Science.gov

Sample records for hematopoietic cell activation

  1. Chronic variable stress activates hematopoietic stem cells

    PubMed Central

    Courties, Gabriel; Dutta, Partha; Iwamoto, Yoshiko; Zaltsman, Alex; von zur Muhlen, Constantin; Bode, Christoph; Fricchione, Gregory L.; Denninger, John; Lin, Charles P.; Vinegoni, Claudio; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans. PMID:24952646

  2. Hematopoietic activity in putative mouse primordial germ cell populations.

    PubMed

    Scaldaferri, Maria Lucia; Klinger, Francesca Gioia; Farini, Donatella; Di Carlo, Anna; Carsetti, Rita; Giorda, Ezio; De Felici, Massimo

    2015-05-01

    In the present paper, starting from the observation of heterogeneous expression of the GOF-18ΔPE-GFP Pou5f1 (Oct3/4) transgene in putative mouse PGC populations settled in the aorta-gonad-mesonephros (AGM) region, we identified various OCT3/4 positive populations showing distinct expression of PGC markers (BLIMP-1, AP, TG-1, STELLA) and co-expressing several proteins (CD-34, CD-41, FLK-1) and genes (Brachyury, Hox-B4, Scl/Tal-1 and Gata-2) of hematopoietic precursors. Moreover, we found that Oct3/4-GFP(weak) CD-34(weak/high) cells possess robust hematopoietic colony forming activity (CFU) in vitro. These data indicate that the cell population usually considered PGCs moving toward the gonadal ridges encompasses a subset of cells co-expressing several germ cell and hematopoietic markers and possessing hematopoietic activity. These results are discussed within of the current model of germline segregation. PMID:25684074

  3. Regulation of Hematopoietic Stem Cell Activity by Inflammation

    PubMed Central

    Schuettpelz, Laura G.; Link, Daniel C.

    2013-01-01

    Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and the ability to generate all mature blood cells. HSCs normally reside in specialized niches in the bone marrow that help maintain their quiescence and long-term repopulating activity. There is emerging evidence that certain cytokines induced during inflammation have significant effects on HSCs in the bone marrow. Type I and II interferons, tumor necrosis factor, and lipopolysaccharide (LPS) directly stimulate HSC proliferation and differentiation, thereby increasing the short-term output of mature effector leukocytes. However, chronic inflammatory cytokine signaling can lead to HSC exhaustion and may contribute the development of hematopoietic malignancies. Pro-inflammatory cytokines such as G-CSF can also indirectly affect HSCs by altering the bone marrow microenvironment, disrupting the stem cell niche, and leading to HSC mobilization into the blood. Herein, we review our current understanding of the effects of inflammatory mediators on HSCs, and we discuss the potential clinical implications of these findings with respect to bone marrow failure and leukemogenesis. PMID:23882270

  4. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells

    PubMed Central

    Dutta, Partha; Sager, Hendrik B.; Stengel, Kristy R.; Naxerova, Kamila; Courties, Gabriel; Saez, Borja; Silberstein, Lev; Heidt, Timo; Sebas, Matthew; Sun, Yuan; Wojtkiewicz, Gregory; Feruglio, Paolo Fumene; King, Kevin; Baker, Joshua N.; van der Laan, Anja M.; Borodovsky, Anna; Fitzgerald, Kevin; Hulsmans, Maarten; Hoyer, Friedrich; Iwamoto, Yoshiko; Vinegoni, Claudio; Brown, Dennis; Di Carli, Marcelo; Libby, Peter; Hiebert, Scott; Scadden, David; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2015-01-01

    SUMMARY Following myocardial infarction (MI), myeloid cells derived from the hematopoietic system drive a sharp increase in systemic leukocyte levels that correlate closely with mortality. The origin of these myeloid cells, and the response of hematopoietic stem and progenitor cells (HSPCs) to MI, however, is unclear. Here, we identify a CCR2+CD150+CD48− LSK hematopoietic subset as the most upstream contributor to emergency myelopoiesis after ischemic organ injury. CCR2+ HSPC have fourfold higher proliferation rates than CCR2−CD150+CD48− LSK cells, display a myeloid differentiation bias, and dominate the migratory HSPC population. We further demonstrate the myeloid translocation gene 16 (Mtg16) regulates CCR2+ HSPC emergence. Mtg16−/− mice have decreased levels of systemic monocytes and infarct-associated macrophages and display compromised tissue healing and post-MI heart failure. Together, these data provide insights into regulation of emergency hematopoiesis after ischemic injury, and identify potential therapeutic targets to modulate leukocyte output after MI. PMID:25957903

  5. Dasatinib promotes the activation of quiescent hematopoietic stem cells in mice.

    PubMed

    Duyvestyn, Johanna M; Taylor, Samuel J; Dagger, Samantha A; Langdon, Wallace Y

    2016-05-01

    Dasatinib is an orally available broad-spectrum tyrosine kinase inhibitor that is widely used to treat chronic myeloid leukemia. It is also in clinical trials for the treatment of other malignancies, including solid tumors. Despite its wide use, little is known of its effects on normal hematopoietic stem and progenitor cells. Here, we study wild-type mice dosed with dasatinib and find that it causes the transient induction of proliferation of quiescent hematopoietic stem cells (HSCs). This finding was unexpected given the ability of dasatinib to inhibit c-Kit signaling and promote cell cycle arrest in many cell types. The transient induction of HSC proliferation in dasatinib-dosed mice coincided with a marked induction in the expression of Sca-1 and phospho-S6. Also evident at this time was a rapid but transient loss of lineage-committed hematopoietic progenitors that express high levels of c-Kit and the induction of stem cell factor in the serum. These findings suggest that activation of quiescent HSCs is part of a rapid rescue response that restores hematopoietic progenitors to pretreatment levels. This restoration coincides with HSCs returning to quiescence, and the expression of Sca-1 and phospho-S6 reverting to pre-treatment levels, even though dasatinib dosing is maintained. These data suggest that equilibrium is reached between the opposing forces of dasatinib and hematopoietic growth factors. The transient induction of HSC proliferation provided a window of opportunity whereby these cells became sensitive to killing by the cytotoxic drug 5-fluorouracil. PMID:26921649

  6. Symplekin, a polyadenylation factor, prevents MOZ and MLL activity on HOXA9 in hematopoietic cells.

    PubMed

    Largeot, Anne; Paggetti, Jérôme; Broséus, Julien; Aucagne, Romain; Lagrange, Brice; Martin, Romain Z; Berthelet, Jean; Quéré, Ronan; Lucchi, Géraldine; Ducoroy, Patrick; Bastie, Jean-Noël; Delva, Laurent

    2013-12-01

    MOZ and MLL encoding a histone acetyltransferase and a histone methyltransferase, respectively, are targets for recurrent chromosomal translocations found in acute myeloblastic or lymphoblastic leukemia. We have previously shown that MOZ and MLL cooperate to activate HOXA9 gene expression in hematopoietic stem/progenitors cells. To dissect the mechanism of action of this complex, we decided to identify new proteins interacting with MOZ. We found that the scaffold protein Symplekin that supports the assembly of polyadenylation machinery was identified by mass spectrometry. Symplekin interacts and co-localizes with both MOZ and MLL in immature hematopoietic cells. Its inhibition leads to a decrease of the HOXA9 protein level but not of Hoxa9 mRNA and to an over-recruitment of MOZ and MLL onto the HOXA9 promoter. Altogether, our results highlight the role of Symplekin in transcription repression involving a regulatory network between MOZ, MLL and Symplekin. PMID:23994619

  7. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation.

    PubMed

    Nguyen, Hung D; Chatterjee, Shilpak; Haarberg, Kelley M K; Wu, Yongxia; Bastian, David; Heinrichs, Jessica; Fu, Jianing; Daenthanasanmak, Anusara; Schutt, Steven; Shrestha, Sharad; Liu, Chen; Wang, Honglin; Chi, Hongbo; Mehrotra, Shikhar; Yu, Xue-Zhong

    2016-04-01

    Alloreactive donor T cells are the driving force in the induction of graft-versus-host disease (GVHD), yet little is known about T cell metabolism in response to alloantigens after hematopoietic cell transplantation (HCT). Here, we have demonstrated that donor T cells undergo metabolic reprograming after allogeneic HCT. Specifically, we employed a murine allogeneic BM transplant model and determined that T cells switch from fatty acid β-oxidation (FAO) and pyruvate oxidation via the tricarboxylic (TCA) cycle to aerobic glycolysis, thereby increasing dependence upon glutaminolysis and the pentose phosphate pathway. Glycolysis was required for optimal function of alloantigen-activated T cells and induction of GVHD, as inhibition of glycolysis by targeting mTORC1 or 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) ameliorated GVHD mortality and morbidity. Together, our results indicate that donor T cells use glycolysis as the predominant metabolic process after allogeneic HCT and suggest that glycolysis has potential as a therapeutic target for the control of GVHD. PMID:26950421

  8. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation

    PubMed Central

    Nguyen, Hung D.; Chatterjee, Shilpak; Haarberg, Kelley M.K.; Wu, Yongxia; Bastian, David; Heinrichs, Jessica; Fu, Jianing; Daenthanasanmak, Anusara; Schutt, Steven; Shrestha, Sharad; Liu, Chen; Wang, Honglin; Chi, Hongbo; Mehrotra, Shikhar

    2016-01-01

    Alloreactive donor T cells are the driving force in the induction of graft-versus-host disease (GVHD), yet little is known about T cell metabolism in response to alloantigens after hematopoietic cell transplantation (HCT). Here, we have demonstrated that donor T cells undergo metabolic reprograming after allogeneic HCT. Specifically, we employed a murine allogeneic BM transplant model and determined that T cells switch from fatty acid β-oxidation (FAO) and pyruvate oxidation via the tricarboxylic (TCA) cycle to aerobic glycolysis, thereby increasing dependence upon glutaminolysis and the pentose phosphate pathway. Glycolysis was required for optimal function of alloantigen-activated T cells and induction of GVHD, as inhibition of glycolysis by targeting mTORC1 or 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) ameliorated GVHD mortality and morbidity. Together, our results indicate that donor T cells use glycolysis as the predominant metabolic process after allogeneic HCT and suggest that glycolysis has potential as a therapeutic target for the control of GVHD. PMID:26950421

  9. Hematopoietic stem cell transplantation

    PubMed Central

    Hatzimichael, Eleftheria; Tuthill, Mark

    2010-01-01

    More than 25,000 hematopoietic stem cell transplantations (HSCTs) are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and myeloproliferative syndromes. Before transplantation, patients receive intensive myeloablative chemoradiotherapy followed by stem cell “rescue.” Autologous HSCT is performed using the patient’s own hematopoietic stem cells, which are harvested before transplantation and reinfused after myeloablation. Allogeneic HSCT uses human leukocyte antigen (HLA)-matched stem cells derived from a donor. Survival after allogeneic transplantation depends on donor–recipient matching, the graft-versus-host response, and the development of a graft versus leukemia effect. This article reviews the biology of stem cells, clinical efficacy of HSCT, transplantation procedures, and potential complications. PMID:24198516

  10. c-Abl Activates Janus Kinase 2 in Normal Hematopoietic Cells*

    PubMed Central

    Tao, Wenjing; Leng, Xiaohong; Chakraborty, Sandip N.; Ma, Helen; Arlinghaus, Ralph B.

    2014-01-01

    Jak2 is involved in cytokine growth factor-stimulated signal transduction, but the mechanism of its activation is largely unknown. Here, we investigated Jak2 activation in a normal hematopoietic cell line, 32D mouse myeloid cells. The bimolecular fluorescence complementation studies showed that c-Abl formed a stable complex with Jak2 in live cells. Co-immunoprecipitation results showed that c-Abl bound to the βc chain of IL-3/IL-5/GM-CSF receptors. The kinase activities of both c-Abl and Jak2 were stimulated by IL-3 in 32D cells. Decreasing c-Abl protein expression in 32D cells by inducible shRNA decreased Jak2 activity and resulted in the failure of Jak2 activation in response to IL-3. Treatment of IL-3 and serum-starved 32D cells with 1 μm imatinib mysylate inhibited IL-3 stimulated kinase activities of both c-Abl and Jak2. In addition, the kinase-deficient Bcr-Abl mutant (p210K1172R) was defective for activation of Jak2 in 32D cells and impaired IL-3 independent growth, which was rescued by overexpression of c-Abl (+Abl). IL-3 efficiently inhibited apoptosis of 32Dp210K/R+Abl cells induced by imatinib mysylate but not Jak2 kinase inhibitor TG101209. In summary, our findings provide evidence that the kinase function of c-Abl and its C-terminal CT4 region is crucial for its interaction with Jak2 and its activation. c-Abl kinase activity induced by IL-3 is required for IL-3-stimulated Jak2 and Jak1 activation. Our findings reveal a novel regulatory role of c-Abl in Jak2 activation induced by IL-3 cytokine growth factor in 32D hematopoietic cells. PMID:24923444

  11. In vivo hematopoietic Myc activation directs a transcriptional signature in endothelial cells within the bone marrow microenvironment.

    PubMed

    Franke, Katharina; Vilne, Baiba; Prazeres da Costa, Olivia; Rudelius, Martina; Peschel, Christian; Oostendorp, Robert A J; Keller, Ulrich

    2015-09-01

    Cancer pathogenesis involves tumor-intrinsic genomic aberrations and tumor-cell extrinsic mechanisms such as failure of immunosurveillance and structural and functional changes in the microenvironment. Using Myc as a model oncogene we established a conditional mouse bone marrow transduction/transplantation model where the conditional activation of the oncoprotein Myc expressed in the hematopoietic system could be assessed for influencing the host microenvironment. Constitutive ectopic expression of Myc resulted in rapid onset of a lethal myeloproliferative disorder with a median survival of 21 days. In contrast, brief 4-day Myc activation by means of the estrogen receptor (ER) agonist tamoxifen did not result in gross changes in the percentage/frequency of hematopoietic lineages or hematopoietic stem/ progenitor cell (HSPC) subsets, nor did Myc activation significantly change the composition of the non-hematopoietic microenvironment defined by phenotyping for CD31, ALCAM, and Sca-1 expression. Transcriptome analysis of endothelial CD45- Ter119- cells from tamoxifen-treated MycER bone marrow graft recipients revealed a gene expression signature characterized by specific changes in the Rho subfamily pathway members, in the transcription-translation-machinery and in angiogenesis. In conclusion, intra-hematopoietic Myc activation results in significant transcriptome alterations that can be attributed to oncogene-induced signals from hematopoietic cells towards the microenvironment, e. g. endothelial cells, supporting the idea that even pre-leukemic HSPC highjack components of the niche which then could protect and support the cancer-initiating population. PMID:26308666

  12. Setdb1 maintains hematopoietic stem and progenitor cells by restricting the ectopic activation of nonhematopoietic genes.

    PubMed

    Koide, Shuhei; Oshima, Motohiko; Takubo, Keiyo; Yamazaki, Satoshi; Nitta, Eriko; Saraya, Atsunori; Aoyama, Kazumasa; Kato, Yuko; Miyagi, Satoru; Nakajima-Takagi, Yaeko; Chiba, Tetsuhiro; Matsui, Hirotaka; Arai, Fumio; Suzuki, Yutaka; Kimura, Hiroshi; Nakauchi, Hiromitsu; Suda, Toshio; Shinkai, Yoichi; Iwama, Atsushi

    2016-08-01

    Setdb1, also known as Eset, is a methyltransferase that catalyzes trimethylation of H3K9 (H3K9me3) and plays an essential role in the silencing of endogenous retroviral elements (ERVs) in the developing embryo and embryonic stem cells (ESCs). Its role in somatic stem cells, however, remains unclear because of the early death of Setdb1-deficient embryos. We demonstrate here that Setdb1 is the first H3K9 methyltransferase shown to be essential for the maintenance of hematopoietic stem and progenitor cells (HSPCs) in mice. The deletion of Setdb1 caused the rapid depletion of hematopoietic stem and progenitor cells (HSPCs), as well as leukemic stem cells. In contrast to ESCs, ERVs were largely repressed in Setdb1-deficient HSPCs. A list of nonhematopoietic genes was instead ectopically activated in HSPCs after reductions in H3K9me3 levels, including key gluconeogenic enzyme genes fructose-1,6-bisphosphatase 1 (Fbp1) and Fbp2 The ectopic activation of gluconeogenic enzymes antagonized glycolysis and impaired ATP production, resulting in a compromised repopulating capacity of HSPCs. Our results demonstrate that Setdb1 maintains HSPCs by restricting the ectopic activation of nonhematopoietic genes detrimental to their function and uncover that the gluconeogenic pathway is one of the critical targets of Setdb1 in HSPCs. PMID:27301860

  13. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation

    PubMed Central

    Scheicher, Ruth; Hoelbl-Kovacic, Andrea; Bellutti, Florian; Tigan, Anca-Sarmiza; Prchal-Murphy, Michaela; Heller, Gerwin; Schneckenleithner, Christine; Salazar-Roa, María; Zöchbauer-Müller, Sabine; Zuber, Johannes; Malumbres, Marcos; Kollmann, Karoline

    2015-01-01

    The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6−/− HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABLp210+ LSCs. Transplantation with BCR-ABLp210+–infected bone marrow from Cdk6−/− mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6−/− BCR-ABLp210+ LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs. PMID:25342715

  14. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation.

    PubMed

    Adamiak, Mateusz; Moore, Joseph B; Zhao, John; Abdelbaset-Ismail, Ahmed; Grubczak, Kamil; Rzeszotek, Sylwia; Wysoczynski, Marcin; Ratajczak, Mariusz Z

    2016-01-01

    Heme oxygenase 1 (HO-1) is an inducible stress-response enzyme that not only catalyzes the degradation of heme (e.g., released from erythrocytes) but also has an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury. HO-1 has a well-documented anti-inflammatory potential, and HO-1 has been reported to have a negative effect on adhesion and migration of neutrophils in acute inflammation in a model of peritonitis. This finding is supported by our recent observation that hematopoietic stem progenitor cells (HSPCs) from HO-1 KO mice are easy mobilizers, since they respond better to peripheral blood chemotactic gradients than wild-type littermates. Based on these findings, we hypothesized that transient inhibition of HO-1 by nontoxic small-molecule inhibitors would enhance migration of HSPCs in response to bone marrow chemoattractants and thereby facilitate their homing. To directly address this issue, we generated several human hematopoietic cell lines in which HO-1 was upregulated or downregulated. We also exposed murine and human BM-derived cells to small-molecule activators and inhibitors of HO-1. Our results indicate that HO-1 is an inhibitor of hematopoietic cell migration in response to crucial BM homing chemoattractants such as stromal-derived factor 1 (SDF-1) and sphingosine-1-phosphate (S1P). Most importantly, our in vitro and in vivo animal experiments demonstrate for the first time that transiently inhibiting HO-1 activity in HSPCs by small-molecule inhibitors improves HSPC engraftment. We propose that this simple and inexpensive strategy could be employed in the clinical setting to improve engraftment of HSPCs, particularly in those situations in which the number of HSPCs available for transplant is limited (e.g., when transplanting umbilical cord blood). PMID:27412411

  15. Kindlin-3–mediated integrin adhesion is dispensable for quiescent but essential for activated hematopoietic stem cells

    PubMed Central

    Ruppert, Raphael; Moser, Markus; Sperandio, Markus; Rognoni, Emanuel; Orban, Martin; Liu, Wen-Hsin; Schulz, Ansgar S.; Oostendorp, Robert A.J.; Massberg, Steffen

    2015-01-01

    Hematopoietic stem cells (HSCs) generate highly dividing hematopoietic progenitor cells (HPCs), which produce all blood cell lineages. HSCs are usually quiescent, retained by integrins in specific niches, and become activated when the pools of HPCs decrease. We report that Kindlin-3–mediated integrin activation controls homing of HSCs to the bone marrow (BM) and the retention of activated HSCs and HPCs but not of quiescent HSCs in their BM niches. Consequently, Kindlin-3–deficient HSCs enter quiescence and remain in the BM when cotransplanted with wild-type hematopoietic stem and progenitor cells (HSPCs), whereas they are hyperactivated and lost in the circulation when wild-type HSPCs are absent, leading to their exhaustion and reduced survival of recipients. The accumulation of HSPCs in the circulation of leukocyte adhesion deficiency type III patients, who lack Kindlin-3, underlines the conserved functions of Kindlin-3 in man and the importance of our findings for human disease. PMID:26282877

  16. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism.

    PubMed

    Li, Jing; Zhang, Jun; Tang, Minghui; Xin, Junping; Xu, Yan; Volk, Andrew; Hao, Caiqin; Hu, Chenglong; Sun, Jiewen; Wei, Wei; Cao, Quichan; Breslin, Peter; Zhang, Jiwang

    2016-08-01

    The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144. PMID:27096933

  17. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    PubMed

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes. PMID:26639193

  18. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation.

    PubMed

    Bemer, Meagan J; Risler, Linda J; Phillips, Brian R; Wang, Joanne; Storer, Barry E; Sandmaier, Brenda M; Duan, Haichuan; Raccor, Brianne S; Boeckh, Michael J; McCune, Jeannine S

    2014-10-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  19. Factors Associated With Parental Activation in Pediatric Hematopoietic Stem Cell Transplant

    PubMed Central

    Pennarola, Brian W.; Rodday, Angie Mae; Mayer, Deborah K.; Ratichek, Sara J.; Davies, Stella M.; Syrjala, Karen L.; Patel, Sunita; Bingen, Kristin; Kupst, Mary Jo; Schwartz, Lisa; Guinan, Eva C.; Hibbard, Judith H.; Parsons, Susan K.

    2014-01-01

    Patient activation, the extension of self-efficacy into self-management, is an essential component of effective chronic care. In pediatric populations, caregiver activation is also needed for proper disease management. This study investigates the relationships between parental activation and other characteristics of parent–child dyads (N = 198) presenting for pediatric hematopoietic stem cell transplant. Parental activation concerning their child’s health was assessed using the Parent Patient Activation Measure (Parent-PAM), a modified version of the well-validated Patient Activation Measure (PAM). Using hierarchical linear regression and following the Belsky process model for determining parenting behaviors, a multivariate model was created for parental activation on behalf of their child that showed that the parent’s age, rating of their own general health, self-activation, and duration of the child’s illness were significantly related to Parent-PAM score. Our findings characterize a potentially distinct form of activation in a parent–child cohort preparing for a demanding clinical course. PMID:22203645

  20. Flow cytometric detection of some activation and proliferation markers in human hematopoietic cell lines.

    PubMed

    Glasová, M; Koníková, E; Kusenda, J; Babusíková, O

    1996-01-01

    Simultaneous surface marker/DNA, cytoplasmic/DNA or nuclear/DNA staining was used to study proliferation of hematopoietic cell lines (MOLT4, BJAB, P3HR1). Different fixation/permeabilization methods (paraformaldehyde with metanol or Tween 20 or saponin, buffered formaldehyde-acetone) were used providing optimal results of the double stainings. There was a significant increase of S phase and proliferation index (PI) of CD71+ and Ki67+ MOLT4 cells in comparison with their negative counterparts. This indicates their close connection with proliferation. Unlike that, the correlation between the expression of CD38 and S phase or PI was not significant either in MOLT4 or in P3HRI cells. For cytoplasmic markers CD3 (in MOLT4 cells) and CD22 (in BJAB cells) statistically significant (cCD3) and not significant (cCD22) correlation was demonstrated between their expression and S phase or PI. Molecular equivalents of soluble fluorescein values for CD71 were always higher than for CD38. The density of these cell surface markers in addition to the percentage of their expression is of considerable significance for their evaluation as activation or proliferation markers. PMID:8996562

  1. Gene transfer into hematopoietic stem cells: long-term maintenance of in vitro activated progenitors without marrow ablation.

    PubMed Central

    Bienzle, D; Abrams-Ogg, A C; Kruth, S A; Ackland-Snow, J; Carter, R F; Dick, J E; Jacobs, R M; Kamel-Reid, S; Dubé, I D

    1994-01-01

    Adoptive transfer of genetically modified somatic cells will play an increasingly important role in the management of a wide spectrum of human diseases. Among the most appealing somatic cells as potential gene transfer vehicles are hematopoietic cells, because of their wide distribution and their well-characterized capacities for proliferation, differentiation, and self-renewal. Genes can be readily transferred into short-lived and lineage-restricted hematopoietic cells, but there remains a need to develop reliable methods for gene transfer into hematopoietic stem cells in large animals. In this work, we used a gene transfer approach in which hematopoietic cells in long-term marrow cultures were exposed to the replication-defective retrovirus N2, bearing the reporter gene neo, on multiple occasions during 21 days of culture. Genetically marked cultured autologous cells were infused into 18 canine recipients in the absence of marrow-ablative conditioning. neo was detected by Southern blotting and/or the polymerase chain reaction in the marrow, blood, marrow-derived granulocyte/macrophage and erythroid progenitors, and cultured T cells in dogs after infusion. In most dogs, the proportion of long-term marrow culture cells contributing to hematopoiesis rose during the first 3 months after infusion and peaked within the first 6. The maximal levels attained were between 10% and 30% G418-resistant (neo-positive) granulocyte/macrophage progenitors. At 12 months, five dogs maintained greater than 10% G418-resistant progenitors, and for two of them this level exceeded 20%. Two dogs had greater than 5% G418-resistant hematopoietic progenitors at 24 months after infusion. Our data suggest that very primitive hematopoietic progenitors are maintained in long-term marrow cultures, where they can be triggered into entering the cell cycle. In vivo, these activated cells likely continue normal programs of proliferation, differentiation, and self-renewal. Their progeny can be

  2. Radioimmunotherapy for hematopoietic cell transplantation.

    PubMed

    Jurcic, Joseph G

    2013-04-01

    Radioimmunotherapy (RIT) represents an attractive strategy to deliver radiation selectively to tumor and other target organs while minimizing toxicity to normal tissues. RIT with β-particle-emitting isotopes targeting CD33, CD45 and CD66 can potentially allow intensification of conditioning before hematopoietic cell transplantation (HCT) in leukemia. Similarly, RIT directed against CD20 has shown promise in the setting of autologous and allogeneic HCT for B-cell lymphomas. α-particle immunotherapy with isotopes such as bismuth-213, actinium-225 and astatinine-211 offers the possibility of more selective and efficient killing of target cells while sparing the surrounding normal cells. Pretargeting strategies may further improve target:normal organ dose ratios. While RIT has demonstrated significant antitumor activity, ultimately, randomized studies will be required to determine if conditioning regimens that include this therapeutic modality can improve patient outcomes after HCT. PMID:23557421

  3. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice.

    PubMed

    Sasaki, Yusuke; Noguchi-Sasaki, Mariko; Yasuno, Hideyuki; Yorozu, Keigo; Shimonaka, Yasushi

    2012-12-01

    Erythropoiesis-stimulating agents (ESA) are now central to the treatment of renal anemia and are associated with improved clinical outcomes. It is well known that erythropoietin (EPO) is a key regulator of erythropoiesis through its promotion of red blood cell production. In order to investigate the role of ESA on iron metabolism, we analyzed the regulation of the iron regulatory hormone hepcidin by ESA treatment in a bone marrow transplant model in mouse. After treating C57BL/6 mice with continuous erythropoietin receptor activator (C.E.R.A.), recombinant human epoetin-β (rhEPO), or recombinant human carbamylated epoetin-β (rhCEPO), we investigated serum hepcidin concentrations and parameters of erythropoiesis. Serum hepcidin concentrations after rhEPO treatment were analyzed in mice subjected to total body irradiation followed by bone marrow transplantation. C.E.R.A. administration caused long-term downregulation of serum hepcidin levels. Serum hepcidin levels in rhEPO-treated mice decreased significantly, whereas there was no change in rhCEPO-treated mice. The reduction in circulating hepcidin levels after rhEPO administration was not observed in irradiated mice. Finally, bone marrow transplantation recovered the response to rhEPO administration that downregulates hepcidin concentration in irradiated mice. These results indicate that ESA treatment downregulates serum hepcidin concentrations, mainly by indirect mechanisms affecting hematopoietic activity in bone marrow cells. PMID:23160767

  4. Favorable NK cell activity after haploidentical hematopoietic stem cell transplantation in stage IV relapsed Ewing's sarcoma patients.

    PubMed

    Schlegel, P; Feuchtinger, T; Nitschke-Gérard, C; Seidel, U J Eva; Lang, A-M; Kyzirakos, C; Teltschik, H-M; Ebinger, M; Schumm, M; Koscielniak, E; Handgretinger, R; Lang, P

    2015-06-01

    Natural killer (NK) cell activity has been shown to have potential activity against Ewing's sarcoma (EWS) especially in tumors with low HLA I expression and high NKG2D expression. Two patients with metastatic relapsed and primary metastatic stage IV EWS who had received two courses of high dose chemotherapy with autologous stem cell rescue were transplanted from a haploidentical parental stem cell donor. Patients are alive in ongoing CR for 10.2 and 3.4 years now. Post transplant local second and first relapses were treated successfully in both patients. In vivo IL-2 stimulation not only increased the number and activity of effector cells in one patient but was also associated with severe GvHD. In vitro studies demonstrated high NK cell activity against K562 and relevant activity against EWS cell line A673 post transplant. NK activity was enhanced by cytokine prestimulation as well as by EWS targeting anti-GD2 Ab. Haploidentical hematopoietic stem cell transplantation (HSCT) might contribute to long-term survival by NK cell-mediated effect exerted by donor-derived NK cells. Local tumor recurrence was manageable in both high-risk patients indicating systemic immune control preventing subsequent metastasizing. The efficacy of haploidentical HSCT, cytokine application and tumor targeting antibodies for the use of Ab-dependent cellular cytotoxicity needs evaluation in clinical trials. PMID:26039213

  5. Failure in activation of the canonical NF-κB pathway by human T-cell leukemia virus type 1 Tax in non-hematopoietic cell lines

    SciTech Connect

    Mizukoshi, Terumi; Komori, Hideyuki; Mizuguchi, Mariko; Abdelaziz, Hussein; Hara, Toshifumi; Higuchi, Masaya; Tanaka, Yuetsu; Ohara, Yoshiro; Funato, Noriko; Fujii, Masahiro; Nakamura, Masataka

    2013-09-01

    Human T-cell leukemia virus type 1 (HTLV-1) Tax (Tax1) plays crucial roles in leukemogenesis in part through activation of NF-κB. In this study, we demonstrated that Tax1 activated an NF-κB binding (gpκB) site of the gp34/OX40 ligand gene in a cell type-dependent manner. Our examination showed that the gpκΒ site and authentic NF-κB (IgκB) site were activated by Tax1 in hematopoietic cell lines. Non-hematopoietic cell lines including hepatoma and fibroblast cell lines were not permissive to Tax1-mediated activation of the gpκB site, while the IgκB site was activated in those cells in association with binding of RelB. However RelA binding was not observed in the gpκB and IgκB sites. Our results suggest that HTLV-1 Tax1 fails to activate the canonical pathway of NF-κB in non-hematopoietic cell lines. Cell type-dependent activation of NF-κB by Tax1 could be associated with pathogenesis by HTLV-1 infection. - Highlights: • HTLV-1 Tax1 does not activate RelA of NF-κB in non-hematopoietic cell lines. • Tax1 activates the NF-κB non-canonical pathway in non-hematopoietic cell lines. • Tax1 does not induce RelA nuclear translocation in those cell lines, unlike TNFα. • The OX40L promoter κB site is activated by ectopic, but not endogenous, RelA.

  6. Hematopoietic stem cells: multiparameter regulation.

    PubMed

    Song, Kedong; Li, Liying; Wang, Yiwei; Liu, Tianqing

    2016-04-01

    Hematopoietic stem cells (HSCs) are capable to self-renew with multi-potency which generated much excitement in clinical therapy. However, the main obstacle of HSCs in clinical application was insufficient number of HSCs which were derived from either bone marrow, peripheral blood or umbilical cord blood. This review briefly discusses the indispensable utility of growth factors and cytokines, stromal cells, extracellular matrix, bionic scaffold and microenvironment aiming to control the hematopoiesis in all directions and provide a better and comprehensive understanding for in vitro expansion of hematopoietic stem cells. PMID:26883144

  7. Markers of coagulation activation and acute kidney injury in patients after hematopoietic cell transplantation.

    PubMed

    Hingorani, S R; Seidel, K; Pao, E; Lawler, R; McDonald, G B

    2015-05-01

    Acute kidney injury (AKI) is common after hematopoietic cell transplant (HCT). The etiology of AKI is unknown because biopsies are rarely performed. The pathophysiology of injury is inferred from clinical data. Thrombotic microangiopathy (TMA) is often invoked as the cause of renal injury. Patients >2 years old undergoing their first HCT at Fred Hutchinson Cancer Research Center participated in this study. We prospectively measured plasma markers of coagulation activation, (PAI-1 and tPA) and fibrinolyis (D-dimer) weekly in 149 patients during the first 100 days post transplant. Cox proportional hazards modeling was used to determine associations between these markers and AKI (doubling of baseline serum creatinine). Kruskal-Wallis test was used to determine the associations between day 100 urinary albumin to creatinine ratios and these markers. Thirty one percent of patients developed AKI. Though elevations in these markers occurred frequently, neither PAI-1 nor tPA were associated with the development of AKI. D-dimer was associated with a slightly increased risk of AKI (relative risk=1.76; P-value 0.04). None of these markers were associated with micro- or macroalbuminuria at day 100. The lack of an association with AKI suggests that endothelial injury in the form of TMA is not a common cause of AKI early after transplant. PMID:25665045

  8. Markers of coagulation activation and acute kidney injury in patients after hematopoietic cell transplantation

    PubMed Central

    Hingorani, Sangeeta R; Seidel, Kristy; Pao, Emily; Lawler, Rick; McDonald, George B.

    2015-01-01

    Acute kidney injury (AKI) is common after hematopoietic cell transplant (HCT). The etiology of AKI is unknown because biopsies are rarely performed. The pathophysiology of injury is inferred from clinical data. Thrombotic microangiopathy (TMA) is often invoked as the cause of renal injury. Patients > 2 years undergoing their first HCT at Fred Hutchinson Cancer Research Center (FHCRC) participated in this study. We prospectively measured plasma markers of coagulation activation, (PAI-1 and tPA) and fibrinolyis (D-dimer) weekly in 149 patients during the first 100 days post-transplant. Cox proportional hazards modeling was used to determine associations between these markers and AKI (doubling of baseline serum creatinine). Kruskal-Wallis test was used to determine associations between day 100 urinary albumin to creatinine ratios (ACR) and these markers. Thirty one percent of patients developed AKI. Though elevations in these markers occurred frequently, neither PAI-1 nor tPA were associated with development of AKI. D-dimer was associated with a slightly increased risk of AKI (RR=1.76; p-value 0.04). None of these markers were associated with micro- or macroalbuminuria at day 100. The lack of an association with AKI suggests that endothelial injury in the form of TMA is not a common cause of AKI early after transplant. PMID:25665045

  9. Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE.

    PubMed

    Torres-Torronteras, J; Gómez, A; Eixarch, H; Palenzuela, L; Pizzorno, G; Hirano, M; Andreu, A L; Barquinero, J; Martí, R

    2011-08-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the TYMP gene, which encodes thymidine phosphorylase (TP). TP dysfunction results in systemic thymidine (dThd) and deoxyuridine (dUrd) overload, which selectively impair mitochondrial DNA replication. Allogeneic hematopoietic transplantation has been used to treat MNGIE patients; however, this approach has serious adverse effects, including the toxicity of myeloablative conditioning, graft rejection and graft-versus-host disease. With the aim of testing the feasibility of gene therapy for MNGIE, we transduced TP-deficient B-lymphoblastoid cells from two MNGIE patients, with lentiviral vectors carrying a functional copy of the human TYMP DNA coding sequence. This restored TP activity in the cells, which reduced the excretion of dThd and dUrd and their concentrations when added in excess. Additionally, lentiviral-mediated hematopoietic gene therapy was used in partially myeloablated double Tymp/Upp1 knockout mice. In spite of the relatively low levels of molecular chimerism achieved, high levels of TP activity were observed in the peripheral blood of the transplanted mice, with a concomitant reduction of nucleoside concentrations. Our results suggest that hematopoietic gene therapy could be an alternative treatment for this devastating disorder in the future. PMID:21451581

  10. Innate Immune Activation by Tissue Injury and Cell Death in the Setting of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Brennan, Todd V.; Rendell, Victoria R.; Yang, Yiping

    2015-01-01

    Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) with donor lymphocyte infusion is the mainstay of treatment for many types of hematological malignancies, but the therapeutic effect and prevention of relapse is complicated by donor T-cell recognition and attack of host tissue in a process known as graft-versus-host disease (GvHD). Cytotoxic myeloablative conditioning regimens used prior to Allo-HSCT result in the release of endogenous innate immune activators that are increasingly recognized for their role in creating a pro-inflammatory milieu. This increased inflammatory state promotes allogeneic T-cell activation and the induction and perpetuation of GvHD. Here, we review the processes of cellular response to injury and cell death that are relevant following Allo-HSCT and present the current evidence for a causative role of a variety of endogenous innate immune activators in the mediation of sterile inflammation following Allo-HSCT. Finally, we discuss the potential therapeutic strategies that target the endogenous pathways of innate immune activation to decrease the incidence and severity of GvHD following Allo-HSCT. PMID:25852683

  11. Making a Hematopoietic Stem Cell

    PubMed Central

    Daniel, Michael G.; Pereira, Carlos-Filipe; Lemischka, Ihor R.; Moore, Kateri A.

    2016-01-01

    Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC. PMID:26526106

  12. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    PubMed Central

    2012-01-01

    Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a) ability to regulate secretion of cytokines based on biological need; b) long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c) potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC) in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery. PMID:23171397

  13. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  14. Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity

    PubMed Central

    Ohtsubo, Motoaki; Yasunaga, Shin'ichiro; Ohno, Yoshinori; Tsumura, Miyuki; Okada, Satoshi; Ishikawa, Nobutsune; Shirao, Kenichiro; Kikuchi, Akira; Nishitani, Hideo; Kobayashi, Masao; Takihara, Yoshihiro

    2008-01-01

    Polycomb-group (PcG) genes encode multimeric nuclear protein complexes, PcG complex 1 and 2. PcG complex 2 was proved to induce transcription repression and to further methylate histone H3 at lysine-27 (H3K27). Subsequently PcG complex 1 is recruited through recognition of methylated H3K27 and maintains the transcription silencing by mediating monoubiquitination of histone H2A at lysine-119. Genetic evidence demonstrated a crucial role for PcG complex 1 in stem cells, and Bmi1, a member of PcG complex 1, was shown to sustain adult stem cells through direct repression of the INK4a locus encoding cyclin-dependent kinase inhibitor, p16CKI, and p19ARF. The molecular functions of PcG complex 1, however, remain insufficiently understood. In our study, deficiency of Rae28, a member of PcG complex 1, was found to impair ubiquitin-proteasome-mediated degradation of Geminin, an inhibitor of DNA replication licensing factor Cdt1, and to increase protein stability. The resultant accumulation of Geminin, based on evidence from retroviral transduction experiments, presumably eliminated hematopoietic stem cell activity in Rae28-deficient mice. Rae28 mediates recruiting Scmh1, which provides PcG complex 1 an interaction domain for Geminin. Moreover, PcG complex 1 acts as the E3 ubiquitin ligase for Geminin, as we demonstrated in vivo as well as in vitro by using purified recombinant PcG complex 1 reconstituted in insect cells. Our findings suggest that PcG complex 1 supports the activity of hematopoietic stem cells, in which high-level Geminin expression induces quiescence securing genome stability, by enhancing cycling capability and hematopoietic activity through direct regulation of Geminin. PMID:18650381

  15. Adiponectin Enhances Antibacterial Activity of Hematopoietic Cells by Suppressing Bone Marrow Inflammation.

    PubMed

    Masamoto, Yosuke; Arai, Shunya; Sato, Tomohiko; Yoshimi, Akihide; Kubota, Naoto; Takamoto, Iseki; Iwakura, Yoichiro; Yoshimura, Akihiko; Kadowaki, Takashi; Kurokawa, Mineo

    2016-06-21

    Obesity has been shown to increase the morbidity of infections, however, the underlying mechanisms remain largely unknown. Here we demonstrate that obesity caused adiponectin deficiency in the bone marrow (BM), which led to an inflamed BM characterized by increased tumor necrosis factor (TNF) production from bone marrow macrophages. Hematopoietic stem and progenitor cells (HSPCs) chronically exposed to excessive TNF in obese marrow aberrantly expressed cytokine signaling suppressor SOCS3, impairing JAK-STAT mediated signal transduction and cytokine-driven cell proliferation. Accordingly, both obese and adiponectin-deficient mice showed attenuated clearance of infected Listeria monocytogenes, indicating that obesity or loss of adiponectin is critical for exacerbation of infection. Adiponectin treatment restored the defective HSPC proliferation and bacterial clearance of obese and adiponectin-deficient mice, affirming the importance of adiponectin against infection. Taken together, our findings demonstrate that obesity impairs hematopoietic response against infections through a TNF-SOCS3-STAT3 axis, highlighting adiponectin as a legitimate target against obesity-related infections. PMID:27317261

  16. p38α Activates Purine Metabolism to Initiate Hematopoietic Stem/Progenitor Cell Cycling in Response to Stress.

    PubMed

    Karigane, Daiki; Kobayashi, Hiroshi; Morikawa, Takayuki; Ootomo, Yukako; Sakai, Mashito; Nagamatsu, Go; Kubota, Yoshiaki; Goda, Nobuhito; Matsumoto, Michihiro; Nishimura, Emi K; Soga, Tomoyoshi; Otsu, Kinya; Suematsu, Makoto; Okamoto, Shinichiro; Suda, Toshio; Takubo, Keiyo

    2016-08-01

    Hematopoietic stem cells (HSCs) maintain quiescence by activating specific metabolic pathways, including glycolysis. We do not yet have a clear understanding of how this metabolic activity changes during stress hematopoiesis, such as bone marrow transplantation. Here, we report a critical role for the p38MAPK family isoform p38α in initiating hematopoietic stem and progenitor cell (HSPC) proliferation during stress hematopoiesis in mice. We found that p38MAPK is immediately phosphorylated in HSPCs after a hematological stress, preceding increased HSPC cycling. Conditional deletion of p38α led to defective recovery from hematological stress and a delay in initiation of HSPC proliferation. Mechanistically, p38α signaling increases expression of inosine-5'-monophosphate dehydrogenase 2 in HSPCs, leading to altered levels of amino acids and purine-related metabolites and changes in cell-cycle progression in vitro and in vivo. Our studies have therefore uncovered a p38α-mediated pathway that alters HSPC metabolism to respond to stress and promote recovery. PMID:27345838

  17. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body. PMID:26590762

  18. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis.

    PubMed

    Rasmussen, Kasper D; Jia, Guangshuai; Johansen, Jens V; Pedersen, Marianne T; Rapin, Nicolas; Bagger, Frederik O; Porse, Bo T; Bernard, Olivier A; Christensen, Jesper; Helin, Kristian

    2015-05-01

    DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this specific enhancer hypermethylation phenotype in human AML patients with TET2 mutations. Analysis of immediate gene expression changes reveals rapid deregulation of a large number of genes implicated in tumorigenesis, including many down-regulated tumor suppressor genes. Hence, we propose that TET2 prevents leukemic transformation by protecting enhancers from aberrant DNA methylation and that it is the combined silencing of several tumor suppressor genes in TET2 mutated hematopoietic cells that contributes to increased stem cell proliferation and leukemogenesis. PMID:25886910

  19. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis

    PubMed Central

    Rasmussen, Kasper D.; Jia, Guangshuai; Johansen, Jens V.; Pedersen, Marianne T.; Rapin, Nicolas; Bagger, Frederik O.; Porse, Bo T.; Bernard, Olivier A.; Christensen, Jesper

    2015-01-01

    DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this specific enhancer hypermethylation phenotype in human AML patients with TET2 mutations. Analysis of immediate gene expression changes reveals rapid deregulation of a large number of genes implicated in tumorigenesis, including many down-regulated tumor suppressor genes. Hence, we propose that TET2 prevents leukemic transformation by protecting enhancers from aberrant DNA methylation and that it is the combined silencing of several tumor suppressor genes in TET2 mutated hematopoietic cells that contributes to increased stem cell proliferation and leukemogenesis. PMID:25886910

  20. Proinflammatory signaling regulates hematopoietic stem cell emergence.

    PubMed

    Espín-Palazón, Raquel; Stachura, David L; Campbell, Clyde A; García-Moreno, Diana; Del Cid, Natasha; Kim, Albert D; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-11-20

    Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  1. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  2. Hematopoietic stem cells: an overview.

    PubMed

    Mosaad, Youssef Mohamed

    2014-12-01

    Considerable efforts have been made in recent years in understanding the mechanisms that govern hematopoietic stem cell (HSC) origin, development, differentiation, self-renewal, aging, trafficking, plasticity and transdifferentiation. Hematopoiesis occurs in sequential waves in distinct anatomical locations during development and these shifts in location are accompanied by changes in the functional status of the stem cells and reflect the changing needs of the developing organism. HSCs make a choice of either self-renewal or committing to differentiation. The balance between self-renewal and differentiation is considered to be critical to the maintenance of stem cell numbers. It is still under debate if HSC can rejuvenate infinitely or if they do not possess ''true" self-renewal and undergo replicative senescence such as any other somatic cell. Gene therapy applications that target HSCs offer a great potential for the treatment of hematologic and immunologic diseases. However, the clinical success has been limited by many factors. This review is intended to summarize the recent advances made in the human HSC field, and will review the hematopoietic stem cell from definition through development to clinical applications. PMID:25457002

  3. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel.

    PubMed

    Mahadik, Bhushan P; Pedron Haba, Sara; Skertich, Luke J; Harley, Brendan A C

    2015-10-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body's full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory. PMID:26232879

  4. Pleiotrophin mediates hematopoietic regeneration via activation of RAS.

    PubMed

    Himburg, Heather A; Yan, Xiao; Doan, Phuong L; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J; Slamon, Dennis J; Chute, John P

    2014-11-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner. PMID:25250571

  5. Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity.

    PubMed

    Esain, Virginie; Kwan, Wanda; Carroll, Kelli J; Cortes, Mauricio; Liu, Sarah Y; Frechette, Gregory M; Sheward, Lea M V; Nissim, Sahar; Goessling, Wolfram; North, Trista E

    2015-08-01

    Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion, or migration of embryonic HSCs is currently uncharacterized. Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development. During HSC specification in the aorta-gonad-mesonephros (AGM) region, CNR2 stimulation by AM1241 increased runx1;cmyb(+) HSPCs, through heightened proliferation, whereas CNR2 antagonism decreased HSPC number; FACS analysis and absolute HSC counts confirmed and quantified these effects. Epistatic investigations showed AM1241 significantly upregulated PGE2 synthesis in a Ptgs2-dependent manner to increase AGM HSCs. During the phases of HSC production and colonization of secondary niches, AM1241 accelerated migration to the caudal hematopoietic tissue (CHT), the site of embryonic HSC expansion, and the thymus; however these effects occurred independently of PGE2. Using a candidate approach for HSC migration and retention factors, P-selectin was identified as the functional target of CNR2 regulation. Epistatic analyses confirmed migration of HSCs into the CHT and thymus was dependent on CNR2-regulated P-selectin activity. Together, these data suggest CNR2-signaling optimizes the production, expansion, and migration of embryonic HSCs by modulating multiple downstream signaling pathways. PMID:25931248

  6. Lineage-specific STAT5 target gene activation in hematopoietic progenitor cells predicts the FLT3(+)-mediated leukemic phenotype.

    PubMed

    Müller, T A; Grundler, R; Istvanffy, R; Rudelius, M; Hennighausen, L; Illert, A L; Duyster, J

    2016-08-01

    Mutations that activate FMS-like tyrosine kinase 3 (FLT3) are frequent occurrences in acute myeloid leukemia. Two distinct types of mutations have been described: internal duplication of the juxtamembranous domain (ITD) and point mutations of the tyrosine kinase domain (TKD). Although both mutations lead to constitutive FLT3 signaling, only FLT3-ITD strongly activates signal transducer and activator of transcription 5 (STAT5). In a murine transplantation model, FLT3-ITD induces a myeloproliferative neoplasm, whereas FLT3-TKD leads to a lymphoid malignancy with significantly longer latency. Here we report that the presence of STAT5 is critical for the development of a myeloproliferative disease by FLT3-ITD in mice. Deletion of Stat5 in FLT3-ITD-induced leukemogenesis leads not only to a significantly longer survival (82 vs 27 days) of the diseased mice, but also to an immunophenotype switch with expansion of the lymphoid cell compartment. Interestingly, we were able to show differential STAT5 activation in FLT3-ITD(+) myeloid and lymphoid murine progenitors. STAT5 target genes such as Oncostatin M were highly expressed in FLT3-ITD(+) myeloid but not in FLT3-ITD(+) lymphoid progenitor cells. Strikingly, FLT3-TKD expression in combination with Oncostatin M is sufficient to reverse the phenotype to a myeloproliferative disease in FLT3-TKD mice. Thus, lineage-specific STAT5 activation in hematopoietic progenitor cells predicts the FLT3(+)-mediated leukemic phenotype in mice. PMID:27046463

  7. C/EBP- and Tat-mediated activation of the HIV-1 LTR in CD34+ hematopoietic progenitor cells.

    PubMed

    Quiterio, Shane; Grant, Christian; Hogan, Tricia H; Krebs, Fred C; Wigdahl, Brian

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of cells of the monocyte/macrophage lineage within the bone marrow and peripheral blood plays an important role in the pathologic events leading to the development of the acquired immune deficiency syndrome (AIDS) as well as HIV-1 dementia (HIVD). The TF-1 erythro-myeloid cell line is being utilized as a model cellular phenotype to examine HIV-1 infection of a hematopoietic progenitor cell population. Expression of TF-1 cell surface marker RNAs and proteins was characterized by RT-PCR and FACS, respectively, and compared to those of the well characterized U-937 monocytic cell line. Transcription factors in TF-1 and U-937 cells that have been shown to be important for sustaining the expression of HIV-1 LTR activity were also examined. TF-1 cells were shown to contain the transcription factors C/EBP, Sp1, and NF-kappaB. C/EBP- and Tat-mediated induction of the YU-2 LTR was examined. Relative C/EBP induction of the HIV-1 strain YU-2 LTR was greater in TF-1 cells than in U-937 cells. When the C/EBP sites I and II were mutated to sequences with a low relative affinity for C/EBP factors, there was a reduction of Tat-mediated trans-activation in TF-1 cells, but not in U-937 cells. These studies form the foundation for investigations into the relationship between HIV-1 infection of bone marrow and peripheral blood precursor cells of the monocyte/macrophage lineage and pathogenesis associated with HIV-1 infection of the immune and central nervous system (CNS). PMID:12642037

  8. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil.

    PubMed

    Li, Hong; Mager, Donald E; Sandmaier, Brenda M; Storer, Barry E; Boeckh, Michael J; Bemer, Meagan J; Phillips, Brian R; Risler, Linda J; McCune, Jeannine S

    2014-08-01

    A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplantation (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNCs) at 5 time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic-dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory maximum effect model with an IC50 of 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, nonrelapse mortality, and overall mortality. In conclusion, a pharmacokinetic-dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker. PMID:24727337

  9. Assessment of voluntary exercise behavior and active video gaming among adolescent and young adult patients during hematopoietic stem cell transplantation.

    PubMed

    Rosipal, Nicole C; Mingle, Lindsay; Smith, Janet; Morris, G Stephen

    2013-01-01

    This pilot study sought to examine the exercise behavior and preferences among adolescent and young adult (AYA) hematopoietic stem cell transplant (HSCT) recipients. Eighteen patients aged 19 to 25 years were recruited to engage in unsupervised exercise activities lasting at least 60 minutes/week during hospitalization for HSCT. Enrolled patients had access to standard exercise activities (walking, resistance training, and basketball) and active video gaming equipment. Physical function (6-Minute Walk Test and Timed-Up-and-Go test) and quality of life (Behavioral, Affective, and Somatic Experiences Scale) were assessed at different time points during admission. Participants exercised an average of 76% of the days during admission and spent an average of 36.5 minutes per day exercising. The Nintendo Wii was the preferred active video gaming equipment, but standard exercises accounted for 73% of all exercise time. Neither functional capacity nor quality of life improved. Results suggest that AYAs voluntarily exercise during HSCT admission, prefer to use standard exercise activities, and may require supervision in order to derive maximum benefits from their efforts. These results provide guidance for developing rehabilitation interventions for AYA HSCT recipients. PMID:23160792

  10. MiR-24 Promotes the Survival of Hematopoietic Cells

    PubMed Central

    Nguyen, Tan; Rich, Audrey; Dahl, Richard

    2013-01-01

    The microRNA, miR-24, inhibits B cell development and promotes myeloid development of hematopoietic progenitors. Differential regulation of cell survival in myeloid and lymphoid cells by miR-24 may explain how miR-24′s affects hematopoietic progenitors. MiR-24 is reported to regulate apoptosis, either positively or negatively depending on cell context. However, no role for miR-24 in regulating cell death has been previously described in blood cells. To examine miR-24′s effect on survival, we expressed miR-24 via retrovirus in hematopoietic cells and induced cell death with cytokine or serum withdrawal. We observed that miR-24 enhanced survival of myeloid and B cell lines as well as primary hematopoietic cells. Additionally, antagonizing miR-24 with shRNA in hematopoietic cells made them more sensitive to apoptotic stimuli, suggesting miR-24 functions normally to promote blood cell survival. Since we did not observe preferential protection of myeloid over B cells, miR-24′s pro-survival effect does not explain its promotion of myelopoiesis. Moreover, expression of pro-survival protein, Bcl-xL, did not mimic miR-24′s impact on cellular differentiation, further supporting this conclusion. Our results indicate that miR-24 is a critical regulator of hematopoietic cell survival. This observation has implications for leukemogenesis. Several miRNAs that regulate apoptosis have been shown to function as either tumor suppressors or oncogenes during leukemogenesis. MiR-24 is expressed highly in primary acute myelogenous leukemia, suggesting that its pro-survival activity could contribute to the transformation of hematopoietic cells. PMID:23383180

  11. Parasitic Infections in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  12. Parasitic Infections in Hematopoietic Stem Cell Transplantation.

    PubMed

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  13. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  14. The Biology of Allogeneic Hematopoietic Cell Resistance

    PubMed Central

    Shizuru, Judith A.; Bhattacharya, Deepta; Cavazzana-Calvo, Marina

    2016-01-01

    At the most basic level, success of an allogeneic hematopoietic cell transplantation (HCT) procedure relies upon the engraftment of recipients with donor hematopoietic stem cells (HSCs) that will generate blood formation for the life of that individual. The formula to achieve durable HSC engraftment involves multiple factors including the recipient conditioning regimen, the nature of the genetic disparity between donor and recipient, and the content of the hematopoietic graft. Animal and clinical studies have shown that the biology of host resistance is complex, involving both immune and nonimmune elements. In this article, we review the factors that contribute to host resistance, describe emerging concepts on the basic biology of resistance, and discuss hematopoietic resistance as it relates specifically to patients with severe combined immunodeficiencies (SCID)— disorders that bring unique insights into the dynamics of cell replacement by allogeneic HSCs and progenitor cells. PMID:19913629

  15. Fancb deficiency impairs hematopoietic stem cell function

    PubMed Central

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R.; Namekawa, Satoshi H.; Pang, Qishen

    2015-01-01

    Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb−/y) mice and found that Fancb−/y mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb−/y mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb−/y mice. Furthermore, Fancb−/y BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb−/y HSC and progenitor cells. Thus, this Fancb−/y mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157

  16. Active human cytomegalovirus infection and glycoprotein b genotypes in brazilian pediatric renal or hematopoietic stem cell transplantation patients.

    PubMed

    de Campos Dieamant, Débora; Bonon, Sandra Helena Alves; Prates, Liliane Cury; Belangelo, Vera Maria Santoro; Pontes, Erika R; Costa, Sandra Cecília Botelho

    2010-01-01

    A prospective analysis of active Human Cytomegalovirus infection (HCMV) was conducted on 33 pediatric renal or hematopoietic stem cell post-transplant patients. The HCMV-DNA positive samples were evaluated for the prevalence of different gB subtypes and their subsequent correlation with clinical signs. The surveillance of HCMV active infection was based on the monitoring of antigenemia (AGM) and on a nested polymerase chain reaction (N-PCR) for the detection of HCMV in the patients studied. Using restriction analysis of the gB gene sequence by PCR-RFLP (Restriction Fragment Length Polymorphism), different HCMV strains could be detected and classified in at least four HCMV genotypes. Thirty-three pediatric recipients of renal or bone marrow transplantation were monitored. Twenty out of thirty-three (60.6%) patients demonstrated active HCMV infection. gB1 and gB2 genotypes were more frequent in this population. In this study, we observed that gB2 had correlation with reactivation of HCMV infection and that patients with mixture of genotypes did not show any symptoms of HCMV disease. Future studies has been made to confirm this. PMID:24031463

  17. Clinical-Grade Generation of Active NK Cells from Cord Blood Hematopoietic Progenitor Cells for Immunotherapy Using a Closed-System Culture Process

    PubMed Central

    Spanholtz, Jan; Preijers, Frank; Tordoir, Marleen; Trilsbeek, Carel; Paardekooper, Jos; de Witte, Theo; Schaap, Nicolaas; Dolstra, Harry

    2011-01-01

    Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34+ cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34+ UCB cells could be reproducibly amplified and differentiated into CD56+CD3− NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2×109 NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials. PMID:21698239

  18. The EBMT activity survey 2006 on hematopoietic stem cell transplantation: focus on the use of cord blood products.

    PubMed

    Gratwohl, A; Baldomero, H; Frauendorfer, K; Rocha, V; Apperley, J; Niederwieser, D

    2008-04-01

    This report describes the hematopoietic stem cell transplantation (HSCT) activity in Europe in 2006 by indication, donor type and stem cell source. It illustrates differences compared to previous years and concentrates on the use of cord blood transplants. In 2006, there were 25 050 first HSCT, 9661 allogeneic (39%), 15 389 autologous (61%) and 3690 additional re- or multiple transplants reported from 605 centers in 43 participating countries. Main indications were leukemias (7963 (32%; 85% allogeneic)); lymphomas (14 169 (56%; 89% autologous)); solid tumors (1564 (6%; 95% autologous)); non-malignant disorders (1242 (5%; 90% allogeneic)) and non-classified 'others' (112 (1%)). There was an increase in allogeneic HSCT of 9% when compared to 2005, while autologous HSCT numbers remained similar. There were 544 allogeneic cord blood HSCT, which corresponds to 5% of all allogeneic HSCT. The majority, 67%, were used for patients with leukemia. The highest percentage of cord blood transplants, 27%, was seen for inherited disorders of metabolism. No autologous cord blood transplants were reported. The highest increase in allogeneic HSCT was observed for AML, which comprises 31% of all allogeneic HSCT. Numbers of autologous HSCT remained similar in most main indications. This data provide an update of the current HSCT experience in Europe. PMID:18084334

  19. Are hematopoietic stem cells involved in hepatocarcinogenesis?

    PubMed Central

    Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele

    2014-01-01

    The liver has three cell lineages able to proliferate after a hepatic injury: the mature hepatocyte, the ductular “bipolar” progenitor cell termed “oval cell” and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect still under investigation. They originate in the bone marrow since their progeny express genetic markers of donor hematopoietic cells after bone marrow transplantation. Since the liver is the hematopoietic organ of the fetus, it is possible that hematopoietic stem cells may reside in the liver of the adult. This assumption is proved by the finding that oval cells express hematopoietic markers like CD34, CD45, CD 109, Thy-1, c-kit, and others, which are also expressed by bone marrow-derived hematopoietic stem cells (BMSCs). Few and discordant studies have evaluated the role of BMSC in hepatocarcinogenesis so far and further studies in vitro and in vivo are warranted in order to definitively clarify such an issue. PMID:25202697

  20. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.

    PubMed

    Miyajima, A; Ito, Y; Kinoshita, T

    1999-04-01

    The survival, proliferation, and differentiation of hematopoietic cells are regulated by cytokines. In the absence of cytokines, hematopoietic cells not only stop proliferation, but undergo apoptosis. This strict dependency of hematopoietic cells on cytokines is an important mechanism that maintains the homeostasis of blood cells. Cytokines induce various intracellular signaling pathways by activating the receptor-associated Janus kinases (Jaks), and distinct signals are responsible for cell cycle progression and cell survival. Induction of signals for cell cycle progression without suppressing apoptosis results in apoptotic cell death, indicating the essential role of anti-apoptotic signaling for cell growth. In hematopoietic cells, Ras, a cellular protooncogen product, and phosphatidylinositol 3 kinase are involved in the suppression of apoptosis. Cytokine depletion not only turns off anti-apoptotic signaling, but also actively induces cell death by activating caspases, a distinct family of cysteine proteases. Alterations in the mechanisms of cytokine signaling for cell cycle progression and anti-apoptotic function are implicated in hematological disorders. PMID:10222650

  1. The homeodomain transcription factor Prep1 (pKnox1) is required for hematopoietic stem and progenitor cell activity.

    PubMed

    Di Rosa, Patrizia; Villaescusa, J Carlos; Longobardi, Elena; Iotti, Giorgio; Ferretti, Elisabetta; Diaz, Victor M; Miccio, Annarita; Ferrari, Giuliana; Blasi, Francesco

    2007-11-15

    Most of the hypomorphic Prep1(i/i) embryos (expressing 3-10% of the Prep1 protein), die between E17.5 and P0, with profound anemia, eye malformations and angiogenic anomalies [Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.-C., Longobardi, E., Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari G., Blasi, F. (2006). Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol. Cell. Biol. 26, 5650-5662]. We now report on the hematopoietic phenotype of these embryos. Prep1(i/i) fetal livers (FL) are hypoplastic, produce less common myeloid progenitors colonies (CFU-GEMM) in cytokine-supplemented methylcellulose and have an increased number of B-cells precursors that differentiate poorly. Prep1(i/i) FL is able to protect lethally irradiated mice only at high cell doses but the few protected mice show major anomalies in all hematopoietic lineages in both bone marrow (BM) and peripheral organs. Prep1(i/i) FL cells compete inefficiently with wild type bone marrow in competitive repopulation experiments, suggesting that the major defect lies in long-term repopulating hematopoietic stem cells (LTR-HSC). Indeed, wt embryonic expression of Prep1 in the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), cKit(+)Sca1(+)Lin(-)AA4.1(+) (KSLA) cells and B-lymphocytes precursors agrees with the observed phenotype. We therefore conclude that Prep1 is required for a correct and complete hematopoiesis. PMID:17904118

  2. Stroma-Derived Connective Tissue Growth Factor Maintains Cell Cycle Progression and Repopulation Activity of Hematopoietic Stem Cells In Vitro

    PubMed Central

    Istvánffy, Rouzanna; Vilne, Baiba; Schreck, Christina; Ruf, Franziska; Pagel, Charlotta; Grziwok, Sandra; Henkel, Lynette; Prazeres da Costa, Olivia; Berndt, Johannes; Stümpflen, Volker; Götze, Katharina S.; Schiemann, Matthias; Peschel, Christian; Mewes, Hans-Werner; Oostendorp, Robert A.J.

    2015-01-01

    Summary Hematopoietic stem cells (HSCs) are preserved in co-cultures with UG26-1B6 stromal cells or their conditioned medium. We performed a genome-wide study of gene expression changes of UG26-1B6 stromal cells in contact with Lineage− SCA-1+ KIT+ (LSK) cells. This analysis identified connective tissue growth factor (CTGF) to be upregulated in response to LSK cells. We found that co-culture of HSCs on CTGF knockdown stroma (shCtgf) shows impaired engraftment and long-term quality. Further experiments demonstrated that CD34− CD48− CD150+ LSK (CD34− SLAM) cell numbers from shCtgf co-cultures increase in G0 and senescence and show delayed time to first cell division. To understand this observation, a CTGF signaling network model was assembled, which was experimentally validated. In co-culture experiments of CD34− SLAM cells with shCtgf stromal cells, we found that SMAD2/3-dependent signaling was activated, with increasing p27Kip1 expression and downregulating cyclin D1. Our data support the view that LSK cells modulate gene expression in the niche to maintain repopulating HSC activity. PMID:26527384

  3. Interleukin 3-dependent activation of DREAM is involved in transcriptional silencing of the apoptotic hrk gene in hematopoietic progenitor cells

    PubMed Central

    Sanz, Cristina; Mellstrom, Britt; Link, Wolfgang A.; Naranjo, Jose Ramon; Fernandez-Luna, Jose Luis

    2001-01-01

    The apoptotic protein Hrk is expressed in hematopoietic progenitors after growth factor deprivation. Here we identify a silencer sequence in the 3′ untranslated region of the hrk gene that binds to the transcriptional repressor DREAM in interleukin-3 (IL-3)-dependent hematopoietic progenitor cells, and abrogates the expression of reporter genes when located downstream of the open reading frame. In addition, the binding of DREAM to the hrk gene is reduced or eliminated when cells are cultured in the absence of IL-3 or treated with a calcium ionophore or a phosphatidylinositol 3-kinase-specific inhibitor, suggesting that both calcium mobilization and phosphorylation can regulate the transcriptional activity of DREAM. Furthermore, we have shown that DREAM is phosphorylated by a phosphatidylinositol 3-kinase-dependent, but Akt-independent pathway. In all cases, loss of the DREAM–DNA binding complex was correlated with increased levels of Hrk and apoptosis. These data suggest that IL-3 may trigger the activation of DREAM through different signaling pathways, which in turn binds to a silencer sequence in the hrk gene and blocks transcription, avoiding inappropriate cell death in hematopoietic progenitors. PMID:11331593

  4. Activation of adenosine A(3) receptors potentiates stimulatory effects of IL-3, SCF, and GM-CSF on mouse granulocyte-macrophage hematopoietic progenitor cells.

    PubMed

    Hofer, M; Vacek, A; Pospísil, M; Holá, J; Streitová, D; Znojil, V

    2009-01-01

    Adenosine A(3) receptor agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been tested from the point of view of potentiating the effects of hematopoietic growth factors interleukin-3 (IL-3), stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) on the growth of hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in suspension of normal mouse bone marrow cells in vitro. IB-MECA alone induced no GM-CFC growth. Significant elevation of numbers of GM-CFC evoked by the combinations of IB-MECA with IL-3, SCF, or GM-CSF as compared with these growth factors alone has been noted. Combination of IB-MECA with G-CSF did not induce significantly higher numbers of GM-CFC in comparison with G-CSF alone. Joint action of three drugs, namely of IB-MECA + IL-3 + GM-CSF, produced significantly higher numbers of GM-CFC in comparison with the combinations of IB-MECA + IL-3, IB-MECA + GM-CSF, or IL-3 + GM-CSF. These results give evidence of a significant role of selective activation of adenosine A(3) receptors in stimulation of the growth of granulocyte/ macrophage hematopoietic progenitor cells. PMID:18380545

  5. In utero hematopoietic cell transplantation for hemoglobinopathies

    PubMed Central

    Derderian, S. Christopher; Jeanty, Cerine; Walters, Mark C.; Vichinsky, Elliott; MacKenzie, Tippi C.

    2014-01-01

    In utero hematopoietic cell transplantation (IUHCTx) is a promising strategy to circumvent the challenges of postnatal hematopoietic stem cell (HSC) transplantation. The goal of IUHCTx is to introduce donor cells into a naïve host prior to immune maturation, thereby inducing donor–specific tolerance. Thus, this technique has the potential of avoiding host myeloablative conditioning with cytotoxic agents. Over the past two decades, several attempts at IUHCTx have been made to cure numerous underlying congenital anomalies with limited success. In this review, we will briefly review the history of IUHCTx and give a perspective on alpha thalassemia major, one target disease for its clinical application. PMID:25628564

  6. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor.

    PubMed

    Li, Yunyuan; Adomat, Hans; Guns, Emma Tomlinson; Hojabrpour, Payman; Duronio, Vincent; Curran, Terry-Ann; Jalili, Reza Baradar; Jia, William; Delwar, Zahid; Zhang, Yun; Elizei, Sanam Salimi; Ghahary, Aziz

    2016-06-01

    It has long been realized that hematopoietic cells may have the capacity to trans-differentiate into non-lymphohematopoietic cells under specific conditions. However, the mechanisms and the factors for hematopoietic cell trans-differentiation remain unknown. In an in vitro culture system, we found that using a conditioned medium from proliferating fibroblasts can induce a subset of hematopoietic cells to become adherent fibroblast-like cells (FLCs). FLCs are not fibroblasts nor other mesenchymal stromal cells, based on their expression of type-1 collagen, and other stromal cell marker genes. To identify the active factors in the conditioned medium, we cultured fibroblasts in a serum-free medium and collected it for further purification. Using the fractions from filter devices of different molecular weight cut-offs, and ammonium sulfate precipitation collected from the medium, we found the active fraction is a protein. We then purified this fraction by using fast protein liquid chromatography (FPLC) and identified it by mass spectrometer as macrophage colony-stimulating factor (M-CSF). The mechanisms of M-CSF-inducing trans-differentiation of hematopoietic cells seem to involve a tyrosine kinase signalling pathway and its known receptor. The FLCs express a number of stem cell markers including SSEA-1 and -3, OCT3/4, NANOG, and SOX2. Spontaneous and induced differentiation experiments confirmed that FLCs can be further differentiated into cell types of three germ layers. These data indicate that hematopoietic cells can be induced by M-CSF to dedifferentiate to multipotent stem cells. This study also provides a simple method to generate multipotent stem cells for clinical applications. PMID:26529564

  7. Nonmyeloablative allogeneic hematopoietic cell transplantation

    PubMed Central

    Storb, Rainer; Sandmaier, Brenda M.

    2016-01-01

    Most hematological malignancies occur in older patients. Until recently these patients and those with comorbidities were not candidates for treatment with allogeneic hematopoietic transplantation because they were unable to tolerate the heretofore used high-dose conditioning regimens. The finding that many of the cures achieved with allogeneic hematopoietic transplantation were due to graft-versus-tumor effects led to the development of less toxic and well-tolerated reduced intensity and nonmyeloablative regimens. These regimens enabled allogeneic engraftment, thereby setting the stage for graft-versus-tumor effects. This review summarizes the encouraging early results seen with the new regimens and discusses the two hurdles that need to be overcome for achieving even greater success, disease relapse and graft-versus-host disease. PMID:27132278

  8. Physical Activity, Fitness, and Cardiometabolic Risk Factors in Adult Survivors of Childhood Cancer with a History of Hematopoietic Cell Transplantation.

    PubMed

    Slater, Megan E; Steinberger, Julia; Ross, Julie A; Kelly, Aaron S; Chow, Eric J; Koves, Ildiko H; Hoffmeister, Paul; Sinaiko, Alan R; Petryk, Anna; Moran, Antoinette; Lee, Jill; Chow, Lisa S; Baker, K Scott

    2015-07-01

    Along with other childhood cancer survivors (CCS), hematopoietic cell transplantation (HCT) survivors are at high risk of treatment-related late effects, including cardiovascular disease and diabetes. Cardiometabolic risk factor abnormalities may be exacerbated by inadequate physical activity (PA). Relationships between PA and cardiometabolic risk factors have not been well described in CCS with HCT. PA (self reported), mobility (timed up and go test), endurance (6-minute walk test), handgrip strength, and cardiometabolic risk factors were measured in 119 HCT survivors and 66 sibling controls ages ≥18 years. Adjusted comparisons between HCT survivors and controls and between categories of low and high PA, mobility, endurance, and strength were performed with linear regression. Among HCT survivors, the high PA group had lower waist circumference (WC) (81.9 ± 2.5 versus 88.6 ± 3.1 cm ± standard error (SE), P = .009) than the low PA group, whereas the high endurance group had lower WC (77.8 ± 2.6 versus 87.8 ± 2.5 cm ± SE, P = .0001) and percent fat mass (33.6 ± 1.8 versus 39.4 ± 1.7% ± SE, P = .0008) and greater insulin sensitivity (IS) (10.9 ± 1.0 versus 7.42 ± 1.14 mg/kg/min ± SE via euglycemic insulin clamp, P = .001) than the low endurance group. Differences were greater in HCT survivors than in controls for WC between low and high PA groups, triglycerides between low and high mobility groups, and WC, systolic blood pressure, and IS between low and high endurance groups (all Pinteraction <.05). Higher endurance was associated with a more favorable cardiometabolic profile in HCT survivors, suggesting that interventions directed to increase endurance in survivors may reduce the risk of future cardiovascular disease. PMID:25865649

  9. PHENOTYPE AND HEMATOPOIETIC POTENTIAL OF SIDE POPULATION CELLS THROUGHOUT EMBRYONIC DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult murine bone marrow hematopoietic stem cells (HSCs) can be purified by sorting Hoechst 33342-extruding side population (SP) cells. Herein we investigated whether SP cells reside within embryonic tissues and exhibit hematopoietic progenitor activity. We isolated yolk sac (YS) and embryonic tissu...

  10. Epigenetic Regulation of Hematopoietic Stem Cells

    PubMed Central

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-01-01

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia. PMID:27426084

  11. Immunoselection techniques in hematopoietic stem cell transplantation.

    PubMed

    Li Pira, Giuseppina; Biagini, Simone; Cicchetti, Elisabetta; Merli, Pietro; Brescia, Letizia Pomponia; Milano, Giuseppe Maria; Montanari, Mauro

    2016-06-01

    Hematopoietic Stem Cells Transplantation (HSCT) is an effective treatment for hematological and non-hematological diseases. The main challenge in autologous HSCT is purging of malignant cells to prevent relapse. In allogeneic HSCT graft-versus-host disease (GvHD) and opportunistic infections are frequent complications. Two types of graft manipulation have been introduced: the first one in the autologous context aimed at separating malignant cells from hematopoietic stem cells (HSC), and the second one in allogeneic HSCT aimed at reducing the incidence of GvHD and at accelerating immune reconstitution. Here we describe the manipulations used for cell purging in autologous HSCT or for T Cell Depletion (TCD) and T cell selection in allogeneic HSCT. More complex manipulations, requiring a Good Manufacturing Practice (GMP) facility, are briefly mentioned. PMID:27209628

  12. Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression

    PubMed Central

    Huang, Xinxin; Lee, Man-Ryul; Cooper, Scott; Hangoc, Giao; Hong, Ki-Sung; Chung, Hyung-Min; Broxmeyer, Hal E.

    2015-01-01

    Although hematopoietic stem cells (HSC) are the best-characterized and the most clinically used adult stem cells, efforts are still needed to understand how to best ex vivo expand these cells. Here we present our unexpected finding that OCT4 is involved in the enhancement of cytokine-induced expansion capabilities of human cord blood (CB) HSC. Activation of OCT4 by OAC1 in CB CD34+ cells enhanced ex vivo expansion of HSC, as determined by a rigorously defined set of markers for human HSC, and in vivo short-term and long-term repopulating ability in NSG mice. Limiting dilution analysis revealed that OAC1 treatment resulted in 3.5 fold increase in the number of SCID Repopulating Cells (SRC) compared with that in Day 0 uncultured CD34+ cells and 6.3 fold increase compared with that in cells treated with control vehicle. Hematopoietic progenitor cells, as assessed by in vitro colony formation, were also enhanced. Furthermore, we showed that OAC1 treatment led to OCT4-mediated upregulation of HOXB4. Consistently, siRNA-mediated knockdown of HOXB4 expression suppressed effects of OAC1 on ex vivo expansion of HSC. Our study has identified the OCT4-HOXB4 axis in ex vivo expansion of human CB HSC. PMID:26202933

  13. Unrelated hematopoietic stem cell registry and the role of the Hematopoietic Stem Cell Bank

    PubMed Central

    Beom, Su-Hee; Kim, Eung Jo; Kim, Miok

    2016-01-01

    Background The hematopoietic stem cell bank has been actively recruiting registrants since 1994. This study systematically reviews its operations and outcomes over the last 20 years. Methods Retrospective data on a total of 47,711 registrants were reviewed. Relevant data were processed using PASW Statistics for Windows, version 18.0. Results As of 2013, the Korean Network for Organ Sharing database contained 265,307 registrants. Of these, 49,037 (18%) registrants committed to hematopoietic cell donation from 1994 to 2013. Fifty-seven percent of the registrants were men, and 43% were women. The reasons for opting out of the registry included refusal to donate (70%), family refusal (28%), and others (2%). The donation willingness of registrants was significantly higher than those who refused to receive a mail to confirm their continued enrollment (χ2=6.103, P=0.013). The bank successfully coordinated a total of 512 donors among newly matched donors from 1995 to 2013, of which the bone marrow and peripheral blood stem cell accounted for 40.8% and 59.2% of the total donations, respectively. Conclusion Our recruitment activities focus on promoting voluntary registration and the importance of updating personal contact information. We expect that these data may be useful for diverse studies and demonstrate the positive impacts on the donation program. PMID:27382555

  14. Supportive Care of Hematopoietic Cell Transplant Patients

    PubMed Central

    Jim, Heather S. L.; Syrjala, Karen L.; Rizzo, Doug

    2012-01-01

    Hematopoietic cell transplant survivors face a number of challenges including low energy and stamina, “chemo-brain” and emotional distress, and late effects that can compromise functioning or lead to early mortality. This session will review the most recent interventions and recommendations to avoid or mitigate these complications. PMID:22226095

  15. Perivascular support of human hematopoietic stem/progenitor cells

    PubMed Central

    Corselli, Mirko; Chin, Chee Jia; Parekh, Chintan; Sahaghian, Arineh; Wang, Wenyuan; Ge, Shundi; Evseenko, Denis; Wang, Xiaoyan; Montelatici, Elisa; Lazzari, Lorenza; Crooks, Gay M.

    2013-01-01

    Hematopoietic stem and progenitor cells (HSPCs) emerge and develop adjacent to blood vessel walls in the yolk sac, aorta-gonad-mesonephros region, embryonic liver, and fetal bone marrow. In adult mouse bone marrow, perivascular cells shape a “niche” for HSPCs. Mesenchymal stem/stromal cells (MSCs), which support hematopoiesis in culture, are themselves derived in part from perivascular cells. In order to define their direct role in hematopoiesis, we tested the ability of purified human CD146+ perivascular cells, as compared with unfractionated MSCs and CD146− cells, to sustain human HSPCs in coculture. CD146+ perivascular cells support the long-term persistence, through cell-to-cell contact and at least partly via Notch activation, of human myelolymphoid HSPCs able to engraft primary and secondary immunodeficient mice. Conversely, unfractionated MSCs and CD146− cells induce differentiation and compromise ex vivo maintenance of HSPCs. Moreover, CD146+ perivascular cells express, natively and in culture, molecular markers of the vascular hematopoietic niche. Unexpectedly, this dramatic, previously undocumented ability to support hematopoietic stem cells is present in CD146+ perivascular cells extracted from the nonhematopoietic adipose tissue. PMID:23412095

  16. Hematopoietic stem cell engineering at a crossroads

    PubMed Central

    Rivière, Isabelle; Dunbar, Cynthia E.

    2012-01-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead. PMID:22096239

  17. Effects of Developmental Activation of the Aryl Hydrocarbon Receptor by 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Long-term Self-renewal of Murine Hematopoietic Stem Cells

    PubMed Central

    Laiosa, Michael D.; Tate, Everett R.; Ahrenhoerster, Lori S.; Chen, Yuhong; Wang, Demin

    2015-01-01

    Background: Human epidemiological and animal studies suggest that developmental exposure to contaminants that activate the aryl hydrocarbon receptor (AHR) lead to suppression of immune system function throughout life. The persistence of immune deficiency throughout life suggests that the cellular target of AHR activation is a fetal hematopoietic progenitor or stem cell. Objectives: The aim of this study was to identify the effects of transplacental exposure to an AHR agonist on long-term self-renewal of fetal hematopoietic stem cells. Methods: Pregnant C57BL/6 or AHR+/– mice were exposed to the AHR agonist, 2,3,7,8-tetra-​chlorodibenzo-p-dioxin (TCDD). On day 14 of gestation, hematopoietic progenitors from wild-type or AHR-deficient fetuses were placed into in vitro T-lymphocyte differentiation cultures to identify the effects of transplacental TCDD on AHR activation in the fetus. We next analyzed the fetal hematopoietic progenitor cells for changes in reactive oxygen species (ROS). Finally, hematopoietic progenitors from fetuses exposed transplacentally to TCDD were mixed 1:1 with cells from congenic controls and used to reconstitute lethally irradiated recipients for analysis of long-term self-renewal potential. Results: Our findings suggested that the effects of TCDD on the developing hematopoietic system were mediated by direct AHR activation in the fetus. Furthermore, developmental AHR activation by TCDD increased ROS in the fetal hematopoietic stem cells, and the elevated ROS was associated with a reduced capacity of the TCDD-exposed fetal cells to compete with control cells in a mixed competitive irradiation/reconstitution assay. Conclusions: Our findings indicate that AHR activation by TCDD in the fetus during pregnancy leads to impairment of long-term self-renewal of hematopoietic stem cells. Citation: Laiosa MD, Tate ER, Ahrenhoerster LS, Chen Y, Wang D. 2016. Effects of developmental activation of the aryl hydrocarbon receptor by 2

  18. Strength Training Following Hematopoietic Stem Cell Transplantation

    PubMed Central

    Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa

    2010-01-01

    Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175

  19. Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation.

    PubMed

    Saxena, Shobhit; Rönn, Roger E; Guibentif, Carolina; Moraghebi, Roksana; Woods, Niels-Bjarne

    2016-05-10

    Hematopoietic cells emerge from hemogenic endothelium in the developing embryo. Mechanisms behind human hematopoietic stem and progenitor cell development remain unclear. Using a human pluripotent stem cell differentiation model, we report that cyclic AMP (cAMP) induction dramatically increases HSC-like cell frequencies. We show that hematopoietic cell generation requires cAMP signaling through the Exchange proteins activated by cAMP (cAMP-Epac) axis; Epac signaling inhibition decreased both hemogenic and non-hemogenic endothelium, and abrogated hematopoietic cell generation. Furthermore, in hematopoietic progenitor and stem-like cells, cAMP induction mitigated oxidative stress, created a redox-state balance, and enhanced C-X-C chemokine receptor type 4 (CXCR4) expression, benefiting the maintenance of these primitive cells. Collectively, our study provides insights and mechanistic details on the previously unrecognized role of cAMP signaling in regulating human hematopoietic development. These findings advance the mechanistic understanding of hematopoietic development toward the development of transplantable human hematopoietic cells for therapeutic needs. PMID:27117782

  20. The biology of hematopoietic stem cells.

    PubMed

    Szilvassy, Stephen J

    2003-01-01

    Rarely has so much interest from the lay public, government, biotechnology industry, and special interest groups been focused on the biology and clinical applications of a single type of human cell as is today on stem cells, the founder cells that sustain many, if not all, tissues and organs in the body. Granting organizations have increasingly targeted stem cells as high priority for funding, and it appears clear that the evolving field of tissue engineering and regenerative medicine will require as its underpinning a thorough understanding of the molecular regulation of stem cell proliferation, differentiation, self-renewal, and aging. Despite evidence suggesting that embryonic stem (ES) cells might represent a more potent regenerative reservoir than stem cells collected from adult tissues, ethical considerations have redirected attention upon primitive cells residing in the bone marrow, blood, brain, liver, muscle, and skin, from where they can be harvested with relative sociological impunity. Among these, it is arguably the stem and progenitor cells of the mammalian hematopoietic system that we know most about today, and their intense study in rodents and humans over the past 50 years has culminated in the identification of phenotypic and molecular genetic markers of lineage commitment and the development of functional assays that facilitate their quantitation and prospective isolation. This review focuses exclusively on the biology of hematopoietic stem cells (HSCs) and their immediate progeny. Nevertheless, many of the concepts established from their study can be considered fundamental tenets of an evolving stem cell paradigm applicable to many regenerating cellular systems. PMID:14734085

  1. In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells

    PubMed Central

    Rashidi, Narges M.; Scott, Mark K.; Scherf, Nico; Krinner, Axel; Kalchschmidt, Jens S.; Gounaris, Kleoniki; Selkirk, Murray E.; Roeder, Ingo

    2014-01-01

    Hematopoietic stem cells (HSCs) maintain the turnover of mature blood cells during steady state and in response to systemic perturbations such as infections. Their function critically depends on complex signal exchanges with the bone marrow (BM) microenvironment in which they reside, but the cellular mechanisms involved in HSC-niche interactions and regulating HSC function in vivo remain elusive. We used a natural mouse parasite, Trichinella spiralis, and multipoint intravital time-lapse confocal microscopy of mouse calvarium BM to test whether HSC-niche interactions may change when hematopoiesis is perturbed. We find that steady-state HSCs stably engage confined niches in the BM whereas HSCs harvested during acute infection are motile and therefore interact with larger niches. These changes are accompanied by increased long-term repopulation ability and expression of CD44 and CXCR4. Administration of a CXCR4 antagonist affects the duration of HSC-niche interactions. These findings suggest that HSC-niche interactions may be modulated during infection. PMID:24850759

  2. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function.

    PubMed

    Chen, Wei; Chan, Anissa S H; Dawson, Amanda J; Liang, Xueqing; Blazar, Bruce R; Miller, Jeffrey S

    2005-01-01

    Dendritic cells (DCs) are key effectors in innate immunity and play critical roles in triggering adaptive immune responses. FLT3 ligand (FLT3-L) is essential for DC development from hematopoietic progenitors. In a phase I clinical trial, we demonstrated that immunotherapy with subcutaneous injection of FLT3-L is safe and well tolerated in cancer patients recovering from autologous hematopoietic cell transplantation (HCT). FLT3-L administration significantly increased the frequency and absolute number of blood DC precursors without affecting other mature cell lineages during the 6-week course of FLT3-L therapy. After 14 days of FLT3-L administration, the number of blood CD11c + DCs, plasmacytoid DCs (PDCs), and CD14 + monocytes increased by 5.3-, 2.9-, 3.8-fold, respectively, and was maintained at increased levels throughout FLT3-L therapy. FLT3-L-increased blood DCs in HCT patients were immature and had modest enhancing effects on in vitro T-cell proliferation to antigens and natural killer (NK) cell function. The addition of type B CpG oligodeoxynucleotides (ODNs) to peripheral blood mononuclear cells obtained from HCT patients receiving FLT3-L therapy induced rapid maturation of both CD11c + DCs and PDCs and enhanced T-cell proliferative responses. In addition, CpG ODN induced potent activation of NK cells from FLT3-L-treated patients with increased surface CD69 expression and augmented cytotoxicity. CpG ODN-induced activation of NK cells was primarily via an indirect mechanism through PDCs. These findings suggest that FLT3-L mobilization of DC precursors followed by a specific DC stimulus such as CpG ODN may provide a novel strategy to manipulate antitumor immunity in patients after HCT. PMID:15625541

  3. Gene marking and gene therapy directed at primary hematopoietic cells.

    PubMed

    Dunbar, C E; Young, N S

    1996-11-01

    The past year has been a very active one in the field of gene transfer to hematopoietic targets, specifically stem cells and T cells. A number of clinical trials were published that both demonstrated progress as well as identified problems that investigators will face in trying to make the technology therapeutically applicable. Important laboratory and animal experiments focused on predictive models for human stem cell behavior, methods for culturing and expanding primitive cells ex vivo, immune responses against transgenes, in vitro and in vivo selection of transduced cells, and alternatives to standard retroviral vectors. PMID:9372114

  4. β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors

    PubMed Central

    Grumolato, Luca; Liu, Guizhong; Haremaki, Tomomi; Mungamuri, Sathish Kumar; Mong, Phyllus; Akiri, Gal; Lopez-Bergami, Pablo; Arita, Adriana; Anouar, Youssef; Mlodzik, Marek; Ronai, Ze'ev A.; Brody, Joshua; Weinstein, Daniel C.; Aaronson, Stuart A.

    2013-01-01

    The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of

  5. Cryopreservation of Hematopoietic Stem Cells

    PubMed Central

    Berz, David; McCormack, Elise M.; Winer, Eric S.; Colvin, Gerald A.; Quesenberry, Peter J.

    2007-01-01

    Stem cell transplantation represents a critical approach for the treatment of many malignant and non-malignant diseases. The foundation for these approaches is the ability to cryopreserve marrow cells for future use. This technique is routinely employed in all autologous settings and is critical for cord blood transplantation. A variety of cryopreservatives have been used with multiple freezing and thawing techniques as outlined in the later chapters. Freezing efficiency has been proven repeatedly and the ability of long-term stored marrow to repopulate has been established. Standard approaches outlined here are used in many labs as the field continues to evolve. PMID:17266054

  6. Epigenetic regulation of hematopoietic stem cell aging

    SciTech Connect

    Beerman, Isabel

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  7. Modeling Sitagliptin Effect on Dipeptidyl Peptidase 4 (DPP4) Activity in Adults with Hematological Malignancies After Umbilical Cord Blood (UCB) Hematopoietic Cell Transplant (HCT)

    PubMed Central

    de Mendizábal, Nieves Vélez; Strother, Robert M.; Farag, Sherif S.; Broxmeyer, Hal E.; Messina-Graham, Steven; Chitnis, Shripad D.; Bies, Robert R.

    2014-01-01

    Background and Objectives Dipeptidyl peptidase-4 (DPP4) inhibition is a potential strategy to increase the engraftment rate of hematopoietic stem/progenitor cells. A recent clinical trial using sitagliptin, a DPP4 inhibitor approved for type 2 diabetes mellitus, has shown to be a promising approach in adults with hematological malignancies after umbilical cord blood (UCB) hematopoietic cell transplant (HCT). Based on data from this clinical trial, a semi-mechanistic model was developed to simultaneously describe DPP4 activity after multiple doses of sitagliptin in subjects with hematological malignancies after a single-unit UCB HCT. Methods The clinical study included 24 patients that received myeloablative conditioning followed by 4 oral sitagliptin 600mg with single-unit UCB HCT. Using a nonlinear mixed effects approach, a semi-mechanistic pharmacokinetic/pharmacodynamic model was developed to describe DPP4 activity from this trial data using NONMEM 7.2. The model was used to drive Monte-Carlo simulations to probe various dosage schedules and the attendant DPP4 response. Results The disposition of sitagliptin in plasma was best described by a 2-compartment model. The relationship between sitagliptin concentration and DPP4 activity was best described by an indirect response model with a negative feedback loop. Simulations showed that twice a day or three times a day dosage schedules were superior to once daily schedule for maximal DPP4 inhibition at the lowest sitagliptin exposure. Conclusion This study provides the first pharmacokinetic/pharmacodynamic model of sitagliptin in the context of HCT, and provides a valuable tool for exploration of optimal dosing regimens, critical for improving time to engraftment in patients after UCB HCT. PMID:24142388

  8. Neuromuscular complications of hematopoietic stem cell transplantation.

    PubMed

    Ruzhansky, Katherine M; Brannagan, Thomas H

    2015-10-01

    Neuromuscular diseases such as polymyositis, dermatomyositis, peripheral neuropathy, and disorders of neuromuscular transmission are reported to be complications of hematopoietic stem cell transplantation (HSCT). Although cases have been reported with allogeneic HSCT in the setting of chronic graft versus host disease, they are also known to occur without evidence thereof and even occur in the setting of autologous HSCT. The 2005 National Institutes of Health Consensus Criteria classify polymyositis and dermatomyositis as "distinctive" features, and neuropathy and MG as "other" features. These neuromuscular complications present very similarly to the idiopathic autoimmune disorders and respond to similar treatment modalities. PMID:26044357

  9. Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor

    PubMed Central

    Xu, Zhifang; Ohtaki, Hirokazu; Watanabe, Jun; Miyamoto, Kazuyuki; Murai, Norimitsu; Sasaki, Shun; Matsumoto, Minako; Hashimoto, Hitoshi; Hiraizumi, Yutaka; Numazawa, Satoshi; Shioda, Seiji

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP, encoded by adcyap1) plays an important role in ectodermal development. However, the involvement of PACAP in the development of other germ layers is still unclear. This study assessed the expression of a PACAP-specific receptor (PAC1) gene and protein in mouse bone marrow (BM). Cells strongly expressing PAC1+ were large in size, had oval nuclei, and merged with CD34+ cells, suggesting that the former were hematopoietic progenitor cells (HPCs). Compared with wild-type mice, adcyap1−/− mice exhibited lower multiple potential progenitor cell populations and cell frequency in the S-phase of the cell cycle. Exogenous PACAP38 significantly increased the numbers of colony forming unit-granulocyte/macrophage progenitor cells (CFU-GM) with two peaks in semi-solid culture. PACAP also increased the expression of cyclinD1 and Ki67 mRNAs. These increases were completely and partially inhibited by the PACAP receptor antagonists, PACAP6-38 and VIP6-28, respectively. Little or no adcyap1 was expressed in BM and the number of CFU-GM colonies was similar in adcyap1−/− and wild-type mice. However, PACAP mRNA and protein were expressed in paravertebral sympathetic ganglia, which innervate tibial BM, and in the sympathetic fibers of BM cavity. These results suggested that sympathetic nerve innervation may be responsible for PACAP-regulated hematopoiesis in BM, mainly via PAC1. PMID:26925806

  10. Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury

    PubMed Central

    Zachman, Derek K.; Leon, Ronald P.; Das, Prerna; Goldman, Devorah C.; Hamlin, Kimberly L.; Guha, Chandan; Fleming, William H.

    2014-01-01

    Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic endothelial cells (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150+, lineagelo, Sca-1+, c-Kit+; CD150+LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24 hours. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48 hours and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150+LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury. PMID:23939266

  11. Engineering Hematopoietic Stem Cells: Lessons from Development.

    PubMed

    Rowe, R Grant; Mandelbaum, Joseph; Zon, Leonard I; Daley, George Q

    2016-06-01

    Cell engineering has brought us tantalizingly close to the goal of deriving patient-specific hematopoietic stem cells (HSCs). While directed differentiation and transcription factor-mediated conversion strategies have generated progenitor cells with multilineage potential, to date, therapy-grade engineered HSCs remain elusive due to insufficient long-term self-renewal and inadequate differentiated progeny functionality. A cross-species approach involving zebrafish and mammalian systems offers complementary methodologies to improve understanding of native HSCs. Here, we discuss the role of conserved developmental timing processes in vertebrate hematopoiesis, highlighting how identification and manipulation of stage-specific factors that specify HSC developmental state must be harnessed to engineer HSCs for therapy. PMID:27257760

  12. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    SciTech Connect

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C. )

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans.

  13. Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells

    PubMed Central

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F.; Pang, Qishen

    2016-01-01

    The prominent role of Fanconi anemia (FA) proteins involves homologous recombination (HR) repair. Poly[ADP-ribose] polymerase1 (PARP1) functions in multiple cellular processes including DNA repair and PARP inhibition is an emerging targeted therapy for cancer patients deficient in HR. Here we show that PARP1 activation in hematopoietic stem and progenitor cells (HSPCs) in response to genotoxic or oxidative stress attenuates HSPC exhaustion. Mechanistically, PARP1 controls the balance between HR and non-homologous end joining (NHEJ) in double strand break (DSB) repair by preventing excessive NHEJ. Disruption of the FA core complex skews PARP1 function in DSB repair and led to hyper-active NHEJ in Fanca−/− or Fancc−/− HSPCs. Re-expression of PARP1 rescues the hyper-active NHEJ phenotype in Brca1−/−Parp1−/− but less effective in Fanca−/−Parp1−/− cells. Inhibition of NHEJ prevents myeloid/erythroid pathologies associated with synthetic lethality. Our results suggest that hyper-active NHEJ may select for “synthetic lethality” resistant and pathological HSPCs. PMID:26916217

  14. Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells.

    PubMed

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F; Pang, Qishen

    2016-01-01

    The prominent role of Fanconi anemia (FA) proteins involves homologous recombination (HR) repair. Poly[ADP-ribose] polymerase1 (PARP1) functions in multiple cellular processes including DNA repair and PARP inhibition is an emerging targeted therapy for cancer patients deficient in HR. Here we show that PARP1 activation in hematopoietic stem and progenitor cells (HSPCs) in response to genotoxic or oxidative stress attenuates HSPC exhaustion. Mechanistically, PARP1 controls the balance between HR and non-homologous end joining (NHEJ) in double strand break (DSB) repair by preventing excessive NHEJ. Disruption of the FA core complex skews PARP1 function in DSB repair and led to hyper-active NHEJ in Fanca(-/-) or Fancc(-/-) HSPCs. Re-expression of PARP1 rescues the hyper-active NHEJ phenotype in Brca1(-/-)Parp1(-/-) but less effective in Fanca(-/-)Parp1(-/-) cells. Inhibition of NHEJ prevents myeloid/erythroid pathologies associated with synthetic lethality. Our results suggest that hyper-active NHEJ may select for "synthetic lethality" resistant and pathological HSPCs. PMID:26916217

  15. Non-Hematopoietic and Hematopoietic SIRPα Signaling Differently Regulates Murine B Cell Maturation in Bone Marrow and Spleen

    PubMed Central

    Kolan, Shrikant Shantilal; Lejon, Kristina; Koskinen Holm, Cecilia; Sulniute, Rima; Lundberg, Pernilla; Matozaki, Takashi; Oldenborg, Per-Arne

    2015-01-01

    B lymphocyte development occurs in the bone marrow, while final differentiation and maturation can occur in both the bone marrow and the spleen. Here we provide evidence that signal regulatory protein α (SIRPα), an Ig-superfamily ITIM-receptor expressed by myeloid but not by lymphoid cells, is involved in regulating B cell maturation. Lack of SIRPα signaling in adult SIRPα-mutant mice resulted in a reduced maturation of B cells in the bone marrow, evident by reduced numbers of semi-mature IgD+IgMhi follicular type-II (F-II) and mature IgD+IgMlo follicular type-I (F-I) B cells, as well as reduced blood B cell numbers. In addition, lack of SIRPα signaling also impaired follicular B cell maturation in the spleen. Maturing BM or splenic B cells of SIRPα-mutant mice were found to express higher levels of the pro-apoptotic protein BIM and apoptosis was increased among these B cells. Bone marrow reconstitution experiments revealed that the B cell maturation defect in bone marrow and blood was due to lack of SIRPα signaling in non-hematopoietic cells, while hematopoietic SIRPα signaling was important for follicular B cell maturation in the spleen. Adding on to our previous findings of a stromal cell defect in SIRPα-mutant mice was the finding that gene expression of receptor activator of nuclear factor-ĸB ligand (RANKL) was significantly lower in cultured bone marrow stromal cells of SIRPα mutant mice. These data suggest a novel and opposite contribution of SIRPα signaling within non-hematopoietic and hematopoietic cells, respectively, to maintain B cell maturation and to prevent apoptosis in the bone marrow and spleen of adult mice. PMID:26222253

  16. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    PubMed Central

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  17. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity.

    PubMed

    Gibbs, Bernhard F; Gonçalves Silva, Isabel; Prokhorov, Alexandr; Abooali, Maryam; Yasinska, Inna M; Casely-Hayford, Maxwell A; Berger, Steffen M; Fasler-Kan, Elizaveta; Sumbayev, Vadim V

    2015-10-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  18. Protective effects of ginsenoside Rg1 on aging Sca-1⁺ hematopoietic cells.

    PubMed

    Zhou, Yue; Liu, Jun; Cai, Shizhong; Liu, Dianfeng; Jiang, Rong; Wang, Yaping

    2015-09-01

    In adults, bone hematopoietic cells are responsible for the lifelong production of all blood cells. It is affected in aging, with progressive loss of physiological integrity leading to impaired function by cellular intrinsic and extrinsic factors. However, intervention measures, which directly inhibit the aging of hematopoietic cells, remain to be investigated. In the present study, 10 µmol/l ginsenoside Rg1 (Rg1) markedly alleviated the aging phenotypes of Sca‑1+ hematopoietic cells following in vitro exposure. In addition, the protective effects of ginsenoside Rg1 on the aging of Sca‑1+ hematopoietic cells was confirmed using a serial transplantation assay in C57BL/6 mice. The mechanistic investigations revealed that Rg1‑mediated Sca‑1+ hematopoietic cell aging alleviation was linked to a series of characteristic events, including telomere end attrition compensation, telomerase activity reconstitution and the activation of genes involved in p16‑Rb signaling pathways. Based on the above results, it was concluded that ginsenoside Rg1 is a potent agent, which acts on hematopoietic cells to protect them from aging, which has implications for therapeutic approaches in hemopoietic diseases. PMID:26045300

  19. Allogeneic hematopoietic stem cell transplantation in Tunisia.

    PubMed

    Ben Othman, T; Torjemane, L; Abdelkefi, A; Lakhal, A; Ladeb, S; Ben Hamed, L; Slama, H; Ben Abdeladhim, A

    2008-08-01

    In 1998, the Tunisian team of the 'Centre National de Greffe de Moelle Osseuse' initiated allogeneic hematopoietic SCT (AHSCT) in Tunisia. As of June 2007, information was collected about 299 patients with a first AHSCT and 12 additional retransplants. The median age was 19 years (range 2-49 years). The main indications were aplastic anemia (n=106, 36%), leukemia and nonmalignant disorders (n=153, 51%), Fanconi anemia (n=26, 9%) and other nonmalignant disorders (n=14, 4%). Preparative regimens depended on indication. All donors were HLA geno-identical. The stem cell sources were BM (87%) and PBSCs (13%). At the time of analysis, 200 patients (67%) were alive after a median follow-up of 42 months (range 3-112 months). The overall TRM rate was 17%. Outcome depended on indication. According to our results, allogeneic HSCT is potentially curative for hematological diseases, but it is a toxic approach for malignant disorders. PMID:18724288

  20. Persistent Disparities in Adult Hematopoietic Cell Transplantation.

    PubMed

    Crockett, David G; Loberiza, Fausto R

    2015-09-01

    The use of large databases has provided advancements in the understanding of racial, ethnic, and socioeconomic disparities in the field of adult hematopoietic cell transplants (HCT). Disparities exist on individual, institutional, and systemic levels for both allogeneic and autologous HCT. We reviewed the most recent publications that utilized large databases to elucidate disparities in HCT and placed them into historical context of the other major studies in the field. Two emerging themes were identified. These themes are persistent inequalities in both allogeneic HCT and autologous HCT for myeloma and the importance of improving homogeneity of care in HCT. Minimization of inequalities can be achieved only with an understanding of the persistent barriers that exist in the field. PMID:26104908

  1. [Origin of Hematopoietic Stem Cells in Bone Marrow--Endothelial to Hematopoietic Transition (EHT)?].

    PubMed

    Wang, Fen; Yuan, Yan; Chen, Tong

    2015-06-01

    In contrast to primitive hematopoiesis, during embryonic definitive hematopoiesis, it has been demonstrated that multilineage hematopoietic stem/progenitor cells (HSPCs) arise from hemogenic endothelium, and the endothelial to hematopoietic transition (EHT) exists within the yolk sac, placenta, AGM, mouse head vascular and extraembryonic vessels. However, whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, including fetal liver and bone marrow, remains largely unknown. Recently, more and more researches showed that hematopoiesis within bone marrow had a close relationship with vascular endothelium development, too. This review summarizes the mechanism of EHT during embryo development, and discuss whether EHT exists in adult hematopoiesis. PMID:26117052

  2. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation

    PubMed Central

    Kerenyi, Marc A; Shao, Zhen; Hsu, Yu-Jung; Guo, Guoji; Luc, Sidinh; O'Brien, Kassandra; Fujiwara, Yuko; Peng, Cong; Nguyen, Minh; Orkin, Stuart H

    2013-01-01

    Here, we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on Lys4 or Lys9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis, combining global occupancy of Lsd1, genome-wide analysis of its substrates H3K4 monomethylation and dimethylation, and gene expression profiling, reveals that Lsd1 represses hematopoietic stem and progenitor cell (HSPC) gene expression programs during hematopoietic differentiation. We found that Lsd1 acts at transcription start sites, as well as enhancer regions. Loss of Lsd1 was associated with increased H3K4me1 and H3K4me2 methylation on HSPC genes and gene derepression. Failure to fully silence HSPC genes compromised differentiation of hematopoietic stem cells as well as mature blood cell lineages. Collectively, our data indicate that Lsd1-mediated concurrent repression of enhancer and promoter activity of stem and progenitor cell genes is a pivotal epigenetic mechanism required for proper hematopoietic maturation. DOI: http://dx.doi.org/10.7554/eLife.00633.001 PMID:23795291

  3. Circulation and Chemotaxis of Fetal Hematopoietic Stem Cells

    PubMed Central

    2004-01-01

    The major site of hematopoiesis transitions from the fetal liver to the spleen and bone marrow late in fetal development. To date, experiments have not been performed to evaluate functionally the migration and seeding of hematopoietic stem cells (HSCs) during this period in ontogeny. It has been proposed that developmentally timed waves of HSCs enter the bloodstream only during distinct windows to seed the newly forming hematopoietic organs. Using competitive reconstitution assays to measure HSC activity, we determined the localization of HSCs in the mid-to-late gestation fetus. We found that multilineage reconstituting HSCs are present at low numbers in the blood at all timepoints measured. Seeding of fetal bone marrow and spleen occurred over several days, possibly while stem cell niches formed. In addition, using dual-chamber migration assays, we determined that like bone marrow HSCs, fetal liver HSCs migrate in response to stromal cell-derived factor-1α (SDF-1α); however, unlike bone marrow HSCs, the migratory response of fetal liver HSCs to SDF-1α is greatly increased in the presence of Steel factor (SLF), suggesting an important role for SLF in HSC homing to and seeding of the fetal hematopoietic tissues. Together, these data demonstrate that seeding of fetal organs by fetal liver HSCs does not require large fluxes of HSCs entering the fetal bloodstream, and that HSCs constitutively circulate at low levels during the gestational period from 12 to 17 days postconception. Newly forming hematopoietic tissues are seeded gradually by HSCs, suggesting initial seeding is occurring as hematopoietic niches in the spleen and bone marrow form and become capable of supporting HSC self-renewal. We demonstrate that fetal and adult HSCs exhibit specific differences in chemotactic behavior. While both migrate in response to SDF-1α, fetal HSCs also respond significantly to the cytokine SLF. In addition, the combination of SDF-1α and SLF results in substantially enhanced

  4. The PD-1 Axis Enforces an Anatomical Segregation of CTL Activity that Creates Tumor Niches after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Michonneau, David; Sagoo, Pervinder; Breart, Béatrice; Garcia, Zacarias; Celli, Susanna; Bousso, Philippe

    2016-01-19

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a curative treatment for hematologic malignancies, relies on donor cytotoxic T lymphocyte (CTL)-mediated graft-versus-leukemia (GVL) effect. Major complications of HSCT are graft-versus-host disease (GVHD) that targets specific tissues and tumor relapses. However, the mechanisms dictating the anatomical features of GVHD and GVL remain unclear. Here, we show that after HSCT, CTLs exhibited different killing activity in distinct tissues, being highest in the liver and lowest in lymph nodes. Differences were imposed by the microenvironment, partly through differential PD-1 ligand expression, which was strongly elevated in lymph nodes. Two-photon imaging revealed that PD-1 blockade restored CTL sensitivity to antigen and killing in lymph nodes. Weak CTL activity in lymph nodes promoted local tumor escape but could be reversed by anti-PD-1 treatment. Our results uncover a mechanism generating an anatomical segregation of CTL activity that might dictate sites of GVHD and create niches for tumor escape. PMID:26795248

  5. Functional screen identifies regulators of murine hematopoietic stem cell repopulation.

    PubMed

    Holmfeldt, Per; Ganuza, Miguel; Marathe, Himangi; He, Bing; Hall, Trent; Kang, Guolian; Moen, Joseph; Pardieck, Jennifer; Saulsberry, Angelica C; Cico, Alba; Gaut, Ludovic; McGoldrick, Daniel; Finkelstein, David; Tan, Kai; McKinney-Freeman, Shannon

    2016-03-01

    Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp251. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3(-/-) HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host. PMID:26880577

  6. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey.

    PubMed

    Niederwieser, D; Baldomero, H; Szer, J; Gratwohl, M; Aljurf, M; Atsuta, Y; Bouzas, L F; Confer, D; Greinix, H; Horowitz, M; Iida, M; Lipton, J; Mohty, M; Novitzky, N; Nunez, J; Passweg, J; Pasquini, M C; Kodera, Y; Apperley, J; Seber, A; Gratwohl, A

    2016-06-01

    Data on 68 146 hematopoietic stem cell transplants (HSCTs) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCTs were registered from unrelated 16 433 donors than related 15 493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared with 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCTs/team). An increase of 167% was noted in mismatched/haploidentical family HSCT. A Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four World Health Organization regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood transplantation. PMID:26901703

  7. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation

    PubMed Central

    Kazemi, Zahra; Bergmayr, Christian; Prchal-Murphy, Michaela; Javaheri, Tahereh; Themanns, Madeleine; Pham, Ha T. T.; Strohmaier, Wolfgang; Sexl, Veronika; Zebedin-Brandl, Eva

    2016-01-01

    Activation of Gs-coupled receptors enhances engraftment of hematopoietic stem and progenitor cells (HSPCs). We tested the hypothesis that treprostinil, a prostacyclin analog approved for the treatment of pulmonary hypertension, can be repurposed to improve hematopoietic stem cell transplantation. Murine and human HSPCs were isolated from bone marrow and umbilical cord blood, respectively. Prostanoid receptor agonists and the combination thereof with forskolin were tested for their capacity to stimulate [3H]cAMP accumulation in HSPCs. Three independent approaches were employed to verify the ability of agonist-activated HSPCs to reconstitute the bone marrow in lethally irradiated recipient mice. The underlying mechanism was explored in cellular migration assays and by blocking C-X-C motif chemokine receptor 4 (CXCR4). Among several prostanoid agonists tested in combination with forskolin, treprostinil was most efficacious in raising intracellular cAMP levels in murine and human HPSCs. Injection of murine and human HSPCs, which had been pretreated with treprostinil and forskolin, enhanced survival of lethally irradiated recipient mice. Survival was further improved if recipient mice were subcutaneously administered treprostinil (0.15 mg kg−1 8 h−1) for 10 days. This regimen also reduced the number of HSPCs required to rescue lethally irradiated mice. Enhanced survival of recipient mice was causally related to treprostinil-enhanced CXCR4-dependent migration of HSPCs. Treprostinil stimulates the engraftment of human and murine hematopoietic stem cells without impairing their capacity for self-renewal. The investigated dose range corresponds to the dose approved for human use. Hence, these findings may be readily translated into a clinical application. PMID:26989084

  8. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation.

    PubMed

    Kazemi, Zahra; Bergmayr, Christian; Prchal-Murphy, Michaela; Javaheri, Tahereh; Themanns, Madeleine; Pham, Ha T T; Strohmaier, Wolfgang; Sexl, Veronika; Freissmuth, Michael; Zebedin-Brandl, Eva

    2016-06-01

    Activation of Gs-coupled receptors enhances engraftment of hematopoietic stem and progenitor cells (HSPCs). We tested the hypothesis that treprostinil, a prostacyclin analog approved for the treatment of pulmonary hypertension, can be repurposed to improve hematopoietic stem cell transplantation. Murine and human HSPCs were isolated from bone marrow and umbilical cord blood, respectively. Prostanoid receptor agonists and the combination thereof with forskolin were tested for their capacity to stimulate [(3)H]cAMP accumulation in HSPCs. Three independent approaches were employed to verify the ability of agonist-activated HSPCs to reconstitute the bone marrow in lethally irradiated recipient mice. The underlying mechanism was explored in cellular migration assays and by blocking C-X-C motif chemokine receptor 4 (CXCR4). Among several prostanoid agonists tested in combination with forskolin, treprostinil was most efficacious in raising intracellular cAMP levels in murine and human HPSCs. Injection of murine and human HSPCs, which had been pretreated with treprostinil and forskolin, enhanced survival of lethally irradiated recipient mice. Survival was further improved if recipient mice were subcutaneously administered treprostinil (0.15 mg kg(-1) 8 h(-1)) for 10 days. This regimen also reduced the number of HSPCs required to rescue lethally irradiated mice. Enhanced survival of recipient mice was causally related to treprostinil-enhanced CXCR4-dependent migration of HSPCs. Treprostinil stimulates the engraftment of human and murine hematopoietic stem cells without impairing their capacity for self-renewal. The investigated dose range corresponds to the dose approved for human use. Hence, these findings may be readily translated into a clinical application. PMID:26989084

  9. The regulation of hematopoietic stem cell populations

    PubMed Central

    Mayani, Hector

    2016-01-01

    Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges. PMID:27408695

  10. The Effect of Baicalin as A PPAR Activator on Erythroid Differentiation of CD133+Hematopoietic Stem Cells in Umbilical Cord Blood

    PubMed Central

    Abbasi, Parvaneh; Shamsasenjan, Karim; Movassaghpour Akbari, Ali Akbar; Akbarzadehlaleh, Parvin; Dehdilani, Nima; Ejtehadifar, Mostafa

    2015-01-01

    Objective The peroxisome proliferator-activated receptors (PPARs) are a group of nu- clear receptor proteins whose functions as transcription factors regulate gene expres- sions. PPARs play essential roles in the regulation of cellular differentiation, development, and metabolism (carbohydrate, lipid, protein), and tumorigenesis of higher organisms. This study attempts to determine the effect of baicalin, a PPARγ activator, on erythroid differentiation of cluster of differentiation 133+(CD133+) cord blood hematopoietic stem cells (HSCs). Materials and Methods In this experimental study, in order to investigate the effects of the PPARγ agonists baicalin and troglitazone on erythropoiesis, we isolated CD133+ cells from human umbilical cord blood using the MACS method. Isolated cells were cultured in erythroid-inducing medium with or without various amounts of the two PPARγ activa- tors (baicalin and troglitazone). Erythroid differentiation of CD133+cord blood HSCs were assessed using microscopic morphology analysis, flow cytometric analysis of erythroid surface markers transferrin receptor (TfR) and glycophorin A (GPA) and bycolony forming assay. Results Microscopic and flow cytometric analysis revealed the erythroid differentiation of CD133+cord blood HSCs under applied erythroid inducing conditions. Our flow cytometric data showed that the TfR and GPA positive cell population diminished significantly in the presence of either troglitazone or baicalin. The suppression of erythroid differentiation in response to PPARγ agonists was dose-dependent. Erythroid colony-forming ability of HSC decreased significantly after treatment with both PPARγ agonists but troglitazone had a markedly greater effect. Conclusion Our results have demonstrated that PPARγ agonists modulate erythroid dif- ferentiation of CD133+HSCs, and therefore play an important role in regulation of normal erythropoiesis under physiologic conditions. Thus, considering the availability and applica

  11. Hospital infection control in hematopoietic stem cell transplant recipients.

    PubMed Central

    Dykewicz, C. A.

    2001-01-01

    Guidelines for Preventing Opportunistic Infections Among Hematopoietic Stem Cell Transplant Recipients contains a section on hospital infection control including evidence-based recommendations regarding ventilation, construction, equipment, plants, play areas and toys, health-care workers, visitors, patient skin and oral care, catheter-related infections, drug-resistant organisms, and specific nosocomial infections. These guidelines are intended to reduce the number and severity of hospital infections in hematopoietic stem cell transplant recipients. PMID:11294720

  12. Parvovirus Infection Suppresses Long-Term Repopulating Hematopoietic Stem Cells

    PubMed Central

    Segovia, José C.; Guenechea, Guillermo; Gallego, Jesús M.; Almendral, José M.; Bueren, Juan A.

    2003-01-01

    The functional disturbance of self-renewing and multipotent hematopoietic stem cells (HSCs) in viral diseases is poorly understood. In this report, we have assessed the susceptibility of mouse HSCs to strain i of the autonomous parvovirus minute virus of mice (MVMi) in vitro and during persistent infection of an immunodeficient host. Purified 5FUr Lin− Sca-1+ primitive hematopoietic precursors were permissive for MVMi genome replication and the expression of viral gene products. The lymphoid and myeloid repopulating capacity of bone marrow (BM) cells was significantly impaired after in vitro infection, although the degree of functional effect proportionally decreased with the posttransplantation time. This indicated that MVMi targets the heterogeneous compartment of repopulating cells with differential affinity and suggests that the virus may persist in some primitive HSCs in the quiescent stage, killing those eventually recruited for proliferative activity. Immunodeficient SCID mice oronasally infected with MVMi were cured of the characteristic virus-induced lethal leukopenia by transplantation of immunocompetent BM grafts. However, two double-stranded viral DNA species, probably uncommon replicative intermediates, remained in the marrow of every transplanted mouse months after infectious virus clearance. Genetic analysis of the rescued mice showed that the infection ensured a stable engraftment of donor hematopoiesis by markedly depleting the pool of endogenous HSCs. The MVMi-induced suppression of HSC functions illustrates the accessibility of this compartment to infection during a natural viral hematological disease. These results may provide clues to understanding delayed hematopoietic syndromes associated with persistent viral infections and to prospective gene delivery to HSCs in vivo. PMID:12857918

  13. [Umbilical cord hematopoietic progenitor cells bank].

    PubMed

    Morales, V H; Milone, J; Etchegoyen, O; Bordone, J; Uranga, A

    2001-01-01

    Transplantation of hematopoietic progenitor cells (HPC) from bone marrow and mobilized peripheral blood is a standard therapy in malignant and non malignant diseases. The lack of suitable donors is an important limitation. The discovery that umbilical cord blood (CB) contains high numbers of HPC that can be used as an alternative source for allogeneic stem cell transplantation led ITMO to establish BANCEL, the first Argentine and Latinoamerican experience of its kind. The blood remaining in the umbilical cord and in the placenta was requested from women who were in the last quarter of pregnancy. An informed consent together with a medical record focused on family disease was completed. Out of 65 donations, 55 (85%) were collected and 51 (78%) were cryopreserved. Mean collected volume was 110 ml with 68% (75 ml) reduction and mean cryopreservation of 35 ml; ABO and Rh blood group systems were determined, HLA, class I, A and B loci, and class II, DR locus were typed by molecular biology methods using PCR-SSOP. Infectious disease screening was carried out for brucellosis, syphilis, Chagas, hepatitis B and C, HIV I and II, HTLV I and II, toxoplasmosis and cytomegalovirus. Two positive units for hepatitis B (anticore) and two positive units for Chagas were discarded. The quantity of total nucleated cells (TNC), CD34+ cells and the clonogenic capacity were determined twice at the collection and after the procedures of volume reduction previous to cryopreservation. A 5% reduction in both TNC and CD34 cells and a 10% in the colony forming units (CFU) were detected. A good correlation coefficient between TNC and CFU was obtained. PMID:11808425

  14. Hematopoietic stem cells: can old cells learn new tricks?

    PubMed

    Ho, Anthony D; Punzel, Michael

    2003-05-01

    Since the establishment of cell lines derived from human embryonic stem (ES) cells, it has been speculated that out of such "raw material," we could some day produce all sorts of replacement parts for the human body. Human pluripotent stem cells can be isolated from embryonic, fetal, or adult tissues. Enormous self-renewal capacity and developmental potential are the characteristics of ES cells. Somatic stem cells, especially those derived from hematopoietic tissues, have also been reported to exhibit developmental potential heretofore not considered possible. The initial evidences for the plasticity potential of somatic stem cells were so encouraging that the opponents of ES cell research used them as arguments for restricting ES cell research. In the past months, however, critical issues have been raised challenging the validity and the interpretation of the initial data. Whereas hematopoietic stem-cell therapy has been a clinical reality for almost 40 years, there is still a long way to go in basic research before novel therapy strategies with stem cells as replacement for other organ systems can be established. Given the present status, we should keep all options open for research in ES cells and adult stem cells to appreciate the complexity of their differentiation pathways and the relative merits of various types of stem cells for regenerative medicine. PMID:12714568

  15. Role of osteoclasts in regulating hematopoietic stem and progenitor cells

    PubMed Central

    Miyamoto, Takeshi

    2013-01-01

    Bone marrow (BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells (HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cells. HSCs produce their daughter cells throughout the lifespan of individuals and thus, maintaining HSCs is crucial for individual life. BM cavities provide a specialized microenvironment termed “niche” to support HSCs. Niches are composed of various types of cells such as osteoblasts, endothelial cells and reticular cells. Osteoclasts are unique cells which resorb bones and are required for BM cavity formation. Loss of osteoclast function or differentiation results in inhibition of BM cavity formation, an osteopetrotic phenotype. Osteoclasts are also reportedly required for hematopoietic stem and progenitor cell (HSPC) mobilization to the periphery from BM cavities. Thus, lack of osteoclasts likely results in inhibition of HSC maintenance and HSPC mobilization. However, we found that osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization by using three independent osteoclast-less animal models. In this review, I will discuss the roles of osteoclasts in hematopoietic stem cell maintenance and mobilization. PMID:24147255

  16. Busulfan and cyclosphamide induce liver inflammation through NLRP3 activation in mice after hematopoietic stem cell transplantation

    PubMed Central

    Qiao, Jianlin; Huang, Yujin; Xia, Yuan; Chu, Peipei; Yao, Haina; Xu, Linyan; Qi, Kunming; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2015-01-01

    The aim of this study was to evaluate the role of NLRP3 inflammasome on BU/CY-induced liver inflammation in mice after HSCT. HSCT mice model was established through infusion of 5 × 106 bone marrow mononuclear cells after conditioned with BU/CY. On day 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of liver inflammation, cytokine secretion, NLRP3 expression and caspase-1 activation as well as release of ATP and high-mobility group protein B1 (HMGB1). Furthermore, NLRP3 selective inhibitor (BAY 11-7082) was administrated into mice after HSCT to evaluate its effects on liver inflammation. Severe liver inflammation and damage with elevated secretion of IL-1β and IL-18 were found in mice after HSCT. Meanwhile, elevated expressions of NLRP3 and caspase-1 activation in liver were found. In addition, increased release of ATP and HMGB1 were observed. Selective inhibition of NLRP3 decreased caspase-1 activation and secretion of IL-1β and IL-18. Furthermore, NLRP3 inhibition also reduced infiltration of macrophages and neutrophils and improved liver function. In conclusion, NLRP3 was involved in BU/CY-induced liver inflammation after HSCT and selectively inhibited it ameliorated liver inflammation and improved liver function, suggesting targeting NLRP3 might be a new approach in the prophylaxis of liver inflammation after HSCT. PMID:26635145

  17. Busulfan and cyclosphamide induce liver inflammation through NLRP3 activation in mice after hematopoietic stem cell transplantation.

    PubMed

    Qiao, Jianlin; Huang, Yujin; Xia, Yuan; Chu, Peipei; Yao, Haina; Xu, Linyan; Qi, Kunming; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2015-01-01

    The aim of this study was to evaluate the role of NLRP3 inflammasome on BU/CY-induced liver inflammation in mice after HSCT. HSCT mice model was established through infusion of 5 × 10(6) bone marrow mononuclear cells after conditioned with BU/CY. On day 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of liver inflammation, cytokine secretion, NLRP3 expression and caspase-1 activation as well as release of ATP and high-mobility group protein B1 (HMGB1). Furthermore, NLRP3 selective inhibitor (BAY 11-7082) was administrated into mice after HSCT to evaluate its effects on liver inflammation. Severe liver inflammation and damage with elevated secretion of IL-1β and IL-18 were found in mice after HSCT. Meanwhile, elevated expressions of NLRP3 and caspase-1 activation in liver were found. In addition, increased release of ATP and HMGB1 were observed. Selective inhibition of NLRP3 decreased caspase-1 activation and secretion of IL-1β and IL-18. Furthermore, NLRP3 inhibition also reduced infiltration of macrophages and neutrophils and improved liver function. In conclusion, NLRP3 was involved in BU/CY-induced liver inflammation after HSCT and selectively inhibited it ameliorated liver inflammation and improved liver function, suggesting targeting NLRP3 might be a new approach in the prophylaxis of liver inflammation after HSCT. PMID:26635145

  18. Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

    PubMed Central

    Shao, Lijian; Luo, Yi

    2014-01-01

    Abstract Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462. PMID:24124731

  19. Iron overload in hematopoietic cell transplantation.

    PubMed

    Majhail, N S; Lazarus, H M; Burns, L J

    2008-06-01

    Iron overload, primarily related to RBC transfusions, is a relatively common complication in hematopoietic cell transplant (HCT) recipients. Iron overload increases the risk of infections, veno-occlusive disease and hepatic dysfunction post transplant. Elevated pretransplant ferritin levels have been reported to increase the risk of nonrelapse mortality following HCT and might influence the risk of acute and chronic GVHD. Serum ferritin is sensitive but not specific for iron overload and is a poor predictor of body iron burden. Estimation of hepatic iron content with a liver biopsy or magnetic resonance imaging should be considered prior to initiating therapy for post transplant iron overload. A subgroup of transplant survivors with mild iron overload and no end-organ damage may not need therapy. Phlebotomy is the treatment of choice with iron-chelation therapy reserved for patients not eligible for phlebotomy. Natural history, evolution and treatment of iron overload in transplant survivors have not been adequately investigated and more studies are needed to determine its impact on short-term and long-term morbidity and mortality. PMID:18438425

  20. Allogeneic Hematopoietic Cell Transplant for Prolymphocytic Leukemia

    PubMed Central

    Kalaycio, Matt E.; Kukreja, Manisha; Woolfrey, Ann E.; Szer, Jeffrey; Cortes, Jorge; Maziarz, Richard T.; Bolwell, Brian J.; Buser, Andreas; Copelan, Edward; Gale, Robert Peter; Gupta, Vikas; Maharaj, Dipnarine; Marks, David I; Pavletic, Steven Z.; Horowitz, Mary M.; Arora, Mukta

    2009-01-01

    The poor prognosis of patients with prolymphocytic leukemia (PLL) has led some clinicians to recommend allogeneic hematopoietic cell transplant (HCT). However, the data to support this approach is limited to case-reports and small case-series. We reviewed the database of the Center for International Blood & Marrow Transplant Research to determine outcomes after allotransplant for patients with PLL. We identified 47 patients with a median age of 54 years (range, 30–75). With a median follow-up of 13 months, progression-free survival was 33% (95% Confidence Interval 20–47%) at 2 years. The most common cause of death was relapse or progression in 49%. The cumulative incidence of treatment-related mortality at 1-year post transplant was 28%. The small patient population prohibited prognostic factor analysis but these data support consideration of allotransplant for PLL. Further study of a larger population of patients is needed to determine which patients are more likely to benefit. PMID:19961946

  1. Fertility issues following hematopoietic stem cell transplantation.

    PubMed

    Tichelli, André; Rovó, Alicia

    2013-08-01

    With the improvement of the outcome, the number of long-term survivors of hematopoietic stem cell transplantation (HSCT) is continuously increasing. However, there is still a high burden of late morbidity and mortality. Two-thirds of the transplant survivors develop at least one late effect interfering with their physical or psychological health. Infertility is common after myeloablative HSCT conditioned with total body irradiation and high doses of gonadotoxic drugs. Other factors, such as the age of the patient at transplantation, the treatment modality received before HSCT or the onset of chronic graft versus host disease, may play an additional role. Accordingly, the number of pregnancies observed after HSCT is very low when compared to a general population in childbearing age. Furthermore, complications during pregnancy and at delivery occur significantly more frequently, probably because of the uterine damages caused by irradiation therapy. However, there is no excess of congenital abnormalities observed among newborn children. Today there are good possibilities for fertility preservation. In male patients cryopreservation of sperm, and in female patients cryopreservation of fertilized embryos or of mature oocytes, are well-established treatment options. Patients' and physicians' attitude toward discussion on fertility issues play a key role in the success of fertility preservation after HSCT. PMID:23991924

  2. Late cytomegalovirus infection after hematopoietic stem cell transplantation: case reports

    PubMed Central

    Pinheiro, Sâmara Grapiuna; de Matos, Sócrates Bezerra; Botura, Mônica Borges; Meyer, Roberto; Lima, Fernanda Washington de Mendonça

    2013-01-01

    Cytomegalovirus is related to high rates of morbidity and mortality after hematopoietic stem cell transplantation. This report highlights the importance of adequate monitoring and management of this infection. We report on two cases of patients with late subclinical cytomegalovirus infection. These patients were monitored for antigenemia by indirect immunofluorescence assay. Active cytomegalovirus infection is most common in the first three months after transplantation however the cases reported herein show the importance of monitoring for active infection after Day +100 post-transplantation. Early detection of active infection enables quick preemptive therapy. In conclusion, we emphasize that patients with risk factors for developing severe or late cytomegalovirus disease should be monitored for more than 100 post-transplant days as late active infection is a reality. PMID:24478611

  3. Hematopoietic Stem Cell Niche in Health and Disease.

    PubMed

    Hoggatt, Jonathan; Kfoury, Youmna; Scadden, David T

    2016-05-23

    Regulation of stem cells in adult tissues is a key determinant of how well an organism can respond to the stresses of physiological challenge and disease. This is particularly true of the hematopoietic system, where demands on host defenses can call for an acute increase in cell production. Hematopoietic stem cells receive the regulatory signals for cell production in adult mammals in the bone marrow, a tissue with higher-order architectural and functional organization than previously appreciated. Here, we review the data defining particular structural components and heterologous cells in the bone marrow that participate in hematopoietic stem cell function. Further, we explore the case for stromal-hematopoietic cell interactions contributing to neoplastic myeloid disease. As the hematopoietic regulatory networks in the bone marrow are revealed, it is anticipated that strategies will emerge for how to enhance or inhibit production of specific blood cells. In that way, the control of hematopoiesis will enter the domain of therapies to modulate broad aspects of hematopoiesis, both normal and malignant. PMID:27193455

  4. Surveillance of active human cytomegalovirus infection in hematopoietic stem cell transplantation (HLA sibling identical donor): search for optimal cutoff value by real-time PCR

    PubMed Central

    2010-01-01

    Background Human cytomegalovirus (CMV) infection still causes significant morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Therefore, it is extremely important to diagnosis and monitor active CMV infection in HSCT patients, defining the CMV DNA levels of virus replication that warrant intervention with antiviral agents in order to accurately prevent CMV disease and further related complications. Methods During the first 150 days after allogeneic HSTC, thirty patients were monitored weekly for active CMV infection by pp65 antigenemia, nested-PCR and real-time PCR assays. Receiver operating characteristic (ROC) plot analysis was performed to determine a threshold value of the CMV DNA load by real-time PCR. Results Using ROC curves, the optimal cutoff value by real-time PCR was 418.4 copies/104 PBL (sensitivity, 71.4%; specificity, 89.7%). Twenty seven (90%) of the 30 analyzed patients had active CMV infection and two (6.7%) developed CMV disease. Eleven (40.7%) of these 27 patients had acute GVHD, 18 (66.7%) had opportunistic infection, 5 (18.5%) had chronic rejection and 11 (40.7%) died - one died of CMV disease associated with GVHD and bacterial infection. Conclusions The low incidence of CMV disease in HSCT recipients in our study attests to the efficacy of CMV surveillance based on clinical routine assay. The quantification of CMV DNA load using real-time PCR appears to be applicable to the clinical practice and an optimal cutoff value for guiding timely preemptive therapy should be clinically validated in future studies. PMID:20515464

  5. Inducible co-stimulator (ICOS) up-regulation on activated T-cells in chronic graft-vs.-host disease following dog-leukocyte-antigen-nonidentical hematopoietic cell transplantation: A potential therapeutic target

    PubMed Central

    Sato, Masahiko; Storb, Rainer; Loretz, Carol; Stone, Diane; Mielcarek, Marco; Sale, George E.; Rezvani, Andrew R.; Graves, Scott S.

    2013-01-01

    Background Inducible co-stimulator (ICOS), a member of the CD28 family of costimulatory molecules, is induced on CD4+ and CD8+ T-cells following their activation. ICOS functions as an essential immune regulator and ICOS blockade is a potential approach to immune modulation in allogeneic transplantation. Here, we describe the expression profile of ICOS in dogs and determine whether ICOS expression is up-regulated during chronic graft versus host disease (GVHD) and host versus graft (HVG) reactions in the canine hematopoietic cell transplantation model. Methods Monoclonal antibodies against cell surface-expressed ICOS were produced and tested in vitro for suppression of canine mixed leukocyte reactions (MLR). Expression of ICOS on CD3+ cells was evaluated by flow cytometry using peripheral blood, lymph nodes and splenocytes obtained from dogs undergoing GVH and HVG reactions. Results Canine ICOS was expressed in an inducible pattern on T-cells activated by Con A, anti-CD3 mAb in combination with anti-CD28 mAb, and alloantigen stimulation. Immunosuppressive effects of ICOS blockade were observed in MLR using peripheral blood mononuclear cells from dog-leukocyte-antigen-nonidentical dogs. Immunosuppressive effects of ICOS blockade were observed in MLR when anti-ICOS was combined with suboptimal concentrations of cytotoxic T-lymphocyte antigen 4-Ig (CTLA4-Ig) or cyclosporine. ICOS expression was significantly up-regulated on T-cells in dogs undergoing graft rejection or chronic GVHD after allogeneic hematopoietic cell transplantation. Conclusion These studies suggest that ICOS plays a role in graft rejection and GVHD in an out-bred animal model, and ICOS blockade may be an approach to prevention and treatment of chronic GVHD. PMID:23694952

  6. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin.

    PubMed

    Bhatia, S; Reister, S; Mahotka, C; Meisel, R; Borkhardt, A; Grinstein, E

    2015-11-01

    AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis. PMID:26183533

  7. SBR-Blood: systems biology repository for hematopoietic cells

    PubMed Central

    Lichtenberg, Jens; Heuston, Elisabeth F.; Mishra, Tejaswini; Keller, Cheryl A.; Hardison, Ross C.; Bodine, David M.

    2016-01-01

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. PMID:26590403

  8. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes.

    PubMed

    Steptoe, Raymond J; Ritchie, Janine M; Harrison, Leonard C

    2003-05-01

    Bone marrow or hematopoietic stem cell transplantation is a potential treatment for autoimmune disease. The clinical application of this approach is, however, limited by the risks associated with allogeneic transplantation. In contrast, syngeneic transplantation would be safe and have wide clinical application. Because T cell tolerance can be induced by presenting antigen on resting antigen-presenting cells (APCs), we reasoned that hematopoietic stem cells engineered to express autoantigen in resting APCs could be used to prevent autoimmune disease. Proinsulin is a major autoantigen associated with pancreatic beta cell destruction in humans with type 1 diabetes (T1D) and in autoimmune NOD mice. Here, we demonstrate that syngeneic transplantation of hematopoietic stem cells encoding proinsulin transgenically targeted to APCs totally prevents the development of spontaneous autoimmune diabetes in NOD mice. This antigen-specific immunotherapeutic strategy could be applied to prevent T1D and other autoimmune diseases in humans. PMID:12727927

  9. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis

    PubMed Central

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I.; Pan, Weijun

    2015-01-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion. PMID:26131719

  10. Hematopoietic stem cell transplantation A Global Perspective

    PubMed Central

    Gratwohl, Alois; Baldomero, Helen; Aljurf, Mahmoud; Pasquini, Marcelo C.; Bouzas, Luis Fernando; Yoshimi, Ayami; Szer, Jeff; Lipton, Jeff; Schwendener, Alvin; Gratwohl, Michael; Frauendorfer, Karl; Niederwieser, Dietger; Horowitz, Mary; Kodera, Yoshihisa

    2011-01-01

    Context Hematopoietic stem cell transplantation (HSCT) requires significant infrastructure. Little is known on its use and the factors associated with it on a global level. Objective To determine current use of HSCT, to assess differences in its application and to explore associations of macroeconomic factors with transplant rates on a global level. Design Structured worldwide collection of numbers of allogeneic and autologous HSCT by main indication, donor type and stem cell source for the year 2006. Setting Worldwide Network for Blood and Marrow Transplantation (WBMT), a global non-profit umbrella organization for clinical HSCT. Patients All patients with an allogeneic or autologous HSCT for any indication transplanted in 2006 within any of the participating countries. Interventions none Main Outcome measures Transplant rates (number of HSCT per 10 million inhabitants) by indication, donor type and country; description of main differences in HSCT use; macroeconomic factors of reporting countries associated with transplant rates. Results There were 50’417 first HSCT, 21’516 allogeneic (43%), 28’901 autologous (57%) reported from 1’327 centers in 71 countries for leukemia (17’049 (34%; 89% allogeneic)), lymphoma (27’492 (54%; 87% autologous)), solid tumors (2’925 (6%, 95% autologous)), non-malignant disorder (2’593 (5%; 92% allogeneic)) or, “others” 358 (1%). Use of allogeneic or autologous HSCT, use of unrelated or family donors for allogeneic HSCT and proportions of disease indications varied significantly between countries and continental regions. In linear regression analyses, Government Health Care Expenditures (r2 = 77.33), team density (r2 =76.28), Human Development Index (r2 = 74.36) and Gross National Income /Capita (r2 = 74.04) showed the highest association with transplant rates. Conclusions HSCT is an accepted therapy today with different use and needs worldwide. Availability of resources, Governmental support and, access for

  11. Functional Niche Competition Between Normal Hematopoietic Stem and Progenitor Cells and Myeloid Leukemia Cells.

    PubMed

    Glait-Santar, Chen; Desmond, Ronan; Feng, Xingmin; Bat, Taha; Chen, Jichun; Heuston, Elisabeth; Mizukawa, Benjamin; Mulloy, James C; Bodine, David M; Larochelle, Andre; Dunbar, Cynthia E

    2015-12-01

    Hematopoietic stem and progenitor cells (HSPCs) reside in a specialized niche that regulates their proliferative capacity and their fate. There is increasing evidence for similar roles of marrow niches on controlling the behavior of leukemic cells; however, whether normal hematopoietic stem cell (HSC) and leukemic cells reside in or functionally compete for the same marrow niche is unclear. We used the mixed lineage leukemia-AF9 (MLL-AF9) murine acute myeloid leukemia (AML) in a competitive repopulation model to investigate whether normal HSPC and leukemic cells functionally compete for the same marrow niches. Irradiated recipient mice were transplanted with fixed numbers of MLL-AF9 cells mixed with increasing doses of normal syngeneic whole bone marrow (WBM) or with purified HSPC (LSK). Survival was significantly increased and leukemic progression was delayed proportional to increasing doses of normal WBM or normal LSK cells in multiple independent experiments, with all doses of WBM or LSK cells studied above the threshold for rapid and complete hematopoietic reconstitution in the absence of leukemia. Confocal microscopy demonstrated nests of either leukemic cells or normal hematopoietic cells but not both in the marrow adjacent to endosteum. Early following transplantation, leukemic cells from animals receiving lower LSK doses were cycling more actively than in those receiving higher doses. These results suggest that normal HSPC and AML cells compete for the same functional niche. Manipulation of the niche could impact on response to antileukemic therapies, and the numbers of normal HSPC could impact on leukemia outcome, informing approaches to cell dose in the context of stem cell transplantation. PMID:26388434

  12. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  13. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice

    PubMed Central

    Tang, Minghui; Wei, Xudong; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Zhang, Shanshan; Wei, Wei; Xia, Zhenbiao; Diaz, Manuel; Akira, Shizuo; Zhang, Jiwang

    2008-01-01

    Transforming growth factor β–activated kinase 1 (TAK1), a member of the MAPKKK family, is a key mediator of proinflammatory and stress signals. Activation of TAK1 by proinflammatory cytokines and T and B cell receptors induces the nuclear localization of nuclear factor κB (NF-κB) and the activation of c-Jun N-terminal kinase (JNK)/AP1 and P38, which play important roles in mediating inflammation, immune responses, T and B cell activation, and epithelial cell survival. Here, we report that TAK1 is critical for the survival of both hematopoietic cells and hepatocytes. Deletion of TAK1 results in bone marrow (BM) and liver failure in mice due to the massive apoptotic death of hematopoietic cells and hepatocytes. Hematopoietic stem cells and progenitors were among those hematopoietic cells affected by TAK1 deletion–induced cell death. This apoptotic cell death is autonomous, as demonstrated by reciprocal BM transplantation. Deletion of TAK1 resulted in the inactivation of both JNK and NF-κB signaling, as well as the down-regulation of expression of prosurvival genes. PMID:18573910

  14. [More on Hematopoietic Stem Cell Research and Application Updated

    PubMed

    Tang, Pei-Hsien

    2001-03-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is an effective and proven treatment for malignant and nonmalignant diseases. Most of the natural HSC allografts hardly show overall advantages of high engraftment, slight GVHD and rare relapse. The graft engineering including stem cell engineering to make a tailor-made graft ex vivo is promising to conquer all the risks of low engraftment, lethal GVHD and high relapse, which becomes the key program in current HSC research. To combine HSC allotransplant with gene therapy and immune therapy is the novel therapeutic strategy for malignancies, the real meaning of "cytotherapy" or "cell therapy" updated. The rapid expansion of umbilical cord blood banks (CBBs) makes the substantial increase of cord blood transplants (CBT) both possible and likely world-widely. In China, however, owing to lack of hematological pediatricians specified in HSCT and pediatric laminar-flow wards, clinical application rate of cord blood is extremely low despite of the high collection rate in the CBBs under the GMP standards. In evaluating a CBB, the release rate and the clinical efficacy of the released cord blood should be most emphasized as well as the banking quality control. In all CBBs worldwide, it is unworthy of mentioning the banking of umbilical cord blood for autologous transplant. Only one or two commercial companies in the world run it for profitable purpose to charge the donor parents regularly. It is because no autologous CBT can cure the inherited diseases and its efficacy of treating malignancies is doubtable since the cord blood is of weak immune competence against tumor and may be contaminated with autologous malignant or premalignant cells. Moreover, there is no report so far about how long the repopulating activity of cryopreserved hematopoietic stem/progenitor cells of cord blood can keep. No honest guarantee can be made about the effective quality and adequate amount of stem cells to meet the therapeutic

  15. Hematopoietic Cell Transplantation for Myelodysplastic Syndromes.

    PubMed

    Bhatt, Vijaya Raj; Steensma, David P

    2016-09-01

    Allogeneic hematopoietic cell transplantation (HCT) offers the only potential cure for patients with myelodysplastic syndromes (MDS). However, with current approaches to HCT, many older patients with comorbidities are poor HCT candidates, and treatment-related morbidity and mortality may offset benefit for patients with lower-risk disease. Consequently, selection of patients with MDS for HCT should take into consideration disease risk category including mutational status, HCT comorbidity index, functional status, donor options, and available institutional resources. Formal geriatric assessment may further guide use of HCT and, if HCT is chosen, selection of conditioning intensity. Patients with higher-risk MDS should be considered for HCT at the time of diagnosis, whereas expectant nontransplant management is more appropriate for those with lower-risk disease. A high blast burden at the time of HCT increases the risk of subsequent relapse; however, the role of pretransplant cytoreductive therapy and the regimen of choice remain controversial. Patients with MDS younger than 65 years and with an HCT comorbidity index ≤ 4 may benefit from more intense conditioning regimens. The presence of complex or monosomal karyotype or mutations in TP53, DNMT3A, or other genes identify patients with poorer outcomes following HCT. Patients with TP53 mutations have particularly poor survival, and should be enrolled in clinical trials whenever possible. Several important HCT studies are ongoing and will better define the role of HCT in MDS as well as the value of pretransplant cytoreductive therapy or post-transplant relapse-prevention strategies. Given the apparent underuse of HCT in eligible patients and low enrollment in MDS HCT clinical trials to date, timely referral of patients with MDS to such trials and HCT programs is critical. PMID:27621329

  16. Natural killer cells in non-hematopoietic malignancies

    PubMed Central

    Desbois, Mélanie; Rusakiewicz, Sylvie; Locher, Clara; Zitvogel, Laurence; Chaput, Nathalie

    2012-01-01

    Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies. PMID:23269924

  17. Natural killer cells in non-hematopoietic malignancies.

    PubMed

    Desbois, Mélanie; Rusakiewicz, Sylvie; Locher, Clara; Zitvogel, Laurence; Chaput, Nathalie

    2012-01-01

    Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies. PMID:23269924

  18. Novel approaches and mechanisms in hematopoietic stem cell gene therapy.

    PubMed

    Bigger, Brian W; Wynn, Robert F

    2014-04-01

    Hematopoietic stem cell gene therapy is one of the most exciting clinical tools to emerge from the gene therapy stable. This technology combines the expansion capability of hematopoietic stem cells, capable of replacing the entire blood and immune system of an individual, with the capacity for long-term replacement of one or more gene copies using integrating gene therapy vectors. Hematopoietic stem cell gene therapy benefits significantly from the pre-existing experience of standard blood and marrow transplantation, whilst at the same time having the capacity to deliver a safer and more effective therapy to a wider range of diseases. In this review we summarize the potential of hematopoietic stem cell gene therapy to expand the scope of hematopoietic stem cell transplantation, including the evolution of vector delivery systems and the success and failures of current clinical experience with this treatment. In particular we deal with the incidence of vector mediated transformation in patients and the steps that have been taken to minimize this risk. Finally we discuss the innovations in preclinical development that are likely to drive the future of this field, including the expansion to many more genetic diseases, particularly those affecting the brain. PMID:24759625

  19. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells.

    PubMed

    Harris, David M; Hazan-Haley, Inbal; Coombes, Kevin; Bueso-Ramos, Carlos; Liu, Jie; Liu, Zhiming; Li, Ping; Ravoori, Murali; Abruzzo, Lynne; Han, Lin; Singh, Sheela; Sun, Michael; Kundra, Vikas; Kurzrock, Razelle; Estrov, Zeev

    2011-01-01

    Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy. PMID:21731684

  20. Hematopoietic Expression of Hoxb4 Is Regulated in Normal and Leukemic Stem Cells through Transcriptional Activation of the Hoxb4 Promoter by Upstream Stimulating Factor (Usf)-1 and Usf-2

    PubMed Central

    Giannola, Diane M.; Shlomchik, Warren D.; Jegathesan, Mithila; Liebowitz, David; Abrams, Charles S.; Kadesch, Tom; Dancis, Andrew; Emerson, Stephen G.

    2000-01-01

    The homeobox genes encode a family of transcription factors that regulate development and postnatal tissue homeostasis. Since HOXB4 plays a key role in regulating the balance between hematopoietic stem cell renewal and differentiation, we studied the molecular regulation of HOXB4 expression in human hematopoietic stem cells. HOXB4 expression in K562 cells is regulated at the level of transcription, and transient transfection defines primary HOXB4 regulatory sequences within a 99-bp 5′ promoter. Culture of highly purified human CD34+ bone marrow cells in thrombopoietin/Flt-3 ligand/stem cell factor induced HOXB4 3–10-fold, whereas culture in granulocyte/macrophage colony-stimulating factor, only increased HOXB4/luciferase expression 20–50%. Mutations within the HOXB4 promoter identified a potential E box binding site (HOX response element [HXRE]-2) as the most critical regulatory sequence, and yeast one hybrid assays evaluating bone marrow and K562 libraries for HXRE-2 interaction identified upstream stimulating factor (USF)-2 and micropthalmia transcription factor (MITF). Electrophoretic mobility shift assay with K562 extracts confirmed that these proteins, along with USF-1, bind to the HOXB4 promoter in vitro. Cotransfection assays in both K562 and CD34+ cells showed that USF-1 and USF-2, but not MITF, induce the HOXB4 promoter in response to signals stimulating stem cell self-renewal, through activation of the mitogen-activated protein kinase pathway. Thus hematopoietic expression of the human HOXB4 gene is regulated by the binding of USF-1 and USF-2, and this process may be favored by cytokines promoting stem cell self-renewal versus differentiation. PMID:11085749

  1. Notch signaling in hematopoietic cell transplantation and T cell alloimmunity

    PubMed Central

    Ebens, Christen; Maillard, Ivan

    2013-01-01

    Notch signaling can regulate both hematopoietic progenitors and alloimmune T cells in the setting of allogeneic bone marrow or hematopoietic cell transplantation (allo-HCT). Ex vivo culture of multipotent blood progenitors with immobilized Delta-like ligands induces supraphysiological Notch signals and can markedly enhance progenitor expansion. Infusion of Notch-expanded progenitors shortened myelosuppression in preclinical and early clinical studies, while accelerating T cell reconstitution in preclinical models. Notch also plays an essential role in vivo to regulate pathogenic alloimmune T cells that mediate graft-versus-host disease (GVHD), the most severe complication of allo-HCT. In mouse allo-HCT models, Notch inhibition in donor-derived T cells or transient blockade of Delta-like ligands after transplantation profoundly decreased GVHD incidence and severity, without causing global immunosuppression. These findings identify Notch in T cells as an attractive therapeutic target to control GVHD. In this review, we discuss these contrasting functions of Notch signaling with high translational significance in allo-HCT patients. PMID:24050990

  2. Autologous hematopoietic stem cell transplantation for mediastinal extramedullary plasmocytoma.

    PubMed

    Abdelkefi, Abderrahmene; Ben Othman, Tarek; Torjman, Lamia; Ladeb, Saloua; Ben Ghorbel, Imed; Lakhal, Amed; Ben Amor, Ramzi; Miled, Mohamed; Kchir, Mohamed-Nidhameddine; Ben Abdeladhim, Abdeladhim

    2003-07-01

    Extramedullary plasmocytoma (EMP) is a rare cell neoplasm most frequently localised in the upper respiratory tract. We report the case of a 43 year-old-man, with an unusual presentation of EMP developing in the mediastinum, two years after a diagnosis of solitary plasmocytoma of the bone which was successfully treated by local irradiation. In this aggressive presentation, we decided to perform an autologous hematopoietic stem cell transplantation. Two months after transplantation, CT scan showed disappearance of the mediastinal mass and immunofixation of the serum was normal. Selected cases of diffuse EMP, could benefit from intensive treatment followed by autologous hematopoietic stem cell transplantation. PMID:14534964

  3. Hematopoietic effect of deer antler extract fermented by Bacillus subtilis on murine marrow cells

    PubMed Central

    Park, Yooheon; Choi, Hyeon-Son; Lee, Hyun-Sun

    2015-01-01

    BACKGROUND/OBJECTIVES We examined the chemical composition and the effect of fermented deer antler on hematopoietic factors in bone marrow cells. MATERIALS/METHODS For the preparation of fermented deer antler extract (FAB), fermentation was carried out using Bacillus subtilis at 30℃ for 7 days. The hematopoietic effect of FAB was investigated hematopoietic factors in marrow cells. RESULTS The contents of total sugar, sulfated glycosaminoglycans, and uronic acid and the dry weight gradually increased with fermentation time. The sialic acid content (from 0.14 mg/mL to 0.54 mg/mL) was the highest on the 4th day of fermentation after which it decreased. The proliferating activity of bone marrow cells increased with fermentation times. The levels of various hematopoietic growth factors were determined to verify the beneficial effect of deer antler extract fermented by B. subtilis on hematopoiesis. FAB increased the number of stem cell factors and granulocyte colony-stimulating factor in bone marrow cells. In addition, FAB augmented the burst-forming unit erythroid and total colonies in splenocyte-conditioned medium compared with non-fermented antler extract (NFA). However, FAB did not affect the mRNA levels of erythropoietin, an important factor for erythropoiesis. CONCLUSIONS FAB, like NFA, did not directly affect hematopoiesis, but contributed to hematopoiesis by stimulating the production of hematopoietic factors. PMID:26425273

  4. Major Pulmonary Complications After Hematopoietic Stem Cell Transplant.

    PubMed

    Diab, Maria; ZazaDitYafawi, Jihane; Soubani, Ayman O

    2016-06-01

    Both autologous and allogeneic hematopoietic stem cell transplants are important therapeutic options for several benign and malignant disorders. Pulmonary complications, although they have become less frequent, remain a significant cause of morbidity and mortality after hematopoietic stem cell transplant. These complications range from bacterial, fungal, and viral pulmonary infections to noninfectious conditions such as diffuse alveolar hemorrhage and idiopathic pneumonia syndrome. Bronchiolitis obliterans syndrome is the primary chronic pulmonary complication, and treatment of this condition remains challenging. This report highlights the advances in the diagnosis and management of the major pulmonary complications after hematopoietic stem cell transplant. It also underscores the need for prospective and multicenter research to have a better understanding of the mechanisms behind these complications and to obtain more effective diagnostic tool and therapeutic options. PMID:27040986

  5. Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells.

    PubMed

    Savvateeva, Maria V; Demin, Alexander M; Krasnov, Victor P; Belyavsky, Alexander V

    2016-09-15

    Cell co-culture systems have a long history of application in hematology and hold promise for successful hematopoietic stem and progenitor cell expansion. Here we report that various types of stromal cells used in such co-cultures can be rapidly and efficiently labeled with l-lysine-modified Fe3O4 magnetic nanoparticles. Hematopoiesis-supporting activity does not seem to be compromised after magnetic labeling of stromal cells, and the loss of the label by stromal layers during extended culturing is negligible. Magnetic labeling allows for simple and efficient removal of stromal component, yielding unbiased hematopoietic cell populations. When Lin(-) bone mouse marrow fraction was co-cultured with magnetic stromal layers and resulting cell populations were harvested by trypsinization, the yields of total nucleated cells, colony forming cells, and phenotypically primitive Lin(-)Sca-1(+)c-kit(+) subset were substantially higher as compared with nonadherent cell fractions harvested after conventional stromal co-culture. The advantage offered by the magnetic stroma approach over the traditional one was even more significant after a second round of co-culture and was more dramatic for more primitive hematopoietic cells. We conclude that magnetic stromal layers represent a simple, efficient, and convenient tool for co-culturing and subsequent recovery of sufficiently pure unbiased populations of hematopoietic cells. PMID:27318238

  6. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    SciTech Connect

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji; Nakagata, Naomi; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-03-10

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45{sup low} c-Kit{sup +} cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45{sup low} c-Kit{sup -} cells that showed a granulocyte morphology; CD45{sup high} c-Kit{sup low/-} that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45{sup low} c-Kit{sup +} cells from the AGM culture had the abilities to reproduce CD45{sup low} c-Kit{sup +} cells and differentiate into CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} cells, whereas CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} did not produce CD45{sup low} c-Kit{sup +} cells. Furthermore, CD45{sup low} c-Kit{sup +} cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45{sup low} c-Kit{sup +} cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells.

  7. Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype.

    PubMed

    Joseph, Jeena; Shiozawa, Yusuke; Jung, Younghun; Kim, Jin Koo; Pedersen, Elisabeth; Mishra, Anjali; Zalucha, Janet Linn; Wang, Jingcheng; Keller, Evan T; Pienta, Kenneth J; Taichman, Russell S

    2012-03-01

    Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer. PMID:22241219

  8. Hematopoietic Signaling Mechanism Revealed from a Stem/Progenitor Cell Cistrome.

    PubMed

    Hewitt, Kyle J; Kim, Duk Hyoung; Devadas, Prithvia; Prathibha, Rajalekshmi; Zuo, Chandler; Sanalkumar, Rajendran; Johnson, Kirby D; Kang, Yoon-A; Kim, Jin-Soo; Dewey, Colin N; Keles, Sunduz; Bresnick, Emery H

    2015-07-01

    Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology. PMID:26073540

  9. BACTERIAL FOODBORNE INFECTIONS AFTER HEMATOPOIETIC CELL TRANSPLANTATION

    PubMed Central

    Boyle, Nicole; Podczervinski, Sara; Jordan, Kim; Stednick, Zach; Butler-Wu, Susan; McMillen, Kerry; Pergam, Steven A.

    2014-01-01

    Background Diarrhea, abdominal pain and fever are common among patients undergoing hematopoietic cell transplant (HCT), but such symptoms are also typical with foodborne infections. The burden of disease caused by foodborne infections in patients undergoing HCT is unknown. We sought to describe bacterial foodborne infection incidence post-transplant within a single-center population of HCT recipients. Methods All HCT recipients transplanted from 2001 through 2011 at the Fred Hutchinson Cancer Research Center in Seattle, WA were followed for one year post-transplant. Data were collected retrospectively using center databases, which include information from transplant, on-site examinations, outside records, and collected laboratory data. Patients were considered to have a bacterial foodborne infection if Campylobacter jejuni/coli, Listeria monocytogenes, E. coli 0157:H7, Salmonella species, Shigella species, Vibrio species or Yersinia species were isolated in culture within one-year post-transplant. Non-foodborne infections with these agents and patients with preexisting bacterial foodborne infection (within 30 days of transplant) were excluded from analyses. Results A total of 12/4069 (0.3%) patients developed a bacterial foodborne infection within one year post-transplant. Patients with infections had a median age at transplant of 50.5 years (interquartile range [IQR]: 35–57), and the majority were adults ≥18 years of age (9/12 [75%]), male gender (8/12 [67%]) and post-allogeneic transplant (8/12 [67%]). Infectious episodes occurred at an incidence rate of 1.0 per 100,000 patient-days (95% CI: 0.5–1.7) and at a median of 50.5 days after transplant (IQR: 26–58.5). The most frequent pathogen detected was Campylobacter jejuni/coli (5/12 [42%]) followed by Yersinia (3/12 [25%]), while Salmonella (2/12 [17%]) and Listeria (2/12 [17%]) showed equal frequencies; no cases of Shigella, Vibrio, or E. coli 0157:H7 were detected. Most patients were diagnosed via stool

  10. Common marmoset CD117+ hematopoietic cells possess multipotency.

    PubMed

    Shimada, Shin; Nunomura, Satoshi; Mori, Shuya; Suemizu, Hiroshi; Itoh, Toshio; Takabayashi, Shuji; Okada, Yoshinori; Yahata, Takashi; Shiina, Takashi; Katoh, Hideki; Suzuki, Ryuji; Tani, Kenzaburo; Ando, Kiyoshi; Yagita, Hideo; Habu, Sonoko; Sasaki, Erika; Kametani, Yoshie

    2015-11-01

    Analysis of the hematopoiesis of non-human primates is important to clarify the evolution of primate-specific hematopoiesis and immune regulation. However, the engraftment and development of the primate hematopoietic system are well-documented only in humans and are not clear in non-human primates. Callithrix jacchus (common marmoset, CM) is a New World monkey with a high rate of pregnancy and small size that lives in closed colonies. As stem cell factor (SCF) is an essential molecule for hematopoietic stem cell development in mice and humans, we focused on CD117, the SCF receptor, and examined whether CD117-expressing cells possess the hematopoietic stem/progenitor cell characteristics of newborn marmoset-derived hematopoietic cells that can develop into T cells and B cells. When CD117(+) cell fractions of the bone marrow were transplanted into immunodeficient NOD (non-obese diabetic)/Shi-scid, common γc-null (NOG) mice, these cells engrafted efficiently in the bone marrow and spleens of the NOG mice. The CD117(+) cells developed into myeloid lineage cells, CD20(+) B cells and CD3(+) T cells, which could express CM cytokines in vivo. The development of B cells did not precede that of T cells. The development of CD8(+) T cells was dominant in NOG mice. The engraftment was comparable for both CD117(+)CD34(+) cells and CD117(+)CD34(-) cells. These results suggest that the CD117(+) cell fraction can differentiate into all three cell lineages, and the development of marmoset immunity in the xenogeneic environment follows diverse developmental pathways compared with human immunity. PMID:25977306

  11. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    PubMed

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. PMID:27221660

  12. Hematopoietic cell transplantation: a curative option for sickle cell disease.

    PubMed

    Krishnamurti, Lakshmanan

    2007-12-01

    Sickle cell disease is associated with considerable morbidity and premature mortality. Hematopoietic cell transplantation offers the possibility of cure and is associated with excellent results in pediatric patients receiving stem cell transplantation from a matched sibling donor. Reduced intensity conditioning regimen have the potential to further reduce regimen related morbidity and mortality. Improved understanding of the natural history of complications such as stroke and pulmonary hypertension, effects of treatments, such as hydroxyurea and blood transfusions, as well as the impact of transplantation on organ damage are likely to influence the timing and indication of transplantation. Improvements in preparative regimen may enable the safe use of alternate source of stem cells such as unrelated matched donors and further improve the applicability and acceptability of this treatment. PMID:18092247

  13. The LMO2 oncogene regulates DNA replication in hematopoietic cells

    PubMed Central

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F. T.; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, EL Bachir; Verreault, Alain; Hoang, Trang

    2016-01-01

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression. PMID:26764384

  14. Non-Hematopoietic Stem Cells in Umbilical Cord Blood

    PubMed Central

    Matsumoto, Taro; Mugishima, Hideo

    2009-01-01

    Allogeneic umbilical cord blood (UCB) transplantation has been used to treat a variety of malignant and non-malignant diseases. Recent studies show convincing evidence that UCB contains not only hematopoietic progenitors, but also several types of stem and progenitor cells providing a high proliferative capacity and a variety of differentiation potentials. UCB-derived cells offer multiple advantages over adult stem cells from other sources like bone marrow (BM), because UCB can be collected without painful procedure, easily available in virtually unlimited supply, and has not been exposed to immunologic challenge. In addition, cord blood transplantation is now an established field with great potential and no serious ethical issue by establishment of public UCB banks throughout the world. Therefore UCB-derived non-hematopoietic stem cells may provide an attractive cell source for tissue repair and regeneration. It is generally accepted that UCB contains endothelial progenitor cells (EPC), mesenchymal stromal cells (MSC), unrestricted somatic stem cells (USSC), very small embryonic-like stem cells (VSEL), multilineage progenitor cells (MLPC), and neuronal progenitor cells. This review focuses on biological properties of these non-hematopoietic stem/progenitor cells derived from human UCB and their potential use in cell based therapies. PMID:24855525

  15. Special Issues Related to Hematopoietic Stem Cell Transplantation in the Eastern Mediterranean Region and the First Regional Activity Report

    PubMed Central

    Aljurf, Mahmoud; Zaidi, Syed Z; El Solh, Hassan; Hussain, Fazal; Ghavamzadeh, Ardeshir; Mahmoud, Hossam Kamel; Shamsi, Tahir; Othman, Tarek Ben; Sarhan, Mahmoud M.; Dennison, David; Ibrahim, Ahmad; Benchekroun, Said; Chaudhri, Naeem; Labar, Boris; Horowitz, Mary; Niederwieser, Dietger; Gratwohl, Alois

    2012-01-01

    Although several centers are now performing allogeneic HSCT in the Eastern Mediterranean (EM) region, the availability is still limited. Special issues including compatible donor availability and potential for alternate donor programs are discussed. In comparison to Europe & North America, differences in pattern of diseases and pre-HSCT general status particularly for patients with BM failure are described. Other differences including high seropositivity for CMV, Hepatitis B and C infection and specific observations about GVHD with its relation to genetically homogeneous community are also discussed. We report that a total of 17 HSCT programs (performing 5 or more HSCTs annually) exist in 9 countries of the EM region. Only 6 programs are currently reporting to EBMT or IBMTR. A total of 7617 HSCTs have been performed by these programs including 5701 allogeneic HSCTs. Due to low HSCT team density (1.5583 teams/10 million inhabitants vs. 14.4333 in Europe) and very low HSCT team distribution (0.2729 teams/10,000 sq km area vs. <1 to 6 teams in Europe). GNI/capita had no clear association with low HSCT activity; however improvement in infrastructure & formation of EM regional HSCT registry are needed. PMID:19043456

  16. Effectiveness of Partner Social Support Predicts Enduring Psychological Distress after Hematopoietic Stem Cell Transplantation

    ERIC Educational Resources Information Center

    Rini, Christine; Redd, William H.; Austin, Jane; Mosher, Catherine E.; Meschian, Yeraz Markarian; Isola, Luis; Scigliano, Eileen; Moskowitz, Craig H.; Papadopoulos, Esperanza; Labay, Larissa E.; Rowley, Scott; Burkhalter, Jack E.; Schetter, Christine Dunkel; DuHamel, Katherine N.

    2011-01-01

    Objective: Hematopoietic stem cell transplant (HSCT) survivors who are 1 to 3 years posttransplant are challenged by the need to resume valued social roles and activities--a task that may be complicated by enduring transplant-related psychological distress common in this patient population. The present study investigated whether transplant…

  17. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia

    PubMed Central

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-01-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class–based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation. PMID:22553502

  18. EBV Lymphoproliferative Disease after Hematopoietic Stem Cell Transplant

    PubMed Central

    Rouce, Rayne H; Louis, Chrystal U; Heslop, Helen E

    2014-01-01

    PURPOSE OF REVIEW EBV reactivation can cause significant morbidity and mortality after allogeneic hematopoietic stem cell transplant (SCT). Delays in reconstitution of EBV-specific T lymphocyte activity can lead to life-threatening EBV lymphoproliferative disease (EBV-PTLD). This review highlights recent advances in the understanding of pathophysiology, risk factors, diagnosis, and management of EBV viremia and PTLD. RECENT FINDINGS During the past decade, early detection strategies, such as serial measurement of EBV-DNA load, have helped to identify high-risk patients and to diagnose early lymphoproliferation. The most significant advances have come in the form of innovative treatment options, including manipulation of the balance between outgrowing EBV-infected B cells and the EBV cytotoxic T lymphocyte (EBV-CTL) response, and targeting infected B cells with monoclonal antibodies, chemotherapy, unmanipulated donor lymphocytes, and donor or more recently third party EBV-CTLs. Defining criteria for preemptive therapy and remains a challenge. SUMMARY EBV reactivation is a significant complication after SCT. Continued improvements in risk-stratification and treatment options are required to improve the morbidity and mortality caused by EBV associated diseases. Current approaches use Rituximab to deplete B cells or adoptive transfer of EBV-CTL to reconstitute immunity. The availability of rapid EBV specific T cell products offers the possibility of improved outcomes. PMID:25159713

  19. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells

    PubMed Central

    Zöller, Margot

    2015-01-01

    CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus. PMID:26074915

  20. Nanofiber Expansion of Umbilical Cord Blood Hematopoietic Stem Cells

    PubMed Central

    Eskandari, F; Allahverdi, A; Nasiri, H; Azad, M; Kalantari, N; Soleimani, M; Zare-Zardini, H

    2015-01-01

    Background The aim of this study was the ex vivo expansion of Umbilical Cord Blood hematopoietic stem cells on biocompatible nanofiber scaffolds. Materials and Methods CD133+ hematopoietic stem cells were separated from umbilical cord blood using MidiMacs (positive selection) system by means of monocolonal antibody CD133 (microbeads); subsequently, flowcytometry method was done to assess the purity of separated cells. Isolated cells were cultured on plate (2 Dimensional) and fibronectin conjugated polyethersulfon nanofiber scaffold, simultaneously (3 Dimensional). Colony assay test was performed to show colonization ability of expanded cells. Results Cell count analysis revealed that expansion of hematopoietic stem cells in 2dimensional (2D) environment was greater than 3dimensional (3D) condition (p= 0.01). Assessment of stem cell- phenotype after expansions was performed by flowcytometric analysis which is showed that the maintenance of CD133 marker in expanded cells in 3 dimensional condition were higher than expanded cells in 2 dimensional condition (p=0.01). Moreover, colony assay test was performed before and after of expansion to show colonization ability of expanded cells both in 3D and 2D culture and results revealed more ability of 3D culture compared with 2D culture (p= 0.03). Conclusion The results of current study confirmed that umbilical cord blood CD133+ haematopoietic stem cells are able to expand on fibronectin conjugated polyethersulfon scaffold. These findings indicated that 3D is a proper and valuable cell culture system for hematopoietic stem cells expansion, compared to 2D in invitro situation. PMID:26985349

  1. Lentiviral Hematopoietic Stem Cell Gene Therapy in Inherited Metabolic Disorders

    PubMed Central

    2014-01-01

    Abstract After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease. PMID:25184354

  2. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    PubMed

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. PMID:27184851

  3. Transplanted murine long-term repopulating hematopoietic cells can differentiate to osteoblasts in the marrow stem cell niche.

    PubMed

    Hofmann, Ted J; Otsuru, Satoru; Marino, Roberta; Rasini, Valeria; Veronesi, Elena; Murgia, Alba; Lahti, Jill; Boyd, Kelli; Dominici, Massimo; Horwitz, Edwin M

    2013-06-01

    Bone marrow transplantation (BMT) can give rise to donor-derived osteopoiesis in mice and humans; however, the source of this activity, whether a primitive osteoprogenitor or a transplantable marrow cell with dual hematopoietic and osteogenic potential, has eluded detection. To address this issue, we fractionated whole BM from mice according to cell surface immunophenotype and assayed the hematopoietic and osteopoietic potentials of the transplanted cells. Here, we show that a donor marrow cell capable of robust osteopoiesis possesses a surface phenotype of c-Kit(+) Lin(-) Sca-1(+) CD34(-/lo), identical to that of the long-term repopulating hematopoietic stem cell (LTR-HSC). Secondary BMT studies demonstrated that a single marrow cell able to contribute to hematopoietic reconstitution in primary recipients also drives robust osteopoiesis and LT hematopoiesis in secondary recipients. These findings indicate that LTR-HSC can give rise to progeny that differentiate to osteoblasts after BMT, suggesting a mechanism for prompt restoration of the osteoblastic HSC niche following BM injury, such as that induced by clinical BMT preparative regimens. An understanding of the mechanisms that regulate this differentiation potential may lead to novel treatments for disorders of bone as well as methods for preserving the integrity of endosteal hematopoietic niches. PMID:23587920

  4. Innate Sensing of Foamy Viruses by Human Hematopoietic Cells

    PubMed Central

    Rua, Réjane; Lepelley, Alice; Gessain, Antoine

    2012-01-01

    Foamy viruses (FV) are nonpathogenic retroviruses that have cospeciated with primates for millions of years. FV can be transmitted through severe bites from monkeys to humans. Viral loads remain generally low in infected humans, and no secondary transmission has been reported. Very little is known about the ability of FV to trigger an innate immune response in human cells. A few previous reports suggested that FV do not induce type I interferon (IFN) in nonhematopoietic cells. Here, we examined how human hematopoietic cells sense FV particles and FV-infected cells. We show that peripheral blood mononuclear cells (PBMCs), plasmacytoid dendritic cells (pDCs), and the pDC-like cell line Gen2.2 detect FV, produce high levels of type I IFN, and express the IFN-stimulated gene MxA. Fewer than 20 FV-infected cells are sufficient to trigger an IFN response. Both prototypic and primary viruses stimulated IFN release. Donor cells expressing a replication-defective virus, carrying a mutated reverse transcriptase, induced IFN production by target cells as potently as wild-type virus. In contrast, an FV strain with env deleted, which does not produce viral particles, was inactive. IFN production was blocked by an inhibitor of endosomal acidification (bafilomycin A1) and by an endosomal Toll-like receptor (TLR) antagonist (A151). Silencing experiments in Gen2.2 further demonstrated that TLR7 is involved in FV recognition. Therefore, FV are potent inducers of type I IFN by pDCs and by PBMCs. This previously underestimated activation of the innate immune response may be involved in the control of viral replication in humans. PMID:22090096

  5. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  6. Hematopoietic Stem Cell: Self-renewal versus Differentiation

    PubMed Central

    Seita, Jun; Weissman, Irving L.

    2010-01-01

    The mammalian blood system, containing more than ten distinct mature cell types, stands on one specific cell type, hematopoietic stem cell (HSC). Within the system, only HSC possess the ability of both multi-potency and self-renewal. Multi-potency is the ability to differentiate into all functional blood cells. Self-renewal is the ability to give rise to HSC itself without differentiation. Since mature blood cells are predominantly short lived, HSC continuously provide more differentiated progenitors while properly maintaining the HSC pool size properly throughout life by precisely balancing self-renewal and differentiation. Thus, understanding the mechanisms of self-renewal and differentiation of HSC has been a central issue. In this review, we focus on the hierarchical structure of the hematopoietic system, the current understanding of microenvironment and molecular cues regulating self-renewal and differentiation of adult HSC, and the currently emerging systems approaches to understand HSC biology. PMID:20890962

  7. Flotillins Are Involved in the Polarization of Primitive and Mature Hematopoietic Cells

    PubMed Central

    Rajendran, Lawrence; Beckmann, Julia; Magenau, Astrid; Boneberg, Eva-Maria; Gaus, Katharina; Viola, Antonella; Giebel, Bernd; Illges, Harald

    2009-01-01

    Background Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. Methodology/Principal Findings Here, we present evidence that raft-associated endocytic proteins (flotillins) are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. Conclusions Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization. PMID:20027317

  8. Proteomic Cornerstones of Hematopoietic Stem Cell Differentiation: Distinct Signatures of Multipotent Progenitors and Myeloid Committed Cells*

    PubMed Central

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon; Vakhrushev, Sergey Y.; Trumpp, Andreas; Krijgsveld, Jeroen

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem/progenitor cells (HSPCs, LinnegSca-1+c-Kit+) or myeloid committed precursors (LinnegSca-1−c-Kit+). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical evaluation, 893 proteins were found differentially expressed between multipotent and myeloid committed cells. The differential protein content in these cell populations points to a distinct structural organization of the cytoskeleton including remodeling activity. In addition, we found a marked difference in the expression of metabolic enzymes, including a clear shift of specific protein isoforms of the glycolytic pathway. Proteins involved in translation showed a collective higher expression in myeloid progenitors, indicating an increased translational activity. Strikingly, the data uncover a unique signature related to immune defense mechanisms, centering on the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors toward myeloid commitment is accompanied by a profound change in processing of

  9. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.

    PubMed

    Palchaudhuri, Rahul; Saez, Borja; Hoggatt, Jonathan; Schajnovitz, Amir; Sykes, David B; Tate, Tiffany A; Czechowicz, Agnieszka; Kfoury, Youmna; Ruchika, Fnu; Rossi, Derrick J; Verdine, Gregory L; Mansour, Michael K; Scadden, David T

    2016-07-01

    Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45-saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45-SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases. PMID:27272386

  10. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  11. The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness

    PubMed Central

    Zhang, Jing; Vakhrusheva, Olesya; Bandi, Srinivasa Rao; Demirel, Özlem; Kazi, Julhash U.; Fernandes, Ramona Gomes; Jakobi, Katja; Eichler, Astrid; Rönnstrand, Lars; Rieger, Michael A.; Carpino, Nick; Serve, Hubert; Brandts, Christian H.

    2015-01-01

    Summary FLT3 and c-KIT are crucial regulators of hematopoietic stem and progenitor cells. We investigated the role of STS1 and STS2 on FLT3 and c-KIT phosphorylation, activity, and function in normal and stress-induced hematopoiesis. STS1/STS2-deficient mice show a profound expansion of multipotent progenitor and lymphoid primed multipotent progenitor cells with elevated colony-forming capacity. Although long-term hematopoietic stem cells are not increased in numbers, lack of STS1 and STS2 significantly promotes long-term repopulation activity, demonstrating a pivotal role of STS1/STS2 in regulating hematopoietic stem and progenitor cell fitness. Biochemical analysis identified STS1/STS2 as direct phosphatases of FLT3 and c-KIT. Loss of STS1/STS2 induces hyperphosphorylation of FLT3, enhances AKT signaling, and confers a strong proliferative advantage. Therefore, our study reveals that STS1 and STS2 may serve as novel pharmaceutical targets to improve hematopoietic recovery after bone marrow transplantation. PMID:26365512

  12. The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness.

    PubMed

    Zhang, Jing; Vakhrusheva, Olesya; Bandi, Srinivasa Rao; Demirel, Özlem; Kazi, Julhash U; Fernandes, Ramona Gomes; Jakobi, Katja; Eichler, Astrid; Rönnstrand, Lars; Rieger, Michael A; Carpino, Nick; Serve, Hubert; Brandts, Christian H

    2015-10-13

    FLT3 and c-KIT are crucial regulators of hematopoietic stem and progenitor cells. We investigated the role of STS1 and STS2 on FLT3 and c-KIT phosphorylation, activity, and function in normal and stress-induced hematopoiesis. STS1/STS2-deficient mice show a profound expansion of multipotent progenitor and lymphoid primed multipotent progenitor cells with elevated colony-forming capacity. Although long-term hematopoietic stem cells are not increased in numbers, lack of STS1 and STS2 significantly promotes long-term repopulation activity, demonstrating a pivotal role of STS1/STS2 in regulating hematopoietic stem and progenitor cell fitness. Biochemical analysis identified STS1/STS2 as direct phosphatases of FLT3 and c-KIT. Loss of STS1/STS2 induces hyperphosphorylation of FLT3, enhances AKT signaling, and confers a strong proliferative advantage. Therefore, our study reveals that STS1 and STS2 may serve as novel pharmaceutical targets to improve hematopoietic recovery after bone marrow transplantation. PMID:26365512

  13. Hematopoietic stem cells give rise to osteo-chondrogenic cells

    PubMed Central

    Mehrotra, Meenal; Williams, Christopher R.; Ogawa, Makio; LaRue, Amanda C.

    2012-01-01

    Repair of bone fracture requires recruitment and proliferation of stem cells with the capacity to differentiate to functional osteoblasts. Given the close association of bone and bone marrow (BM), it has been suggested that BM may serve as a source of these progenitors. To test the ability of hematopoietic stem cells (HSCs) to give rise to osteo-chondrogenic cells, we used a single HSC transplantation paradigm in uninjured bone and in conjunction with a tibial fracture model. Mice were lethally irradiated and transplanted with a clonal population of cells derived from a single enhanced green fluorescent protein positive (eGFP+) HSC. Analysis of paraffin sections from these animals showed the presence of eGFP+ osteocytes and hypertrophic chondrocytes. To determine the contribution of HSC-derived cells to fracture repair, non-stabilized tibial fracture was created. Paraffin sections were examined at seven days, two weeks and two months after fracture and eGFP+ hypertrophic chondrocytes, osteoblasts and osteocytes were identified at the callus site. These cells stained positive for Runx-2 or osteocalcin and also stained for eGFP demonstrating their origin from the HSC. Together, these findings strongly support the concept that HSCs generate bone cells and suggest therapeutic potentials of HSCs in fracture repair. PMID:22954476

  14. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mdm2 is an E3 ubiquitin ligase that targets p53 for degradation. p53(515C) (encoding p53R172P) is a hypomorphic allele of p53 that rescues the embryonic lethality of Mdm2(-/-) mice. Mdm2(-/-) p53(515C/515C) mice, however, die by postnatal day 13 resulting from hematopoietic failure. Hematopoietic st...

  15. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate

    PubMed Central

    Grover, Amit; Mancini, Elena; Moore, Susan; Mead, Adam J.; Atkinson, Deborah; Rasmussen, Kasper D.; O’Carroll, Donal; Jacobsen, Sten Eirik W.

    2014-01-01

    The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type. PMID:24493804

  16. Eupalinilide E inhibits erythropoiesis and promotes the expansion of hematopoietic progenitor cells.

    PubMed

    de Lichtervelde, Lorenzo; Boitano, Anthony E; Wang, Ying; Krastel, Philipp; Petersen, Frank; Cooke, Michael P; Schultz, Peter G

    2013-05-17

    Hematopoietic stem cells (HSCs) are the progenitor cells that give rise to all blood cells. The ability to control HSC differentiation has the potential to improve the success of bone marrow transplants and the production of functional blood cells ex vivo. Here we performed an unbiased screen using primary human CD34(+) hematopoietic stem and progenitor cells (HSPCs) to identify natural products that selectively control their differentiation. We identified a plant-derived natural product, eupalinilide E, that promotes the ex vivo expansion of HSPCs and hinders the in vitro development of erythrocytes. This activity was additive with aryl hydrocarbon receptor (AhR) antagonists, which are also known to expand HSCs and currently in clinical development. These findings reveal a new activity for eupalinilide E, and suggest that it may be a useful tool to probe the mechanisms of hematopoiesis and improve the ex vivo production of progenitors for therapeutic purposes. PMID:23441826

  17. Endoplasmic reticulum stress regulation in hematopoietic stem cells.

    PubMed

    Miharada, Kenichi

    2016-08-01

    Adult hematopoietic stem cells (HSCs) reside in bone marrow and are maintained in a dormant state within a special microenvironment, their so-called "niche". Detaching from the niche induces cell cycle progression, resulting in a reduction of the reconstitution capacity of HSCs. In contrast, fetal liver HSCs actively divide without losing their stem cell potentials. Thus, it has been unclear what types of cellular responses and metabolic changes occur in growing HSCs. We previously discovered that HSCs express relatively low levels of endoplasmic reticulum (ER) chaperone proteins governing protein folding, making HSCs vulnerable to an elevation of stress signals caused by accumulation of un-/misfolded proteins (ER stress) upon in vitro culture. Interestingly, fetal liver HSCs do not show ER stress elevation despite unchanged levels of chaperone proteins. Our latest studies utilizing multiple mouse models revealed that in the fetal liver bile acids as chemical chaperones play a key role supporting the protein folding which results in the suppression of ER stress induction. These findings highlight the importance of ER stress regulations in hematopoiesis. PMID:27599423

  18. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation

    PubMed Central

    Kim, Jung-Hyun; Thimmulappa, Rajesh K.; Kumar, Vineet; Cui, Wanchang; Kumar, Sarvesh; Kombairaju, Ponvijay; Zhang, Hao; Margolick, Joseph; Matsui, William; Macvittie, Thomas; Malhotra, Sanjay V.; Biswal, Shyam

    2014-01-01

    A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2–related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell (HSPC) function and mitigates IR-induced myelosuppression and mortality. Augmenting NRF2 signaling in mice, either by genetic deletion of the NRF2 inhibitor Keap1 or by pharmacological NRF2 activation with 2-trifluoromethyl-2′-methoxychalone (TMC), enhanced hematopoietic reconstitution following bone marrow transplantation (BMT). Strikingly, even 24 hours after lethal IR exposure, oral administration of TMC mitigated myelosuppression and mortality in mice. Furthermore, TMC administration to irradiated transgenic Notch reporter mice revealed activation of Notch signaling in HSPCs and enhanced HSPC expansion by increasing Jagged1 expression in BM stromal cells. Administration of a Notch inhibitor ablated the effects of TMC on hematopoietic reconstitution. Taken together, we identified a mechanism by which NRF2-mediated Notch signaling improves HSPC function and myelosuppression following IR exposure. Our data indicate that targeting this pathway may provide a countermeasure against the damaging effects of IR exposure. PMID:24463449

  19. Accelerating immune reconstitution after hematopoietic stem cell transplantation

    PubMed Central

    Tzannou, Ifigeneia; Leen, Ann M

    2014-01-01

    Viral infections remain a significant cause of morbidity and mortality after hematopoietic stem cell transplantation. Pharmacologic agents are effective against some pathogens, but they are costly and can be associated with significant toxicities. Thus, many groups have investigated adoptive T-cell transfer as a means of hastening immune reconstitution and preventing and treating viral infections. This review discusses the immunotherapeutic strategies that have been explored. PMID:25505959

  20. Genetic control of quiescence in hematopoietic stem cells

    PubMed Central

    Yamada, Takeshi; Park, Chun Shik; Lacorazza, H Daniel

    2013-01-01

    Cellular quiescence is a reversible cell cycle arrest that is poised to re-enter the cell cycle in response to a combination of cell-intrinsic factors and environmental cues. In hematopoietic stem cells, a coordinated balance between quiescence and differentiating proliferation ensures longevity and prevents both genetic damage and stem cell exhaustion. However, little is known about how all these processes are integrated at the molecular level. We will briefly review the environmental and intrinsic control of stem cell quiescence and discuss a new model that involves a protein-to-protein interaction between G0S2 and the phospho-nucleoprotein nucleolin in the cytosol. PMID:23839041

  1. Genetic control of quiescence in hematopoietic stem cells.

    PubMed

    Yamada, Takeshi; Park, Chun Shik; Lacorazza, H Daniel

    2013-08-01

    Cellular quiescence is a reversible cell cycle arrest that is poised to re-enter the cell cycle in response to a combination of cell-intrinsic factors and environmental cues. In hematopoietic stem cells, a coordinated balance between quiescence and differentiating proliferation ensures longevity and prevents both genetic damage and stem cell exhaustion. However, little is known about how all these processes are integrated at the molecular level. We will briefly review the environmental and intrinsic control of stem cell quiescence and discuss a new model that involves a protein-to-protein interaction between G0S2 and the phospho-nucleoprotein nucleolin in the cytosol. PMID:23839041

  2. Hematopoietic Cell and Renal Transplantation in Plasma Cell Dyscrasia Patients.

    PubMed

    Baraldi, Olga; Grandinetti, Valeria; Donati, Gabriele; Comai, Giorgia; Battaglino, Giuseppe; Cuna, Vania; Capelli, Irene; Sala, Elisa; La Manna, Gaetano

    2016-01-01

    Gammopathies, multiple myeloma, and amyloidosis are plasma dyscrasias characterized by clonal proliferation and immunoglobulin overproduction. Renal impairment is the most common and serious complication with an incidence of 20-30% patients at the diagnosis. Kidney transplant has not been considered feasible in the presence of plasma dyscrasias because the immunosuppressive therapy may increase the risk of neoplasia progression, and paraproteins may affect the graft. However, recent advances in clinical management of multiple myeloma and other gammopathies allow considering kidney transplant as a possible alternative to dialysis. Numerous evidence indicates the direct relationship between hematological remission and renal function restoring. The combination of kidney and hematopoietic cell transplant has been reported as a promising approach to reestablish end-organ function and effectively treat the underlying disease. This review describes current protocols used to perform kidney transplantation in patients with plasma dyscrasias. PMID:26160700

  3. Experiments on gene transferring to primary hematopoietic cells by liposome.

    PubMed

    Hu, L; Zhang, B

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by X-gal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33 +/- 2.68)% in human and about (16.28 +/- 2.95)% in mouse without G418 selection. After G418 selection, the blue cell rate was (46.06 +/- 3.47)% in human and (43.45 +/- 4.1)% in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia. PMID:12840913

  4. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow.

    PubMed

    Kent, David G; Dykstra, Brad J; Eaves, Connie J

    2016-01-01

    Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc. PMID:27532815

  5. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  6. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals

    PubMed Central

    Mead, Laura E.; Prater, Daniel; Krier, Theresa R.; Mroueh, Karim N.; Li, Fang; Krasich, Rachel; Temm, Constance J.; Prchal, Josef T.

    2007-01-01

    The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies “endothelial cell colony-forming units” (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration. PMID:17053059

  7. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.

    PubMed

    Yoder, Mervin C; Mead, Laura E; Prater, Daniel; Krier, Theresa R; Mroueh, Karim N; Li, Fang; Krasich, Rachel; Temm, Constance J; Prchal, Josef T; Ingram, David A

    2007-03-01

    The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies "endothelial cell colony-forming units" (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration. PMID:17053059

  8. Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells.

    PubMed

    Akunuru, Shailaja; Geiger, Hartmut

    2016-08-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and the increased production of reactive oxygen species (ROS) have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts, such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as the clonal selection of HSCs upon aging, provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and, potentially, alleviating aging-associated immune remodeling and myeloid malignancies. PMID:27380967

  9. Signaling pathways implicated in hematopoietic progenitor cell proliferation and differentiation.

    PubMed

    Bugarski, Diana; Krstic, Aleksandra; Mojsilovic, Slavko; Vlaski, Marija; Petakov, Marijana; Jovcic, Gordana; Stojanovic, Nevenka; Milenkovic, Pavle

    2007-01-01

    The objective of this study was to investigate the signal transduction pathways associated with the clonal development of myeloid and erythroid progenitor cells. The contribution of particular signaling molecules of protein tyrosine kinases (PTKs), mitogen-activated protein (MAP) kinase, and PI-3 kinase signaling to the growth of murine bone marrow colony forming unit-granulocyte-macrophage (CFU-GM) and erythroid (burst forming unit-erythroid [BFU-E] and colony forming unit-erythroid [CFU-E]) progenitors was examined in studies performed in the presence or absence of specific signal transduction inhibitors. The results clearly pointed to different signal transducing intermediates that are involved in cell proliferation and differentiation depending on the cell lineage, as well as on the progenitors' maturity. Lineage-specific differences were obtained when chemical inhibitors specific for receptor- or nonreceptor-PTKs, as well as for the main groups of distinctly regulated MAPK cascades, were used because all of these compounds suppressed the growth of erythroid progenitors, with no major effects on myeloid progenitors. At the same time, differential involvement of MEK/extracellular signal-regulated kinase (ERK) MAPK transduction pathway was observed in the proliferation and/or differentiation of early, BFU-E, and late, CFU-E, erythroid progenitor cells. The results also demonstrated that phosphatydylinositol (PI)-3 kinase and nuclear factor kappaB (NF-kappaB) transcriptional factor were required for maintenance of both myeloid and erythroid progenitor cell function. Overall, the data obtained indicated that committed hematopoietic progenitors express a certain level of constitutive signaling activity that participates in the regulation of normal steady-state hematopoiesis and point to the importance of evaluating the impact of signal transduction inhibitors on normal bone marrow when used as potential therapeutic agents. PMID:17202596

  10. Wnt4 Enhances Murine Hematopoietic Progenitor Cell Expansion Through a Planar Cell Polarity-Like Pathway

    PubMed Central

    Heinonen, Krista M.; Vanegas, Juan Ruiz; Lew, Deborah; Krosl, Jana; Perreault, Claude

    2011-01-01

    Background While the role of canonical (β-catenin-mediated) Wnt signaling in hematolymphopoiesis has been studied extensively, little is known of the potential importance of non-canonical Wnt signals in hematopoietic cells. Wnt4 is one of the Wnt proteins that can elicit non-canonical pathways. We have previously shown that retroviral overexpression of Wnt4 by hematopoietic cells increased thymic cellularity as well as the frequency of early thymic progenitors and bone marrow hematopoietic progenitor cells (HPCs). However, the molecular pathways responsible for its effect in HPCs are not known. Methodology/Principal Findings Here we report that Wnt4 stimulation resulted in the activation of the small GTPase Rac1 as well as Jnk kinases in an HPC cell line. Jnk activity was necessary, while β-catenin was dispensable, for the Wnt4-mediated expansion of primary fetal liver HPCs in culture. Furthermore, Jnk2-deficient and Wnt4 hemizygous mice presented lower numbers of HPCs in their bone marrow, and Jnk2-deficient HPCs showed increased rates of apoptosis. Wnt4 also improved HPC activity in a competitive reconstitution model in a cell-autonomous, Jnk2-dependent manner. Lastly, we identified Fz6 as a receptor for Wnt4 in immature HPCs and showed that the absence of Wnt4 led to a decreased expression of four polarity complex genes. Conclusions/Significance Our results establish a functional role for non-canonical Wnt signaling in hematopoiesis through a pathway involving Wnt4, Fz6, Rac1 and Jnk kinases. PMID:21541287

  11. Consideration of strategies for hematopoietic cell transplantation.

    PubMed

    Yaniv, Isaac; Ash, Shifra; Farkas, Daniel L; Askenasy, Nadir; Stein, Jerry

    2009-01-01

    Bone marrow transplantation has been adoptively transferred from oncology to the treatment of autoimmune disorders. Along with extension of prevalent transplant-related concepts, the assumed mechanism that arrests autoimmunity involves elimination of pathogenic cells and resetting of immune homeostasis. Similar to graft versus tumor (GVT) reactivity, allogeneic transplants are considered to provide a better platform of immunomodulation to induce a graft versus autoimmunity reaction (GVA). It is yet unclear whether recurrence of autoimmunity in both autologous and allogeneic settings reflects relapse of the disease, transplant-associated immune dysfunction or insufficient immune modulation. Possible causes of disease recurrence include reactivation of residual host pathogenic cells and persistence of memory cells, genetic predisposition to autoimmunity and pro-inflammatory characteristics of the target tissues. Most important, there is little evidence that autoimmune disorders are indeed abrogated by current transplant procedures, despite reinstitution of both peripheral and thymic immune homeostasis. It is postulated that non-specific immunosuppressive therapy that precedes and accompanies current bone marrow transplant strategies is detrimental to the active immune process that restores self-tolerance. This proposition refocuses the need to develop strategies of immunomodulation without immunosuppression. PMID:19800763

  12. Cathepsin X is secreted by human osteoblasts, digests CXCL-12 and impairs adhesion of hematopoietic stem and progenitor cells to osteoblasts

    PubMed Central

    Staudt, Nicole D.; Aicher, Wilhelm K.; Kalbacher, Hubert; Stevanovic, Stefan; Carmona, Adriana K.; Bogyo, Matthew; Klein, Gerd

    2010-01-01

    Background Hematopoietic stem cells are retained within discrete bone marrow niches through the effects of cell adhesion molecules and chemokine gradients. However, a small proportion of hematopoietic stem cells can also be found trafficking in the peripheral blood. During induced stem cell mobilization a proteolytic microenvironment is generated, but whether proteases are also involved in physiological trafficking of hematopoietic stem cells is not known. In the present study we examined the expression, secretion and function of the cysteine protease cathepsin X by cells of the human bone marrow. Design and Methods Human osteoblasts, bone marrow stromal cells and hematopoietic stem and progenitor cells were analyzed for the secretion of cathepsin X by western blotting, active site labeling, immunofluorescence staining and activity assays. A possible involvement of cathepsin X in cell adhesion and CXCL-12-mediated cell migration was studied in functional assays. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) analysis revealed the digestion mechanism of CXCL-12 by cathepsin X. Results Osteoblasts and stromal cells secrete cathepsin X, whereas hematopoietic stem and progenitor cells do not. Using a cathepsin X-selective substrate, we detected the catalytic activity of cathepsin X in cell culture supernatants of osteoblasts. Activated cathepsin X is able to reduce cellular adhesive interactions between CD34+ hematopoietic stem and progenitor cells and adherent osteoblasts. The chemokine CXCL-12, a highly potent chemoattractant for hematopoietic stem cells secreted by osteoblasts, is readily digested by cathepsin X. Conclusions The exo-peptidase cathepsin X has been identified as a new member of the group of CXCL-12-degrading enzymes secreted by non-hematopoietic bone marrow cells. Functional data indicate that cathepsin X can influence hematopoietic stem and progenitor cell trafficking in the bone marrow. PMID:20494937

  13. A Novel Health Information Technology Communication System to Increase Caregiver Activation in the Context of Hospital-Based Pediatric Hematopoietic Cell Transplantation: A Pilot Study

    PubMed Central

    Maher, Molly; Hanauer, David A; Kaziunas, Elizabeth; Ackerman, Mark S; Derry, Holly; Forringer, Rachel; Miller, Kristen; O'Reilly, Dennis; An, Lawrence; Tewari, Muneesh

    2015-01-01

    Background Pediatric hematopoietic cell transplantation (HCT), commonly referred to as blood and marrow transplantation (BMT), is an intense treatment modality that requires the involvement of engaged caregivers during the patient’s (child’s) prolonged hospitalization. The ubiquity of electronic health records (EHRs) and a trend toward patient-centered care could allow a novel health information technology (IT) system to increase parental engagement. The paucity of research on acute care, hospital-based (inpatient) health IT applications for patients or caregivers provides an opportunity for testing the feasibility of such applications. The pediatric BMT population represents an ideal patient group to conduct an evaluation due to the lengthy inpatient stays and a heightened need for patient activation. Objective The primary objective of this study is to assess the feasibility of implementing the BMT Roadmap in caregivers as an intervention during their child’s inpatient hospitalization. The BMT Roadmap is an inpatient portal prototype optimized for tablet with a user-centered design. It integrates patient-specific laboratory and medication data from the EHR in real-time and provides support in terms of discharge goals, home care education, and other components. Feasibility will be proven if (1) the BMT Roadmap functions and can be managed by the study team without unexpected effort, (2) the system is accessed by users at a defined minimum threshold, and (3) the qualitative and quantitative research conducted provides quality data that address the perceived usefulness of the BMT Roadmap and could inform a study in a larger sample size. Methods This will be a single-arm, nonrandomized feasibility study. We aim to enroll 10 adult caregivers (age ≥ 18 years) of pediatric patients (aged 0-25 years) undergoing autologous (self-donor) or allogeneic (alternative donor) BMT. Assenting minors (aged 10-18) will also be invited to participate. Recruitment of study

  14. Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42

    PubMed Central

    Geiger, Hartmut; Zheng, Yi

    2015-01-01

    Summary Aging of stem cells might be the underlying cause of tissue aging in tissue that in the adult heavily rely on stem cell activity, like the blood forming system. Hematopoiesis, the generation of blood forming cells, is sustained by hematopoietic stem cells. In this review article, we introduce the canonical set of phenotypes associated with aged HSCs, focus on the novel aging-associated phenotype apolarity caused by elevated activity of the small RhoGTPase in aged HSCs, disuccs the role of Cdc42 in hematopoiesis and describe that pharmacological inhibition of Cdc42 activity in aged HSCs results in functionally young and thus rejuvenated HSCs. PMID:25220425

  15. Allogeneic hematopoietic stem cell transplantation in mycosis fungoides*

    PubMed Central

    Atalla, Angelo; Hallack Neto, Abrahão Elias; Siqueira, Denise Bittencourt; Toledo, Gabriela Cumani

    2013-01-01

    Mycosis Fungoides is typically an indolent disease in early stages. However, approximately 30% of patients have advanced staged disease at presentation and 20% will develop it at some time. These patients have a poorer prognosis with a median survival of 2-4 years. The only curative option for mycosis fungoides may be hematopoietic allogeneic stem cell transplantation. We report the case of a patient with mycosis fungoides in an advanced stage (IIB), refractory to treatment options. She underwent allogeneic hematopoietic stem-cell transplantation (allo-HSCT). The patient remains in complete remission nineteen months after allo-HSCT. Allogeneic transplantation can alter the natural history of mycosis fungoides and should be considered in patients who have refractory disease or short-lived responses with standard therapies. PMID:24346924

  16. Sleep disruption impairs hematopoietic stem cell transplantation in mice

    PubMed Central

    Rolls, Asya; Pang, Wendy W.; Ibarra, Ingrid; Colas, Damien; Bonnavion, Patricia; Korin, Ben; Heller, H. Craig; Weissman, Irving L.; de Lecea, Luis

    2015-01-01

    Many of the factors affecting the success of hematopoietic cell transplantation are still unknown. Here we show in mice that donor’s sleep deprivation reduces the ability of its hematopoietic stem cells (HSCs) to engraft and reconstitute the blood and bone marrow of an irradiated recipient by more than 50%. We demonstrate that sleep deprivation downregulates the expression of microRNA (miR)-19b, a negative regulator of the suppressor of cytokine signaling (SOCS) genes, which inhibit HSC migration and homing. Accordingly, HSCs from sleep-deprived mice have higher levels of SOCS genes expression, lower migration capacity in vitro and reduced homing to the bone marrow in vivo. Recovery of sleep after sleep deprivation restored the reconstitution potential of the HSCs. Taken together, this study provides insights into cellular and molecular mechanisms underlying the effects of sleep deprivation on HSCs, emphasizing the potentially critical role of donor sleep in the success of bone marrow transplantation. PMID:26465715

  17. Murine Hematopoietic Stem cells and Progenitors Express Adrenergic Receptors

    PubMed Central

    Muthu, Kuzhali; Iyer, Sivaraman; He, L-K.; Szilagyi, Andrea; Gamelli, Richard L; Shankar, Ravi; Jones, Stephen B

    2007-01-01

    Association between the nervous and immune system is well documented. Immune cells originate within the bone marrow that is innervated. Thermal injury induces adrenergic stimulation, augments monocytopoiesis and alters the β-adrenergic receptor (AR) profile of bone marrow monocyte committed progenitors. This provides an impetus to study AR expression in hematopoietic progenitors along myeloid lineage. Using FACS analysis and confocal microscopy, we report the expression of α1-, α2- and β2- AR in enriched populations of ER-MP20+ and ER-MP12+ myeloid progenitors, CD117+ and CD34+ multi-potential progenitors and more importantly pluripotent stem cells suggesting a plausible role for catecholamine in hematopoietic development. PMID:17428548

  18. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation

    PubMed Central

    Gilbert, Ethel S.; Rizzo, J. Douglas; Socié, Gérard; Banks, Peter M.; Sobocinski, Kathleen A.; Horowitz, Mary M.; Jaffe, Elaine S.; Kingma, Douglas W.; Travis, Lois B.; Flowers, Mary E.; Martin, Paul J.; Deeg, H. Joachim; Curtis, Rochelle E.

    2009-01-01

    We evaluated 26 901 patients who underwent allogeneic hematopoietic cell transplantation (HCT) at 271 centers worldwide to define patterns of posttransplantation lymphoproliferative disorders (PTLDs). PTLDs developed in 127 recipients, with 105 (83%) cases occurring within 1 year after transplantation. In multivariate analyses, we confirmed that PTLD risks were strongly associated (P < .001) with T-cell depletion of the donor marrow, antithymocyte globulin (ATG) use, and unrelated or HLA-mismatched grafts (URD/HLA mismatch). Significant associations were also confirmed for acute and chronic graft-versus-host disease. The increased risk associated with URD/HLA-mismatched donors (RR = 3.8) was limited to patients with T-cell depletion or ATG use (P = .004). New findings were elevated risks for age 50 years or older at transplantation (RR = 5.1; P < .001) and second transplantation (RR = 3.5; P < .001). Lower risks were found for T-cell depletion methods that remove both T and B cells (alemtuzumab and elutriation, RR = 3.1; P = .025) compared with other methods (RR = 9.4; P = .005 for difference). The cumulative incidence of PTLDs was low (0.2%) among 21 686 patients with no major risk factors, but increased to 1.1%, 3.6%, and 8.1% with 1, 2, and more than 3 major risk factors, respectively. Our findings identify subgroups of patients who underwent allogeneic HCT at elevated risk of PTLDs for whom prospective monitoring of Epstein-Barr virus activation and early treatment intervention may be particularly beneficial. PMID:19264919

  19. Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells.

    PubMed

    Hadland, Brandon K; Varnum-Finney, Barbara; Poulos, Michael G; Moon, Randall T; Butler, Jason M; Rafii, Shahin; Bernstein, Irwin D

    2015-05-01

    Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin-expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin⁺CD45⁺ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications. PMID:25866967

  20. Hematopoietic stem cell transplantation for infantile osteopetrosis

    PubMed Central

    Fasth, Anders L.; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; O’Brien, Tracey A.; Perez, Miguel A. Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed. PMID:26012570

  1. Hematopoietic stem cell transplantation for infantile osteopetrosis.

    PubMed

    Orchard, Paul J; Fasth, Anders L; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M; Boulad, Farid; Lund, Troy; Buchbinder, David K; Kapoor, Neena; O'Brien, Tracey A; Perez, Miguel A Diaz; Veys, Paul A; Eapen, Mary

    2015-07-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed. PMID:26012570

  2. Spleens of myelofibrosis patients contain malignant hematopoietic stem cells

    PubMed Central

    Wang, Xiaoli; Prakash, Sonam; Lu, Min; Tripodi, Joseph; Ye, Fei; Najfeld, Vesna; Li, Yan; Schwartz, Myron; Weinberg, Rona; Roda, Paul; Orazi, Attilio; Hoffman, Ronald

    2012-01-01

    Cancer stem cell behavior is thought to be largely determined by intrinsic properties and by regulatory signals provided by the microenvironment. Myelofibrosis (MF) is characterized by hematopoiesis occurring not only in the marrow but also in extramedullary sites such as the spleen. In order to study the effects of these different microenvironments on primitive malignant hematopoietic cells, we phenotypically and functionally characterized splenic and peripheral blood (PB) MF CD34+ cells from patients with MF. MF spleens contained greater numbers of malignant primitive HPCs than PB. Transplantation of PB MF CD34+ cells into immunodeficient (NOD/SCID/IL2Rγnull) mice resulted in a limited degree of donor cell chimerism and a differentiation program skewed toward myeloid lineages. By contrast, transplanted splenic MF CD34+ cells achieved a higher level of chimerism and generated both myeloid and lymphoid cells that contained molecular or cytogenetic abnormalities indicating their malignant nature. Only splenic MF CD34+ cells were able to sustain hematopoiesis for prolonged periods (9 months) and were able to engraft secondary recipients. These data document the existence of MF stem cells (MF-SCs) that reside in the spleens of MF patients and demonstrate that these MF-SCs retain a differentiation program identical to that of normal hematopoietic stem cells. PMID:23023702

  3. Granulomatous amebic encephalitis following hematopoietic stem cell transplantation

    PubMed Central

    Doan, Ninh; Rozansky, Gregory; Nguyen, Ha Son; Gelsomino, Michael; Shabani, Saman; Mueller, Wade; Johnson, Vijay

    2015-01-01

    Background: Granulomatous amebic encephalitis (GAE) is rare, but often fatal. The infection has been documented predominantly among the immunocompromised population or among those with chronic disease. To date, however, there have only been eight cases regarding the infection following hematopoietic stem cell transplantation (HSCT). Case Description: A 62-year-old female with a history of relapsed diffuse large B-cell lymphoma, recently underwent peripheral blood autologous stem cell transplant after BEAM conditioning (day 0). On day +15, she began to exhibit worsening fatigue, generalized weakness, and fever. Symptoms progressed to nausea, emesis, somnolence, confusion, and frontal headaches over the next few days. Imaging demonstrated multifocal ill-defined vasogenic edema with patchy enhancement. The patient was started on broad antibiotics, antifungals, and seizure prophylaxis. Evaluation for bacterial, fungal, mycobacterial, and viral etiologies was fruitless. Her mental status progressively deteriorated. On day +22, she exhibited severe lethargy and went into pulseless electrical activity arrest, requiring chest compressions. The episode lasted <2 min and her pulse was restored. She was taken to the operating room for a brain biopsy. Postoperatively, her right pupil began to dilate compared to the left; she demonstrated extensor posturing in her upper extremities and withdrawal in her lower extremities. Repeat computed tomography demonstrated progressive edema. Given poor prognosis and poor neurological examination, the family opted for withdrawal of care. Final pathology was consistent with Acanthamoeba GAE. Conclusion: The authors report the third case of GAE after autologous stem cell transplant, and the ninth case overall after HSCT. This case is unusual due to its rapid clinical presentation after HSCT compared to prior literature. The case highlights the need for high suspicion of Acanthamoeba infection in this patient population. PMID:26539322

  4. Hematopoietic stem cell enhancer: a powerful tool in stem cell biology.

    PubMed

    Koh, Cai Ping; Ng, Cherry Ee Lin; Nah, Giselle Sek Suan; Wang, Chelsia Qiuxia; Tergaonkar, Vinay; Matsumura, Takayoshi; Yokomizo, Tomomasa; Suda, Toshio; Osato, Motomi

    2015-06-01

    There has been considerable interest in identifying a cis-regulatory element that targets gene expression to stem cells. Such an element, termed stem cell enhancer, holds the promise of providing important insights into the transcriptional programs responsible for inherent stem cell-specific properties such as self-renewal capacity. The element also serves as a molecular handle for stem cell-specific marking, transgenesis and gene targeting, thereby becoming invaluable to stem cell research. A series of candidate enhancers have been identified for hematopoietic stem cells (HSCs). This review summarizes currently known HSC enhancers with emphasis on an intronic enhancer in the Runx1 gene which is essential for the generation and maintenance of HSCs. The element, named eR1 (+24m), is active specifically in HSCs, but not in progenitors, and is hence the most definitive HSC enhancer. PMID:25574754

  5. [Neutrophil disorders: diagnosis and hematopoietic stem cell transplantation].

    PubMed

    Kobayashi, Masao

    2015-10-01

    Neutrophil disorders are classified into abnormal neutrophil function and granulopoiesis. The identification of genetic defects causing neutropenia and neutrophil dysfunction has revealed the mechanisms controlling myeloid differentiation and their functions. The International Union of Immunological Societies of Primary Immunodeficiencies represents the most current catalog of approximately 30 neutrophil disorders. In this report, we show the progress made in studies of the pathophysiology and treatment of these disorders, focusing on chronic granulomatous disease (CGD) and severe congenital neutropenia (SCN). Hematopoietic stem cell transplantation (HSCT) is the only available curative therapy for CGD and SCN. However, the use of HSCT as treatment for both diseases is limited by transplant-related mortality (TRM) because of active infections and intractable inflammatory complications. Recently, reduced-intensity conditioning regimens have been introduced to minimize the TRM and the late adverse effects of HSCT for both diseases. The results of HSCT using the RIC regimen for 40 patients with CGD and SCN in Hiroshima University Hospital are summarized herein. Determining the optimal line of treatment will require further accumulation to cases to refine HSCT for both diseases. PMID:26458464

  6. Surviving change: the metabolic journey of hematopoietic stem cells.

    PubMed

    Kohli, Latika; Passegué, Emmanuelle

    2014-08-01

    Hematopoietic stem cells (HSCs) are a rare population of somatic stem cells that maintain blood production and are uniquely wired to adapt to diverse cellular fates during the lifetime of an organism. Recent studies have highlighted a central role for metabolic plasticity in facilitating cell fate transitions and in preserving HSC functionality and survival. This review summarizes our current understanding of the metabolic programs associated with HSC quiescence, self-renewal, and lineage commitment, and highlights the mechanistic underpinnings of these changing bioenergetics programs. It also discusses the therapeutic potential of targeting metabolic drivers in the context of blood malignancies. PMID:24768033

  7. Gene-modified hematopoietic stem cells for cancer immunotherapy

    PubMed Central

    Larson, Sarah; De Oliveira, Satiro N

    2014-01-01

    The rapid expansion of available cancer immunotherapies has resulted in favorable early outcomes. Specifically the use of gene therapy to introduce chimeric antigen receptors (CARs) and T cell receptors (TCRs) in T cells creates new immunotherapy options for patients. While showing early success with these approaches, limitations remain that can be overcome by the use of modification of hematopoietic stem cells (HSCs) to express CARs and TCRs. With modern gene therapy technologies, increased safety and control of the modification of the HSCs can be achieved through the use of a suicide gene. PMID:24398603

  8. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.

    PubMed

    Biffi, Alessandra; Montini, Eugenio; Lorioli, Laura; Cesani, Martina; Fumagalli, Francesca; Plati, Tiziana; Baldoli, Cristina; Martino, Sabata; Calabria, Andrea; Canale, Sabrina; Benedicenti, Fabrizio; Vallanti, Giuliana; Biasco, Luca; Leo, Simone; Kabbara, Nabil; Zanetti, Gianluigi; Rizzo, William B; Mehta, Nalini A L; Cicalese, Maria Pia; Casiraghi, Miriam; Boelens, Jaap J; Del Carro, Ubaldo; Dow, David J; Schmidt, Manfred; Assanelli, Andrea; Neduva, Victor; Di Serio, Clelia; Stupka, Elia; Gardner, Jason; von Kalle, Christof; Bordignon, Claudio; Ciceri, Fabio; Rovelli, Attilio; Roncarolo, Maria Grazia; Aiuti, Alessandro; Sessa, Maria; Naldini, Luigi

    2013-08-23

    Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disease caused by arylsulfatase A (ARSA) deficiency. Patients with MLD exhibit progressive motor and cognitive impairment and die within a few years of symptom onset. We used a lentiviral vector to transfer a functional ARSA gene into hematopoietic stem cells (HSCs) from three presymptomatic patients who showed genetic, biochemical, and neurophysiological evidence of late infantile MLD. After reinfusion of the gene-corrected HSCs, the patients showed extensive and stable ARSA gene replacement, which led to high enzyme expression throughout hematopoietic lineages and in cerebrospinal fluid. Analyses of vector integrations revealed no evidence of aberrant clonal behavior. The disease did not manifest or progress in the three patients 7 to 21 months beyond the predicted age of symptom onset. These findings indicate that extensive genetic engineering of human hematopoiesis can be achieved with lentiviral vectors and that this approach may offer therapeutic benefit for MLD patients. PMID:23845948

  9. Hematopoietic stem cell transplantation: clinical use and perspectives.

    PubMed

    Barriga, Francisco; Ramírez, Pablo; Wietstruck, Angélica; Rojas, Nicolás

    2012-01-01

    Hematopoietic stem cell transplantation is the accepted therapy of choice for a variety of malignant and non-malignant diseases in children and adults. Initially developed as rescue therapy for a patient with cancer after high doses of chemotherapy and radiation as well as the correction of severe deficiencies in the hematopoietic system, it has evolved into an adoptive immune therapy for malignancies and autoimmune disorders. The procedure has helped to obtain key information about the bone marrow environment, the biology of hematopoietic stem cells and histocompatibility. The development of this new discipline has allowed numerous groups working around the world to cure patients of diseases previously considered lethal. Together with the ever growing list of volunteer donors and umbilical cord blood banks, this has resulted in life saving therapy for thousands of patients yearly. We present an overview of the procedure from its cradle to the most novel applications, as well as the results of the HSC transplant program developed at our institution since 1989. PMID:23283440

  10. The transcriptional landscape of hematopoietic stem cell ontogeny

    PubMed Central

    McKinney-Freeman, Shannon; Cahan, Patrick; Li, Hu; Lacadie, Scott A.; Huang, Hsuan-Ting; Curran, Matthew; Loewer, Sabine; Naveiras, Olaia; Kathrein, Katie L.; Konantz, Martina; Langdon, Erin M.; Lengerke, Claudia; Zon, Leonard I.; Collins, James J.; Daley, George Q.

    2012-01-01

    Transcriptome analysis of adult hematopoietic stem cells (HSC) and their progeny has revealed mechanisms of blood differentiation and leukemogenesis, but a similar analysis of HSC development is lacking. Here, we acquired the transcriptomes of developing HSC purified from >2500 murine embryos and adult mice. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs undergoing specification, and definitive HSCs. We applied a network biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development and functionally validated candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knock-down in zebrafish embryos. Moreover, we found that HSCs from in vitro differentiated embryonic stem cells closely resemble definitive HSC, yet lack a Notch-signaling signature, likely accounting for their defective lymphopoiesis. Our analysis and web resource (http://hsc.hms.harvard.edu) will enhance efforts to identify regulators of HSC ontogeny and facilitate the engineering of hematopoietic specification. PMID:23122293

  11. Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells

    PubMed Central

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Kafi-abad, Sedigheh Amini

    2015-01-01

    Microvesicles can transfer their contents, proteins and RNA, to target cells and thereby transform them. This may induce apoptosis or survival depending on cell origin and the target cell. In this study, we investigate the effect of leukemic cell microvesicles on umbilical cord blood hematopoietic stem cells to seek evidence of apoptosis or cell survival. Microvesicles were isolated from both healthy donor bone marrow samples and Jurkat cells by ultra-centrifugation and were added to hematopoietic stem cells sorted from umbilical cord blood samples by magnetic associated cell sorting (MACS) technique. After 7 days, cell count, cell viability, flow cytometry analysis for hematopoietic stem cell markers and qPCR for P53 gene expression were performed. The results showed higher cell number, higher cell viability rate and lower P53 gene expression in leukemia group in comparison with normal and control groups. Also, CD34 expression as the most important hematopoietic stem cell marker, did not change during the treatment and lineage differentiation was not observed. In conclusion, this study showed anti-apoptotic effect of leukemia cell derived microvesicles on umbilical cord blood hematopoietic stem cells. PMID:26862318

  12. Biology of hematopoietic stem cells and progenitors: implications for clinical application.

    PubMed

    Kondo, Motonari; Wagers, Amy J; Manz, Markus G; Prohaska, Susan S; Scherer, David C; Beilhack, Georg F; Shizuru, Judith A; Weissman, Irving L

    2003-01-01

    Stem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases. PMID:12615892

  13. Transglutaminase activity in the hematopoietic tissue of a crustacean, Pacifastacus leniusculus, importance in hemocyte homeostasis

    PubMed Central

    Lin, Xionghui; Söderhäll, Kenneth; Söderhäll, Irene

    2008-01-01

    Background Transglutaminases (TGases) form a group of enzymes that have many different substrates and among the most well known are fibrin for Factor XIIIa and the clotting protein in crustaceans. We also found that TGase is an abundant protein in the hematopoietic tissue (Hpt) cells of crayfish and hence we have studied the possible function of this enzyme in hematopoiesis. Results TGase is one of the most abundant proteins in the Hpt and its mRNA expression as well as enzyme activity is very high in the Hpt cells, lesser in the semi-granular hemocytes and very low in the granular cells. In cultured hematopoietic tissues, high activity was present in cells in the centre of the tissue, whereas cells migrating out of the tissue had very low TGase activity. RNAi experiments using dsRNA for TGase completely knocked down the transcript and as a result the cell morphology was changed and the cells started to spread intensely. If astakine, a cytokine directly involved in hematopoiesis, was added the cells started to spread and adopt a morphology similar to that observed after RNAi of TGase. Astakine had no effect on TGase expression, but after a prolonged incubation for one week with this invertebrate cytokine, TGase activity inside and outside the cells was completely lost. Thus it seems as if astakine addition to the Hpt cells and RNAi of TGase in the cell culture will lead to the same results, i.e. loss of TGase activity in the cells and they start to differentiate and spread. Conclusion The results of this study suggest that TGase is important for keeping the Hpt cells in an undifferentiated stage inside the hematopoietic tissue and if expression of TGase mRNA is blocked the cells start to differentiate and spread. This shows a new function for transglutaminase in preventing hematopoietic stem cells from starting to differentiate and migrate into the hemolymph, whereas their proliferation is unaffected. Astakine is also important for the hematopoiesis, since it

  14. Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation.

    PubMed

    Reddehase, Matthias J

    2016-01-01

    Hematopoietic cell transplantation (HCT) is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a "window of opportunity" for latent Cytomegalovirus (CMV) by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A "window of opportunity" for the virus represents a "window of risk" for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8(+) T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP) representing the most severe clinical manifestation. Here, I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a preemptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing "proof of concept" for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8(+) T cells bridging the critical interim. However, CMV is not a "passive antigen" but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow (BM) stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected BM stroma and impaired colony growth and lineage differentiation can lead to "graft failure." In consequence, uncontrolled virus spread causes morbidity and

  15. Regulation of cell surface receptors for different hematopoietic growth factors on myeloid leukemic cells.

    PubMed Central

    Lotem, J; Sachs, L

    1986-01-01

    There are clones of myeloid leukemic cells which are different from normal myeloid cells in that they have become independent of hematopoietic growth factor for cell viability and growth. The ability of these clones to bind three types of hematopoietic growth factors (MGI-1GM = GM-CSF, IL-3 = multi-CSF and MGI-1M = M-CSF = CSF-1) was measured using the method of quantitative absorption at 1 degree C and low pH elution of cell-bound biological activity. Results of binding to normal myeloid and lymphoid cells were similar to those obtained by radioreceptor assays. The results indicate that the number of receptors on different clones of these leukemic cells varied from 0 to 1,300 per cell. The receptors have a high binding affinity. Receptors for different growth factors can be independently expressed in different clones. There was no relationship between expression of receptors for these growth factors and the phenotype of the leukemic cells regarding their ability to be induced to differentiate. The number of receptors on the leukemic cells was lower than on normal mature macrophages. Myeloid leukemic cells induced to differentiate by normal myeloid cell differentiation factor MGI-2 (= DF), or by low doses of actinomycin D or cytosine arabinoside, showed an up-regulation of the number of MGI-1GM and IL-3 receptors. Induction of differentiation of leukemic cells by MGI-2 also induced production and secretion of the growth factor MGI-1GM, and this induced MGI-1GM saturated the up-regulated MGI-1GM receptors. It is suggested that up-regulation of these receptors during differentiation is required for the functioning of differentiated cells. PMID:3023059

  16. The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs

    PubMed Central

    Signer, Robert A.J.; Qi, Le; Zhao, Zhiyu; Thompson, David; Sigova, Alla A.; Fan, Zi Peng; DeMartino, George N.; Young, Richard A.; Sonenberg, Nahum; Morrison, Sean J.

    2016-01-01

    Adult stem cells must limit their rate of protein synthesis, but the underlying mechanisms remain largely unexplored. Differences in protein synthesis among hematopoietic stem cells (HSCs) and progenitor cells did not correlate with differences in proteasome activity, total RNA content, mRNA content, or cell division rate. However, adult HSCs had more hypophosphorylated eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP2 as compared with most other hematopoietic progenitors. Deficiency for 4E-BP1 and 4E-BP2 significantly increased global protein synthesis in HSCs, but not in other hematopoietic progenitors, and impaired their reconstituting activity, identifying a mechanism that promotes HSC maintenance by attenuating protein synthesis. PMID:27492367

  17. Hematopoietic stem cell niche maintenance during homeostasis and regeneration

    PubMed Central

    Mendelson, Avital; Frenette, Paul S

    2015-01-01

    The bone marrow niche has mystified scientists for many years, leading to widespread investigation to shed light into its molecular and cellular composition. Considerable efforts have been devoted toward uncovering the regulatory mechanisms of hematopoietic stem cell (HSC) niche maintenance. Recent advances in imaging and genetic manipulation of mouse models have allowed the identification of distinct vascular niches that have been shown to orchestrate the balance between quiescence, proliferation and regeneration of the bone marrow after injury. Here we highlight the recently discovered intrinsic mechanisms, microenvironmental interactions and communication with surrounding cells involved in HSC regulation, during homeostasis and in regeneration after injury and discuss their implications for regenerative therapy. PMID:25100529

  18. Fetal hematopoietic stem cells express MFG-E8 during mouse embryogenesis.

    PubMed

    Lee, Jaehun; Choi, Byung-il; Park, Seo Young; An, Su Yeon; Han, Jiyou; Kim, Jong-Hoon

    2015-01-01

    The milk fat globule-EGF-factor 8 protein (MFG-E8) has been identified in various tissues, where it has an important role in intercellular interactions, cellular migration, and neovascularization. Previous studies showed that MFG-E8 is expressed in different cell types under normal and pathophysiological conditions, but its expression in hematopoietic stem cells (HSCs) during hematopoiesis has not been reported. In the present study, we investigated MFG-E8 expression in multiple hematopoietic tissues at different stages of mouse embryogenesis. Using immunohistochemistry, we showed that MFG-E8 was specifically expressed in CD34(+) HSCs at all hematopoietic sites, including the yolk sac, aorta-gonad-mesonephros region, placenta and fetal liver, during embryogenesis. Fluorescence-activated cell sorting and polymerase chain reaction analyses demonstrated that CD34(+) cells, purified from the fetal liver, expressed additional HSC markers, c-Kit and Sca-1, and that these CD34(+) cells, but not CD34(-) cells, highly expressed MFG-E8. We also found that MFG-E8 was not expressed in HSCs in adult mouse bone marrow, and that its expression was confined to F4/80(+) macrophages. Together, this study demonstrates, for the first time, that MFG-8 is expressed in fetal HSC populations, and that MFG-E8 may have a role in embryonic hematopoiesis. PMID:26206421

  19. Melatonin-induced T-helper cell hematopoietic cytokines resembling both interleukin-4 and dynorphin.

    PubMed

    Maestroni, G J; Hertens, E; Galli, P; Conti, A; Pedrinis, E

    1996-10-01

    We have reported that melatonin exerts colony stimulating activity and rescues bone marrow cells from apoptosis induced either in vivo or in vitro by cancer chemotherapy compounds. We proposed that melatonin regulates interleukin-4 (IL-4) production in bone marrow T-helper cells and that IL-4 stimulates adherent stromal cells to produce colony stimulating factors (CSF). However, in further investigations we did not find any direct evidence of the ability of melatonin to stimulate IL4. We found that besides anti-IL4 monoclonal antibody (mAb), the opioid antagonist naltrexone also neutralized the colony stimulating activity and part of the hematopoietic protection exerted by melatonin. SDS-PAGE and immunoblotting analysis of supernatants of bone marrow T-helper cells incubated overnight with melatonin revealed the presence of two proteins with an apparent molecular weight of 15 and 67 kDa, which were recognized by both anti-common opioid sequence (Tyr-Gly-Gly-Phe) and anti-IL4 mAbs. When Abs against known opioid peptides were tested, only anti-dynorphin B Ab labeled the 67 kDa but not the 15 kDa protein. These melatonin-induced-opioids (MIO) were separated by gel filtration. The lower molecular weight MIO (MIO15) seems to mediate the naltrexone-sensitive hematopoietic effects of melatonin. Consistently, we found the presence of opioid receptors in adherent bone marrow cells. Apparently, the higher molecular weight protein, MIO67, was responsible for the naltrexone-insensitive part of the melatonin-induced hematopoietic rescue. These melatonin-induced T-helper cell products which resemble both IL-4 and dynorphin B might represent a new family of opioid peptides with hematopoietic and immune functions. PMID:8981257

  20. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Technical Reports Server (NTRS)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  1. Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

    ClinicalTrials.gov

    2016-04-26

    Thalassemia; Sickle Cell Disease; Glanzmann Thrombasthenia; Wiskott-Aldrich Syndrome; Chronic-granulomatous Disease; Severe Congenital Neutropenia; Leukocyte Adhesion Deficiency; Schwachman-Diamond Syndrome; Diamond-Blackfan Anemia; Fanconi Anemia; Dyskeratosis-congenita; Chediak-Higashi Syndrome; Severe Aplastic Anemia

  2. How do I perform hematopoietic progenitor cell selection?

    PubMed

    Avecilla, Scott T; Goss, Cheryl; Bleau, Sharon; Tonon, Jo-Ann; Meagher, Richard C

    2016-05-01

    Graft-versus-host disease remains the most important source of morbidity and mortality associated with allogeneic stem cell transplantation. The implementation of hematopoietic progenitor cell (HPC) selection is employed by some stem cell processing facilities to mitigate this complication. Current cell selection methods include reducing the number of unwanted T cells (negative selection) and/or enriching CD34+ hematopoietic stem/progenitors (positive selection) using immunomagnetic beads subjected to magnetic fields within columns to separate out targeted cells. Unwanted side effects of cell selection as a result of T-cell reduction are primary graft failure, increased infection rates, delayed immune reconstitution, possible disease relapse, and posttransplant lymphoproliferative disease. The Miltenyi CliniMACS cell isolation system is the only device currently approved for clinical use by the Food and Drug Administration. It uses magnetic microbeads conjugated with a high-affinity anti-CD34 monoclonal antibody capable of binding to HPCs in marrow, peripheral blood, or umbilical cord blood products. The system results in significantly improved CD34+ cell recoveries (50%-100%) and consistent 3-log CD3+ T-cell reductions compared to previous generations of CD34+ cell selection procedures. In this article, the CliniMACS procedure is described in greater detail and the authors provide useful insight into modifications of the system. Successful implementation of cell selection procedures can have a significant positive clinical effect by greatly increasing the pool of donors for recipients requiring transplants. However, before a program implements cell selection techniques, it is important to consider the time and financial resources required to properly and safely perform these procedures. PMID:26919388

  3. FGF signaling restricts hematopoietic stem cell specification via modulation of the BMP pathway

    PubMed Central

    Pouget, Claire; Peterkin, Tessa; Simões, Filipa Costa; Lee, Yoonsung; Traver, David; Patient, Roger

    2015-01-01

    SUMMARY Hematopoietic stem cells (HSCs) are produced during embryogenesis from the floor of the dorsal aorta. The localization of HSCs is dependent upon the presence of instructive signals on the ventral side of the vessel. The nature of the extrinsic molecular signals that control the aortic hematopoietic niche is currently poorly understood. Here we demonstrate a novel requirement for FGF signaling in the specification of aortic hemogenic endothelium. Our results demonstrate that FGF signaling normally acts to repress BMP activity in the subaortic mesenchyme through transcriptional inhibition of bmp4, as well as through activation of two BMP antagonists, noggin2 and gremlin1a. Taken together, these findings demonstrate a key role for FGF signaling in establishment of the developmental HSC niche via its regulation of BMP activity in the subaortic mesenchyme. These results should help inform strategies to recapitulate the development of HSCs in vitro from pluripotent precursors. PMID:25429520

  4. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    PubMed Central

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  5. Hematopoietic stem cells: concepts, definitions, and the new reality

    PubMed Central

    2015-01-01

    Hematopoietic stem cell (HSC) research took hold in the 1950s with the demonstration that intravenously injected bone marrow cells can rescue irradiated mice from lethality by reestablishing blood cell production. Attempts to quantify the cells responsible led to the discovery of serially transplantable, donor-derived, macroscopic, multilineage colonies detectable on the spleen surface 1 to 2 weeks posttransplant. The concept of self-renewing multipotent HSCs was born, but accompanied by perplexing evidence of great variability in the outcomes of HSC self-renewal divisions. The next 60 years saw an explosion in the development and use of more refined tools for assessing the behavior of prospectively purified subsets of hematopoietic cells with blood cell–producing capacity. These developments have led to the formulation of increasingly complex hierarchical models of hematopoiesis and a growing list of intrinsic and extrinsic elements that regulate HSC cycling status, viability, self-renewal, and lineage outputs. More recent examination of these properties in individual, highly purified HSCs and analyses of their perpetuation in clonally generated progeny HSCs have now provided definitive evidence of linearly transmitted heterogeneity in HSC states. These results anticipate the need and use of emerging new technologies to establish models that will accommodate such pluralistic features of HSCs and their control mechanisms. PMID:25762175

  6. NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells.

    PubMed

    Matsui, Keiko; Ezoe, Sachiko; Oritani, Kenji; Shibata, Masaru; Tokunaga, Masahiro; Fujita, Natsuko; Tanimura, Akira; Sudo, Takao; Tanaka, Hirokazu; McBurney, Michael W; Matsumura, Itaru; Kanakura, Yuzuru

    2012-02-24

    Sir2 has been shown to be essential for transcriptional silencing and longevity provided by calorie restriction in Saccharomyces cerevisiae and Caenorhabditis elegans. In this study, we investigated the role for its mammalian homologue, SIRT1, in hematopoietic cells. SIRT1 inhibitor, nicotinamide (NA), promoted and its activator, resveratrol, inhibited the differentiation of murine bone marrow c-Kit(high)Sca-1(+)Lineage(-) (KSL) cells during the culture system ex vivo. To further clarify the roles of SIRT1 in hematopoietic cells, we isolated KSL cells from fetal liver of SIRT1 knockout (KO) mice and cultured them for 5days, because SIRT1 KO mice die shortly after the delivery. In agreement with the results from the experiments using NA and resveratrol, KSL cells isolated from SIRT1 KO mice more apparently differentiated and lost the KSL phenotype than those from wild-type (WT) mice. Furthermore, in each of colony assay, replating assay, or serial transplantation assay, SIRT1 KO KSL cells lost earlier the characteristics of stem cells than WT KSL cells. In addition, we found that SIRT1 maintains prematurity of hematopoietic cells through ROS elimination, FOXO activation, and p53 inhibition. These results suggest that SIRT1 suppresses differentiation of hematopoietic stem/progenitor cells and contributes to the maintenance of stem cell pool. PMID:22306819

  7. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality

    PubMed Central

    Alvarez, Silvia; Díaz, Marcos; Flach, Johanna; Rodriguez-Acebes, Sara; López-Contreras, Andrés J.; Martínez, Dolores; Cañamero, Marta; Fernández-Capetillo, Oscar; Isern, Joan; Passegué, Emmanuelle; Méndez, Juan

    2015-01-01

    Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These ‘dormant' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality. PMID:26456157

  8. SHIPi Enhances Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Fernandes, Sandra; Brooks, Robert; Gumbleton, Matthew; Park, Mi-Young; Russo, Christopher M.; Howard, Kyle T.; Chisholm, John D.; Kerr, William G.

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is a highly effective procedure enabling long-term survival for patients with hematologic malignancy or heritable defects. Although there has been a dramatic increase in the success rate of HSCT over the last two decades, HSCT can result in serious, sometimes untreatable disease due to toxic conditioning regimens and Graft-versus-Host-Disease. Studies utilizing germline knockout mice have discovered several candidate genes that could be targeted pharmacologically to create a more favorable environment for transplant success. SHIP1 deficiency permits improved engraftment of hematopoietic stem-progenitor cells (HS-PCs) and produces an immunosuppressive microenvironment ideal for incoming allogeneic grafts. The recent development of small molecule SHIP1 inhibitors has opened a different therapeutic approach by creating transient SHIP1-deficiency. Here we show that SHIP1 inhibition (SHIPi) mobilizes functional HS-PC, accelerates hematologic recovery, and enhances donor HS-PC engraftment in both allogeneic and autologous transplant settings. We also observed the expansion of key cell populations known to suppress host-reactive cells formed during engraftment. Therefore, SHIPi represents a non-toxic, new therapeutic that has significant potential to improve the success and safety of therapies that utilize autologous and allogeneic HSCT. PMID:26052545

  9. [Physiological regulation of hematopoietic stem cell and its molecular basis].

    PubMed

    Dong, Fang; Hao, Sha; Cheng, Hui; Cheng, Tao

    2016-08-25

    As a classical type of tissue stem cells, hematopoietic stem cell (HSC) is the earliest discovered and has been widely applied in the clinic as a great successful example for stem cell therapy. Thus, HSC research represents a leading field in stem cell biology and regenerative medicine. Self-renewal, differentiation, quiescence, apoptosis and trafficking constitute major characteristics of functional HSCs. These characteristics also signify different dynamic states of HSC through physiological interactions with the microenvironment cues in vivo. This review covers our current knowledge on the physiological regulation of HSC and its underlying molecular mechanisms. It is our hope that this review will not only help our colleagues to understand how HSC is physiologically regulated but also serve as a good reference for the studies on stem cell and regenerative medicine in general. PMID:27546503

  10. Autologous Hematopoietic Stem Cell Transplantation for Multiple Myeloma without Cryopreservation

    PubMed Central

    Al-Anazi, Khalid Ahmed

    2012-01-01

    High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation is considered the standard of care for multiple myeloma patients who are eligible for transplantation. The process of autografting comprises the following steps: control of the primary disease by using a certain induction therapeutic protocol, mobilization of stem cells, collection of mobilized stem cells by apheresis, cryopreservation of the apheresis product, administration of high-dose pretransplant conditioning therapy, and finally infusion of the cryopreserved stem cells after thawing. However, in cancer centers that treat patients with multiple myeloma and have transplantation capabilities but lack or are in the process of acquiring cryopreservation facilities, alternatively noncryopreserved autologous stem cell therapy has been performed with remarkable success as the pretransplant conditioning therapy is usually brief. PMID:22693672

  11. [Hematopoietic stem cell transplantation in multiple myeloma].

    PubMed

    Vela-Ojeda, Jorge; Ruiz-Esparza, Miriam A García

    2005-01-01

    Multiple myeloma (MM) is the second most common hematologic malignancy, affecting approximately 14,000 new patients per year in the United States. For over four decades, the standard treatment for MM has been a regimen of melphalan combined with prednisone. Using this treatment modality, complete responses are rare, and 50% of patients have had disease that was resistant to chemotherapy. Attempts have been made to improve the outcome of MM by administering combinations of i.v. poli-chemotherapy, but these treatments are equivalent in terms of overall survival. High-dose therapy with peripheral blood stem cell support can be applied safely in these patients and achieves significantly higher complete remission rates as well as better event-free survival and overall survival. However, neither tumor-cell purging, positive selection, intensification of conditioning with additional chemotherapeutic agents, nor total body irradiation have been shown to improve outcome. The role of tandem transplantation with high-dose melphalan seems to be a good selection of treatment in hospitals having all resources. Future research will include the combination of the best remission-induction regimen with tandem transplants and maintenance treatments (thalidomide, idiotype or dendritic cell vaccination) that will sustain complete remission. Development of non-myeloablative allogeneic transplantation in order to exploit the graft-versus myeloma effect provides an alternative for patients who have a compatible donor. Combining all of these modalities with the new drugs developed few years ago (thalidomide, bortezomib, revlimid), we hope that MM will become a manageable chronic disease and perhaps a curable disease at least for 30% to 40% of the patients. PMID:16524072

  12. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  13. Optimal benefits for hematopoietic stem cell transplantation: a consensus opinion.

    PubMed

    Maziarz, Richard T; Farnia, Stephanie; Martin, Patricia; Komanduri, Krishna V

    2014-11-01

    Variability in transplantation benefits may directly affect outcomes of individuals undergoing autologous or allogeneic hematopoietic stem cell transplantation procedures. The Financial Working Group of the National Marrow Donor Program-sponsored System Capacity Initiative addressed the issue of variable benefits and reviewed multiple transplantation benefit packages from both public and private payer organizations. On completion of the review, a consensus was obtained on defining a recipient benefit package that avoids major coverage gaps that could negatively influence patient outcomes. The recommendation was to encourage adoption of these benefits at a national level by payers, benefit brokers/consultants, and sales teams. PMID:25020102

  14. Successful clinical treatment and functional immunological normalization of human MALT1 deficiency following hematopoietic stem cell transplantation.

    PubMed

    Rozmus, Jacob; McDonald, Rachel; Fung, Shan-Yu; Del Bel, Kate L; Roden, Juliana; Senger, Christof; Schultz, Kirk R; McKinnon, Margaret L; Davis, Jeffrey; Turvey, Stuart E

    2016-07-01

    MALT1 mutations impair normal NF-κB activation and paracaspase activity to cause a novel combined immunodeficiency. The clinical and immunological phenotype of MALT1 deficiency can be successfully treated with hematopoietic stem cell transplantation following reduced intensity conditioning. PMID:27109639

  15. Circulating Hematopoietic Progenitor Cells are Decreased in COPD

    PubMed Central

    Janssen, William J.; Yunt, Zulma X.; Muldrow, Alaina; Kearns, Mark T.; Kloepfer, Angela; Barthel, Lea; Bratton, Donna L.; Bowler, Russell P.; Henson, Peter M.

    2014-01-01

    Rationale Bone marrow derived progenitor cells participate in the repair of injured vessels. The lungs of individuals with emphysema have reduced alveolar capillary density and increased endothelial apoptosis. We hypothesized that circulating levels of endothelial and hematopoietic progenitor cells would be reduced in this group of patients. Objectives The goal of this study was to measure circulating levels of endothelial progenitor cells (EPCs) and hematopoietic progenitor cells (HPCs) in subjects with COPD and to determine if progenitor levels correlated with disease severity and the presence of emphysema. Methods Peripheral blood mononuclear cells were isolated from 61 patients with COPD and 32 control subjects. Levels of EPCs (CD45dim CD34+ ) and HPCs (CD45+ CD34+ VEGF-R2+) were quantified using multi-parameter flow cytometry. Progenitor cell function was assessed using cell culture assays. All subjects were evaluated with spirometry and CT scanning. Measurements and Main Results HPC levels were reduced in subjects with COPD compared to controls, whereas circulating EPC levels were similar between the two groups. HPC levels correlated with severity of obstruction and were lowest in subjects with severe emphysema. These associations remained after correction for factors known to affect progenitor cell levels including age, smoking status, the use of statin medications and the presence of coronary artery disease. The ability of mononuclear cells to form endothelial cell colony forming units (EC-CFU) was also reduced in subjects with COPD. Conclusions HPC levels are reduced in subjects with COPD and correlate with emphysema phenotype and severity of obstruction. Reduction of HPCs may disrupt maintenance of the capillary endothelium, thereby contributing to the pathogenesis of COPD. PMID:24182349

  16. Hematopoietic Fingerprints: an expression database of stem cells and their progeny

    PubMed Central

    Chambers, Stuart M; Boles, Nathan C; Lin, Kuan-Yin K; Tierney, Megan P; Bowman, Teresa V; Bradfute, Steven B; Chen, Alice J; Merchant, Akil A; Sirin, Olga; Weksberg, David C; Merchant, Mehveen G; Fisk, C Joseph; Shaw, Chad A; Goodell, Margaret A

    2007-01-01

    Summary Hematopoietic stem cells (HSC) continuously regenerate the hematologic system, yet few genes regulating this process have been defined. To identify candidate factors involved in differentiation and self-renewal, we have generated an expression database of hematopoietic stem cells and their differentiated progeny, including erythrocytes, granulocytes, monocytes, NK cells, activated and naïve T-cells, and B-cells. Bioinformatic analysis revealed HSC were more transcriptionally active than their progeny and shared a common activation mechanism with T-cells. Each cell type also displayed unique biases in the regulation of particular genetic pathways, with Wnt signaling particularly enhanced in HSCs. We identified ∼100 to 400 genes uniquely expressed in each cell type, termed lineage “fingerprints.” In overexpression studies, two of these genes, Zfp105 from the NK cell lineage, and Ets2 from the monocyte lineage, were able to significantly influence differentiation toward their respective lineages, demonstrating the utility of the fingerprints for identifying genes that regulate differentiation. PMID:18371395

  17. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells.

    PubMed

    Saito, Yo; Fujiwara, Tohru; Ohashi, Keiichi; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Harigae, Hideo

    2015-01-01

    Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the transcriptional mechanisms upstream of GATA-2 remain less understood. Here, we conducted high-throughput small-interfering-RNA (siRNA) library screening and showed that YN-1, a human erythroleukemia cell line, expressed high levels of GATA-2 following the activation of the hematopoietic-specific 1S promoter. As transient luciferase reporter assay in YN-1 cells revealed the highest promoter activity in the 1S promoter fused with GATA-2 intronic enhancer (+9.9 kb/1S); therefore, we established a cell line capable of stably expressing +9.9 kb/1S-Luciferase. Subsequently, we screened 995 transcription factor genes and revealed that CITED2 acts as a GATA-2 activator in human hematopoietic cells. These results provide novel insights into and further identify the regulatory mechanism of GATA-2. PMID:26325290

  18. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells

    PubMed Central

    Saito, Yo; Fujiwara, Tohru; Ohashi, Keiichi; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Harigae, Hideo

    2015-01-01

    Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the transcriptional mechanisms upstream of GATA-2 remain less understood. Here, we conducted high-throughput small-interfering-RNA (siRNA) library screening and showed that YN-1, a human erythroleukemia cell line, expressed high levels of GATA-2 following the activation of the hematopoietic-specific 1S promoter. As transient luciferase reporter assay in YN-1 cells revealed the highest promoter activity in the 1S promoter fused with GATA-2 intronic enhancer (+9.9 kb/1S); therefore, we established a cell line capable of stably expressing +9.9 kb/1S-Luciferase. Subsequently, we screened 995 transcription factor genes and revealed that CITED2 acts as a GATA-2 activator in human hematopoietic cells. These results provide novel insights into and further identify the regulatory mechanism of GATA-2. PMID:26325290

  19. Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy.

    PubMed

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A C; Kraft, Mary L

    2015-11-17

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely related short-term repopulating HSCs (ST-HSCs) and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four subpopulations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that

  20. Busulfan Conditioning Enhances Engraftment of Hematopoietic Donor-derived Cells in the Brain Compared With Irradiation

    PubMed Central

    Wilkinson, Fiona L; Sergijenko, Ana; Langford-Smith, Kia J; Malinowska, Marcela; Wynn, Rob F; Bigger, Brian W

    2013-01-01

    Hematopoietic stem cell gene therapy for neurological disorders relies on transmigration of donor-derived monocytes to the brain, where they can engraft as microglia and deliver therapeutic proteins. Many mouse studies use whole-body irradiation to investigate brain transmigration pathways, but chemotherapy is generally used clinically. The current evidence for transmigration to the brain after chemotherapy is conflicting. We compared hematopoietic donor cell brain engraftment after bone marrow (BM) transplants in busulfan- or irradiation-conditioned mice. Significantly more donor-derived microglial cells engrafted posttransplant in busulfan-conditioned brain compared with the irradiated, in both the short and long term. Although total Iba-1+ microglial content was increased in irradiated brain in the short term, it was similar between groups over long-term engraftment. MCP-1, a key regulator of monocyte transmigration, showed long-term elevation in busulfan-conditioned brain, whereas irradiated brains showed long-term elevation of the proinflammatory chemokine interleukin 1α (IL-1α), with increased in situ proliferation of resident microglia, and significant increases in the relative number of amoeboid activated microglia in the brain. This has implications for the choice of conditioning regimen to promote hematopoietic cell brain engraftment and the relevance of irradiation in mouse models of transplantation. PMID:23423338

  1. CMV in Hematopoietic Stem Cell Transplantation

    PubMed Central

    de la Cámara, Rafael

    2016-01-01

    Due to its negative impact on the outcome of stem cell transplant (SCT) and solid organ transplant patients (SOT) CMV has been called “the troll of transplantation”. One of the greatest advances in the management of SCT has been the introduction of the preemptive strategy. Since its introduction, the incidence of the viremia, as expected, remains unchanged but there has been a marked decline in the incidence of early CMV disease. However, in spite of the advances in prevention of CMV disease, CMV is still today an important cause of morbidity and mortality. Late CMV disease is still occurring in a significant proportion of patients and the so-called indirect effects of CMV are causing significant morbidity and mortality. Fortunately there have been several advances in the development of new antivirals, adoptive immunotherapy and DNA-CMV vaccines that might transform the management of CMV in the near future. PMID:27413524

  2. Hematopoietic stem cell-specific GFP-expressing transgenic mice generated by genetic excision of a pan-hematopoietic reporter gene.

    PubMed

    Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla

    2016-08-01

    Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. PMID:27185381

  3. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response.

    PubMed

    Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc E; Dweik, Raed; Erzurum, Serpil C

    2016-03-01

    Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221

  4. Enhancing T cell reconstitution after hematopoietic stem cell transplantation: a brief update of the latest trends

    PubMed Central

    Zakrzewski, Johannes L.; Goldberg, Gabrielle L.; Smith, Odette M.; van den Brink, Marcel R.M.

    2009-01-01

    Hematopoietic stem cell transplantation (HSCT) is associated with a period of immune incompetence that particularly affects the T cell lineage. Strategies to enhance T cell reconstitution could significantly improve the survival of HSCT recipients by decreasing the incidence of fatal infectious complications and by enhancing graft-versus-tumor activity. In recent years, a variety of promising strategies have been established in preclinical models to improve T cell recovery in particular after allogeneic T cell-depleted HSCT, without aggravating graft-versus-host disease while preserving or even improving graft-versus-tumor activity. These therapies include treatment with keratinocyte growth factor (KGF), growth hormone (GH), LHRH agonists, interleukin 7 (IL-7) and interleukin 15 (IL-15). Thanks to the establishment of Notch-based culture systems, adoptive cellular therapies with T lineage-committed precursor cells have become feasible, since early T cell progenitors can now easily be generated in vitro in large quantities and have been proven to be very effective in enhancing T cell reconstitution and anti-tumor activity after allogeneic T cell-depleted HSCT. The translation of most of these strategies into clinical trials is likely and in some cases Phase I/II studies are already underway. PMID:17905611

  5. Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs).

    PubMed

    Yasunaga, Shin'ichiro; Ohno, Yoshinori; Shirasu, Naoto; Zhang, Bo; Suzuki-Takedachi, Kyoko; Ohtsubo, Motoaki; Takihara, Yoshihiro

    2016-09-01

    Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs). PMID:27422432

  6. Solid cancers after allogeneic hematopoietic cell transplantation

    PubMed Central

    Curtis, Rochelle E.; Socié, Gérard; Sobocinski, Kathleen A.; Gilbert, Ethel; Landgren, Ola; Travis, Lois B.; Travis, William D.; Flowers, Mary E. D.; Friedman, Debra L.; Horowitz, Mary M.; Wingard, John R.; Deeg, H. Joachim

    2009-01-01

    Transplant recipients have been reported to have an increased risk of solid cancers but most studies are small and have limited ability to evaluate the interaction of host, disease, and treatment-related factors. In the largest study to date to evaluate risk factors for solid cancers, we studied a multi-institutional cohort of 28 874 allogeneic transplant recipients with 189 solid malignancies. Overall, patients developed new solid cancers at twice the rate expected based on general population rates (observed-to-expected ratio 2.1; 95% confidence interval 1.8-2.5), with the risk increasing over time (P trend < .001); the risk reached 3-fold among patients followed for 15 years or more after transplantation. New findings showed that the risk of developing a non–squamous cell carcinoma (non-SCC) following conditioning radiation was highly dependent on age at exposure. Among patients irradiated at ages under 30 years, the relative risk of non-SCC was 9 times that of nonirradiated patients, while the comparable risk for older patients was 1.1 (P interaction < .01). Chronic graft-versus-host disease and male sex were the main determinants for risk of SCC. These data indicate that allogeneic transplant survivors, particularly those irradiated at young ages, face increased risks of solid cancers, supporting strategies to promote lifelong surveillance among these patients. PMID:18971419

  7. No evidence of plasticity in hair follicles of recipients after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Rovó, Alicia; Meyer-Monard, Sandrine; Heim, Dominik; Arber, Caroline; Passweg, Jakob R; Gratwohl, Alois; Tichelli, André

    2005-08-01

    Here we show in a prospective quantitative study of 115 patients after allogeneic hematopoietic stem cell transplantation that hair follicles remain exclusively of recipient type despite full whole blood donor-type chimerism. Our data indicate that unmanipulated hematopoietic donor stem cells do not contribute directly to reconstitution even in an organ at highest need for repair. PMID:16038783

  8. [Recent studies on PI3K/AKT/mTOR signaling pathway in hematopoietic stem cells].

    PubMed

    Zhang, Ying-Chi; Cheng, Tao; Yuan, Wei-Ping

    2013-02-01

    PI3K/AKT/mTOR signaling pathway plays an essential role in the growth, proliferation and survival of various type of cells and also hematopoietic stem cells (HSC). Aberrant activation of PI3K/AKT/mTOR signaling pathway leads to exhaustion of HSC, while the inhibition of PI3K/AKT/mTOR signaling pathway results in blocking of B cell differentiation. This article reviews the latest advances on the role of key components involved in the PI3K/AKT/mTOR signaling pathway, including PI3K, AKT, mTOR, FoxO and GSK-3 in HSC. PMID:23484729

  9. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    PubMed

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells. PMID:26013297

  10. Hematopoietic stem cell transplantation for auto immune rheumatic diseases.

    PubMed

    Ramaswamy, Subramanian; Jain, Sandeep; Ravindran, Vinod

    2016-03-24

    Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells (HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation (HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases (AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD. PMID:27011918

  11. Hematopoietic stem cell transplantation for auto immune rheumatic diseases

    PubMed Central

    Ramaswamy, Subramanian; Jain, Sandeep; Ravindran, Vinod

    2016-01-01

    Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells (HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation (HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases (AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD. PMID:27011918

  12. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells

    PubMed Central

    Poh, Ashleigh R.; O'Donoghue, Robert J.J.; Ernst, Matthias

    2015-01-01

    The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment. PMID:26087188

  13. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

    PubMed Central

    Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter

    2015-01-01

    Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855

  14. Fancd2 is required for nuclear retention of Foxo3a in hematopoietic stem cell maintenance.

    PubMed

    Li, Xiaoli; Li, Jie; Wilson, Andrew; Sipple, Jared; Schick, Jonathan; Pang, Qishen

    2015-01-30

    Functional maintenance of hematopoietic stem cells (HSCs) is constantly challenged by stresses like DNA damage and oxidative stress. Here we show that the Fanconi anemia protein Fancd2 and stress transcriptional factor Foxo3a cooperate to prevent HSC exhaustion in mice. Deletion of both Fancd2 and Foxo3a led to an initial expansion followed by a progressive decline of bone marrow stem and progenitor cells. Limiting dilution transplantation and competitive repopulating experiments demonstrated a dramatic reduction of competitive repopulating units and progressive decline in hematopoietic repopulating ability of double-knockout (dKO) HSCs. Analysis of the transcriptome of dKO HSCs revealed perturbation of multiple pathways implicated in HSC exhaustion. Fancd2 deficiency strongly promoted cytoplasmic localization of Foxo3a in HSCs, and re-expression of Fancd2 completely restored nuclear Foxo3a localization. By co-expressing a constitutively active CA-FOXO3a and WT or a nonubiquitinated Fancd2 in dKO bone marrow stem/progenitor cells, we demonstrated that Fancd2 was required for nuclear retention of CA-FOXO3a and for maintaining hematopoietic repopulation of the HSCs. Collectively, these results implicate a functional interaction between the Fanconi anemia DNA repair and FOXO3a pathways in HSC maintenance. PMID:25505262

  15. Safety of Living Donation of Hematopoietic Stem Cells.

    PubMed

    Szer, Jeff; Elmoazzen, Heidi; Fechter, Mirjam; Hwang, William; Korhonen, Matti; Miller, John; Mengling, Thilo; Shaw, Bronwen; Stein, Jerry

    2016-06-01

    More than 12 000 volunteer unrelated hematopoietic stem cell donations are undertaken annually, and the World Marrow Donor Association established an expert committee to examine all reports of adverse events affecting donors globally, eventually making such reporting a necessary part of World Marrow Donor Association accreditation. The committee evaluates and responds to reported events in a nonpunitive confidential process designed to alert the community of rare events which might be missed by local follow-up. Each report is evaluated by the committee for imputability (causal link between the donation and the adverse event) and compared with that submitted by the reporting registry. In 2014, there were 50 reports received from 16 different registries in 15 countries. There were 16 reports of malignancies arising in donors including 3 hematologic malignancies. All but 2 of the 16 occurred more than a year after donation. There were 4 reports of autoimmune phenomena in donors all occurring more than a year postdonation. Of the 30 remaining events, 6 were allergic, 4 cardiac, 3 gastrointestinal, 2 infections, 2 pulmonary, and 13 miscellaneous. Causation was assessed differently to the reporting registry in 17 events with 6 thought to be less likely causally linked to the donation and 10 more likely with 1 requiring more information. Volunteer unrelated hematopoietic stem cell donation is a safe and effective altruistic contribution to the treatment of patients with life-threatening hematologic disorders. A decade of detailed examination of adverse donor events has contributed to the safety of these donations. PMID:27136264

  16. Preclinical modeling of hematopoietic stem cell transplantation - advantages and limitations.

    PubMed

    Stolfi, Jessica L; Pai, Chien-Chun S; Murphy, William J

    2016-05-01

    Hematopoietic stem cell transplantation, which was first successfully performed in the 1950s, remains a critical therapeutic modality for treatment of a diverse array of diseases, including a multitude of hematological malignancies, autoimmune disorders, amyloidosis and inherited genetic hematological disorders. Although great advances have been made in understanding and application of this therapy, significant complications still exist, warranting further investigation. Of critical importance, graft-versus-host disease (GVHD), in both acute and chronic forms, remains a major complication of hematopoietic stem cell transplantation, responsible for both the development of chronic illness and morbidity, as well as mortality. Use of an appropriate preclinical model may provide significant insight into the mechanistic pathways leading to the development and progression of graft-versus-host disease, as well as cancer in general. However, existing preclinical modeling systems exhibit significant limitations, and development of models that recapitulate the complex and comprehensive clinical scenario and provide a tool by which therapeutic intervention may be developed and assessed is of utmost importance. Here, we review the present status of the field of graft-versus-host disease research. We discuss and summarize the preclinical models currently in use, as well as their advantages and limitations. PMID:26640088

  17. Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization

    PubMed Central

    Emmons, Russell; Niemiro, Grace M.; De Lisio, Michael

    2016-01-01

    Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers. PMID:27123008

  18. Mll5 contributes to hematopoietic stem cell fitness and homeostasis

    PubMed Central

    Zhang, Yan; Wong, Jasmine; Klinger, Mark; Tran, Mary T.; Shannon, Kevin M.

    2009-01-01

    MLL5 is a novel trithorax group gene and a candidate tumor suppressor gene located within a 2.5-Mb interval of chromosome band 7q22 that frequently is deleted in human myeloid malignancy. Here we show that inactivation of the Mll5 gene in mice results in a 30% reduction in the average representation of hematopoietic stem cells and in functional impairment of long-term hematopoietic repopulation potential under competitive conditions. Bone marrow cells from Mll5-deficient mice were defective in spleen colony-forming assays, and the mutant mice showed enhanced susceptibility to 5-fluorouracil–induced myelosuppression. Heterozygous and homozygous Mll5 mutant mice did not spontaneously develop hematologic cancers, and loss of Mll5 did not alter the phenotype of a fatal myeloproliferative disorder induced by oncogenic Kras in vivo. Collectively, the data reveal an important role for Mll5 in HSC homeostasis and provide a basis for further studies to explore its role in leukemogenesis. PMID:18818388

  19. Fetal liver hematopoietic stem cell niches associate with portal vessels

    PubMed Central

    Khan, Jalal A.; Mendelson, Avital; Kunisaki, Yuya; Birbrair, Alexander; Kou, Yan; Arnal-Estapé, Anna; Pinho, Sandra; Ciero, Paul; Nakahara, Fumio; Ma’ayan, Avi; Bergman, Aviv; Merad, Miriam; Frenette, Paul S.

    2015-01-01

    Whereas the cellular basis of the hematopoietic stem cell (HSC) niche in the bone marrow has been characterized, the nature of the fetal liver (FL) niche is not yet elucidated. We show that Nestin+NG2+ pericytes associate with portal vessels, forming a niche promoting HSC expansion. Nestin+NG2+ cells and HSCs scale during development with the fractal branching patterns of portal vessels, tributaries of the umbilical vein. After closure of the umbilical inlet at birth, portal vessels undergo a transition from Neuropilin-1+Ephrin-B2+ artery to EphB4+ vein phenotype, associated with a loss of periportal Nestin+NG2+ cells and emigration of HSCs away from portal vessels. These data support a model in which HSCs are titrated against a periportal vascular niche with a fractal-like organization enabled by placental circulation. PMID:26634440

  20. The use of hematopoietic stem cells in autoimmune diseases.

    PubMed

    Ben Nasr, Moufida; Bassi, Roberto; Usuelli, Vera; Valderrama-Vasquez, Alessandro; Tezza, Sara; D'Addio, Francesca; Fiorina, Paolo

    2016-06-01

    Hematopoietic stem cells (HSCs) have been shown recently to hold much promise in curing autoimmune diseases. Newly diagnosed Type 1 diabetes individuals have been successfully reverted to normoglycemia by administration of autologous HSCs in association with a nonmyeloablative regimen (antithymocyte globulin + cyclophasmide). Furthermore, recent trials reported positive results by using HSCs in treatment of systemic sclerosis, multiple sclerosis and rheumatoid arthritis as well. Early data suggested that HSCs possess immunological properties that may be harnessed to alleviate the symptoms of individuals with autoimmune disorders and possibly induce remission of autoimmune diseases. Mechanistically, HSCs may facilitate the generation of regulatory T cells, may inhibit the function of autoreactive T-cell function and may reshape the immune system. PMID:27165670

  1. Catalase Inhibits Ionizing Radiation-Induced Apoptosis in Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N.; LaRue, Amanda C.; Schulte, Bradley A.

    2015-01-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs. PMID:25603016

  2. Expression analysis of radiation-responsive genes in human hematopoietic stem/progenitor cells

    PubMed Central

    Tsujiguchi, Takakiyo; Hirouchi, Tokuhisa; Monzen, Satoru; Tabuchi, Yoshiaki; Takasaki, Ichiro; Kondo, Takashi; Kashiwakura, Ikuo

    2016-01-01

    To clarify the nature of the genes that contribute to the radiosensitivity of human hematopoietic stem/progenitor cells (HSPCs), we analyzed the gene expression profiles detected in HSPCs irradiated with 2 Gy X-rays after culture with or without an optimal combination of hematopoietic cytokines. Highly purified CD34+ cells from human placental/umbilical cord blood were used as HSPCs. The cells were exposed to 2 Gy X-irradiation and treated in serum-free medium under five different sets of conditions for 6 h. The gene expression levels were analyzed by cDNA microarray, and then the network of responsive genes was investigated. A comprehensive genetic analysis to search for genes associated with cellular radiosensitivity was undertaken, and we found that expression of the genes downstream of MYC oncogene increased after X-irradiation. In fact, the activation of MYC was observed immediately after X-irradiation, and MYC was the only gene still showing activation at 6 h after irradiation. Furthermore, MYC had a significant impact on the biological response, particularly on the tumorigenesis of cells and the cell cycle control. The activated gene regulator function of MYC resulting from irradiation was suppressed by culturing the HSPCs with combinations of cytokines (recombinant human thrombopoietin + interleukin 3 + stem cell factor), which exerted radioprotective effects. MYC was strongly associated with the radiosensitivity of HSPCs, and further study and clarification of the genetic mechanisms that control the cell cycle following X-irradiation are required. PMID:26661850

  3. Mapping differentiation pathways from hematopoietic stem cells using Flk2/Flt3 lineage tracing

    PubMed Central

    Boyer, Scott W.; Beaudin, Anna E.; Forsberg, E. Camilla

    2012-01-01

    Genetic fate-mapping approaches provide a unique opportunity to assess differentiation pathways under physiological conditions. We have recently employed a lineage tracing approach to define hematopoietic differentiation pathways in relation to expression of the tyrosine kinase receptor Flk2.1 Based on our examination of reporter activity across all stem, progenitor and mature populations in our Flk2-Cre lineage model, we concluded that all mature blood lineages are derived through a Flk2+ intermediate, both at steady-state and under stress conditions. Here, we re-examine in depth our initial conclusions and perform additional experiments to test alternative options of lineage specification. Our data unequivocally support the conclusion that onset of Flk2 expression results in loss of self-renewal but preservation of multilineage differentiation potential. We discuss the implications of these data for defining stem cell identity and lineage potential among hematopoietic populations. PMID:22895180

  4. Plasmacytoid dendritic cells in allogeneic hematopoietic cell transplantation: benefit or burden?

    PubMed Central

    Auletta, JJ; Devine, SM; Waller, EK

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and have important roles in hematopoietic engraftment, GvHD and graft-versus-leukemia responses following allogeneic hematopoietic cell transplantation (HCT). In addition, pDCs mediate antiviral immunity, particularly as they are the body’s primary cellular source of type I interferon. Given their pleiotropic roles, pDCs have emerged as cells that critically impact transplant outcomes, including overall survival. In this article, we will review the pre-clinical and clinical literature, supporting the crucial roles that pDCs assume as key immune effector cells during HCT. PMID:26642333

  5. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM. PMID:26758672

  6. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21.

    PubMed

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M James; Wang, Zhong; Gan, Boyi

    2016-04-12

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology. PMID:26992241

  7. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21

    PubMed Central

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M. James; Wang, Zhong; Gan, Boyi

    2016-01-01

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology. PMID:26992241

  8. TRAF2 exerts opposing effects on basal and TNFα-induced activation of the classic IKK complex in hematopoietic cells in mice.

    PubMed

    Zhang, Laiqun; Blackwell, Ken; Workman, Lauren M; Gibson-Corley, Katherine N; Olivier, Alicia K; Bishop, Gail A; Habelhah, Hasem

    2016-04-01

    The role of TRAF2 and TRAF5 in TNFα-induced NF-κB activation has become complicated owing to the accumulation of conflicting data. Here, we report that 7-day-old TRAF2-knockout (KO) and TRAF2 TRAF5 double KO (TRAF2/5-DKO) mice exhibit enhanced canonical IκB kinase (IKK) and caspase-8 activation in spleen and liver, and that subsequent knockout of TNFα suppresses the basal activity of caspase-8, but not of IKK. In primary TRAF2 KO and TRAF2/5-DKO cells, TNFα-induced immediate IKK activation is impaired, whereas delayed IKK activation occurs normally; as such, owing to elevated basal and TNFα-induced delayed IKK activation, TNFα stimulation leads to significantly increased induction of a subset of NF-κB-dependent genes in these cells. In line with this, both TRAF2 KO and TRAF2/5-DKO mice succumb to a sublethal dose of TNFα owing to increased expression of NF-κB target genes, diarrhea and bradypnea. Notably, depletion of IAP1 and IAP2 (also known as BIRC2 and BIRC3, respectively) also results in elevated basal IKK activation that is independent of autocrine TNFα production and that impairs TNFα-induced immediate IKK activation. These data reveal that TRAF2, IAP1 and IAP2, but not TRAF5, cooperatively regulate basal and TNFα-induced immediate IKK activation. PMID:26872784

  9. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4.

    PubMed

    Chang, Chao-Hui; Hale, Sarah J; Cox, Charlotte V; Blair, Allison; Kronsteiner, Barbara; Grabowska, Rita; Zhang, Youyi; Cook, David; Khoo, Cheen P; Schrader, Jack B; Kabuga, Suranahi Buglass; Martin-Rendon, Enca; Watt, Suzanne M

    2016-06-01

    Hematopoietic stem/progenitor cells (HSPCs) reside in specialized bone marrow microenvironmental niches, with vascular elements (endothelial/mesenchymal stromal cells) and CXCR4-CXCL12 interactions playing particularly important roles for HSPC entry, retention, and maintenance. The functional effects of CXCL12 are dependent on its local concentration and rely on complex HSPC-niche interactions. Two Junctional Adhesion Molecule family proteins, Junctional Adhesion Molecule-B (JAM)-B and JAM-C, are reported to mediate HSPC-stromal cell interactions, which in turn regulate CXCL12 production by mesenchymal stromal cells (MSCs). Here, we demonstrate that another JAM family member, JAM-A, is most highly expressed on human hematopoietic stem cells with in vivo repopulating activity (p < .01 for JAM-A(high) compared to JAM-A(Int or Low) cord blood CD34(+) cells). JAM-A blockade, silencing, and overexpression show that JAM-A contributes significantly (p < .05) to the adhesion of human HSPCs to IL-1β activated human bone marrow sinusoidal endothelium. Further studies highlight a novel association of JAM-A with CXCR4, with these molecules moving to the leading edge of the cell upon presentation with CXCL12 (p < .05 compared to no CXCL12). Therefore, we hypothesize that JAM family members differentially regulate CXCR4 function and CXCL12 secretion in the bone marrow niche. Stem Cells 2016;34:1664-1678. PMID:26866290

  10. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    SciTech Connect

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa; Nagai, Mami; Matsui, Keiji; Hasegawa, Natsumi; Roeder, Robert G.; Asano, Shigetaka; Ito, Mitsuhiro

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  11. Sox17-Mediated Maintenance of Fetal Intra-Aortic Hematopoietic Cell Clusters

    PubMed Central

    Osawa, Mitsujiro; Uemura, Mami; Kishikawa, Yoko; Anani, Maha; Harada, Kaho; Takagi, Haruna; Saito, Kiyoka; Kanai-Azuma, Masami; Kanai, Yoshiakira; Iwama, Atsushi

    2014-01-01

    During mouse development, definitive hematopoiesis is first detected around embryonic day 10.5 (E10.5) in the aorta-gonad-mesonephros (AGM) region, which exhibits intra-aortic cell clusters. These clusters are known to contain hematopoietic stem cells (HSCs). On the other hand, it is not clear how the cells in such clusters maintain their HSC phenotype and how they are triggered to differentiate. Here we found that an endodermal transcription factor marker, Sox17, and other F-group (SoxF) proteins, Sox7 and Sox18, were expressed in E10.5 intra-aortic cell clusters. Forced expression of any of these SoxF proteins, particularly Sox17, in E10.5 AGM CD45low c-Kithigh cells, which are the major component of intra-aortic clusters, led to consistent formation of cell clusters in vitro during several passages of cocultures with stromal cells. Cluster-forming cells with constitutive Sox17 expression retained long-term bone marrow reconstitution activity in vivo. Notably, shutdown of exogenously introduced Sox17 gene expression resulted in immediate hematopoietic differentiation. These results indicate that SoxF proteins, especially Sox17, contribute to the maintenance of cell clusters containing HSCs in the midgestation AGM region. Furthermore, SoxF proteins play a pivotal role in controlling the HSC fate decision between indefinite self-renewal and differentiation during fetal hematopoiesis. PMID:24662049

  12. Selective Differentiation into Hematopoietic and Cardiac Cells from Pluripotent Stem Cells Based on the Expression of Cell Surface Markers.

    PubMed

    Okada, Atsumasa; Tashiro, Katsuhisa; Yamaguchi, Tomoko; Kawabata, Kenji

    2016-01-01

    Flk1-expressing (+) mesodermal cells are useful source for the generation of hematopoietic cells and cardiomyocytes from pluripotent stem cells (PSCs). However, they have been reported as a heterogenous population that includes hematopoietic and cardiac progenitors. Therefore, to provide a method for a highly efficient production of hematopoietic cells and cardiomyocytes, cell surface markers are often used for separating these progenitors in Flk1(+) cells. Our recent study has shown that the expression of coxsackievirus and adenovirus receptor (CAR), a tight junction component molecule, could divide mouse and human PSC- and mouse embryo-derived Flk1(+) cells into Flk1(+)CAR(-) and Flk1(+)CAR(+) cells. Flk1(+)CAR(-) and Flk1(+)CAR(+) cells efficiently differentiated into hematopoietic cells and cardiomyocytes, respectively. These results indicate that CAR is a novel cell surface marker for separating PSC-derived Flk1(+) mesodermal cells into hematopoietic and cardiac progenitors. We herein describe a differentiation method from PSCs into hematopoietic cells and cardiomyocytes based on CAR expression. PMID:26138986

  13. Physical and mental recovery after hematopoietic stem cell transplantation.

    PubMed

    Syrjala, Karen L; Langer, Shelby; Abrams, Janet; Storer, Barry; Martin, Paul

    2004-10-01

    Extract: Hematologic malignancies such as leukemia and lymphoma can be treated with high-dose chemotherapy and irradiation, but in many cases, the amount of treatment needed to eliminate malignant cells also destroys normal blood-forming cells in the bone marrow. During the past 35 years, this problem has been solved by hematopoietic stem cell transplantation (HCT). With this strategy, normal marrow function can be restored by the transplanted blood-forming stem cells that are infused like a blood transfusion after high-dose chemotherapy. In allogeneic transplantation, the stem cells come from a healthy donor. In autologous transplantation, the cells are taken from the patient and frozen until they are infused after high-dose treatment has been completed. Along with killing malignant and non-malignant immune cells, the treatment given before HCT also kills other rapidly dividing healthy cells, often causing hair loss, mouth sores and sometimes other organ problems. The immune suppression caused by treatment leaves a patient vulnerable to viruses and bacterial infections. After transplantation, immune reconstitution and resolution of acute complications usually begin within two weeks, but other complications, such as graft-versus-host disease (GVHD) can continue for years. GVHD occurs when the transplanted allogeneic cells attack (attempt to reject) the host body. PMID:20704957

  14. Progress toward curing HIV infections with hematopoietic stem cell transplantation.

    PubMed

    Smiley, Stephen T; Singh, Anjali; Read, Sarah W; Sharma, Opendra K; Finzi, Diana; Lane, Clifford; Rice, Jeffrey S

    2015-01-15

    Combination antiretroviral therapy can suppress human immunodeficiency virus (HIV) infection but cannot completely eradicate the virus. A major obstacle in the quest for a cure is the difficulty in targeting and measuring latently infected cells. To date, a single person seems to have been cured of HIV. Hematopoietic stem cell transplantation (HSCT) preceded this cancer patient's long-term sustained HIV remission, but researchers have been unable to replicate this cure, and the mechanisms that led to HIV remission remain to be established. In February 2014, the National Institute of Allergy and Infectious Diseases sponsored a workshop that provided a venue for in-depth discussion of whether HSCT could be exploited to cure HIV in cancer patients requiring such procedures. Participants also discussed how HSCT might be applied to a broader community of HIV-infected persons in whom the risks of HSCT currently outweigh the likelihood and benefits of HIV cure. PMID:25273081

  15. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Astrophysics Data System (ADS)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  16. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Astrophysics Data System (ADS)

    Ohi, Seigo; Roach, Allana-Nicole; Ramsahai, Shweta; Kim, Bak C.; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2004-02-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological and cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, including muscle, bone, skin, liver, and neuronal cells, we advanced a hypothesis that some of the space-caused disorders might be amenable to hematopoietic stem cell therapy (HSCT) so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using mouse models of human anemia (β-thalassemia) and spaceflight (hindlimb suspension unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, the β-thalassemic mice were successfully transplanted with isologous HSCs, resulting in chimerism of hemoglobin species and alleviation of the hemoglobinopathy. In the case of HSCT for muscle loss, β-galactosidase-marked HSCs, which were prepared from β-galactosidase-transgenic mice, were detected by the X-gal wholemount staining procedure in the hindlimbs of unloaded mice following transplantation. Histochemical and physical analyses indicated structural contribution of HSCs to the muscle. To investigate HSCT for immunodeficiency, β-galactosidase-transformed Escherichia coli was used as the reporter bacteria, and infected to control and the hindlimb suspended mice. Results of the X-gal stained tissues indicated that the HSCT could help eliminate the E. coli infection. In an effort to facilitate the HSCT in space, growth of HSCs has been optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  17. Functionally Active HIV-Specific T Cells that Target Gag and Nef Can Be Expanded from Virus-Naïve Donors and Target a Range of Viral Epitopes: Implications for a Cure Strategy after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Patel, Shabnum; Lam, Sharon; Cruz, Conrad Russell; Wright, Kaylor; Cochran, Christina; Ambinder, Richard F; Bollard, Catherine M

    2016-03-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) can potentially cure human immunodeficiency virus (HIV) by eliminating infected recipient cells, particularly in the context of technologies that may confer HIV resistance to these stem cells. But, to date, the Berlin patient remains the only case of HIV cure despite multiple attempts to eradicate infection with HSCT. One approach to improve this is to administer virus-specific T cells, a strategy that has proven success in preventing other infections after transplantation. Although we have reported that broadly HIV-specific T cells can be expanded from HIV+ patients, allogeneic transplantations only contain virus-naïve T cells. Modifying this approach for the allogeneic setting requires a robust, reproducible platform that can expand HIV-specific cells from the naïve pool. Hence, we hypothesized that HIV-specific T cells could be primed ex vivo from seronegative individuals to effectively target HIV. Here, we show that ex vivo-primed and expanded HIV-specific T cells released IFNγ in response to HIV antigens and that these cells have enhanced ability to suppress replication in vitro. This is the first demonstration of ex vivo priming and expansion of functional, multi-HIV antigen-specific T cells from HIV-negative donors, which has implications for use of allogeneic HSCT as a functional HIV cure. PMID:26721209

  18. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    PubMed

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. PMID:26774386

  19. Hematopoietic Stem-Cell Transplantation for Advanced Systemic Mastocytosis

    PubMed Central

    Ustun, Celalettin; Reiter, Andreas; Scott, Bart L.; Nakamura, Ryotaro; Damaj, Gandhi; Kreil, Sebastian; Shanley, Ryan; Hogan, William J.; Perales, Miguel-Angel; Shore, Tsiporah; Baurmann, Herrad; Stuart, Robert; Gruhn, Bernd; Doubek, Michael; Hsu, Jack W.; Tholouli, Eleni; Gromke, Tanja; Godley, Lucy A.; Pagano, Livio; Gilman, Andrew; Wagner, Eva Maria; Shwayder, Tor; Bornhäuser, Martin; Papadopoulos, Esperanza B.; Böhm, Alexandra; Vercellotti, Gregory; Van Lint, Maria Teresa; Schmid, Christoph; Rabitsch, Werner; Pullarkat, Vinod; Legrand, Faezeh; Yakoub-agha, Ibrahim; Saber, Wael; Barrett, John; Hermine, Olivier; Hagglund, Hans; Sperr, Wolfgang R.; Popat, Uday; Alyea, Edwin P.; Devine, Steven; Deeg, H. Joachim; Weisdorf, Daniel; Akin, Cem; Valent, Peter

    2014-01-01

    Purpose Advanced systemic mastocytosis (SM), a fatal hematopoietic malignancy characterized by drug resistance, has no standard therapy. The effectiveness of allogeneic hematopoietic stem-cell transplantation (alloHCT) in SM remains unknown. Patients and Methods In a global effort to define the value of HCT in SM, 57 patients with the following subtypes of SM were evaluated: SM associated with clonal hematologic non–mast cell disorders (SM-AHNMD; n = 38), mast cell leukemia (MCL; n = 12), and aggressive SM (ASM; n = 7). Median age of patients was 46 years (range, 11 to 67 years). Donors were HLA-identical (n = 34), unrelated (n = 17), umbilical cord blood (n = 2), HLA-haploidentical (n = 1), or unknown (n = 3). Thirty-six patients received myeloablative conditioning (MAC), and 21 patients received reduced-intensity conditioning (RIC). Results Responses in SM were observed in 40 patients (70%), with complete remission in 16 patients (28%). Twelve patients (21%) had stable disease, and five patients (9%) had primary refractory disease. Overall survival (OS) at 3 years was 57% for all patients, 74% for patients with SM-AHNMD, 43% for those with ASM, and 17% for those with MCL. The strongest risk factor for poor OS was MCL. Survival was also lower in patients receiving RIC compared with MAC and in patients having progression compared with patients having stable disease or response. Conclusion AlloHCT was associated with long-term survival in patients with advanced SM. Although alloHCT may be considered as a viable and potentially curative therapeutic option for advanced SM in the meantime, given that this is a retrospective analysis with no control group, the definitive role of alloHCT will need to be determined by a prospective trial. PMID:25154823

  20. Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice

    PubMed Central

    Vicente-Dueñas, Carolina; Fontán, Lorena; Gonzalez-Herrero, Ines; Romero-Camarero, Isabel; Segura, Victor; Aznar, M. Angela; Alonso-Escudero, Esther; Campos-Sanchez, Elena; Ruiz-Roca, Lucía; Barajas-Diego, Marcos; Sagardoy, Ainara; Martinez-Ferrandis, Jose I.; Abollo-Jimenez, Fernando; Bertolo, Cristina; Peñuelas, Ivan; Garcia-Criado, Francisco J.; García-Cenador, María B.; Tousseyn, Thomas; Agirre, Xabier; Prosper, Felipe; Garcia-Bragado, Federico; McPhail, Ellen D.; Lossos, Izidore S.; Du, Ming-Qing; Flores, Teresa; Hernandez-Rivas, Jesus M.; Gonzalez, Marcos; Salar, Antonio; Bellosillo, Beatriz; Conde, Eulogio; Siebert, Reiner; Sagaert, Xavier; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Martinez-Climent, Jose A.

    2012-01-01

    Chromosomal translocations involving the MALT1 gene are hallmarks of mucosa-associated lymphoid tissue (MALT) lymphoma. To date, targeting these translocations to mouse B cells has failed to reproduce human disease. Here, we induced MALT1 expression in mouse Sca1+Lin− hematopoietic stem/progenitor cells, which showed NF-κB activation and early lymphoid priming, being selectively skewed toward B-cell differentiation. These cells accumulated in extranodal tissues and gave rise to clonal tumors recapitulating the principal clinical, biological, and molecular genetic features of MALT lymphoma. Deletion of p53 gene accelerated tumor onset and induced transformation of MALT lymphoma to activated B-cell diffuse large-cell lymphoma (ABC-DLBCL). Treatment of MALT1-induced lymphomas with a specific inhibitor of MALT1 proteolytic activity decreased cell viability, indicating that endogenous Malt1 signaling was required for tumor cell survival. Our study shows that human-like lymphomas can be modeled in mice by targeting MALT1 expression to hematopoietic stem/progenitor cells, demonstrating the oncogenic role of MALT1 in lymphomagenesis. Furthermore, this work establishes a molecular link between MALT lymphoma and ABC-DLBCL, and provides mouse models to test MALT1 inhibitors. Finally, our results suggest that hematopoietic stem/progenitor cells may be involved in the pathogenesis of human mature B-cell lymphomas. PMID:22689981

  1. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo

    PubMed Central

    Yang, Yang; Poe, Jonathan C.; Yang, Lisong; Fedoriw, Andrew; Desai, Siddhi; Magnuson, Terry; Li, Zhiguo; Fedoriw, Yuri; Araki, Kimi; Gao, Yanzhe; Tateishi, Satoshi; Sarantopoulos, Stefanie; Vaziri, Cyrus

    2016-01-01

    In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18−/− mice. Moreover, primary Rad18−/− mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18−/− HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18−/− mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting. PMID:26883629

  2. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo.

    PubMed

    Yang, Yang; Poe, Jonathan C; Yang, Lisong; Fedoriw, Andrew; Desai, Siddhi; Magnuson, Terry; Li, Zhiguo; Fedoriw, Yuri; Araki, Kimi; Gao, Yanzhe; Tateishi, Satoshi; Sarantopoulos, Stefanie; Vaziri, Cyrus

    2016-05-19

    In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18(-/-) mice. Moreover, primary Rad18(-/-) mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18(-/-) HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18(-/-) mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting. PMID:26883629

  3. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    PubMed

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. PMID:27365425

  4. Directed differentiation of definitive hemogenic endothelium and hematopoietic progenitors from human pluripotent stem cells.

    PubMed

    Ditadi, Andrea; Sturgeon, Christopher M

    2016-05-15

    The generation of hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) remains a major goal for regenerative medicine and disease modeling. However, hPSC differentiation cultures produce mostly hematopoietic progenitors belonging to the embryonic HSC-independent hematopoietic program, which may not be relevant or accurate for modeling normal and disease-state adult hematopoietic processes. Through a stage-specific directed differentiation approach, it is now possible to generate exclusively definitive hematopoietic progenitors from hPSCs showing characteristics of the more developmentally advanced fetal hematopoiesis. Here, we summarize recent efforts at generating hPSC-derived definitive hematopoiesis through embryoid body differentiation under defined conditions. Embryoid bodies are generated through enzymatic dissociation of hPSCs from matrigel-coated plasticware, followed by recombinant BMP4, driving mesoderm specification. Definitive hematopoiesis is specified by a GSK3β-inhibitor, followed by recombinant VEGF and supportive hematopoietic cytokines. The CD34+ cells obtained using this method are then suitable for hematopoietic assays for definitive hematopoietic potential. PMID:26439174

  5. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    PubMed

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  6. Rituximab for immune hemolytic anemia following T- and B-Cell-depleted hematopoietic stem cell transplantation.

    PubMed

    Corti, P; Bonanomi, S; Vallinoto, C; Balduzzi, A; Uderzo, C; Cazzaniga, G; Gaipa, G; Dassi, M; Perseghin, P; Rovelli, A

    2003-01-01

    The treatment of immune-mediated hemolytic anemia (IHA) complicating hematopoietic stem cell transplantation (HSCT) is often unsatisfactory. We report a case of IHA which occurred after T- and B-cell depleted unrelated donor HSCT carried out for mucopolysaccharidosis type I-H (Hurler syndrome) which was successfully treated with anti-CD20+ monoclonal antibody PMID:12486323

  7. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    PubMed Central

    Macaulay, Iain C.; Svensson, Valentine; Labalette, Charlotte; Ferreira, Lauren; Hamey, Fiona; Voet, Thierry; Teichmann, Sarah A.; Cvejic, Ana

    2016-01-01

    Summary The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment. PMID:26804912

  8. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6).

    PubMed

    Dormady, S P; Zhang, X M; Basch, R S

    2000-10-24

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively gamma-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be gamma-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  9. Sexual health in hematopoietic stem cell transplant recipients.

    PubMed

    Li, Zhuoyan; Mewawalla, Prerna; Stratton, Pamela; Yong, Agnes S M; Shaw, Bronwen E; Hashmi, Shahrukh; Jagasia, Madan; Mohty, Mohamad; Majhail, Navneet S; Savani, Bipin N; Rovó, Alicia

    2015-12-01

    Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and cardiovascular complications as well as psychosocial problems are known to contribute significantly to physical and psychological sexual dysfunction. Moreover, it is often a difficult topic for patients, their significant others, and health care providers to discuss. Early recognition and management of sexual dysfunction after HSCT can lead to improved quality of life and outcomes for patients and their partners. This review focuses on the risk factors for and treatment of sexual dysfunction after transplantation and provides guidance concerning how to approach and manage a patient with sexual dysfunction after HSCT. PMID:26372459

  10. Analyzing center specific outcomes in hematopoietic cell transplantation.

    PubMed

    Logan, Brent R; Nelson, Gene O; Klein, John P

    2008-12-01

    Reporting transplant center-specific survival rates after hematopoietic cell transplantation is required in the United States. We describe a method to report 1-year survival outcomes by center, as well as to quantify center performance relative to the transplant center network average, which can be reliably used with censored data and for small center sizes. Each center's observed 1-year survival outcome is compared to a predicted survival outcome adjusted for patient characteristics using a pseudovalue regression technique. A 95% prediction interval for 1-year survival assuming no center effect is computed for each center by bootstrapping the scaled residuals from the regression model, and the observed 1-year survival is compared to this prediction interval to determine center performance. We illustrate the technique using a recent center specific analysis performed by the Center for International Blood and Marrow Transplant Research, and study the performance of this method using simulation. PMID:18836830

  11. Immune-Mediated Complications after Hematopoietic Stem Cell Transplantation.

    PubMed

    Li, Zhuoyan; Rubinstein, Samuel M; Thota, Ramya; Savani, Malvi; Brissot, Eolia; Shaw, Bronwen E; Majhail, Navneet S; Mohty, Mohamad; Savani, Bipin N

    2016-08-01

    Hematopoietic stem cell transplantation (HSCT) has an integral role in the treatment of malignant and nonmalignant diseases. Long-term complications after HSCT have been well established and include graft-versus-host disease (GVHD), conditioning regimen-related toxicities, disease relapse, and infections. Immune-mediated phenomena are increasingly described after HSCT with clinically significant sequelae. Diagnosis is challenging because of features that overlap with other commonly reported post-transplantation complications. Patients who experience immune-mediated disease after HSCT tend to have poor outcomes. Early recognition of immune-mediated complications is imperative to reduce preventable morbidity and mortality. This review looks at the currently available literature on pathogenesis, incidence, risk factors, treatment, and outcomes of immune-mediated disease (other than GVHD) after HSCT. PMID:27095688

  12. Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects

    PubMed Central

    Bouchlaka, Myriam N; Redelman, Doug; Murphy, William J

    2011-01-01

    Hematopoietic stem cell transplantation (HSCT) is a particularly important treatment for hematologic malignancies. Unfortunately, following allogeneic HSCT, graft-versus-host disease, immunosuppression and susceptibility to opportunistic infections remain among the most substantial problems restricting the efficacy and use of this procedure, particularly for cancer. Adoptive immunotherapy and/or manipulation of the graft offer ways to attack residual cancer as well as other transplant-related complications. Recent exciting discoveries have demonstrated that HSCT could be expanded to solid tissue cancers with profound effects on the effectiveness of adoptive immunotherapy. This review will provide a background regarding HSCT, discuss the complications that make it such a complex treatment procedure following up with current immunotherapeutic strategies and discuss emerging approaches in applying immunotherapy in HSCT for cancer. PMID:20635904

  13. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation

    PubMed Central

    Tuncer, Hande H; Rana, Naveed; Milani, Cannon; Darko, Angela; Al-Homsi, Samer A

    2012-01-01

    Recognition and management of gastrointestinal and hepatic complications of hematopoietic stem cell transplantation has gained increasing importance as indications and techniques of transplantation have expanded in the last few years. The transplant recipient is at risk for several complications including conditioning chemotherapy related toxicities, infections, bleeding, sinusoidal obstruction syndrome, acute and chronic graft-versus-host disease (GVHD) as well as other long-term problems. The severity and the incidence of many complications have improved in the past several years as the intensity of conditioning regimens has diminished and better supportive care and GVHD prevention strategies have been implemented. Transplant clinicians, however, continue to be challenged with problems arising from human leukocyte antigen-mismatched and unrelated donor transplants, expanding transplant indications and age-limit. This review describes the most commonly seen transplant related complications, focusing on their pathogenesis, differential diagnosis and management. PMID:22563164

  14. Bullous pemphigoid after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kato, Keisuke; Koike, Kazutoshi; Kobayashi, Chie; Iijima, Shigeruko; Hashimoto, Takashi; Tsuchida, Masahiro

    2015-06-01

    Bullous pemphigoid (BP) is an autoimmune skin disorder characterized by subepidermal blisters due to deposit of autoantibody against dermal basement membrane protein. It has been reported that BP can occur after allogeneic hematopoietic stem cell transplantation (HSCT). We describe a patient with BP having autoantibody against BP180 after unrelated-donor HSCT against T lymphoblastic leukemia. The patient was treated with steroid leading to complete resolution of BP, but T lymphoblastic leukemia progressed rapidly after steroid hormone treatment. Given that immunosuppressant may reduce graft-versus-tumor effect, immunomodulatory agents such as nicotinamide and tetracycline, erythromycin, and immunoglobulin may be appropriate as soon as typical blister lesions are seen after HSCT. PMID:26113316

  15. Venous thromboembolism in hematopoietic stem cell transplant recipients.

    PubMed

    Chaturvedi, S; Neff, A; Nagler, A; Savani, U; Mohty, M; Savani, B N

    2016-04-01

    Venous thromboembolism (VTE) is an increasingly recognized problem in the post-hematopoietic stem cell transplantation (HSCT) setting, with a lack of high-quality evidence-based data to recommend best practices. Few patients with hematologic malignancies and even fewer post-HSCT patients were included in randomized trials of VTE prophylaxis and treatment. Prior VTE, GVHD, infections and indwelling venous catheters are risk factors for thrombosis. The increasing use of post-transplant maintenance therapy with lenalidomide in patients with multiple myeloma adds to this risk after autologous HSCT. These patients are also at high risk of bleeding complications because of prolonged thrombocytopenia and managing the competing risks of bleeding and thrombosis can be challenging. This review aims to provide a practical, clinician-focused approach to the prevention and treatment of VTE in the post-HSCT setting. PMID:26691425

  16. Analysis of the motivation for hematopoietic stem cell donation.

    PubMed

    Aurelio, M T; Aniasi, A; Haworth, S E; Colombo, M B; Dimonopoli, T; Mocellin, M C; Poli, F; Torelli, R; Crespiatico, L; Serafini, M; Scalamogna, M

    2011-05-01

    The Italian Bone Marrow Donor Register is the institutional organization for management of unrelated hematopoietic stem cell donors. The law requires only a donor's clinical history, but not a psychosocial profile for registration. We have studied the donor's motivation for enlistment on the donor registry and the medical staff's need for this information to interact correctly with the donor. For this purpose we distributed a questionnaire to new donors at the 20 centers in the Lombardy Region over a period of 1 year. The analysis of the responses revealed a prevalence of extrinsic motivations that would not ensure continued registration for donation. Therefore, it is necessary that the donor be well informed and better educated about all aspects of donation, in order to produce a shift to an intrinsic motivation. This objective can be facilitated via professional training of health workers in communication. PMID:21620031

  17. Sexual Health in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Li, Zhuoyan; Mewawalla, Prerna; Stratton, Pamela; Yong, Agnes S.M.; Shaw, Bronwen E.; Hashmi, Shahrukh; Jagasia, Madan; Mohty, Mohamad; Majhail, Navneet S.; Savani, Bipin N.; Rovó, Alicia

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and cardiovascular complications as well as psychosocial problems are known to contribute significantly to physical and psychological sexual dysfunction. Moreover, it is often a difficult topic for patients, their significant others, and health care providers to discuss. Early recognition and management of sexual dysfunction after HSCT can lead to improved quality of life and outcomes for patients and their partners. This review focuses on the risk factors for and treatment of sexual dysfunction after transplantation and provides guidance concerning how to approach and manage a patient with sexual dysfunction after HSCT. PMID:26372459

  18. The effects of vitamin D binding protein-macrophage activating factor and colony-stimulating factor-1 on hematopoietic cells in normal and osteopetrotic rats.

    PubMed

    Benis, K A; Schneider, G B

    1996-10-15

    Osteopetrosis is a heterogeneous group of bone disorders characterized by the failure of osteoclasts to resorb bone and by several immunological defects including macrophage dysfunction. Two compounds, colony-stimulating factor-1 (CSF-1) and vitamin D-binding protein-macrophage activating factor (DBP-MAF) were used in the present study to evaluate their effects on the peritoneal population of cells and on cells within the bone marrow microenvironment in normal and incisors absent (ia) osteopetrotic rats. Previous studies in this laboratory have demonstrated that administration of DBP-MAF to newborn ia animals results in a substantial increase in bone marrow cavity size due to upregulated osteoclast function. To study the effects of these compounds on the macrophage/osteoclast precursors, DBP-MAF, CSF-1, and the combination of these compounds were given to newborn ia and normal littermate animals. Both the normal and mutant phenotypes responded similarly when treated with these compounds. Rats exhibited a profound shift toward the macrophage lineage from the neutrophil lineage when compared with vehicle-treated control animals after treatment with these compounds. In the in vivo peritoneal lavage study, animals received injections of CSF-1, DBP-MAF or DBP-MAF/CSF-1 over a 4-week period. The various types of cells in the peritoneal cavity were then enumerated. The in vitro study consisted of cells isolated from the bone marrow microenvironment and cultured on feeder layers of CSF-1, DBP-MAF, or DBP-MAF/CSF-1 for colony enumeration. The increase in macrophage numbers at the expense of neutrophil numbers could be seen in both the in vivo and in vitro experiments. The macrophage/osteoclast and neutrophil lineages have a common precursor, the granulocyte/macrophage colony-forming cell (GM-CFC). With the addition of CSF-1, the GM-CFC precursor may be induced into the macrophage/osteoclast lineage rather than the granulocyte lineage. This increased pool of cells in the

  19. Effect of Deep Space Radiation on Human Hematopoietic Cells

    NASA Astrophysics Data System (ADS)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  20. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  1. Hematopoietic stem cell fate is established by the Notch–Runx pathway

    PubMed Central

    Burns, Caroline Erter; Traver, David; Mayhall, Elizabeth; Shepard, Jennifer L.; Zon, Leonard I.

    2005-01-01

    Identifying the molecular pathways regulating hematopoietic stem cell (HSC) specification, self-renewal, and expansion remains a fundamental goal of both basic and clinical biology. Here, we analyzed the effects of Notch signaling on HSC number during zebrafish development and adulthood, defining a critical pathway for stem cell specification. The Notch signaling mutant mind bomb displays normal embryonic hematopoiesis but fails to specify adult HSCs. Surprisingly, transient Notch activation during embryogenesis via an inducible transgenic system led to a Runx1-dependent expansion of HSCs in the aorta-gonad-mesonephros (AGM) region. In irradiated adults, Notch activity induced runx1 gene expression and increased multilineage hematopoietic precursor cells approximately threefold in the marrow. This increase was followed by the accelerated recovery of all the mature blood cell lineages. These data define the Notch–Runx pathway as critical for the developmental specification of HSC fate and the subsequent homeostasis of HSC number, thus providing a mechanism for amplifying stem cells in vivo. PMID:16166372

  2. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors

    PubMed Central

    Riddell, Jonah; Gazit, Roi; Garrison, Brian S.; Guo, Guoji; Saadatpour, Assieh; Mandal, Pankaj K.; Ebina, Wataru; Volchkov, Pavel; Yuan, Guo-Cheng; Orkin, Stuart H.; Rossi, Derrick J.

    2014-01-01

    Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors RUNX1T1, HLF, LMO2, PRDM5, PBX1, and ZFP37 imparts multi-lineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors, and myeloid effector cells. Inclusion of MYC-N and MEIS1, and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multi-lineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application. PMID:24766805

  3. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2015-01-01

    In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche. PMID:25789504

  4. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines

    PubMed Central

    Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa

    2016-01-01

    Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212

  5. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro.

    PubMed

    Srivastava, Anand S; Kaushal, Sharmeela; Mishra, Rangnath; Lane, Thomas A; Carrier, Ewa

    2006-07-28

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, and direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and, (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes (alpha-globin, betaH-1 globin, beta-major globin, epsilon -globin, and zeta-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, epsilon-globin, gamma-globin, betaH1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of

  6. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro

    SciTech Connect

    Srivastava, Anand S.; Kaushal, Sharmeela; Mishra, Rangnath; Lane, Thomas A.; Carrier, Ewa . E-mail: assrivastava@ucsd.edu

    2006-07-28

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, and direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes ({alpha}-globin, {beta}H-1 globin, {beta}-major globin, {epsilon} -globin, and {zeta}-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, {epsilon}-globin, {gamma}-globin, {beta}H1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the

  7. L-arginine is a radioprotector for hematopoietic progenitor cells.

    PubMed

    Pearce, Linda L; Zheng, Xichen; Martinez-Bosch, Sandra; Kerr, Patrick P; Khlangwiset, Pornsri; Epperly, Michael W; Fink, Mitchell P; Greenberger, Joel S; Peterson, Jim

    2012-06-01

    L-arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation ((137)Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with L-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of L-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). L-arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production. PMID:22175298

  8. Manipulation of hematopoietic stem cells for regenerative medicine.

    PubMed

    Nakajima-Takagi, Yaeko; Osawa, Mitsujiro; Iwama, Atsushi

    2014-01-01

    Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and to differentiate into all blood cell lineages while retaining robust capacity to regenerate hematopoiesis. Based on these characteristics, they are widely used for transplantation and gene therapy. However, the dose of HSCs available for use in treatments is limited. Therefore, extensive work has been undertaken to expand HSCs in culture and to produce HSCs from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in order to improve the efficiency and outcome of HSC-based therapies. Various surface markers have been characterized to improve the purification of HSCs and a huge number of cytokines and small-molecule compounds have been screened for use in the expansion of HSCs. In addition, attempts to generate not only HSCs but also mature blood cells from ESCs and iPSCs are currently ongoing. This review covers recent approaches for the purification, expansion or production of human HSCs and provides insight into problems that need to be resolved. PMID:24293004

  9. l-Arginine is a Radioprotector for Hematopoietic Progenitor Cells

    PubMed Central

    Pearce, Linda L.; Zheng, Xichen; Martinez-Bosch, Sandra; Kerr, Patrick P.; Khlangwiset, Pornsri; Epperly, Michael W.; Fink, Mitchell P.; Greenberger, Joel S.; Peterson, Jim

    2012-01-01

    l-Arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation (137Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with l-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of l-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). l-Arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production. PMID:22175298

  10. [Analysis and significance of hematopoietic progenitor B cells in patients with acute leukemia].

    PubMed

    Xu, Yan-Li; Wang, Shun-Qing; Mao, Ping; DU, Qing-Hua

    2014-12-01

    Normal hematopoietic B progenitor cells are similar with acute B lymphoblastic leukemia (ALL) cells in terms of morphology and immunophenotypes which easily result in misdiagnosis of diseases. This study was purposed to explore the importance of B progenitor cell (BPC) level in differential diagnosis of hematologic diseases. A total of 664 specimens including 87 specimens from patients with non-malignant hematologic diseases as control and 577 specimens from AL patients in different progressive stage were analyzed. Out of 577 specimens 26 were collected from ALL patients, 261 were collected from B-ALL, 290 were collected from AML. The relation of different clinical status (new diagnosis, remission, relapse), age and degree of leukemia cell involvement with hematopoietic BPC level were analyzed through identification of CD34/CD10/CD19/CD45 antibody combination and quantification of hematopoietic BPC. The results indicated that (1) CD45 distributed from positive to weak positive, and with very low side scatter. The early hematopoietic BPC expressed CD34⁺, along with increasing of cell maturation, the CD34 expression gradually disappeared, while CD19 and CD10 showed positive in whole stage of hemaropoietic BPC, and early CD10 highly was expressed. (2) the mean percentage of hematopoietic BPC was 1.36% in control group, 0.60% in T-ALL, 1.39% in B-ALL and 0.80% in AML; the detected rate of hematopoietic BPC in control, T-ALL, B-ALL and AML were 87.4%, 61.5%, 83.5%, 75.9%, respectively; the mean percentage of hematopoietic BPC was 0.37% at new diagnosis, 1.66% in remission and 0.55% in relapse. (3) along with increase of age, the hematopoietic BPC level generally disclined. (4) specimens >5% hematopoietic BPC were mainly found in remission stage of leukemia patients. It is concluded that the hematopoietic BPC are present in malignant and non-malignant hematologic diseases. The changes of hematopoietic BPC level correlate with disease state, age and leukemia cell

  11. Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation

    PubMed Central

    Reddehase, Matthias J.

    2016-01-01

    Hematopoietic cell transplantation (HCT) is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a “window of opportunity” for latent Cytomegalovirus (CMV) by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A “window of opportunity” for the virus represents a “window of risk” for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8+ T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP) representing the most severe clinical manifestation. Here, I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a preemptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing “proof of concept” for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8+ T cells bridging the critical interim. However, CMV is not a “passive antigen” but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow (BM) stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected BM stroma and impaired colony growth and lineage differentiation can lead to “graft failure.” In consequence, uncontrolled virus spread

  12. What do we know about the participation of hematopoietic stem cells in hematopoiesis?

    PubMed Central

    Drize, Nina; Petinati, Nataliya

    2015-01-01

    The demonstrated presence in adult tissues of cells with sustained tissue regenerative potential has given rise to the concept of tissue stem cells. Assays to detect and measure such cells indicate that they have enormous proliferative potential and usually an ability to produce all or many of the mature cell types that define the specialized functionality of the tissue. In the hematopoietic system, one or only a few cells can restore lifelong hematopoiesis of the whole organism. To what extent is the maintenance of hematopoietic stem cells required during normal hematopoiesis? How does the constant maintenance of hematopoiesis occur and what is the behavior of the hematopoietic stem cells in the normal organism? How many of the hematopoietic stem cells are created during the development of the organism? How many hematopoietic stem cells are generating more mature progeny at any given moment? What happens to the population of hematopoietic stem cells in aging? This review will attempt to describe the results of recent research which contradict some of the ideas established over the past 30 years about how hematopoiesis is regulated. PMID:27081472

  13. Single-Cell Cytokine Profiling to Investigate Cellular Functional Diversity in Hematopoietic Malignancies.

    PubMed

    Chen, Jonathan J; Kwak, Minsuk; Fan, Rong

    2016-01-01

    Single-cell analysis of cytokine production is increasingly recognized as an important method to understand the inflammatory microenvironment and hematopoietic disease state. Certain cytokines are critical to the regulation of lineage specification, and the aberrant production of these cytokines can contribute to lineage reprogramming. Here, we describe of a platform combining subnanoliter microchambers and a high-density antibody barcode array for the study of single-cell cytokine secretions in hematopoietic cancer cell populations. PMID:27581152

  14. Pten Cell Autonomously Modulates the Hematopoietic Stem Cell Response to Inflammatory Cytokines.

    PubMed

    Porter, Shaina N; Cluster, Andrew S; Signer, Robert A J; Voigtmann, Jenna; Monlish, Darlene A; Schuettpelz, Laura G; Magee, Jeffrey A

    2016-06-14

    Pten negatively regulates the phosphatidylinositol 3-kinase (PI3K) pathway and is required to maintain quiescent adult hematopoietic stem cells (HSCs). Pten has been proposed to regulate HSCs cell autonomously and non-cell autonomously, but the relative importance of each mechanism has not been directly tested. Furthermore, the cytokines that activate the PI3K pathway upstream of Pten are not well defined. We sought to clarify whether Pten cell autonomously or non-cell autonomously regulates HSC mobilization. We also tested whether Pten deficiency affects the HSC response to granulocyte colony-stimulating factor (G-CSF) and interferon-α (IFNα) since these cytokines induce HSC mobilization or proliferation, respectively. We show that Pten regulates HSC mobilization and expansion in the spleen primarily via cell-autonomous mechanisms. Pten-deficient HSCs do not require G-CSF to mobilize, although they are hyper-sensitized to even low doses of exogenous G-CSF. Pten-deficient HSCs are similarly sensitized to IFNα. Pten therefore modulates the HSC response to inflammatory cytokines. PMID:27185281

  15. Invariant natural killer T cells in hematopoietic stem cell transplantation: killer choice for natural suppression.

    PubMed

    Guan, P; Bassiri, H; Patel, N P; Nichols, K E; Das, R

    2016-05-01

    Invariant natural killer T cells (iNKTs) are innate-like lipid-reactive T lymphocytes that express an invariant T-cell receptor (TCR). Following engagement of the iTCR, iNKTs rapidly secrete copious amounts of Th1 and Th2 cytokines and promote the functions of several immune cells including NK, T, B and dendritic cells. Accordingly, iNKTs bridge the innate and adaptive immune responses and modulate susceptibility to autoimmunity, infection, allergy and cancer. Allogeneic hematopoietic stem cell transplantation (HSCT) is one of the most effective treatments for patients with hematologic malignancies. However, the beneficial graft versus leukemia (GvL) effect mediated by the conventional T cells contained within the allograft is often hampered by the concurrent occurrence of graft versus host disease (GvHD). Thus, developing strategies that can dissociate GvHD from GvL remain clinically challenging. Several preclinical and clinical studies demonstrate that iNKTs significantly attenuate GvHD without abrogating the GvL effect. Besides preserving the GvL activity of the donor graft, iNKTs themselves exert antitumor immune responses via direct and indirect mechanisms. Herein, we review the various mechanisms by which iNKTs provide antitumor immunity and discuss their roles in GvHD suppression. We also highlight the opportunities and obstacles in manipulating iNKTs for use in the cellular therapy of hematologic malignancies. PMID:26878658

  16. Risk analysis of falls in patients undergoing allogeneic hematopoietic stem cell transplantation.

    PubMed

    Ueki, Satoko; Ikegame, Kazuhiro; Kozawa, Mariko; Miyamoto, Junko; Mori, Reiko; Ogawa, Hiroyasu

    2014-08-01

    To identify fall risks in patients undergoing hematopoietic stem cell transplantation (HSCT), the authors reviewed retrospective data on inpatients from April 2010 to March 2011. Among 77 HSCT patient records reviewed, the authors found that 35 patients had experienced at least one fall, including near-miss episodes (fallers). The main location of the falls was a corridor, and the main activity at the time of the fall was going to the toilet. To investigate fall risks along the HSCT time trajectory, the authors divided the time into pre- and post-engraftment periods and investigated the unique characteristics of each. PMID:25095291

  17. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo.

    PubMed

    Crisan, Mihaela; Solaimani Kartalaei, Parham; Neagu, Alex; Karkanpouna, Sofia; Yamada-Inagawa, Tomoko; Purini, Caterina; Vink, Chris S; van der Linden, Reinier; van Ijcken, Wilfred; Chuva de Sousa Lopes, Susana M; Monteiro, Rui; Mummery, Christine; Dzierzak, Elaine

    2016-03-01

    Hematopoietic stem cells (HSC), the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM) region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment. PMID:26923823

  18. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo

    PubMed Central

    Crisan, Mihaela; Solaimani Kartalaei, Parham; Neagu, Alex; Karkanpouna, Sofia; Yamada-Inagawa, Tomoko; Purini, Caterina; Vink, Chris S.; van der Linden, Reinier; van Ijcken, Wilfred; Chuva de Sousa Lopes, Susana M.; Monteiro, Rui; Mummery, Christine; Dzierzak, Elaine

    2016-01-01

    Summary Hematopoietic stem cells (HSC), the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM) region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment. PMID:26923823

  19. Tolerance Associated Gene Expression following Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Pidala, Joseph; Bloom, Gregory C.; Eschrich, Steven; Sarwal, Minnie; Enkemann, Steve; Betts, Brian C.; Beato, Francisca; Yoder, Sean; Anasetti, Claudio

    2015-01-01

    Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT). In a cross-sectional study, peripheral blood samples were obtained from tolerant (n = 15, median 38.5 months post-HCT) and non-tolerant (n = 17, median 39.5 post-HCT) HCT recipients and healthy control subjects (n = 10) for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL) group and 122 for non-tolerant (non-TOL). These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted. PMID:25774806

  20. ABO-Mismatched Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Worel, Nina

    2016-01-01

    Summary Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for a variety of malignant and non-malignant hematological and congenital diseases. Due to the fact that the human leukocyte antigen system is inherited independently of the blood group system, approximately 40-50% of all HSCTs are performed across the ABO blood group barrier. The expected immune-hematological consequences after transplantation of an ABO-mismatched stem cell graft are immediate and delayed hemolytic complications due to presence of isohemagglutinins or passenger lymphocyte syndrome. The risks of these complications can partially be prevented by graft manipulation and appropriate transfusion support. Dependent on the kind of ABO mismatch, different effects on engraftment have been observed, e.g. delayed red blood cell recovery and pure red cell aplasia. Data on incidence of acute graft-versus-host disease (GVHD), non-relapse mortality, relapse, and overall survival are inconsistent as most studies include limited patient numbers, various graft sources, and different conditioning and GVHD prophylaxis regimens. This makes it difficult to detect a consistent effect of ABO-mismatched transplantation in the literature. However, knowledge of expectable complications and close monitoring of patients helps to detect problems early and to treat patients efficiently, thus reducing the number of fatal or life-threatening events caused by ABO-mismatched HSCT. PMID:27022317

  1. Treatment of CMV infection after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Maffini, Enrico; Giaccone, Luisa; Festuccia, Moreno; Brunello, Lucia; Busca, Alessandro; Bruno, Benedetto

    2016-06-01

    Despite a remarkable reduction in the past decades, cytomegalovirus (CMV) disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients remains a feared complication, still associated with significant morbidity and mortality. Today, first line treatment of CMV infection/reactivation is still based on dated antiviral compounds Ganciclovir (GCV), Foscarnet (FOS) and Cidofovir (CDF) with their burdensome weight of side effects. Maribavir (MBV), Letermovir (LMV) and Brincidofovir (BDF) are three new promising anti-CMV drugs without myelosuppressive properties or renal toxic effects that are under investigation in randomized phase II and III trials. Adoptive T-cell therapy (ATCT) in CMV infection possesses a strong rationale, demonstrated by several proof of concept studies; its feasibility is currently under investigation by clinical trials. ATCT from third-party and naïve donors could meet the needs of HSCT recipients of seronegative donors and cord blood grafts. In selected patients such as recipients of T-cell depleted grafts, ATCT, based on CMV-specific host T-cells reconstitution kinetics, would be of value in the prophylactic and/or preemptive CMV treatment. Vaccine-immunotherapy has the difficult task to reduce the incidence of CMV reactivation/infection in highly immunocompromised HSCT patients. Newer notions on CMV biology may represent the base to flush out the Troll of transplantation. PMID:27043241

  2. MicroRNA miR-125a controls hematopoietic stem cell number

    PubMed Central

    Guo, Shangqin; Lu, Jun; Schlanger, Rita; Zhang, Hao; Wang, Judy Y.; Fox, Michelle C.; Purton, Louise E.; Fleming, Heather H.; Cobb, Bradley; Merkenschlager, Matthias; Golub, Todd R.; Scadden, David T.

    2010-01-01

    MicroRNAs influence hematopoietic differentiation, but little is known about their effects on the stem cell state. Here, we report that the microRNA processing enzyme Dicer is essential for stem cell persistence in vivo and a specific microRNA, miR-125a, controls the size of the stem cell population by regulating hematopoietic stem/progenitor cell (HSPC) apoptosis. Conditional deletion of Dicer revealed an absolute dependence for the multipotent HSPC population in a cell-autonomous manner, with increased HSPC apoptosis in mutant animals. An evolutionarily conserved microRNA cluster containing miR-99b, let-7e, and miR-125a was preferentially expressed in long-term hematopoietic stem cells. MicroRNA miR-125a alone was capable of increasing the number of hematopoietic stem cells in vivo by more than 8-fold. This result was accomplished through a differentiation stage-specific reduction of apoptosis in immature hematopoietic progenitors, possibly through targeting multiple proapoptotic genes. Bak1 was directly down-regulated by miR-125a and expression of a 3′UTR-less Bak1 blocked miR-125a-induced hematopoietic expansion in vivo. These data demonstrate cell-state-specific regulation by microRNA and identify a unique microRNA functioning to regulate the stem cell pool size. PMID:20616003

  3. Immune Reconstitution after Allogeneic Hematopoietic Cell Transplantation in Children.

    PubMed

    de Koning, Coco; Plantinga, Maud; Besseling, Paul; Boelens, Jaap Jan; Nierkens, Stefan

    2016-02-01

    Allogeneic (allo) hematopoietic cell transplantation (HCT) has evolved into a potent curative treatment option for a variety of malignant and nonmalignant diseases. The occurrence of complications and mortality after allo-HCT is, however, still high and is strongly associated with immune reconstitution (IR). Therefore, detailed information on IR through immunomonitoring is crucial to improve survival chances after HCT. To date, information about the reconstituting immune system after allo-HCT in pediatric patients is mostly derived from routine standard-of-care measurements. More profound knowledge on IR may provide tools to better predict and modulate adverse reactions and, subsequently, improve survival chances. Here, we provide an overview of IR (eg, immune cell subsets and circulating chemokines/cytokines) after allo-HCT in children, taking into account different cell sources and serotherapy, and discuss strategies to enhance immunomonitoring. We conclude that available IR data after allo-HCT contain limited information on immune cell families (mostly only generic T, B, and NK cells), which would improve with more detailed information on reconstituting cell subsets or effector cell functionality at earlier time points (<1 month). In addition, secretome data (eg, multiplex cytokine/chemokine profiles) could add to the understanding of IR mechanisms and cell functionality and may even provide (early) biomarkers for individual disease outcome, such as viral reactivity, graft-versus-host disease, or graft-versus-leukemia. The present data and suggestions for more detailed, standardized, and harmonized immunomonitoring in future (pediatric) allo-HCT studies will pave the path to "precision transplantation:" an individualized HCT approach (including conditioning), based on detailed information on IR and biomarkers, aiming to reduce transplantation related mortality and relapse, and subsequently improve survival chances. PMID:26341398

  4. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Cancer.gov

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  5. Bone Marrow GvHD after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Szyska, Martin; Na, Il-Kang

    2016-01-01

    The bone marrow is the origin of all hematopoietic lineages and an important homing site for memory cells of the adaptive immune system. It has recently emerged as a graft-versus-host disease (GvHD) target organ after allogeneic stem cell transplantation (alloHSCT), marked by depletion of both hematopoietic progenitors and niche-forming cells. Serious effects on the restoration of hematopoietic function and immunological memory are common, especially in patients after myeloablative conditioning therapy. Cytopenia and durable immunodeficiency caused by the depletion of hematopoietic progenitors and destruction of bone marrow niches negatively influence the outcome of alloHSCT. The complex balance between immunosuppressive and cell-depleting treatments, GvHD and immune reconstitution, as well as the desirable graft-versus-tumor (GvT) effect remains a great challenge for clinicians. PMID:27066008

  6. Bone Marrow GvHD after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Szyska, Martin; Na, Il-Kang

    2016-01-01

    The bone marrow is the origin of all hematopoietic lineages and an important homing site for memory cells of the adaptive immune system. It has recently emerged as a graft-versus-host disease (GvHD) target organ after allogeneic stem cell transplantation (alloHSCT), marked by depletion of both hematopoietic progenitors and niche-forming cells. Serious effects on the restoration of hematopoietic function and immunological memory are common, especially in patients after myeloablative conditioning therapy. Cytopenia and durable immunodeficiency caused by the depletion of hematopoietic progenitors and destruction of bone marrow niches negatively influence the outcome of alloHSCT. The complex balance between immunosuppressive and cell-depleting treatments, GvHD and immune reconstitution, as well as the desirable graft-versus-tumor (GvT) effect remains a great challenge for clinicians. PMID:27066008

  7. Hematopoietic stem cell transplantation in China: current status and prospects

    PubMed Central

    Huang, Xiao-Jun

    2011-01-01

    During the past four decades, a substantial progress has been made in the field of hematopoietic stem cell transplantation (HSCT). From July, 2007 to December, 2010, a transplant survey from 42 HSCT units indicates that the types of transplantation performed are related identical (43%), related mismatched/haploidentical (28%), unrelated donor matched (11%), unrelated donor mismatched (7%), umbilical cord blood (UCB, 2%) and autologous (9%). The distribution of disease entities being transplanted in allogeneic settings is acute myeloid leukemia (AML) (34%), acute lymphoblastic leukemia(ALL) (24%), chronic myeloid leukemia (CML) (20%), myelodysplastic syndrome (MDS) (8%), aplastic anemia (AA) (7%), Mediterranean anemia (MIA) (2%), non-Hodgkin's lymphoma (NHL) (3%), and other diseases (3%). Clinical data from Peking University Institute of Hematology and other transplant centers suggest that haploidentical transplantation has been a choice of the best alternative source of stem cells for individual patients without matched sibling donors. A modified donor lymphocyte infusion (DLI) approach can be safely used for prophylaxis and treatment of leukemia relapse in patients with advanced leukemia following mismatched transplant. The number of transplants from unrelated donor or related mismatched/haploidentical donor has increased significantly during recent years. Double UCBT is a promising strategy for the therapy of hematological disease. In addition, mesenchymal stem cell (MSC) transplantation may be a potential therapeutic approach for treating systemic lupus erythematosus (SLE). PMID:22432069

  8. Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science

    PubMed Central

    Choi, Ji Sun; Mahadik, Bhushan P.; Harley, Brendan A. C.

    2016-01-01

    Hematopoietic stem cells (HSCs) play a crucial role in the generation of the body’s blood and immune cells. This process takes place primarily in the bone marrow in specialized ‘niche’ microenvironments, which provide signals responsible for maintaining a balance between HSC quiescence, self-renewal, and lineage specification required for life-long hematopoiesis. While our understanding of these signaling mechanisms continues to improve, our ability to engineer them in vitro for the expansion of clinically relevant HSC populations is still lacking. In this review, we focus on development of biomaterials-based culture platforms for in vitro study of interactions between HSCs and their local microenvironment. The tools and techniques used for both examining HSC-niche interactions as well as applying these findings towards controlled HSC expansion or directed differentiation in 2D and 3D platforms are discussed. These novel techniques hold the potential to push the existing boundaries of HSC cultures towards high-throughput, real-time, and single-cell level biomimetic approaches that enable a more nuanced understanding of HSC regulation and function. Their application in conjunction with innovative biomaterial platforms can pave the way for engineering artificial bone marrow niches for clinical applications as well as elucidating the pathology of blood-related cancers and disorders. PMID:26356030

  9. EVI1 and MDS1/EVI1 Expression During Primary Human Hematopoietic Progenitor Cell Differentiation into Various Myeloid Lineages

    PubMed Central

    Steinleitner, Katarina; Rampetsreiter, Paulina; Köffel, Rene; Ramanathan, Gajalakshmi; Mannhalter, Christine; Strobl, Herbert; Wieser, Rotraud

    2012-01-01

    Background and Aim Overexpression of ecotropic viral integration site 1 (EVI1) is associated with aggressive disease in myeloid leukemia. We therefore studied its expression and function in cluster of differentiation 34 positive (CD 34+) primary human hematopoietic progenitor cells. Materials and Methods CD34+ cells were differentiated into various myeloid lineages using appropriate cytokines. EVI1 expression was measured by quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) and intranuclear fluorescence activated cell sorting (FACS). Experimental manipulation of EVI1 levels was achieved using retroviral infection. Results EVI1 mRNA and its variant myelodysplastic syndrome 1 (MDS1)/EVI1, which gives rise to a partially antagonistic protein, were detectable in CD34+ cells, but their levels declined rapidly during differentiation into the granulocytic, monocytic, dendritic, erythroid, and megakaryocytic lineages. Similarly, EVI1 protein levels decreased during myeloid differentiation. Attempts to experimentally express EVI1 in CD34+ and U937 cells indicated that ectopic expression of EVI1 may cause growth arrest, apoptosis and/or senescence of human hematopoietic cells. Conclusion EVI1 is expressed in human hematopoietic progenitor cells, but is down-regulated during differentiation. Ectopic expression of EVI1 may activate cellular safeguards against oncogene activation. PMID:23155256

  10. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  11. Hematopoietic Stem Cell Transplantation for Primary Immunodeficiencies By Elizabeth Kang and Andrew Gennery

    PubMed Central

    Kang, Elizabeth; Gennery, Andrew

    2014-01-01

    Allogeneic Hematopoietic Stem Cell Transplantation has been shown to be curative for well described as well as newly discovered immunodeficiencies. However it is difficulty to define a universal transplant regimen given the rarity of these disorders and the varied pathophysiology these disorders encompass. This review will discuss those primary immunodeficiencies most commonly treated by hematopoietic stem cell transplant and describe the transplant issues specific to these disorders. PMID:25459185

  12. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system. PMID:26136659

  13. Whole transcriptome data analysis of mouse embryonic hematopoietic stem and progenitor cells that lack Geminin expression.

    PubMed

    L Patmanidi, Alexandra; Kanellakis, Nikolaos I; Karamitros, Dimitris; Papadimitriou, Christos; Lygerou, Zoi; Taraviras, Stavros

    2016-06-01

    We performed cDNA microarrays (Affymetrix Mouse Gene 1.0 ST Chip) to analyze the transcriptome of hematopoietic stem and progenitor cells (HSPCs) from E15.5dpc wild type and Geminin (Gmnn) knockout embryos. Lineage negative cells from embryonic livers were isolated using fluorescence activated cell sorting. RNA samples were used to examine the transcriptional programs regulated by Geminin during embryonic hematopoiesis. The data sets were analyzed using the GeneSpring v12.5 platform (Agilent). The list of differentially expressed genes was filtered in meta-analyses to investigate the molecular basis of the phenotype observed in the knockout embryos, which exhibited defective hematopoiesis and death. The data from this study are related to the research article "Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors" (Karamitros et al., 2015) [1]. The microarray dataset has been deposited at the Gene Expression Omnibus (GEO) under accession GEO: GSE53056. PMID:27077091

  14. A diffusible signal derived from hematopoietic cells supports the survival and proliferation of regenerative cells during zebrafish fin fold regeneration.

    PubMed

    Hasegawa, Tomoya; Nakajima, Teruhiro; Ishida, Takashi; Kudo, Akira; Kawakami, Atsushi

    2015-03-01

    Multicellular organisms maintain body integrity by constantly regenerating tissues throughout their lives; however, the overall mechanism for regulating regeneration remains an open question. Studies of limb and fin regeneration in teleost fish and urodeles have shown the involvement of a number of locally activated signals at the wounded site during regeneration. Here, we demonstrate that a diffusible signal from a distance also play an essential role for regeneration. Among a number of zebrafish mutants, we found that the zebrafish cloche (clo) and tal1 mutants, which lack most hematopoietic tissues, displayed a unique regeneration defect accompanying apoptosis in primed regenerative tissue. Our analyses of the mutants showed that the cells in the primed regenerative tissue are susceptible to apoptosis, but their survival is normally supported by the presence of hematopoietic tissues, mainly the myeloid cells. We further showed that a diffusible factor in the wild-type body fluid mediates this signal. Thus, our study revealed a novel mechanism that the hematopoietic tissues regulate tissue regeneration through a diffusible signal. PMID:25533245

  15. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice

    PubMed Central

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy. PMID:24870377

  16. Stem cell factor induces HIF-1{alpha} at normoxia in hematopoietic cells

    SciTech Connect

    Pedersen, Malin; Loefstedt, Tobias; Sun Jianmin; Holmquist-Mengelbier, Linda; Pahlman, Sven; Roennstrand, Lars

    2008-12-05

    Signaling by the receptor for stem cell factor (SCF), c-Kit, is of major importance for hematopoiesis, melanogenesis and reproduction, and the biological responses are commonly proliferation and cell survival. Thus, constitutive activation due to c-Kit mutations is involved in the pathogenesis of several forms of cancer, e.g. leukemias, gastrointestinal stromal tumors and testicular tumors. Tumor survival requires oxygen supply through induced neovascularization, a process largely mediated by the vascular endothelial growth factor (VEGF), a prominent target of the transcription factors hypoxia-inducible factor-1 (HIF-1) and HIF-2. Using Affymetrix microarrays we have identified genes that are upregulated following SCF stimulation. Interestingly, many of the genes induced were found to be related to a hypoxic response. These findings were corroborated by our observation that SCF stimulation of the hematopoietic cell lines M-07e induces HIF-1{alpha} and HIF-2{alpha} protein accumulation at normoxia. In addition, SCF-induced HIF-1{alpha} was transcriptionally active, and transcribed HIF-1 target genes such as VEGF, BNIP3, GLUT1 and DEC1, an effect that could be reversed by siRNA against HIF-1{alpha}. We also show that SCF-induced accumulation of HIF-1{alpha} is dependent on both the PI-3-kinase and Ras/MEK/Erk pathways. Our data suggest a novel mechanism of SCF/c-Kit signaling in angiogenesis and tumor progression.

  17. Vector design for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells

    PubMed Central

    Schambach, Axel; Baum, Christopher

    2007-01-01

    Enhancing DNA repair activity of hematopoietic cells by stably integrating gene vectors that express O(6)-methylguanine-DNA-methyltransferase (MGMT) is of major interest for innovative approaches in tumor chemotherapy and for the control of hematopoietic chimerism in the treatment of multiple other acquired or inherited disorders. Crucial determinants of this selection principle are the stringency of treatment with O(6)-alkylating agents and the level of transgenic MGMT expression. Attempts to generate clinically useful MGMT vectors focus on the design of potent expression cassettes, an important component of which is formed by enhancer sequences that are active in primitive as well as more differentiated hematopoietic cells. However, recent studies have revealed that vectors harboring strong enhancer sequences are more likely to induce adverse events related to insertional mutagenesis. Safety-improved vectors that maintain high levels of MGMT expression may be constructed based on the following principles: choice of enhancer-promoter sequences with relatively mild long-distance effects despite a high transcription rate, improved RNA processing (export, stability and translation), and protein design. The need for optimizing MGMT protein design is supported by recent observations suggesting that the P140K mutant of MGMT, developed to be resistant to inhibitors such as O6-benzylguanine, may confer a selective disadvantage when expressed at high levels. Here, we provide a review of the literature exploring MGMT expression vectors for bone marrow chemoprotection, and describe experimental evidence suggesting that high expression of MGMT P140K induces a selective disadvantage in the absence of alkylating agents. We conclude that the appropriate design of expression vectors and MGMT protein features will be crucial for the long-term prospects of this promising selection principle. PMID:17482894

  18. Ectonucleotidases in Solid Organ and Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Chernogorova, Petya; Zeiser, Robert

    2012-01-01

    Extracellular nucleotides are ubiquitous signalling molecules which modulate distinct physiological and pathological processes. Nucleotide concentrations in the extracellular space are strictly regulated by cell surface enzymes, called ectonucleotidases, which hydrolyze nucleotides to the respective nucleosides. Recent studies suggest that ectonucleotidases play a significant role in inflammation by adjusting the balance between ATP, a widely distributed proinflammatory danger signal, and the anti-inflammatory mediator adenosine. There is increasing evidence for a central role of adenosine in alloantigen-mediated diseases such as solid organ graft rejection and acute graft-versus-host disease (GvHD). Solid organ and hematopoietic cell transplantation are established treatment modalities for a broad spectrum of benign and malignant diseases. Immunological complications based on the recognition of nonself-antigens between donor and recipient like transplant rejection and GvHD are still major challenges which limit the long-term success of transplantation. Studies in the past two decades indicate that purinergic signalling influences the severity of alloimmune responses. This paper focuses on the impact of ectonucleotidases, in particular, NTPDase1/CD39 and ecto-5′-nucleotidase/CD73, on allograft rejection, acute GvHD, and graft-versus-leukemia effect, and on possible clinical implications for the modulation of purinergic signalling after transplantation. PMID:23125523

  19. [Human Herpesvirus-6 Encephalitis in Allogeneic Hematopoietic Stem Cell Transplantation].

    PubMed

    Ogata, Masao

    2015-07-01

    The reactivation of human herpesvirus-6B (HHV-6B) is common after allogeneic hematopoietic cell transplantation (allo-HCT), and it is sporadically associated with the development of HHV-6 encephalitis. HHV-6 encephalitis typically develops around 2-6 weeks after allo-HCT, and it is characterized by short-term memory loss. Magnetic resonance imaging typically shows bilateral signal abnormalities in the limbic system. The incidence of HHV-6 encephalitis is reportedly 0-11.6% after bone marrow or peripheral blood stem cell transplantation and 4.9-21.4% after cord blood transplantation. The mortality of HHV-6 encephalitis is high, and survivors are often left with serious sequelae. Antiviral therapy using foscarnet or ganciclovir is recommended for the treatment of HHV-6 encephalitis, but the efficacy of the currently available treatment is insufficient once HHV-6 encephalitis has developed. The elucidation of the pathogenesis of HHV-6 encephalitis and the establishment of preventative therapy are needed to overcome this disease. PMID:26160819

  20. Second Unrelated Donor Hematopoietic Cell Transplantation for Primary Graft Failure

    PubMed Central

    Schriber, Jeffrey; Agovi, Manza-A.; Ho, Vincent; Ballen, Karen K.; Bacigalupo, Andrea; Lazarus, Hillard M.; Bredeson, Christopher N.; Gupta, Vikas; Maziarz, Richard T.; Hale, Gregory A.; Litzow, Mark R.; Logan, Brent; Bornhauser, Martin; Giller, Roger H.; Isola, Luis; Marks, David I.; Rizzo, J. Douglas; Pasquini, Marcelo C.

    2010-01-01

    Failure to engraft donor cells is a devastating complication after allogeneic hematopoietic cell transplantation (HCT). We describe the results of 122 patients reported to the National Marrow Donor Program between 1990 and 2005, who received a second unrelated donor HCT after failing to achieve an absolute neutrophil count of ≥ 500/ μL without recurrent disease. Patients were transplanted for leukemia (n=83), myelodysplastic disorders (n=16), severe aplastic anemia (n=20) and other diseases (n=3). The median age was 29 years. Twenty-four patients received second grafts from a different unrelated donor. Among 98 patients who received a second graft from the same donor, 28 received products that were previously collected and cryopreserved for the first transplantation. One-year overall survival after second transplant was 11% with 10 patients alive at last follow up. We observed no differences between patients who received grafts from the same or different donors, or in those who received fresh or cryopreserved product. The outcomes after a second allogeneic HCT for primary graft failure are dismal. Identifying risk factors for primary graft failure can decrease the incidence of this complication. Further studies are needed to test whether early recognition and hastened procurement of alternative grafts can improve transplant outcomes for primary graft failure. PMID:20172038

  1. Hematopoietic cell transplantation for hemophagocytic lymphohistiocytosis: recent advances and controversies

    PubMed Central

    2015-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory clinical syndrome of uncontrolled immune response which results in hypercytokinemia due to underlying primary or secondary immune defect. A number of genetic defects in transport, processing and function of cytotoxic granules which result in defective granule exocytosis and cytotoxicity of cytotoxic T lymphocytes (CTL) and natural killer (NK) cells have been well identified at the cellular and molecular level. Important advances have been made during the last 20 years in the diagnosis and treatment of HLH. The Histiocyte Society has proposed diagnostic guideline using both clinical and laboratory findings in HLH-2004 protocol, and this has been modified partly in 2009. HLH used to be a fatal disease, but the survival of HLH patients has improved to more than 60% with the use of chemoimmunotherapy combined with hematopoietic cell transplantation (HCT) over the past 2 decades. However, HCT is still the only curative option of treatment for primary HLH and refractory/relapsed HLH after proper chemoimmunotherapy. The outcome of HCT for HLH patients was also improved steadily during last decades, but HCT for HLH still carries significant mortality and morbidity. Moreover, there remain ongoing controversies in various aspects of HCT including indication of HCT, donor selection, timing of HCT, conditioning regimen, and mixed chimerism after HCT. This review summarized the important practical issues which were proven by previous studies on HCT for HLH, and tried to delineate the controversies among them. PMID:26457279

  2. Key factors in experimental mouse hematopoietic stem cell transplantation.

    PubMed

    Nevozhay, Dmitry; Opolski, Adam

    2006-01-01

    The first mouse model of hematopoietic stem cell transplantation (HSCT) was developed more than 50 years ago. HSCT is currently being widely used in a broad range of research areas, which include studies of the engraftment process, the pathogenesis of graft-versus-host disease and possible ways of its treatment and prophylaxis, attempts to use the graft-versus-leukemia/tumor effect in treating hematological and oncological malignancies, cancer vaccine development, induction of transplanted organ tolerance, and gene therapy. However, although this model is widely distributed, many laboratories use different protocols for the procedure. There are a number of papers discussing different HSCT protocols in clinical work, but no articles summarizing mouse laboratory models are available. This review attempts to bring together different details about HSCT in the mouse model, such as the types of transplantation, possible pretreatment regimens and their combinations, methods and sources of graft harvesting and preparation for the transplantation procedure, the influence of graft cell dose and content on the engraftment process, the transplantation method itself, possible complications, symptoms and techniques of their prophylaxis or treatment, as well as follow-up and engraftment assessment. We have also tried to reflect current knowledge of the biology of the engraftment. PMID:16868724

  3. Targeted Genome Editing in Human Repopulating Hematopoietic Stem Cells

    PubMed Central

    Genovese, Pietro; Tomaso, Tiziano Di; Firrito, Claudia; Calabria, Andrea; Moi, Davide; Mazzieri, Roberta; Bonini, Chiara; Holmes, Michael C.; Gregory, Philip D.; van der Burg, Mirjam; Gentner, Bernhard; Montini, Eugenio; Lombardo, Angelo; Naldini, Luigi

    2014-01-01

    Targeted genome editing by artificial nucleases has brought the goal of site-specific transgene integration and gene correction within the reach of gene therapy. However, its application to long-term repopulating Hematopoietic Stem Cells (HSCs) has remained elusive. Here we show that poor permissiveness to gene transfer and limited proficiency of the homology directed DNA repair pathway constrain gene targeting in human HSCs. By tailoring delivery platforms and culture conditions we overcame these barriers and provide stringent evidence of targeted integration in human HSCs by long-term multilineage repopulation of transplanted mice. We demonstrate the therapeutic potential of our strategy by targeting a corrective cDNA into the IL2RG gene of HSCs from healthy donors and a subject with X-linked Severe Combined Immunodeficiency (SCID-X1). Gene edited HSCs sustained normal hematopoiesis and gave rise to functional lymphoid cells that possess a selective growth advantage over those carrying disruptive IL2RG mutations. These results open new avenues for treating SCID-X1 and other diseases. PMID:24870228

  4. A three-dimensional culture system for the growth of hematopoietic cells.

    PubMed

    Naughton, B A; Jacob, L; Naughton, G K

    1990-01-01

    A physiological three-dimensional culture system was developed for the growth of human bone marrow. Bone marrow stromal cells were established on a nylon filtration screen template, suspended in liquid medium and grown to 70% confluence, and inoculated with hematopoietic cells. An intricate microenvironment is established to support hematopoiesis, which proceeds in a three-dimensional orientation. Analysis of the adherent zone of these cultures with flow cytometry and progenitor cell assays reveals multilineage hematologic expression and active proliferation of immature cells for the 12 week experimental period. Similar results were obtained with rat bone marrow cultures using this methodology. The suspended nylon mesh system is novel in that it supports the growth of several hematologic lineages concurrently. This system may lend itself to the growth of purged or untreated bone marrow for transplantation. PMID:2308994

  5. Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells, and future directions

    PubMed Central

    Sebastian, Nadia T.; Collins, Kathleen L.

    2014-01-01

    Current therapy for HIV effectively suppresses viral replication and prolongs life, but the infection persists due, at least in part, to latent infection of long-lived cells. One favored strategy towards a cure targets latent virus in resting memory CD4+ T cells by stimulating viral production. However, the existence of an additional reservoir in bone marrow hematopoietic progenitor cells has been detected in some treated HIV-infected people. This review describes approaches investigators have used to reactivate latent proviral genomes in resting CD4+ T cells and hematopoietic progenitor cells. In addition, we review approaches for clearance of these reservoirs along with other important topics related to HIV eradication. PMID:25189526

  6. Mobilization of hematopoietic stem cells with highest self-renewal by G-CSF precedes clonogenic cell mobilization peak.

    PubMed

    Winkler, Ingrid G; Wiercinska, Eliza; Barbier, Valerie; Nowlan, Bianca; Bonig, Halvard; Levesque, Jean-Pierre

    2016-04-01

    Harvest of granulocyte colony-stimulating factor (G-CSF)-mobilized hematopoietic stem cells (HSCs) begins at day 5 of G-CSF administration, when most donors have achieved maximal mobilization. This is based on surrogate markers for HSC mobilization, such as CD34(+) cells and colony-forming activity in blood. However, CD34(+) cells or colony-forming units in culture (CFU-C) are heterogeneous cell populations with hugely divergent long-term repopulation potential on transplantation. HSC behavior is influenced by the vascular bed in the vicinity of which they reside. We hypothesized that G-CSF may mobilize sequentially cells proximal and more distal to bone marrow venous sinuses where HSCs enter the blood. We addressed this question with functional serial transplantation assays using blood and bone marrow after specific time points of G-CSF treatment in mice. We found that in mice, blood collected after only 48 hours of G-CSF administration was as enriched in serially reconstituting HSCs as blood collected at 5 days of G-CSF treatment. Similarly, mobilized Lin(-)CD34(+) cells were relatively enriched in more primitive Lin(-)CD34(+)CD38(-) cells at day 2 of G-CSF treatment compared with later points in half of human donors tested (n = 6). This suggests that in both humans and mice, hematopoietic progenitor and stem cells do not mobilize uniformly according to their maturation stage, with most potent HSCs mobilizing as early as day 2 of G-CSF. PMID:26827874

  7. Role of Hematopoietic Stem Cells in Inflammation of the Pancreas during Diabetes Mellitus.

    PubMed

    Dygai, A M; Skurikhin, E G; Pershina, O V; Ermakova, N N; Krupin, V A; Ermolaeva, L A; Stakheeva, M N; Choinzonov, E L; Goldberg, V E; Reikhart, D V; Ellinidi, V N; Kravtsov, V Yu

    2016-02-01

    The model of streptozotocin-induced diabetes mellitus in C57Bl/6 mice was employed to study the role of precursors of insulin-producing β-cells, hematopoietic stem cells, and progenitor hematopoietic cells in inflammation. In addition to provoking hyperglycemia, streptozotocin elevated serum levels of IL-1β and hyaluronic acid, induced edema in the pancreatic insular tissue and its infiltration by inflammatory cells (neutrophils, lymphocytes, and macrophages) and fibroblasts. Inflammation in pancreatic islets was accompanied by necrotic processes and decreasing counts of multipotent progenitor β-cells (CD45(-), TER119(-), c-kit-1(-), and Flk-1(-)), oligopotent progenitor β-cells (CD45(-), TER119(-), CD133(+), and CD49f(low)), and insulinproducing β-cells (Pdx1(+)). Pancreatic infl ammation was preceded by elevation of the number of short-term hematopoietic stem cells (Lin-Sca-1(+)c-kit(+)CD34(+)) relative to long-term cells (Lin(-)Sca-1(+)c-kit(+)CD34(-)) in the bone marrow as well as recruitment of hematopoietic stem and progenitor cells into circulation. Transplantation of bone marrow hematopoietic stem and progenitor cells from diabetic C57Bl/6 donor mice to recipient CBA mice with 5-fluorouracilinduced leukopenia accelerated regeneration of granulocytopoiesis in recipient mice. PMID:26906195

  8. Lack of Phenotypical and Morphological Evidences of Endothelial to Hematopoietic Transition in the Murine Embryonic Head during Hematopoietic Stem Cell Emergence

    PubMed Central

    Iizuka, Kazuhide; Yokomizo, Tomomasa; Watanabe, Naoki; Tanaka, Yosuke; Osato, Motomi; Takaku, Tomoiku; Komatsu, Norio

    2016-01-01

    During mouse ontogeny, hematopoietic cells arise from specialized endothelial cells, i.e., the hemogenic endothelium, and form clusters in the lumen of arterial vessels. Hemogenic endothelial cells have been observed in several embryonic tissues, such as the dorsal aorta, the placenta and the yolk sac. Recent work suggests that the mouse embryonic head also produces hematopoietic stem cells (HSCs)/progenitors. However, a histological basis for HSC generation in the head has not yet been determined because the hematopoietic clusters and hemogenic endothelium in the head region have not been well characterized. In this study, we used whole-mount immunostaining and 3D confocal reconstruction techniques to analyze both c-Kit+ hematopoietic clusters and Runx1+ hemogenic endothelium in the whole-head vasculature. The number of c-Kit+ hematopoietic cells was 20-fold less in the head arteries than in the dorsal aorta. In addition, apparent nascent hematopoietic cells, which are characterized by a “budding” structure and a Runx1+ hemogenic endothelium, were not observed in the head. These results suggest that head HSCs may not be or are rarely generated from the endothelium in the same manner as aortic HSCs. PMID:27227884

  9. Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo.

    PubMed Central

    Guild, B C; Finer, M H; Housman, D E; Mulligan, R C

    1988-01-01

    A series of retrovirus vectors were constructed in which cellular promoter elements derived from the chicken beta-actin and human histone H4 genes were introduced within the proviral transcriptional unit of Moloney murine leukemia virus in order to promote expression of inserted sequences. Each of these vectors gave rise to high titer of virus capable of transferring the expected proviral structure to cells. Inclusion of normal 5' splice sequences or a portion of viral gag sequences in these constructions resulted in significant increases in virus titer. Each construction was transcriptionally active in NIH 3T3 cells and in undifferentiated F9 cells. One of the vectors, HSG-neo, which contained the human histone H4 promoter, was shown to be transcriptionally active in hematopoietic cells derived from long-term reconstituted bone marrow transplant recipients engrafted with transduced stem cells. These vectors should be of general use for obtaining efficient gene expression in embryonal and hematopoietic cells. Images PMID:3418785

  10. Radioprotection of mouse hematopoietic stem cells by leukotriene A4 and lipoxin B4

    SciTech Connect

    Walden, T.L.

    1988-01-01

    The cytoprotective properties of eicosanoids were used for both cyclooxygenase products and, more recently, lipoxygenase products to induce radioprotection. This protection was shown with cells in culture, mouse hematopoietic stem cell in vivo, and with whole animal survival. DRF's of 1.7 or greater can be obtained with DiPGE2, a synthetic derivative of the naturally occurring prostaglandin E2, and with LTC4. These cytoprotective/radioprotective properties have significance in normal physiological processes and also in cancer biology where some tumors produce elevated levels of eicosanoids and may influence therapeutic efficacy. The potent cyto/radioprotective biological activity induced by leukotrienes prompted a search for other lipoxygenase products exhibiting similar properties. Pretreatment of mice with 1 to 20 microgram of leukotriene A(4) before sublethal irradiation induced an increase in the number of endogenous hematopoietic stem cells. Radioprotection was also provided by pretreatment with lipoxin B(4) but not with lipoxin A(4) or with potential lipoxin precursors: 5-HETE, 15-HPETE, 15-HETE, and arachidonic acid. The degree of protection induced by leukotriene A(4) or lipoxin B(4) is less than that previously reported for an equivalent dose of leukotriene C(4). Administration of the lipoxins did not result in any visibly detectable side effects such as diarrhea or ataxia.

  11. Inducible gene and shRNA expression in resident hematopoietic stem cells in vivo.

    PubMed

    Laurenti, Elisa; Barde, Isabelle; Verp, Sonia; Offner, Sandra; Wilson, Anne; Quenneville, Simon; Wiznerowicz, Maciej; Macdonald, H Robson; Trono, Didier; Trumpp, Andreas

    2010-08-01

    Hematopoietic stem cells (HSC) are probably the best understood somatic stem cells and often serve as a paradigm for other stem cells. Nevertheless, most current techniques to genetically manipulate them in vivo are either constitutive and/or induced in settings of hematopoietic stress such as after irradiation. Here, we present a conditional expression system that allows for externally controllable transgenesis and knockdown in resident HSCs, based on a lentiviral vector containing a tet-O sequence and a transgenic mouse line expressing a doxycyclin-regulated tTR-KRAB repressor protein. HSCs harvested from tTR-KRAB mice are transduced with the lentiviral vector containing a cDNA (i.e., Green Fluorescent Protein (GFP)) and/or shRNA (i.e., p53) of interest and then transplanted into lethally irradiated recipients. While the vector is effectively repressed by tTR-KRAB during homing and engraftment, robust GFP/shp53 expression is induced on doxycyclin treatment in HSCs and their progeny. Doxycylin-controllable transcription is maintained on serial transplantation, indicating that repopulating HSCs are stably modified by this approach. In summary, this easy to implement conditional system provides inducible and reversible overexpression or knock down of genes in resident HSCs in vivo using a drug devoid of toxic or activating effects. PMID:20641037

  12. The incidence of autoimmune hemolytic anemia in pediatric hematopoietic stem cell recipients post first and second hematopoietic stem cell transplant

    PubMed Central

    Ahmed, Ibrahim; Teruya, Jun; Murray-Krezan, Cristina; Krance, Robert

    2015-01-01

    The reported incidence of post allogeneic hematopoietic stem cell transplant (HSCT) auto-immune hemolytic anemia (AIHA) was between 4.4% and 6% following a single transplant. Cord blood transplantation, T-cell depletion and chronic GvHD are significantly associated with post-transplant AIHA. During an 11 year period, data for 500 pediatric HSCT recipients were eligible for evaluation of the incidence of AIHA post first and second transplants. Demographic, transplant, and post-transplant related variables were analyzed. Twelve/500 (2.4%) recipients at a median of 273 days and 7/72 (9.7%) recipients at a median of 157 days developed AIHA post first and second HSCT respectively. Post first HSCT, none of the matched related donor recipients developed AIHA (0/175 MRD vs. 12/325 other donors, p=0.04). Four/12 required a second HSCT to control the AIHA. Post the second HSCT, matched unrelated donor was significantly associated with the development of AIHA. No other variables were associated with the post-second transplant AIHA. The incidence of AIHA post first and second HSCT was less than reported. The increased incidence of AIHA among recipients of second HSCT is most likely due to the profound immune dysregulation. A much larger, prospective study would be needed to evaluate the incidence, complications and management of post-transplant AIHA. PMID:25809012

  13. Endocrinopathies after allogeneic and autologous transplantation of hematopoietic stem cells.

    PubMed

    Orio, Francesco; Muscogiuri, Giovanna; Palomba, Stefano; Serio, Bianca; Sessa, Mariarosaria; Giudice, Valentina; Ferrara, Idalucia; Tauchmanovà, Libuse; Colao, Annamaria; Selleri, Carmine

    2014-01-01

    Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-) stem cell transplant (HSCT). This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90-99% of women and 60-90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40-50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma), gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT. PMID:24883377

  14. Sexual function 1-year after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Noerskov, K H; Schjødt, I; Syrjala, K L; Jarden, M

    2016-06-01

    Treatment with allogeneic hematopoietic stem cell transplantation (HSCT) is associated with short and long-term toxicities that can result in alterations in sexual functioning. The aims of this prospective evaluation were to determine: (1) associations between HSCT and increased sexual dysfunction 1 year after treatment; and (2) associations between sexual dysfunction, body image, anxiety and depression. This controlled prospective cohort study was conducted from October 2010 to November 2013. Patients completed assessments 2-3 weeks before HSCT (N=124) and 1 year after treatment (N=63). Assessment included descriptive data, Sexual Functioning Questionnaire, Body Image Scale and Hospital Anxiety and Depression Scale. The results showed a significant decline in overall sexual function in both men and women (P=<0.001, P=0.010, respectively), although men generally scored higher than women. Forty-seven percent of men and 60% of women reported at least one physical sexual problem 1 year after HSCT. Patients with chronic GVHD trended toward reporting lower levels of sexual function. Finally, women with chronic GVHD scored lower than those without chronic GVHD on the sexual function problem subscale (P=0.008). Sexual dysfunction remains a major problem for men and women 1 year after HSCT and requires routine evaluation and treatment after HSCT. PMID:26878660

  15. Systematic Nutritional Support in Allogeneic Hematopoietic Stem Cell Transplant Recipients.

    PubMed

    Fuji, Shigeo; Einsele, Hermann; Savani, Bipin N; Kapp, Markus

    2015-10-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) has become an established treatment modality for various hematological diseases. However, in allogeneic HSCT, patients often suffer from severe gastrointestinal complications caused by the conditioning regimen and acute/chronic graft-versus-host disease, which requires support by multidisciplinary nutritional support teams (NST). In addition, pretransplantation nutritional status can affect the clinical outcome after allogeneic HSCT. Therefore, it is important to refer the patient to a NST when becoming aware of nutritional problems before allogeneic HSCT. It is also important to follow nutritional status over the long term, as patients often suffer from various nutritional problems, such as malnutrition and metabolic syndrome, even late after allogeneic HSCT. In summary, NST can contribute to the improvement of nutritional status and possibly prognosis at every stage before and after allogeneic HSCT. Here, we aim to give a comprehensive overview of current understanding about nutritional support in allogeneic HSCT and try to provoke a constructive discussion to stimulate further investigation. PMID:26172477

  16. Allogeneic hematopoietic cell transplantation for mycosis fungoides and Sezary syndrome.

    PubMed

    Lechowicz, M J; Lazarus, H M; Carreras, J; Laport, G G; Cutler, C S; Wiernik, P H; Hale, G A; Maharaj, D; Gale, R P; Rowlings, P A; Freytes, C O; Miller, A M; Vose, J M; Maziarz, R T; Montoto, S; Maloney, D G; Hari, P N

    2014-11-01

    We describe outcomes after allogeneic hematopoietic cell transplantation (HCT) for mycosis fungoides and Sezary syndrome (MF/SS). Outcomes of 129 subjects with MF/SS reported to the Center for the International Blood and Marrow Transplant from 2000-2009. Median time from diagnosis to transplant was 30 (4-206) months and most subjects were with multiply relapsed/ refractory disease. The majority (64%) received non-myeloablative conditioning (NST) or reduced intensity conditioning (RIC). NST/RIC recipients were older in age compared with myeloablative recipients (median age 51 vs 44 years, P=0.005) and transplanted in recent years. Non-relapse mortality (NRM) at 1 and 5 years was 19% (95% confidence interval (CI) 12-27%) and 22% (95% CI 15-31%), respectively. Risk of disease progression was 50% (95% CI 41-60%) at 1 year and 61% (95% CI 50-71%) at 5 years. PFS at 1 and 5 years was 31% (95% CI 22-40%) and 17% (95% CI 9-26%), respectively. OS at 1 and 5 years was 54% (95% CI 45-63%) and 32% (95% CI 22-44%), respectively. Allogeneic HCT in MF/SS results in 5-year survival in approximately one-third of patients and of those, half remain disease-free. PMID:25068422

  17. Intensive care outcomes in adult hematopoietic stem cell transplantation patients

    PubMed Central

    Bayraktar, Ulas D; Nates, Joseph L

    2016-01-01

    Although outcomes of intensive care for patients undergoing hematopoietic stem cell transplantation (HSCT) have improved in the last two decades, the short-term mortality still remains above 50% among allogeneic HSCT patients. Better selection of HSCT patients for intensive care, and consequently reduction of non-beneficial care, may reduce financial costs and alleviate patient suffering. We reviewed the studies on intensive care outcomes of patients undergoing HSCT published since 2000. The risk factors for intensive care unit (ICU) admission identified in this report were primarily patient and transplant related: HSCT type (autologous vs allogeneic), conditioning intensity, HLA mismatch, and graft-versus-host disease (GVHD). At the same time, most of the factors associated with ICU outcomes reported were related to the patients’ functional status upon development of critical illness and interventions in ICU. Among the many possible interventions, the initiation of mechanical ventilation was the most consistently reported factor affecting ICU survival. As a consequence, our current ability to assess the benefit or futility of intensive care is limited. Until better ICU or hospital mortality prediction models are available, based on the available evidence, we recommend practitioners to base their ICU admission decisions on: Patient pre-transplant comorbidities, underlying disease status, GVHD diagnosis/grade, and patients’ functional status at the time of critical illness. PMID:26862493

  18. ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANTATION FOR MYCOSIS FUNGOIDES AND SEZARY SYNDROME

    PubMed Central

    Lechowicz, Mary Jo; Lazarus, Hillard M.; Carreras, Jeanette; Laport, Ginna G.; Cutler, Corey S.; Wiernik, Peter H.; Hale, Gregory A.; Maharaj, Dipnarine; Gale, Robert Peter; Rowlings, Phillip A.; Freytes, César O; Miller, Alan M.; Vose, Julie M.; Maziarz, Richard T.; Montoto, Silvia; Maloney, David G.; Hari, Parameswaran N.

    2014-01-01

    We describe outcomes after allogeneic hematopoietic cell transplantation (HCT) for mycosis fungoides and sezary syndrome (MF/SS). Outcomes of 129 subjects with MF/SS reported to the Center for the International Blood and Marrow Transplant (CIBMTR) from 2000–2009. Median time from diagnosis to transplant was 30 (4–206) months and most subjects were with multiply relapsed/refractory disease. Majority (64%) received non-myeloablative conditioning (NST) or reduced intensity conditioning (RIC). NST/RIC recipients were older in age compared to myeloablative recipients (median age 51 vs. 44 y p= 0.005) and transplanted in recent years. Non-relapse mortality (NRM) at 1 and 5 years was 19% (95 % CI 12–27%) and 22% (95 % CI 15–31%) respectively. Risk of disease progression was 50% (95% CI 41–60%) at 1 year and 61% (95% CI 50–71%) at 5 years. Progression free survival (PFS) at 1 and 5 years was 31% (95% CI 22–40%) and 17% (95% CI 9–26%) respectively. Overall survival at 1 and 5 years was 54% (95% CI 45–63%) and 32% (95% CI 22–44%) respectively. Allogeneic HCT in MF/SS results in 5 year survival in approximately one-third of patients and of those, half of them remain disease-free. PMID:25068422

  19. Clinical guide to fertility preservation in hematopoietic cell transplant recipients.

    PubMed

    Joshi, S; Savani, B N; Chow, E J; Gilleece, M H; Halter, J; Jacobsohn, D A; Pidala, J; Quinn, G P; Cahn, J-Y; Jakubowski, A A; Kamani, N R; Lazarus, H M; Rizzo, J D; Schouten, H C; Socie, G; Stratton, P; Sorror, M L; Warwick, A B; Wingard, J R; Loren, A W; Majhail, N S

    2014-04-01

    With broadening indications, more options for hematopoietic cell transplantation (HCT) and improvement in survival, the number of long-term HCT survivors is expected to increase steadily. Infertility is a frequent problem that long-term HCT survivors and their partners face and it can negatively impact on the quality of life. The most optimal time to address fertility issues is before the onset of therapy for the underlying disease; however, fertility preservation should also be addressed before HCT in all children and patients of reproductive age, with referral to a reproductive specialist for patients interested in fertility preservation. In vitro fertilization (IVF) and embryo cryopreservation, oocyte cryopreservation and ovarian tissue banking are acceptable methods for fertility preservation in adult women/pubertal females. Sperm banking is the preferred method for adult men/pubertal males. Frequent barriers to fertility preservation in HCT recipients may include the perception of lack of time to preserve fertility given an urgency to move ahead with transplant, lack of patient-physician discussion because of several factors (for example, time constraints, lack of knowledge), inadequate access to reproductive specialists, and costs and lack of insurance coverage for fertility preservation. There is a need to raise awareness in the medical community about fertility preservation in HCT recipients. PMID:24419521

  20. Clinical guide to fertility preservation in hematopoietic cell transplant recipients

    PubMed Central

    Joshi, S; Savani, BN; Chow, EJ; Gilleece, MH; Halter, J; Jacobsohn, DA; Pidala, J; Quinn, GP; Cahn, J-Y; Jakubowski, AA; Kamani, NR; Lazarus, HM; Rizzo, JD; Schouten, HC; Socie, G; Stratton, P; Sorror, ML; Warwick, AB; Wingard, JR; Loren, AW; Majhail, NS

    2014-01-01

    With broadening indications, more options for hematopoietic cell transplantation (HCT) and improvement in survival, the number of long-term HCT survivors is expected to increase steadily. Infertility is a frequent problem that long-term HCT survivors and their partners face and it can negatively impact on the quality of life. The most optimal time to address fertility issues is before the onset of therapy for the underlying disease; however, fertility preservation should also be addressed before HCT in all children and patients of reproductive age, with referral to a reproductive specialist for patients interested in fertility preservation. In vitro fertilization (IVF) and embryo cryopreservation, oocyte cryopreservation and ovarian tissue banking are acceptable methods for fertility preservation in adult women/pubertal females. Sperm banking is the preferred method for adult men/pubertal males. Frequent barriers to fertility preservation in HCT recipients may include the perception of lack of time to preserve fertility given an urgency to move ahead with transplant, lack of patient–physician discussion because of several factors (for example, time constraints, lack of knowledge), inadequate access to reproductive specialists, and costs and lack of insurance coverage for fertility preservation. There is a need to raise awareness in the medical community about fertility preservation in HCT recipients. PMID:24419521

  1. Secondary solid cancer screening following hematopoietic cell transplantation

    PubMed Central

    Inamoto, Y; Shah, NN; Savani, BN; Shaw, BE; Abraham, AA; Ahmed, IA; Akpek, G; Atsuta, Y; Baker, KS; Basak, GW; Bitan, M; DeFilipp, Z; Gregory, TK; Greinix, HT; Hamadani, M; Hamilton, BK; Hayashi, RJ; Jacobsohn, DA; Kamble, RT; Kasow, KA; Khera, N; Lazarus, HM; Malone, AK; Lupo-Stanghellini, MT; Margossian, SP; Muffly, LS; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, JR; Wirk, B; Wood, WA; Yong, A; Duncan, CN; Flowers, MED; Majhail, NS

    2016-01-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients. PMID:25822223

  2. Alternative donor hematopoietic cell transplantation for Fanconi anemia

    PubMed Central

    DeFor, Todd E.; Young, Jo-Anne H.; Dusenbery, Kathryn E.; Blazar, Bruce R.; Slungaard, Arne; Zierhut, Heather; Weisdorf, Daniel J.; Wagner, John E.

    2015-01-01

    Historically, alternative donor hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) patients resulted in excessive morbidity and mortality. To improve outcomes, we made sequential changes to the HCT conditioning regimen. A total of 130 FA patients (median age, 9.0 years; range, 1-48) underwent alternative donor HCT at the University of Minnesota between 1995 and 2012. All patients received cyclophosphamide (CY), single fraction total body irradiation (TBI), and antithymocyte globulin (ATG) with or without fludarabine (FLU), followed by T-cell–depleted bone marrow or unmanipulated umbilical cord blood transplantation. The addition of FLU enhanced engraftment 3-fold. The incidence of grades 2-4 acute and chronic graft-versus-host disease was 20% and 10%, respectively. Severe toxicity was highest in patients >10 years of age or those with a history of opportunistic infections or transfusions before HCT. Mortality was lowest in patients without a history of opportunistic infection or transfusions and who received conditioning with TBI 300 cGy, CY, FLU, and ATG. These patients had a probability of survival of 94% at 5 years. Alternative donor HCT is now associated with excellent survival for patients without prior opportunistic infections or transfusions and should be considered for all FA patients after the onset of marrow failure. These studies were registered at http://www.clinicaltrials.gov as NCT00005898, NCT00167206, and NCT00352976. PMID:25824692

  3. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    PubMed Central

    Muscogiuri, Giovanna; Palomba, Stefano; Serio, Bianca; Sessa, Mariarosaria; Giudice, Valentina; Ferrara, Idalucia; Tauchmanovà, Libuse; Colao, Annamaria; Selleri, Carmine

    2014-01-01

    Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-) stem cell transplant (HSCT). This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma), gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT. PMID:24883377

  4. Massage for Children Undergoing Hematopoietic Cell Transplantation: A Qualitative Report

    PubMed Central

    Ackerman, Sara L.; Lown, E. Anne; Dvorak, Christopher C.; Dunn, Elizabeth A.; Abrams, Donald I.; Horn, Biljana N.; Degelman, Marcia; Cowan, Morton J.; Mehling, Wolf E.

    2012-01-01

    Background. No in-depth qualitative research exists about the effects of therapeutic massage with children hospitalized to undergo hematopoietic cell transplantation (HCT). The objective of this study is to describe parent caregivers' experience of the effects of massage/acupressure for their children undergoing HCT. Methods. We conducted a qualitative analysis of open-ended interviews with 15 parents of children in the intervention arm of a massage/acupressure trial. Children received both practitioner and parent-provided massage/acupressure. Results. Parents reported that their child experienced relief from pain and nausea, relaxation, and greater ease falling asleep. They also reported increased caregiver competence and closeness with their child as a result of learning and performing massage/acupressure. Parents supported a semistandardized massage protocol. Conclusion. Massage/acupressure may support symptom relief and promote relaxation and sleep among pediatric HCT patients if administered with attention to individual patients' needs and hospital routines and may relieve stress among parents, improve caregiver competence, and enhance the sense of connection between parent and child. PMID:22474526

  5. Mapping MHC haplotype effects in unrelated donor hematopoietic cell transplantation

    PubMed Central

    Malkki, Mari; Horowitz, Mary M.; Spellman, Stephen R.; Haagenson, Michael D.; Wang, Tao

    2013-01-01

    Life-threatening risks associated with HLA-mismatched unrelated donor hematopoietic cell transplantation limit its general application for the treatment of blood diseases. The increased risks might be explained by undetected genetic variation within the highly polymorphic major histocompatibility complex (MHC) region. We retrospectively assessed each of 1108 MHC region single nucleotide polymorphisms (SNPs) in 2628 patients and their HLA-mismatched unrelated donors to determine whether SNPs are associated with the risk of mortality, disease-free survival, transplant-related mortality, relapse, and acute and chronic graft-versus-host disease (GVHD). Multivariate analysis adjusted for HLA mismatching and nongenetic variables associated with each clinical end point. Twelve SNPs were identified as transplantation determinants. SNP-associated risks were conferred by either patient or donor SNP genotype or by patient-donor SNP mismatching. Risks after transplantation increased with increasing numbers of unfavorable SNPs. SNPs that influenced acute GVHD were independent of those that affected risk of chronic GVHD and relapse. HLA haplotypes differed with respect to haplotype content of (un)favorable SNPs. Outcome after HLA-mismatched unrelated donor transplantation is influenced by MHC region variation that is undetected with conventional HLA typing. Knowledge of the SNP content of HLA haplotypes provides a means to estimate risks prior to transplantation and to lower complications through judicious selection of donors with favorable MHC genetics. PMID:23305741

  6. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies.

    PubMed

    Pasquini, Marcelo C; Zhang, Mei-Jie; Medeiros, Bruno C; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S; Cerny, Jan; Copelan, Edward A; Deol, Abhinav; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A; Kamble, Rammurti T; Klumpp, Thomas R; Lazarus, Hillard M; Luger, Selina M; Liesveld, Jane L; Litzow, Mark R; Marks, David I; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A; Saber, Wael; Savani, Bipin N; Schouten, Harry C; Ringdén, Olle; Tallman, Martin S; Uy, Geoffrey L; Wood, William A; Wirk, Baldeep; Pérez, Waleska S; Batiwalla, Minoo; Weisdorf, Daniel J

    2016-02-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, n = 240) and in myelodysplastic syndrome (MDS) (MK+MDS, n = 221) on hematopoietic cell transplantation outcomes compared with other cytogenetically defined groups (AML, n = 3360; MDS, n = 1373) as reported to the Center for International Blood and Marrow Transplant Research from 1998 to 2011. MK+ AML was associated with higher disease relapse (hazard ratio, 1.98; P < .01), similar transplantation-related mortality (TRM) (hazard ratio, 1.01; P = .90), and worse survival (hazard ratio, 1.67; P < .01) compared with those outcomes for other cytogenetically defined AML. Among patients with MDS, MK+ MDS was associated with higher disease relapse (hazard ratio, 2.39; P < .01), higher TRM (hazard ratio, 1.80; P < .01), and worse survival (HR, 2.02; P < .01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (hazard ratio, 1.72; P < .01) and MDS (hazard ratio, 1.79; P < .01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced-intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed. PMID:26327629

  7. Engraftment syndrome after allogeneic hematopoietic cell transplantation predicts poor outcomes.

    PubMed

    Chang, Lawrence; Frame, David; Braun, Thomas; Gatza, Erin; Hanauer, David A; Zhao, Shuang; Magenau, John M; Schultz, Kathryn; Tokala, Hemasri; Ferrara, James L M; Levine, John E; Reddy, Pavan; Paczesny, Sophie; Choi, Sung Won

    2014-09-01

    Engraftment syndrome (ES), characterized by fever, rash, pulmonary edema, weight gain, liver and renal dysfunction, and/or encephalopathy, occurs at the time of neutrophil recovery after hematopoietic cell transplantation (HCT). In this study, we evaluated the incidence, clinical features, risk factors, and outcomes of ES in children and adults undergoing first-time allogeneic HCT. Among 927 patients, 119 (13%) developed ES at a median of 10 days (interquartile range 9 to 12) after HCT. ES patients experienced significantly higher cumulative incidence of grade 2 to 4 acute GVHD at day 100 (75% versus 34%, P < .001) and higher nonrelapse mortality at 2 years (38% versus 19%, P < .001) compared with non-ES patients, resulting in lower overall survival at 2 years (38% versus 54%, P < .001). There was no significant difference in relapse at 2 years (26% versus 31%, P = .772). Suppression of tumorigenicity 2, interleukin 2 receptor alpha, and tumor necrosis factor receptor 1 plasma biomarker levels were significantly elevated in ES patients. Our results illustrate the clinical significance and prognostic impact of ES on allogeneic HCT outcomes. Despite early recognition of the syndrome and prompt institution of corticosteroid therapy, outcomes in ES patients were uniformly poor. This study suggests the need for a prospective approach of collecting clinical features combined with correlative laboratory analyses to better characterize ES. PMID:24892262

  8. Hematopoietic Cell Transplantation for Acute Lymphoblastic Leukemia in Adults.

    PubMed

    Speziali, Craig; Paulson, Kristjan; Seftel, Matthew

    2016-06-01

    The majority of adults with acute lymphoblastic leukemia will achieve a first complete remission (CR). However relapse is the most common cause of treatment failure. Outcomes after relapse remain poor, with long-term survival in the order of 10 %. Treatment decisions made at the time of first complete remission are thus critical to ensuring long-term survival. Allogeneic hematopoietic cell transplant (HCT) is effective at preventing relapse in many transplant recipients but is also associated with significant treatment related morbidity and mortality. Alternatively, ongoing systemic chemotherapy offers lower toxicity at the expense of increased relapse rates. Over the past decades, both the safety of transplant and the efficacy of non-transplant chemotherapy have improved. Emerging data show substantially improved outcomes for young adults treated with pediatric-inspired chemotherapy regimens that question the role of HCT in the upfront setting. In this review, we review the data supporting the role of allogeneic transplantation in adult acute lymphoblastic leukemia (ALL), and we propose a therapeutic algorithm for upfront therapy of adults with ALL. PMID:26984203

  9. Comparative study of hematopoietic differentiation between human embryonic stem cell lines.

    PubMed

    Melichar, Heather; Li, Ou; Ross, Jenny; Haber, Hilary; Cado, Dragana; Nolla, Hector; Robey, Ellen A; Winoto, Astar

    2011-01-01

    Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo. PMID:21603627

  10. Subregional localization and characterization of Ly6aGFP-expressing hematopoietic cells in the mouse embryonic head.

    PubMed

    Li, Zhuan; Vink, Chris S; Mariani, Samanta A; Dzierzak, Elaine

    2016-08-01

    Hematopoietic cell generation in the midgestation mouse embryo occurs through the natural transdifferentiation of temporally and spatially restricted set of hemogenic endothelial cells. These cells take on hematopoietic fate in the aorta, vitelline and umbilical arteries and appear as hematopoietic cell clusters that emerge from the vascular wall. Genetic and live imaging data have supported this. Recently, the embryonic head has been shown to contain fully functional hematopoietic stem cells (HSC). By lineage tracing, cerebrovascular specific endothelial cells were shown to contribute to the postnatal mouse hematopoietic system. Since Ly6aGFP is a marker of all HSCs, some hematopoietic cluster cells and hemogenic endothelial cells in the midgestation mouse aorta, we examine here whether embryonic head HSCs and vascular endothelial cells are positive for this marker. Whereas some head vasculature, single hematopoietic cells and all HSCs are Ly6aGFP expressing, we do not find clusters of hematopoietic cells emerging from the cerebrovasculature that are characteristic of endothelial-to-hematopoietic transition. PMID:27235813

  11. The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells.

    PubMed

    Tang, Yuefeng; Harrington, Anne; Yang, Xuehui; Friesel, Robert E; Liaw, Lucy

    2010-09-01

    The regulatory elements of the Tie2/Tek promoter are commonly used in mouse models to direct transgene expression to endothelial cells. Tunica intima endothelial kinase 2 (Tie2) is also expressed in hematopoietic cells, although this has not been fully characterized. We determine the lineages of adult hematopoietic cells derived from Tie2-expressing populations using Tie2-Cre;Rosa26R-EYFP mice. In Tie2-Cre;Rosa26R-EYFP mice, analysis of bone marrow cells showed Cre-mediated recombination in 85% of the population. In adult bone marrow and spleen, we analyzed subclasses of early hematopoietic progenitors, T cells, monocytes, granulocytes, and B cells. We found that ∼ 84% of each lineage was EYFP(+), and nearly all cells that come from Tie2-expressing lineages are CD45(+), confirming widespread contribution to definitive hematopoietic cells. In addition, more than 82% of blood cells within the embryonic yolk sac were of Tie2(+) origin. Our findings of high levels of Tie2-Cre recombination in the hematopoietic lineage have implications for the use of the Tie2-Cre mouse as a lineage-restricted driver strain. PMID:20645309

  12. Hematopoietic cell transplant comorbidity index is predictive of survival after autologous hematopoietic cell transplantation in multiple myeloma.

    PubMed

    Saad, Ayman; Mahindra, Anuj; Zhang, Mei-Jie; Zhong, Xiaobo; Costa, Luciano J; Dispenzieri, Angela; Drobyski, William R; Freytes, Cesar O; Gale, Robert Peter; Gasparetto, Cristina J; Holmberg, Leona A; Kamble, Rammurti T; Krishnan, Amrita Y; Kyle, Robert A; Marks, David; Nishihori, Taiga; Pasquini, Marcelo C; Ramanathan, Muthalagu; Lonial, Sagar; Savani, Bipin N; Saber, Wael; Sharma, Manish; Sorror, Mohamed L; Wirk, Baldeep M; Hari, Parameswaran N

    2014-03-01

    Autologous hematopoietic stem cell transplantation (AHCT) improves survival in patients with multiple myeloma (MM) but is associated with morbidity and nonrelapse mortality (NRM). Hematopoietic cell transplant comorbidity index (HCT-CI) was shown to predict risk of NRM and survival after allogeneic transplantation. We tested the utility of HCT-CI as a predictor of NRM and survival in patients with MM undergoing AHCT. We analyzed outcomes of 1156 patients of AHCT after high-dose melphalan reported to the Center for International Blood and Marrow Transplant Research. Individual comorbidities were prospectively collected at the time of AHCT. The impact of HCT-CI and other potential prognostic factors, including Karnofsky performance score (KPS), on NRM and survival were studied in multivariate Cox regression models. HCT-CI score was 0, 1, 2, 3, and >3 in 42%, 18%, 13%, 13%, and 14% of the study cohort, respectively. Subjects were stratified into 3 risk groups: HCT-CI score of 0 (42%) versus HCT-CI score of 1 to 2 (32%) versus HCT-CI score > 2 (26%). Higher HCT-CI was associated with lower KPS < 90 (33% of subjects score of 0 versus 50% in HCT-CI score > 2). HCT-CI score > 2 was associated with melphalan dose reduction (22% versus 10% in score 0 cohort). One-year NRM was low at 2% (95% confidence interval, 1% to 4%) and did not correlate with HCT-CI score (P = .9). On multivariate analysis, overall survival was inferior in groups with HCT-CI score of 1 to 2 (relative risk, 1.37, [95% confidence interval, 1.01 to 1.87], P = .04) and HCT-CI score > 2 (relative risk, 1.5 [95% confidence interval, 1.09 to 2.08], P = .01). Overall survival was also inferior with KPS < 90 (P < .001), IgA subtype (P ≤ .001), those receiving >1 pretransplant induction regimen (P = .007), and those with resistant disease at the time of AHCT (P < .001). AHCT for MM is associated with low NRM, and death is predominantly related to disease progression. Although a higher HCT-CI score did not

  13. Hematopoietic Stem Cell Origin of BRAFV600E Mutations in Hairy Cell Leukemia

    PubMed Central

    Chung, Young Rock; Lito, Piro; Teruya-Feldstein, Julie; Hu, Wenhuo; Beguelin, Wendy; Monette, Sebastien; Duy, Cihangir; Rampal, Raajit; Telis, Leon; Patel, Minal; Kim, Min Kyung; Huberman, Kety; Bouvier, Nancy; Berger, Michael F.; Melnick, Ari M.; Rosen, Neal; Tallman, Martin S.

    2014-01-01

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder characterized by somatic BRAFV600E mutations. The malignant cell in HCL has immunophenotypic features of a mature B cell, but no normal counterpart along the continuum of developing B lymphocytes has been delineated as the cell of origin. We find that the BRAFV600E mutation is present in hematopoietic stem cells (HSCs) in HCL patients, and that these patients exhibit marked alterations in hematopoietic stem/progenitor cell (HSPC) frequencies. Quantitative sequencing analysis revealed a mean BRAFV600E-mutant allele frequency of 4.97% in HSCs from HCL patients. Moreover, transplantation of BRAFV600E-mutant HSCs from an HCL patient into immunodeficient mice resulted in stable engraftment of BRAFV600E-mutant human hematopoietic cells, revealing the functional self-renewal capacity of HCL HSCs. Consistent with the human genetic data, expression of BRafV600E in murine HSPCs resulted in a lethal hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B lineage cells—all classic features of human HCL. In contrast, restricting expression of BRafV600E to the mature B cell compartment did not result in disease. Treatment of HCL patients with vemurafenib, an inhibitor of mutated BRAF, resulted in normalization of HSPC frequencies and increased myeloid and erythroid output from HSPCs. These findings link the pathogenesis of HCL to somatic mutations that arise in HSPCs and further suggest that chronic lymphoid malignancies may be initiated by aberrant HSCs. PMID:24871132

  14. bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche

    SciTech Connect

    Lam, Victoria; Tokusumi, Tsuyoshi; Tokusumi, Yumiko; Schulz, Robert A.

    2014-10-24

    Highlights: • bantam miRNA is endogenously expressed in the hematopoietic progenitor niche. • bantam is necessary and sufficient to induce cellular proliferation in the PSC. • bantam is upstream of the Insulin Receptor signaling pathway. • A model for positive regulation of hematopoietic niche growth is proposed. - Abstract: The Drosophila hematopoietic system is utilized in this study to gain novel insights into the process of growth control of the hematopoietic progenitor niche in blood development. The niche microenvironment is an essential component controlling the balance between progenitor populations and differentiated, mature blood cells and has been shown to lead to hematopoietic malignancies in humans when misregulated. MicroRNAs are one class of regulators associated with blood malignancies; however, there remains a relative paucity of information about the role of miRNAs in the niche. Here we demonstrate that bantam miRNA is endogenously active in the Drosophila hematopoietic progenitor niche, the posterior signaling center (PSC), and functions in the primary hematopoietic organ, the lymph gland, as a positive regulator of growth. Loss of bantam leads to a significant reduction in the PSC and overall lymph gland size, as well as a loss of the progenitor population and correlative premature differentiation of mature hemocytes. Interestingly, in addition to being essential for proper lymph gland development, we have determined bantam to be a novel upstream component of the insulin signaling cascade in the PSC and have unveiled dMyc as one factor central to bantam activity. These important findings identify bantam as a new hematopoietic regulator, place it in an evolutionarily conserved signaling pathway, present one way in which it is regulated, and provide a mechanism through which it facilitates cellular proliferation in the hematopoietic niche.

  15. Simplified method for DNA and protein staining of human hematopoietic cell samples. [Cell flow systems

    SciTech Connect

    Crissman, H.A.; Egmond, J.V.; Holdrinet, R.S.; Pennings, A.; Haanen, C.

    1981-01-01

    A rapid reproducible method yielding high resolution analysis of DNA and protein in human hematopoietic cell samples has been developed by modification of the propidium iodide and fluorescein isothiocyanate procedure. Cell staining involves sequential addition of each reagent (RNase, fluorescein isothiocyanate and propidium iodide) to ethanol-fixed cells and requires no centrifugation steps. Stained cells are analyzed in the reagent solutions. Analysis of bone marrow samples from multiple myeloma patients showed mixed normal and aneuploid populations with a major portion of the aneuploid cells having a significantly higher protein content. This approach permitted differential cell cycle analysis of normal and the aneuploid populations.

  16. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.

    PubMed

    Woolthuis, Carolien M; Park, Christopher Y

    2016-03-10

    The classical model of hematopoiesis has long held that hematopoietic stem cells (HSCs) sit at the apex of a developmental hierarchy in which HSCs undergo long-term self-renewal while giving rise to cells of all the blood lineages. In this model, self-renewing HSCs progressively lose the capacity for self-renewal as they transit into short-term self-renewing and multipotent progenitor states, with the first major lineage commitment occurring in multipotent progenitors, thus giving rise to progenitors that initiate the myeloid and lymphoid branches of hematopoiesis. Subsequently, within the myeloid lineage, bipotent megakaryocyte-erythrocyte and granulocyte-macrophage progenitors give rise to unipotent progenitors that ultimately give rise to all mature progeny. However, over the past several years, this developmental scheme has been challenged, with the origin of megakaryocyte precursors being one of the most debated subjects. Recent studies have suggested that megakaryocytes can be generated from multiple pathways and that some differentiation pathways do not require transit through a requisite multipotent or bipotent megakaryocyte-erythrocyte progenitor stage. Indeed, some investigators have argued that HSCs contain a subset of cells with biased megakaryocyte potential, with megakaryocytes directly arising from HSCs under steady-state and stress conditions. In this review, we discuss the evidence supporting these nonclassical megakaryocytic differentiation pathways and consider their relative strengths and weaknesses as well as the technical limitations and potential pitfalls in interpreting these studies. Ultimately, such pitfalls will need to be overcome to provide a comprehensive and definitive understanding of megakaryopoiesis. PMID:26787736

  17. Quality control and assurance in hematopoietic stem cell transplantation data registries in Japan and other countries.

    PubMed

    Kuwatsuka, Yachiyo

    2016-01-01

    Observational studies from national and international registries with large volumes of patients are commonly performed to identify superior strategies for hematopoietic stem cell transplantation. Major international and national stem cell transplant registries collect outcome data using electronic data capture systems, and a systematic study support process has been developed. Statistical support for studies is available from some major international registries, and international and national registries also mutually collaborate to promote stem cell transplant outcome studies and transplant-related activities. Transplant registries additionally take measures to improve data quality to further improve the quality of outcome studies by utilizing data capture systems and manual data management. Data auditing can potentially even further improve data quality; however, human and budgetary resources can be limiting factors in system construction and audits of the Japanese transplant registry are not currently performed. PMID:26563189

  18. White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis.

    PubMed

    Huang, Jiajun; Li, Fang; Wu, Junjun; Yang, Feng

    2015-12-01

    White spot syndrome virus (WSSV) is a major pathogen of aquacultured shrimp. However, the mechanism of its entry remains poorly understood. In this study, by analyzing the internalization of WSSV using crayfish hematopoietic tissue (HPT) cells, we showed that WSSV virions were engulfed by cell membrane invaginations sharing the features of clathrin-coated pits and then internalized into coated cytoplasmic vesicles. Further investigation indicated that WSSV internalization was significantly inhibited by chlorpromazine (CPZ) but not genistein. The internalized virions were colocalized with endogenous clathrin as well as transferrin which undergoes clathrin-dependent uptake. Preventing endosome acidification by ammonium chloride (NH4Cl) or chloroquine (CQ) dramatically reduced WSSV entry as well. Moreover, disturbance of dynamin activity or depletion of membrane cholesterol also blocked WSSV uptake. These data indicate that WSSV enters crayfish HPT cells via clathrin-mediated endocytosis in a pH-dependent manner, and membrane cholesterol as well as dynamin is critical for efficient viral entry. PMID:26397221

  19. Provision of antifungal immunity and concomitant alloantigen tolerization by conditioned dendritic cells in experimental hematopoietic transplantation.

    PubMed

    Montagnoli, Claudia; Perruccio, Katia; Bozza, Silvia; Bonifazi, Pierluigi; Zelante, Teresa; De Luca, Antonella; Moretti, Silvia; D'Angelo, Carmen; Bistoni, Francesco; Martelli, Massimo; Aversa, Franco; Velardi, Andrea; Romani, Luigina

    2008-01-01

    FoxP3(+) regulatory T (Treg) cells are important mediators of peripheral tolerance, and deficiency of this population is associated with autoimmune inflammation and onset of acute lethal graft-vs.-host disease in transplantation. Type I IFN-producing plasmacytoid dendritic cells (pDC) are implicated in the induction and maintenance of tolerance and contribute to engraftment facilitation and prevention of graft-vs.-host disease after allogeneic hematopoietic stem cells transplantation (HSCT). Because host DC function is impaired during the immediate period post-transplant, the administration of donor DC may be useful for the educational program of recovering T cells. Distinct DC subsets could be derived from bone marrow (murine) or peripheral CD14(+) cell (human) cultures in the presence of either GM-CSF/IL-4 (myeloid DC) or FLT3-ligand (mainly pDC). The ability of either DC subset to induce Th1/Treg cell priming against Aspergillus fumigatus as well as the relative contribution of murine DC subsets to antifungal priming upon adoptive transfer in hematopoietic transplanted mice with aspergillosis is not known. We found specialization and complementarity in priming and tolerization by the different DC subsets, with FL-DC fulfilling the requirement for (i) Th1/Treg antifungal priming; ii) tolerization toward alloantigens and (iii) diversion from alloantigen-specific to antigen-specific T cell responses in the presence of donor T lymphocytes. Interestingly, thymosin alpha1 (Talpha1), known to modulate human pDC functions trough TLR9, affects mobilization and tolerization of pDC by activating the indoleamine 2,3-dioxygenase-dependent pathway, and this resulted in Treg development and tolerization. Thus, transplantation tolerance and concomitant pathogen clearance could be achieved through the therapeutic induction of antigen-specific Treg cells via instructive immunotherapy with pathogen- or TLR-conditioned donor DC. PMID:17827038

  20. Mitochondrial Reactive Oxygen Species Regulate Adipocyte Differentiation of Mesenchymal Stem Cells in Hematopoietic Stress Induced by Arabinosylcytosine

    PubMed Central

    Wang, Weimin; Zhang, Yao; Lu, Wenyi; Liu, Kaiyan

    2015-01-01

    Objective The increase in adipocytes induced by chemotherapeutic drugs may play a negative role in hematopoietic recovery. However, the mechanism underlying adipocyte differentiation of mesenchymal stem cells (MSCs) in hematopoietic stress is still unknown. Hence, the involvement of reactive oxygen species (ROS) in adipocyte differentiation under hematopoietic stress was investigated in vitro and in vivo. Methods The roles of cellular ROS in adipogenesis were investigated in vivo through an adipocyte hyperplasia marrow model under hematopoietic stress induced by arabinosylcytosine (Ara-C) and in vitro via adipocyte differentiation of human MSCs. ROS levels were detected using the CM-H2DCFDA probe and Mito-SOX dye. Adipogenesis was evaluated by histopathology and oil red O staining, whereas detection of mRNA levels of antioxidant enzymes and adipogenesis markers was performed using quantitative real-time polymerase chain reaction analysis. Results ROS were found to play an important role in regulating adipocyte differentiation of MSCs by activating peroxisome proliferator-activated receptor gamma (PPARγ,) while the antioxidant N-acetyl-L-cysteine acts through ROS to inhibit adipocyte differentiation. The elevated ROS levels induced by Ara-C were caused by both over-generation of mitochondrial ROS and reduction of antioxidant enzymes (Cu/Zn Superoxide dismutase and catalase). Our findings suggest that a mitochondrial-targeted antioxidant could diminish adipocyte differentiation. PMID:25768922

  1. Olive leaf components apigenin 7-glucoside and luteolin 7-glucoside direct human hematopoietic stem cell differentiation towards erythroid lineage.

    PubMed

    Samet, Imen; Villareal, Myra O; Motojima, Hideko; Han, Junkyu; Sayadi, Sami; Isoda, Hiroko

    2015-06-01

    The generation of blood cellular components from hematopoietic stem cells is important for the therapy of a broad spectrum of hematological disorders. In recent years, several lines of evidence suggested that certain nutrients, vitamins and flavonoids may have important roles in controlling the stem cell fate decision by maintaining their self-renewal or stimulating the lineage-specific differentiation. In this study, main olive leaf phytochemicals oleuropein (Olp), apigenin 7-glucoside (Api7G) and luteolin 7-glucoside (Lut7G) were investigated for their potential effects on hematopoietic stem cell differentiation using both phenotypic and molecular analysis. Oleuropein and the combination of the three compounds enhanced the differentiation of CD34+ cells into myelomonocytic cells and lymphocytes progenitors and inhibited the commitment to megakaryocytic and erythroid lineages. Treatment with Lut7G stimulated both the erythroid and the myeloid differentiation, while treatment with Api7G specifically induced the differentiation of CD34+ cells towards the erythroid lineage and inhibited the myeloid differentiation. Erythroid differentiation induced by Api7G and Lut7G treatments was confirmed by the increase in hemoglobin genes expressions (α-hemoglobin, β-hemoglobin and γ-hemoglobin) and erythroid transcription factor GATA1 expression. As revealed by microarray analysis, the mechanisms underlying the erythroid differentiation-inducing effect of Api7G on hematopoietic stem cells involves the activation of JAK/STAT signaling pathway. These findings prove the differentiation-inducing effects of olive leaf compounds on hematopoietic stem cells and highlight their potential use in the ex vivo generation of blood cells. PMID:26299581

  2. Characterization of two distinct liver progenitor cell subpopulations of hematopoietic and hepatic origins

    SciTech Connect

    Corcelle, V.; Stieger, B.; Gjinovci, A.; Wollheim, C.B.; Gauthier, B.R. . E-mail: Benoit.Gauthier@medecine.unige.ch

    2006-09-10

    Despite extensive studies, the hematopoietic versus hepatic origin of liver progenitor oval cells remains controversial. The aim of this study was to determine the origin of such cells after liver injury and to establish an oval cell line. Rat liver injury was induced by subcutaneous insertion of 2-AAF pellets for 7 days with subsequent injection of CCl{sub 4}. Livers were removed 9 to 13 days post-CCl{sub 4} treatment. Immunohistochemistry was performed using anti-c-kit, OV6, Thy1, CK19, AFP, vWF and Rab3b. Isolated non-parenchymal cells were grown on mouse embryonic fibroblast, and their gene expression profile was characterized by RT-PCR. We identified a subpopulation of OV6/CK19/Rab3b-expressing cells that was activated in the periportal region of traumatized livers. We also characterized a second subpopulation that expressed the HSCs marker c-kit but not Thy1. Although we successfully isolated both cell types, OV6/CK19/Rab3b{sup +} cells fail to propagate while c-kit {sup +}-HSCs appeared to proliferate for up to 7 weeks. Cells formed clusters which expressed c-kit, Thy1 and albumin. Our results indicate that a bona fide oval progenitor cell population resides within the liver and is distinct from c-kit {sup +}-HSCs. Oval cells require the hepatic niche to proliferate, while cells mobilized from the circulation proliferate and transdifferentiate into hepatocytes without evidence of cell fusion.

  3. ROBO4-Mediated Vascular Integrity Regulates the Directionality of Hematopoietic Stem Cell Trafficking

    PubMed Central

    Smith-Berdan, Stephanie; Nguyen, Andrew; Hong, Matthew A.; Forsberg, E. Camilla

    2015-01-01

    Summary Despite the use of hematopoietic stem cells (HSCs) in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM) niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies. PMID:25640759

  4. Geriatric assessment to predict survival in older allogeneic hematopoietic cell transplantation recipients

    PubMed Central

    Muffly, Lori S.; Kocherginsky, Masha; Stock, Wendy; Chu, Quynh; Bishop, Michael R.; Godley, Lucy A.; Kline, Justin; Liu, Hongtao; Odenike, Olatoyosi M.; Larson, Richard A.; van Besien, Koen; Artz, Andrew S.

    2014-01-01

    Allogeneic hematopoietic cell transplantation is increasingly utilized in older adults. This study prospectively evaluated the prognostic utility of geriatric assessment domains prior to allogeneic transplantation in recipients aged 50 years and over. Geriatric assessment was performed prior to transplant, and included validated measures across domains of function and disability, comorbidity, frailty, mental health, nutritional status, and systemic inflammation. A total of 203 patients completed geriatric assessment and underwent transplant. Median age was 58 years (range 50–73). After adjusting for established prognostic factors, limitations in instrumental activities of daily living (HR 2.38, 95%CI: 1.59–3.56; P<0.001), slow walk speed (HR 1.80, 95%CI: 1.14–2.83; P=0.01), high comorbidity by hematopoietic cell transplantation-specific comorbidity index (HR 1.56, 95%CI: 1.07–2.28; P=0.02), low mental health by short-form-36 mental component summary (HR 1.67, 95%CI: 1.13–2.48; P=0.01), and elevated serum C-reactive protein (HR 2.51, 95%CI: 1.54–4.09; P<0.001) were significantly associated with inferior overall survival. These associations were more pronounced in the cohort 60 years and over. Geriatric assessment measures confer independent prognostic utility in older allogeneic transplant recipients. Implementation of geriatric assessment prior to allogeneic transplantation may aid appropriate selection of older adults. PMID:24816237

  5. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo.

    PubMed

    Pfau, Sarah J; Silberman, Rebecca E; Knouse, Kristin A; Amon, Angelika

    2016-06-15

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells. PMID:27313317

  6. Cytomegalovirus Infection after CD34(+)-Selected Hematopoietic Cell Transplantation.

    PubMed

    Huang, Yao-Ting; Neofytos, Dionysios; Foldi, Julia; Kim, Seong Jin; Maloy, Molly; Chung, Dick; Castro-Malaspina, Hugo; Giralt, Sergio A; Papadopoulos, Esperanza; Perales, Miguel-Angel; Jakubowski, Ann A; Papanicolaou, Genovefa A

    2016-08-01

    The effectiveness of preemptive treatment (PET) for cytomegalovirus (CMV) in recipients of ex vivo T cell-depleted (TCD) hematopoietic cell transplantation (HCT) by CD34(+) selection is not well defined. We analyzed 213 adults who received TCD-HCT at our institution from June 2010 through May 2014. Patients were monitored by a CMV quantitative PCR assay if recipient (R) or donor (D) were CMV seropositive. CMV viremia occurred early (median, 27 days after HCT) in 91 of 213 (42.7%) patients for a 180-day cumulative incidence of 84.5%, 61.8%, and 0 for R+/D+, R+/D-, and R-/D+ patients, respectively. CMV disease occurred in 5% of patients. In Cox regression analysis, R+/D+ status was associated with increased risk for CMV viremia compared with R+/D- (hazard ratio [HR], 1.79, 95% confidence interval [CI], 1.16 to 2.76, P = .01), whereas matched unrelated donor allograft was associated with decreased risk (HR, .62; 95% CI, .39 to .97, P = .04). Of 91 patients with CMV viremia, 52 (57%) had persistent viremia (>28 days duration). Time lag from detection of CMV viremia to PET was associated with incremental risk for persistent viremia (HR, 1.09; 95% CI, 1.01 to 1.18; P = .03). Overall, 166 of 213 (77.9%) patients were alive 1 year after HCT, with no difference between patients with and without CMV viremia or among the different CMV serostatus pairs (P = not significant). CMV viremia occurred in 70% of R + TCD-HCT. Delay in PET initiation was associated with persistent viremia. With PET, CMV R/D serostatus did not adversely impact survival in TCD-HCT on 1-year survival in the present cohort. PMID:27178374

  7. Sleep Patterns During Hospitalization Following Hematopoietic Stem Cell Transplantation

    PubMed Central

    Hacker, Eileen Danaher; Kapella, Mary Catherine; Park, Chang; Ferrans, Carol E.; Larson, Janet L.

    2015-01-01

    Purpose/Objectives To characterize patient-reported and objective sleep assessments and provide a preliminary examination of the relationships among sleep, quality of life, and demographic or treatment factors. Design A secondary data analysis using a descriptive-correlational design. Setting University of Illinois Hospital and Health Sciences System. Sample 40 patients undergoing a hematopoietic stem cell transplantation (HCT) hospitalized for the conditioning regimen, stem cell infusion, and immediate recovery period. Methods Each patient wore a wrist actigraph continuously from the fourth day following HCT to the eighth day to objectively assess sleep patterns (total sleep time, sleep onset latency, sleep efficiency, wake after sleep onset, and number of awakenings). At the end of the five-day period, patients completed measures of sleep disturbance and quality of life. Main Research Variables Objective sleep (total sleep time, sleep onset latency, sleep efficiency, wake after sleep onset, and number of awakenings), subjective sleep (sleep disturbance), and quality of life. Findings The mean total nighttime sleep (objectively obtained) was 232 minutes (SD = 71 minutes), with 14 patients (35%) sleeping less than three consecutive hours during one or more study days. Age was negatively correlated with patient-reported sleep disturbance. Patient-reported sleep disturbance was significantly associated with length of hospital stay. No correlations were found between patient-reported and objective sleep assessments. Conclusions This study objectively documents inadequate and irregular sleep in hospitalized patients undergoing HCT. Sole reliance on patient-reported sleep assessments may not represent the full extent of the problem. Implications for Nursing Attempts to streamline care during the night by not waking patients for routine care unless indicated by the patient’s condition (as advocated by the American Academy of Nursing) and providing supportive care for

  8. Management of respiratory viral infections in hematopoietic cell transplant recipients.

    PubMed

    Shah, Dimpy P; Ghantoji, Shashank S; Mulanovich, Victor E; Ariza-Heredia, Ella J; Chemaly, Roy F

    2012-01-01

    Advances in stem cell transplantation procedures and the overall improvement in the clinical management of hematopoietic cell transplant (HCT) recipients over the past 2 decades have led to an increase in survival duration, in part owing to better strategies for prevention and treatment of post-transplant complications, including opportunistic infections. However, post-HCT infections remain a concern for HCT recipients, particularly infections caused by community respiratory viruses (CRVs), which can lead to significant morbidity and mortality. These viruses can potentially cause lower respiratory tract illness, which is associated with a higher mortality rate among HCT recipients. Clinical management of CRV infections in HCT recipients includes supportive care and antiviral therapy, especially in high-risk individuals, when available. Directed antiviral therapy is only available for influenza infections, where successful use of neuraminidase inhibitors (oseltamivir or zanamivir) and/or M2 inhibitors (amantadine or rimantadine) has been reported. Data on the successful use of ribavirin, with or without immunomodulators, for respiratory syncytial virus infections in HCT recipients has emerged over the past 2 decades but is still controversial at best because of a lack of randomized controlled trials. Because of the lack of directed antiviral therapy for most of these viruses, prevention should be emphasized for healthcare workers, patients, family, and friends and should include the promotion of the licensed inactivated influenza vaccine for HCT recipients, when indicated. In this review, we discuss the clinical management of respiratory viruses in this special patient population, focusing on commercially available antivirals, adjuvant therapy, and novel drugs under investigation, as well as on available means for prevention. PMID:23226621

  9. Graft rejection after hematopoietic cell transplantation with nonmyeloablative conditioning.

    PubMed

    Masmas, Tania N; Petersen, Søren L; Madsen, Hans O; Ryder, Lars P; Kornblit, Brian; Svejgaard, Arne; Andersen, Pernille; Dickmeiss, Ebbe; Vindeløv, Lars L

    2008-07-01

    Graft rejection after hematopoietic cell transplantation (HCT) with nonmyeloablative conditioning is a rare but serious clinical problem. Graft rejection and salvage therapy in eight patients in a retrospective analysis of 124 consecutive patients is reported. The patients were conditioned with low-dose fludarabine and total body irradiation (TBI). The association of pretransplantation risk factors with rejection and the effect of chimerism and graft-versus-host disease on rejection were analyzed. Overall survival (OS) and progression free survival (PFS) were compared between patients with and without rejection. Retransplantation was performed with increased TBI conditioning for all patients, and with increased mycophenolate mofetil doses for recipients with HLA-identical sibling donors. No known pretransplantation risk factors were confirmed in this study. Rejection episodes were unevenly distributed over time. The storage temperature of the apheresis products was identified as a risk factor for rejection. Storage of the apheresis products at 5 degrees C diminished the risk of rejection. Low donor T cell chimerism at Day +14 significantly increased the risk of rejection. Seven patients were retransplanted. All but one engrafted successfully, but with decreased OS and PFS. Two patients received pentostatin infusion prior to donor lymphocyte infusions in unsuccessful attempts at reversing rejection. Storage temperature and donor chimerism had a significant effect on rejection. Following rejection, patients are at greater risk of dying from infections and progression/relapse of their malignancy. Retransplantation is feasible and well tolerated after HCT with nonmyeloablative conditioning and should be performed without delay in patients with imminent and manifest graft rejection. PMID:18383319

  10. Management of respiratory viral infections in hematopoietic cell transplant recipients

    PubMed Central

    Shah, Dimpy P; Ghantoji, Shashank S; Mulanovich, Victor E; Ariza-heredia, Ella J; Chemaly, Roy F

    2012-01-01

    Advances in stem cell transplantation procedures and the overall improvement in the clinical management of hematopoietic cell transplant (HCT) recipients over the past 2 decades have led to an increase in survival duration, in part owing to better strategies for prevention and treatment of post-transplant complications, including opportunistic infections. However, post-HCT infections remain a concern for HCT recipients, particularly infections caused by community respiratory viruses (CRVs), which can lead to significant morbidity and mortality. These viruses can potentially cause lower respiratory tract illness, which is associated with a higher mortality rate among HCT recipients. Clinical management of CRV infections in HCT recipients includes supportive care and antiviral therapy, especially in high-risk individuals, when available. Directed antiviral therapy is only available for influenza infections, where successful use of neuraminidase inhibitors (oseltamivir or zanamivir) and/or M2 inhibitors (amantadine or rimantadine) has been reported. Data on the successful use of ribavirin, with or without immunomodulators, for respiratory syncytial virus infections in HCT recipients has emerged over the past 2 decades but is still controversial at best because of a lack of randomized controlled trials. Because of the lack of directed antiviral therapy for most of these viruses, prevention should be emphasized for healthcare workers, patients, family, and friends and should include the promotion of the licensed inactivated influenza vaccine for HCT recipients, when indicated. In this review, we discuss the clinical management of respiratory viruses in this special patient population, focusing on commercially available antivirals, adjuvant therapy, and novel drugs under investigation, as well as on available means for prevention. PMID:23226621

  11. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells

    PubMed Central

    Shin, Jae-Won; Spinler, Kyle R.; Swift, Joe; Chasis, Joel A.; Mohandas, Narla; Discher, Dennis E.

    2013-01-01

    Hematopoietic stem and progenitor cells, as well as nucleated erythroblasts and megakaryocytes, reside preferentially in adult marrow microenvironments whereas other blood cells readily cross the endothelial barrier into the circulation. Because the nucleus is the largest organelle in blood cells, we hypothesized that (i) cell sorting across microporous barriers is regulated by nuclear deformability as controlled by lamin-A and -B, and (ii) lamin levels directly modulate hematopoietic programs. Mass spectrometry-calibrated intracellular flow cytometry indeed reveals a lamin expression map that partitions human blood lineages between marrow and circulating compartments (P = 0.00006). B-type lamins are highly variable and predominate only in CD34+ cells, but migration through micropores and nuclear flexibility in micropipette aspiration both appear limited by lamin-A:B stoichiometry across hematopoietic lineages. Differentiation is also modulated by overexpression or knockdown of lamins as well as retinoic acid addition, which regulates lamin-A transcription. In particular, erythroid differentiation is promoted by high lamin-A and low lamin-B1 expression whereas megakaryocytes of high ploidy are inhibited by lamin suppression. Lamins thus contribute to both trafficking and differentiation. PMID:24191023

  12. Twist-1, a novel regulator of hematopoietic stem cell self-renewal and myeloid lineage development.

    PubMed

    Dong, Cheng-Ya; Liu, Xiao-Yan; Wang, Nan; Wang, Li-Na; Yang, Bin-Xia; Ren, Qian; Liang, Hao-Yue; Ma, Xiao-Tong

    2014-12-01

    Transcription factor Twist-1 plays essential roles in specification and differentiation of mesoderm-derived tissues. Growing evidences now link Twist-1 to the acquisition of stem-cell-like properties. However, the role of Twist-1 in hematopoietic stem cell (HSC) remains largely uncharacterized. We report that Twist-1 is more highly expressed in murine HSC and its expression declines with differentiation. To investigate Twist-1 gene function, retroviral-mediated overexpression or removal experiments are performed. Competitive repopulation studies demonstrate that enforced expression of Twist-1 in HSC-enriched Lin(-) c-Kit(+) Sca-1(+) (LKS) cells results in an increase in the size of the G(0) population, and in their reconstitution ability after the first and a second transplantation. Conversely, removal of Twist-1 in LKS cells impairs their ability to repopulate. In addition, increased Twist-1 expression causes a shift toward production of myeloid cells. Twist-1 transduction in LKS cells activates myeloid lineage-determining factors PU.1 and GATA-1 and downregulates lymphoid factor GATA-3 in vitro, suggesting that Twist-1-mediated myeloid skewing occurs in hematopoietic stem and progenitor cells (HSPCs). These findings indicate that Twist-1 is not only involved in the maintenance of HSC dormancy and self-renewal capacity but also implicated in the myeloid lineage fate choice of HSPCs. Exploration of the underlying mechanisms reveals that Runx1/c-Mpl/Tie2 regulatory pathway could possibly account for the observed effects caused by Twist-1 overexpression. Our study provides the first evidence supporting a role for Twist-1 in hematopoiesis. PMID:25100001

  13. Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy.

    PubMed

    Ungari, Silvia; Montepeloso, Annita; Morena, Francesco; Cocchiarella, Fabienne; Recchia, Alessandra; Martino, Sabata; Gentner, Bernhard; Naldini, Luigi; Biffi, Alessandra

    2015-01-01

    Globoid cell leukodystrophy (GLD) is a demyelinating lysosomal storage disease due to the deficiency of the galactocerebrosidase (GALC) enzyme. The favorable outcome of hematopoietic stem and progenitor cell (HSPC)-based approaches in GLD and other similar diseases suggests HSPC gene therapy as a promising therapeutic option for patients. The path to clinical development of this strategy was hampered by a selective toxicity of the overexpressed GALC in the HSPC compartment. Here, we presented the optimization of a lentiviral vector (LV) in which miR-126 regulation was coupled to codon optimization of the human GALC cDNA to obtain a selective and enhanced enzymatic activity only upon transduced HSPCs differentiation. The safety of human GALC overexpression driven by this LV was extensively demonstrated in vitro and in vivo on human HSPCs from healthy donors. No perturbation in the content of proapoptotic sphingolipids, gene expression profile, and capability of engraftment and mutlilineage differentiation in chimeric mice was observed. The therapeutic potential of this LV was then assessed in a severe GLD murine model that benefited from transplantation of corrected HSPCs with longer survival and ameliorated phenotype as compared to untreated siblings. This construct has thus been selected as a candidate for clinical translation. PMID:26509184

  14. Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy

    PubMed Central

    Ungari, Silvia; Montepeloso, Annita; Morena, Francesco; Cocchiarella, Fabienne; Recchia, Alessandra; Martino, Sabata; Gentner, Bernhard; Naldini, Luigi; Biffi, Alessandra

    2015-01-01

    Globoid cell leukodystrophy (GLD) is a demyelinating lysosomal storage disease due to the deficiency of the galactocerebrosidase (GALC) enzyme. The favorable outcome of hematopoietic stem and progenitor cell (HSPC)-based approaches in GLD and other similar diseases suggests HSPC gene therapy as a promising therapeutic option for patients. The path to clinical development of this strategy was hampered by a selective toxicity of the overexpressed GALC in the HSPC compartment. Here, we presented the optimization of a lentiviral vector (LV) in which miR-126 regulation was coupled to codon optimization of the human GALC cDNA to obtain a selective and enhanced enzymatic activity only upon transduced HSPCs differentiation. The safety of human GALC overexpression driven by this LV was extensively demonstrated in vitro and in vivo on human HSPCs from healthy donors. No perturbation in the content of proapoptotic sphingolipids, gene expression profile, and capability of engraftment and mutlilineage differentiation in chimeric mice was observed. The therapeutic potential of this LV was then assessed in a severe GLD murine model that benefited from transplantation of corrected HSPCs with longer survival and ameliorated phenotype as compared to untreated siblings. This construct has thus been selected as a candidate for clinical translation. PMID:26509184

  15. Clonal contributions of small numbers of retrovirally marked hematopoietic stem cells engrafted in unirradiated neonatal W/Wv mice.

    PubMed

    Capel, B; Hawley, R; Covarrubias, L; Hawley, T; Mintz, B

    1989-06-01

    Mice were repopulated with small numbers of retrovirally marked hematopoietic cells operationally definable as totipotent hematopoietic stem cells, without engraftment of cells at later stages of hematopoiesis, in order to facilitate analysis of stem cell clonal histories. This result depended upon the use of unirradiated W/Wv newborn recipients. Before transplantation, viral integration markers were introduced during cocultivation of fetal liver or bone marrow cells with helper cell lines exporting defective recombinant murine retroviruses of the HHAM series. Omission of selection in culture [although the vector contained the bacterial neomycin-resistance (neo) gene] also limited the proportion of stem cells that were virally labeled. Under these conditions, engraftment was restricted to a small population of marked and unmarked normal donor stem cells, due to their competitive advantage over the corresponding defective cells of the mutant hosts. A relatively simple and coherent pattern emerged, of one or a few virally marked clones, in contrast to previous studies. In order to establish the totipotent hematopoietic stem cell identity of the engrafted cells, tissues were sampled for viral and inbred-strain markers for periods close to one year after transplantation. The virally labeled clones were characterized as stem cell clones by their extensive self-renewal and by formation of the wide range of myeloid and lymphoid lineages tested. Results clearly documented concurrent contributions of cohorts of stem cells to hematopoiesis. A given stem cell can increase or decrease its proliferative activity, become completely inactive or lost, or become active after a long latent period. The contribution of a single clone present in a particular lineage was usually between 5% and 20%. PMID:2567516

  16. Involvement of the histamine H4 receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells.

    PubMed

    Goto, Aya; Mouri, Akihiro; Nagai, Tomoko; Yoshimi, Akira; Ukigai, Mako; Tsubai, Tomomi; Hida, Hirotake; Ozaki, Norio; Noda, Yukihiro

    2016-09-01

    Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100μM) and doxorubicin (0.2µM) decreased the cell survival rate, but olanzapine (1-100µM) did not. Under granulocytic differentiation for 5days, clozapine, even at a concentration of 25μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H4 receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H4 receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H4 receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H4 receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic differentiation. PMID:27368152

  17. The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation

    PubMed Central

    2014-01-01

    Telomeres are specific nucleoprotein structures at the ends of eukaryotic chromosomes. Telomeres and telomere-associated proteins maintain genome stability by protecting the ends of chromosomes from fusion and degradation. In normal somatic cells, the length of the telomeres gradually becomes shortened with cell division. In tumor cells, the shortening of telomeres length is accelerated under the increased proliferation pressure. However, it will be maintained at an extremely short length as the result of activation of telomerase. Significantly shortened telomeres, activation of telomerase, and altered expression of telomere-associated proteins are common features of various hematologic malignancies and are related with progression or chemotherapy resistance in these diseases. In patients who have received hematopoietic stem cell transplantation (HSCT), the telomere length and the telomerase activity of the engrafted donor cells have a significant influence on HSCT outcomes. Transplantation-related factors should be taken into consideration because of their impacts on telomere homeostasis. As activation of telomerase is widespread in tumor cells, it has been employed as a target point in the treatment of neoplastic hematologic disorders. In this review, the characteristics and roles of telomeres and telomerase both in hematologic malignancies and in HSCT will be summarized. The current status of telomerase-targeted therapies utilized in the treatment of hematologic malignancies will also be reviewed. PMID:25139287

  18. The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation.

    PubMed

    Wang, Limengmeng; Xiao, Haowen; Zhang, Xing; Wang, Chong; Huang, He

    2014-01-01

    Telomeres are specific nucleoprotein structures at the ends of eukaryotic chromosomes. Telomeres and telomere-associated proteins maintain genome stability by protecting the ends of chromosomes from fusion and degradation. In normal somatic cells, the length of the telomeres gradually becomes shortened with cell division. In tumor cells, the shortening of telomeres length is accelerated under the increased proliferation pressure. However, it will be maintained at an extremely short length as the result of activation of telomerase. Significantly shortened telomeres, activation of telomerase, and altered expression of telomere-associated proteins are common features of various hematologic malignancies and are related with progression or chemotherapy resistance in these diseases. In patients who have received hematopoietic stem cell transplantation (HSCT), the telomere length and the telomerase activity of the engrafted donor cells have a significant influence on HSCT outcomes. Transplantation-related factors should be taken into consideration because of their impacts on telomere homeostasis. As activation of telomerase is widespread in tumor cells, it has been employed as a target point in the treatment of neoplastic hematologic disorders. In this review, the characteristics and roles of telomeres and telomerase both in hematologic malignancies and in HSCT will be summarized. The current status of telomerase-targeted therapies utilized in the treatment of hematologic malignancies will also be reviewed. PMID:25139287

  19. Sepsis Induces Hematopoietic Stem Cell Exhaustion and Myelosuppression through Distinct Contributions of TRIF and MYD88.

    PubMed

    Zhang, Huajia; Rodriguez, Sonia; Wang, Lin; Wang, Soujuan; Serezani, Henrique; Kapur, Reuben; Cardoso, Angelo A; Carlesso, Nadia

    2016-06-14

    Toll-like receptor 4 (TLR4) plays a central role in host responses to bacterial infection, but the precise mechanism(s) by which its downstream signaling components coordinate the bone marrow response to sepsis is poorly understood. Using mice deficient in TLR4 downstream adapters MYD88 or TRIF, we demonstrate that both cell-autonomous and non-cell-autonomous MYD88 activation are major causes of myelosuppression during sepsis, while having a modest impact on hematopoietic stem cell (HSC) functions. In contrast, cell-intrinsic TRIF activation severely compromises HSC self-renewal without directly affecting myeloid cells. Lipopolysaccharide-induced activation of MYD88 or TRIF contributes to cell-cycle activation of HSC and induces rapid and permanent changes in transcriptional programs, as indicated by persistent downregulation of Spi1 and CebpA expression after transplantation. Thus, distinct mechanisms downstream of TLR4 signaling mediate myelosuppression and HSC exhaustion during sepsis through unique effects of MyD88 and TRIF. PMID:27264973

  20. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization.

    PubMed

    Ryan, Marnie A; Nattamai, Kalpana J; Xing, Ellen; Schleimer, David; Daria, Deidre; Sengupta, Amitava; Köhler, Anja; Liu, Wei; Gunzer, Matthias; Jansen, Michael; Ratner, Nancy; Le Cras, Timothy D; Waterstrat, Amanda; Van Zant, Gary; Cancelas, Jose A; Zheng, Yi; Geiger, Hartmut

    2010-10-01

    Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice, we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF, implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment, genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42), and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes. PMID:20871610

  1. DNA methylation analysis of murine hematopoietic side population cells during aging.

    PubMed

    Taiwo, Oluwatosin; Wilson, Gareth A; Emmett, Warren; Morris, Tiffany; Bonnet, Dominique; Schuster, Eugene; Adejumo, Tomas; Beck, Stephan; Pearce, Daniel J

    2013-10-01

    Stem cells have been found in most tissues/organs. These somatic stem cells produce replacements for lost and damaged cells, and it is not completely understood how this regenerative capacity becomes diminished during aging. To study the possible involvement of epigenetic changes in somatic stem cell aging, we used murine hematopoiesis as a model system. Hematopoietic stem cells (HSCs) were enriched for via Hoechst exclusion activity (SP-HSC) from young, medium-aged and old mice and subjected to comprehensive, global methylome (MeDIP-seq) analysis. With age, we observed a global loss of DNA methylation of approximately 5%, but an increase in methylation at some CpG islands. Just over 100 significant (FDR<0.2) aging-specific differentially methylated regions (aDMRs) were identified, which are surprisingly few considering the profound age-based changes that occur in HSC biology. Interestingly, the polycomb repressive complex -2 (PCRC2) target genes Kiss1r, Nav2 and Hsf4 were hypermethylated with age. The promoter for the Sdpr gene was determined to be progressively hypomethylated with age. This occurred concurrently with an increase in gene expression with age. To explore this relationship further, we cultured isolated SP-HSC in the presence of 5-aza-deoxycytdine and demonstrated a negative correlation between Sdpr promoter methylation and gene expression. We report that DNA methylation patterns are well preserved during hematopoietic stem cell aging, confirm that PCRC2 targets are increasingly methylated with age, and suggest that SDPR expression changes with age in HSCs may be regulated via age-based alterations in DNA methylation. PMID:23949429

  2. Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells.

    PubMed

    Ushiki, Takashi; Huntington, Nicholas D; Glaser, Stefan P; Kiu, Hiu; Georgiou, Angela; Zhang, Jian-Guo; Metcalf, Donald; Nicola, Nicos A; Roberts, Andrew W; Alexander, Warren S

    2016-01-01

    The Suppressors of Cytokine Signalling (SOCS) proteins are negative regulators of cytokine signalling required to prevent excess cellular responses. SOCS1 and SOCS3 are essential to prevent inflammatory disease, SOCS1 by attenuating responses to IFNγ and gamma-common (γc) cytokines, and SOCS3 via regulation of G-CSF and IL-6 signalling. SOCS1 and SOCS3 show significant sequence homology and are the only SOCS proteins to possess a KIR domain. The possibility of overlapping or redundant functions was investigated in inflammatory disease via generation of mice lacking both SOCS1 and SOCS3 in hematopoietic cells. Loss of SOCS3 significantly accelerated the pathology and inflammatory disease characteristic of SOCS1 deficiency. We propose a model in which SOCS1 and SOCS3 operate independently to control specific cytokine responses and together modulate the proliferation and activation of lymphoid and myeloid cells to prevent rapid inflammatory disease. PMID:27583437

  3. Toll like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    PubMed Central

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLR) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT) we have investigated 29 single nucleotide polymorphisms (SNP) across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni corrected level P≤0.001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease free survival (DFS) (hazard ratio (HR) 1.47 (95% confidence interval (CI) 1.16–1.85); P=0.001). Further analysis stratified by donor sex due to confounding by sex, was suggestive for associations with overall survival (male donor: HR 1.41 (95% CI 1.09–1.83), P=0.010); female donor: (HR 2.78 (95% CI 1.43–5.41), P=0.003), DFS (male donor: HR 1.45 (95% CI 1.12–1.87), P=0.005; female donor: HR 2.34 (95% CI 1.18–4.65), P=0.015) and treatment related mortality (male donor: HR 1.49 (95% CI 1.09–2.04), P=0.012; female donor: HR 3.12 (95% CI 1.44–6.74), P=0.004). In conclusion our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT. PMID:25464115

  4. Financial burden in recipients of allogeneic hematopoietic cell transplantation.

    PubMed

    Khera, Nandita; Chang, Yu-hui; Hashmi, Shahrukh; Slack, James; Beebe, Timothy; Roy, Vivek; Noel, Pierre; Fauble, Veena; Sproat, Lisa; Tilburt, Jon; Leis, Jose F; Mikhael, Joseph

    2014-09-01

    Although allogeneic hematopoietic cell transplantation (HCT) is an expensive treatment for hematological disorders, little is known about the financial consequences for the patients who undergo this procedure. We analyzed factors associated with its financial burden and its impact on health behaviors of allogeneic HCT recipients. A questionnaire was retrospectively mailed to 482 patients who underwent allogeneic HCT from January 2006 to June 2012 at the Mayo Clinic, to collect information regarding current financial concerns, household income, employment, insurance, out-of-pocket expenses, and health and functional status. A multivariable logistic regression analysis identified factors associated with financial burden and treatment nonadherence. Of the 268 respondents (56% response rate), 73% reported that their sickness had hurt them financially. All patients for whom the insurance information was available (missing, n = 13) were insured. Forty-seven percent of respondents experienced financial burden, such as household income decreased by >50%, selling/mortgaging home, or withdrawing money from retirement accounts. Three percent declared bankruptcy. Younger age and poor current mental and physical functioning increased the likelihood of financial burden. Thirty-five percent of patients reported deleterious health behaviors because of financial constraints. These patients were likely to be younger, have lower education, and with a longer time since HCT. Being employed decreased the likelihood of experiencing financial burden and treatment nonadherence due to concern about costs. A significant proportion of allogeneic HCT survivors experience financial hardship despite insurance coverage. Future research should investigate potential interventions to help at-risk patients and prevent adverse financial outcomes after this life-saving procedure. PMID:24867778

  5. Bacterial Infections in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Balletto, Elisa; Mikulska, Małgorzata

    2015-01-01

    Bacterial infections are major complications after Hematopoietic Stem Cell Transplant (HSCT). They consist mainly of bloodstream infections (BSI), followed by pneumonia and gastrointestinal infections, including typhlitis and Clostridium difficile infection. Microbiological data come mostly from BSI. Coagulase negative staphylococci and Enterobacteriaceae are the most frequent pathogens causing approximately 25% of BSI each, followed by enterococci, P. aeruginosa and viridans streptococci. Bacterial pneumonia is frequent after HSCT, and Gram-negatives are predominant. Clostridium difficile infection affects approximately 15% of HSCT recipients, being more frequent in case of allogeneic than autologous HSCT. The epidemiology and the prevalence of resistant strains vary significantly between transplant centres. In some regions, multi-drug resistant (MDR) Gram-negative rods are increasingly frequent. In others, vancomycin-resistant enterococci are predominant. In the era of increasing resistance to antibiotics, the efficacy of fluoroquinolone prophylaxis and standard treatment of febrile neutropenia have been questioned. Therefore, a thorough evaluation of local epidemiology is mandatory to decide the need for prophylaxis and the choice of the best regimen for empirical treatment of febrile neutropenia. For the latter, individualised approach has been proposed, consisting of either escalation or de-escalation strategy. De-escalation strategy is recommended since resistant bacteria should be covered upfront, mainly in patients with severe clinical presentation and previous infection or colonisation with a resistant pathogen. Non-pharmacological interventions, such as screening for resistant bacteria, applying isolation and contact precautions should be put in place to limit the spread of MDR bacteria. Antimicrobial stewardship program should be implemented in transplant centres. PMID:26185610

  6. [Biomarker for Hematopoietic Tumors--Aiming for Personalized Diagnosis of Leukemia Stem Cells].

    PubMed

    Tohda, Shuji

    2015-09-01

    Biomarkers are defined as characteristics that are objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Biomarkers obtained by PCR or flow cytometry are used for the diagnosis and subtyping of hematopoietic tumor cases. They are also used to predict the effectiveness of molecular-targeted therapies and detect minimal residual leukemia cells. In order to cure leukemia, it is necessary to eradicate leukemia stem cells. For that purpose, biomarkers to identify and characterize the leukemia stem cells in each case are needed. Therefore, we examined molecules involved in various stemness-related signaling pathways, especially NOTCH signaling in acute leukemia cells. In T-lymphoblastic leukemia cells, which often have activating NOTCH1 mutations, NOTCH works in oncogenic signaling. Although acute myeloid leukemia (AML) cells express NOTCH and NOTCH ligands, it is still controversial whether NOTCH is oncogenic or tumor-suppressive. To utilize the expression and activation of NOTCH as a leukemia stem cell biomarker, further investigation is required. Other stemness-related signaling molecules such as WNT, HEDGEHOG, HIF, and mTOR are also under investigation to assess whether they can be used as stem cell biomarkers in a clinical setting. PMID:26731901

  7. Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells.

    PubMed

    Hammoud, Mohammad; Vlaski, Marija; Duchez, Pascale; Chevaleyre, Jean; Lafarge, Xavier; Boiron, Jean-Michel; Praloran, Vincent; Brunet De La Grange, Philippe; Ivanovic, Zoran

    2012-06-01

    The physiological approach suggests that an environment associating the mesenchymal stromal cells (MSC) and low O(2) concentration would be most favorable for the maintenance of hematopoietic stem cells (HSCs) in course of ex vivo expansion of hematopoietic grafts. To test this hypothesis, we performed a co-culture of cord blood CD34(+) cells with or without MSC in presence of cytokines for 10 days at 20%, 5%, and 1.5% O(2) and assessed the impact on total cells, CD34(+) cells, committed progenitors (colony-forming cells-CFC) and stem cells activity (pre-CFC and Scid repopulating cells-SRC). Not surprisingly, the expansion of total cells, CD34(+) cells, and CFC was higher in co-culture and at 20% O(2) compared to simple culture and low O(2) concentrations, respectively. However, co-culture at low O(2) concentrations provided CD34(+) cell and CFC amplification similar to classical culture at 20% O(2) . Interestingly, low O(2) concentrations ensured a better pre-CFC and SRC preservation/expansion in co-culture. Indeed, SRC activity in co-culture at 1.5% O(2) was higher than in freshly isolated CD34(+) cells. Interleukin-6 production by MSC at physiologically low O(2) concentrations might be one of the factors mediating this effect. Our data demonstrate that association of co-culture and low O(2) concentration not only induces sufficient expansion of committed progenitors (with respect to the classical culture), but also ensures a better maintenance/expansion of hematopoietic stem cells (HSCs), pointing to the oxygenation as a physiological regulatory factor but also as a cell engineering tool. PMID:21913190

  8. Transcriptome-wide profiling and posttranscriptional analysis of hematopoietic stem/progenitor cell differentiation toward myeloid commitment.

    PubMed

    Klimmeck, Daniel; Cabezas-Wallscheid, Nina; Reyes, Alejandro; von Paleske, Lisa; Renders, Simon; Hansson, Jenny; Krijgsveld, Jeroen; Huber, Wolfgang; Trumpp, Andreas

    2014-11-11

    Hematopoietic stem cells possess lifelong self-renewal activity and generate multipotent progenitors that differentiate into lineage-committed and subsequently mature cells. We present a comparative transcriptome analysis of ex vivo isolated mouse multipotent hematopoietic stem/progenitor cells (Lin(neg)SCA-1(+)c-KIT(+)) and myeloid committed precursors (Lin(neg)SCA-1(neg)c-KIT(+)). Our data display dynamic transcriptional networks and identify a stem/progenitor gene expression pattern that is characterized by cell adhesion and immune response components including kallikrein-related proteases. We identify 498 expressed lncRNAs, which are potential regulators of multipotency or lineage commitment. By integrating these transcriptome with our recently reported proteome data, we found evidence for posttranscriptional regulation of processes including metabolism and response to oxidative stress. Finally, our study identifies a high number of genes with transcript isoform regulation upon lineage commitment. This in-depth molecular analysis outlines the enormous complexity of expressed coding and noncoding RNAs and posttranscriptional regulation during the early differentiation steps of hematopoietic stem cells toward the myeloid lineage. PMID:25418729

  9. Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells.

    PubMed

    Qiu, Juhui; Fan, Xiaoying; Wang, Yixia; Jin, Hongbin; Song, Yixiao; Han, Yang; Huang, Shenghong; Meng, Yaping; Tang, Fuchou; Meng, Anming

    2016-08-01

    Hematopoietic stem cells (HSCs) replenish all types of blood cells. It is debating whether HSCs in adults solely originate from the aorta-gonad-mesonephros (AGM) region, more specifically, the dorsal aorta, during embryogenesis. Here, we report that somite hematopoiesis, a previously unwitnessed hematopoiesis, can generate definitive HSCs (dHSCs) in zebrafish. By transgenic lineage tracing, we found that a subset of cells within the forming somites emigrate ventromedially and mix with lateral plate mesoderm-derived primitive hematopoietic cells before the blood circulation starts. These somite-derived hematopoietic precursors and stem cells (sHPSCs) subsequently enter the circulation and colonize the kidney of larvae and adults. RNA-seq analysis reveals that sHPSCs express hematopoietic genes with sustained expression of many muscle/skeletal genes. Embryonic sHPSCs transplanted into wild-type embryos expand during growth and survive for life time with differentiation into various hematopoietic lineages, indicating self-renewal and multipotency features. Therefore, the embryonic origin of dHSCs in adults is not restricted to the AGM. PMID:27252540

  10. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging.

    PubMed

    Khurana, Satish

    2016-07-01

    In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc. PMID:26813236

  11. LAPTM5: A novel lysosomal-associated multispanning membrane protein preferentially expressed in hematopoietic cells

    SciTech Connect

    Adra, C.N.; Zhu, Shaochun; Ko, Jone-Long

    1996-07-15

    While a large body of knowledge about cell membrane proteins exists, much less is known about the repertoire and function of integral membrane proteins of intracellular organelles. In looking for novel classes of genes that are functionally important to hematopoietic cells, we have cloned the cDNA for a gene preferentially expressed in adult hematopoietic tissues. During embryonic development the gene is expressed in both hematopoietic and nonhematopoietic tissues. In cell lines the gene is expressed specifically in hematopoietic lineages, whereas in normal adult tissues the mRNA is preferentially detected at high levels in lymphoid and myeloid tissues. The predicted protein is a pentaspanner with no homology to known genes and conserved across evolution. Immunocytological and cell fractionation studies with a specific antibody revealed a protein localizing in lysosomes. The gene, provisionally named LAPTM5, maps to chromosome 1p34. The expression pattern of the gene together with preliminary evidence that the protein interacts with ubiquitin indicates that the protein may have a special functional role during embryogenesis and in adult hematopoietic cells. 53 refs., 9 figs.

  12. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    PubMed

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT. PMID:27242795

  13. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34+ cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT. PMID:27242795

  14. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension

    PubMed Central

    Zhang, Ming-Zhi; Yao, Bing; Wang, Yinqiu; Yang, Shilin; Wang, Suwan; Fan, Xiaofeng; Harris, Raymond C.

    2015-01-01

    Inhibition of prostaglandin (PG) production with either nonselective or selective inhibitors of cyclooxygenase-2 (COX-2) activity can induce or exacerbate salt-sensitive hypertension. This effect has been previously attributed to inhibition of intrinsic renal COX-2 activity and subsequent increase in sodium retention by the kidney. Here, we found that macrophages isolated from kidneys of high-salt–treated WT mice have increased levels of COX-2 and microsomal PGE synthase–1 (mPGES-1). Furthermore, BM transplantation (BMT) from either COX-2–deficient or mPGES-1–deficient mice into WT mice or macrophage-specific deletion of the PGE2 type 4 (EP4) receptor induced salt-sensitive hypertension and increased phosphorylation of the renal sodium chloride cotransporter (NCC). Kidneys from high-salt–treated WT mice transplanted with Cox2–/– BM had increased macrophage and T cell infiltration and increased M1- and Th1-associated markers and cytokines. Skin macrophages from high-salt–treated mice with either genetic or pharmacologic inhibition of the COX-2 pathway expressed decreased M2 markers and VEGF-C production and exhibited aberrant lymphangiogenesis. Together, these studies demonstrate that COX-2–derived PGE2 in hematopoietic cells plays an important role in both kidney and skin in maintaining homeostasis in response to chronically increased dietary salt. Moreover, these results indicate that inhibiting COX-2 expression or activity in hematopoietic cells can result in a predisposition to salt-sensitive hypertension. PMID:26485285

  15. Changing Epidemiology of Respiratory Viral Infections in Hematopoietic Cell Transplant Recipients and Solid Organ Transplant Recipients

    PubMed Central

    Renaud, Christian; Campbell, Angela P.

    2011-01-01

    Purpose of review New respiratory viruses have been discovered in recent years and new molecular diagnostic assays have been developed that improve our understanding of respiratory virus infections. This article will review the changing epidemiology of these viruses after hematopoietic stem cell and solid organ transplantation. Recent findings Respiratory viruses are frequently detected in transplant recipients. A number of viruses have been newly discovered or emerged in the last decade, including human metapneumovirus, human bocavirus, new human coronaviruses and rhinoviruses, human polyomaviruses, and a new 2009 pandemic strain of influenza A/H1N1. The potential for these viruses to cause lower respiratory tract infections after transplantation varies, and is greatest for human metapneumovirus and H1N1 influenza, but appears to be limited for the other new viruses. Acute and long term complications in hematopoietic and solid organ transplant recipients are active areas of research. Summary Respiratory viral infections are frequently associated with significant morbidity following transplantation and are therefore of great clinical and epidemiologic interest. As new viruses are discovered, and more sensitive diagnostic methods are developed, defining the full impact of emerging respiratory viruses in transplant recipients must be elucidated by well-designed clinical studies. PMID:21666460

  16. Changes in the use of hematopoietic stem cell transplantation: a model for diffusion of medical technology

    PubMed Central

    Gratwohl, Alois; Schwendener, Alvin; Baldomero, Helen; Gratwohl, Michael; Apperley, Jane; Niederwieser, Dietger; Frauendorfer, Karl

    2010-01-01

    Background Innovations in hematology spread rapidly. Factors affecting the speed of introduction, international diffusion, and durability of use of innovations are, however, poorly understood. Design and Methods We used data on 251,106 hematopoietic stem cell transplants from 591 teams in 36 European countries to analyze the increase and decrease in such transplants for breast cancer and chronic myeloid leukemia and the replacement of bone marrow by peripheral blood as the source of stem cells as processes of diffusion. Regression analyses were used to measure the quantitative impact of defined macro- and microeconomic factors, to look for significant associations (t-test), and to describe the coefficient of determination or explanatory content (R2). Results Gross national income per capita, World Bank category, team density, team distribution, team size, team experience and, team innovator status were all significantly associated with some or all of the changes. The analyses revealed different patterns of associations and a wide range of explanatory content. Macro- and micro-economic factors were sufficient to explain the increase of allogeneic hematopoietic stem cell transplants in general (R2 = 78.41%) and for chronic myeloid leukemia in particular (R2 = 79.39%). They were insufficient to explain the changes in stem cell source (R2 =26.79% autologous hematopoietic stem cell transplants; R2 = 9.67% allogeneic hematopoietic stem cell transplants) or the decreases in hematopoietic stem cell transplants (R2 =10.22% breast cancer; R2=33.17% chronic myeloid leukemia). Conclusions The diffusion of hematopoietic stem cell transplants is more complex than previously thought. Availability of resources, evidence, external regulations and, expectations were identified as key determinants. These data might serve as a model for diffusion of medical technology in general. PMID:20378578

  17. In vitro production of functional immune cells derived from human hematopoietic stem cells

    PubMed Central

    Payuhakrit, Witchuda; Panichakul, Tasanee; Charoenphon, Natthawut; Chalermsaenyakorn, Panus; Jaovisidha, Adithep; Wongborisuth, Chokdee; Udomsangpetch, Rachanee

    2015-01-01

    Hematopoietic stem cells (HSC) from cord blood are potentially high sources for transplantation due to their low immunogenicity and the presence of the multipotent cells. These cells are capable of differentiating to produce various lineages of blood cells under specific conditions. We have enriched highly purified CD34+ cells from cord blood, determined in vitro growth of the cells in culture systems in the absence (condition A) or presence of GM-CSF and G-CSF (condition B), and determined the profile of immune cells during the period of cultivation by using flow cytometry. PhytohemagglutininA (PHA) was used as a mitogen to stimulate T lymphocytes derived from hematopoietic stem cells. GM-CSF and G-CSF prolonged the survival of the growing cells and also maintained expansion of cells in blastic stage. By day 12 of cultivation, when cell numbers peaked, various types of immune cells had appeared (CD14+ cells, CD40+HLA-DR+ cells, CD3+CD56+ cells, CD19+ cells, CD3+CD4+ cells, CD3+CD8+cells and CD3-CD56+). A significantly higher percentage of monocytes (p = 0.002) were observed under culture with GM-CSF, G-CSF when compared with culture without GM-CSF, G-CSF. In addition, T lymphocytes derived from HSC responded to 50 µg/ml of PHA. This is the first report showing the complete differentiation and proliferation of immune cells derived from CD34+ HSC under in vitro culture conditions. Lymphocytes, monocytes, dendritic cells and polymorph nuclear cells derived from HSC in vitro are unique, and thus may benefit various studies such as innate immunity and pathophysiology of immune disorders. PMID:26933404

  18. Informal Caregivers of Hematopoietic Cell Transplant Patients: A Review and Recommendations for Interventions and Research

    PubMed Central

    Gemmill, Robin; Cooke, Liz; Williams, Anna Cathy; Grant, Marcia

    2011-01-01

    Background Informal caregivers (IC) for medically fragile hematopoietic cell transplant (HCT) patients are a vital unrecognized population supporting the transplant patient along the illness continuum. The long transplant recovery period shifts a greater burden of care to the patient’s IC. Assessment of HCT caregiver quality of life and health status is critical to implementation of timely intervention and support. Methods A literature search using several search strategies covering 1980 to 2010 identified studies on ICs of hematopoietic cell transplant patients. These studies were summarized within the caregiver concepts of quality of life, role, and resources. Findings of this review were used to create recommended interventions and identify implications for further research. Results Although limited, research on ICs of hematopoietic call transplant patients provides beginning evidence for clinical interventions to support this caregiver population. Interventions created focus on Education, Psychosocial Support, and Self Care. Conclusions Although limited randomized trials of interventions have been reported, descriptive studies provide evidence for creating intervention content that addresses needs of ICs of hematopoietic cell transplant patients. Testing of these interventions and additional areas of research are identified. Implications for Practice Beginning descriptive evidence provides the basis for interventions for ICs of hematopoietic cell transplant patients. These interventions support caregiver quality of life and role implementation depending on individual caregivers’ resources and needs. Further evaluation and clinical research is needed. PMID:21242762

  19. Apoptosis Susceptibility Prolongs the Lack of Memory B Cells in Acute Leukemic Patients After Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Mensen, Angela; Oh, Youngseong; Becker, Sonya C; Hemmati, Philipp G; Jehn, Christian; Westermann, Jörg; Szyska, Martin; Göldner, Henning; Dörken, Bernd; Scheibenbogen, Carmen; Arnold, Renate; Na, Il-Kang

    2015-11-01

    Long-term survival after allogeneic hematopoietic stem cell transplantation requires intact immunosurveillance, which is hampered by lymphoid organ damage associated with conditioning therapy, graft-versus-host disease, and immunosuppression. Our study aimed to identify the mechanisms contributing to sustained low memory B cell numbers after transplantation. Peripheral B and T cell subset recovery and functional marker expression were investigated in 35 acute leukemic patients up to 1 year after transplantation. Apoptosis of B cells after CD40/TLR-9, CD40/BCR, and CD40/BCR/TLR-9-dependent stimulation and drug efflux capacity were analyzed. One half of the patients suffered from infections after day 180. All patients had strongly diminished CD27(+) memory B cells despite already normalized total B cell numbers and fully recovered CD27(-)IgD(-) memory B cells, putatively of extra-follicular origin. Circulating memory follicular helper T cells were reduced in the majority of patients as well. Naïve B cells exhibited a decreased expression of CXCR5, which mediates follicular B cell entry. Additionally, a lower HLA-DR expression was found on naïve B cells, impairing antigen presentation. Upon CD40/TLR-9-dependent activation, B cells underwent significantly increased apoptosis paralleled by an aberrant up-regulation of Fas-L on activatedcells and Fas on resting B cells. Significantly increased B cell apoptosis was also observed after CD40/BCR and CD40/BCR/TLR-9-dependent activation. Drug efflux capacity of naïve B cells was diminished in cyclosporin A-treated patients, additionally contributing to an apoptosis-prone phenotype. We conclude that B cell survival and migration and T cell communication defects are contributing candidates for an impaired germinal center formation of memory B cells after allogeneic hematopoietic stem cell transplantation. Follow-up studies should evaluate effectiveness of revaccinations on the cellular level and should

  20. Contrasting Roles for C/EBPα and Notch in Irradiation-Induced Multipotent Hematopoietic Progenitor Cell Defects

    PubMed Central

    Fleenor, Courtney Jo; Rozhok, Andrii Ivan; Zaberezhnyy, Vadym; Mathew, Divij; Kim, Jihye; Tan, Aik-Choon; Bernstein, Irwin David; DeGregori, James

    2014-01-01

    Ionizing radiation (IR) is associated with reduced hematopoietic function and increased risk of hematopoietic malignancies, although the mechanisms behind these relationships remain poorly understood. Both effects of IR have been commonly attributed to the direct induction of DNA mutations, but evidence supporting these hypotheses is largely lacking. Here we demonstrate that IR causes long-term, somatically heritable, cell-intrinsic reductions in hematopoietic stem cell (HSC) and multipotent hematopoietic progenitor cell (mHPC) self-renewal that are mediated by C/EBPα and reversed by Notch. mHPC from previously irradiated (>9 weeks prior), homeostatically restored mice exhibit gene expression profiles consistent with their precocious differentiation phenotype, including decreased expression of HSC-specific genes and increased expression of myeloid program genes (including C/EBPα). These gene expression changes are reversed by ligand-mediated activation of Notch. Loss of C/EBPα expression is selected for within previously irradiated HSC and mHPC pools, and is associated with reversal of IR-dependent precocious differentiation and restoration of self-renewal. Remarkably, restoration of mHPC self-renewal by ligand-mediated activation of Notch prevents selection for C/EBPα loss of function in previously irradiated mHPC pools. We propose that environmental insults prompt HSC to initiate a program limiting their self-renewal, leading to loss of the damaged HSC from the pool while allowing this HSC to temporarily contribute to differentiated cell pools. This “programmed mediocrity” is advantageous for the sporadic genotoxic insults animals have evolved to deal with, but becomes tumor promoting when the entire HSC compartment is damaged, such as during total body irradiation, by increasing selective pressure for adaptive oncogenic mutations. PMID:25546133

  1. Contrasting roles for C/EBPα and Notch in irradiation-induced multipotent hematopoietic progenitor cell defects.

    PubMed

    Fleenor, Courtney Jo; Rozhok, Andrii Ivan; Zaberezhnyy, Vadym; Mathew, Divij; Kim, Jihye; Tan, Aik-Choon; Bernstein, Irwin David; DeGregori, James

    2015-04-01

    Ionizing radiation (IR) is associated with reduced hematopoietic function and increased risk of hematopoietic malignancies, although the mechanisms behind these relationships remain poorly understood. Both effects of IR have been commonly attributed to the direct induction of DNA mutations, but evidence supporting these hypotheses is largely lacking. Here we demonstrate that IR causes long-term, somatically heritable, cell-intrinsic reductions in hematopoietic stem cell (HSC) and multipotent hematopoietic progenitor cell (mHPC) self-renewal that are mediated by C/EBPα and reversed by Notch. mHPC from previously irradiated (>9 weeks prior), homeostatically restored mice exhibit gene expression profiles consistent with their precocious differentiation phenotype, including decreased expression of HSC-specific genes and increased expression of myeloid program genes (including C/EBPα). These gene expression changes are reversed by ligand-mediated activation of Notch. Loss of C/EBPα expression is selected for within previously irradiated HSC and mHPC pools and is associated with reversal of IR-dependent precocious differentiation and restoration of self-renewal. Remarkably, restoration of mHPC self-renewal by ligand-mediated activation of Notch prevents selection for C/EBPα loss of function in previously irradiated mHPC pools. We propose that environmental insults prompt HSC to initiate a program limiting their self-renewal, leading to loss of the damaged HSC from the pool while allowing this HSC to temporarily contribute to differentiated cell pools. This "programmed mediocrity" is advantageous for the sporadic genotoxic insults animals have evolved to deal with but becomes tumor promoting when the entire HSC compartment is damaged, such as during total body irradiation, by increasing selective pressure for adaptive oncogenic mutations. PMID:25546133

  2. Multiple myeloma–related deregulation of bone marrow–derived CD34+ hematopoietic stem and progenitor cells

    PubMed Central

    Cadeddu, Ron-Patrick; Brueckmann, Ines; Fröbel, Julia; Geyh, Stefanie; Büst, Sebastian; Fischer, Johannes C.; Roels, Frederik; Wilk, Christian Matthias; Schildberg, Frank A.; Hünerlitürkoglu, Ali-Nuri; Zilkens, Christoph; Jäger, Marcus; Steidl, Ulrich; Zohren, Fabian; Fenk, Roland; Kobbe, Guido; Brors, Benedict; Czibere, Akos; Schroeder, Thomas; Trumpp, Andreas; Haas, Rainer

    2012-01-01

    Multiple myeloma (MM) is a clonal plasma cell disorder frequently accompanied by hematopoietic impairment. We show that hematopoietic stem and progenitor cells (HSPCs), in particular megakaryocyte-erythrocyte progenitors, are diminished in the BM of MM patients. Genomic profiling of HSPC subsets revealed deregulations of signaling cascades, most notably TGFβ signaling, and pathways involved in cytoskeletal organization, migration, adhesion, and cell-cycle regulation in the patients. Functionally, proliferation, colony formation, and long-term self-renewal were impaired as a consequence of activated TGFβ signaling. In accordance, TGFβ levels in the BM extracellular fluid were elevated and mesenchymal stromal cells (MSCs) had a reduced capacity to support long-term hematopoiesis of HSPCs that completely recovered on blockade of TGFβ signaling. Furthermore, we found defective actin assembly and down-regulation of the adhesion receptor CD44 in MM HSPCs functionally reflected by impaired migration and adhesion. Still, transplantation into myeloma-free NOG mice revealed even enhanced engraftment and normal differentiation capacities of MM HSPCs, which underlines that functional impairment of HSPCs depends on MM-related microenvironmental cues and is reversible. Taken together, these data implicate that hematopoietic suppression in MM emerges from the HSPCs as a result of MM-related microenvironmental alterations. PMID:22517906

  3. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease

    PubMed Central

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M.; Liddicoat, Brian; Russell, Megan R.; Walkley, Carl R.; Karlsson, Stefan

    2014-01-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease. PMID:24415629

  4. Expression and function of P2 receptors in hematopoietic stem and progenitor cells

    PubMed Central

    Feng, Wenli; Wang, Lina

    2015-01-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind to a class of plasma membrane receptors, P2 receptors, to trigger intercellular signaling. P2 receptors can be further divided into P2X and P2Y subfamilies based on structure and function. Different hematopoietic cells express diverse spectrums of P2 receptors at different levels, including hematopoietic stem and progenitor cells (HSPCs). Extracellular adenosine triphosphate (ATP) exerts different effects on HSPCs, regulating cell proliferation, differentiation, migration, and chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptor function and human diseases attracts more and more attention. This review summarizes the expression and function of P2 receptors in HSPCs and the relationship to hematopoietic diseases.

  5. Hematopoietic Stem and Progenitor Cell Migration After Hypofractionated Radiation Therapy in a Murine Model

    SciTech Connect

    Kane, Jonathan; Krueger, Sarah A.; Dilworth, Joshua T.; Torma, John T.; Wilson, George D.; Marples, Brian; Madlambayan, Gerard J.

    2013-12-01

    Purpose: To characterize the recruitment of bone marrow (BM)-derived hematopoietic stem and progenitor cells (HSPCs) within tumor microenvironment after radiation therapy (RT) in a murine, heterotopic tumor model. Methods and Materials: Lewis lung carcinoma tumors were established in C57BL/6 mice and irradiated with 30 Gy given as 2 fractions over 2 days. Tumors were imaged with positron emission tomography/computed tomography (PET/CT) and measured daily with digital calipers. The HSPC and myelomonocytic cell content was assessed via immunofluorescent staining and flow cytometry. Functionality of tumor-associated HSPCs was verified in vitro using colony-forming cell assays and in vivo by rescuing lethally irradiated C57BL/6 recipients. Results: Irradiation significantly reduced tumor volumes and tumor regrowth rates compared with nonirradiated controls. The number of CD133{sup +} HSPCs present in irradiated tumors was higher than in nonirradiated tumors during all stages of regrowth. CD11b{sup +} counts were similar. PET/CT imaging and growth rate analysis based on standardized uptake value indicated that HSPC recruitment directly correlated to the extent of regrowth and intratumor cell activity after irradiation. The BM-derived tumor-associated HSPCs successfully formed hematopoietic colonies and engrafted irradiated mice. Finally, targeted treatment with a small animal radiation research platform demonstrated localized HSPC recruitment to defined tumor subsites exposed to radiation. Conclusions: Hypofractionated irradiation resulted in a pronounced and targeted recruitment of BM-derived HSPCs, possibly as a mechanism to promote tumor regrowth. These data indicate for the first time that radiation therapy regulates HSPC content within regrowing tumors.

  6. [Protective effects of human bone marrow mesenchymal stem cells on hematopoietic organs of irradiated mice].

    PubMed

    Chen, Ling-Zhen; Yin, Song-Mei; Zhang, Xiao-Ling; Chen, Jia-Yu; Wei, Bo-Xiong; Zhan, Yu; Yu, Wei; Wu, Jin-Ming; Qu, Jia; Guo, Zi-Kuan

    2012-12-01

    The objective of this study was to explore the protective effects of human bone marrow mesenchymal stem cells (MSC) on hematopoietic organs of irradiated mice. Human bone marrow MSC were isolated, ex vivo expanded, and identified by cell biological tests. Female BALB/c mice were irradiated with (60)Co γ-ray at a single dose of 6 Gy, and received different doses of human MSC and MSC lysates or saline via tail veins. The survival of mice was record daily, and the femurs and spleens were harvested on day 9 and 16 for pathologic examination. The histological changes were observed and the cellularity was scored. The results showed that the estimated survival time of MSC- and MSC lysate-treated mice was comparable to that of controls. The hematopoiesis in the bone marrow of mice that received high-dose (5×10(6)) of MSC or MSC lysates was partially restored on day 9 and the capacity of hemopoietic tissue and cellularity scorings were significantly elevated as compared with that of controls (P < 0.05). Proliferative nudes were also obviously observed in the spleens of mice that received high-dose of MSC or MSC lysates on d 9 after irradiation. The histological structures of the spleen and bone marrow of the mice that received high-doses (5×10(6)) of MSC or MSC lysates were restored to normal, the cell proliferation displayed extraordinarily active. Further, the cellularity scores of the bone marrow were not significantly different between the high-dose MSC and MSC lysate-treated mice. It is concluded that the bone marrow MSC can promote the hematopoietic recovery of the irradiated mice, which probably is associated with the bioactive materials inherently existed in bone marrow cells. PMID:23257449

  7. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance

    PubMed Central

    Mortensen, Monika; Soilleux, Elizabeth J.; Djordjevic, Gordana; Tripp, Rebecca; Lutteropp, Michael; Sadighi-Akha, Elham; Stranks, Amanda J.; Glanville, Julie; Knight, Samantha; W. Jacobsen, Sten-Eirik; Kranc, Kamil R.

    2011-01-01

    The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin−Sca-1+c-Kit+ (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance. PMID:21339326

  8. Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis.

    PubMed

    Lee, Stanley C W; Miller, Sarah; Hyland, Craig; Kauppi, Maria; Lebois, Marion; Di Rago, Ladina; Metcalf, Donald; Kinkel, Sarah A; Josefsson, Emma C; Blewitt, Marnie E; Majewski, Ian J; Alexander, Warren S

    2015-07-01

    Polycomb repressive complex 2 (PRC2) is a chromatin modifier that regulates stem cells in embryonic and adult tissues. Loss-of-function studies of PRC2 components have been complicated by early embryonic dependence on PRC2 activity and the partial functional redundancy of enhancer of zeste homolog 1 (Ezh1) and enhancer of zeste homolog 2 (Ezh2), which encode the enzymatic component of PRC2. Here, we investigated the role of PRC2 in hematopoiesis by conditional deletion of suppressor of zeste 12 protein homolog (Suz12), a core component of PRC2. Complete loss of Suz12 resulted in failure of hematopoiesis, both in the embryo and the adult, with a loss of maintenance of hematopoietic stem cells (HSCs). In contrast, partial loss of PRC2 enhanced HSC self-renewal. Although Suz12 was required for lymphoid development, deletion in individual blood cell lineages revealed that it was dispensable for the development of granulocytic, monocytic, and megakaryocytic cells. Collectively, these data reveal the multifaceted role of PRC2 in hematopoiesis, with divergent dose-dependent effects in HSC and distinct roles in maturing blood cells. Because PRC2 is a potential target for cancer therapy, the significant consequences of modest changes in PRC2 activity, as well as the cell and developmental stage-specific effects, will need to be carefully considered in any therapeutic context. PMID:26036803

  9. Analysis of the Contribution of Nonresident Progenitor Cells and Hematopoietic Cells to Reparative Dentinogenesis Using Parabiosis Model in Mice

    PubMed Central

    Frozoni, Marcos; Zaia, Alexandre Augusto; Line, Sergio Roberto Peres; Mina, Mina

    2013-01-01

    Introduction The aim of this study was to analyze the contribution of nonresident progenitor/stem cells and hematopoietic cells to reparative dentinogenesis. Methods Parabiosis was established between C57BL/6-TgN(ACTbEGFP)10sb/J transgenic mice (GFP+) and C57BL/6 wild-type mice (GFP−) to ensure blood cross-circulation between animals. Reparative dentinogenesis was stimulated by pulp exposures and capping on the first maxillary molar in the GFP− mice. Histologic sections of injured molars from GFP− mice were analyzed by epifluorescence microscopy to examine the contributions of GFP+ cells (nonresident progenitor cells and hematopoietic cells originating from GFP+ mice) to reparative dentinogenesis. Results GFP+ cells were detected in close association with reparative dentin formed at the site of pulp exposure in the maxillary first molars of the GFP− mice. Conclusions The present study suggests the participation of the nonresident progenitor cells and hematopoietic cells in reparative dentinogenesis. PMID:22892738

  10. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient.

    PubMed

    Hayakawa, Kayoko; Takasaki, Tomohiko; Tsunemine, Hiroko; Kanagawa, Shuzo; Kutsuna, Satoshi; Takeshita, Nozomi; Mawatari, Momoko; Fujiya, Yoshihiro; Yamamoto, Kei; Ohmagari, Norio; Kato, Yasuyuki

    2015-08-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein. PMID:26068870

  11. Cutting the brakes on hematopoietic regeneration by blocking TGFβ to limit chemotherapy-induced myelosuppression

    PubMed Central

    Brenet, Fabienne; Scandura, Joseph M

    2015-01-01

    Hematopoietic stressors such as infection, bleeding, or toxic injury trigger a hematopoietic adaptation that sacrifices hematopoietic stem and progenitor cell (HSPC) quiescence to meet an urgent need for new blood cell production. Once the hematopoietic demands are adequately met, homeostasis must be restored. Transforming growth factor β (TGFβ) signaling is a central mediator mandating the return of HSPCs to quiescence after stress. Blockade of TGFβ signaling after hematopoietic stress delays the return of cycling HSPCs to quiescence and in so doing promotes hematopoietic stem cell (HSC) self-renewal and accelerates hematopoietic reconstitution. These findings open the door to new therapeutics that modulate the hematopoietic adaptation to stress. In this review, we will discuss the complex context-dependent activities of TGFβ in hematopoiesis and the potential benefits and limitations of using TGFβ pathway inhibitors to promote multilineage hematopoietic reconstitution after myelosuppressive chemotherapy. PMID:27308454

  12. Urinary Elafin and Kidney Injury in Hematopoietic Cell Transplant Recipients

    PubMed Central

    Finn, Laura S.; Pao, Emily; Lawler, Rick; Schoch, Gary; McDonald, George B.; Najafian, Behzad; Sandmaier, Brenda; Gooley, Ted

    2015-01-01

    Background and objectives Graft-versus-host disease (GVHD) is associated with kidney injury after hematopoietic cell transplantation (HCT). Because plasma elafin levels correlate with skin GVHD, this study examined urinary elafin as a potential marker of renal inflammation and injury. Design, setting, participants, & measurements Urine was collected prospectively on 205 patients undergoing their first HCT from 2003 to 2010. Collections were done at baseline, weekly through day 100, and monthly through year 1 to measure elafin and urine albumin-to-creatinine ratio (ACR). Associations between urinary elafin levels and microalbuminuria, macroalbuminuria, AKI and CKD, and mortality were examined using Cox proportional hazards or linear regression models. Available kidney biopsy specimens were processed for immunohistochemistry. Results Mean urinary elafin levels to day 100 were higher in patients with micro- or macroalbuminuria (adjusted mean difference, 529 pg/ml; P=0.03) at day 100 than in those with a normal ACR (adjusted mean difference, 1295 pg/ml; P<0.001). Mean urinary elafin levels were higher in patients with AKI compared with patients without AKI (adjusted mean difference, 558 pg/ml; P<0.01). The average urinary elafin levels within the first 100 days after HCT were higher in patients who developed CKD at 1 year than in patients without CKD (adjusted mean difference, 894 pg/ml; P=0.002). Among allogeneic recipients, a higher proportion of patients with micro- or macroalbuminuria at day 100 also had grade II-IV acute GVHD (80% and 86%, respectively) compared with patients with a normal ACR (58%; global P<0.01). Each increase in elafin of 500 pg/ml resulted in a 10% increase in risk of persistent macroalbuminuria (hazard ratio, 1.10; 95% confidence interval [95% CI], 1.06 to 1.13; P<0.001) and a 7% increase in the risk of overall mortality (95% CI, 1.02 to 1.13, P<0.01). Renal biopsy specimens from a separate cohort of HCT survivors demonstrated elafin staining

  13. Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy.

    PubMed

    Chhabra, Akanksha; Ring, Aaron M; Weiskopf, Kipp; Schnorr, Peter John; Gordon, Sydney; Le, Alan C; Kwon, Hye-Sook; Ring, Nan Guo; Volkmer, Jens; Ho, Po Yi; Tseng, Serena; Weissman, Irving L; Shizuru, Judith A

    2016-08-10

    Hematopoietic stem cell (HSC) transplantation can cure diverse diseases of the blood system, including hematologic malignancies, anemias, and autoimmune disorders. However, patients must undergo toxic conditioning regimens that use chemotherapy and/or radiation to eliminate host HSCs and enable donor HSC engraftment. Previous studies have shown that anti-c-Kit monoclonal antibodies deplete HSCs from bone marrow niches, allowing donor HSC engraftment in immunodeficient mice. We show that host HSC clearance is dependent on Fc-mediated antibody effector functions, and enhancing effector activity through blockade of CD47, a myeloid-specific immune checkpoint, extends anti-c-Kit conditioning to fully immunocompetent mice. The combined treatment leads to elimination of >99% of host HSCs and robust multilineage blood reconstitution after HSC transplantation. This targeted conditioning regimen that uses only biologic agents has the potential to transform the practice of HSC transplantation and enable its use in a wider spectrum of patients. PMID:27510901

  14. FoxO3a Directs a Protective Autophagy Program in Hematopoietic Stem Cells

    PubMed Central

    Warr, Matthew R.; Binnewies, Mikhail; Flach, Johanna; Reynaud, Damien; Garg, Trit; Malhotra, Ritu; Debnath, Jayanta; Passegué, Emmanuelle

    2013-01-01

    Blood production is ensured by rare self-renewing hematopoietic stem cells (HSCs). How HSCs accommodate the diverse cellular stresses associated with their life-long activity remains elusive. Here, we identify autophagy as an essential mechanism protecting HSCs from metabolic stress. We show that HSCs, in contrast to their short-lived myeloid progeny, robustly induce autophagy following ex vivo cytokine withdrawal and in vivo caloric restriction. We demonstrate that FoxO3a is critical to maintain a gene expression program that poise HSCs for rapid induction of autophagy upon starvation. Notably, we find that old HSCs retain an intact FoxO3a-driven pro-autophagy gene program, and that ongoing autophagy is needed to mitigate an energy crisis and allow their survival. Our results demonstrate that autophagy is essential for the life-long maintenance of the HSC compartment and for supporting an old, failing blood system. PMID:23389440

  15. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    PubMed Central

    Solmaz, Soner; Gereklioğlu, Çiğdem; Tan, Meliha; Demir, Şenay; Yeral, Mahmut; Korur, Aslı; Boğa, Can; Özdoğu, Hakan

    2015-01-01

    Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature. PMID:25912759

  16. An overlooked tumor promoting immunoregulation by non-hematopoietic stromal cells.

    PubMed

    Bose, Anamika; Ghosh, Tithi; Baral, Rathindranath

    2016-08-01

    Multidirectional complex communication between tumor-residing hematopoietic and non-hematopoietic stromal cells (NHSCs) decisively regulates cancer development, progression and therapeutic responses. HSCs predominantly participate in the immune regulations, while, NHSCs, provide parenchymal support or serve as a conduit for other cells or support angiogenesis. However, recent reports suggest NHSCs can additionally participate in ongoing tumor promoting immune reactions within tumor-microenvironment (TME). In this review, based on the state-of-art knowledge and accumulated evidence by us, we discuss the role of quite a few NHSCs in tumor from immunological perspectives. Understanding such consequence of NHSCs will surely pave the way in crafting effective cancer management. PMID:27311851

  17. [HOXB gene family and functions of hematopoietic stem/progenitor cells--review].

    PubMed

    Tang, Yu-Hong; Wang, Cheng-Ya

    2005-04-01

    Recently, many researches indicated the important role played by homeobox (HOX) gene family in normal hematopoiesis. As a kind of transcription factors, HOX gene products regulate and control the expression of target genes by binding to special DNA sequences. HOXB, a member of HOX gene family, especially HOXB(4), interests people greatly. It has been found that its expression relates closely to the self-renewal of hematopoietic stem cells and effective proliferation of hematopoietic progenitor cells. This review presents some new research progress in this area. PMID:15854307

  18. Design of antioxidative biointerface for separation of hematopoietic stem cells with high maintenance of undifferentiated phenotype.

    PubMed

    Ikeda, Yutaka; Yoshinari, Tomoki; Miyoshi, Hirotoshi; Nagasaki, Yukio

    2016-08-01

    During cell cultivation, excessively generated reactive oxygen species (ROS) affect cellular properties and functions. Although cell cultivation media contain several types of low-molecular-weight antioxidants, these small antioxidants are internalized into the mitochondria and they disrupt regulated redox balance. Here, we developed a novel biointerface that effectively eliminates ROS on a cell culture surface. Poly(ethylene glycol)-b-poly[4-(2,2,6,6-tetramethylpiperidine-1-oxyl)aminomethylstyrene] (PEG-b-PMNT) was synthesized and covalently coated on a carboxyl group-activated culture dish using sec-amino groups on a PMNT segment followed by immobilization of anti-CD34 antibodies. CD34-positive hematopoietic stem progenitor cells (HSPCs) were separated from mice fetal liver cells using our polymer-coated cell culture dish. The separated HSPCs possessed intact mitochondrial membrane potential compared with those in the conventional cell cultivation system. In addition, the expression level of CD34 was maintained for an extended period on our culture dish with the antioxidative biointerface. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2080-2085, 2016. PMID:27086723

  19. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry.

    PubMed

    Ku, Chia-Jui; Hosoya, Tomonori; Maillard, Ivan; Engel, James Douglas

    2012-03-01

    Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle. PMID:22267605

  20. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry

    PubMed Central

    Ku, Chia-Jui; Hosoya, Tomonori; Maillard, Ivan

    2012-01-01

    Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin−Sca1+c-KithiCD150+CD48−) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil–induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle. PMID:22267605

  1. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    PubMed

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia. PMID:27496493

  2. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  3. Inhibition of hematopoietic recovery from radiation-induced myelosuppression by natural killer cells

    SciTech Connect

    Pantel, K.; Boertman, J.; Nakeff, A. )

    1990-05-01

    We have examined the role of natural killer (NK) cells in situ in the recovery of marrow hematopoiesis in B6D2F1 mice receiving various doses of total-body irradiation (TBI) as a well-characterized model for treatment-induced myelosuppression. Applying an in situ cytotoxic approach for ablating NK 1.1 cells, we have demonstrated that NK 1.1 cells differentially inhibit the recovery of hematopoietic stem cells (CFU-S) and their progenitor cells committed to granulocyte-macrophage differentiation from a sublethal dose of TBI (9 Gy) while not affecting the recovery of progenitor cells committed to either erythroid or megakaryocyte differentiation from TBI. However, recoveries of CFU-S and progenitor cells were unaffected by the ablation of NK cells prior to a moderate dose of TBI (2 Gy). These findings provide in situ evidence that NK cells are potential inhibitors of hematopoietic recovery from treatment-induced myelosuppression.

  4. Class I MHC molecules on hematopoietic cells can support intrathymic positive selection of T cell receptor transgenic T cells

    PubMed Central

    Zerrahn, Jens; Volkmann, Ariane; Coles, Mark C.; Held, Werner; Lemonnier, Francois A.; Raulet, David H.

    1999-01-01

    The identity of cells that mediate positive selection of CD8+ T cells was investigated in two T cell receptor (TCR) transgenic systems. Irradiated β2-microglobulin mutant mice or mice with mutations in both the Kb and Db genes were repopulated with fetal liver cells from class I+ TCR transgenic mice. In the case of the 2C TCR, mature transgene-expressing CD8+ T cells appeared in the thymuses of the chimeras and in larger numbers in the peripheral lymphoid organs. These CD8+ T cells were functional, exhibited a naive, resting phenotype, and were mostly thymus-dependent. Their development depended on donor cell class I expression. These results establish that thymic hematopoietic cells can direct positive selection of CD8+ T cells expressing a conventional TCR. In contrast, no significant development of HY (male antigen)–TCR+ CD8+ T cells was observed in class I+ into class I-deficient chimeras. These data suggest that successful positive selection directed by hematopoietic cells depends on specific properties of the TCR or its thymic ligands. The possibility that hematopoietic cell-induced, positive selection occurs only with TCRs that exhibit relatively high avidity interactions with selecting ligands in the thymus is discussed. PMID:10500200

  5. Cocaine exposure impairs multineage hematopoiesis of human hematopoietic progenitor cells mediated by the sigma-1 receptor

    PubMed Central

    Nixon, Christopher C.; Schwartz, Brandon H.; Dixit, Dhaval; Zack, Jerome A.; Vatakis, Dimitrios N.

    2015-01-01

    Prenatal exposure to cocaine is a significant source of fetal and neonatal developmental defects. While cocaine associated neurological and cardiac pathologies are well-documented, it is apparent that cocaine use has far more diverse physiological effects. It is known that in some cell types, the sigma-1 receptor mediates many of cocaine's cellular effects. Here we present a novel and concise investigation into the mechanism that underlies cocaine associated hematopoietic pathology. Indeed, this is the first examination of the effects of cocaine on hematopoiesis. We show that cocaine impairs multilineage hematopoiesis from human progenitors from multiple donors and tissue types. We go on to present the first demonstration of the expression of the sigma-1 receptor in human CD34 + human hematopoietic stem/progenitor cells. Furthermore, we demonstrate that these cocaine-induced hematopoietic defects can be reversed through sigma-1 receptor blockade. PMID:25728014

  6. Second allogeneic hematopoietic stem cell transplantation in children with severe aplastic anemia.

    PubMed

    Kudo, K; Muramatsu, H; Yoshida, N; Kobayashi, R; Yabe, H; Tabuchi, K; Kato, K; Koh, K; Takahashi, Y; Hashii, Y; Kawano, Y; Inoue, M; Cho, Y; Sakamaki, H; Kawa, K; Kato, K; Suzuki, R; Kojima, S

    2015-10-01

    The outcome of 55 children with severe aplastic anemia (SAA) who received a second hematopoietic stem cell transplantation (HSCT) was retrospectively analyzed using the registration data of the Japanese Society for Hematopoietic Cell Transplantation. The 5-year overall survival (OS) and failure-free survival (FFS) after the second transplantation were 82.9% (95% confidence interval (CI), 69.7-90.8)) and 81.2% (95% CI, 67.8-89.4), respectively. FFS was significantly better when the interval between the first and second transplantation was >60 days (88.9%; 95% CI, 73.0-95.7) than when it was ⩽60 days (61.4%; 95% CI, 33.3-80.5; P=0.026). All 12 patients who were conditioned with regimens containing fludarabine and melphalan were alive with hematopoietic recovery. These findings justify the recommendation of a second HSCT for children with SAA who have experienced graft failure after first HSCT. PMID:26121106

  7. Pilot experience with opebacan/rBPI 21 in myeloablative hematopoietic cell transplantation

    PubMed Central

    Guinan, Eva; Avigan, David E; Soiffer, Robert J; Bunin, Nancy J; Brennan, Lisa L; Bergelson, Ilana; Brightman, Spencer; Ozonoff, Al; Scannon, Patrick J; Levy, Ofer

    2015-01-01

    Bacterial infection and inflammation contribute significantly to the morbidity and mortality of myeloablative allogeneic hematopoietic cell transplantation (HCT). Endotoxin, a component of the outer membrane of Gram-negative bacteria, is a potent inflammatory stimulus in humans. Bactericidal/permeability increasing protein (BPI), a constituent of human neutrophil granules, binds endotoxin thereby precluding endotoxin-induced inflammation and also has direct anti-infective properties against bacteria. As a consequence of myeloablative therapy used in preparation for hematopoietic cell infusion, patients experience gastrointestinal leak of bacteria and bacterial toxins into the systemic circulation and a period of inflammatory cytokine elevation associated with subsequent regimen-related toxicities.  Patients frequently become endotoxemic and febrile as well as BPI-deficient due to sustained neutropenia. To examine whether enhancing endotoxin-neutralizing and anti-infective activity by exogenous administration of a recombinant N-terminal fragment of BPI (rBPI 21, generic name opebacan) might ameliorate regimen-related toxicities including infection, we recruited patients scheduled to undergo myeloablative HCT to participate in a proof-of-concept prospective phase I/II trial. After the HCT preparative regimen was completed, opebacan was initiated 18-36 hours prior to administration of allogeneic hematopoietic stem cells (defined as Day 0) and continued for 72 hours. The trial was to have included escalation of rBPI 21 dose and duration but was stopped prematurely due to lack of further drug availability.  Therefore, to better understand the clinical course of opebacan-treated patients (n=6), we compared their outcomes with a comparable cohort meeting the same eligibility criteria and enrolled in a non-interventional myeloablative HCT observational study (n = 35).  Opebacan-treated participants had earlier platelet engraftment (p=0.005), mirroring beneficial effects

  8. Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation

    PubMed Central

    Ramadan, Abdulraouf; Paczesny, Sophie

    2014-01-01

    Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from th