrow (BM) and peripheral blood and promotes the influx of granulocytes and monocytes/macrophages from BM into peripheral blood and accumulation of immature granulocyte and monocyte in BM and delayed the maturation of T cells in BM. PRP-1 increased colony-forming cell proliferation in rat cells in vivo. In PRP-treated rat BM, the CFU number at day 4, 7 and 14 was considerably increased in comparison with untreated rats BM and no difference was found at day 21 and day 28. We found that PRP-1 enhances erythroid and myeloid colonies formation in human CD34(+) progenitor cell culture in the presence of different growth factors and down-regulates T cells colony formation and specific surface markers expression during induction of human CD34(+) progenitor cells differentiation into T lymphocytes lineage. We suggested that the hypothalamic PRP-1 possibly represents an endogenous peptide whose primary functions are to regulate neuronal survival and differentiation and hematopoiesis within neurosecretory hypothalamus-bone marrow humoral axis. PMID:20020325

  9. Hematopoiesis and hematopoietic organs in arthropods.

    PubMed

    Grigorian, Melina; Hartenstein, Volker

    2013-03-01

    Hemocytes (blood cells) are motile cells that move throughout the extracellular space and that exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and the body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self-renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review, we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species. PMID:23319182

  10. Hematopoiesis and Hematopoietic Organs in Arthropods

    PubMed Central

    Grigorian, Melina; Hartenstein, Volker

    2013-01-01

    Hemocytes (blood cells) are motile cells moving throughout the extracellular space and exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species. PMID:23319182

  11. Phenotypic and genetic relationships between residual energy intake and growth, feed intake, and carcass traits of young bulls.

    PubMed

    Jensen, J; Mao, I L; Andersen, B B; Madsen, P

    1992-02-01

    Residual energy intake, defined as actual minus predicted energy intake during a production period, was estimated for each of 650 bull calves of 31 Holstein Friesian or Brown Swiss sires. Residual energy intake, measured under ad libitum feeding, had heritabilities similar to those of growth rate and energy conversion ratio with an estimate of approximately .3. Residual energy intake was related to average daily energy intake both phenotypically and genetically such that selection for decreased residual energy intake would lead to a decrease in daily feed intake. Such selection would also tend to increase carcass fatness (i.e., genetically fat animals are the most efficient). Residual energy intake estimated with and without correction for carcass composition were closely correlated. Thus, residual energy intake may be estimated without the knowledge of carcass composition in growing bulls of dual-purpose breeds. PMID:1548200

  12. Biochemical and genetic characterization of the multidrug resistance phenotype in murine macrophage-like J774.2 cells.

    PubMed

    Kirschner, L S; Greenberger, L M; Hsu, S I; Yang, C P; Cohen, D; Piekarz, R L; Castillo, G; Han, E K; Yu, L J; Horwitz, S B

    1992-01-01

    The development of multidrug resistance (MDR) in malignant tumors is a major obstacle to the treatment of many cancers. MDR sublines have been derived from the J774.2 mouse macrophage-like cell line and utilized to characterize the phenotype at the biochemical and genetic level. Two isoforms of the drug resistance-associated P-glycoprotein are present and distinguishable both electrophoretically and pharmacologically. Genetic analysis has revealed the presence of a three-member gene family; expression of two of these genes, mdr1a and mdr1b, is associated with MDR whereas the expression of the third, mdr2, is not. Studies of these three genes have revealed similarities and differences in the manner in which they are regulated at the transcriptional level, and have suggested that post-transcriptional effects may also be important. PMID:1346495

  13. Phenotypic, biochemical, and genetic characterization of the U.S. peanut core collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US peanut core collection is a valuable germplasm resource for the peanut community. The core collection was constructed in 1993 to minimize genetic redundancy, provide a smaller subset for peanut researchers to identify important agronomic traits for genetic improvement of cultivated peanut, a...

  14. Phenotype-Environment Interactions in Genetic Syndromes Associated with Severe or Profound Intellectual Disability

    ERIC Educational Resources Information Center

    Tunnicliffe, Penny; Oliver, Chris

    2011-01-01

    The research literature notes both biological and operant theories of behavior disorder in individuals with intellectual disabilities. These two theories of genetic predisposition and operant reinforcement remain quite distinct; neither theory on its own is sufficient to explain challenging behavior in genetic syndromes and an integrated approach…

  15. Genetic and phenotypic correlations of quantitative traits in two long-term randomly mated soybean populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic effects of long term random mating and natural selection aided by genetic male sterility (gms) were evaluated in two soybean [Glycine max (L.) Merr.] populations designated: RSII and RSIII. These populations were evaluated in the field at three locations each with two replications. Genot...

  16. Is Sensory Over-Responsivity Distinguishable from Childhood Behavior Problems? A Phenotypic and Genetic Analysis

    ERIC Educational Resources Information Center

    Van Hulle, Carol A.; Schmidt, Nicole L.; Goldsmith, H. Hill

    2012-01-01

    Background: Although impaired sensory processing accompanies various clinical conditions, the question of its status as an independent disorder remains open. Our goal was to delineate the comorbidity (or lack thereof) between childhood psychopathology and sensory over-responsivity (SOR) in middle childhood using phenotypic and behavior-genetic…

  17. The Genetic Inheritance of the Blue-eyed White Phenotype in Alpacas (Vicugna pacos)

    PubMed Central

    Johnson, Warren E.; Appleton, Belinda R.

    2014-01-01

    White-spotting patterns in mammals can be caused by mutations in the gene KIT, whose protein is necessary for the normal migration and survival of melanocytes from the neural crest. The alpaca (Vicugna pacos) blue-eyed white (BEW) phenotype is characterized by 2 blue eyes and a solid white coat over the whole body. Breeders hypothesize that the BEW phenotype in alpacas is caused by the combination of the gene causing gray fleece and a white-spotting gene. We performed an association study using KIT flanking and intragenic markers with 40 unrelated alpacas, of which 17 were BEW. Two microsatellite alleles at KIT-related markers were significantly associated (P < 0.0001) with the BEW phenotype (bew1 and bew2). In a larger cohort of 171 related individuals, we identify an abundance of an allele (bew1) in gray animals and the occurrence of bew2 homozygotes that are solid white with pigmented eyes. Association tests accounting for population structure and familial relatedness are consistent with a proposed model where these alleles are in linkage disequilibrium with a mutation or mutations that contribute to the BEW phenotype and to individual differences in fleece color. PMID:23144493

  18. Phenotypic Convergence in Genetically Distinct Lineages of a Rhinolophus Species Complex (Mammalia, Chiroptera)

    PubMed Central

    Jacobs, David S.; Babiker, Hassan; Bastian, Anna; Kearney, Teresa; van Eeden, Rowen; Bishop, Jacqueline M.

    2013-01-01

    Phenotypes of distantly related species may converge through adaptation to similar habitats and/or because they share biological constraints that limit the phenotypic variants produced. A common theme in bats is the sympatric occurrence of cryptic species that are convergent in morphology but divergent in echolocation frequency, suggesting that echolocation may facilitate niche partitioning, reducing competition. If so, allopatric populations freed from competition, could converge in both morphology and echolocation provided they occupy similar niches or share biological constraints. We investigated the evolutionary history of a widely distributed African horseshoe bat, Rhinolophus darlingi, in the context of phenotypic convergence. We used phylogenetic inference to identify and date lineage divergence together with phenotypic comparisons and ecological niche modelling to identify morphological and geographical correlates of those lineages. Our results indicate that R. darlingi is paraphyletic, the eastern and western parts of its distribution forming two distinct non-sister lineages that diverged ~9.7 Mya. We retain R. darlingi for the eastern lineage and argue that the western lineage, currently the sub-species R. d. damarensis, should be elevated to full species status. R. damarensis comprises two lineages that diverged ~5 Mya. Our findings concur with patterns of divergence of other co-distributed taxa which are associated with increased regional aridification between 7-5 Mya suggesting possible vicariant evolution. The morphology and echolocation calls of R. darlingi and R. damarensis are convergent despite occupying different biomes. This suggests that adaptation to similar habitats is not responsible for the convergence. Furthermore, R. darlingi forms part of a clade comprising species that are bigger and echolocate at lower frequencies than R. darlingi, suggesting that biological constraints are unlikely to have influenced the convergence. Instead, the

  19. Integromic Analysis of Genetic Variation and Gene Expression Identifies Networks for Cardiovascular Disease Phenotypes

    PubMed Central

    Yao, Chen; Chen, Brian H.; Joehanes, Roby; Otlu, Burcak; Zhang, Xiaoling; Liu, Chunyu; Huan, Tianxiao; Tastan, Oznur; Cupples, L. Adrienne; Meigs, James B.; Fox, Caroline S.; Freedman, Jane E.; Courchesne, Paul; O’Donnell, Christopher J.; Munson, Peter J.; Keles, Sunduz; Levy, Daniel

    2015-01-01

    Background Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. Methods and Results We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P≤5×10−8) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. Conclusions Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD. PMID:25533967

  20. Genetic Analysis of the Pathogenic Molecular Sub-phenotype Interferon Alpha Identifies Multiple Novel Loci Involved in Systemic Lupus Erythematosus

    PubMed Central

    Kariuki, Silvia N.; Ghodke-Puranik, Yogita; Dorschner, Jessica M.; Chrabot, Beverly S.; Kelly, Jennifer A.; Tsao, Betty P.; Kimberly, Robert P.; Alarcón-Riquelme, Marta E.; Jacob, Chaim O.; Criswell, Lindsey A.; Sivils, Kathy L.; Langefeld, Carl D.; Harley, John B.; Skol, Andrew D.; Niewold, Timothy B.

    2014-01-01

    Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. 40–50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs. low IFN-α in over 1550 SLE cases, including GWAS and replication cohorts. In meta-analysis, the top associations in European ancestry were PRKG1 rs7897633 (PMeta=2.75 × 10−8) and PNP rs1049564 (PMeta=1.24 × 10−7). We also found evidence for cross-ancestral background associations with the ANKRD44 and PLEKHF2 loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic subphenotypes becomes an attractive strategy for genetic discovery in complex disease. PMID:25338677

  1. Genetic and phenotypic variation in central and northern European populations of Aedes (Aedimorphus) vexans (Meigen, 1830) (Diptera, Culicidae).

    PubMed

    Francuski, Ljubinka; Milankov, Vesna; Ludoški, Jasmina; Krtinić, Bosiljka; Lundström, Jan O; Kemenesi, Gábor; Ferenc, Jakab

    2016-06-01

    The floodwater mosquito Aedes vexans can be a massive nuisance in the flood plain areas of mainland Europe, and is the vector of Tahyna virus and a potential vector of Dirofilaria immitis. This epidemiologically important species forms three subspecies worldwide, of which Aedes vexans arabiensis has a wide distribution in Europe and Africa. We quantified the genetic and phenotypic variation in Ae. vexans arabiensis in populations from Sweden (northern Europe), Hungary, and Serbia (central Europe). A landscape genetics approach (FST , STRUCTURE, BAPS, GENELAND) revealed significant differentiation between northern and southern populations. Similar to genetic data, wing geometric morphometrics revealed two different clusters, one made by Swedish populations, while another included Hungarian and Serbian populations. Moreover, integrated genetic and morphometric data from the spatial analysis suggested groupings of populations into three clusters, one of which was from Swedish and Hungarian populations. Data on spatial analysis regarding an intermediate status of the Hungarian population was supported by observed Isolation-by-Distance patterns. Furthermore, a low proportion of interpopulation vs intrapopulation variance revealed by AMOVA and low-to-moderate FST values on a broader geographical scale indicate a continuous between-population exchange of individuals, including considerable gene flow on the regional scale, are likely to be responsible for the maintenance of the observed population similarity in Aе. vexans. We discussed data considering population structure in the light of vector control strategies of the mosquito from public health importance. PMID:27232139

  2. Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity.

    PubMed

    Hellstein, J; Vawter-Hugart, H; Fotos, P; Schmid, J; Soll, D R

    1993-12-01

    Colony phenotype and genetic similarity were assessed within and between groups of commensal and pathogenic strains of Candida albicans collected from the oral cavities of individuals in a single geographical locale. Thirty-eight percent of pathogenic isolates contained predominant or minor variant colony morphologies (other than smooth) when samples from the sites of infection were cultured on plates, while 16% of commensal isolates contained minor variant colony morphologies when samples from the sites of carriage were cultured. The genetic similarities of isolates within and between groups were assessed by DNA fingerprinting by using Southern blot hybridization with the fingerprinting probe Ca3 and analysis with the computer-assisted, automated Dendron system. Both the commensal and the pathogenic groups contained a major cluster of genetically similar C. albicans isolates representing 31 and 33% of the strains in the respective groups. When a combined dendrogram of both commensal and pathogenic isolates was generated, the major clusters of genetically similar isolates in each group mixed into one large cluster. Minor clusters in the individual dendrograms also mixed. These results suggest common clonal origins for commensal and pathogenic strains in the same geographical locale. PMID:8308110

  3. Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity.

    PubMed Central

    Hellstein, J; Vawter-Hugart, H; Fotos, P; Schmid, J; Soll, D R

    1993-01-01

    Colony phenotype and genetic similarity were assessed within and between groups of commensal and pathogenic strains of Candida albicans collected from the oral cavities of individuals in a single geographical locale. Thirty-eight percent of pathogenic isolates contained predominant or minor variant colony morphologies (other than smooth) when samples from the sites of infection were cultured on plates, while 16% of commensal isolates contained minor variant colony morphologies when samples from the sites of carriage were cultured. The genetic similarities of isolates within and between groups were assessed by DNA fingerprinting by using Southern blot hybridization with the fingerprinting probe Ca3 and analysis with the computer-assisted, automated Dendron system. Both the commensal and the pathogenic groups contained a major cluster of genetically similar C. albicans isolates representing 31 and 33% of the strains in the respective groups. When a combined dendrogram of both commensal and pathogenic isolates was generated, the major clusters of genetically similar isolates in each group mixed into one large cluster. Minor clusters in the individual dendrograms also mixed. These results suggest common clonal origins for commensal and pathogenic strains in the same geographical locale. Images PMID:8308110

  4. Elucidating molecular phenotypes caused by the SORL1 Alzheimer's disease genetic risk factor using human induced pluripotent stem cells.

    PubMed

    Young, Jessica E; Boulanger-Weill, Jonathan; Williams, Daniel A; Woodruff, Grace; Buen, Floyd; Revilla, Arra C; Herrera, Cheryl; Israel, Mason A; Yuan, Shauna H; Edland, Steven D; Goldstein, Lawrence S B

    2015-04-01

    Predisposition to sporadic Alzheimer's disease (SAD) involves interactions between a person's unique combination of genetic variants and the environment. The molecular effect of these variants may be subtle and difficult to analyze with standard in vitro or in vivo models. Here we used hIPSCs to examine genetic variation in the SORL1 gene and possible contributions to SAD-related phenotypes in human neurons. We found that human neurons carrying SORL1 variants associated with an increased SAD risk show a reduced response to treatment with BDNF, at the level of both SORL1 expression and APP processing. shRNA knockdown of SORL1 demonstrates that the differences in BDNF-induced APP processing between genotypes are dependent on SORL1 expression. We propose that the variation in SORL1 expression induction by BDNF is modulated by common genetic variants and can explain how genetic variation in this one locus can contribute to an individual's risk of developing SAD. PMID:25772071

  5. Analysis of phenotypic and genetic parameters for growthrelated traits in the half smooth tongue sole, Cynoglossus semilaevis

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Yangzhen; Du, Min; Shao, Changwei; Chen, Songlin

    2016-01-01

    Phenotypic and genetic parameters for growth-related traits in the half-smooth tongue sole, Cynoglossus semilaevis, were estimated in 22 full-sib families produced by normal and neo-male breeding stocks. As phenotypic males with female genotypes, neo-males are harmful in C. semilaevis aquaculture because they reduce overall production. The present study evaluated the difference in the growth-related traits: total length (TL), body weight (BW) and square root of body weight (SQ_BW) at the age of 570 days between normal and neo-male offspring (neo-males used as male parents). The difference in the proportion of females between normal and neo-male offspring was also assessed. Based on the linear mixed model, restricted maximum likelihood (REML) and best linear unbiased prediction (BLUP) were used to estimate various (co)variance components and estimated breeding values (EBVs) of growth-related traits. As a result, all the mean values of the three studied traits were significantly larger in normal offspring than in neo-male offspring. Additionally, the female proportion was significantly larger in normal offspring than in neo-male offspring. Heritability was 0.128±0.066 2 for TL, 0.128±0.065 5 for BW and 0.132±0.062 9 for SQ_BW, all of which were low level heritabilities. The correlation coefficients of EBVs and phenotypic values of the target traits were 0.516 for TL, 0.524 for BW and 0.506 for SQ_BW, all of which were highly significant ( P <0.01). Genetic correlations among TL, BW and SQ_BW were positive high (0.921-0.969) and higher than those of phenotype (0.711-0.748), both of which had low standard errors (0.063-0.123 for genotype, and 0.010-0.018 for phenotype). Compared with normal offspring, neo-male offspring have lower breeding values for each studied trait through EBVs comparison. Therefore, neo-male offspring should not be used as broodstock in a C. semilaevis breeding programs.

  6. Population prevalence of hereditary breast cancer phenotypes and implementation of a genetic cancer risk assessment program in southern Brazil

    PubMed Central

    2009-01-01

    In 2004, a population-based cohort (the Núcleo Mama Porto Alegre - NMPOA Cohort) was started in Porto Alegre, southern Brazil and within that cohort, a hereditary breast cancer study was initiated, aiming to determine the prevalence of hereditary breast cancer phenotypes and evaluate acceptance of a genetic cancer risk assessment (GCRA) program. Women from that cohort who reported a positive family history of cancer were referred to GCRA. Of the 9218 women enrolled, 1286 (13.9%) reported a family history of cancer. Of the 902 women who attended GCRA, 55 (8%) had an estimated lifetime risk of breast cancer ≥ 20% and 214 (23.7%) had pedigrees suggestive of a breast cancer predisposition syndrome; an unexpectedly high number of these fulfilled criteria for Li-Fraumeni-like syndrome (122 families, 66.7%). The overall prevalence of a hereditary breast cancer phenotype was 6.2% (95%CI: 5.67-6.65). These findings identified a problem of significant magnitude in the region and indicate that genetic cancer risk evaluation should be undertaken in a considerable proportion of the women from this community. The large proportion of women who attended GCRA (72.3%) indicates that the program was well-accepted by the community, regardless of the potential cultural, economic and social barriers. PMID:21637504

  7. Identification of genetic loci underlying the phenotypic constructs of autism spectrum disorders Running head: Genetic loci for latent factors in ASD

    PubMed Central

    Liu, Xiao-Qing; Georgiades, Stelios; Duku, Eric; Thompson, Ann; Devlin, Bernie; Cook, Edwin H.; Wijsman, Ellen M.; Paterson, Andrew D.; Szatmari, Peter

    2012-01-01

    Objective To investigate the underlying phenotypic constructs in autism spectrum disorders (ASD) and to identify genetic loci that are linked to these empirically derived factors. Method Exploratory factor analysis was applied to two datasets with 28 selected Autism Diagnostic Interview-Revised (ADI-R) algorithm items. The first dataset was from the Autism Genome Project (AGP) phase I (1,236 ASD subjects from 618 families); the second was from the AGP phase II (804 unrelated ASD subjects). Variables derived from the factor analysis were then used as quantitative traits in genome-wide variance components linkage analyses. Results Six factors, joint attention, social interaction and communication, non-verbal communication, repetitive sensory-motor behaviour, peer interaction, and compulsion/restricted interests, were retained for both datasets. There was good agreement between the factor loading patterns from the two datasets. All factors showed familial aggregation. Suggestive evidence for linkage was obtained for the joint attention factor on 11q23. Genome-wide significant evidence for linkage was obtained for the repetitive sensory-motor behaviour factor on 19q13.3. Conclusions This study demonstrates that the underlying phenotypic constructs based on the ADI-R algorithm items are replicable in independent datasets; and the empirically derived factors are suitable and informative in genetic studies of ASD. PMID:21703496

  8. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree

    PubMed Central

    Mejía, Luis C.; Herre, Edward A.; Sparks, Jed P.; Winter, Klaus; García, Milton N.; Van Bael, Sunshine A.; Stitt, Joseph; Shi, Zi; Zhang, Yufan; Guiltinan, Mark J.; Maximova, Siela N.

    2014-01-01

    It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host's ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E−) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic

  9. Genome-wide Association Study Identifies HLA 8.1 Ancestral Haplotype Alleles as Major Genetic Risk Factors for Myositis Phenotypes

    PubMed Central

    Miller, Frederick W.; Chen, Wei; O’Hanlon, Terrance P.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy R.; Isenberg, David A.; Chinoy, Hector; Ollier, William E.R.; Scheet, Paul; Peng, Bo; Lee, Annette; Byun, Jinyoung; Lamb, Janine A.; Gregersen, Peter K.; Amos, Christopher I.

    2016-01-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis; 473 juvenile dermatomyositis; 532 polymyositis; and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P < 5 × 10−8) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1haplotype comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations. PMID:26291516

  10. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes.

    PubMed

    Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I

    2015-10-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P<5×10(-8)) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations. PMID:26291516

  11. Genetic evidence suggests that Psoroptes isolates of different phenotypes, hosts and geographic origins are conspecific.

    PubMed

    Zahler, M; Essig, A; Gothe, R; Rinder, H

    1998-11-01

    The second internal transcribed spacer of the rRNA gene was characterised in 15 Psoroptes isolates collected from the ears or bodies of rabbits, goats, sheep and cattle originating from four continents. Morphologically, the isolates were differentiated as Psoroptes cuniculi, Psoroptes ovis and Psoroptes cervinus. Genotypically, the isolates were highly homogeneous, except for the existence of different rDNA classes. In view of previous phenotypic data, a possible conspecificity of these species is proposed. PMID:9846608

  12. Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes

    PubMed Central

    Wood, Andrew R.; Tuke, Marcus A.; Nalls, Mike; Hernandez, Dena; Gibbs, J. Raphael; Lin, Haoxiang; Xu, Christopher S.; Li, Qibin; Shen, Juan; Jun, Goo; Almeida, Marcio; Tanaka, Toshiko; Perry, John R. B.; Gaulton, Kyle; Rivas, Manny; Pearson, Richard; Curran, Joanne E.; Johnson, Matthew P.; Göring, Harald H. H.; Duggirala, Ravindranath; Blangero, John; Mccarthy, Mark I.; Bandinelli, Stefania; Murray, Anna; Weedon, Michael N.; Singleton, Andrew; Melzer, David; Ferrucci, Luigi; Frayling, Timothy M

    2015-01-01

    Initial results from sequencing studies suggest that there are relatively few low-frequency (<5%) variants associated with large effects on common phenotypes. We performed low-pass whole-genome sequencing in 680 individuals from the InCHIANTI study to test two primary hypotheses: (i) that sequencing would detect single low-frequency–large effect variants that explained similar amounts of phenotypic variance as single common variants, and (ii) that some common variant associations could be explained by low-frequency variants. We tested two sets of disease-related common phenotypes for which we had statistical power to detect large numbers of common variant–common phenotype associations—11 132 cis-gene expression traits in 450 individuals and 93 circulating biomarkers in all 680 individuals. From a total of 11 657 229 high-quality variants of which 6 129 221 and 5 528 008 were common and low frequency (<5%), respectively, low frequency–large effect associations comprised 7% of detectable cis-gene expression traits [89 of 1314 cis-eQTLs at P < 1 × 10−06 (false discovery rate ∼5%)] and one of eight biomarker associations at P < 8 × 10−10. Very few (30 of 1232; 2%) common variant associations were fully explained by low-frequency variants. Our data show that whole-genome sequencing can identify low-frequency variants undetected by genotyping based approaches when sample sizes are sufficiently large to detect substantial numbers of common variant associations, and that common variant associations are rarely explained by single low-frequency variants of large effect. PMID:25378555

  13. Human regulatory B cells combine phenotypic and genetic hallmarks with a distinct differentiation fate.

    PubMed

    Lin, Wenyu; Cerny, Daniela; Chua, Edmond; Duan, Kaibo; Yi, June Tai Jing; Shadan, Nurhidaya Binte; Lum, Josephine; Maho-Vaillant, Maud; Zolezzi, Francesca; Wong, Siew Cheng; Larbi, Anis; Fink, Katja; Musette, Philippe; Poidinger, Michael; Calbo, Sébastien

    2014-09-01

    Regulatory B cells (B-reg) produce IL-10 and suppress inflammation in both mice and humans, but limited data on the phenotype and function of these cells have precluded detailed assessment of their contribution to host immunity. In this article, we report that human B-reg cannot be defined based on a phenotype composed of conventional B cell markers, and that IL-10 production can be elicited in both the CD27(+) memory population and naive B cell subset after only a brief stimulation in vitro. We therefore sought to obtain a better definition of IL-10-producing human B-regs using a multiparameter analysis of B cell phenotype, function, and gene expression profile. Exposure to CpG and anti-Ig are the most potent stimuli for IL-10 secretion in human B cells, but microarray analysis revealed that human B cells cotreated with these reagents resulted in only ∼0.7% of genes being differentially expressed between IL-10(+) and IL-10(-) cells. Instead, connectivity map analysis revealed that IL-10-secreting B cells are those undergoing specific differentiation toward a germinal center fate, and we identified a CD11c(+) B cell subset that was not capable of producing IL-10 even under optimal conditions. Our findings will assist in the identification of a broader range of human pro-B-reg populations that may represent novel targets for immunotherapy. PMID:25080484

  14. Phenotypic and genetic differentiation among yellow monkeyflower populations from thermal and non-thermal soils in Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Roskilly, Beth; Hendrick, Margaret F; Zabinski, Catherine A; Barr, Camille M; Fishman, Lila

    2012-09-01

    In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby (<500 m distant) in non-thermal soils. In simulated thermal and non-thermal environments, thermal plants remained significantly divergent from non-thermal plants in vegetative, floral, mating system, and phenological traits. Plants from both thermal populations flowered closer to the ground, allocated relatively more to sexual reproduction, were more likely to initiate flowering under short daylengths, and made smaller flowers that could efficiently self-fertilize without pollinators. These shared differences are consistent with local adaptation to life in the ephemeral window for growth and reproduction created by winter and spring snowmelt on hot soils. In contrast, habitat type (thermal vs. non-thermal) explained little of the genetic variation at neutral markers. Instead, we found that one thermal population (Agrostis Headquarters; AHQ-T) was strongly differentiated from all other populations (all F (ST) > 0.34), which were only weakly differentiated from each other (all F (ST) < 0.07). Phenotypic differentiation of thermal M. guttatus, but little population genetic evidence of long-term ecotypic divergence, encourages further investigations of the potential for fine-scale adaptation and reproductive isolation across the geothermal gradient in Yellowstone. PMID:22437908

  15. Impaired Pavlovian fear extinction is a common phenotype across genetic lineages of the 129 inbred mouse strain

    PubMed Central

    Camp, Marguerite; Norcross, Maxine; Whittle, Nigel; Feyder, Michael; D’Hanis, Wolfgang; Yilmazer-Hanke, Deniz; Singewald, Nicolas; Holmes, Andrew

    2009-01-01

    Fear extinction is impaired in psychiatric disorders such as posttraumatic stress disorder and schizophrenia, which have a major genetic component. However, the genetic factors underlying individual variability in fear extinction remain to be determined. By comparing a panel of inbred mouse strains, we recently identified a strain, 129S1/SvImJ (129S1), that exhibits a profound and selective deficit in Pavlovian fear extinction, and associated abnormalities in functional activation of a key prefrontal-amygdala circuit, as compared to C57BL/6J. The first aim of the present study was to assess fear extinction across multiple 129 substrains representing the strain’s four different genetic lineages (Parental, Steel, Teratoma, Contaminated). Results showed that 129P1/ReJ, 129P3/J, 129T2/SvEmsJ, and 129X1/SvJ exhibited poor fear extinction, relative to C57BL/6J, while 129S1 showed evidence of fear incubation. Based on these results, the second aim was to further characterize the nature and specificity of the extinction phenotype in 129S1, as an exemplar of the 129 substrains. Results showed that the extinction deficit in 129S1 was neither the result of a failure to habituate to a sensitized fear response, nor an artifact of a fear response to (unconditioned) tone per se. A stronger conditioning protocol (i.e., five × higher intensity shocks) produced an increase in fear expression in 129S1, relative to C57BL/6J, due to rapid rise in freezing during tone presentation. Taken together, these data demonstrate that impaired fear extinction is a phenotypic feature common across 129 substrains, and provide preliminary evidence that impaired fear extinction in 129S1 may be reflect a pro-fear incubation-like process. PMID:19674120

  16. Unraveling the Pathogenesis of MDS: The NLRP3 Inflammasome and Pyroptosis Drive the MDS Phenotype

    PubMed Central

    Sallman, David A.; Cluzeau, Thomas; Basiorka, Ashley A.; List, Alan

    2016-01-01

    Myelodysplastic syndromes (MDS) are characterized by bone marrow cytological dysplasia and ineffective hematopoiesis in the setting of recurrent somatic gene mutations and chromosomal abnormalities. The underlying pathogenic mechanisms that drive a common clinical phenotype from a diverse array of genetic abnormalities have only recently begun to emerge. Accumulating evidence has highlighted the integral role of the innate immune system in upregulating inflammatory cytokines via NF-κB activation in the pathogenesis of MDS. Recent investigations implicate activation of the NLRP3 inflammasome in hematopoietic stem/progenitor cells as a critical convergence signal in MDS with consequent clonal expansion and pyroptotic cell death though caspase-1 maturation. Specifically, the alarmin S100A9 and/or founder gene mutations trigger pyroptosis through the generation of reactive oxygen species leading to assembly and activation of the redox-sensitive NLRP3 inflammasome and β–catenin, assuring propagation of the MDS clone. More importantly, targeted inhibition of varied steps in this pathway restore effective hematopoiesis. Together, delineation of the role of pyroptosis in the clinical phenotype of MDS patients has identified novel therapeutic strategies that offer significant promise in the treatment of MDS. PMID:27379212

  17. Genetic and phenotypic parameters of carcass and organ traits of broiler chickens.

    PubMed

    Venturini, G C; Cruz, V A R; Rosa, J O; Baldi, F; El Faro, L; Ledur, M C; Peixoto, J O; Munari, D P

    2014-01-01

    The objective of this study was to estimate the genetic and environmental parameters for carcass, carcass part, and organ weights in a paternal strain of broiler chickens that was selected mainly for body weight at 42 days of age (BW42) to provide support for poultry genetic improvement programs. A total of 1448 chickens were used that resulted from the expansion of a pure paternal strain named TT, which was developed by Embrapa Suínos e Aves. The following weights were evaluated: BW42, chilled carcass, wing, drumstick meat, thigh meat, breast meat, breast fillet, back, liver, heart (HRT), and gizzard (GIZ). The variance component was estimated by the restricted maximum likelihood method using a multi-trait animal model. The general model included the additive genetic and residual random effects and the fixed effect of the sex-hatch group (10 levels). The heritability estimates ranged from 0.27 ± 0.06 for HRT to 0.44 ± 0.08 for GIZ. These results indicated that all the traits have enough additive genetic variability to respond to selection. The genetic correlation estimates between BW42 and the carcass and carcass part weights were high and positive. However, the genetic correlation estimates between BW42 and organ weights were low. In this population, the carcass traits might respond indirectly to selection applied to BW42. It can be concluded that selection to increase BW42 is not effective in improving broiler organ weight. Therefore, to obtain suitable genetic improvement for these traits, the selection indexes for broilers should include organ weight-based criteria. PMID:25501241

  18. Genetic variants associated with development of TMD and its intermediate phenotypes: the genetic architecture of TMD in the OPPERA prospective cohort study

    PubMed Central

    Smith, Shad B.; Mir, Ellen; Bair, Eric; Slade, Gary D.; Dubner, Ron; Fillingim, Roger B.; Greenspan, Joel D.; Ohrbach, Richard; Knott, Charles; Weir, Bruce; Maixner, William; Diatchenko, Luda

    2013-01-01

    Genetic risk factors are believed to combine with environmental exposures and contribute to risk of developing temporomandibular disorder (TMD). In this prospective cohort study, 2,737 people without TMD were assessed for common genetic variation in 358 genes known to contribute to nociceptive pathways, inflammation, and affective distress. During a median follow-up period of 2.8 years, 260 people developed first-onset TMD. Hazard ratios (HRs) were computed as measures of association between 2,924 single nucleotide polymorphisms (SNPs) and TMD incidence. After correction for multiple testing, no single SNP was significantly associated with risk of onset TMD. However, several SNPs exceeded Bonferroni correction for multiple comparison or false discovery rate thresholds (FDR=0.05, 0.1, or 0.2) for association with intermediate phenotypes shown to be predictive of TMD onset. Non-specific orofacial symptoms were associated with voltage-gated sodium channel, type 1 alpha subunit (SCN1A, rs6432860, p=2.77×10−5) and angiotensin-I converting enzyme 2 (ACE2, rs1514280, p=4.86×10−5), global psychological symptoms with prostaglandin-endoperoxide synthase 1 (PTGS1, rs3842803, p=2.79×10−6), stress and negative affectivity with amyloid-β (A4) precursor protein (APP, rs466448, p=4.29×10−5), and heat pain temporal summation with multiple PDZ domain protein (MPDZ, rs10809907, p=3.05×10−5). The use of intermediate phenotypes for complex pain diseases revealed new genetic pathways influencing risk of TMD. PMID:24275226

  19. Quantitative Genetics of Transgenic Mice: Components of Phenotypic Variation in Body Weights and Weight Gains

    PubMed Central

    Clutter, A. C.; Pomp, D.; Murray, J. D.

    1996-01-01

    Transgenic mice possessing an ovine growth hormone gene were used to study the effects of elevated growth hormone on quantitative genetic variation. Males hemizygous for the transgene were mated to wild-type females to produce half- and full-sib families in which approximately half the progeny were transgenic and half were wild type. Analyses of body weights at 3-10 weeks, and weight gains from 3 to 6, and 6 to 10 weeks produced estimates of the proportion of total variance due to additive genetic effects (h(2)) and common litter effects (c(2)), and the genetic correlation between transgenic and wild-type expression of each trait. At 10 weeks, body weight of transgenics exceeded that of wild types by 26 and 49% in males and females, respectively. Estimated genetic variances in the transgenic group were significantly greater than zero for body weights at most ages and for both measurements of gain. Common litter effects accounted for a similar proportion of variation in the wild-type and transgenic groups. Additive genetic correlations between wild-type and transgenic expression of body weights tended to decline with age, indicating that a partially different array of genes may have begun to affect body weight in the transgenic group. PMID:8844161

  20. Genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit of feedlot cattle.

    PubMed

    Nkrumah, J D; Keisler, D H; Crews, D H; Basarab, J A; Wang, Z; Li, C; Price, M A; Okine, E K; Moore, S S

    2007-09-01

    Leptin is the hormone product of the obese gene that is synthesized and predominantly expressed by adipocytes. This study estimated the genetic variation in serum leptin concentration and evaluated the genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit. There were 464 steers with records for serum leptin concentration, performance, and efficiency of gain and 381 steers with records for carcass traits. The analyses included a total of 813 steers, including those without phenotypic records. Phenotypic and genetic parameter estimates were obtained using SAS and ASREML, respectively. Serum leptin concentration was moderately heritable (h2 = 0.34 +/- 0.13) and averaged 13.91 (SD = 5.74) ng/mL. Sire breed differences in serum leptin concentration correlated well with breed differences in body composition. Specifically, the serum leptin concentration was 20% greater in Angus-sired steers compared with Charolais-sired steers (P < 0.001). Consequently, ultrasound backfat (27%), carcass 12th-rib fat (31%), ultrasound marbling (14%), and carcass marbling (15%) were less in Charolais- than Angus-sired steers (P < 0.001). Conversely, carcass LM area (P = 0.05) and carcass lean meat yield (P < 0.001) were greater in Charolais- compared with Angus-sired steers. Steers with greater serum leptin concentration also had greater DMI (P < 0.001), greater residual feed intake (P = 0.04), and partial efficiency of growth (P = 0.01), but did not differ in feed conversion ratio (P > 0.10). Serum leptin concentration was correlated phenotypically with ultrasound backfat (r = 0.41; P < 0.001), carcass 12th-rib fat (r = 0.42; P < 0.001), ultrasound marbling (r = 0.25; P < 0.01), carcass marbling (r = 0.28; P < 0.01), ultrasound LM area (r = -0.19; P < 0.01), carcass LM area (r = -0.17; P < 0.05), lean meat yield (r = -0.38; P < 0.001), and yield grade (r = 0.32; P < 0.001). The corresponding genetic correlations were

  1. Predator strike shapes antipredator phenotype through new genetic interactions in water striders

    PubMed Central

    Armisén, David; Nagui Refki, Peter; Crumière, Antonin Jean Johan; Viala, Séverine; Toubiana, William; Khila, Abderrahman

    2015-01-01

    How novel genetic interactions evolve, under what selective pressures, and how they shape adaptive traits is often unknown. Here we uncover behavioural and developmental genetic mechanisms that enable water striders to survive attacks by bottom-striking predators. Long midlegs, critical for antipredator strategy, are shaped through a lineage-specific interaction between the Hox protein Ultrabithorax (Ubx) and a new target gene called gilt. The differences in leg morphologies are established through modulation of gilt differential expression between mid and hindlegs under Ubx control. Furthermore, short-legged water striders, generated through gilt RNAi knockdown, exhibit reduced performance in predation tests. Therefore, the evolution of the new Ubx–gilt interaction contributes to shaping the legs that enable water striders to dodge predator strikes. These data show how divergent selection, associated with novel prey–predator interactions, can favour the evolution of new genetic interactions and drive adaptive evolution. PMID:26323602

  2. A Phenotyping Regimen for Genetically Modified Mice Used to Study Genes Implicated in Human Diseases of Aging.

    PubMed

    Patterson, Victoria L; Thompson, Brian S; Cherry, Catherine; Wang, Shao-Bin; Chen, Bo; Hoh, Josephine

    2016-01-01

    Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson's disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson's. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results

  3. Osteogenesis with hematopoiesis simulating infection in a hydroxyapatite orbital implant.

    PubMed

    Jordan, David R; Belliveau, Michel J; Brownstein, Seymour; Padmore, Ruth F

    2009-01-01

    A 28-year-old woman underwent secondary orbital implant surgery with placement of a hydroxyapatite implant. Over the next 7 years she underwent 3 drilling procedures. She began having copious discharge 1 year after the last drilling procedure. She was seen on numerous occasions with socket discharge, unresponsive to a variety of topical and oral antibiotics. Clinically, with the conjunctiva diffusely inflamed, the implant tender to touch, and the presence of a pyogenic granuloma, implant infection was suspected and the implant subsequently removed. Histopathologic assessment revealed widespread lamellar bone formation, including focal areas of marrow with active extramedullary hematopoiesis. There was no evidence of an inflammatory process or infection. Postoperatively the patient's symptoms and signs resolved. Extramedullary hematopoiesis within hydroxyapatite implants is rare. Porous orbital implant infection is also rare. Osteogenesis with extramedullary hematopoiesis simulating implant infection has not previously been reported. PMID:19273939

  4. Genetic and phenotypic divergence between low- and high-altitude populations of two recently diverged cinnamon teal subspecies.

    PubMed

    Wilson, Robert E; Peters, Jeffrey L; McCracken, Kevin G

    2013-01-01

    Spatial variation in the environment can lead to divergent selection between populations occupying different parts of a species' range, and ultimately lead to population divergence. The colonization of new areas can thus facilitate divergence in beneficial traits, yet with little differentiation at neutral genetic markers. We investigated genetic and phenotypic patterns of divergence between low- and high-altitude populations of cinnamon teal inhabiting normoxic and hypoxic regions in the Andes and adjacent lowlands of South America. Cinnamon teal showed strong divergence in body size (PC1; P(ST) = 0.56) and exhibited significant frequency differences in a single nonsynonymous α-hemoglobin amino acid polymorphism (Asn/Ser-α9; F(ST) = 0.60) between environmental extremes, despite considerable admixture of mtDNA and intron loci (F(ST) = 0.004-0.168). Inferences of strong population segregation were further supported by the observation of few mismatched individuals in either environmental extreme. Coalescent analyses indicated that the highlands were most likely colonized from lowland regions but following divergence, gene flow has been asymmetric from the highlands into the lowlands. Multiple selection pressures associated with high-altitude habitats, including cold and hypoxia, have likely shaped morphological and genetic divergence within South American cinnamon teal populations. PMID:23289570

  5. Convergence and non-convergence in ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback

    PubMed Central

    Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.

    2015-01-01

    Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537

  6. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.

    PubMed

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y

    2015-12-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability and autism spectrum disorders. MECP2 duplication syndrome is one of the most common genomic rearrangements in males and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections and early death. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical-pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question that we addressed was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders, including loss of MeCP2 in Rett syndrome, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we propose that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. By generating and characterizing a conditional Mecp2-overexpressing mouse model, here we show that correction of MeCP2 levels largely reverses the behavioural, molecular and electrophysiological deficits. We also reduced MeCP2 using an antisense oligonucleotide strategy, which has greater translational potential. Antisense oligonucleotides are small, modified nucleic acids that can selectively hybridize with messenger RNA transcribed from a target gene and silence it, and have been successfully used to correct deficits in different mouse models. We find that antisense oligonucleotide treatment induces a broad phenotypic rescue in adult

  7. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species

    PubMed Central

    Watada, Masayoshi; Pruitt, Jonathan N.; Williams, Thomas M.; Rebeiz, Mark

    2015-01-01

    The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting “enhancer” elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, we found that phenotypes uniquely correlated with differences in the expression of ebony, a gene required for yellow-colored cuticle. Assays of ebony’s transcriptional control region indicated that a lightly pigmented strain harbored cis-regulatory mutations that caused correlated changes in its expression. Through a series of chimeric reporter constructs between light and dark strain alleles, we localized function-altering mutations to a conserved silencer that mediates a male-specific pattern of ebony repression. This suggests that the light allele was derived through the loss of this silencer’s activity. Furthermore, examination of the ebony gene of D. serrata, a close relative of D. auraria which secondarily lost male-specific pigmentation revealed the parallel loss of this silencer element. These results demonstrate how loss-of-function mutations in a silencer element resulted in increased gene expression. We propose that the mutational inactivation of silencer elements may represent a favored path to evolve gene expression, impacting morphological traits. PMID:26115430

  8. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups.

    PubMed

    Maas, Saskia M; Vansenne, Fleur; Kadouch, Daniel J M; Ibrahim, Abdulla; Bliek, Jet; Hopman, Saskia; Mannens, Marcel M; Merks, Johannes H M; Maher, Eamonn R; Hennekam, Raoul C

    2016-09-01

    Patients with Beckwith-Wiedemann syndrome (BWS) have an increased risk to develop cancer in childhood, especially Wilms tumor and hepatoblastoma. The risk varies depending on the cause of BWS. We obtained clinical and molecular data in our cohort of children with BWS, including tumor occurrences, and correlated phenotype and genotype. We obtained similar data from larger cohorts reported in the literature. Phenotype, genotype and tumor occurrence were available in 229 of our own patients. Minor differences in phenotype existed depending on genotype/epigenotype, similar to earlier studies. By adding patients from the literature, we obtained data on genotype and tumor occurrence of in total 1,971 BWS patients. Tumor risks were highest in the IC1 (H19/IGF2:IG-DMR) hypermethylation subgroup (28%) and pUPD subgroup (16%) and were lower in the KCNQ1OT1:TSS-DMR (IC2) subgroup (2.6%), CDKN1C (6.9%) subgroup, and the group in whom no molecular defect was detectable (6.7%). Wilms tumors (median age 24 months) were frequent in the IC1 (24%) and pUPD (7.9%) subgroups. Hepatoblastoma occurred mostly in the pUPD (3.5%) and IC2 (0.7%) subgroups, never in the IC1 and CDKN1C subgroups, and always before 30 months of age. In the CDKN1C subgroup 2.8% of patients developed neuroblastoma. We conclude tumor risks in BWS differ markedly depending on molecular background. We propose a differentiated surveillance protocol, based on tumor risks in the various molecular subgroups causing BWS. © 2016 Wiley Periodicals, Inc. PMID:27419809

  9. Delineation of Behavioral Phenotypes in Genetic Syndromes: Characteristics of Autism Spectrum Disorder, Affect and Hyperactivity

    ERIC Educational Resources Information Center

    Oliver, Chris; Berg, Katy; Moss, Jo; Arron, Kate; Burbidge, Cheryl

    2011-01-01

    We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis (SMS; 42) and Lowe (LS; 56) syndromes (age range 4-51). ASD symptomatology was heightened in…

  10. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic parameters for dry matter intake (DMI), residual feed intake (RFI), average daily gain (ADG), mid-period body weight (MBW), gain to feed ratio (G:F) and flight speed (FS) were estimated using 1165 steers from a mixed-breed population using restricted maximum likelihood methodology applied to...

  11. Genetic and Phenotypic Variation of FMDV During Serial Passages in a Natural Host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-Mouth Disease Virus (FMDV) exhibits high mutation rates during replication that have been suggested to be of adaptive value. However, even though genetic variation in RNA viruses has been extensively examined during virus replication in a wide variety of in vitro cell cultures, very little ...

  12. Modifying Behavioral Phenotypes in Fmr1 KO Mice: Genetic Background Differences Reveal Autistic-Like Responses

    PubMed Central

    Spencer, Corinne M.; Alekseyenko, Olga; Hamilton, Shannon M.; Thomas, Alexia M.; Serysheva, Ekaterina; Yuva-Paylor, Lisa A.; Paylor, Richard

    2010-01-01

    Scientific Abstract Fragile X syndrome (FXS) is the most common inherited form of intellectual disability in humans. In addition to cognitive impairment, patients may exhibit hyperactivity, attention deficits, social difficulties and anxiety, and autistic-like behaviors. The degree to which patients display these behaviors varies considerably and is influenced by family history, suggesting that genetic modifiers play a role in the expression of behaviors in FXS. Several studies have examined behavior in a mouse model of FXS in which the Fmr1 gene has been ablated. Most of those studies were done in Fmr1 knockout mice on a pure C57BL/6 or FVB strain background. To gain a better understanding of the effects of genetic background on behaviors resulting from the loss of Fmr1 gene expression, we generated F1 hybrid lines from female Fmr1 heterozygous mice on a pure C57BL/6J background bred with male Fmr1 wild-type mice of various background strains (A/J, DBA/2J, FVB/NJ, 129S1/SvImJ and CD-1). Male Fmr1 knockout and wild-type littermates from each line were examined in an extensive behavioral test battery. Results clearly indicate that multiple behavioral responses are dependent on genetic background, including autistic-like traits that are present on limited genetic backgrounds. This approach has allowed us to identify improved models for different behavioral symptoms present in FXS including autistic-like traits. PMID:21268289

  13. Hippocampal transcriptome-guided genetic analysis of correlated episodic memory phenotypes in Alzheimer's disease

    PubMed Central

    Yan, Jingwen; Kim, Sungeun; Nho, Kwangsik; Chen, Rui; Risacher, Shannon L.; Moore, Jason H.; Saykin, Andrew J.; Shen, Li

    2015-01-01

    As the most common type of dementia, Alzheimer's disease (AD) is a neurodegenerative disorder initially manifested by impaired memory performances. While the diagnosis information indicates a dichotomous status of a patient, memory scores have the potential to capture the continuous nature of the disease progression and may provide more insights into the underlying mechanism. In this work, we performed a targeted genetic study of memory scores on an AD cohort to identify the associations between a set of genes highly expressed in the hippocampal region and seven cognitive scores related to episodic memory. Both main effects and interaction effects of the targeted genetic markers on these correlated memory scores were examined. In addition to well-known AD genetic markers APOE and TOMM40, our analysis identified a new risk gene NAV2 through the gene-level main effect analysis. NAV2 was found to be significantly and consistently associated with all seven episodic memory scores. Genetic interaction analysis also yielded a few promising hits warranting further investigation, especially for the RAVLT list B Score. PMID:25859259

  14. On the genetic architecture of cytoplasmic incompatibility: inference from phenotypic data.

    PubMed

    Nor, Igor; Engelstädter, Jan; Duron, Olivier; Reuter, Max; Sagot, Marie-France; Charlat, Sylvain

    2013-07-01

    Numerous insects carry intracellular bacteria that manipulate the insects' reproduction and thus facilitate their own spread. Cytoplasmic incompatibility (CI) is a common form of such manipulation, where a (currently uncharacterized) bacterial modification of male sperm induces the early death of embryos unless the fertilized eggs carry the same bacteria, inherited from the mother. The death of uninfected embryos provides an indirect selective advantage to infected ones, thus enabling the spread of the bacteria. Here we use and expand recently developed algorithms to infer the genetic architecture underlying the complex incompatibility data from the mosquito Culex pipiens. We show that CI requires more genetic determinants than previously believed and that quantitative variation in gene products potentially contributes to the observed CI patterns. In line with population genetic theory of CI, our analysis suggests that toxin factors (those inducing embryo death) are present in fewer copies in the bacterial genomes than antitoxin factors (those ensuring that infected embryos survive). In combination with comparative genomics, our approach will provide helpful guidance to identify the genetic basis of CI and more generally of other toxin/antitoxin systems that can be conceptualized under the same framework. PMID:23778233

  15. Population genetics of 14 ethnic groups using phenotypic data from VNTR loci.

    PubMed

    Balazs, I

    1993-01-01

    Population genetic studies were performed using five VNTR loci (D2S44, D4S163, D14S13, D17S79, D18S27). The populations examined were Caucasian (Australia, Brazil and U.S.A.), Australian aborigine, Chinese, Amerindian (Cheyenne, Maya, Navajo, Pima, Tobas/Wicnis), North American Black, North American Hispanic (California, Miami, New York, Texas). The overall size range of the alleles for these loci, in PstI-digested DNA, was the same in all populations. The major difference among populations was the relative frequency of particular groups of alleles. These differences were small among similar ethnic groups, while sometimes varying several fold among some of the more distinct populations. However, groups of alleles that were rare in the major ethnic groups (Caucasian, Black, Chinese) were also rare in the other populations. The frequency databases generated by typing individuals for 4 loci were used to compare the random DNA profile frequencies among populations. The results show that the estimated frequency of any 4 locus profile is very low in all populations examined (e.g., median value < 10(-8)). Analysis of relative genetic similarity among populations was used to create the most likely clustering of these ethnic groups. Results show an uncanny similarity between the clusters generated and genetic distance measurements obtained with traditional calculations of conventional genetic markers. PMID:8104559

  16. Correlating Histone Modification Patterns with Gene Expression Data During Hematopoiesis

    PubMed Central

    Hu, Gangqing; Zhao, Keji

    2014-01-01

    Hematopoietic stem cells (HSC) in mammals are an ideal system to study differentiation. While transcription factors (TFs) control the differentiation of HSCs to distinctive terminal blood cells, accumulating evidence suggests that chromatin structure and modifications constitute another critical layer of gene regulation. Recent genome-wide studies based on next-generation sequencing reveal that histone modifications are linked to gene expression and contribute to hematopoiesis. Here, we briefl y review the bioinformatics aspects for ChIP-Seq and RNA-Seq data analysis with applications to the epigenetic studies of hematopoiesis and provide a practical guide to several basic data analysis methods. PMID:24743998

  17. Lysine-specific histone demethylases in normal and malignant hematopoiesis.

    PubMed

    Andricovich, Jaclyn; Kai, Yan; Tzatsos, Alexandros

    2016-09-01

    The epigenetic control of gene expression is central to the development of the hematopoietic system and the execution of lineage-specific transcriptional programs. During the last 10 years, mounting evidence has implicated the family of lysine-specific histone demethylases as critical regulators of normal hematopoiesis, whereas their deregulation is found in a broad spectrum of hematopoietic malignancies. Here, we review recent findings on the role of these enzymes in normal and malignant hematopoiesis and highlight how aberrant epigenetic regulation facilitates hematopoietic cell transformation through subversion of cell fate and lineage commitment programs. PMID:27208808

  18. A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease.

    PubMed

    Ramesh, Tennore; Lyon, Alison N; Pineda, Ricardo H; Wang, Chunping; Janssen, Paul M L; Canan, Benjamin D; Burghes, Arthur H M; Beattie, Christine E

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that, for approximately 80% of patients, is fatal within five years of diagnosis. To better understand ALS, animal models have been essential; however, only rodent models of ALS exhibit the major hallmarks of the disease. Here, we report the generation of transgenic zebrafish overexpressing mutant Sod1. The construct used to generate these lines contained the zebrafish sod1 gene and approximately 16 kb of flanking sequences. We generated lines expressing the G93R mutation, as well as lines expressing wild-type Sod1. Focusing on two G93R lines, we found that they displayed the major phenotypes of ALS. Changes at the neuromuscular junction were observed at larval and adult stages. In adulthood the G93R mutants exhibited decreased endurance in a swim tunnel test. An analysis of muscle revealed normal muscle force, however, at the end stage the fish exhibited motoneuron loss, muscle atrophy, paralysis and premature death. These phenotypes were more severe in lines expressing higher levels of mutant Sod1 and were absent in lines overexpressing wild-type Sod1. Thus, we have generated a vertebrate model of ALS to complement existing mammal models. PMID:20504969

  19. From hematopoiesis to neuropoiesis: Evidence of overlapping genetic programs

    PubMed Central

    Terskikh, Alexey V.; Easterday, Mathew C.; Li, Linheng; Hood, Leroy; Kornblum, Harley I.; Geschwind, Daniel H.; Weissman, Irving L.

    2001-01-01

    It is reasonable to propose that gene expression profiles of purified stem cells could give clues for the molecular mechanisms of stem cell behavior. We took advantage of cDNA subtraction to identify a set of genes selectively expressed in mouse adult hematopoietic stem cells (HSC) as opposed to bone marrow (BM). Analysis of HSC-enriched genes revealed several key regulatory gene candidates, including two novel seven transmembrane (7TM) receptors. Furthermore, by using cDNA microarray techniques we found a large set of HSC-enriched genes that are expressed in mouse neurospheres (a population greatly enriched for neural progenitor cells), but not present in terminally differentiated neural cells. In situ hybridization demonstrated that many of them, including one HSC-enriched 7TM receptor, were selectively expressed in the germinal zones of fetal and adult brain, the regions harboring mouse neural stem cells. We propose that at least some of the transcripts that are selectively and commonly expressed in two or more types of stem cells define a functionally conserved group of genes evolved to participate in basic stem cell functions, including stem cell self-renewal. PMID:11438738

  20. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection.

    PubMed

    Rolfe, K M; Snelling, W M; Nielsen, M K; Freetly, H C; Ferrell, C L; Jenkins, T G

    2011-11-01

    Growth, feed intake, and temperament indicator data, collected over 5 yr on a total of 1,141 to 1,183 mixed-breed steers, were used to estimate genetic and phenotypic parameters. All steers had a portion of Hereford, Angus, or both as well as varying percentages of Simmental, Charolais, Limousin, Gelbvieh, Red Angus, and MARC III composite. Because the steers were slaughtered on various dates each year and the animals thus varied in days on feed, BW and feed data were adjusted to a 140-d feeding period basis. Adjustment of measures of feed efficiency [G:F or residual feed intake (RFI), intake adjusted for metabolic body size, and BW gain] for body fatness recorded at slaughter had little effect on the results of analyses. Average daily gain was less heritable (0.26) than was midtest BW (MBW; 0.35). Measures of feed intake had greater estimates of heritability, with 140-d DMI at 0.40 and RFI at 0.52; the heritability estimate for G:F was 0.27. Flight speed (FS), as an indicator of temperament, had an estimated heritability of 0.34 and a repeatability of 0.63. As expected, a strong genetic (0.86) correlation was estimated between ADG and MBW; genetic correlations were less strong between DMI and ADG or MBW (0.56 and 0.71). Residual feed intake and DMI had a genetic correlation of 0.66. Indexes for phenotypic RFI and genotypically restricted RFI (no correlation with BW gain) were compared with simple economic indexes incorporating feed intake and growth to elucidate expected selection responses under different criteria. In general, few breed differences were detected across the various measurements. Heterosis contributed to greater DMI, RFI, and MBW, but it did not significantly affect ADG, G:F, or FS. Balancing output (growth) with input costs (feed) is needed in practicing selection, and FS would not be recommended as an indicator trait for selection to change feed efficiency. An index including BW gain and RFI produced the best economic outcome. PMID:21622877

  1. Genetic and Phenotypic Correlations between Performance Traits with Meat Quality and Carcass Characteristics in Commercial Crossbred Pigs

    PubMed Central

    Miar, Younes; Plastow, Graham; Bruce, Heather; Moore, Stephen; Manafiazar, Ghader; Kemp, Robert; Charagu, Patrick; Huisman, Abe; van Haandel, Benny; Zhang, Chunyan; McKay, Robert; Wang, Zhiquan

    2014-01-01

    Genetic correlations between performance traits with meat quality and carcass traits were estimated on 6,408 commercial crossbred pigs with performance traits recorded in production systems with 2,100 of them having meat quality and carcass measurements. Significant fixed effects (company, sex and batch), covariates (birth weight, cold carcass weight, and age), random effects (additive, litter and maternal) were fitted in the statistical models. A series of pairwise bivariate analyses were implemented in ASREML to estimate heritability, phenotypic, and genetic correlations between performance traits (n = 9) with meat quality (n = 25) and carcass (n = 19) traits. The animals had a pedigree compromised of 9,439 animals over 15 generations. Performance traits had low-to-moderate heritabilities (±SE), ranged from 0.07±0.13 to 0.45±0.07 for weaning weight, and ultrasound backfat depth, respectively. Genetic correlations between performance and carcass traits were moderate to high. The results indicate that: (a) selection for birth weight may increase drip loss, lightness of longissimus dorsi, and gluteus medius muscles but may reduce fat depth; (b) selection for nursery weight can be valuable for increasing both quantity and quality traits; (c) selection for increased daily gain may increase the carcass weight and most of the primal cuts. These findings suggest that deterioration of pork quality may have occurred over many generations through the selection for less backfat thickness, and feed efficiency, but selection for growth had no adverse effects on pork quality. Low-to-moderate heritabilities for performance traits indicate that they could be improved using traditional selection or genomic selection. The estimated genetic parameters for performance, carcass and meat quality traits may be incorporated into the breeding programs that emphasize product quality in these Canadian swine populations. PMID:25350845

  2. Phenotypic integration of skeletal traits during growth buffers genetic variants affecting the slenderness of femora in inbred mouse strains

    PubMed Central

    Jepsen, Karl J.; Hu, Bin; Tommasini, Steven M.; Courtland, Hayden-William; Price, Christopher; Cordova, Matthew; Nadeau, Joseph H.

    2009-01-01

    Compensatory interactions among adult skeletal traits are critical for establishing strength but complicate the search for fracture susceptibility genes by allowing many genetic variants to exist in a population without loss of function. A better understanding of how these interactions arise during growth will provide new insight into genotype-phenotype relationships and the biological controls that establish skeletal strength. We tested the hypothesis that genetic variants affecting growth in width relative to growth in length (slenderness) are coordinated with movement of the inner bone surface and matrix mineralization to match stiffness with weight-bearing loads during postnatal growth. Midshaft femoral morphology and tissue-mineral density were quantified at ages of 1 day and at 4, 8, and 16 weeks for a panel of 20 female AXB/BXA recombinant inbred mouse strains. Path Analyses revealed significant compensatory interactions among outer-surface expansion rate, inner-surface expansion rate, and tissue-mineral density during postnatal growth, indicating that genetic variants affecting bone slenderness were buffered mechanically by the precise regulation of bone surface movements and matrix mineralization. Importantly, the covariation between morphology and mineralization resulted from a heritable constraint limiting the amount of tissue that could be used to construct a functional femur. The functional interactions during growth explained 56-99% of the variability in adult traits and mechanical properties. These functional interactions provide quantitative expectations of how genetic or environmental variants affecting one trait should be compensated by changes in other traits. Variants that impair this process or that cannot be fully compensated are expected to alter skeletal growth leading to underdesigned (weak) or overdesigned (bulky) structures. PMID:19082857

  3. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligos

    PubMed Central

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W.; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y.

    2015-01-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability, and autism spectrum disorders1. MECP2 duplication syndrome is one of the most common genomic rearrangements in males2 and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections, and early death3–5. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question, however, was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders6–8, including loss of MeCP2 in Rett syndrome9, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we hypothesized that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. Therefore, we first generated and characterized a conditional Mecp2-overexpressing mouse model and showed that correction of MeCP2 levels largely reversed the behavioral, molecular, and electrophysiological deficits. Next, we sought a translational strategy to reduce MeCP2 and turned to antisense oligonucleotides (ASOs). ASOs are small modified nucleic acids that can selectively hybridize with mRNA transcribed from a target gene and silence it10,11, and have been successfully used to correct deficits in different mouse models12–18. We found that ASO treatment induced a broad phenotypic rescue in adult symptomatic transgenic MECP2

  4. Genetic Reduction of the α1 Subunit of Na/K-ATPase Corrects Multiple Hippocampal Phenotypes in Angelman Syndrome

    PubMed Central

    Kaphzan, Hanoch; Buffington, Shelly A.; Ramaraj, Akila B.; Lingrel, Jerry B.; Rasband, Matthew N.; Santini, Emanuela; Klann, Eric

    2013-01-01

    Summary Angelman syndrome (AS) is associated with symptoms that include autism, intellectual disability, motor abnormalities, and epilepsy. We recently showed that AS model mice have increased expression of the alpha1 subunit of Na/K-ATPase (α1-NaKA) in the hippocampus, which was correlated with increased expression of axon initial segment (AIS) proteins. Our developmental analysis revealed that the increase in α1-NaKA expression preceded those of the AIS proteins. Therefore, we hypothesized that α1-NaKA overexpression drives AIS abnormalities, and that by reducing its expression these and other phenotypes could be corrected in AS model mice. Herein we report the genetic normalization of α1-NaKA levels in AS model mice corrects multiple hippocampal phenotypes, including alterations in the AIS, aberrant intrinsic membrane properties, impaired synaptic plasticity, and memory deficits. These findings strongly suggest that increased expression of α1-NaKA plays an important role in a broad range of abnormalities in the hippocampus of AS model mice. PMID:23911285

  5. Genetic connectivity and phenotypic plasticity in the cyprinodont Aphanius farsicus from the Maharlu Basin, south-western Iran.

    PubMed

    Gholami, Z; Esmaeili, H R; Erpenbeck, D; Reichenbacher, B

    2015-03-01

    Meristic and morphometric characteristics, including otolith data, of the Farsi tooth-carp Aphanius farsicus, which is endemic to the endorheic Maharlu Basin in south-western Iran, were analysed for a sample of 92 individuals from four spring-streams; DNA sequence data (cytochrome b gene) are presented for 29 specimens. Some phenotypic variation was detected but the genetic data clearly indicate connectivity between the populations. Possible links between phenotypic variation and environmental variables such as water temperature, habitat size and absence or presence of predators and competitors are discussed. Based on a literature survey and the new data, it is concluded that population connectivity is maintained during times of droughts via large aquifers that formed during the late Pliocene to early Pleistocene, when the extant endorheic Maharlu Basin was created. Based on new data presented here and previous work, it is apparent that plastic and constant characteristics are present in Aphanius species, and that, if a population becomes isolated, a given trend of evolution may give rise to a taxonomically useful characteristic. PMID:25644025

  6. Importing, caring, breeding, genotyping, and phenotyping a genetic mouse in a Chinese university.

    PubMed

    Kuo, S T; Wu, Q H; Liu, B; Xie, Z L; Wu, X; Shang, S J; Zhang, X Y; Kang, X J; Liu, L N; Zhu, F P; Wang, Y S; Hu, M Q; Xu, H D; Zhou, L; Liu, B; Chai, Z Y; Zhang, Q F; Liu, W; Teng, S S; Wang, C H; Guo, N; Dou, H Q; Zuo, P L; Zheng, L H; Zhang, C X; Zhu, D S; Wang, L; Wang, S R; Zhou, Z

    2014-07-01

    The genetic manipulation of the laboratory mouse has been well developed and generated more and more mouse lines for biomedical research. To advance our science exploration, it is necessary to share genetically modified mouse lines with collaborators between institutions, even in different countries. The transfer process is complicated. Significant paperwork and coordination are required, concerning animal welfare, intellectual property rights, colony health status, and biohazard. Here, we provide a practical example of importing a transgenic mice line, Dynamin 1 knockout mice, from Yale University in the USA to Perking University in China for studying cell secretion. This example including the length of time that required for paper work, mice quarantine at the receiving institution, and expansion of the mouse line for experiments. The procedure described in this paper for delivery live transgenic mice from USA to China may serve a simple reference for transferring mouse lines between other countries too. PMID:24385195

  7. Uncovering Local Trends in Genetic Effects of Multiple Phenotypes via Functional Linear Models.

    PubMed

    Vsevolozhskaya, Olga A; Zaykin, Dmitri V; Barondess, David A; Tong, Xiaoren; Jadhav, Sneha; Lu, Qing

    2016-04-01

    Recent technological advances equipped researchers with capabilities that go beyond traditional genotyping of loci known to be polymorphic in a general population. Genetic sequences of study participants can now be assessed directly. This capability removed technology-driven bias toward scoring predominantly common polymorphisms and let researchers reveal a wealth of rare and sample-specific variants. Although the relative contributions of rare and common polymorphisms to trait variation are being debated, researchers are faced with the need for new statistical tools for simultaneous evaluation of all variants within a region. Several research groups demonstrated flexibility and good statistical power of the functional linear model approach. In this work we extend previous developments to allow inclusion of multiple traits and adjustment for additional covariates. Our functional approach is unique in that it provides a nuanced depiction of effects and interactions for the variables in the model by representing them as curves varying over a genetic region. We demonstrate flexibility and competitive power of our approach by contrasting its performance with commonly used statistical tools and illustrate its potential for discovery and characterization of genetic architecture of complex traits using sequencing data from the Dallas Heart Study. PMID:27027515

  8. Relationship between obesity phenotypes and genetic determinants in a mouse model for juvenile obesity.

    PubMed

    Brockmann, Gudrun A; Schäfer, Nadine; Hesse, Claudia; Heise, Sebastian; Neuschl, Christina; Wagener, Asja; Churchill, Gary A; Li, Renhua

    2013-09-16

    Obesity, a state of imbalance between lean mass and fat mass, is important for the etiology of diseases affected by the interplay of multiple genetic and environmental factors. Although genome-wide association studies have repeatedly associated genes with obesity and body weight, the mechanisms underlying the interaction between the muscle and adipose tissues remain unknown. Using 351 mice (at 10 wk of age) of an intercross population between Berlin Fat Mouse Inbred (BFMI) and C57BL/6NCrl (B6N) mice, we examined the causal relationships between genetic variations and multiple traits: body lean mass and fat mass, adipokines, and bone mineral density. Furthermore, evidence from structural equation modeling suggests causality among these traits. In the BFMI model, juvenile obesity affects lean mass and impairs bone mineral density via adipokines secreted from the white adipose tissues. While previous studies have indicated that lean mass has a causative effect on adiposity, in the Berlin Fat Mouse model that has been selected for juvenile obesity (at 9 wk of age) for >90 generations, however, the causality is switched from fat mass to lean mass. In addition, linkage studies and statistical modeling have indicated that quantitative trait loci on chromosomes 5 and 6 affect both lean mass and fat mass. These lines of evidence indicate that the muscle and adipose tissues interact with one another and the interaction is modulated by genetic variations that are shaped by selections. Experimental examinations are necessary to verify the biological role of the inferred causalities. PMID:23922126

  9. Genetic Structure Is Associated with Phenotypic Divergence in Floral Traits and Reproductive Investment in a High-Altitude Orchid from the Iron Quadrangle, Southeastern Brazil

    PubMed Central

    Leles, Bruno; Chaves, Anderson V.; Russo, Philip; Batista, João A. N.; Lovato, Maria Bernadete

    2015-01-01

    Knowledge of the role of Neotropical montane landscapes in shaping genetic connectivity and local adaptation is essential for understanding the evolutionary processes that have shaped the extraordinary species diversity in these regions. In the present study, we examined the landscape genetics, estimated genetic diversity, and explored genetic relationships with morphological variability and reproductive strategies in seven natural populations of Cattleya liliputana (Orchidaceae). Nuclear microsatellite markers were used for genetic analyses. Spatial Bayesian clustering and population-based analyses revealed significant genetic structuring and high genetic diversity (He = 0.733 ± 0.03). Strong differentiation was found between populations over short spatial scales (FST = 0.138, p < 0.001), reflecting the landscape discontinuity and isolation. Monmonier´s maximum difference algorithm, Bayesian analysis on STRUCTURE and principal component analysis identified one major genetic discontinuity between populations. Divergent genetic groups showed phenotypic divergence in flower traits and reproductive strategies. Increased sexual reproductive effort was associated with rock outcrop type and may be a response to adverse conditions for growth and vegetative reproduction. Here we discuss the effect of restricted gene flow, local adaptation and phenotypic plasticity as drivers of population differentiation in Neotropical montane rock outcrops. PMID:25756994

  10. Reporter gene technologies for imaging cell fates in hematopoiesis.

    PubMed

    Kusy, Sophie; Contag, Christopher H

    2014-01-01

    Advances in noninvasive imaging technologies that allow for in vivo dynamic monitoring of cells and cellular function in living research subjects have revealed new insights into cell biology in the context of intact organs and their native environment. In the field of hematopoiesis and stem cell research, studies of cell trafficking involved in injury repair and hematopoietic engraftment have made great progress using these new tools. Stem cells present unique challenges for imaging since after transplantation, they proliferate dramatically and differentiate. Therefore, the imaging modality used needs to have a large dynamic range, and the genetic regulatory elements used need to be stably expressed during differentiation. Multiple imaging technologies using different modalities are available, and each varies in sensitivity, ease of data acquisition, signal to noise ratios (SNR), substrate availability, and other parameters that affect utility for monitoring cell fates and function. For a given application, there may be several different approaches that can be used. For mouse models, clinically validated technologies such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been joined by optical imaging techniques such as in vivo bioluminescence imaging (BLI) and fluorescence imaging (FLI), and all have been used to monitor bone marrow and stem cells after transplantation into mice. Photoacoustic imaging that utilizes the sound created by the thermal expansion of absorbed light to generate an image best represents hybrid technologies. Each modality requires that the cells of interest be marked with a genetic reporter that acts as a label making them uniquely visible using that technology. For each modality, there are several labels to choose from. Multiple methods for applying these different labels are available. This chapter provides an overview of the imaging technologies and commonly used labels for each, as well as detailed

  11. The Capability of Tyramine Production and Correlation between Phenotypic and Genetic Characteristics of Enterococcus faecium and Enterococcus faecalis Strains

    PubMed Central

    Bargossi, Eleonora; Gardini, Fausto; Gatto, Veronica; Montanari, Chiara; Torriani, Sandra; Tabanelli, Giulia

    2015-01-01

    The aim of this study was to investigate the diversity of tyramine production capability of four Enterococcus strains in buffered systems in relation to their genetic characteristics and environmental conditions. Cells of the strains Enterococcus faecalis EF37 and ATCC 29212, and E. faecium FC12 and FC643 were re-suspended in phosphate/citrate buffers with different pH, NaCl concentration and incubation temperature. At intervals, cell viability and tyramine production were assessed by plate counting and HPLC analysis, respectively. The activity of a purified tyrosine decarboxylase (TDC) was determined under the same conditions, as a reference. Reduced loss in cell viability was observed in all the tested conditions, except for pH 4 after 24 h. The TDC activity was greatly heterogeneous within the enterococci: EF37 and FC12 produced the higher tyramine concentrations, ATCC 29212 showed a reduced decarboxylase activity, while EF643 did not accumulate detectable amounts of tyramine in all the conditions assayed. Among the considerate variables, temperature was the most influencing factor on tyramine accumulation for enterococcal cells. To further correlate the phenotypic and genetic characteristics of the enterococci, the TDC operon region carrying the genes tyrosine decarboxylase (tyrDC), tyrosine/tyramine permease (tyrP), and Na+/H+ antiporter (nhaC-2) was amplified and sequenced. The genetic organization and nucleotide sequence of this operon region were highly conserved in the enterococcal strains of the same species. The heterogeneity in tyramine production found between the two E. faecalis strains could be ascribed to different regulation mechanisms not yet elucidated. On the contrary, a codon stop was identified in the translated tyrDC sequence of E. faecium FC643, supporting its inability to accumulate tyramine in the tested conditions. In addition, the presence of an additional putative tyrosine decarboxylase with different substrate specificity and genetic

  12. Molecular genetics of addiction and related heritable phenotypes: genome wide association approaches identify “connectivity constellation” and drug target genes with pleiotropic effects

    PubMed Central

    Uhl, George R; Drgon, Tomas; Johnson, Catherine; Li, Chuan-Yun; Contoreggi, Carlo; Hess, Judith; Naiman, Daniel; Liu, Qing-Rong

    2013-01-01

    Genome wide association (GWA) can elucidate molecular genetic bases for human individual differences in “complex” phenotypes that include vulnerability to addiction. Here, we review: a) evidence that supports polygenic models with (at least) modest heterogeneity for the genetic architectures of addiction and several related phenotypes; b) technical and ethical aspects of importance for understanding genome wide association data: genotyping in individual samples vs DNA pools, analytic approaches, power estimation and ethical issues in genotyping individuals with illegal behaviors; c) the samples and the data that shape our current understanding of the molecular genetics of individual differences in vulnerability to substance dependence and related phenotypes; d) overlaps between GWA datasets for dependence on different substances; e) overlaps between GWA data for addictions vs other heritable, brain-based phenotypes that include: i) bipolar disorder, ii) cognitive ability, iii) frontal lobe brain volume, iv) ability to successfully quit smoking, v) neuroticism and vi) Alzheimer’s disease. These convergent results identify potential targets for drugs that might modify addictions and play roles in these other phenotypes. They add to evidence that individual differences in the quality and quantity of brain connections make pleiotropic contributions to individual differences in vulnerability to addictions and to related brain disorders and phenotypes. A “connectivity constellation” of brain phenotypes and disorders appears to receive substantial pathogenic contributions from individual differences in a constellation of genes whose variants provide individual differences in the specification of brain connectivities during development and in adulthood. Heritable brain differences that underlie addiction vulnerability thus lie squarely in the midst of the repertoire of heritable brain differences that underlie vulnerability to other common brain disorders and

  13. Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

    PubMed Central

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss; Wiese, Maria; Lundsager, Mia; Buschard, Karsten Stig; Hansen, Axel Kornerup; Frøkiær, Hanne

    2016-01-01

    Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice. PMID:26783537

  14. Piwi genes are dispensable for normal hematopoiesis in mice.

    PubMed

    Nolde, Mona J; Cheng, Ee-Chun; Guo, Shangqin; Lin, Haifan

    2013-01-01

    Hematopoietic stem cells (HSC) must engage in a life-long balance between self-renewal and differentiation to sustain hematopoiesis. The highly conserved PIWI protein family regulates proliferative states of stem cells and their progeny in diverse organisms. A Human piwi gene (for clarity, the non-italicized "piwi" refers to the gene subfamily), HIWI (PIWIL1), is expressed in CD34⁺ stem/progenitor cells and transient expression of HIWI in a human leukemia cell line drastically reduces cell proliferation, implying the potential function of these proteins in hematopoiesis. Here, we report that one of the three piwi genes in mice, Miwi2 (Piwil4), is expressed in primitive hematopoetic cell types within the bone marrow. Mice with a global deletion of all three piwi genes, Miwi, Mili, and Miwi2, are able to maintain long-term hematopoiesis with no observable effect on the homeostatic HSC compartment in adult mice. The PIWI-deficient hematopoetic cells are capable of normal lineage reconstitution after competitive transplantation. We further show that the three piwi genes are dispensable during hematopoietic recovery after myeloablative stress by 5-FU. Collectively, our data suggest that the function of the piwi gene subfamily is not required for normal adult hematopoiesis. PMID:24058407

  15. Using a PyMOL Activity to Reinforce the Connection between Genotype and Phenotype in an Undergraduate Genetics Laboratory

    PubMed Central

    Simmons, Alexandra D.; Nguyen, Thao K. T.; Follis, Jack L.; Ribes-Zamora, Albert

    2014-01-01

    With the purpose of developing an activity that would help clarify genetic concepts related to the connection between genotype and phenotype and the nature of mutations, we designed a three hour teaching module using the PyMol software. The activity starts with two pre-laboratory assignments, one to learn how to use PyMol and the other to read about a specific protein or protein family. During the laboratory students are given instructions where and how to find additional information on a specific disease and its causal mutations in order to prepare a 10-minute, in-class presentation. Using a post activity, anonymous quiz, we found a statistically significant different grade distribution in students that participated in the PyMol activity relative to a control group. We also found a significant improvement in the student’s comprehension when answering questions regarding the nature of mutations and protein structure. This demonstrates the utility of this simulation activity as a vehicle to improve student’s understanding of specific key genetic concepts. PMID:25461967

  16. Environmentally co‐occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context‐dependent fitness effects

    PubMed Central

    Harrison, Ellie; Lilley, Andrew K.; Paterson, Steve; Spiers, Andrew J.; Brockhurst, Michael A.

    2015-01-01

    Summary Plasmids are important mobile elements that can facilitate genetic exchange and local adaptation within microbial communities. We compared the sequences of four co‐occurring pQBR family environmental mercury resistance plasmids and measured their effects on competitive fitness of a P seudomonas fluorescens  SBW25 host, which was isolated at the same field site. Fitness effects of carriage differed between plasmids and were strongly context dependent, varying with medium, plasmid status of competitor and levels of environmental mercury. The plasmids also varied widely in their rates of conjugation and segregational loss. We found that few of the plasmid‐borne accessory genes could be ascribed functions, although we identified a putative chemotaxis operon, a type IV pilus‐encoding cluster and a region encoding putative arylsulfatase enzymes, which were conserved across geographically distant isolates. One plasmid, pQBR55, conferred the ability to catabolize sucrose. Transposons, including the mercury resistance Tn5042, appeared to have been acquired by different pQBR plasmids by recombination, indicating an important role for horizontal gene transfer in the recent evolution of pQBR plasmids. Our findings demonstrate extensive genetic and phenotypic diversity among co‐occurring members of a plasmid community and suggest a role for environmental heterogeneity in the maintenance of plasmid diversity. PMID:25969927

  17. Evolution of the additive genetic variance-covariance matrix under continuous directional selection on a complex behavioural phenotype.

    PubMed

    Careau, Vincent; Wolak, Matthew E; Carter, Patrick A; Garland, Theodore

    2015-11-22

    Given the pace at which human-induced environmental changes occur, a pressing challenge is to determine the speed with which selection can drive evolutionary change. A key determinant of adaptive response to multivariate phenotypic selection is the additive genetic variance-covariance matrix ( G: ). Yet knowledge of G: in a population experiencing new or altered selection is not sufficient to predict selection response because G: itself evolves in ways that are poorly understood. We experimentally evaluated changes in G: when closely related behavioural traits experience continuous directional selection. We applied the genetic covariance tensor approach to a large dataset (n = 17 328 individuals) from a replicated, 31-generation artificial selection experiment that bred mice for voluntary wheel running on days 5 and 6 of a 6-day test. Selection on this subset of G: induced proportional changes across the matrix for all 6 days of running behaviour within the first four generations. The changes in G: induced by selection resulted in a fourfold slower-than-predicted rate of response to selection. Thus, selection exacerbated constraints within G: and limited future adaptive response, a phenomenon that could have profound consequences for populations facing rapid environmental change. PMID:26582016

  18. The vascular phenotype in Pseudoxanthoma elasticum and related disorders: contribution of a genetic disease to the understanding of vascular calcification

    PubMed Central

    Lefthériotis, Georges; Omarjee, Loukman; Saux, Olivier Le; Henrion, Daniel; Abraham, Pierre; Prunier, Fabrice; Willoteaux, Serge; Martin, Ludovic

    2013-01-01

    Vascular calcification is a complex and dynamic process occurring in various physiological conditions such as aging and exercise or in acquired metabolic disorders like diabetes or chronic renal insufficiency. Arterial calcifications are also observed in several genetic diseases revealing the important role of unbalanced or defective anti- or pro-calcifying factors. Pseudoxanthoma elasticum (PXE) is an inherited disease (OMIM 264800) characterized by elastic fiber fragmentation and calcification in various soft conjunctive tissues including the skin, eyes, and arterial media. The PXE disease results from mutations in the ABCC6 gene, encoding an ATP-binding cassette transporter primarily expressed in the liver, kidneys suggesting that it is a prototypic metabolic soft-tissue calcifying disease of genetic origin. The clinical expression of the PXE arterial disease is characterized by an increased risk for coronary (myocardial infarction), cerebral (aneurysm and stroke), and lower limb peripheral artery disease. However, the structural and functional changes in the arterial wall induced by PXE are still unexplained. The use of a recombinant mouse model inactivated for the Abcc6 gene is an important tool for the understanding of the PXE pathophysiology although the vascular impact in this model remains limited to date. Overlapping of the PXE phenotype with other inherited calcifying diseases could bring important informations to our comprehension of the PXE disease. PMID:23408347

  19. Light-dependent genetic and phenotypic differences in the squat lobster Munida tenuimana (Crustacea: Decapoda) along deep continental margins

    NASA Astrophysics Data System (ADS)

    Aguzzi, J.; Costa, C.; Ketmaier, V.; Angelini, C.; Antonucci, F.; Menesatti, P.; Company, J. B.

    2013-11-01

    The levels of environmental light experienced by organisms during the behavioral activity phase deeply influence the performance of important ecological tasks. As a result, their shape and coloring may experience a light-driven selection process via the day-night rhythmic behavior. In this study, we tested the phenotypic and genetic variability of the western Mediterranean squat lobster (Munida tenuimana). We sampled at depths with different photic conditions and potentially, different burrow emergence rhythms. We performed day-night hauling at different depths, above and below the twilight zone end (i.e., 700 m, 1200 m, 1350 m, and 1500 m), to portray the occurrence of any burrow emergence rhythmicity. Collected animals were screened for shape and size (by geometric morphometry), spectrum and color variation (by photometric analysis), as well as for sequence variation at the mitochondrial DNA gene encoding for the NADH dehydrogenase subunit I. We found that a weak genetic structuring and shape homogeneity occurred together with significant variations in size, with the smaller individuals living at the twilight zone inferior limit and the larger individuals above and below. The infra-red wavelengths of spectral reflectance varied significantly with depth while the blue-green ones were size-dependent and expressed in smaller animals, which has a very small spectral reflectance. The effects of solar and bioluminescence lighting are discussed as depth-dependent evolutionary forces likely influencing the behavioral rhythms and coloring of M. tenuimana.

  20. Habitat Choice and Temporal Variation Alter the Balance between Adaptation by Genetic Differentiation, a Jack-of-All-Trades Strategy, and Phenotypic Plasticity.

    PubMed

    Scheiner, Samuel M

    2016-05-01

    Confronted with variable environments, species adapt in several ways, including genetic differentiation, a jack-of-all-trades strategy, or phenotypic plasticity. Adaptive habitat choice favors genetic differentiation and local adaptation over a generalist, jack-of-all-trades strategy. Models predict that, absent plasticity costs, variable environments generally favor phenotypic plasticity over genetic differentiation and being a jack-of-all-trades generalist. It is unknown how habitat choice might affect the evolution of plasticity. Using an individual-based simulation model, I explored the interaction of choice and plasticity. With only spatial variation, habitat choice promotes genetic differentiation over a jack-of-all-trades strategy or phenotypic plasticity. In the absence of plasticity, temporal variation favors a jack-of-all-trades strategy over choice-mediated genetic differentiation; when plasticity is an option, it is favored. This occurs because habitat choice creates a feedback between genetic differentiation and dispersal rates. As demes become better adapted to their local environments, the effective dispersal rate decreases, because more individuals have very high fitness and so choose not to disperse, reinforcing local stabilizing selection and negating selection for plasticity. Temporal variation breaks that feedback. These results point to a potential data paradox: systems with habitat choice may have the lowest actual movement rates. The potential for adaptive habitat choice may be very common, but its existence may reduce observed dispersal rates enough that we do not recognize systems where it may be present, warranting further exploration of likely systems. PMID:27104995

  1. Molecular, Phenotypic Aspects and Therapeutic Horizons of Rare Genetic Bone Disorders

    PubMed Central

    Dhawan, Naveen; Vohra, Shivani; Tu, Khin; Abdelmagid, Samir M.

    2014-01-01

    A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD) of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities. PMID:25530967

  2. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  3. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect

    Lynd, Lee R; Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Zhu, Mingjun

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  4. Molecular genetic analysis in 14 Czech Kabuki syndrome patients is confirming the utility of phenotypic scoring.

    PubMed

    Paděrová, J; Holubová, A; Simandlová, M; Puchmajerová, A; Vlčková, M; Malíková, M; Pourová, R; Vejvalková, S; Havlovicová, M; Šenkeříková, M; Ptáková, N; Drábová, J; Geryk, J; Maver, A; Křepelová, A; Macek, M

    2016-09-01

    Kabuki syndrome (KS) is a dominantly inherited disorder mainly due to de novo pathogenic variation in KMT2D or KDM6A genes. Initially, a representative cohort of 14 Czech cases with clinical features suggestive of KS was analyzed by experienced clinical geneticists in collaboration with other specialties, and observed disease features were evaluated according to the 'MLL2-Kabuki score' defined by Makrythanasis et al. Subsequently, the aforementioned genes were Sanger sequenced and copy number variation analysis was performed by MLPA, followed by genome-wide array CGH testing. Pathogenic variants in KMT2D resulting in protein truncation in 43% (6/14; of which 3 are novel) of all cases were detected, while analysis of KDM6A was negative. MLPA analysis was negative in all instances. One female patient bears a 6.6 Mb duplication of the Xp21.2-Xp21.3 region that is probably disease causing. Subjective KS phenotyping identified predictive clinical features associated with the presence of a pathogenic variant in KMT2D. We provide additional evidence that this scoring approach fosters prioritization of patients prior to KMT2D sequencing. We conclude that KMT2D sequencing followed by array CGH is a diagnostic strategy with the highest diagnostic yield. PMID:26841933

  5. Ferroportin diseases: functional studies, a link between genetic and clinical phenotype.

    PubMed

    Détivaud, Lénaïck; Island, Marie-Laure; Jouanolle, Anne-Marie; Ropert, Martine; Bardou-Jacquet, Edouard; Le Lan, Caroline; Mosser, Annick; Leroyer, Patricia; Deugnier, Yves; David, Véronique; Brissot, Pierre; Loréal, Olivier

    2013-11-01

    Ferroportin (FPN) mediates iron export from cells and this function is modulated by serum hepcidin. Mutations in the FPN gene (SLC40A1) lead to autosomal dominant iron overload diseases related either to loss or to gain of function, and usually characterized by normal or low transferrin saturation versus elevated transferrin saturation, respectively. However, for the same mutation, the phenotypic expression may vary from one patient to another. Using in vitro overexpression of wild-type or mutant FPN proteins, we characterized the functional impact of five recently identified FPN gene mutations regarding FPN localization, cell iron status, and hepcidin sensitivity. Our aim was to integrate functional results and biological findings in probands and relatives. We show that while the p.Arg371Gln (R371Q) mutation had no impact on studied parameters, the p.Trp158Leu (W158L), p.Arg88Gly (R88G), and p.Asn185Asp (N185D) mutations caused an iron export defect and were classified as loss-of-function mutations. The p.Gly204Ser (G204S) mutation induced a gain of FPN function. Functional studies are useful to determine whether or not a FPN gene mutation found in an iron overloaded patient is deleterious and to characterize its biological impact, especially when family studies are not fully informative and/or additional confounding factors may affect bio-clinical expression. PMID:23943237

  6. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.

    PubMed

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-11-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed. PMID:21874277

  7. Phenotypic and genetic characterization of rhizobia isolated from Hedysarum flexuosum in Northwest region of Morocco.

    PubMed

    Ezzakkioui, Fatima; El Mourabit, Nourdin; Chahboune, Rajaa; Castellano-Hinojosa, Antonio; Bedmar, Eulogio J; Barrijal, Said

    2015-07-01

    Seventy bacterial strains were isolated from root nodules of the legume Hedysarum flexuosum grown wild in soils from Northwest Morocco. Repetitive extragenic palindromic (REP)-polymerase chain reaction (PCR) clustered the strains into 30 REP-PCR groups. The nearly complete sequence of the 16S rRNA gene from a representative strain of each REP-PCR pattern showed that 17 strains were closely related to members of the genus Rhizobium of the family Rhizobiaceae of the Alphaproteobacteria. Pairwise alignments between globally aligned sequences of the 16S rRNA gene indicated that the strains from H. flexuosum had 99.75-100% identity with Rhizobium sullae type strain IS123(T). The phenotypic characteristics analyzed allowed description of a wide physiological diversity among the isolates, where the carbohydrate assimilation test was the most discriminating. Analysis of the 16S rRNA gene of a representative strains from the remaining 13 REP-PCR groups showed they belong to a wide variety of phylogenetic groups being closely related to species of genera Stenotrophomonas, Serratia, Massilia, Acinetobacter, Achromobacter, and Pseudomonas from the Beta- and Gammaproteobacteria. The R. sullae strains identified in this study produced effective symbiosis with their original host plant. None of the other bacterial strains could form nodules on H. flexuosum. PMID:25721451

  8. Genomic and Phenotypic Characterization of a Wild Medaka Population: Towards the Establishment of an Isogenic Population Genetic Resource in Fish

    PubMed Central

    Spivakov, Mikhail; Auer, Thomas O.; Peravali, Ravindra; Dunham, Ian; Dolle, Dirk; Fujiyama, Asao; Toyoda, Atsushi; Aizu, Tomoyuki; Minakuchi, Yohei; Loosli, Felix; Naruse, Kiyoshi; Birney, Ewan; Wittbrodt, Joachim

    2014-01-01

    Oryzias latipes (medaka) has been established as a vertebrate genetic model for more than a century and recently has been rediscovered outside its native Japan. The power of new sequencing methods now makes it possible to reinvigorate medaka genetics, in particular by establishing a near-isogenic panel derived from a single wild population. Here we characterize the genomes of wild medaka catches obtained from a single Southern Japanese population in Kiyosu as a precursor for the establishment of a near-isogenic panel of wild lines. The population is free of significant detrimental population structure and has advantageous linkage disequilibrium properties suitable for the establishment of the proposed panel. Analysis of morphometric traits in five representative inbred strains suggests phenotypic mapping will be feasible in the panel. In addition, high-throughput genome sequencing of these medaka strains confirms their evolutionary relationships on lines of geographic separation and provides further evidence that there has been little significant interbreeding between the Southern and Northern medaka population since the Southern/Northern population split. The sequence data suggest that the Southern Japanese medaka existed as a larger older population that went through a relatively recent bottleneck approximately 10,000 years ago. In addition, we detect patterns of recent positive selection in the Southern population. These data indicate that the genetic structure of the Kiyosu medaka samples is suitable for the establishment of a vertebrate near-isogenic panel and therefore inbreeding of 200 lines based on this population has commenced. Progress of this project can be tracked at http://www.ebi.ac.uk/birney-srv/medaka-ref-panel. PMID:24408034

  9. ATPase4A Autoreactivity and Its Association With Autoimmune Phenotypes in the Type 1 Diabetes Genetics Consortium Study.

    PubMed

    Wenzlau, Janet M; Fain, Pamela R; Gardner, Thomas J; Frisch, Lisa M; Annibale, Bruno; Hutton, John C

    2015-10-01

    Autoantibodies targeting the H+/K+-ATPase proton pump of the gastric parietal cell (parietal cell antibodies [PCA]) are diagnostic of atrophic body gastritis (ABG) leading to pernicious anemia (PA). PCA, ABG, and PA occur in increased frequency in patients with type 1 diabetes and their relatives and are considered "minor" components of forms of autoimmune polyglandular syndrome (APS). A customized radioimmunoprecipitation assay was applied to 6,749 samples from the Type 1 Diabetes Genetics Consortium to measure ATP4A autoreactivity. Autoantibody prevalence was correlated with variants in HLA class II, PTPN22, and CTLA4 genes. With an ATP4A radioimmunoprecipitation assay, PCA were detected in sera from 20.9% of affected individuals. PCA prevalence increased with age and was greater in females (25.3%) than males (16.5%) and among Hispanics (36.3%) and blacks (26.2%) compared with non-Hispanic whites (20.8%) and Asians (16.7%). PCA and other organ-specific autoantibodies GAD65, IA-2, thyroid peroxidase (TPO), 21-hydroxylase (21-OH), and transglutaminase (TG) clustered within families with heritability estimates from 71 to 95%. PCA clustered with TPO, 21-OH, and persistent GAD65 autoantibodies but not with celiac (TG) or IA-2 autoantibodies. PCA-positive subjects showed an increased frequency of DRB1*0404, DPB1*0201, and PTPN22 R620W (rs2476601-T) and a decreased frequency of DRB1*0101, DPB1*0301, and CTLA4 CT60 (rs3087243-T). Genetic variants accounted for 4-5% of the heritable risk for PCA. The same alleles were associated with other autoantibody phenotypes in a consistent pattern. Whereas most of the heritable risk for PCA and other antibodies reflects genetic effects that are tissue specific, parietal cell autoimmunity is a major pathogenetic contributor in APS2. PMID:26405069

  10. Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird.

    PubMed

    Ornelas, Juan Francisco; González, Clementina; Hernández-Baños, Blanca E; García-Moreno, Jaime

    2016-02-01

    The present day distribution and spatial genetic diversity of Mesoamerican biota reflects a long history of responses to habitat change. The hummingbird Lampornis amethystinus is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling across the species range using mitochondrial DNA (mtDNA) sequences and nuclear microsatellites jointly analysed with phenotypic and climatic data, we (1) test whether the fragmented distribution is correlated with main evolutionary lineages, (2) assess body size and plumage color differentiation of populations in geographic isolation, and (3) evaluate a set of divergence scenarios and demographic patterns of the hummingbird populations. Analysis of genetic variation revealed four main groups: blue-throated populations (Sierra Madre del Sur); two groups of amethyst-throated populations (Trans-Mexican Volcanic Belt and Sierra Madre Oriental); and populations east of the Isthmus of Tehuantepec (IT) with males showing an amethyst throat. The most basal split is estimated to have originated in the Pleistocene, 2.39-0.57 million years ago (MYA), and corresponded to groups of populations separated by the IT. However, the estimated recent divergence time between blue- and amethyst-throated populations does not correspond to the 2-MY needed to be in isolation for substantial plumage divergence, likely because structurally iridescent colors are more malleable than others. Results of species distribution modeling and Approximate Bayesian Computation analysis fit a model of lineage divergence west of the Isthmus after the Last Glacial Maximum (LGM), and that the species' suitable habitat was disjunct during past and current conditions. These results challenge the generality of the contraction/expansion glacial model to cloud forest-interior species and urges management of cloud forest, a highly vulnerable ecosystem to climate change and currently facing destruction, to prevent further loss of genetic

  11. Relative Role of Genetic Complement Abnormalities in Sporadic and Familial aHUS and Their Impact on Clinical Phenotype

    PubMed Central

    Caprioli, Jessica; Bresin, Elena; Mossali, Chiara; Pianetti, Gaia; Gamba, Sara; Daina, Erica; Fenili, Chiara; Castelletti, Federica; Sorosina, Annalisa; Piras, Rossella; Donadelli, Roberta; Maranta, Ramona; van der Meer, Irene; Conway, Edward M.; Zipfel, Peter F.; Goodship, Timothy H.; Remuzzi, Giuseppe

    2010-01-01

    Background and objectives: Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment. Most childhood cases are caused by Shiga toxin–producing bacteria. The other form, atypical HUS (aHUS), accounts for 10% of cases and has a poor prognosis. Genetic complement abnormalities have been found in aHUS. Design, setting, participants, and measurements: We screened 273 consecutive patients with aHUS for complement abnormalities and studied their role in predicting clinical phenotype and response to treatment. We compared mutation frequencies and localization and clinical outcome in familial (82) and sporadic (191) cases. Results: In >70% of sporadic and familial cases, gene mutations, disease-associated factor H (CFH) polymorphisms, or anti-CFH autoantibodies were found. Either mutations or CFH polymorphisms were also found in the majority of patients with secondary aHUS, suggesting a genetic predisposition. Familial cases showed a higher prevalence of mutations in SCR20 of CFH and more severe disease than sporadic cases. Patients with CFH or THBD (thrombomodulin) mutations had the earliest onset and highest mortality. Membrane-cofactor protein (MCP) mutations were associated with the best prognosis. Plasma therapy induced remission in 55 to 80% of episodes in patients with CFH, C3, or THBD mutations or autoantibodies, whereas patients with CFI (factor I) mutations were poor responders. aHUS recurred frequently after kidney transplantation except for patients with MCP mutations. Conclusions: Results underline the need of genetic screening for all susceptibility factors as part of clinical management of aHUS and for identification of patients who could safely benefit from kidney transplant. PMID:20595690

  12. Evaluation of a 7-Gene Genetic Profile for Athletic Endurance Phenotype in Ironman Championship Triathletes

    PubMed Central

    Grealy, Rebecca; Herruer, Jasper; Smith, Carl L. E.; Hiller, Doug; Haseler, Luke J.; Griffiths, Lyn R.

    2015-01-01

    Polygenic profiling has been proposed for elite endurance performance, using an additive model determining the proportion of optimal alleles in endurance athletes. To investigate this model’s utility for elite triathletes, we genotyped seven polymorphisms previously associated with an endurance polygenic profile (ACE Ins/Del, ACTN3 Arg577Ter, AMPD1 Gln12Ter, CKMM 1170bp/985+185bp, HFE His63Asp, GDF8 Lys153Arg and PPARGC1A Gly482Ser) in a cohort of 196 elite athletes who participated in the 2008 Kona Ironman championship triathlon. Mean performance time (PT) was not significantly different in individual marker analysis. Age, sex, and continent of origin had a significant influence on PT and were adjusted for. Only the AMPD1 endurance-optimal Gln allele was found to be significantly associated with an improvement in PT (model p = 5.79 x 10−17, AMPD1 genotype p = 0.01). Individual genotypes were combined into a total genotype score (TGS); TGS distribution ranged from 28.6 to 92.9, concordant with prior studies in endurance athletes (mean±SD: 60.75±12.95). TGS distribution was shifted toward higher TGS in the top 10% of athletes, though the mean TGS was not significantly different (p = 0.164) and not significantly associated with PT even when adjusted for age, sex, and origin. Receiver operating characteristic curve analysis determined that TGS alone could not significantly predict athlete finishing time with discriminating sensitivity and specificity for three outcomes (less than median PT, less than mean PT, or in the top 10%), though models with the age, sex, continent of origin, and either TGS or AMPD1 genotype could. These results suggest three things: that more sophisticated genetic models may be necessary to accurately predict athlete finishing time in endurance events; that non-genetic factors such as training are hugely influential and should be included in genetic analyses to prevent confounding; and that large collaborations may be necessary to obtain

  13. Evaluation of a 7-Gene Genetic Profile for Athletic Endurance Phenotype in Ironman Championship Triathletes.

    PubMed

    Grealy, Rebecca; Herruer, Jasper; Smith, Carl L E; Hiller, Doug; Haseler, Luke J; Griffiths, Lyn R

    2015-01-01

    Polygenic profiling has been proposed for elite endurance performance, using an additive model determining the proportion of optimal alleles in endurance athletes. To investigate this model's utility for elite triathletes, we genotyped seven polymorphisms previously associated with an endurance polygenic profile (ACE Ins/Del, ACTN3 Arg577Ter, AMPD1 Gln12Ter, CKMM 1170bp/985+185bp, HFE His63Asp, GDF8 Lys153Arg and PPARGC1A Gly482Ser) in a cohort of 196 elite athletes who participated in the 2008 Kona Ironman championship triathlon. Mean performance time (PT) was not significantly different in individual marker analysis. Age, sex, and continent of origin had a significant influence on PT and were adjusted for. Only the AMPD1 endurance-optimal Gln allele was found to be significantly associated with an improvement in PT (model p = 5.79 x 10-17, AMPD1 genotype p = 0.01). Individual genotypes were combined into a total genotype score (TGS); TGS distribution ranged from 28.6 to 92.9, concordant with prior studies in endurance athletes (mean±SD: 60.75±12.95). TGS distribution was shifted toward higher TGS in the top 10% of athletes, though the mean TGS was not significantly different (p = 0.164) and not significantly associated with PT even when adjusted for age, sex, and origin. Receiver operating characteristic curve analysis determined that TGS alone could not significantly predict athlete finishing time with discriminating sensitivity and specificity for three outcomes (less than median PT, less than mean PT, or in the top 10%), though models with the age, sex, continent of origin, and either TGS or AMPD1 genotype could. These results suggest three things: that more sophisticated genetic models may be necessary to accurately predict athlete finishing time in endurance events; that non-genetic factors such as training are hugely influential and should be included in genetic analyses to prevent confounding; and that large collaborations may be necessary to obtain

  14. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal

    PubMed Central

    2013-01-01

    Background The genus Limonium Miller comprises annual and perennial halophytes that can produce sexual and/or asexual seeds (apomixis). Genetic and epigenetic (DNA methylation) variation patterns were investigated in populations of three phenotypically similar putative sexual diploid species (L. nydeggeri, L. ovalifolium, L. lanceolatum), one sexual tetraploid species (L. vulgare) and two apomict tetraploid species thought to be related (L. dodartii, L. multiflorum). The extent of morphological differentiation between these species was assessed using ten diagnostic morphometric characters. Results A discriminant analysis using the morphometric variables reliably assigns individuals into their respective species groups. We found that only modest genetic and epigenetic differentiation was revealed between species by Methylation Sensitive Amplification Polymorphism (MSAP). However, whilst there was little separation possible between ploidy levels on the basis of genetic profiles, there was clear and pronounced interploidy discrimination on the basis of epigenetic profiles. Here we investigate the relative contribution of genetic and epigenetic factors in explaining the complex phenotypic variability seen in problematic taxonomic groups such as Limonium that operate both apomixis and sexual modes of reproduction. Conclusions Our results suggest that epigenetic variation might be one of the drivers of the phenotypic divergence between diploid and tetraploid taxa and discuss that intergenome silencing offers a plausible mechanistic explanation for the observed phenotypic divergence between these microspecies. These results also suggest that epigenetic profiling offer an additional tool to infer ploidy level in stored specimens and that stable epigenetic change may play an important role in apomict evolution and species recognition. PMID:24314092

  15. Phenotypic and Genetic Relationships of Common Health Disorders with Milk and Fat Yield Persistencies from Producer- Recorded Health Data and Test Day Yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate phenotypic and genetic relationships of common health disorders in dairy cows to milk (PMY) and fat (PFY) yield persistencies. Health and production data from 398 commercial dairy herds were used. Disease traits were developed in binary form for indivi...

  16. Phenotypic and genetic variability for body weight of ostriches (Struthio camelus).

    PubMed

    Ramos, S B; Savegnago, R P; Caetano, S L; Venturini, G C; Ramos, A A; Munari, D P

    2014-01-01

    1. objective of the present study was to estimate heritability for hatch weight (HW), body weight at 90 (W90) and 180 (W180) d of age in Brazilian ostriches. 2. The heritability estimates were obtained through the restricted maximum likelihood method for an animal model. Least squares method was used to define possible fixed effects for consideration in the analysis model. 3. The estimates of heritability were 0.42 ± 0.05, 0.16 ± 0.04 and 0.24 ± 0.08 for HW, W90 and W180, respectively. 4. Heritability estimates showed that there are sufficient levels of additive genetic variation present in the traits studied, and these traits may respond to selection. PMID:25269694

  17. Testing chemical and genetic Modulators in Mycobacterium tuberculosis infected cells using phenotypic assays.

    PubMed

    Delorme, Vincent; Song, Ok-Ryul; Baulard, Alain; Brodin, Priscille

    2015-01-01

    Mycobacterium tuberculosis is able to colonize host cells, and it is now well admitted that the intracellular stage of the bacteria contributes to tuberculosis pathogenesis as well as to making it a persistent infection. There is still limited understanding on how the tubercle bacillus colonizes the cell and what are the factors impacting on its intracellular persistence. Recent advances in imaging technique allow rapid quantification of biological objects in complex environments. Furthermore, M. tuberculosis is a microorganism that is particularly genetically tractable and that tolerates the expression of heterologous fluorescent proteins. Thus, the intracellular distribution of M. tuberculosis expressing fluorescent proteins can be easily quantified by the use of confocal microscopy. Here we describe high-content/high-throughput imaging methods that enable tracking the bacillus inside host settings, taking into account the heterogeneity of colonization. PMID:25779330

  18. Developmental Patterning as a Quantitative Trait: Genetic Modulation of the Hoxb6 Mutant Skeletal Phenotype

    PubMed Central

    Kappen, Claudia

    2016-01-01

    The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes. PMID:26800342

  19. Molecular diagnosis reveals genetic heterogeneity for the overlapping MKKS and BBS phenotypes.

    PubMed

    Schaefer, Elise; Durand, Myriam; Stoetzel, Corinne; Doray, Bérénice; Viville, Brigitte; Hellé, Sophie; Danse, Jean-Marc; Hamel, Christian; Bitoun, Pierre; Goldenberg, Alice; Finck, Sonia; Faivre, Laurence; Sigaudy, Sabine; Holder, Muriel; Vincent, Marie-Claire; Marion, Vincent; Bonneau, Dominique; Verloes, Alain; Nisand, Israël; Mandel, Jean-Louis; Dollfus, Hélène

    2011-01-01

    Hydrometrocolpos and polydactyly diagnosed in the prenatal period or early childhood may raise diagnostic dilemmas especially in distinguishing McKusick-Kaufman syndrome (MKKS) and the Bardet-Biedl syndrome (BBS). These two conditions can initially overlap. With time, the additional features of BBS appearing in childhood, such as retinitis pigmentosa, obesity, learning disabilities and progressive renal dysfunction allow clear differentiation between BBS and MKKS. Genotype overlap also exists, as mutations in the MKKS-BBS6 gene are found in both syndromes. We report 7 patients diagnosed in the neonatal period with hydrometrocolpos and polydactyly who carry mutations in various BBS genes (BBS6, BBS2, BBS10, BBS8 and BBS12), stressing the importance of wide BBS genotyping in patients with this clinical association for diagnosis, prognosis and genetic counselling. PMID:21044901

  20. Genetic background but not metallothionein phenotype dictates sensitivity to cadmium-induced testicular injury in mice.

    PubMed

    Liu, J; Corton, C; Dix, D J; Liu, Y; Waalkes, M P; Klaassen, C D

    2001-10-01

    Sensitivity to cadmium (Cd)-induced testicular injury varies greatly among mouse strains. For instance, 129/SvJ (129) mice are highly sensitive while C57BL/6J (C57) mice are refractory to Cd-induced testicular injury. Metallothionein (MT), a Cd-binding protein, is thought to be responsible for the strain susceptibility to Cd toxicity. In this study, MT-I/II knockout (MT-null) and wild-type 129 mice were used to determine the role of MT in Cd-induced testicular injury. Two additional strains of mice (C57 and the C57 x 129 F1cross) were also used to help define the role of genetic background in Cd toxicity. Mice were given 5-20 micromol/kg ip CdCl(2) and testicular injury was examined 24 h later by histopathology and testicular hemoglobin concentration. Cd produced dose-dependent testicular injury in all strains of mice, except for C57 mice, in which testicular injury could not be produced. MT-null mice were more sensitive than C57 x 129 mice but were equally sensitive as 129 mice to Cd-induced testicular injury. Fourteen days after 15 micromol/kg ip Cd administration, testicular atrophy was evident in MT-null, 129, and C57 x 129 mice but was absent in C57 mice. The resistance of C57 mice to Cd-induced testicular injury could not be attributed solely to a decreased uptake of (109)Cd nor to a greater amount of testicular MT. Microarray analysis revealed a higher expression of glutathione peroxidase in the testes of C57 mice, as well as genes encoding antioxidant components and DNA damage/repair, but their significance to Cd-induced injury is not immediately clear. Thus, this study demonstrates that it is genetic strain, not MT genotype, that is mechanistically important in determining susceptibility to Cd-induced testicular injury. PMID:11578143

  1. Genetic and phenotypic characterization of Candida albicans strains isolated from infectious disease patients in Shanghai.

    PubMed

    Hu, Lvyin; Du, Xin; Li, Tianming; Song, Yan; Zai, Shubei; Hu, Xiangnan; Zhang, Xiaonan; Li, Min

    2015-01-01

    Candida albicans, as an opportunistic pathogen, can cause superficial and life-threatening candidiasis in immunocompromised individuals. The formation of surface-associated biofilms and the appearance of drug resistance pose a significant challenge for clinical intervention. In this study, a total of 104 hospital-acquired C. alibcans clinical isolates were collected from sterile sites and mucosal lesions of 92 infectious disease patients in the Shanghai Public Health Clinical Center and analysed. The resistance rates to fluconazole, itraconazole and voriconazole were 12.5 %, 15.4 % and 11.5 % respectively. Multilocus sequence typing (MLST) analysis identified 63 diploid sequence types (DSTs) with a decentralized phylogeny, of which 37 DSTs (58.7 %) had not been reported in the online MLST database. Loss of heterozygosity was observed in ACC1 and ADP1 sequences obtained from six sequential isolates from a patient receiving antifungal treatment, which exemplified the effect of microevolution on C. albicans genetic alterations. Biofilm formation capability, an important virulence trait of C. albicans, was variable among strains isolated from different anatomical sites (P = 0.0302) and affected by genotypes (P = 0.0185). The mRNA levels of the azole antifungal target ERG11 gene and efflux pump genes (CDR1, CDR2 and MDR1) were detected in 9-18.1 % of azole-resistant and susceptible-dose dependent (S-DD) isolates. Twelve mutations encoding distinct amino acid substitutions in ERG11 were found in azole-resistant and S-DD isolates. Among them, A114S, Y132H and Y257H substitution in the ERG11 gene may be primarily related to azole resistance. Taken together, we observed a high level of diversity within C. albicans isolates. Multiple inter-related underlying mechanisms, including genetic and environmental factors, may account for high surface adhesion or azole resistance in clinical C. albicans infections. PMID:25351710

  2. Diazotrophic Burkholderia species isolated from the Amazon region exhibit phenotypical, functional and genetic diversity.

    PubMed

    da Silva, Krisle; Cassetari, Alice de Souza; Lima, Adriana Silva; De Brandt, Evie; Pinnock, Eleanor; Vandamme, Peter; Moreira, Fatima Maria de Souza

    2012-06-01

    Forty-eight Burkholderia isolates from different land use systems in the Amazon region were compared to type strains of Burkholderia species for phenotypic and functional characteristics that can be used to promote plant growth. Most of these isolates (n=46) were obtained by using siratro (Macroptilium atropurpureum - 44) and common bean (Phaseolus vulgaris - 2) as the trap plant species; two isolates were obtained from nodules collected in the field from Indigofera suffruticosa and Pithecellobium sp. The evaluated characteristics were the following: colony characterisation on "79" medium, assimilation of different carbon sources, enzymatic activities, solubilisation of phosphates, nitrogenase activity and antifungal activity against Fusarium oxysporium f. sp. phaseoli. Whole cell protein profiles, 16S rRNA, gyrB, and recA gene sequencing and multilocus sequence typing were used to identify the isolates. The isolates showed different cultural and biochemical characteristics depending on the legume species from which they were obtained. Except for one isolate from I. suffruticosa, all isolates were able to solubilise calcium phosphate and present nitrogenase activity under free-living conditions. Only one isolate from common beans, showed antifungal activity. The forty four isolates from siratro nodules were identified as B. fungorum; isolates UFLA02-27 and UFLA02-28, obtained from common bean plants, were identified as B. contaminans; isolate INPA89A, isolated from Indigofera suffruticosa, was a close relative of B. caribensis but could not be assigned to an established species; isolate INPA42B, isolated from Pithecellobium sp., was identified as B. lata. This is the first report of nitrogenase activity in B. fungorum, B. lata and B. contaminans. PMID:22609342

  3. Genetically determined ABCB5 functionality correlates with pigmentation phenotype and melanoma risk

    PubMed Central

    Lin, Jennifer Y.; Zhang, Mingfeng; Schatton, Tobias; Wilson, Brian J.; Alloo, Allireza; Ma, Jie; Qureshi, Abrar A.; Frank, Natasha Y.; Han, Jiali; Frank, Markus H.

    2013-01-01

    ABCB5 is a multidrug resistance (MDR) member of the ATP-binding cassette (ABC) superfamily of active transporters and represents a marker for chemoresistant malignant melanoma-initiating cells. ABCB5 expression is closely linked to tumorigenicity and progression of diverse human malignancies, including melanoma, and is functionally required for tumor growth. Here, we genotyped 585 melanoma cases and 605 age-matched controls for 44 ABCB5 tagging single nucleotide polymorphisms (SNPs) to span a region covering 108.2kb of the gene on the 7p21.1 locus. We identified three SNPs that were associated with decreased melanoma risk in additive models: rs10231520 (OR: 0.83, 95% CI: 0.70–0.98), rs17817117 (OR: 0.82, 95% CI: 0.68–0.98), and rs2301641 (OR: 0.83, 95% CI: 0.69–0.98). Additionally, the rs2301641 SNP was associated with non-red compared to red hair color (OR: 0.38, 95% CI: 0.14–1.03) in controls. Twelve human melanoma cell lines were genotyped for the rs2301641 SNP, which encodes a non-synonymous ABCB5 amino acid change (K115E). Functional studies revealed that the E form associated with lower melanoma risk correlated significantly with decreased ABCB5 transport capacity (P<0.01) and increased melanin production (P<0.05). Our results identify novel associations of the ABCB5 K115E polymorphism with human pigmentation phenotype and melanoma risk and point to potential functional roles of ABCB5 in melanomagenesis. Moreover, they provide a first example that functional variation in a prospective cancer stem cell marker can be associated with disease risk for the corresponding malignancy. PMID:23770371

  4. Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra.

    PubMed

    Vanrobays, M-L; Bastin, C; Vandenplas, J; Hammami, H; Soyeurt, H; Vanlierde, A; Dehareng, F; Froidmont, E; Gengler, N

    2016-09-01

    The aim of this study was to estimate phenotypic and genetic correlations between methane production (Mp) and milk fatty acid contents of first-parity Walloon Holstein cows throughout lactation. Calibration equations predicting daily Mp (g/d) and milk fatty acid contents (g/100 dL of milk) were applied on milk mid-infrared spectra related to Walloon milk recording. A total of 241,236 predictions of Mp and milk fatty acids were used. These data were collected be