Science.gov

Sample records for hemolytic complement activity

  1. Complement in hemolytic anemia.

    PubMed

    Brodsky, Robert A

    2015-11-26

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD. PMID:26582375

  2. Complement in hemolytic anemia.

    PubMed

    Brodsky, Robert A

    2015-01-01

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD. PMID:26637747

  3. Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity.

    PubMed

    Khoa, D V A; Wimmers, K

    2015-09-01

    The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 F2 animals of a resource population (DUMI: DU×BMP) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future. PMID:26194222

  4. Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

    PubMed Central

    Khoa, D. V. A.; Wimmers, K.

    2015-01-01

    The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 F2 animals of a resource population (DUMI: DU×BMP) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future. PMID:26194222

  5. Initiation and Regulation of Complement during Hemolytic Transfusion Reactions

    PubMed Central

    Stowell, Sean R.; Winkler, Anne M.; Maier, Cheryl L.; Arthur, C. Maridith; Smith, Nicole H.; Girard-Pierce, Kathryn R.; Cummings, Richard D.; Zimring, James C.; Hendrickson, Jeanne E.

    2012-01-01

    Hemolytic transfusion reactions represent one of the most common causes of transfusion-related mortality. Although many factors influence hemolytic transfusion reactions, complement activation represents one of the most common features associated with fatality. In this paper we will focus on the role of complement in initiating and regulating hemolytic transfusion reactions and will discuss potential strategies aimed at mitigating or favorably modulating complement during incompatible red blood cell transfusions. PMID:23118779

  6. Role of Complement in Autoimmune Hemolytic Anemia.

    PubMed

    Berentsen, Sigbjørn

    2015-09-01

    The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed. PMID:26696798

  7. Role of Complement in Autoimmune Hemolytic Anemia

    PubMed Central

    Berentsen, Sigbjørn

    2015-01-01

    Summary The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed. PMID:26696798

  8. Hemolytic complement activity and concentrations of its third component during maturation of the immune response in colostrum-deprived foals.

    PubMed

    Bernoco, M M; Liu, I K; Willits, N H

    1994-07-01

    Six foals were deprived of colostrum for the first 36 hours after birth and, instead, received reconstituted powdered milk. Five control foals suckled their dams naturally. Blood samples were obtained from all the foals after birth and at approximately weekly intervals until at least 5.5 months of age. Sera were analyzed for hemolytic complement activity, complement component C3, and correlating IgG concentration. Hemolytic complement (P = 0.0145) and C3 (P = 0.0002) values were significantly higher in colostrum-deprived foals (CDF) than in naturally nursed foals at 2 to 5 days of age. In addition, significantly (P = 0.0149) higher IgG concentration was found in CDF than in naturally nursed foals between 3 and 5.5 months of age. It was concluded that the observed high complement activity in CDF within 2 to 5 days of age may provide an alternative in immune defense for IgG-deprived foals after failure of colostral transfer. PMID:7978631

  9. Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement

    PubMed Central

    Locatelli, Monica; Buelli, Simona; Pezzotta, Anna; Corna, Daniela; Perico, Luca; Tomasoni, Susanna; Rottoli, Daniela; Rizzo, Paola; Conti, Debora; Thurman, Joshua M.; Remuzzi, Giuseppe; Zoja, Carlamaria

    2014-01-01

    Shiga toxin (Stx)–producing Escherichia coli is the offending agent of postdiarrhea-associated hemolytic uremic syndrome (HUS), a disorder of glomerular ischemic damage and widespread microvascular thrombosis. We previously documented that Stx induces glomerular complement activation, generating C3a responsible for microvascular thrombosis in experimental HUS. Here, we show that the presence of C3 deposits on podocytes is associated with podocyte damage and loss in HUS mice generated by the coinjection of Stx2 and LPS. Because podocyte adhesion to the glomerular basement membrane is mediated by integrins, the relevance of integrin-linked kinase (ILK) signals in podocyte dysfunction was evaluated. Podocyte expression of ILK increased after the injection of Stx2/LPS and preceded the upregulation of Snail and downregulation of nephrin and α-actinin-4. Factor B deficiency or pretreatment with an inhibitory antibody to factor B protected mice against Stx2/LPS-induced podocyte dysregulation. Similarly, pretreatment with a C3a receptor antagonist limited podocyte loss and changes in ILK, Snail, and α-actinin-4 expression. In cultured podocytes, treatment with C3a reduced α-actinin-4 expression and promoted ILK-dependent nuclear expression of Snail and cell motility. These results suggest that Stx-induced activation of the alternative pathway of complement and generation of C3a promotes ILK signaling, leading to podocyte dysfunction and loss in Stx-HUS. PMID:24578132

  10. Intravenous and standard immune serum globulin preparations interfere with uptake of /sup 125/I-C3 onto sensitized erythrocytes and inhibit hemolytic complement activity

    SciTech Connect

    Berger, M.; Rosenkranz, P.; Brown, C.Y.

    1985-02-01

    Antibody-sensitized sheep erythrocytes were used as a model to determine the effects of therapeutic immune serum globulin (ISG) preparations on the ability of this particulate activator to fix C3 and initiate hemolysis. Both standard and intravenous forms of ISG inhibit uptake of /sup 125/I-C3, presumably by competing for the deposition of ''nascent'' C3b molecules onto the erythrocytes. Both forms of ISG also inhibit hemolytic activity of whole serum or purified complement components. The inhibition appears to be a specific property of IgG itself, since similar inhibition was not caused by equivalent concentrations of human serum albumin, and was not affected by the buffer in which the ISG was dissolved. Interference with C3 uptake onto antibody-sensitized platelets and/or inhibition of hemolytic complement activity could contribute to the efficacy of high dose intravenous ISG in idiopathic thrombocytopenic purpura.

  11. A De Novo Deletion in the Regulators of Complement Activation Cluster Producing a Hybrid Complement Factor H/Complement Factor H-Related 3 Gene in Atypical Hemolytic Uremic Syndrome.

    PubMed

    Challis, Rachel C; Araujo, Geisilaine S R; Wong, Edwin K S; Anderson, Holly E; Awan, Atif; Dorman, Anthony M; Waldron, Mary; Wilson, Valerie; Brocklebank, Vicky; Strain, Lisa; Morgan, B Paul; Harris, Claire L; Marchbank, Kevin J; Goodship, Timothy H J; Kavanagh, David

    2016-06-01

    The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H-related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology-mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise. PMID:26490391

  12. Hemolytic activity of Borrelia burgdorferi.

    PubMed Central

    Williams, L R; Austin, F E

    1992-01-01

    Zones of beta-hemolysis occurred around colonies of Borrelia burgdorferi grown on Barbour-Stoenner-Kelly medium containing agarose and horse blood. Blood plates were inoculated with either the infective strain Sh-2-82 or noninfective strain B-31 in an overlay and incubated in a candle jar. Both strains of B. burgdorferi displayed beta-hemolysis after 1 to 2 weeks of incubation. The hemolytic activity diffused out from the borrelial colonies, eventually resulting in lysis of the entire blood plate. Hemolysis was most pronounced with horse blood and was less intense with bovine, sheep, and rabbit blood. Hemolysis was enhanced by hot-cold incubation, which is typical of phospholipase-like activities in other bacteria. Further characterization of the borrelial hemolysin by using a spectrophotometric assay revealed its presence in the supernatant fluids of stationary-phase cultures. Detection of the borrelial hemolytic activity was dependent on activation of the hemolysin by the reducing agent cysteine. This study provides the first evidence of hemolytic activity associated with B. burgdorferi. Images PMID:1639493

  13. Postoperative atypical hemolytic uremic syndrome associated with complement c3 mutation.

    PubMed

    Matsukuma, Eiji; Imamura, Atsushi; Iwata, Yusuke; Takeuchi, Takamasa; Yoshida, Yoko; Fujimura, Yoshihiro; Fan, Xinping; Miyata, Toshiyuki; Kuwahara, Takashi

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) can be distinguished from typical or Shiga-like toxin-induced HUS. The clinical outcome is unfavorable; up to 50% of affected patients progress to end-stage renal failure and 25% die during the acute phase. Multiple conditions have been associated with aHUS, including infections, drugs, autoimmune conditions, transplantation, pregnancy, and metabolic conditions. aHUS in the nontransplant postsurgical period, however, is rare. An 8-month-old boy underwent surgical repair of tetralogy of Fallot. Neurological disturbances, acute renal failure, thrombocytopenia, and microangiopathic hemolytic anemia developed 25 days later, and aHUS was diagnosed. Further evaluation revealed that his complement factor H (CFH) level was normal and that anti-FH antibodies were not detected in his plasma. Sequencing of his CFH, complement factor I, membrane cofactor protein, complement factor B, and thrombomodulin genes was normal. His ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin-1 repeats 13) activity was also normal. However, he had a potentially causative mutation (R425C) in complement component C3. Restriction fragment length polymorphism analysis revealed that his father and aunt also had this mutation; however, they had no symptoms of aHUS. We herein report a case of aHUS that developed after cardiovascular surgery and was caused by a complement C3 mutation. PMID:25431709

  14. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome

    PubMed Central

    de Jorge, Elena Goicoechea; Harris, Claire L.; Esparza-Gordillo, Jorge; Carreras, Luis; Arranz, Elena Aller; Garrido, Cynthia Abarrategui; López-Trascasa, Margarita; Sánchez-Corral, Pilar; Morgan, B. Paul; de Córdoba, Santiago Rodríguez

    2007-01-01

    Hemolytic uremic syndrome (HUS) is an important cause of acute renal failure in children. Mutations in one or more genes encoding complement-regulatory proteins have been reported in approximately one-third of nondiarrheal, atypical HUS (aHUS) patients, suggesting a defect in the protection of cell surfaces against complement activation in susceptible individuals. Here, we identified a subgroup of aHUS patients showing persistent activation of the complement alternative pathway and found within this subgroup two families with mutations in the gene encoding factor B (BF), a zymogen that carries the catalytic site of the complement alternative pathway convertase (C3bBb). Functional analyses demonstrated that F286L and K323E aHUS-associated BF mutations are gain-of-function mutations that result in enhanced formation of the C3bBb convertase or increased resistance to inactivation by complement regulators. These data expand our understanding of the genetic factors conferring predisposition to aHUS, demonstrate the critical role of the alternative complement pathway in the pathogenesis of aHUS, and provide support for the use of complement-inhibition therapies to prevent or reduce tissue damage caused by dysregulated complement activation. PMID:17182750

  15. Complement deposition in autoimmune hemolytic anemia is a footprint for difficult-to-detect IgM autoantibodies

    PubMed Central

    Meulenbroek, Elisabeth M.; de Haas, Masja; Brouwer, Conny; Folman, Claudia; Zeerleder, Sacha S.; Wouters, Diana

    2015-01-01

    In autoimmune hemolytic anemia autoantibodies against erythrocytes lead to increased clearance of the erythrocytes, which in turn results in a potentially fatal hemolytic anemia. Depending on whether IgG or IgM antibodies are involved, response to therapy is different. Proper identification of the isotype of the anti-erythrocyte autoantibodies is, therefore, crucial. However, detection of IgM autoantibodies can be challenging. We, therefore, set out to improve the detection of anti-erythrocyte IgM. Direct detection using a flow cytometry-based approach did not yield satisfactory improvements. Next, we analyzed whether the presence of complement C3 on a patient’s erythrocytes could be used for indirect detection of anti-erythrocyte IgM. To this end, we fractionated patients’ sera by size exclusion chromatography and tested which fractions yielded complement deposition on erythrocytes. Strikingly, we found that all patients with C3 on their erythrocytes according to standard diagnostic tests had an IgM anti-erythrocyte component that could activate complement, even if no such autoantibody had been detected with any other test. This also included all tested patients with only IgG and C3 on their erythrocytes, who would previously have been classified as having an IgG-only mediated autoimmune hemolytic anemia. Depleting patients’ sera of either IgG or IgM and testing the remaining complement activation confirmed this result. In conclusion, complement activation in autoimmune hemolytic anemia is mostly IgM-mediated and the presence of covalent C3 on patients’ erythrocytes can be taken as a footprint of the presence of anti-erythrocyte IgM. Based on this finding, we propose a diagnostic workflow that will aid in choosing the optimal treatment strategy. PMID:26354757

  16. Complement activation induced by rabbit rheumatoid factor.

    PubMed Central

    Meyer, R R; Brown, J C

    1980-01-01

    Rabbit rheumatoid factor produced in animals by hyperimmunized with group C streptococcal vaccine activated guinea pig complement. Anti-streptococcal serum was fractionated by Sephacryl S-200 chromatography into excluded (19S) and included (7S) material and examined for hemolytic activity in a sensitive homologous hemolytic assay system. In the presence of complement, both 19S and 7S antistreptococcal serum fractions induced lysis of bovine (ox) erythrocytes coated with mildly reduced and carboxymethylated rabbit anti-erythrocyte immunoglobulin G. That rabbit rheumatoid factor was responsible for the observed hemolytic activity was substantiated by hemolytic inhibition assays. Significant inhibition of hemolysis was effected when antistreptococcal serum fractions were incubated in the presence of human immunoglobulin G, rabbit immunoglobulin G, and Fc, whereas, no inhibition was detected when the same fractions were tested in the presence of rabbit Fab or F(ab')2 fragments. Deaggregation of inhibitor preparations revealed a preferential reactivity of rheumatoid factor for rabbit immunoglobulin G. In addition to the rheumatoid factor-dependent hemolytic activity observed in humoral preparations, immunoglobulin G-specific antibody-forming cells in spleen and peripheral blood lymphocyte isolates were enumerated by plaque-forming cell assay. PMID:7399707

  17. Alternative Pathway of Complement in Children with Diarrhea-Associated Hemolytic Uremic Syndrome

    PubMed Central

    Thurman, Joshua M.; Marians, Russell; Emlen, Woodruff; Wood, Susan; Smith, Christopher; Akana, Hillary; Holers, V. Michael; Lesser, Martin; Kline, Myriam; Hoffman, Cathy; Christen, Erica

    2009-01-01

    Background and objectives: Diarrhea-associated hemolytic uremic syndrome (D+HUS) is a common cause of acute kidney injury in children. Mutations in alternative pathway (AP) complement regulatory proteins have been identified in severe cases of thrombotic microangiopathy, but the role of the AP in D+HUS has not been studied. Therefore, we determined whether plasma levels of markers of activation of the AP are increased in D+HUS and are biomarkers of the severity of renal injury that predict the need for dialysis. Design, setting, participants, & measurements: Patients were randomly selected from among participants in the HUS-SYNSORB Pk trial. Plasma samples were collected on days 1, 4, 7, and 10 after enrollment and day 28 after discharge from the hospital. Levels of two complement pathway products, Bb and SC5b-9, were determined by ELISA. Results: Seventeen children (6 boys and 11 girls; age, 5.4 ± 3.5 yr) were studied. Eight (47%) required dialysis support, and two had serious extrarenal events. On the day of enrollment, plasma levels of Bb and SC5b-9 were significantly increased in all patients compared with healthy controls (P < 0.01). The elevated concentrations normalized by day 28 after discharge. Circulating levels of complement pathway fragments did not correlate with severity of renal injury or occurrence of complications. Conclusions: Patients with acute-onset D+HUS manifest activation of the AP of complement that is temporally related to the onset of disease and that resolves within 1 mo. Therapies to inhibit the AP of complement may be useful in attenuating the severity of renal injury and extrarenal complications. PMID:19820137

  18. Quiescent complement in nonhuman primates during E coli Shiga toxin-induced hemolytic uremic syndrome and thrombotic microangiopathy.

    PubMed

    Lee, Benjamin C; Mayer, Chad L; Leibowitz, Caitlin S; Stearns-Kurosawa, D J; Kurosawa, Shinichiro

    2013-08-01

    Enterohemorrhagic Escherichia coli (EHEC) produce ribosome-inactivating Shiga toxins (Stx1, Stx2) responsible for development of hemolytic uremic syndrome (HUS) and acute kidney injury (AKI). Some patients show complement activation during EHEC infection, raising the possibility of therapeutic targeting of complement for relief. Our juvenile nonhuman primate (Papio baboons) models of endotoxin-free Stx challenge exhibit full spectrum HUS, including thrombocytopenia, hemolytic anemia, and AKI with glomerular thrombotic microangiopathy. There were no significant increases in soluble terminal complement complex (C5b-9) levels after challenge with lethal Stx1 (n = 6) or Stx2 (n = 5) in plasma samples from T0 to euthanasia at 49.5 to 128 hours post-challenge. d-dimer and cell injury markers (HMGB1, histones) confirmed coagulopathy and cell injury. Thus, complement activation is not required for the development of thrombotic microangiopathy and HUS induced by EHEC Shiga toxins in these preclinical models, and benefits or risks of complement inhibition should be studied further for this infection. PMID:23733336

  19. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans. PMID:6832120

  20. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy.

    PubMed

    Berentsen, Sigbjørn; Sundic, Tatjana

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead. PMID:25705656

  1. Red Blood Cell Destruction in Autoimmune Hemolytic Anemia: Role of Complement and Potential New Targets for Therapy

    PubMed Central

    Berentsen, Sigbjørn

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead. PMID:25705656

  2. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  3. The Alternative Pathway of Complement and the Evolving Clinical-Pathophysiological Spectrum of Atypical Hemolytic Uremic Syndrome.

    PubMed

    Berger, Bruce E

    2016-08-01

    Complement-mediated atypical hemolytic uremic syndrome (aHUS) comprises approximately 90% of cases of aHUS, and results from dysregulation of endothelial-anchored complement activation with resultant endothelial damage. The discovery of biomarker ADAMTS13 has enabled a more accurate diagnosis of thrombotic thrombocytopenic purpura (TTP) and an appreciation of overlapping clinical features of TTP and aHUS. Given our present understanding of the pathogenic pathways involved in aHUS, it is unlikely that a specific test will be developed. Rather the use of biomarker data, complement functional analyses, genomic analyses and clinical presentation will be required to diagnose aHUS. This approach would serve to clarify whether a thrombotic microangiopathy present in a complement-amplifying condition arises from the unmasking of a genetically driven aHUS versus a time-limited complement storm-mediated aHUS due to direct endothelial damage in which no genetic predisposition is present. Although both scenarios result in the phenotypic expression of aHUS and involve the alternate pathway of complement activation, long-term management would differ. PMID:27524217

  4. Physicochemical signatures of nanoparticle-dependent complement activation

    NASA Astrophysics Data System (ADS)

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis E.; Pham, Christine T. N.; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-01-01

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an in vitro hemolysis assay to measure the serum complement activity of perfluorocarbon nanoparticles that differed by size, surface charge, and surface chemistry, quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework.

  5. The molecular and structural bases for the association of complement C3 mutations with atypical hemolytic uremic syndrome

    PubMed Central

    Martínez-Barricarte, Rubén; Heurich, Meike; López-Perrote, Andrés; Tortajada, Agustin; Pinto, Sheila; López-Trascasa, Margarita; Sánchez-Corral, Pilar; Morgan, B. Paul; Llorca, Oscar; Harris, Claire L.; Rodríguez de Córdoba, Santiago

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) associates with complement dysregulation caused by mutations and polymorphisms in complement activators and regulators. However, the reasons why some mutations in complement proteins predispose to aHUS are poorly understood. Here, we have investigated the functional consequences of three aHUS-associated mutations in C3, R592W, R161W and I1157T. First, we provide evidence that penetrance and disease severity for these mutations is modulated by inheritance of documented “risk” haplotypes as has been observed with mutations in other complement genes. Next, we show that all three mutations markedly reduce the efficiency of factor I-mediated C3b cleavage when catalyzed by membrane cofactor protein (MCP), but not when catalyzed by factor H. Biacore analysis showed that each mutant C3b bound sMCP (recombinant soluble MCP; CD46) at reduced affinity, providing a molecular basis for its reduced cofactor activity. Lastly, we show by electron microscopy structural analysis a displacement of the TED domain from the MG ring in C3b in two of the C3 mutants that explains these defects in regulation. As a whole our data suggest that aHUS-associated mutations in C3 selectively affect regulation of complement on surfaces and provide a structural framework to predict the functional consequences of the C3 genetic variants found in patients. PMID:25879158

  6. Complement activation by Coccidioides immitis: in vitro and clinical studies.

    PubMed Central

    Galgiani, J N; Yam, P; Petz, L D; Williams, P L; Stevens, D A

    1980-01-01

    Mycelial- or spherule-phase derivatives of Coccidioides immitis caused a decrease in vitro of total hemolytic complement in serum from a nonsensitized person. Activation involved both classic and alternative pathways as shown by deprssion of hemolytic C4 and by generation of products of activation of components C3, C4, and factor B. In addition, functional complement activity or immunoreactive levels of complement components or both were measured in 23 patients with self-limited or disseminated coccidioidomycosis. Low total hemolytic complement was found in nine, usually during the early phase of primary illness, and was transient. Hemolytic C4 was low, and the effect of inulin to decrease complement levels was blunted, suggested both classic and alternative pathways may be deficient. However, associated depression of immunoreactive levels of components assayed (C3, C4, C5, factor B, and properdin) was not consistently found. This disparity raises the possibility of enhanced in vitro inactivation analogous to activation by immune complexes. Images Fig. 2 PMID:6901703

  7. Efficacy of plasma therapy in atypical hemolytic uremic syndrome with complement factor H mutations.

    PubMed

    Lapeyraque, Anne-Laure; Wagner, Eric; Phan, Véronique; Clermont, Marie-José; Merouani, Aïcha; Frémeaux-Bacchi, Véronique; Goodship, Timothy H J; Robitaille, Pierre

    2008-08-01

    Atypical hemolytic uremic syndrome (aHUS) frequently results in end-stage renal failure and can be lethal. Several studies have established an association between quantitative or qualitative abnormalities in complement factor H and aHUS. Although plasma infusion and exchange are often advocated, guidelines have yet to be established. Long-term outcome for patients under treatment is still unknown. We describe a patient who, at 7 months of age, presented with aHUS associated with combined de novo complement factor H mutations (S1191L and V1197A) on the same allele. Laboratory investigations showed normal levels of complements C4, C3 and factor H. Plasma exchanges and large-dose infusion therapy resulted in a resolution of hemolysis and recovery of renal function. Three recurrences were successfully treated by intensification of the plasma infusion treatment to intervals of 2 or 3 days. This patient showed good response to large doses of plasma infusions and her condition remained stable for 30 months with weekly plasma infusions (30 ml/kg). Long-term tolerance and efficacy of such intensive plasma therapy are still unknown. Reported secondary failure of plasma therapy in factor H deficiency warrants the search for alternative therapeutic approaches. PMID:18425537

  8. Beta-hemolytic activity of Trichomonas vaginalis correlates with virulence.

    PubMed Central

    Krieger, J N; Poisson, M A; Rein, M F

    1983-01-01

    The reasons that some women develop symptomatic trichomonal vaginitis, whereas many other infected women remain asymptomatic, are unclear, but it has been suggested that Trichomonas vaginalis strains vary in their intrinsic virulence. We describe beta-hemolytic activity in T. vaginalis which correlates with virulence in patients as well as in an animal model and in tissue culture. Fresh T. vaginalis isolates from four women with severe, symptomatic trichomoniasis had high-level (86.3 +/- 6.6%) hemolytic activity, whereas isolates from three completely asymptomatic women had low-level (45.3 +/- 8.4%) hemolytic activity (P less than 0.001). Hemolytic activity also correlated with the production of subcutaneous abscesses in mice (r = 0.74) and with destruction of CHO cell monolayers (r = 0.94). All of the 20 clinical isolates of T. vaginalis tested possessed hemolytic activity. The beta-hemolysin may be a virulence factor for T. vaginalis. Images PMID:6604026

  9. Physicochemical signatures of nanoparticle-dependent complement activation

    SciTech Connect

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis; Pham, Christine; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-03-21

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we developed an in vitro hemolytic assay protocol for measuring the nanoparticle-dependent complement activity of serum samples and applied this protocol to several nanoparticle formulations that differed in size, surface charge, and surface chemistry; quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework. The robustness and predictability of the model can be improved by training the model with additional data points that are uniformly distributed in the RHA/physicochemical descriptor space and by incorporating instability effects on nanoparticle physicochemical properties into the model.

  10. Anti-Legionella activity of staphylococcal hemolytic peptides.

    PubMed

    Marchand, A; Verdon, J; Lacombe, C; Crapart, S; Héchard, Y; Berjeaud, J M

    2011-05-01

    A collection of various Staphylococci was screened for their anti-Legionella activity. Nine of the tested strains were found to secrete anti-Legionella compounds. The culture supernatants of the strains, described in the literature to produce hemolytic peptides, were successfully submitted to a two step purification process. All the purified compounds, except one, corresponded to previously described hemolytic peptides and were not known for their anti-Legionella activity. By comparison of the minimal inhibitory concentrations, minimal permeabilization concentrations, decrease in the number of cultivable bacteria, hemolytic activity and selectivity, the purified peptides could be separated in two groups. First group, with warnericin RK as a leader, corresponds to the more hemolytic and bactericidal peptides. The peptides of the second group, represented by the PSMα from Staphylococcus epidermidis, appeared bacteriostatic and poorly hemolytic. PMID:21291938

  11. Disturbed sialic acid recognition on endothelial cells and platelets in complement attack causes atypical hemolytic uremic syndrome.

    PubMed

    Hyvärinen, Satu; Meri, Seppo; Jokiranta, T Sakari

    2016-06-01

    Uncontrolled activation of the complement system against endothelial and blood cells is central to the pathogenesis of atypical hemolytic uremic syndrome (aHUS). aHUS patients frequently carry mutations in the inhibitory complement regulator factor H (FH). Mutations cluster in domains 19 and 20 (FH19-20), which are critical for recognizing self surfaces. On endothelial cells, binding of FH is generally attributed to heparan sulfate. This theory, however, is questioned by the puzzling observation that some aHUS-associated mutations markedly enhance FH binding to heparin and endothelial cells. In this article, we show that, instead of disturbed heparin interactions, the impaired ability of C-terminal mutant FH molecules to recognize sialic acid in the context of surface-bound C3b explains their pathogenicity. By using recombinant FH19-20 as a competitor for FH and measuring erythrocyte lysis and deposition of complement C3b and C5b-9 on endothelial cells and platelets, we now show that several aHUS-associated mutations, which have been predicted to impair FH19-20 binding to sialic acid, prevent FH19-20 from antagonizing FH function on cells. When sialic acid was removed, the wild-type FH19-20 also lost its ability to interfere with FH function on cells. These results indicate that sialic acid is critical for FH-mediated complement regulation on erythrocytes, endothelial cells, and platelets. The inability of C-terminal mutant FH molecules to simultaneously bind sialic acid and C3b on cells provides a unifying explanation for their association with aHUS. Proper formation of FH-sialic acid-C3b complexes on surfaces exposed to plasma is essential for preventing cell damage and thrombogenesis characteristic of aHUS. PMID:27006390

  12. Combined Complement Gene Mutations in Atypical Hemolytic Uremic Syndrome Influence Clinical Phenotype

    PubMed Central

    Bresin, Elena; Rurali, Erica; Caprioli, Jessica; Sanchez-Corral, Pilar; Fremeaux-Bacchi, Veronique; Rodriguez de Cordoba, Santiago; Pinto, Sheila; Goodship, Timothy H.J.; Alberti, Marta; Ribes, David; Valoti, Elisabetta; Remuzzi, Giuseppe

    2013-01-01

    Several abnormalities in complement genes reportedly contribute to atypical hemolytic uremic syndrome (aHUS), but incomplete penetrance suggests that additional factors are necessary for the disease to manifest. Here, we sought to describe genotype–phenotype correlations among patients with combined mutations, defined as mutations in more than one complement gene. We screened 795 patients with aHUS and identified single mutations in 41% and combined mutations in 3%. Only 8%–10% of patients with mutations in CFH, C3, or CFB had combined mutations, whereas approximately 25% of patients with mutations in MCP or CFI had combined mutations. The concomitant presence of CFH and MCP risk haplotypes significantly increased disease penetrance in combined mutated carriers, with 73% penetrance among carriers with two risk haplotypes compared with 36% penetrance among carriers with zero or one risk haplotype. Among patients with CFH or CFI mutations, the presence of mutations in other genes did not modify prognosis; in contrast, 50% of patients with combined MCP mutation developed end stage renal failure within 3 years from onset compared with 19% of patients with an isolated MCP mutation. Patients with combined mutations achieved remission with plasma treatment similar to patients with single mutations. Kidney transplant outcomes were worse, however, for patients with combined MCP mutation compared with an isolated MCP mutation. In summary, these data suggest that genotyping for the risk haplotypes in CFH and MCP may help predict the risk of developing aHUS in unaffected carriers of mutations. Furthermore, screening patients with aHUS for all known disease-associated genes may inform decisions about kidney transplantation. PMID:23431077

  13. Minor Role of Plasminogen in Complement Activation on Cell Surfaces

    PubMed Central

    Hyvärinen, Satu; Jokiranta, T. Sakari

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare, but severe thrombotic microangiopathy. In roughly two thirds of the patients, mutations in complement genes lead to uncontrolled activation of the complement system against self cells. Recently, aHUS patients were described with deficiency of the fibrinolytic protein plasminogen. This zymogen and its protease form plasmin have both been shown to interact with complement proteins in the fluid phase. In this work we studied the potential of plasminogen to restrict complement propagation. In hemolytic assays, plasminogen inhibited complement activation, but only when it had been exogenously activated to plasmin and when it was used at disproportionately high concentrations compared to serum. Addition of only the zymogen plasminogen into serum did not hinder complement-mediated lysis of erythrocytes. Plasminogen could not restrict deposition of complement activation products on endothelial cells either, as was shown with flow cytometry. With platelets, a very weak inhibitory effect on deposition of C3 fragments was observed, but it was considered too weak to be significant for disease pathogenesis. Thus it was concluded that plasminogen is not an important regulator of complement on self cells. Instead, addition of plasminogen was shown to clearly hinder platelet aggregation in serum. This was attributed to plasmin causing disintegration of formed platelet aggregates. We propose that reduced proteolytic activity of plasmin on structures of growing thrombi, rather than on complement activation fragments, explains the association of plasminogen deficiency with aHUS. This adds to the emerging view that factors unrelated to the complement system can also be central to aHUS pathogenesis and suggests that future research on the mechanism of the disease should expand beyond complement dysregulation. PMID:26637181

  14. Complement, complement activation and anaphylatoxins in human ovarian follicular fluid.

    PubMed Central

    Perricone, R; de Carolis, C; Moretti, C; Santuari, E; de Sanctis, G; Fontana, L

    1990-01-01

    Functionally active complement was sought and detected in human follicular fluids obtained during the pre-ovulatory period. All the functional complement activities tested, including total haemolytic complement, classical pathway activity and alternative pathway activity were present in nine fluids from four different donors with values within the normal serum range. The immunochemical analysis demonstrated the presence of complement factors from C1 to C9, of B and of C1 INH, H, I. Complement anaphylatoxins were found employing RIA techniques in amounts significantly higher than in human plasma, thus demonstrating that follicular fluid complement, at least during the pre-ovulatory period, is partially activated. A possible role for urokinase-like substances in such an activation was indicated by further in vitro experiments. The presence of active complement in follicular fluid can be relevant for the function of the enzymatic multi-factorial mechanism of ovulation. PMID:2242616

  15. Complement

    MedlinePlus

    ... the suspected disease are done first. C3 and C4 are the complement components measured most often. A ... normal levels of the complement proteins C3 and C4 . Complement activity varies throughout the body. For example, ...

  16. Variation in hemolytic activity of Brachyspira hyodysenteriae strains from pigs.

    PubMed

    Mahu, Maxime; De Pauw, Nele; Vande Maele, Lien; Verlinden, Marc; Boyen, Filip; Ducatelle, Richard; Haesebrouck, Freddy; Martel, An; Pasmans, Frank

    2016-01-01

    Brachyspira hyodysenteriae is the primary cause of swine dysentery, which is responsible for major economic losses to the pig industry worldwide. The hemolytic activity of 10 B. hyodysenteriae strains isolated from stools of pigs with mild to mucohemorrhagic diarrhea was compared and seven hemolysis associated genes were sequenced. Hemolysis induced by these strains varied from strong to near absent. One weakly hemolytic B. hyodysenteriae strain showed sequence changes in five hemolysis associated genes (tlyA, tlyB, hemolysin III, hemolysin activation protein and hemolysin III channel protein) resulting in amino acid substitutions. The occurrence of weakly hemolytic strains identifiable as B. hyodysenteriae should be taken into account in swine dysentery diagnostics. The presence of these strains may affect herd dysentery status, with great impact on a farms trading opportunities. PMID:27338265

  17. Examining coagulation-complement crosstalk: complement activation and thrombosis.

    PubMed

    Foley, Jonathan H

    2016-05-01

    The coagulation and complement systems are ancestrally related enzymatic cascades of the blood. Although their primary purposes have diverged over the past few hundred million years, they remain inextricably connected. Both complement and coagulation systems limit infection by pathogens through innate immune mechanisms. Recently, it has been shown that hyperactive complement (in particular, elevated C5a/C5b-9) is involved in the pathogenesis (including thrombosis) of diseases such as paroxysmal nocturnal hemoglobinuria, atypical haemolytic uremic syndrome, antiphospholipid syndrome and bacteremia. Although these diseases together account for many thrombosis cases, there are many more where complement activation is not considered a causative factor leading to thrombosis. To better understand what role complement may play in the pathogenesis of thrombosis a better understanding of the mechanisms that cause over-active complement in thrombotic disease is required. PMID:27207425

  18. Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity.

    PubMed

    Punia, Ashish; He, Edward; Lee, Kevin; Banerjee, Probal; Yang, Nan-Loh

    2014-07-01

    Acrylic copolymers with appropriate compositions of counits having cationic charge with 2-carbon and 6-carbon spacer arms can show superior antibacterial activities with concomitant very low hemolytic effect. These amphiphilic copolymers represent one of the most promising synthetic polymer antibacterial systems reported. PMID:24854366

  19. Hemolytic activity of dermatophytes species isolated from clinical specimens.

    PubMed

    Aktas, E; Yıgıt, N

    2015-03-01

    Hemolytic activity was recently reported for several pathogenic fungal species, such as Aspergillus, Candida, Trichophyton, Penicillium and Fusarium. Based on a number of mechanistic and characterization studies, several fungal hemolysins have been proposed as virulence factors. Hemolysins lyse red blood cells resulting in the release of iron, an important growth factor for microbes especially during infection. The requirement of iron in fungal growth is necessary for metabolic processes and as a catalyst for various biochemical processes. Expression of a hemolytic protein with capabilities to lyse red blood cells has also been suggested to provide a survival strategy for fungi during opportunistic infections. The aims of this study were to investigate the hemolytic activities of dermatophytes species isolated from patients with dermatophytosis. Hair, skin and nail samples of patients were examined with direct microscopy using potassium hydroxide and cultivated on Mycobiotic agar and Sabouraud's dextrose agar. To determine hemolytic activities of dermatophytes species, they were subcultured on Columbia Agar with 5% sheep blood and incubated for 7-14 days at 25°C in aerobic conditions. Media which displayed hemolysis were further incubated for 1-5 days at 37°C to increase hemolytic activity. In this study, 66 dermatophytes strains were isolated from clinical specimens and were identified by six different species: 43 (65.1%) Trichophyton rubrum, 7 (10.7%) Trichophyton mentagrophytes, 5 (7.6%) Microsporum canis, 5 (7.6%) Trichophyton tonsurans, 4 (6.0%) Epidermophyton floccosum and 2 (3.0%) Trichophyton violaceum. Twenty-one T. rubrum strains showed incomplete (alpha) hemolysis and nine T. rubrum strains showed complete (beta) hemolysis, whereas hemolysis was absent in 13 T. rubrum strains. Four T. mentagrophytes strains showed complete hemolysis and three T. tonsurans strains showed incomplete hemolysis. However, M. canis, E. floccosum and T. violaceum species had

  20. Methods for quantitative detection of antibody-induced complement activation on red blood cells.

    PubMed

    Meulenbroek, Elisabeth M; Wouters, Diana; Zeerleder, Sacha

    2014-01-01

    Antibodies against red blood cells (RBCs) can lead to complement activation resulting in an accelerated clearance via complement receptors in the liver (extravascular hemolysis) or leading to intravascular lysis of RBCs. Alloantibodies (e.g. ABO) or autoantibodies to RBC antigens (as seen in autoimmune hemolytic anemia, AIHA) leading to complement activation are potentially harmful and can be - especially when leading to intravascular lysis - fatal(1). Currently, complement activation due to (auto)-antibodies on RBCs is assessed in vitro by using the Coombs test reflecting complement deposition on RBC or by a nonquantitative hemolytic assay reflecting RBC lysis(1-4). However, to assess the efficacy of complement inhibitors, it is mandatory to have quantitative techniques. Here we describe two such techniques. First, an assay to detect C3 and C4 deposition on red blood cells that is induced by antibodies in patient serum is presented. For this, FACS analysis is used with fluorescently labeled anti-C3 or anti-C4 antibodies. Next, a quantitative hemolytic assay is described. In this assay, complement-mediated hemolysis induced by patient serum is measured making use of spectrophotometric detection of the released hemoglobin. Both of these assays are very reproducible and quantitative, facilitating studies of antibody-induced complement activation. PMID:24514151

  1. Legionella pneumophila lipopolysaccharide activates the classical complement pathway.

    PubMed Central

    Mintz, C S; Schultz, D R; Arnold, P I; Johnson, W

    1992-01-01

    Legionella pneumophila is a gram-negative bacterium capable of entering and growing in alveolar macrophages and monocytes. Complement and complement receptors are important in the uptake of L. pneumophila by human mononuclear phagocytes. The surface molecules of L. pneumophila that activate the complement system are unknown. To identify these factors, we investigated the effects of L. pneumophila lipopolysaccharide (LPS) on the classical and alternative complement pathways of normal human serum by functional hemolytic assays. Although incubation of LPS in normal human serum at 37 degrees C resulted in the activation of both pathways, complement activation proceeded primarily through the classical pathway. Activation of the classical pathway by LPS was dependent on natural antibodies of the immunoglobulin M class that were present in various quantities in sera from different normal individuals but were absent in an immunoglobulin-deficient serum obtained from an agammaglobulinemic patient. Additional studies using sheep erythrocytes coated with LPS suggested that the antibodies recognized antigenic sites in the carbohydrate portion of LPS. The ability of LPS to interact with the complement system suggests a role for LPS in the uptake of L. pneumophila by mononuclear phagocytes. PMID:1612744

  2. Role of sph2 Gene Regulation in Hemolytic and Sphingomyelinase Activities Produced by Leptospira interrogans

    PubMed Central

    Narayanavari, Suneel A.; Lourdault, Kristel; Sritharan, Manjula; Haake, David A.; Matsunaga, James

    2015-01-01

    . Complementation of the mutation with the sph2 gene partially restored production of hemolytic and sphingomyelinase activities. These results indicate that the sph2 gene product contributes to the hemolytic and sphingomyelinase activities secreted by L. interrogans and most likely dominates those functions under the culture condition tested. PMID:26274394

  3. Complement Activation in Placental Malaria

    PubMed Central

    McDonald, Chloe R.; Tran, Vanessa; Kain, Kevin C.

    2015-01-01

    Sixty percent of all pregnancies worldwide occur in malaria endemic regions. Pregnant women are at greater risk of malaria infection than their non-pregnant counterparts and have a higher risk of adverse birth outcomes including low birth weight resulting from intrauterine growth restriction and/or preterm birth. The complement system plays an essential role in placental and fetal development as well as the host innate immune response to malaria infection. Excessive or dysregulated complement activation has been associated with the pathobiology of severe malaria and with poor pregnancy outcomes, dependent and independent of infection. Here we review the role of complement in malaria and pregnancy and discuss its part in mediating altered placental angiogenesis, malaria-induced adverse birth outcomes, and disruptions to the in utero environment with possible consequences on fetal neurodevelopment. A detailed understanding of the mechanisms underlying adverse birth outcomes, and the impact of maternal malaria infection on fetal neurodevelopment, may lead to biomarkers to identify at-risk pregnancies and novel therapeutic interventions to prevent these complications. PMID:26733992

  4. Streptolysin S of Streptococcus anginosus exhibits broad-range hemolytic activity.

    PubMed

    Asam, Daniela; Mauerer, Stefanie; Spellerberg, Barbara

    2015-04-01

    Streptococcus anginosus is a commensal of mucous membranes and an emerging human pathogen. Some strains, including the type strain, display a prominent β-hemolytic phenotype. A gene cluster (sag), encoding a variant of streptolysin S (SLS) has recently been identified as the genetic background for β-hemolysin production in S. anginosus. In this study, we further characterized the hemolytic and cytolytic activity of the S. anginosus hemolysin in comparison with other streptococcal hemolysins. The results indicate that SLS of S. anginosus is a broad-range hemolysin able to lyse erythrocytes of different species, including horse, bovine, rabbit and even chicken. The hemolytic activity is temperature dependent, and a down-regulation of the hemolysin expression is induced in the presence of high glucose levels. Survival assays indicate that in contrast to other streptococcal species, S. anginosus does not require SLS for survival in the presence of human granulocytes. Cross-complementation studies using the sagB and sagD genes of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis demonstrated functional similarities to the S. anginosus SLS. Nevertheless, distinct differences to other streptolysin S variants were noted and provide further insights into the molecular mechanisms of SLS pathogen host interactions. PMID:25381594

  5. ATYPICAL HEMOLYTIC UREMIC SYNDROME AND GENETIC ABERRATIONS IN THE COMPLEMENT FACTOR H RELATED 5 GENE

    PubMed Central

    Westra, Dineke; Vernon, Katherine A.; Volokhina, Elena B.; Pickering, Matthew C.; van de Kar, Nicole C.A.J.; van den Heuvel, Lambert P.

    2012-01-01

    Atypical HUS (aHUS) is a severe renal disorder that is associated with mutations in the genes encoding proteins of the complement alternative pathway. Previously, we identified pathogenic variations in genes encoding complement regulators (CFH, CFI, and MCP) in our aHUS cohort. In this study, we screened for mutations in the alternative pathway regulator CFHR5 in 65 aHUS patients by means of PCR on genomic DNA and sequence analysis. Potential pathogenicity of genetic alterations was determined by published data on CFHR5 variants, evolutionary conservation, and in silico mutation prediction programs. Detection of serum CFHR5 was performed by western blot analysis and ELISA. A potentially pathogenic sequence variation was found in CFHR5 in three patients (4.6%). All variations were located in SCRs that might be involved in binding to C3b, heparin, or CRP. The identified CFHR5 mutations require functional studies to determine their relevance to aHUS, but they might be candidates for an altered genetic profile predisposing to the disease. PMID:22622361

  6. Hemolytic activity in enterotoxigenic and non-enterotoxigenic strains of Escherichia coli.

    PubMed Central

    DeBoy, J M; Wachsmuth, I K; Davis, B R

    1980-01-01

    We screened 223 strains of Escherichia coli belonging to serotypes previously associated with the production of enterotoxin for hemolytic activity, using horse erythrocytes in liquid and in agar media. Thirty-eight were hemolytic. They belonged to nine different serotypes; most (65.8%) belonged to one serotype, O6: H-. Additionally, all 38 strains were specifically assayed for a filterable, heat-labile hemolytic activity previously associated with a hemolysin plasmid. A comparison of hemolytic activity and enterotoxicity showed that none of 32 strains hemolytic in both media was enterotoxigenic; 28 of the 32 expressed heat-labile hemolytic activity. Four of the six strains hemolytic in only one of the media were enterotoxigenic; none of these six expressed heat-labile hemolytic activity. Of 223 strains, 176 that were of human origin and isolated in the United States were further assayed for three traditionally plasmid-mediated characteristics: heat-labile enterotoxin, heat-stable enterotoxin, and colonization factors. The interrelationships of these characteristics, including hemolytic activity, may reflect varying degrees of plasmid compatibility. PMID:7014606

  7. Recent approaches for reducing hemolytic activity of chemotherapeutic agents.

    PubMed

    Jeswani, Gunjan; Alexander, Amit; Saraf, Shailendra; Saraf, Swarnlata; Qureshi, Azra; Ajazuddin

    2015-08-10

    Drug induced hemolysis is a frequent complication associated with chemotherapy. It results from interaction of drug with erythrocyte membrane and leads to cell lysis. In recent past, various approaches were made to reduce drug-induced hemolysis, which includes drug polymer conjugation, drug delivery via colloidal carriers and hydrogels, co-administration of botanical agents and modification in molecular chemistry of drug molecules. The basic concept behind these strategies is to protect the red blood cells from membrane damaging effects of drugs. There are several examples of drug polymer conjugate that either are approved by Food and Drug Administration or are under clinical trial for delivering drugs with reduced toxicities. Likewise, colloidal carriers are also used successfully nowadays for the delivery of various chemotherapeutic agents like gemcitabine and amphotericin B with remarkable decrease in their hemolytic activity. Similarly, co-administration of botanical agents with drugs works as secondary system proving protection and strength to erythrocyte membranes. In addition to the above statement, interaction hindrance between RBC and drug molecule by molecular modification plays an important role in reducing hemolysis. This review predominantly describes the above recent approaches explored to achieve the reduced hemolytic activity of drugs especially chemotherapeutic agents. PMID:26047758

  8. Complement Activation and Inhibition in Wound Healing

    PubMed Central

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required. PMID:23346185

  9. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats

    PubMed Central

    Sharp, Julia A.; Hair, Pamela S.; Pallera, Haree K.; Kumar, Parvathi S.; Mauriello, Clifford T.; Nyalwidhe, Julius O.; Phelps, Cody A.; Park, Dalnam; Thielens, Nicole M.; Pascal, Stephen M.; Chen, Waldon; Duffy, Diane M.; Lattanzio, Frank A.; Cunnion, Kenji M.; Krishna, Neel K.

    2015-01-01

    The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases. PMID:26196285

  10. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

    PubMed

    Sharp, Julia A; Hair, Pamela S; Pallera, Haree K; Kumar, Parvathi S; Mauriello, Clifford T; Nyalwidhe, Julius O; Phelps, Cody A; Park, Dalnam; Thielens, Nicole M; Pascal, Stephen M; Chen, Waldon; Duffy, Diane M; Lattanzio, Frank A; Cunnion, Kenji M; Krishna, Neel K

    2015-01-01

    The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases. PMID:26196285

  11. Hemolytic activity of venom from crown-of-thorns starfish Acanthaster planci spines

    PubMed Central

    2013-01-01

    Background The crown-of-thorns starfish Acanthaster planci is a venomous species from Taiwan whose venom provokes strong hemolytic activity. To understand the hemolytic properties of A. planci venom, samples were collected from A. planci spines in the Penghu Islands, dialyzed with distilled water, and lyophilized into A. planci spine venom (ASV) powder. Results Both crude venom and ASV cause 50% hemolysis at a concentration of 20 μg/mL. The highest hemolytic activity of ASV was measured at pH 7.0-7.4; ASV-dependent hemolysis was sharply reduced when the pH was lower than 3 or greater than 8. There was almost no hemolytic activity when the Cu2+ concentration was increased to 10 mM. Furthermore, incubation at 100°C for 30 to 60 minutes sharply decreased the hemolytic activity of ASV. After treatment with the protease α-chymotrypsin, the glycoside hydrolase cellulase, and the membrane component cholesterin, the hemolytic activity of ASV was significantly inhibited. Conclusions The results of this study provide fundamental information about A. planci spine venom. The hemolytic activity was affected by pH, temperature, metal ions, EDTA, cholesterin, proteases, and glycoside hydrolases. ASV hemolysis was inhibited by Cu2+, cholesterin, α-chymotrypsin, and cellulose, factors that might prevent the hemolytic activity of venom and provide the medical treatment for sting. PMID:24063308

  12. Complement System Part I – Molecular Mechanisms of Activation and Regulation

    PubMed Central

    Merle, Nicolas S.; Church, Sarah Elizabeth; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure–function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors. PMID:26082779

  13. A steryl glycoside fraction with hemolytic activity from tubers of Momordica cochinchinensis.

    PubMed

    Ng, T B; Li, W W; Yeung, H W

    1986-10-01

    A hemolytic fraction has been obtained from fresh tubers of Momordica cochinchinensis. The fraction was strongly adsorbed on DEAE-Sepharose CL6B. It did not stain with Coomassie brilliant blue in SDS-polyacrylamide gel electrophoresis and it gave no immunoprecipitin arcs in immunoelectrophoresis. The hemolytic activity of the fraction was resistant to heat and proteolytic enzymes. The behavior of the fraction in thin-layer chromatography and its positive reaction in Liebermann-Burchard test indicated that the hemolytic activity of the fraction can be attributed to a steryl glycoside(s). PMID:3821135

  14. Zinc Supplementation Inhibits Complement Activation in Age-Related Macular Degeneration

    PubMed Central

    Blom, Anna M.; Mohlin, Frida C.; den Hollander, Anneke I.; van de Ven, Johannes P. H.; van Huet, Ramon A. C.; Groenewoud, Joannes M. M.; Tian, Yuan; Berendschot, Tos T. J. M.; Lechanteur, Yara T. E.; Fauser, Sascha; de Bruijn, Chris; Daha, Mohamed R.; van der Wilt, Gert Jan; Hoyng, Carel B.; Klevering, B. Jeroen

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. AMD is a multifactorial disorder but complement-mediated inflammation at the level of the retina plays a pivotal role. Oral zinc supplementation can reduce the progression of AMD but the precise mechanism of this protective effect is as yet unclear. We investigated whether zinc supplementation directly affects the degree of complement activation in AMD and whether there is a relation between serum complement catabolism during zinc administration and the complement factor H (CFH) gene or the Age-Related Maculopathy susceptibility 2 (ARMS2) genotype. In this open-label clinical study, 72 randomly selected AMD patients in various stages of AMD received a daily supplement of 50 mg zinc sulphate and 1 mg cupric sulphate for three months. Serum complement catabolism–defined as the C3d/C3 ratio–was measured at baseline, throughout the three months of supplementation and after discontinuation of zinc administration. Additionally, downstream inhibition of complement catabolism was evaluated by measurement of anaphylatoxin C5a. Furthermore, we investigated the effect of zinc on complement activation in vitro. AMD patients with high levels of complement catabolism at baseline exhibited a steeper decline in serum complement activation (p<0.001) during the three month zinc supplementation period compared to patients with low complement levels. There was no significant association of change in complement catabolism and CFH and ARMS2 genotype. In vitro zinc sulphate directly inhibits complement catabolism in hemolytic assays and membrane attack complex (MAC) deposition on RPE cells. This study provides evidence that daily administration of 50 mg zinc sulphate can inhibit complement catabolism in AMD patients with increased complement activation. This could explain part of the mechanism by which zinc slows AMD progression. Trial Registration The Netherlands National Trial Register

  15. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.

    PubMed

    Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L

    2001-02-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613

  16. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS

    PubMed Central

    Cofiell, Roxanne; Kukreja, Anjli; Bedard, Krystin; Yan, Yan; Mickle, Angela P.; Ogawa, Masayo; Bedrosian, Camille L.

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic, life-threatening disease characterized by uncontrolled complement activation, systemic thrombotic microangiopathy (TMA), and vital organ damage. We evaluated the effect of terminal complement blockade with the anti-C5 monoclonal antibody eculizumab on biomarkers of cellular processes involved in TMA in patients with aHUS longitudinally, during up to 1 year of treatment, compared with in healthy volunteers. Biomarker levels were elevated at baseline in most patients, regardless of mutational status, plasma exchange/infusion use, platelet count, or lactate dehydrogenase or haptoglobin levels. Eculizumab reduced terminal complement activation (C5a and sC5b-9) and renal injury markers (clusterin, cystatin-C, β2-microglobulin, and liver fatty acid binding protein-1) to healthy volunteer levels and reduced inflammation (soluble tumor necrosis factor receptor-1), coagulation (prothrombin fragment F1+2 and d-dimer), and endothelial damage (thrombomodulin) markers to near-normal levels. Alternative pathway activation (Ba) and endothelial activation markers (soluble vascular cell adhesion molecule-1) decreased but remained elevated, reflecting ongoing complement activation in aHUS despite complete terminal complement blockade. These results highlight links between terminal complement activation and inflammation, endothelial damage, thrombosis, and renal injury and underscore ongoing risk for systemic TMA and progression to organ damage. Further research regarding underlying complement dysregulation is warranted. This trial was registered at www.clinicaltrials.gov as #NCT01194973. PMID:25833956

  17. Complement activation in discordant hepatic xenotransplantation.

    PubMed

    Tector, A J; Chen, X; Soderland, C; Tchervenkov, J I

    1998-11-01

    Little is known about hyperacute rejection in hepatic xenotransplantation. Information from clinical xenoperfusions suggests that the liver may be rejected by a mechanism less vigorous than either kidney or heart xenografts. We used the in vitro model of porcine hepatic sinusoidal endothelial cells (PHEC) incubated with either complement replete or deficient human serum to determine the relative roles of the classical and alternate pathways of complement in the immediate response to hepatic xenotransplantation. Our results suggest that either the classical or alternate pathways are capable of independently activating the complement cascade upon exposure to the porcine hepatic sinusoidal endothelium. Our results also imply that either pathway alone is capable of initiating similar degrees of injury as the entire cascade. PMID:9915253

  18. Novel hemagglutinating, hemolytic and cytotoxic activities of the intermediate subunit of Entamoeba histolytica lectin

    PubMed Central

    Kato, Kentaro; Yahata, Kazuhide; Gopal Dhoubhadel, Bhim; Fujii, Yoshito; Tachibana, Hiroshi

    2015-01-01

    Galactose and N-acetyl-D-galactosamine (Gal/GalNAc) inhibitable lectin of Entamoeba histolytica, a common protozoan parasite, has roles in pathogenicity and induction of protective immunity in mouse models of amoebiasis. The lectin consists of heavy (Hgl), light (Lgl), and intermediate (Igl) subunits. Hgl has lectin activity and Lgl does not, but little is known about the activity of Igl. In this study, we assessed various regions of Igl for hemagglutinating activity using recombinant proteins expressed in Escherichia coli. We identified a weak hemagglutinating activity of the protein. Furthermore, we found novel hemolytic and cytotoxic activities of the lectin, which resided in the carboxy-terminal region of the protein. Antibodies against Igl inhibited the hemolytic activity of Entamoeba histolytica trophozoites. This is the first report showing hemagglutinating, hemolytic and cytotoxic activities of an amoebic molecule, Igl. PMID:26354528

  19. Characteristics of hemolytic activity induced by skin secretions of the frog Kaloula pulchra hainana

    PubMed Central

    2013-01-01

    Background The hemolytic activity of skin secretions obtained by stimulating the frog Kaloula pulchra hainana with diethyl ether was tested using human, cattle, rabbit, and chicken erythrocytes. The skin secretions had a significant concentration-dependent hemolytic effect on erythrocytes. The hemolytic activity of the skin secretions was studied in the presence of osmotic protectants (polyethylene glycols and carbohydrates), cations (Mg2+, Ca2+, Ba2+, Cu2+, and K+), or antioxidants (ascorbic acid, reduced glutathione, and cysteine). Results Depending on their molecular mass, osmotic protectants effectively inhibited hemolysis. The inhibition of skin hemolysis was observed after treatment with polyethylene glycols (1000, 3400, and 6000 Da). Among divalent cations, only 1 mM Cu2+ markedly inhibited hemolytic activity. Antioxidant compounds slightly reduced the hemolytic activity. Conclusions The results suggested that skin secretions of K. pulchra hainana induce a pore-forming mechanism to form pores with a diameter of 1.36-2.0 nm rather than causing oxidative damage to the erythrocyte membrane. PMID:24499077

  20. Carbamazepine-induced hemolytic and aplastic crises associated with reduced glutathione peroxidase activity of erythrocytes.

    PubMed

    Yamamoto, Masaki; Suzuki, Nobuhiro; Hatakeyama, Naoki; Kubo, Noriaki; Tachi, Nobutada; Kanno, Hitoshi; Fujii, Hisaichi; Tsutsumi, Hiroyuki

    2007-11-01

    Although pure red cell aplasia is a well-known side effect of carbamazepine treatment, intravascular hemolytic anemia is rare. We describe a 5-year-old boy who developed concurrent intravascular hemolytic anemia and erythroblastopenia, probably due to carbamazepine. Carbamazepine treatment was subsequently discontinued, and the patient was treated with red blood cell transfusions, haptoglobin, and methylprednisolone. His hematologic abnormalities were almost fully recovered within 2 weeks. Examination of the patient's and mother's erythrocyte enzyme activities revealed mildly decreased erythrocyte glutathione peroxidase (GSH-Px) activity. We speculate that patients with reduced GSH-Px activity are at a high risk of developing carbamazepine-induced hemolytic crisis and/or aplastic crisis. PMID:18055338

  1. Hemolytic activity of plasma and urine from rabbits experimentally infected with Legionella pneumophila.

    PubMed

    Baine, W B; Rasheed, J K; Maca, H W; Kaufmann, A F

    1979-01-01

    Rabbits were infected with Legionella pneumophila by intravenous administration of allantoic fluid from eggs infected with this organism. Heated plasma from animals with severe illness caused by L. pneumophila lysed erythrocytes from guinea pigs in a radial hemolysis assay. Plasma from control rabbits did not lyse guinea pig erythrocytes in parallel assays. Urine from two of the infected animals also showed hemolytic activity. Attempts to induce illness in rabbits by intranasal administration of L. pneumohpila were less successful. Allantoic fluid from embrynated hen eggs developed hemolytic activity when maintained eithr in vitro at room temperature or in eggs whose embryos were killed by refrigeration. Hemolytic activity in filtrates of allantoic fluid from eggs infected with L. pneumophila, as previously reported, may not be due to the presence of bacterial hemolysins in the fluid. PMID:399383

  2. Hemolytic anemia

    MedlinePlus

    Anemia - hemolytic ... bones that helps form all blood cells. Hemolytic anemia occurs when the bone marrow isn't making ... destroyed. There are several possible causes of hemolytic anemia. Red blood cells may be destroyed due to: ...

  3. Hemolytic Anemia

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Hemolytic Anemia? Hemolytic anemia (HEE-moh-lit-ick uh-NEE-me-uh) ... blood cells to replace them. However, in hemolytic anemia, the bone marrow can't make red blood ...

  4. Hemolytic anemia

    MedlinePlus

    Anemia - hemolytic ... Hemolytic anemia occurs when the bone marrow is unable to replace the red blood cells that are being destroyed. Immune hemolytic anemia occurs when the immune system mistakenly sees your ...

  5. Comparison of Hemagglutination and Hemolytic Activity of Various Bacterial Clinical Isolates Against Different Human Blood Groups

    PubMed Central

    HRV, Rajkumar; Devaki, Ramakrishna

    2016-01-01

    Among the various pathogenic determinants shown by microorganisms hemagglutination and hemolysin production assume greater significance in terms of laboratory identification. This study evaluated the hemagglutination and hemolytic activity of various bacterial isolates against different blood groups. One hundred and fifty bacterial strains, isolated from clinical specimens like urine, pus, blood, and other body fluids were tested for their hemagglutinating and hemolytic activity against human A, B, AB, and O group red blood cells. Among the 150 isolates 81 were Escherichia coli, 18 were Klebsiella pneumoniae, 19 were Pseudomonas aeruginosa, 10 were Pseudomonas spp, six were Proteus mirabilis, and the rest 16 were Staphylococcus aureus. Nearly 85% of the isolates agglutinated A group cells followed by B and AB group (59.3% and 60.6% respectively). Least number of isolates agglutinated O group cells (38.0%). When the hemolytic activity was tested, out of these 150 isolates 79 (52.6%) hemolyzed A group cells, 61 (40.6%) hemolyzed AB group cells, 46 (30.6%) hemolyzed B group cells, and 57 (38.6%) isolates hemolyzed O group cells. Forty-six percent of the isolates exhibited both hemagglutinating and hemolytic property against A group cells, followed by B and AB group cells (28.6% and 21.3% respectively). Least number of isolates i.e., 32 (21.3%) showed both the properties against O group cells. The isolates showed wide variation in their hemagglutination and hemolytic properties against different combinations of human blood group cells. The study highlights the importance of selection of the type of cells especially when human RBCs are used for studying the hemagglutination and hemolytic activity of bacterial isolates because these two properties are considered as characteristic of pathogenic strains. PMID:27014523

  6. Comparison of Hemagglutination and Hemolytic Activity of Various Bacterial Clinical Isolates Against Different Human Blood Groups.

    PubMed

    Hrv, Rajkumar; Devaki, Ramakrishna; Kandi, Venkataramana

    2016-01-01

    Among the various pathogenic determinants shown by microorganisms hemagglutination and hemolysin production assume greater significance in terms of laboratory identification. This study evaluated the hemagglutination and hemolytic activity of various bacterial isolates against different blood groups. One hundred and fifty bacterial strains, isolated from clinical specimens like urine, pus, blood, and other body fluids were tested for their hemagglutinating and hemolytic activity against human A, B, AB, and O group red blood cells. Among the 150 isolates 81 were Escherichia coli, 18 were Klebsiella pneumoniae, 19 were Pseudomonas aeruginosa, 10 were Pseudomonas spp, six were Proteus mirabilis, and the rest 16 were Staphylococcus aureus. Nearly 85% of the isolates agglutinated A group cells followed by B and AB group (59.3% and 60.6% respectively). Least number of isolates agglutinated O group cells (38.0%). When the hemolytic activity was tested, out of these 150 isolates 79 (52.6%) hemolyzed A group cells, 61 (40.6%) hemolyzed AB group cells, 46 (30.6%) hemolyzed B group cells, and 57 (38.6%) isolates hemolyzed O group cells. Forty-six percent of the isolates exhibited both hemagglutinating and hemolytic property against A group cells, followed by B and AB group cells (28.6% and 21.3% respectively). Least number of isolates i.e., 32 (21.3%) showed both the properties against O group cells. The isolates showed wide variation in their hemagglutination and hemolytic properties against different combinations of human blood group cells. The study highlights the importance of selection of the type of cells especially when human RBCs are used for studying the hemagglutination and hemolytic activity of bacterial isolates because these two properties are considered as characteristic of pathogenic strains. PMID:27014523

  7. Complement inhibitors to treat IgM-mediated autoimmune hemolysis.

    PubMed

    Wouters, Diana; Zeerleder, Sacha

    2015-11-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia. PMID:26521297

  8. Complement inhibitors to treat IgM-mediated autoimmune hemolysis

    PubMed Central

    Wouters, Diana; Zeerleder, Sacha

    2015-01-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia. PMID:26521297

  9. Membrane-associated CD93 regulates leukocyte migration and C1q-hemolytic activity during murine peritonitis1

    PubMed Central

    Greenlee-Wacker, Mallary C.; Briseño, Carlos; Galvan, Manuel; Moriel, Gabriela; Velázquez, Peter; Bohlson, Suzanne S.

    2011-01-01

    CD93 is emerging as a novel regulator of inflammation; however, its molecular function is unknown. CD93 exists as a membrane-associated glycoprotein on the surface of cells involved in the inflammatory cascade, including endothelial and myeloid cells. A soluble form (sCD93) is detectable in blood and is elevated with inflammation. Here we demonstrate heightened susceptibility to thioglycollate-induced peritonitis in CD93−/− mice. CD93−/− mice showed a 1.6 to 1.8-fold increase in leukocyte infiltration during thioglycollate-induced peritonitis between 3 and 24 hours that returned to wildtype levels by 96 hours. Impaired vascular integrity in CD93−/− mice during peritonitis was demonstrated using fluorescence multi-photon intravital microscopy; however, no differences in cytokine or chemokine levels were detected by Luminex Multiplex or ELISA analysis. C1q-hemolytic activity in CD93−/− mice was decreased by 22% at time zero and by 46% 3 hours post thioglycollate injection suggesting a defect in the classical complement pathway. Leukocyte recruitment and C1q-hemolytic activity was restored to wildtype levels when CD93 was expressed on either hematopoietic cells or non-hematopoietic cells in bone marrow chimeric mice. However, elevated levels of sCD93 in inflammatory fluid were observed only when CD93 was expressed on non-hematopoietic cells. Since cell-associated CD93 was sufficient to restore a normal inflammatory response, these data suggest that cell-associated CD93, and not sCD93, regulates leukocyte recruitment and complement activation during murine peritonitis. PMID:21849679

  10. Membrane-associated CD93 regulates leukocyte migration and C1q-hemolytic activity during murine peritonitis.

    PubMed

    Greenlee-Wacker, Mallary C; Briseño, Carlos; Galvan, Manuel; Moriel, Gabriela; Velázquez, Peter; Bohlson, Suzanne S

    2011-09-15

    CD93 is emerging as a novel regulator of inflammation; however, its molecular function is unknown. CD93 exists as a membrane-associated glycoprotein on the surface of cells involved in the inflammatory cascade, including endothelial and myeloid cells. A soluble form (sCD93) is detectable in blood and is elevated with inflammation. In this study, we demonstrate heightened susceptibility to thioglycollate-induced peritonitis in CD93(-/-) mice. CD93(-/-) mice showed a 1.6-1.8-fold increase in leukocyte infiltration during thioglycollate-induced peritonitis between 3 and 24 h that returned to wild type levels by 96 h. Impaired vascular integrity in CD93(-/-) mice during peritonitis was demonstrated using fluorescence multiphoton intravital microscopy; however, no differences in cytokine or chemokine levels were detected with Luminex Multiplex or ELISA analysis. C1q-hemolytic activity in CD93(-/-) mice was decreased by 22% at time zero and by 46% 3 h after thioglycollate injection, suggesting a defect in the classical complement pathway. Leukocyte recruitment and C1q-hemolytic activity was restored to wild type levels when CD93 was expressed on either hematopoietic cells or nonhematopoietic cells in bone marrow chimeric mice. However, elevated levels of sCD93 in inflammatory fluid were observed only when CD93 was expressed on nonhematopoietic cells. Because cell-associated CD93 was sufficient to restore a normal inflammatory response, these data suggest that cell-associated CD93, and not sCD93, regulates leukocyte recruitment and complement activation during murine peritonitis. PMID:21849679

  11. Synthesis, cytotoxicity, and hemolytic activity of 6'-O-substituted dioscin derivatives.

    PubMed

    Li, Wei; Qiu, Zaozao; Wang, Yibing; Zhang, Yichun; Li, Ming; Yu, Jia; Zhang, Lihong; Zhu, Ziyan; Yu, Biao

    2007-12-28

    Dioscin derivatives (1-12) with a variety of substitutions at the 6'-OH of the chacotriosyl residue and the 3',6'-anhydrosaponin derivatives (26, 30, and 32) were synthesized. All these derivatives showed much lower cytotoxicity than that of the parent dioscin, while their hemolytic activities were partially retained depending on the various 6'-O-substitutions. PMID:17945208

  12. Typical Hus: Evidence of Acute Phase Complement Activation from a Daycare Outbreak

    PubMed Central

    Brady, Tammy M; Pruette, Cozumel; Loeffler, Lauren F; Weidemann, Darcy; Strouse, John J; Gavriilaki, Eleni; Brodsky, Robert A

    2016-01-01

    The clinical manifestations of typical hemolytic uremic syndrome (HUS) encompass a wide spectrum. Despite the potentially severe sequelae from this syndrome, treatment approaches remain supportive. We present the clinical course of a child who contracted Shiga toxin-positive E. coli (STEC) from a daycare center during an outbreak. Utilizing the modified Ham test which is a rapid, serum-based functional assay used to detect activation of the alternative pathway of complement as observed in atypical HUS, patient sera revealed evidence of increased complement activation in the acute phase of the syndrome but not after resolution. Further, this complement activation was attenuated by eculizumab in vitro, an effect that was replicated in vitro utilizing Shiga toxin as a stimulus of complement activation in normal serum. Our report suggests that complement blockade may be effective in the treatment of STEC-HUS when initiated early in the disease. Given the epidemic nature of the disease that limits the feasibility of randomized clinical trials, further studies are needed to determine the value of early eculizumab treatment in STEC-HUS. PMID:27413789

  13. Sigma E Regulators Control Hemolytic Activity and Virulence in a Shrimp Pathogenic Vibrio harveyi

    PubMed Central

    Rattanama, Pimonsri; Thompson, Janelle R.; Kongkerd, Natthawan; Srinitiwarawong, Kanchana; Vuddhakul, Varaporn; Mekalanos, John J.

    2012-01-01

    Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V. vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei). Mutants were identified by comparing transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative regulator of the sigma factor (σE), was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030) to the wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins (OmpC-like and OmpN) and an upregulated protease (DegQ) which have been associated with σE in other organisms. Our study is the first report linking hemolytic activity to the σE regulators in pathogenic Vibrio species and suggests expression of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi. PMID:22384269

  14. Human Astrovirus Coat Protein Inhibits Serum Complement Activation via C1, the First Component of the Classical Pathway▿

    PubMed Central

    Bonaparte, Rheba S.; Hair, Pamela S.; Banthia, Deepa; Marshall, Dawn M.; Cunnion, Kenji M.; Krishna, Neel K.

    2008-01-01

    Human astroviruses (HAstVs) belong to a family of nonenveloped, icosahedral RNA viruses that cause noninflammatory gastroenteritis, predominantly in infants. Eight HAstV serotypes have been identified, with a worldwide distribution. While the HAstVs represent a significant public health concern, very little is known about the pathogenesis of and host immune response to these viruses. Here we demonstrate that HAstV type 1 (HAstV-1) virions, specifically the viral coat protein (CP), suppress the complement system, a fundamental component of the innate immune response in vertebrates. HAstV-1 virions and purified CP both suppress hemolytic complement activity. Hemolytic assays utilizing sera depleted of individual complement factors as well as adding back purified factors demonstrated that HAstV CP suppresses classical pathway activation at the first component, C1. HAstV-1 CP bound the A chain of C1q and inhibited serum complement activation, resulting in decreased C4b, iC3b, and terminal C5b-9 formation. Inhibition of complement activation was also demonstrated for HAstV serotypes 2 to 4, suggesting that this phenomenon is a general feature of these human pathogens. Since complement is a major contributor to the initiation and amplification of inflammation, the observed CP-mediated inhibition of complement activity may contribute to the lack of inflammation associated with astrovirus-induced gastroenteritis. Although diverse mechanisms of inhibition of complement activation have been described for many enveloped animal viruses, this is the first report of a nonenveloped icosahedral virus CP inhibiting classical pathway activation at C1. PMID:17959658

  15. Hemolytic activity and solubilizing capacity of raffinose and melezitose fatty acid monoesters prepared by enzymatic synthesis.

    PubMed

    Carvalho, Luis; Morales, Juan C; Pérez-Victoria, José M; Pérez-Victoria, Ignacio

    2015-05-01

    The hemolytic activity and solubilizing capacity of two families of non-reducing trisaccharide fatty acid monoesters have been studied to assess their usefulness as surfactants for pharmaceutical applications. The carbohydrate-based surfactants investigated included homologous series of raffinose and melezitose monoesters bearing C10 to C18 acyl chains prepared by lipase-catalyzed synthesis in organic media. The hemolytic activity was determined in vitro using a static method based on the addition of the surfactants to an erythrocyte suspension and subsequent spectrophotometric determination of the released hemoglobin. The effect of the carbohydrate head group, the acyl chain length and the regioisomeric purity was investigated. In all cases, the carbohydrate monoester surfactants decreased their hemolytic activity (with respect to their critical micelle concentration) when increasing the length of the acyl chain. A very similar behaviour was observed either the carbohydrate head-group (raffinose and melezitose) or regardless of the regioisomeric purity. Interestingly, decanoyl (C10) and lauroyl (C12) monoesters were just marginally hemolytic at their critical micelle concentrations while the longer palmitoyl (C16) and (C18) stearoyl monoesters become hemolytic at concentrations much higher than their respective cmc. The palmitoyl and stearoyl monoesters also displayed higher solubilization capacity than the shorter acyl chain monoesters in a solubilization assay of a hydrophobic dye as a model drug mimic. These results suggest that raffinose and melezitose monoesters with long-chain fatty acids (C16 to C18) are promising surfactants for pharmaceutical applications and could be an alternative to the use of current commercial nonionic polyoxyethylene-based surfactants in parenteral formulations. PMID:25753196

  16. Antioxidant, hemolytic and cytotoxic activities of Senecio species used in traditional medicine of northwestern Argentina.

    PubMed

    Lizarraga, Emilio; Castro, Felipe; Fernández, Francisco; de Lampasona, Marina P; Catalán, César A N

    2012-05-01

    Senecio nutans Sch. Bip., S. viridis var. viridis Phill. and S. spegazzinii Cabrera are native species used in traditional medicine of northwestern Argentina. The total phenolics, flavonoids and caffeoylquinic acids contents, as well as radical scavenging, antioxidant, hemolytic and cytotoxic activities of aqueous extracts (infusion and decoction) of all three species were determined. S. nutans was the most active. The extracts did not show antibacterial activity. Alkaloids were not detected in any of the aqueous extracts of the three studied species. PMID:22799087

  17. Infliximab treatment reduces complement activation in patients with rheumatoid arthritis

    PubMed Central

    Familian, A; Voskuyl, A; van Mierlo, G J; Heijst, H; Twisk, J; Dijkmans, B; Hack, C

    2005-01-01

    Background: Tumour necrosis factor (TNF) blocking agents decrease C reactive protein (CRP) levels in rheumatoid arthritis (RA). It has been shown that CRP may contribute to complement activation in RA. Objective: To assess the effect of intravenous infliximab treatment on complement activation, especially that mediated by CRP, in RA. Methods: 35 patients with active RA (28 joint count Disease Activity Score (DAS28) >4.4) were treated with intravenous injections of infliximab (3 mg/kg, at weeks 0, 2, 6, 14, and 22). Clinical response and plasma levels of complement activation products, of CRP and of CRP-complement complexes, which are specific markers for CRP mediated complement activation, were assessed at the indicated time points up to 22 weeks. The relationship between CRP and CRP-complement complexes was analysed by paired t test between two time points and by generalised estimated equation, to test differences of variables over time. Results: At 2 weeks after the first dose, infliximab significantly reduced overall C3 and C4 activation and plasma levels of CRP and CRP-complement complexes were also significantly reduced at this time point. The effects of infliximab on CRP and complement continued throughout the observation period and were more pronounced in patients with a good response to infliximab treatment. Conclusion: Treatment with infliximab decreases plasma levels of CRP and CRP dependent complement activation products and concomitantly may reduce complement activation in RA. Complement activation may be among the effector mechanisms of TNF in RA. PMID:15958758

  18. The cytolytic C5b-9 complement complex: feedback inhibition of complement activation.

    PubMed Central

    Bhakdi, S; Maillet, F; Muhly, M; Kazatchkine, M D

    1988-01-01

    We describe a regulatory function of the terminal cytolytic C5b-9 complex [C5b-9(m)] of human complement. Purified C5b-9(m) complexes isolated from target membranes, whether in solution or bound to liposomes, inhibited lysis of sensitized sheep erythrocytes by whole human serum in a dose-dependent manner. C9 was not required for the inhibitory function since C5b-7 and C5b-8 complexes isolated from membranes were also effective. No effect was found with the cytolytically inactive, fluid-phase SC5b-9 complex. However, tryptic modification of SC5b-9 conferred an inhibitory capacity to the complex, due probably to partial removal of the S protein. Experiments using purified components demonstrated that C5b-9(m) exerts a regulatory effect on the formation of the classical- and alternative-pathway C3 convertases and on the utilization of C5 by cell-bound C5 convertases. C5b-9(m) complexes were unable to inhibit the lysis of cells bearing C5b-7(m) by C8 and C9. Addition of C5b-9(m) to whole human serum abolished its bactericidal effect on the serum-sensitive Escherichia coli K-12 strain W 3110 and suppressed its hemolytic function on antibody-sensitized, autologous erythrocytes. Feedback inhibition by C5b-9(m) represents a biologically relevant mechanism through which complement may autoregulate its effector functions. Images PMID:3162317

  19. Disease Recurrence After Early Discontinuation of Eculizumab in a Patient With Atypical Hemolytic Uremic Syndrome With Complement C3 I1157T Mutation.

    PubMed

    Toyoda, Hidemi; Wada, Hideo; Miyata, Toshiyuki; Amano, Keishiro; Kihira, Kentaro; Iwamoto, Shotaro; Hirayama, Masahiro; Komada, Yoshihiro

    2016-04-01

    Eculizumab, terminal complement inhibitor, has become the frontline treatment for atypical hemolytic uremic syndrome (aHUS). However, the optimal treatment schedule has not yet been established. We describe here an aHUS patient with a mutation of C3 I1157T who achieved remission with eculizumab and suffered a recurrence after eculizumab discontinuation, a clinical situation that has not been previously described in patients with C3 mutation. A 9-year-old male experienced an onset of aHUS after viral gastroenteritis and was treated with hemodialysis. At 13 years of age he developed bacterial enterocolitis due to Campylobacter jejuni and experienced a recurrence of aHUS. Eculizumab was initiated on day 4 after disease onset resulting in recovering laboratory parameters. The patient received eculizumab for 5 months before its discontinuation. Second relapse induced by bacterial pharyngitis was confirmed 4 months after eculizumab discontinuation and prompt eculizumab reinitiation resulted in rapid remission. The patients carrying mutations in CFH or C3 have a high frequency of relapse and worse prognosis. More than 50% of aHUS relapses occurred during the first year after the onset. Therefore, long-term treatment with eculizumab is appropriate in patients with aHUS who have experienced a relapse or have mutations associated with poor prognosis. PMID:26840081

  20. Hemolytic crisis

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003270.htm Hemolytic crisis To use the sharing features on this page, please enable JavaScript. Hemolytic crisis occurs when large numbers of red blood cells ...

  1. Relationship of bacteriocin-like inhibitor production to the pigmentation and hemolytic activity of mutans streptococci.

    PubMed

    Crooks, M; James, S M; Tagg, J R

    1987-03-01

    An inhibitor production typing (P-typing) scheme originally devised for hemolytic streptococci of Lancefield groups A-G has been successfully applied to 35 mutans streptococcus isolates recovered from plaque cultures of 60 Dunedin schoolchildren. Thirteen different P-type designations were identified. Although 11 (31%) of the isolates failed to produce detectable inhibitory activity on the conventional blood agar medium used for P-typing, four of these isolates were inhibitor-positive on Trypticase Soy agar supplemented with 2% yeast extract and 0.5% calcium carbonate (TSYCa). Four mutans strains displayed strong beta-hemolysis on Columbia agar base containing human blood when incubated in a 5% CO2 in air atmosphere. Three of these also produced weak beta-hemolysis on sheep blood-supplemented medium and were further distinctive in that they were the only inhibitor P-type 767 strains to be detected in the present study. Five mutans isolates were pigment producers and this property seemed to occur independently of both the beta-hemolytic activity and the P-type designation. Upon testing an additional collection of 18 mutans strains of various serotypes, only seven (39%) were inhibitor-positive. However, three of the four serotype c strains were inhibitor producers. Two strains of serotype d and one of serotype g were more hemolytic on sheep than on human blood agar medium. In general, it seems that the most common human mutans streptococci (serotype c strains) are more likely than are other mutans strains to produce bacteriocin-like inhibitory activity and to be hemolytic for human rather than sheep erythrocytes. PMID:3604497

  2. Activation of the alternative complement pathway in canine normal serum by Paracoccidioides brasiliensis

    PubMed Central

    Bianchini, A.A.C.; Petroni, T.F.; Fedatto, P.F.; Bianchini, R.R.; Venancio, E.J.; Itano, E.N.; Ono, M.A.

    2009-01-01

    The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, a human granulomatous disease. Recently the first case of natural disease in dogs was reported. The complement system is an important effector component of humoral immunity against infectious agents. Therefore, the aim of this study was to evaluate the activation of the dog alternative complement pathway by P. brasiliensis. Initially, the ability of erythrocytes of guinea pig, rabbit, sheep, chicken and swine to activate the dog alternative pathway was evaluated. The guinea pig erythrocytes showed the greatest capacity to activate dog alternative pathway. The alternative (AH50) hemolytic activity was evaluated in 27 serum samples from healthy dogs and the mean values were 87.2 AH50/ml. No significant differences were observed in relation to sex and age. The alternative pathway activation by P. brasiliensis was higher in serum samples from adult dogs when compared to puppies and aged dogs (p ≤ 0.05). This is the first report of dog alternative complement pathway activation by P. brasiliensis and suggests that it may play a protective role in canine paracoccidioidomycosis. PMID:24031350

  3. Activation of the alternative complement pathway in canine normal serum by Paracoccidioides brasiliensis.

    PubMed

    Bianchini, A A C; Petroni, T F; Fedatto, P F; Bianchini, R R; Venancio, E J; Itano, E N; Ono, M A

    2009-04-01

    The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, a human granulomatous disease. Recently the first case of natural disease in dogs was reported. The complement system is an important effector component of humoral immunity against infectious agents. Therefore, the aim of this study was to evaluate the activation of the dog alternative complement pathway by P. brasiliensis. Initially, the ability of erythrocytes of guinea pig, rabbit, sheep, chicken and swine to activate the dog alternative pathway was evaluated. The guinea pig erythrocytes showed the greatest capacity to activate dog alternative pathway. The alternative (AH50) hemolytic activity was evaluated in 27 serum samples from healthy dogs and the mean values were 87.2 AH50/ml. No significant differences were observed in relation to sex and age. The alternative pathway activation by P. brasiliensis was higher in serum samples from adult dogs when compared to puppies and aged dogs (p ≤ 0.05). This is the first report of dog alternative complement pathway activation by P. brasiliensis and suggests that it may play a protective role in canine paracoccidioidomycosis. PMID:24031350

  4. Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation

    PubMed Central

    Sun, Ran; Zhao, Xi; Wang, Zixia; Yang, Jing; Zhao, Limei; Zhan, Bin; Zhu, Xinping

    2015-01-01

    Background Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host’s immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated. Methods and Findings The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy) to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs) elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration. Conclusion Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9. PMID:26720603

  5. Vitronectin-binding staphylococci enhance surface-associated complement activation.

    PubMed Central

    Lundberg, F; Lea, T; Ljungh, A

    1997-01-01

    Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn. PMID:9038294

  6. [Hemolytic activity of venoms from snakes of the genera Bothrop, Lachesis, Crotalus, and Micrurus (Serpentes: Viperidae and Elapidae].

    PubMed

    Martínez Cadillo, E; Bonilla Ferreyra, C; Zvealeta, A

    1991-11-01

    Hemolytic activity of eight Peruvian snake venoms from the families Viperidae and Elapidae (Bothrops atrox, B. pictus, B. hyoprorus, B. bilineatus, B. neuwedii, Lachesis m. muta, Crotalus d. terrificus, Micrurus tschudi), and three Brazilian viperids (B. jararacussu, B. alternatus and C. d. collilineatus) is described. None of the venoms caused direct lysis on washed human erythrocytes. However, all of them caused indirect hemolysis provided that the incubation medium contains an exogenous source of lecithin. Venom of Micrurus tschudi was the most hemolytic (HD50 2.8 ug/ml) while that of B. bilineatus was the least (HD50 681.3 ug/ml). Only six of eleven venoms showed parallel curves of hemolytic activity, and the HD50 varied from 198 to 681 ug/ml and the following decreasing order of hemolytic activity was obtained: L. muta, C. d. terrificus, C. d. collilineatus, B. hyoprorus, B. bilineatus, B. alternatus. PMID:1844159

  7. [Resistance to antimicrobial agents, hemolytic activity and plasmids in Aeromonas species].

    PubMed

    Morita, K; Watanabe, N; Kanamori, M

    1990-06-01

    A total of 174 Aeromonas isolates consisting of 100 strains from patients with diarrhea being mainly overseas travellers nd healthy subjects, and 74 strains from environmental sources including foods, fish, fresh water, sea water and river soil collected in the area of Tokyo Metropolis and Kanagawa Prefecture was examined for the antimicrobial resistance, presence of plasmids and hemolytic activity. Almost all the isolates (99.4%) were resistant to aminobenzyl penicillin. The isolation frequency of chloramphenicol- or tetracycline-resistant strain was low. Most environmental isolates of A. hydrophila were resistant to multiple antimicrobial agents. Thirty-seven percent of environmental isolates and 39% of human fecal ones carried plasmids. In environmental isolates, seven A. hydrophila and three A. sobria strains carried 63- to 150-kilobase pair (kb) conjugative R plasmids. Two A. hydrophila strains from both the healthy subject and domestic case with diarrhea carried 58- to 90-kb conjugative R plasmids, respectively. None of the isolates from the feces of overseas traveller's diarrhea carried the plasmid. Irrespective of the sources. A. hydrophila showed the highest hemolytic activity among three Aeromonas species. Eighty percent or more of A. hydrophila isolates were of hemolysin positive. The hemolytic titer of A. hydrophila strains from human feces was higher than that of the strains from environmental sources. PMID:2401817

  8. Chronic Low Level Complement Activation within the Eye Is Controlled by Intraocular Complement Regulatory Proteins

    PubMed Central

    Sohn, Jeong-Hyeon; Kaplan, Henry J.; Suk, Hye-Jung; Bora, Puran S.; Bora, Nalini S.

    2007-01-01

    Purpose To explore the role of the complement system and complement regulatory proteins in an immune-privileged organ, the eye. Methods Eyes of normal Lewis rats were analyzed for the expression of complement regulatory proteins, membrane cofactor protein (MCP), decay-acceleration factor (DAF), membrane inhibitor of reactive lysis (MIRL, CD59), and cell surface regulator of complement (Crry), using immunohistochemistry, Western blot analysis, and reverse transcription–polymerase chain reaction (RT-PCR). Zymosan, a known activator of the alternative pathway of complement system was injected into the anterior chamber of the eye of Lewis rats. Animals were also injected intracamerally with 5 μl (25 μg) of neutralizing monoclonal antibody (mAb) against rat Crry (5I2) or CD59 (6D1) in an attempt to develop antibody induced anterior uveitis; control animals received 5 μl of sterile phosphate-buffered saline (PBS), OX-18 (25 μg), G-16-510E3 (25 μg), or MOPC-21 (25 μg). The role of complement system in antibody-induced uveitis was explored by intraperitoneal injection of 35 U cobra venom factor (CVF), 24 hours before antibody injection. Immunohistochemical staining and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) with Western blot analysis were used to detect the presence of membrane attack complex (MAC) and C3 activation products, respectively, in normal and antibody-injected rat eyes. Results Complement activation product MAC was present in the normal rat eye, and intraocular injection of zymosan induced severe anterior uveitis. The complement regulatory proteins, MCP, DAF, CD59, and Crry, were identified in the normal rat eye. Soluble forms of Crry and CD59 were also detected in normal rat aqueous humor. Severe anterior uveitis developed in Lewis rats injected with a neutralizing mAb against Crry, with increased formation of C3 split products. Systemic complement depletion by CVF prevented the induction of anterior uveitis by anti

  9. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    PubMed Central

    Bitencourt, C.S.; Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I.

    2012-01-01

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production. PMID:22370704

  10. Structural Analysis and Anti-Complement Activity of Polysaccharides from Kjellmaniella crsaaifolia

    PubMed Central

    Zhang, Wenjing; Jin, Weihua; Sun, Delin; Zhao, Luyu; Wang, Jing; Duan, Delin; Zhang, Quanbin

    2015-01-01

    Two polysaccharides, named KCA and KCW, were extracted from Kjellmaniella crassifolia using dilute hydrochloric acid and water, respectively. Composition analysis showed that these polysaccharides predominantly consisted of fucose, with galactose, mannose and glucuronic acid as minor components. After degradation and partial desulfation, electrospray ionization mass spectrometry (ESI-MS) was performed, which showed that the polysaccharides consisted of sulfated fucooligosaccharides, sulfated galactofucooligosaccharides and methyl glycosides of mono-sulfated/multi-sulfated fucooligosaccharides. The structures of the oligomeric fragments were further characterized by electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS2 and ESI-CID-MS3). Moreover, the activity of KCA and KCW against the hemolytic activity of both the classical and alternative complement pathways was determined. The activity of KCA was found to be similar to KCW, suggesting that the method of extraction did not influence the activity. In addition, the degraded polysaccharides (DKCA and DKCW) displayed lower activity levels than the crude polysaccharides (KCA and KCW), indicating that molecular weight had an effect on activity. Moreover, the desulfated fractions (ds-DKCA and ds-DKCW) showed less or no activity, which confirmed that sulfate was important for activity. In conclusion, polysaccharides from K. crassifolia may be good candidates for the treatment of diseases involving the complement pathway. PMID:25786064

  11. Poly-lysine peptidomimetics having potent antimicrobial activity without hemolytic activity.

    PubMed

    Ahn, Mija; Jacob, Binu; Gunasekaran, Pethaiah; Murugan, Ravichandran N; Ryu, Eun Kyoung; Lee, Ga-hyang; Hyun, Jae-Kyung; Cheong, Chaejoon; Kim, Nam-Hyung; Shin, Song Yub; Bang, Jeong Kyu

    2014-09-01

    Diversity of sequence and structure in naturally occurring antimicrobial peptides (AMPs) limits their intensive structure-activity relationship (SAR) study. In contrast, peptidomimetics have several advantages compared to naturally occurring peptide in terms of simple structure, convenient to analog synthesis, rapid elucidation of optimal physiochemical properties and low-cost synthesis. In search of short antimicrobial peptides using peptidomimetics, which provide facile access to identify the key factors involving in the destruction of pathogens through SAR study, a series of simple and short peptidomimetics consisting of multi-Lys residues and lipophilic moiety have been prepared and found to be active against several Gram-negative and Gram-positive bacteria containing methicillin-resistant Staphylococcus aureus (MRSA) without hemolytic activity. Based on the SAR studies, we found that hydrophobicity, +5 charges of multiple Lys residues, hydrocarbon tail lengths and cyclohexyl group were crucial for antimicrobial activity. Furthermore, membrane depolarization, dye leakage, inner membrane permeability and time-killing kinetics revealed that bacterial-killing mechanism of our peptidomimetics is different from the membrane-targeting AMPs (e. g. melittin and SMAP-29) and implied our peptidomimetics might kill bacteria via the intracellular-targeting mechanism as done by buforin-2. PMID:24961649

  12. Atypical hemolytic uremic syndrome

    PubMed Central

    2011-01-01

    Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently

  13. Complement Regulatory Activity of Normal Human Intraocular Fluid Is Mediated by MCP, DAF, and CD59

    PubMed Central

    Sohn, Jeong-Hyeon; Kaplan, Henry J.; Suk, Hye-Jung; Bora, Puran S.; Bora, Nalini S.

    2007-01-01

    Purpose To identify the molecules in normal human intraocular fluid (aqueous humor and vitreous) that inhibit the functional activity of the complement system. Methods Aqueous humor and vitreous were obtained from patients with noninflammatory ocular disease at the time of surgery. Samples were incubated with normal human serum (NHS), and the mixture assayed for inhibition of the classical and alternative complement pathways using standard CH50 and AH50 hemolytic assays, respectively. Both aqueous humor and vitreous were fractionated by microconcentrators and size exclusion column chromatography. The inhibitory molecules were identified by immunoblotting as well as by studying the effect of depletion of membrane cofactor protein (MCP), decay-accelerating factor (DAF), and CD59 on inhibitory activity. Results Both aqueous humor and vitreous inhibited the activity of the classical pathway (CH50). Microcentrifugation revealed the major inhibitory activity resided in the fraction with an Mr ≥ 3 kDa. Chromatography on an S-100-HR column demonstrated that the most potent inhibition was associated with the high-molecular-weight fractions (≥ 19.5 kDa). In contrast to unfractionated aqueous and vitreous, fractions with an Mr ≥ 3 kDa also had an inhibitory effect on the alternative pathway activity (AH50). The complement regulatory activity in normal human intraocular fluid was partially blocked by monoclonal antibodies against MCP, DAF, and CD59. Immunoblot analysis confirmed the presence of these three molecules in normal intraocular fluid. Conclusions Our results demonstrate that normal human intraocular fluid (aqueous humor and vitreous) contains complement inhibitory factors. Furthermore, the high-molecular-weight factors appear to be the soluble forms of MCP, DAF, and CD59. PMID:11095615

  14. Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities.

    PubMed

    Surendra, T V; Roopan, Selvaraj Mohana; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Sridharan, Makuteswaran

    2016-08-01

    Most of the wastes emitted from the food processing industries are not utilized for any further purpose. The economic value of the food waste is very less when compared to the collection or reuse or discard. To increase the economic value we have to design the food waste as useful product or applicable in most of the current field. Nothing is waste in this world with this concept we have investigated the phytochemical analysis of drumstick peel (Moringa oleifera). The result supports the presence of phenols, alkaloids, flavanoids, glycosides and tannins. Since various functional groups containing molecules are present in the extract; it has been further subjected to antibacterial and hemolytic activities. To analysis the antibacterial studies we have employed human pathogenic Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterium. The result of antibacterial activity clearly shows that it possesses significant activity on both bacterial cultures. The hemolytic activity was performed on red blood cells (RBCs). From this result we observed that drumstick peel extract has been considered as non-toxic on RBCs. Malachite green was selected to perform photocatalytic activity. The results stated that the drumstick peel extract possessed good behaviour towards photocatalytic investigation. The malachite green was degraded upto 99.7% using drumstick peel extract. PMID:27318603

  15. Complement-activating ability of leucocytes from patients with complement factor I deficiency.

    PubMed Central

    Marquart, H V; Rasmussen, J M; Leslie, R G

    1997-01-01

    Previous studies from this laboratory have shown that normal peripheral blood B cells are capable of activating complement via the alternative pathway (AP), that the activation is associated with complement receptor type 2 (CR2) expression, and that erythrocytes at normal blood levels partially inhibit the activation. The purpose of the present study was to investigate whether factor I (FI) deficiency, which leads to continued formation of the AP convertase (C3bBb) resulting in the consumption of factor B and C3 and large scale generation of C3b fragments, affects the phenotype and/or function of the patients' B cells. Using flow cytometry, peripheral blood leucocytes (PBL) from two FI-deficient patients were investigated for expression of complement receptors and complement regulatory proteins, in vivo-deposited C3 fragments and in vitro complement-activating ability. CR1 levels on B cells were significantly lower in FI-deficient patients than in normal individuals, whereas CR2 levels were found to be reduced, although not to a significant extent. CR1 levels on monocytes and polymorphonuclear leucocytes (PMN) were found to be normal or slightly raised. All leucocyte subpopulations were found to be covered in vivo with C3b fragments. AP activation on B cells from FI-deficient patients in homologous serum was significantly reduced compared with that for normal individuals, whereas no in vitro activation was seen in autologous serum. In addition, the in vivo-bound C3b fragments were degraded to C3d,g when the patients' PBL were incubated in homologous serum containing EDTA. Finally, the patients, erythrocytes failed to exert any inhibition on AP activation in homologous serum. PMID:9301541

  16. Heme: Modulator of Plasma Systems in Hemolytic Diseases.

    PubMed

    Roumenina, Lubka T; Rayes, Julie; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D

    2016-03-01

    Hemolytic diseases such as sickle-cell disease, β-thalassemia, malaria, and autoimmune hemolytic anemia continue to present serious clinical hurdles. In these diseases, lysis of erythrocytes causes the release of hemoglobin and heme into plasma. Extracellular heme has strong proinflammatory potential and activates immune cells and endothelium, thus contributing to disease pathogenesis. Recent studies have revealed that heme can interfere with the function of plasma effector systems such as the coagulation and complement cascades, in addition to the activity of immunoglobulins. Any perturbation in such functions may have severe pathological consequences. In this review we analyze heme interactions with coagulation, complement, and immunoglobulins. Deciphering such interactions to better understand the complex pathogenesis of hemolytic diseases is pivotal. PMID:26875449

  17. Investigation into the hemolytic activity of tentacle venom from jellyfish Cyanea nozakii Kishinouye

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Yu, Huahua; Li, Rongfeng; Xing, Ronge; Liu, Song; Li, Pengcheng

    2016-03-01

    Cyanea nozakii Kishinouy e ( C. nozakii), a giant cnidarian of the class Scyphomedusae, order Semaeostomeae and family Cyaneidae, is widely distributed in the East China Sea, the Yellow Sea and the Bohai Sea, and is abundant from late summer to early autumn. Venom produced by C. nozakii during mass agglomerations can contaminate seawater resulting in death of the halobios and seriously damage commercial fisheries. Swimmers and fishermen commonly suff er painful stings from this jellyfish, resulting in local edema, tingling, breathing difficulties, depressed blood pressure and even death. Such effects arise from the complex mixture of biologically active molecules that make up jellyfish venom. In the present study, the hemolytic activity of venom from tentacles of C. nozakii and factors aff ecting its activity were assayed. The HU50 ( defined as the amount of protein required to lyse 50 % of erythrocytes) of the venom against dove and chicken erythrocytes was 34 and 59 μg/mL, respectively. Carboxylmethyl chitosan and glycerol could increase hemolytic activity at concentrations greater than 0.06% and 0.2 mol/L, respectively.

  18. Involvement of Antilipoarabinomannan Antibodies in Classical Complement Activation in Tuberculosis

    PubMed Central

    Hetland, Geir; Wiker, Harald G.; Høgåsen, Kolbjørn; Hamasur, Beston; Svenson, Stefan B.; Harboe, Morten

    1998-01-01

    We examined alternative and classical complement activation induced by whole bacilli of Mycobacterium bovis BCG and Mycobacterium tuberculosis products. After exposure to BCG, there were higher levels of the terminal complement complex in sera from Indian tuberculosis patients than in sera from healthy controls. The addition of BCG with or without EGTA to these sera indicated that approximately 70 to 85% of the total levels of the terminal complement complex was formed by classical activation. Sera from Indian tuberculosis patients contained more antibody to lipoarabinomannan (LAM) than sera from healthy Indians. Levels of anti-LAM immunoglobulin G2 (IgG2), but not anti-LAM IgM, correlated positively with classical activation induced by BCG in the sera. By flow cytometry, deposition of C3 and terminal complement complex on bacilli incubated with normal human serum was demonstrated. The anticomplement staining was significantly reduced in the presence of EGTA and EDTA. Flow cytometry also revealed the binding of complement to BCG incubated with rabbit anti-LAM and then with factor B-depleted serum. This indicates that classical activation plays a major role in complement activation induced by mycobacteria and that anti-LAM IgG on the bacilli can mediate this response. Classical complement activation may be important for the extent of phagocytosis of M. tuberculosis by mononuclear phagocytes, which may influence the course after infection. PMID:9521145

  19. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  20. Complement Activation in Trauma Patients Alters Platelet Function.

    PubMed

    Atefi, Gelareh; Aisiku, Omozuanvbo; Shapiro, Nathan; Hauser, Carl; Dalle Lucca, Jurandir; Flaumenhaft, Robert; Tsokos, George C

    2016-09-01

    Trauma remains the main cause of death for both civilians and those in uniform. Trauma-associated coagulopathy is a complex process involving inflammation, coagulation, and platelet dysfunction. It is unknown whether activation of complement, which occurs invariably in trauma patients, is involved in the expression of trauma-associated coagulopathy. We designed a prospective study in which we enrolled 40 trauma patients and 30 healthy donors upon arrival to the emergency department of BIDMC. Platelets from healthy individuals were incubated with sera from trauma patients and their responsiveness to a thrombin receptor-activating peptide was measured using aggregometry. Complement deposition on platelets from trauma patients was measured by flow cytometry. Normal platelets displayed hypoactivity after incubation with trauma sera even though exposure to trauma sera resulted in increased agonist-induced calcium flux. Depletion of complement from sera further blocked activation of hypoactive platelets. Conversely, complement activation increased aggregation of platelets. Platelets from trauma patients were found to have significantly higher amounts of C3a and C4d on their surface compared with platelets from controls. Depletion of complement (C4d, C3a) reversed the ability of trauma sera to augment agonist-induced calcium flux in donor platelets. Our data indicate that complement enhances platelet aggregation. Despite its complement content, trauma sera render platelets hypoactive and complement depletion further blocks activation of hypoactive platelets. The defect in platelet activation induced by trauma sera is distal to receptor activation since agonist-induced Ca2+ flux is elevated in the presence of trauma sera owing to complement deposition. PMID:27355402

  1. Laboratory tests for disorders of complement and complement regulatory proteins.

    PubMed

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed. PMID:26437749

  2. Purification, characterization and activities of two hemolytic and antibacterial proteins from coelomic fluid of the annelid Eisenia fetida andrei.

    PubMed

    Milochau, A; Lassègues, M; Valembois, P

    1997-01-01

    The coelomic fluid of the earthworm Eisenia fetida andrei exhibits antibacterial, hemolytic and hemagglutinating activities. These activities are mainly mediated by two proteins, named fetidins, of apparent molecular mass 40 kDa and 45 kDa, respectively. For the first time, the two proteins have been purified to homogeneity from dialysed coelomic fluid by means of anion-exchange chromatography. Three peaks had hemolytic activity. The first fraction was found to correspond to the 40 kDa fetidin, the second to mixed 40 and 45 kDa fetidins, the last one to the 45 kDa fetidin. Both purified proteins still exhibited their hemolytic and antibacterial activities as dialysed coelomic fluid did. In this study, the amino-acid sequence of purified proteins is compared to the amino-acid sequence predicted by cDNA. This cDNA was isolated by screening an expression cDNA library from earthworm total tissues (unpublished data). PMID:9003444

  3. Role of Complement Activation in Obliterative Bronchiolitis Post Lung Transplantation

    PubMed Central

    Suzuki, Hidemi; Lasbury, Mark E.; Fan, Lin; Vittal, Ragini; Mickler, Elizabeth A.; Benson, Heather L.; Shilling, Rebecca; Wu, Qiang; Weber, Daniel J.; Wagner, Sarah R.; Lasaro, Melissa; Devore, Denise; Wang, Yi; Sandusky, George E.; Lipking, Kelsey; Pandya, Pankita; Reynolds, John; Love, Robert; Wozniak, Thomas; Gu, Hongmei; Brown, Krista M.; Wilkes, David S.

    2013-01-01

    Obliterative bronchiolitis (OB) post lung transplantation involves IL-17 regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB are unknown. The current study examines the role of complement activation in OB. Complement regulatory protein (CRP) (CD55, CD46, Crry/CD46) expression was down regulated in human and murine OB; and C3a, a marker of complement activation, was up regulated locally. IL-17 differentially suppressed Crry expression in airway epithelial cells in vitro. Neutralizing IL-17 recovered CRP expression in murine lung allografts and decreased local C3a production. Exogenous C3a enhanced IL-17 production from alloantigen or autoantigen (type V collagen) reactive lymphocytes. Systemically neutralizing C5 abrogated the development of OB, reduced acute rejection severity, lowered systemic and local levels of C3a and C5a, recovered CRP expression, and diminished systemic IL-17 and IL-6 levels. These data indicated that OB induction is in part complement dependent due to IL-17 mediated down regulation of CRPs on airway epithelium. C3a and IL-17 are part of a feed forward loop that may enhance CRP down regulation, suggesting that complement blockade could be a therapeutic strategy for OB. PMID:24043901

  4. Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens

    PubMed Central

    Rossignol, Gaelle; Merieau, Annabelle; Guerillon, Josette; Veron, Wilfried; Lesouhaitier, Olivier; Feuilloley, Marc GJ; Orange, Nicole

    2008-01-01

    Background Pseudomonas fluorescens is a ubiquitous Gram-negative bacterium frequently encountered in hospitals as a contaminant of injectable material and surfaces. This psychrotrophic bacterium, commonly described as unable to grow at temperatures above 32°C, is now considered non pathogenic. We studied a recently identified clinical strain of P. fluorescens biovar I, MFN1032, which is considered to cause human lung infection and can grow at 37°C in laboratory conditions. Results We found that MFN1032 secreted extracellular factors with a lytic potential at least as high as that of MF37, a psychrotrophic strain of P. fluorescens or the mesophilic opportunistic pathogen, Pseudomonas aeruginosa PAO1. We demonstrated the direct, and indirect – through increases in biosurfactant release – involvement of a phospholipase C in the hemolytic activity of this bacterium. Sequence analysis assigned this phospholipase C to a new group of phospholipases C different from those produced by P. aeruginosa. We show that changes in PlcC production have pleiotropic effects and that plcC overexpression and plcC extinction increase MFN1032 toxicity and colonization, respectively. Conclusion This study provides the first demonstration that a PLC is involved in the secreted hemolytic activity of a clinical strain of Pseudomonas fluorescens. Moreover, this phospholipase C seems to belong to a complex biological network associated with the biosurfactant production. PMID:18973676

  5. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells.

    PubMed

    Saroj, Sunil D; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics. PMID:27524981

  6. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells

    PubMed Central

    Saroj, Sunil D.; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics. PMID:27524981

  7. Antifungal activity of the local complement system in cerebral aspergillosis.

    PubMed

    Rambach, Günter; Hagleitner, Magdalena; Mohsenipour, Iradj; Lass-Flörl, Cornelia; Maier, Hans; Würzner, Reinhard; Dierich, Manfred P; Speth, Cornelia

    2005-10-01

    Dissemination of aspergillosis into the central nervous system is associated with nearly 100% mortality. To study the reasons for the antifungal immune failure we analyzed the efficacy of cerebral complement to combat the fungus Aspergillus. Incubation of Aspergillus in non-inflammatory cerebrospinal fluid (CSF) revealed that complement levels were sufficient to obtain a deposition on the surface, but opsonization was much weaker than in serum. Consequently complement deposition from normal CSF on fungal surface stimulated a very low phagocytic activity of microglia, granulocytes, monocytes and macrophages compared to stimulation by conidia opsonized in serum. Similarly, opsonization of Aspergillus by CSF was not sufficient to induce an oxidative burst in infiltrating granulocytes, whereas conidia opsonized in serum induced a clear respiratory signal. Thus, granulocytes were capable of considerably reducing the viability of serum-opsonized Aspergillus conidia, but not of conidia opsonized in CSF. The limited efficacy of antifungal attack by cerebral complement can be partly compensated by enhanced synthesis, leading to elevated complement concentrations in CSF derived from a patient with cerebral aspergillosis. This inflammatory CSF was able to induce (i) a higher complement deposition on the Aspergillus surface than non-inflammatory CSF, (ii) an accumulation of complement activation products and (iii) an increase in phagocytic and killing activity of infiltrating granulocytes. However, levels and efficacy of the serum-derived complement were not reached. These data indicate that low local complement synthesis and activation may represent a central reason for the insufficient antifungal defense in the brain and the high mortality rate of cerebral aspergillosis. PMID:16027023

  8. Leishmania species: mechanisms of complement activation by five strains of promastigotes.

    PubMed

    Mosser, D M; Burke, S K; Coutavas, E E; Wedgwood, J F; Edelson, P J

    1986-12-01

    The interaction of fresh serum with promastigotes of Leishmania major, L. donovani, L. mexicana mexicana, L. mexicana amazonensis, and L. braziliensis guyanensis results in lysis of all strains tested with either fresh human or guinea pig serum at 37 C for 30 min. Lysis does not occur in the cold and requires divalent cations and complement that is active hemolytically. Serum deficient in the eighth component of complement is not lytic. Lysis of L. major, L. mexicana, and L. braziliensis proceeds fully in human serum containing EGTA/Mg2+ or in guinea pig serum deficient in the fourth complement component. These species consume only small amounts of C4 from human serum and do not require calcium to optimally bind C3. The data indicate that all are activators of the alternative complement pathway and that the classical pathway is not required for the lysis of these organisms. Promastigotes of L. donovani, in contrast, activate the classical pathway. The presence of calcium is required for both optimal C3 binding and parasite lysis, and L. donovani promastigotes consume C4 when incubated in human serum. In high concentrations, human serum agglutinates all tested Leishmania spp. The agglutinating factor does not require divalent cations, is heat stable, and works at 4 C, suggesting that it is an antibody. This "naturally occurring" antibody cross reacts with all Leishmania spp. and agglutinates them. The adsorption of serum with any Leishmania species or with beads that are Protein A coated, removes the agglutinogen. This factor causes a slight enhancement in alternative pathway activation by L. major and mediates the classical activation by L. donovani. In adsorbed serum, L. donovani promastigotes only weakly activate the alternative complement pathway. Increased concentrations of adsorbed serum are therefore necessary for lysis to proceed. The titer can be partially restored by the addition of heat inactivated serum. Using purified components of the classical cascade

  9. Evaluation of the antibacterial and hemolytic activities of Latvian herbal preparation.

    PubMed

    Atroshi, F; Ali-Vehmas, T; Westermarck, T; Rizzo, A; Selga, G; Baltais, A; Linars, J; Saulite, V; Daukste, A

    2000-12-01

    Three extracts originating from a combination of various Latvian plant species were tested for their antibacterial activities by evaluating growth delays using a fully automated microturbidimetric method. Ten different human and bovine strains of the genera Staphylococcus and Micrococcus were used as test microorganisms. The inhibitory effect in vitro was defined as the difference between the growth rate without herbs and the growth rate in the presence of an extract. Among the tested strains, Staphylococcus aureus was found sensitive to all 3 extracts. However, extract I was the most effective in slowing the growth of all strains tested. Using appropriate tester strains it should be possible to set up a broad-range microtubidimetry assay for individual herb screening in vitro. The hemolytic effects of the individual extracts on human erythrocytes were also studied at different concentrations. Two of the herbal extracts had minimal lytic effects on eurocaryotic cells. An additional hemolysis test was conducted in the presence of coenzyme Q10 (CoQ10) as a free radical scavenger: CoQ10 had no effect on the hemolytic reaction. PMID:11111939

  10. Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles

    NASA Astrophysics Data System (ADS)

    Trpkovic, Andreja; Todorovic-Markovic, Biljana; Kleut, Duska; Misirkic, Maja; Janjetovic, Kristina; Vucicevic, Ljubica; Pantovic, Aleksandar; Jovanovic, Svetlana; Dramicanin, Miroslav; Markovic, Zoran; Trajkovic, Vladimir

    2010-09-01

    The present study investigated the hemolytic properties of fullerene (C60) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC60THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC60CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC60EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC60THF, but not nC60CDX or nC60EVA-EVV, was able to cause lysis of human erythrocytes in a dose- and time-dependent manner. Atomic force microscopy revealed that nC60THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC60THF. The nC60THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC60THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.

  11. Modulation of Backbone Flexibility for Effective Dissociation of Antibacterial and Hemolytic Activity in Cyclic Peptides.

    PubMed

    Oddo, Alberto; Thomsen, Thomas T; Britt, Hannah M; Løbner-Olesen, Anders; Thulstrup, Peter W; Sanderson, John M; Hansen, Paul R

    2016-08-11

    Bacterial resistance to antibiotic therapy is on the rise and threatens to evolve into a worldwide emergency: alternative solutions to current therapies are urgently needed. Cationic amphipathic peptides are potent membrane-active agents that hold promise as the next-generation therapy for multidrug-resistant infections. The peptides' behavior upon encountering the bacterial cell wall is crucial, and much effort has been dedicated to the investigation and optimization of this amphipathicity-driven interaction. In this study we examined the interaction of a novel series of nine-membered flexible cyclic AMPs with liposomes mimicking the characteristics of bacterial membranes. Employed techniques included circular dichroism and marker release assays, as well as microbiological experiments. Our analysis was aimed at correlating ring flexibility with their antimicrobial, hemolytic, and membrane activity. By doing so, we obtained useful insights to guide the optimization of cyclic antimicrobial peptides via modulation of their backbone flexibility without loss of activity. PMID:27563396

  12. Anticariogenic and Hemolytic Activity of Selected Seed Protein Extracts In vitro conditions

    PubMed Central

    Ishnava, Kalpesh B; Shah, Pankit P.

    2014-01-01

    Objective: This study aimed to assess the anticariogenic and hemolytic activity of crude plant seed protein extracts against tooth decaying bacteria. Materials and Methods: The proteins from seeds of 12 different plants were extracted and used for antimicrobial assay against six different organisms. The extraction was carried out in 10mM of sodium phosphate buffer (pH 7.0). Protein concentrations were determined as described by Bradford method. Anticariogenic activity was studied by agar well diffusion method and Minimum Inhibitory Concentration (MIC) was evaluated by the two-fold serial broth dilution method. Hemolytic activity, treatment of proteinase K and Kinetic study in Mimusops elengi crude seed protein extract. Results: The anticariogenic assay demonstrated the activity of Mimusops elengi against Staphylococcus aureus and Streptococcus pyogenes. A minor activity of Glycine wightii against Streptococcus mutans was also found. The protein content of Mimusops elengi seed protein extract was 5.84mg/ml. The MIC values for Staphylococcus aureus and Streptococcus pyogenes against Mimusops elengi seed protein extract were 364.36μg/ml and 182.19μg/ml, respectively. Kinetic study further elucidated the mode of inhibition in the presence of the Mimusops elengi plant seed protein with respect to time. The concentration of crude extract which gave 50% hemolysis compared to Triton X-100 treatment (HC50) value was 1.58 mg/ml; which is more than five times larger than that of the MIC. Treatment with proteinase K of the Mimusops elengi seed protein resulted in absence of the inhibition zone; which clearly indicates that the activity was only due to protein. Conclusion: Our results showed the prominence of Mimusops elengi plant seed protein extract as an effective herbal medication against tooth decaying bacteria. PMID:25628685

  13. Hemolytic uremic syndrome

    PubMed Central

    Canpolat, Nur

    2015-01-01

    Hemolytic uremic syndrome (HUS) is a clinical syndrome characterized by the triad of thrombotic microangiopathy, thrombocytopenia, and acute kidney injury. Hemolytic uremic syndrome represents a heterogeneous group of disorders with variable etiologies that result in differences in presentation, management and outcome. In recent years, better understanding of the HUS, especially those due to genetic mutations in the alternative complement pathway have provided an update on the terminology, classification, and treatment of the disease. This review will provide the updated classification of the disease and the current diagnostic and therapeutic approaches on the complement-mediated HUS in addition to STEC-HUS which is the most common cause of the HUS in childhood. PMID:26265890

  14. Comparative hemolytic activity of undiluted organic water-miscible solvents for intravenous and intra-arterial injection.

    PubMed

    Mottu, F; Stelling, M J; Rüfenacht, D A; Doelker, E

    2001-01-01

    In humans, nonaqueous solvents are administered intravascularly in two kinds of situations. They have been used in subcutaneous or intramuscular pharmaceutical formulations to dissolve water-insoluble drugs. The need for these vehicles had increased in recent years, since the drug development process has yielded many poorly water-soluble drugs. The use of water-miscible nonaqueous solvents in therefore one of the approaches for administering these products as reference solutions useful in formulation bioequivalence studies. The intravascular use of organic solvents has also gained importance owing to a new approach for the treatment of cerebral malformations using precipitating polymers dissolved in water-miscible organic solvents. At present, the solvent most commonly used for the liquid embolics to solubilize the polymers is dimethyl sulfoxide, which exhibits some local and hemodynamic toxicities. In order to find new, less toxic vehicles for pharmaceutical formulations for the intravenous and intra-arterial routes and for embolic materials, 13 water-miscible organic solvents currently used (diluted with water) for pharmaceutical applications, were evaluated in this study. Their hemolytic activity and the morphological changes induced when mixed with blood (1:99, 5:95, 10:90 solvent:blood) were estimated in vitro. From these data, the selected organic solvents could be subdivided into four groups depending on their hemolytic activity: very highly hemolytic solvents (ethyl lactate, dimethyl sulfoxide), highly hemolytic solvents (polyethylene glycol 200, acetone), moderately hemolytic solvents (tetrahydrofurfuryl alcohol, N-methyl-2-pyrrolidone, glycerol formal, ethanol, Solketal, glycofurol) and solvents with low hemolytic activity (propylene glycol, dimethyl isosorbide, diglyme). PMID:11212416

  15. Effect of Relative Arrangement of Cationic and Lipophilic Moieties on Hemolytic and Antibacterial Activities of PEGylated Polyacrylates

    PubMed Central

    Punia, Ashish; Lee, Kevin; He, Edward; Mukherjee, Sumit; Mancuso, Andrew; Banerjee, Probal; Yang, Nan-Loh

    2015-01-01

    Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol) (PEG) side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially different effects on the hemolytic and antibacterial activities of copolymers depending on structural variations in the positions of cationic centers relative to hydrophobic groups. The PEG side chains dramatically reduced the hemolytic activities in copolymers with hydrophobic hexyl and cationic groups on the same repeating unit. However, in case of terpolymers with cationic and lipophilic groups placed on separate repeating units, the presence of PEG has significantly lower effect on hemolytic activities of these copolymers. PEGylated terpolymers displayed substantially lower activity against Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) suggesting the deterring effect of S. aureus’ peptidoglycan cell wall against the penetration of PEGylated polymers. Time-kill studies confirmed the bactericidal activity of these copolymers and a 5 log reduction in E. coli colony forming units was observed within 2 h of polymer treatment. PMID:26473831

  16. Effect of Relative Arrangement of Cationic and Lipophilic Moieties on Hemolytic and Antibacterial Activities of PEGylated Polyacrylates.

    PubMed

    Punia, Ashish; Lee, Kevin; He, Edward; Mukherjee, Sumit; Mancuso, Andrew; Banerjee, Probal; Yang, Nan-Loh

    2015-01-01

    Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol) (PEG) side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially different effects on the hemolytic and antibacterial activities of copolymers depending on structural variations in the positions of cationic centers relative to hydrophobic groups. The PEG side chains dramatically reduced the hemolytic activities in copolymers with hydrophobic hexyl and cationic groups on the same repeating unit. However, in case of terpolymers with cationic and lipophilic groups placed on separate repeating units, the presence of PEG has significantly lower effect on hemolytic activities of these copolymers. PEGylated terpolymers displayed substantially lower activity against Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) suggesting the deterring effect of S. aureus' peptidoglycan cell wall against the penetration of PEGylated polymers. Time-kill studies confirmed the bactericidal activity of these copolymers and a 5 log reduction in E. coli colony forming units was observed within 2 h of polymer treatment. PMID:26473831

  17. Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-06-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.

  18. Influence of antimicrobial subinhibitory concentrations on hemolytic activity and bacteriocin-like substances in oral Fusobacterium nucleatum.

    PubMed

    Okamoto, A C; Gaetti-Jardim, E; Cai, S; Avila-Campos, M J

    2000-04-01

    Fusobacterium nucleatum is considered for its role in colonization of initial and late microorganisms in dental plaque and for its coaggregation with other bacterial species. It is known that action of different antimicrobial substances may interfere with either virulence factors or with host-bacteria interaction. The goal of this study was to examine the influence of subinhibitory concentrations of chlorhexidine, triclosan, penicillin G and metronidazole on hemolytic activity and bacteriocin-like substance production of oral F. nucleatum. A high resistance to penicillin G was observed and 63% of the isolates were beta-lactamase positive. All the tested isolates were susceptible to metronidazole. F. nucleatum isolates grown with or without antimicrobials were alpha-hemolytics. Bacteriocin-like substance production was increased in isolates grown with penicillin G. Impaired production of hemolytic or antagonic substances can suggest a role in the regulation of oral microbiota. PMID:10872683

  19. Complement Activation in Patients with Focal Segmental Glomerulosclerosis

    PubMed Central

    Thurman, Joshua M.; Wong, Maria; Renner, Brandon; Frazer-Abel, Ashley; Giclas, Patricia C.; Joy, Melanie S.; Jalal, Diana; Radeva, Milena K.; Gassman, Jennifer; Gipson, Debbie S.; Kaskel, Frederick; Friedman, Aaron; Trachtman, Howard

    2015-01-01

    Background Recent pre-clinical studies have shown that complement activation contributes to glomerular and tubular injury in experimental FSGS. Although complement proteins are detected in the glomeruli of some patients with FSGS, it is not known whether this is due to complement activation or whether the proteins are simply trapped in sclerotic glomeruli. We measured complement activation fragments in the plasma and urine of patients with primary FSGS to determine whether complement activation is part of the disease process. Study Design Plasma and urine samples from patients with biopsy-proven FSGS who participated in the FSGS Clinical Trial were analyzed. Setting and Participants We identified 19 patients for whom samples were available from weeks 0, 26, 52 and 78. The results for these FSGS patients were compared to results in samples from 10 healthy controls, 10 patients with chronic kidney disease (CKD), 20 patients with vasculitis, and 23 patients with lupus nephritis. Outcomes Longitudinal control of proteinuria and estimated glomerular filtration rate (eGFR). Measurements Levels of the complement fragments Ba, Bb, C4a, and sC5b-9 in plasma and urine. Results Plasma and urine Ba, C4a, sC5b-9 were significantly higher in FSGS patients at the time of diagnosis than in the control groups. Plasma Ba levels inversely correlated with the eGFR at the time of diagnosis and at the end of the study. Plasma and urine Ba levels at the end of the study positively correlated with the level of proteinuria, the primary outcome of the study. Limitations Limited number of patients with samples from all time-points. Conclusions The complement system is activated in patients with primary FSGS, and elevated levels of plasma Ba correlate with more severe disease. Measurement of complement fragments may identify a subset of patients in whom the complement system is activated. Further investigations are needed to confirm our findings and to determine the prognostic significance of

  20. LPS induces pulp progenitor cell recruitment via complement activation.

    PubMed

    Chmilewsky, F; Jeanneau, C; Laurent, P; About, I

    2015-01-01

    Complement system, a major component of the natural immunity, has been recently identified as an important mediator of the dentin-pulp regeneration process through STRO-1 pulp cell recruitment by the C5a active fragment. Moreover, it has been shown recently that under stimulation with lipoteichoic acid, a complex component of the Gram-positive bacteria cell wall, human pulp fibroblasts are able to synthesize all proteins required for complement activation. However, Gram-negative bacteria, which are also involved in tooth decay, are known as powerful activators of complement system and inflammation. Here, we investigated the role of Gram-negative bacteria-induced complement activation on the pulp progenitor cell recruitment using lipopolysaccharide (LPS), a major component of all Gram-negative bacteria. Our results show that incubating pulp fibroblasts with LPS induced membrane attack complex formation and C5a release in serum-free fibroblast cultures. The produced C5a binds to the pulp progenitor cells' membrane and induces their migration toward the LPS stimulation chamber, as revealed by the dynamic transwell migration assays. The inhibition of this migration by the C5aR-specific antagonist W54011 indicates that the pulp progenitor migration is mediated by the interaction between C5a and C5aR. Our findings demonstrate, for the first time, a direct interaction between the recruitment of progenitor pulp cells and the activation of complement system generated by pulp fibroblast stimulation with LPS. PMID:25359783

  1. Degradation of Complement 3 by Streptococcal Pyrogenic Exotoxin B Inhibits Complement Activation and Neutrophil Opsonophagocytosis▿

    PubMed Central

    Kuo, Chih-Feng; Lin, Yee-Shin; Chuang, Woei-Jer; Wu, Jiunn-Jong; Tsao, Nina

    2008-01-01

    Streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease, is an important virulence factor in group A streptococcus (GAS) infection. The inhibition of phagocytic activity by SPE B may help prevent bacteria from being ingested. In this study, we examined the mechanism SPE B uses to enable bacteria to resist opsonophagocytosis. Using an enzyme-linked immunosorbent assay, we found that SPE B-treated serum impaired the activation of the classical, the lectin, and the alternative complement pathways. In contrast, C192S, a SPE B mutant lacking protease activity, had no effect on complement activation. Further study showed that cleavage of serum C3 by SPE B, but not C192S, blocked zymosan-induced production of reactive oxygen species in neutrophils as a result of decreased deposition of C3 fragments on the zymosan surface. Reconstitution of C3 into SPE B-treated serum unblocked zymosan-mediated neutrophil activation dose dependently. SPE B-treated, but not C192S-treated, serum also impaired opsonization of C3 fragments on the surface of GAS strain A20. Moreover, the amount of C3 fragments on the A20 cell surface, a SPE B-producing strain, was less than that on its isogenic mutant strain, SW507, after opsonization with normal serum. A20 opsonized with SPE B-treated serum was more resistant to neutrophil killing than A20 opsonized with normal serum, and SPE B-mediated resistance was C3 dependent. These results suggest a novel SPE B mechanism, one which degrades serum C3 and enables GAS to resist complement damage and opsonophagocytosis. PMID:18174338

  2. Isolation and characterization of genetic variability in bacteria with β-hemolytic and antifungal activity isolated from the rhizosphere of Medicago truncatula plants.

    PubMed

    Hernández-Salmerón, J E; Prieto-Barajas, C M; Valencia-Cantero, E; Moreno-Hagelsieb, G; Santoyo, G

    2014-01-01

    In the present study, we analyzed the frequency of hemolytic and antifungal activities in bacterial isolates from the rhizosphere of Medicago truncatula plants. Of the 2000 bacterial colonies, 96 showed β-hemolytic activities (frequency, 4.8 x 10(-2)). Hemolytic isolates were analyzed for their genetic diversity by using random amplification of polymorphic DNA, yielding 88 haplotypes. The similarity coefficient of Nei and Li showed a polymorphic diversity ranging from 0.3 to 1. Additionally, 8 of the hemolytic isolates showed antifungal activity toward plant pathogens, Diaporthe phaseolorum, Colletotrichum acutatum, Rhizoctonia solani, and Fusarium oxysporum. The 16S ribosomal sequencing analysis showed that antagonistic bacterial isolates corresponded to Bacillus subtilis (UM15, UM33, UM42, UM49, UM52, and UM91), Bacillus pumilus (UM24), and Bacillus licheniformis (UM88). The present results revealed a higher genetic diversity among hemolytic isolates compared to that of isolates with antifungal action. PMID:25062484

  3. Characterization of Antibacterial and Hemolytic Activity of Synthetic Pandinin 2 Variants and Their Inhibition against Mycobacterium tuberculosis

    PubMed Central

    Rodríguez, Alexis; Villegas, Elba; Montoya-Rosales, Alejandra; Rivas-Santiago, Bruno; Corzo, Gerardo

    2014-01-01

    The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural “kink” linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects. PMID:25019413

  4. Hypersensitivity reactions to radiocontrast media: the role of complement activation.

    PubMed

    Szebeni, Janos

    2004-01-01

    Although intravenous use of radiocontrast media (RCM) for a variety of radiographic procedures is generally safe, clinically significant acute hypersensitivity reactions still occur in a significant percentage of patients. The mechanism of these anaphylactoid, or "pseudoallergic," reactions is complex, involving complement activation, direct degranulation of mast cells and basophils, and modulation of enzymes and proteolytic cascades in plasma. In this review, basic information on different RCMs and their reactogenicity is summarized and updated, and the prevalence, pathomechanism, prediction, prevention, treatment, and economic impact of hypersensitivity reactions are discussed. Particular attention is paid to the in vitro and in vivo evidence supporting complement activation as an underlying cause of RCM reactions. PMID:14680617

  5. Complement-Coagulation Cross-Talk: A Potential Mediator of the Physiological Activation of Complement by Low pH

    PubMed Central

    Kenawy, Hany Ibrahim; Boral, Ismet; Bevington, Alan

    2015-01-01

    The complement system is a major constituent of the innate immune system. It not only bridges innate and adaptive arms of the immune system but also links the immune system with the coagulation system. Current understanding of the role of complement has extended far beyond fighting of infections, and now encompasses maintenance of homeostasis, tissue regeneration, and pathophysiology of multiple diseases. It has been known for many years that complement activation is strongly pH sensitive, but only relatively recently has the physiological significance of this been appreciated. Most complement assays are carried out at the physiological pH 7.4. However, pH in some extracellular compartments, for example, renal tubular fluid in parts of the tubule, and extracellular fluid at inflammation loci, is sufficiently acidic to activate complement. The exact molecular mechanism of this activation is still unclear, but possible cross-talk between the contact system (intrinsic pathway) and complement may exist at low pH with subsequent complement activation. The current article reviews the published data on the effect of pH on the contact system and complement activity, the nature of the pH sensor molecules, and the clinical implications of these effects. Of particular interest is chronic kidney disease (CKD) accompanied by metabolic acidosis, in which therapeutic alkalinization of urine has been shown significantly to reduce tubular complement activation products, an effect, which may have important implications for slowing progression of CKD. PMID:25999953

  6. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy.

    PubMed

    Bahia El Idrissi, N; Hakobyan, S; Ramaglia, V; Geluk, A; Morgan, B Paul; Das, P Kumar; Baas, F

    2016-06-01

    Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions. PMID:26749503

  7. Peptide inhibitor of complement c1, a novel suppressor of classical pathway activation: mechanistic studies and clinical potential.

    PubMed

    Sharp, Julia A; Whitley, Pamela H; Cunnion, Kenji M; Krishna, Neel K

    2014-01-01

    The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses and an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease, acute intravascular hemolytic transfusion reaction (AIHTR), and acute/hyperacute transplantation rejection. To date, only one putative classical pathway inhibitor, C1 esterase inhibitor (C1-INH), is currently commercially available and its only approved indication is for replacement treatment in hereditary angioedema, which is predominantly a kinin pathway disease. Given the variety of disease conditions in which the classical pathway is implicated, development of therapeutics that specifically inhibits complement initiation represents a major unmet medical need. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement. In vitro studies have demonstrated that these peptide inhibitors of complement C1 (PIC1) bind to the collagen-like region of the initiator molecule of the classical pathway, C1q. PIC1 binding to C1q blocks activation of the associated serine proteases (C1s-C1r-C1r-C1s) and subsequent downstream complement activation. Rational design optimization of PIC1 has resulted in the generation of a highly potent derivative of 15 amino acids. PIC1 inhibits classical pathway mediated complement activation in ABO incompatibility in vitro and inhibiting classical pathway activation in vivo in rats. This review will focus on the pre-clinical development of PIC1 and discuss its potential as a therapeutic in antibody-mediated classical pathway disease, specifically AIHTR. PMID:25202312

  8. Factor H–Related Protein 5 Interacts with Pentraxin 3 and the Extracellular Matrix and Modulates Complement Activation

    PubMed Central

    Csincsi, Ádám I.; Kopp, Anne; Zöldi, Miklós; Bánlaki, Zsófia; Uzonyi, Barbara; Hebecker, Mario; Caesar, Joseph J. E.; Pickering, Matthew C.; Daigo, Kenji; Hamakubo, Takao; Lea, Susan M.; Goicoechea de Jorge, Elena

    2015-01-01

    The physiological roles of the factor H (FH)-related proteins are controversial and poorly understood. Based on genetic studies, FH-related protein 5 (CFHR5) is implicated in glomerular diseases, such as atypical hemolytic uremic syndrome, dense deposit disease, and CFHR5 nephropathy. CFHR5 was also identified in glomerular immune deposits at the protein level. For CFHR5, weak complement regulatory activity and competition for C3b binding with the plasma complement inhibitor FH have been reported, but its function remains elusive. In this study, we identify pentraxin 3 (PTX3) as a novel ligand of CFHR5. Binding of native CFHR5 to PTX3 was detected in human plasma and the interaction was characterized using recombinant proteins. The binding of PTX3 to CFHR5 is of ∼2-fold higher affinity compared with that of FH. CFHR5 dose-dependently inhibited FH binding to PTX3 and also to the monomeric, denatured form of the short pentraxin C–reactive protein. Binding of PTX3 to CFHR5 resulted in increased C1q binding. Additionally, CFHR5 bound to extracellular matrix in vitro in a dose-dependent manner and competed with FH for binding. Altogether, CFHR5 reduced FH binding and its cofactor activity on pentraxins and the extracellular matrix, while at the same time allowed for enhanced C1q binding. Furthermore, CFHR5 allowed formation of the alternative pathway C3 convertase and supported complement activation. Thus, CFHR5 may locally enhance complement activation via interference with the complement-inhibiting function of FH, by enhancement of C1q binding, and by activating complement, thereby contributing to glomerular disease. PMID:25855355

  9. Peptide Inhibitor of Complement C1, a Novel Suppressor of Classical Pathway Activation: Mechanistic Studies and Clinical Potential

    PubMed Central

    Sharp, Julia A.; Whitley, Pamela H.; Cunnion, Kenji M.; Krishna, Neel K.

    2014-01-01

    The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses and an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease, acute intravascular hemolytic transfusion reaction (AIHTR), and acute/hyperacute transplantation rejection. To date, only one putative classical pathway inhibitor, C1 esterase inhibitor (C1-INH), is currently commercially available and its only approved indication is for replacement treatment in hereditary angioedema, which is predominantly a kinin pathway disease. Given the variety of disease conditions in which the classical pathway is implicated, development of therapeutics that specifically inhibits complement initiation represents a major unmet medical need. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement. In vitro studies have demonstrated that these peptide inhibitors of complement C1 (PIC1) bind to the collagen-like region of the initiator molecule of the classical pathway, C1q. PIC1 binding to C1q blocks activation of the associated serine proteases (C1s–C1r–C1r–C1s) and subsequent downstream complement activation. Rational design optimization of PIC1 has resulted in the generation of a highly potent derivative of 15 amino acids. PIC1 inhibits classical pathway mediated complement activation in ABO incompatibility in vitro and inhibiting classical pathway activation in vivo in rats. This review will focus on the pre-clinical development of PIC1 and discuss its potential as a therapeutic in antibody-mediated classical pathway disease, specifically AIHTR. PMID:25202312

  10. Mesenchymal stem cells inhibit complement activation by secreting factor H.

    PubMed

    Tu, Zhidan; Li, Qing; Bu, Hong; Lin, Feng

    2010-11-01

    Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppressive capabilities. PMID:20163251

  11. Types of Hemolytic Anemia

    MedlinePlus

    ... from the NHLBI on Twitter. Types of Hemolytic Anemia There are many types of hemolytic anemia. The ... the condition, but you develop it. Inherited Hemolytic Anemias With inherited hemolytic anemias, one or more of ...

  12. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity.

    PubMed

    Locock, Katherine E S; Michl, Thomas D; Valentin, Jules D P; Vasilev, Krasimir; Hayball, John D; Qu, Yue; Traven, Ana; Griesser, Hans J; Meagher, Laurence; Haeussler, Matthias

    2013-11-11

    We have synthesized a series of copolymers containing both positively charged (amine, guanidine) and hydrophobic side chains (amphiphilic antimicrobial peptide mimics). To investigate the structure-activity relationships of these polymers, low polydispersity polymethacrylates of varying but uniform molecular weight and composition were synthesized, using a reversible addition-fragmentation chain transfer (RAFT) approach. In a facile second reaction, pendant amine groups were converted to guanidines, allowing for direct comparison of cation structure on activity and toxicity. The guanidine copolymers were much more active against Staphylococcus epidermidis and Candida albicans compared to the amine analogues. Activity against Staphylococcus epidermidis in the presence of fetal bovine serum was only maintained for guanidine copolymers. Selectivity for bacterial over mammalian cells was assessed using hemolytic and hemagglutination toxicity assays. Guanidine copolymers of low to moderate molecular weight and hydrophobicity had high antimicrobial activity with low toxicity. Optimum properties appear to be a balance between charge density, hydrophobic character, and polymer chain length. In conclusion, a suite of guanidine copolymers has been identified that represent a new class of antimicrobial polymers with high potency and low toxicity. PMID:24099527

  13. Complement profile and activation mechanisms by different LDL apheresis systems.

    PubMed

    Hovland, Anders; Hardersen, Randolf; Nielsen, Erik Waage; Enebakk, Terje; Christiansen, Dorte; Ludviksen, Judith Krey; Mollnes, Tom Eirik; Lappegård, Knut Tore

    2012-07-01

    Extracorporeal removal of low-density lipoprotein (LDL) cholesterol by means of selective LDL apheresis is indicated in otherwise uncontrolled familial hypercholesterolemia. During blood-biomaterial interaction other constituents than the LDL particles are affected, including the complement system. We set up an ex vivo model in which human whole blood was passed through an LDL apheresis system with one of three different apheresis columns: whole blood adsorption, plasma adsorption and plasma filtration. The concentrations of complement activation products revealed distinctly different patterns of activation and adsorption by the different systems. Evaluated as the final common terminal complement complex (TCC) the whole blood system was inert, in contrast to the plasma systems, which generated substantial and equal amounts of TCC. Initial classical pathway activation was revealed equally for both plasma systems as increases in the C1rs-C1inh complex and C4d. Alternative pathway activation (Bb) was most pronounced for the plasma adsorption system. Although the anaphylatoxins (C3a and C5a) were equally generated by the two plasma separation systems, they were efficiently adsorbed to the plasma adsorption column before the "outlet", whereas they were left free in the plasma in the filtration system. Consequently, during blood-biomaterial interaction in LDL apheresis the complement system is modulated in different manners depending on the device composition. PMID:22373816

  14. TNT003, an inhibitor of the serine protease C1s, prevents complement activation induced by cold agglutinins.

    PubMed

    Shi, Ju; Rose, Eileen L; Singh, Andrew; Hussain, Sami; Stagliano, Nancy E; Parry, Graham C; Panicker, Sandip

    2014-06-26

    Activation of the classical pathway (CP) of complement is often associated with autoimmune disorders in which disease pathology is linked to the presence of an autoantibody. One such disorder is cold agglutinin disease (CAD), an autoimmune hemolytic anemia in which autoantibodies (cold agglutinins) bind to red blood cells (RBCs) at low temperatures. Anemia occurs as a result of autoantibody-mediated CP activation on the surface of the erythrocyte, leading to the deposition of complement opsonins that drive extravascular hemolysis in the liver. Here we test the effects of TNT003, a mouse monoclonal antibody targeting the CP-specific serine protease C1s, on CP activity induced by cold agglutinins on human RBCs. We collected 40 individual CAD patient samples and showed that TNT003 prevented cold agglutinin-mediated deposition of complement opsonins that promote phagocytosis of RBCs. Furthermore, we show that by preventing CP activation, TNT003 also prevents cold agglutinin-driven generation of anaphylatoxins. Finally, we provide evidence that CP activity in CAD patients terminates prior to activation of the terminal cascade, supporting the hypothesis that the primary route of RBC destruction in these patients occurs via extravascular hemolysis. Our results support the development of a CP inhibitor for the treatment of CAD. PMID:24695853

  15. Intracellular sensing of complement C3 activates cell autonomous immunity

    PubMed Central

    Tam, Jerry C.H.; Bidgood, Susanna R.; McEwan, William A.; James, Leo C.

    2014-01-01

    Pathogens traverse multiple barriers during infection including cell membranes. Here we show that during this transition pathogens carry covalently attached complement C3 into the cell, triggering immediate signalling and effector responses. Sensing of C3 in the cytosol activates MAVS-dependent signalling cascades and induces proinflammatory cytokine secretion. C3 also flags viruses for rapid proteasomal degradation, thereby preventing their replication. This system can detect both viral and bacterial pathogens but is antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral Rupintrivir inhibits 3C protease and prevents C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol. PMID:25190799

  16. Intracellular sensing of complement C3 activates cell autonomous immunity.

    PubMed

    Tam, Jerry C H; Bidgood, Susanna R; McEwan, William A; James, Leo C

    2014-09-01

    Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol. PMID:25190799

  17. RNA Helicase Important for Listeria monocytogenes Hemolytic Activity and Virulence Factor Expression

    PubMed Central

    Netterling, Sakura; Bäreclev, Caroline; Vaitkevicius, Karolis

    2015-01-01

    RNA helicases have been shown to be important for the function of RNA molecules at several levels, although their putative involvement in microbial pathogenesis has remained elusive. We have previously shown that Listeria monocytogenes DExD-box RNA helicases are important for bacterial growth, motility, ribosomal maturation, and rRNA processing. We assessed the importance of the RNA helicase Lmo0866 (here named CshA) for expression of virulence traits. We observed a reduction in hemolytic activity in a strain lacking CshA compared to the wild type. This phenomenon was less evident in strains lacking other RNA helicases. The reduced hemolysis was accompanied by lower expression of major listerial virulence factors in the ΔcshA strain, mainly listeriolysin O, but also to some degree the actin polymerizing factor ActA. Reduced expression of these virulence factors in the strain lacking CshA did not, however, correlate with a decreased level of the virulence regulator PrfA. When combining the ΔcshA knockout with a mutation creating a constitutively active PrfA protein (PrfA*), the effect of the ΔcshA knockout on LLO expression was negated. These data suggest a role for the RNA helicase CshA in posttranslational activation of PrfA. Surprisingly, although the expression of several virulence factors was reduced, the ΔcshA strain did not demonstrate any reduced ability to infect nonphagocytic cells compared to the wild-type strain. PMID:26483402

  18. Streptomyces-derived actinomycin D inhibits biofilm formation by Staphylococcus aureus and its hemolytic activity.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Lee, Kayeon; Kim, Chang-Jin; Park, Dong-Jin; Ju, Yoonjung; Lee, Jae-Chan; Wood, Thomas K; Lee, Jintae

    2016-01-01

    Staphylococcus aureus is a versatile human pathogen that produces diverse virulence factors, and its biofilm cells are difficult to eradicate due to their inherent ability to tolerate antibiotics. The anti-biofilm activities of the spent media of 252 diverse endophytic microorganisms were investigated using three S. aureus strains. An attempt was made to identify anti-biofilm compounds in active spent media and to assess their anti-hemolytic activities and hydrophobicities in order to investigate action mechanisms. Unlike other antibiotics, actinomycin D (0.5 μg ml(-1)) from Streptomyces parvulus significantly inhibited biofilm formation by all three S. aureus strains. Actinomycin D inhibited slime production in S. aureus and it inhibited hemolysis by S. aureus and caused S. aureus cells to become less hydrophobic, thus supporting its anti-biofilm effect. In addition, surface coatings containing actinomycin D prevented S. aureus biofilm formation on glass surfaces. Given these results, FDA-approved actinomycin D warrants further attention as a potential antivirulence agent against S. aureus infections. PMID:26785934

  19. Complement fixation by rheumatoid factor.

    PubMed Central

    Tanimoto, K; Cooper, N R; Johnson, J S; Vaughan, J H

    1975-01-01

    The capacity for fixation and activation of hemolytic complement by polyclonal IgM rheumatoid factors (RF) isolated from sera of patients with rheumatoid arthritis and monoclonal IgM-RF isolated from the cryoprecipitates of patients with IgM-IgG mixed cryoglobulinemia was examined. RF mixed with aggregated, reduced, and alkylated human IgG (Agg-R/A-IgG) in the fluid phase failed to significantly reduce the level of total hemolytic complement, CH50, or of individual complement components, C1, C2, C3, and C5. However, sheep erythrocytes (SRC) coated with Agg-R/A-IgG or with reduced and alkylated rabbit IgG anti-SRC antibody were hemolyzed by complement in the presence of polyclonal IgM-RF. Human and guinea pig complement worked equally well. The degree of hemolysis was in direct proportion to the hemagglutination titer of the RF against the same coated cells. Monoclonal IgM-RF, normal human IgM, and purified Waldenström macroglobulins without antiglobulin activity were all inert. Hemolysis of coated SRC by RF and complement was inhibited by prior treatment of the complement source with chelating agents, hydrazine, cobra venom factor, specific antisera to C1q, CR, C5, C6, or C8, or by heating at 56 degrees C for 30 min. Purified radiolabeled C4, C3, and C8 included in the complement source were bound to hemolysed SRC in direct proportion to the degree of hemolysis. These data indicate that polyclonal IgM-RF fix and activate complement via the classic pathway. The system described for assessing complement fixation by isolated RF is readily adaptable to use with whole human serum. PMID:1078825

  20. M. leprae components induce nerve damage by complement activation: identification of lipoarabinomannan as the dominant complement activator.

    PubMed

    Bahia El Idrissi, Nawal; Das, Pranab K; Fluiter, Kees; Rosa, Patricia S; Vreijling, Jeroen; Troost, Dirk; Morgan, B Paul; Baas, Frank; Ramaglia, Valeria

    2015-05-01

    Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients. PMID:25772973

  1. Pulp Fibroblasts Control Nerve Regeneration through Complement Activation.

    PubMed

    Chmilewsky, F; About, I; Chung, S-H

    2016-07-01

    Dentin-pulp regeneration is closely linked to the presence of nerve fibers in the pulp and to the healing mechanism by sprouting of the nerve fiber's terminal branches beneath the carious injury site. However, little is known about the initial mechanisms regulating this process in carious teeth. It has been recently demonstrated that the complement system activation, which is one of the first immune responses, contributes to tissue regeneration through the local production of anaphylatoxins such as C5a. While few pulp fibroblasts in intact teeth and in untreated fibroblast cultures express the C5a receptor (C5aR), here we show that all dental pulp fibroblasts, localized beneath the carious injury site, do express this receptor. This observation is consistent with our in vitro results, which showed expression of C5aR in lipoteichoic acid-stimulated pulp fibroblasts. The interaction of C5a, produced after complement synthesis and activation from pulp fibroblasts, with the C5aR of these cells mediated the local brain-derived neurotropic factor (BDNF) secretion. Overall, this activation guided the neuronal growth toward the lipoteichoic acid-stimulated fibroblasts. Thus, our findings highlight a new mechanism in one of the initial steps of the dentin-pulp regeneration process, linking pulp fibroblasts to the nerve sprouting through the complement system activation. This may provide a useful future therapeutic tool in targeting the fibroblasts in the dentin-pulp regeneration process. PMID:27053117

  2. [Atypical hemolytic uremic syndrome].

    PubMed

    Blasco Pelicano, Miquel; Rodríguez de Córdoba, Santiago; Campistol Plana, Josep M

    2015-11-20

    The hemolytic uremic syndrome (HUS) is a clinical entity characterized by thrombocytopenia, non-immune hemolytic anemia and renal impairment. Kidney pathology shows thrombotic microangiopathy (TMA) with endothelial cell injury leading to thrombotic occlusion of arterioles and capillaries. Traditionally, HUS was classified in 2 forms: Typical HUS, most frequently occurring in children and caused by Shiga-toxin-producing bacteria, and atypical HUS (aHUS). aHUS is associated with mutations in complement genes in 50-60% of patients and has worse prognosis, with the majority of patients developing end stage renal disease. After kidney transplantation HUS may develop as a recurrence of aHUS or as de novo disease. Over the last years, many studies have demonstrated that complement dysregulation underlies the endothelial damage that triggers the development of TMA in most of these patients. Advances in our understanding of the pathogenic mechanisms of aHUS, together with the availability of novel therapeutic options, will enable better strategies for the early diagnosis and etiological treatment, which are changing the natural history of aHUS. This review summarizes the aHUS clinical entity and describes the role of complement dysregulation in the pathogenesis of aHUS. Finally, we review the differential diagnosis and the therapeutic options available to patients with aHUS. PMID:25433773

  3. Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola, with hemolytic and hemoxidative activities.

    PubMed Central

    Chu, L; Ebersole, J L; Kurzban, G P; Holt, S C

    1997-01-01

    A 46-kDa hemolytic protein, referred to as cystalysin, from Treponema denticola ATCC 35404 was overexpressed in Escherichia coli LC-67. Both the native and recombinant 46-kDa proteins were purified to homogeneity. Both proteins expressed identical biological and functional characteristics. In addition to its biological function of lysing erythrocytes and hemoxidizing the hemoglobin to methemoglobin, cystalysin was also capable of removing the sulfhydryl and amino groups from selected S-containing compounds (e.g., cysteine) producing H2S, NH3, and pyruvate. This cysteine desulfhydrase resulted in the following Michaelis-Menten kinetics: Km = 3.6 mM and k(cat) = 12 s(-1). Cystathionine and S-aminoethyl-L-cysteine were also substrates for the protein. Gas chromatography-mass spectrometry and high-performance liquid chromatography analysis of the end products revealed NH3, pyruvate, homocysteine (from cystathionine), and cysteamine (from S-aminoethyl-L-cysteine). The enzyme was active over a broad pH range, with highest activity at pH 7.8 to 8.0. The enzymatic activity was increased by beta-mercaptoethanol. It was not inhibited by the proteinase inhibitor TLCK (N alpha-p-tosyl-L-lysine chloromethyl ketone), pronase, or proteinase K, suggesting that the functional site was physically protected or located in a small fragment of the polypeptide. We hypothesize that cystalysin is a pyridoxal-5-phosphate-containing enzyme, with activity of an alphaC-N and betaC-S lyase (cystathionase) type. Since large amounts of H2S have been reported in deep periodontal pockets, cystalysin may also function in vivo as an important virulence molecule. PMID:9234780

  4. Can Pulp Fibroblasts Kill Cariogenic Bacteria? Role of Complement Activation.

    PubMed

    Jeanneau, C; Rufas, P; Rombouts, C; Giraud, T; Dejou, J; About, I

    2015-12-01

    Complement system activation has been shown to be involved in inflammation and regeneration processes that can be observed within the dental pulp after moderate carious decay. Studies simulating carious injuries in vitro have shown that when human pulp fibroblasts are stimulated by lipoteichoic acid (LTA), they synthetize all complement components. Complement activation leads to the formation of the membrane attack complex (MAC), which is known for its bacterial lytic effect. This work was designed to find out whether human pulp fibroblasts can kill Streptococcus mutans and Streptococcus sanguinis via complement activation. First, histological staining of carious tooth sections showed that the presence of S. mutans correlated with an intense MAC staining. Next, to simulate bacterial infection in vitro, human pulp fibroblasts were incubated in serum-free medium with LTA. Quantification by an enzymatic assay showed a significant increase of MAC formation on bacteria grown in this LTA-conditioned medium. To determine whether the MAC produced by pulp fibroblasts was functional, bacteria sensitivity to LTA-conditioned medium was evaluated using agar well diffusion assay and succinyl dehydrogenase (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide [MTT]) assay. Both assays showed that S. mutans and S. sanguinis were sensitive to LTA-conditioned medium. Finally, to evaluate whether MAC formation on cariogenic bacteria, by pulp fibroblasts, can be directly induced by the presence of these bacteria, a specific coculture model of human pulp fibroblasts and bacteria was developed. Immunofluorescence revealed an intense MAC labeling on bacteria after direct contact with pulp fibroblasts. The observed MAC formation and its lethal effects were significantly reduced when CD59, an inhibitor of MAC formation, was added. Our findings demonstrate that the MAC produced by LTA-stimulated pulp fibroblasts is functional and can kill S. mutans and S. sanguinis. Taken together

  5. Expression of activated molecules on CD5(+)B lymphocytes in autoimmune hemolytic anemia.

    PubMed

    Zhu, Hongli; Xu, Wenyan; Liu, Hong; Wang, Huaquan; Fu, Rong; Wu, Yuhong; Qu, Wen; Wang, Guojin; Guan, Jing; Song, Jia; Xing, Limin; Shao, Zonghong

    2016-05-01

    To investigate the expression of activation molecules on CD5(+)B lymphocytes in peripheral blood of autoimmune hemolytic anemia (AIHA)/Evans patients. The expression of CD80, CD86, and CD69 on CD5(+)B lymphocytes was detected using flow cytometry in 30 AIHA/Evans patients, 18 normal controls (NC) and nine chronic lymphocytic leukemia (CLL) patients. CD80 on CD5(+)B lymphocytes in untreated patients was higher than that in remission patients (P < 0.05), NC (P < 0.01) and CLL patients (P < 0.01). CD80 on CD5(+)B lymphocytes was higher than that on CD5(-)B lymphocytes in untreated patients (P > 0.05), but lower than those of CD5(-)B lymphocytes in remission patients and NC (P < 0.05). CD86 on CD5(+)B lymphocytes of untreated patients was higher than that of remission patients (P < 0.05), NC (P < 0.01). CD86 on CD5(+)B lymphocytes of CLL was higher than that of NC, remission (P < 0.05), and untreated patients (P > 0.05). CD80 and CD86 on CD5(+)B lymphocytes was negatively correlated with hemoglobin (HB), C3, C4 (P < 0.05) and positively correlated with reticulocyte (Ret) (P < 0.05). CD69 on CD5(+) and CD5(-)B lymphocytes of CLL was higher than those of AIHA/Evans patients and NC (P < 0.05). The active molecules on CD5(+)B lymphocytes in peripheral blood of AIHA/Evans patients differ from those on CD5(-) and clonal CD5(+)B lymphocytes. PMID:26968550

  6. Biological effects of short-term, high-concentration exposure to methyl isocyanate. VI. In vitro and in vivo complement activation studies

    SciTech Connect

    Kolb, W.P.; Savary, J.R.; Troup, C.M.; Dodd, D.E.; Tamerius, J.D.

    1987-06-01

    The ability of MIC to induce complement activation in vitro and in vivo was investigated. For the in vitro studies, both human and guinea pig serum or EDTA-plasma samples were exposed to 1167 to 1260 ppm MIC vapor for 15 min at room temperature. The human serum samples exposed to MIC showed significant reduction in Factor B, C2, C4, C3, C5, and total hemolytic complement CH/sub 50/ activity levels. The C3, C5, and CH/sub 50/ functional activities in guinea pig serum were more sensitive to MIC-mediated reduction than the corresponding activity reductions observed in the human serum samples. The human and single guinea pig EDTA-plasma samples exposed to MIC vapor showed no evidence of C3 consumption but did show significant reductions in CH/sub 50/ levels. Thus, MIC vapor was able to active, and thereby reduce serum complement C3 activity in vitro by a complement-dependent process. For the in vivo studies, five pairs of guinea pigs were exposed to 644 to 702 ppm MIC vapor until one of the pair died (11-15 min). MIC exposure was then discontinued, the surviving guinea pig was sacrificed, and EDTA-plasma was obtained from both animals and analyzed for complement consumption. Clear evidence was obtained to indicate that complement activation had occurred in these animals exposed to MIC for 11 to 15 min. In addition, the complement activation profile observed in these guinea pigs was qualitatively similar to that seen in the guinea pig serum samples exposed to MIC vapor in vitro. The total protein concentration present in plasma samples obtained from guinea pigs that had died from MIC exposure was elevated significantly. The possible contribution of complement activation to the fatal reaction(s) observed in these MIC-treated animals is discussed.

  7. Bisretinoid-mediated Complement Activation on Retinal Pigment Epithelial Cells Is Dependent on Complement Factor H Haplotype*

    PubMed Central

    Radu, Roxana A.; Hu, Jane; Jiang, Zhichun; Bok, Dean

    2014-01-01

    Age-related macular degeneration (AMD) is a common central blinding disease of the elderly. Homozygosity for a sequence variant causing Y402H and I62V substitutions in the gene for complement factor H (CFH) is strongly associated with risk of AMD. CFH, secreted by many cell types, including those of the retinal pigment epithelium (RPE), is a regulatory protein that inhibits complement activation. Recessive Stargardt maculopathy is another central blinding disease caused by mutations in the gene for ABCA4, a transporter in photoreceptor outer segments (OS) that clears retinaldehyde and prevents formation of toxic bisretinoids. Photoreceptors daily shed their distal OS, which are phagocytosed by the RPE cells. Here, we investigated the relationship between the CFH haplotype of human RPE (hRPE) cells, exposure to OS containing bisretinoids, and complement activation. We show that hRPE cells of the AMD-predisposing CFH haplotype (HH402/VV62) are attacked by complement following exposure to bisretinoid-containing Abca4−/− OS. This activation was dependent on factor B, indicating involvement of the alternative pathway. In contrast, hRPE cells of the AMD-protective CFH haplotype (YY402/II62) showed no complement activation following exposure to either Abca4−/− or wild-type OS. The AMD-protective YY402/II62 hRPE cells were more resistant to the membrane attack complex, whereas HH402/VV62 hRPE cells showed significant membrane attack complex deposition following ingestion of Abca4−/− OS. These results suggest that bisretinoid accumulation in hRPE cells stimulates activation and dysregulation of complement. Cells with an intact complement negative regulatory system are protected from complement attack, whereas cells with reduced CFH synthesis because of the Y402H and I62V substitutions are vulnerable to disease. PMID:24550392

  8. Chemical analysis and hemolytic activity of the fava bean aglycon divicine.

    PubMed

    McMillan, D C; Schey, K L; Meier, G P; Jollow, D J

    1993-01-01

    Divicine is an unstable aglycon metabolite of the fava bean pyrimidine beta-glucoside vicine. Divicine has long been thought to be a mediator of an acute hemolytic crisis, known as favism, in susceptible individuals who ingest fava beans (Vicia faba). However, a recent report has questioned the chemical identity of the divicine that was used in most of the studies on divicine hemotoxicity. The present study was undertaken to examine the hemolytic potential of synthetic divicine. Divicine was synthesized and its identity and purity were confirmed by HPLC, mass spectrometry, and NMR spectroscopy. The stability and redox behavior of divicine, under physiological conditions, were examined by HPLC and cyclic voltammetry. The data indicate that divicine is readily oxidized under aerobic conditions; however, it was sufficiently stable at pH 7.4 to permit its experimental manipulation. When 51Cr-labeled rat erythrocytes were exposed in vitro to the parent glucoside, vicine (5 mM), and then readministered to rats, no decrease in erythrocyte survival was observed. In contrast, erythrocyte survival was dramatically reduced by in vitro exposure to divicine (1.5 mM). These data demonstrate that divicine is a direct-acting hemolytic agent and thus may be a mediator of the hemolytic crisis induced by fava bean ingestion. PMID:8374040

  9. Autoimmune hemolytic anemia.

    PubMed

    Dacie, J V

    1975-10-01

    Warm-type autoantibodies of autoimmune hemolytic anemia (AIHA) are usually IgG but may be IgM or IgA. They are usual Rh specific. Cold-type antibodies are IgM or IgG (Donath-Landsteiner [DL] antibody). IgM antibodies are usually anit-l (occasionally anti-i) and DL antibodies anti-P. The warm IgG antibodies do not fix complement (C); they cause red blood cell (RBC) destruction predominantly in the spleen as the result of interaction between fixing; they cause RBC destruction either by intravascular lysis (complement sequence completed) or by interaction between C3-coated RBCs and phagocytes in liver and spleen. Gentic factors, immunoglobulin deficiency, somatic mutation, viral infections and drugs, and failure of T-lymphocyte function, all probably play a part in breaking immunological tolerance and the development of AIHA. PMID:1164110

  10. C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins.

    PubMed Central

    Albertí, S; Marqués, G; Camprubí, S; Merino, S; Tomás, J M; Vivanco, F; Benedí, V J

    1993-01-01

    The mechanisms of killing of Klebsiella pneumoniae serum-sensitive strains in nonimmune serum by the complement classical pathway have been studied. The bacterial cell surface components that bind C1q more efficiently were identified as two major outer membrane proteins, presumably the porins of this bacterial species. These two outer membrane proteins were isolated from a representative serum-sensitive strain. We have demonstrated that in their purified form, they bind C1q and activate the classical pathway in an antibody-independent manner, with the subsequent consumption of C4 and reduction of the serum total hemolytic activity. Activation of the classical pathway has been observed in human nonimmune serum and agammaglobulinemic serum (both depleted in factor D). Binding of C1q to other components of the bacterial outer membrane, in particular the rough lipopolysaccharide, could not be demonstrated. Activation of the classical pathway by this lipopolysaccharide was also much less efficient than activation by the two outer membrane proteins. The antibody-independent binding of C1q to serum-sensitive strains was independent of the presence of capsular polysaccharide, while strains possessing lipopolysaccharide O antigen bind less C1q and are resistant to complement-mediated killing. Images PMID:8432605

  11. Structure-function relationship of the saponins from the roots of Platycodon grandiflorum for hemolytic and adjuvant activity.

    PubMed

    Sun, Hongxiang; Chen, Liqing; Wang, Juanjuan; Wang, Kuiwu; Zhou, Jiyong

    2011-12-01

    To assess the contribution of the aglycone and sugar chain to the biological activity of saponins from Platycodon grandiflorum, seven structurally consecutive saponins, platycodin D (PD), D2 (PD2), D3 (PD3), platycoside A (PA), E (PE), deapioplatycoside E (DPE), and polygalacin D2 (PGD) were compared for their hemolytic activities and adjuvant potentials on the immune responses to Newcastle disease virus-based recombinant avian influenza vaccine (rL-H5) in mice. Among seven compounds, the order of the hemolytic activity was PGD ≈ PD > PD2 > PA > PD3 > PE > DPE. PD, PD2, PA, and PGD significantly not only promoted concanavalin A (Con A)-, lipopolysaccharide (LPS)- and antigen-induced splenocyte proliferation, but enhanced the NK cell activity in mice immunized with rL-H5. PD and PD2 increased the antigen specific IgG, IgG1, IgG2a, and IgG2b antibody titers, while PA and PGD only induce the IgG and IgG1 antibody responses in the immunized mice. However, the other three saponins were not observed for adjuvant activity. The results suggested that the sugar chains attached to C-3, the glycidic moiety at C-28 of aglycone, as well as aglycone affect their biological activities. Interestingly, their hemolytic and adjuvant activities increased with the retention time by reverse phase HPLC analysis. The retention time may be useful for primary estimation of fundamental adjuvanticity of saponin with the same aglycone. PMID:21945665

  12. TNF Regulates Essential Alternative Complement Pathway Components and Impairs Activation of Protein C in Human Glomerular Endothelial Cells.

    PubMed

    Sartain, Sarah E; Turner, Nancy A; Moake, Joel L

    2016-01-15

    Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy with severe renal injury secondary to an overactive alternative complement pathway (AP). aHUS episodes are often initiated or recur during inflammation. We investigated gene expression of the surface complement regulatory proteins (CD55, CD59, CD46, and CD141 [thrombomodulin]) and AP components in human glomerular microvascular endothelial cells (GMVECs) and in HUVECs, a frequently used investigational model of endothelial cells. Surface complement regulatory proteins were also quantified by flow cytometry. All experiments were done with and without exposure to IL-1β or TNF. Without cytokine stimulation, we found that GMVECs had greater AP activation than did HUVECs. With TNF stimulation, THBD gene expression and corresponding CD141 surface presence in HUVECs and GMVECs were reduced, and gene expression of complement components C3 (C3) and factor B (CFB) was increased. Consequently, AP activation, measured by Ba production, was increased, and conversion of protein C (PC) to activated PC by CD141-bound thrombin was decreased, in GMVECs and HUVECs exposed to TNF. IL-1β had similar, albeit lesser, effects on HUVEC gene expression, and it only slightly affected GMVEC gene expression. To our knowledge, this is the first detailed study of the expression/display of AP components and surface regulatory proteins in GMVECs with and without cytokine stimulation. In aHUS patients with an underlying overactive AP, additional stimulation of the AP and inhibition of activated PC-mediated anticoagulation in GMVECs by the inflammatory cytokine TNF are likely to provoke episodes of renal failure. PMID:26673143

  13. Complement activation associated with polysorbate 80 in beagle dogs.

    PubMed

    Qiu, Shidong; Liu, Zhaohua; Hou, Li; Li, Yuanyuan; Wang, Jiao; Wang, Hong; Du, Wu; Wang, Wenfang; Qin, Yizhuo; Liu, Zhaoping

    2013-01-01

    Polysorbate 80 (Tween® 80) is the most extensively used surfactant in parenteral drug formulation. Its application as an adjunct for intravenous drug administration is approved by the Food and Drug Administration. However, severe hypersensitive reactions, which are typical non-immune anaphylactic reactions (pseudoallergy) characterized by the release of histamine and unvaried IgE antibodies, have been associated with Tween® 80. In order to explore the non-immune anaphylactic mechanisms of Tween® 80, we performed in vivo experiments to assess the changes in physiological and hematologic indicators after intravenous injection of Tween® 80 into dogs. Tween® 80 induced the release of histamine, and a 2-fold increase in SC5b-9, 2.5-fold increase in C4d, 1.3-fold increase in Bb, while IgE remained unchanged. It also produced changes in pulmonary pressure, systemic pressure and ECG. In in vitro experiments, Tween® 80 was incubated with dog serum in the presence of an inhibitor of complement activation (EGTA/Mg(2+)). Under these conditions, Tween® 80 increased the contents of C4d and Bb. The results of this study reveal that Tween® 80 can cause cardiopulmonary distress in dogs and activate the complement system through classical and alternative pathways as indicated in both in vivo and in vitro preparations. Moreover, they demonstrate the utility of the beagle dog as an animal model for the study of complement activation-related pseudoallergy. These findings raise concerns with regard to the indiscriminate use of Tween® 80 in clinical applications. PMID:23159336

  14. Complement activating factor(s) of Trypanosoma lewisi: some physiochemical characteristics of the active components.

    PubMed Central

    Nielsen, K; Sheppard, J; Tizard, I; Holmes, W

    1978-01-01

    Of the complement activating factors present in Trypanosoma lewisi, the major component, a carbohydrate containing substance was further investigated. This component was found to have a lag time of complete activation of 2 CH50 units of bovine complement of approximately 15 minutes while 1% trypsin (a known activator of complement, used as a control system) was capable of instant consumption of a similar quantity of complement. In addition, the complement activating factor of trypanosomes was observed to be stable at 100 degrees C for 15 minutes and over a pH range of 3.0 to 11.0. Thin layer chromatography studies suggested that at least part of the active component contained lipid, perhaps indicating that it may be glycolipid in nature. PMID:25701

  15. The alternative pathway of complement and the thrombotic microangiopathies.

    PubMed

    Teoh, Chia Wei; Riedl, Magdalena; Licht, Christoph

    2016-04-01

    Thrombotic microangiopathies (TMA) are disorders defined by microangiopathic hemolytic anemia, non-immune thrombocytopenia and have multi-organ involvement including the kidneys, brain, gastrointestinal, respiratory tract and skin. Emerging evidence points to the central role of complement dysregulation in leading to microvascular endothelial injury which is crucial for the development of TMAs. This key insight has led to the development of complement-targeted therapy. Eculizumab is an anti-C5 monoclonal antibody, which has revolutionized the treatment of atypical hemolytic uremic syndrome. Several other anti-complement therapeutic agents are currently in development, offering a potential armamentarium of therapies available to treat complement-mediated TMAs. The development of sensitive, reliable and easy to perform assays to monitor complement activity and therapeutic efficacy will be key to devising an individualized treatment regime with the potential of safely weaning or discontinuing treatment in the appropriate clinical setting. PMID:27160864

  16. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425

  17. The relative merits of therapies being developed to tackle inappropriate ('self'-directed) complement activation.

    PubMed

    Antwi-Baffour, Samuel; Kyeremeh, Ransford; Adjei, Jonathan Kofi; Aryeh, Claudia; Kpentey, George

    2016-12-01

    The complement system is an enzyme cascade that helps defend against infection. Many complement proteins occur in serum as inactive enzyme precursors or reside on cell surfaces. Complement components have many biologic functions and their activation can eventually damage the plasma membranes of cells and some bacteria. Although a direct link between complement activation and autoimmune diseases has not been found, there is increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases that may have autoimmune linkage. The inhibition of complement may therefore be very important in a variety of autoimmune diseases since their activation may be detrimental to the individual involved. However, a complete and long-term inhibition of complement may have some contra side effects such as increased susceptibility to infection. The site of complement activation will, however, determine the type of inhibitor to be used, its route of application and dosage level. Compared with conventional drugs, complement inhibitors may be the best option for treatment of autoimmune diseases. The review takes a critical look at the relative merits of therapies being developed to tackle inappropriate complement activation that are likely to result in sporadic autoimmune diseases or worsen already existing one. It covers the complement system, general aspects of complement inhibition therapy, therapeutic strategies and examples of complement inhibitors. It concludes by highlighting on the possibility that a better inhibitor of complement activation when found will help provide a formidable treatment for autoimmune diseases as well as preventing one. PMID:26935316

  18. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus

    PubMed Central

    Lee, Jin-Hyung; Kim, Yong-Guy; Yong Ryu, Shi; Lee, Jintae

    2016-01-01

    Staphylococcal biofilms are problematic and play a critical role in the persistence of chronic infections because of their abilities to tolerate antimicrobial agents. Thus, the inhibitions of biofilm formation and/or toxin production are viewed as alternative means of controlling Staphylococcus aureus infections. Here, the antibiofilm activities of 560 purified phytochemicals were examined. Alizarin at 10 μg/ml was found to efficiently inhibit biofilm formation by three S. aureus strains and a Staphylococcus epidermidis strain. In addition, two other anthraquinones purpurin and quinalizarin were found to have antibiofilm activity. Binding of Ca2+ by alizarin decreased S. aureus biofilm formation and a calcium-specific chelating agent suppressed the effect of calcium. These three anthraquinones also markedly inhibited the hemolytic activity of S. aureus, and in-line with their antibiofilm activities, increased cell aggregation. A chemical structure-activity relationship study revealed that two hydroxyl units at the C-1 and C-2 positions of anthraquinone play important roles in antibiofilm and anti-hemolytic activities. Transcriptional analyses showed that alizarin repressed the α-hemolysin hla gene, biofilm-related genes (psmα, rbf, and spa), and modulated the expressions of cid/lrg genes (the holin/antiholin system). These findings suggest anthraquinones, especially alizarin, are potentially useful for controlling biofilm formation and the virulence of S. aureus. PMID:26763935

  19. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Yong Ryu, Shi; Lee, Jintae

    2016-01-01

    Staphylococcal biofilms are problematic and play a critical role in the persistence of chronic infections because of their abilities to tolerate antimicrobial agents. Thus, the inhibitions of biofilm formation and/or toxin production are viewed as alternative means of controlling Staphylococcus aureus infections. Here, the antibiofilm activities of 560 purified phytochemicals were examined. Alizarin at 10 μg/ml was found to efficiently inhibit biofilm formation by three S. aureus strains and a Staphylococcus epidermidis strain. In addition, two other anthraquinones purpurin and quinalizarin were found to have antibiofilm activity. Binding of Ca(2+) by alizarin decreased S. aureus biofilm formation and a calcium-specific chelating agent suppressed the effect of calcium. These three anthraquinones also markedly inhibited the hemolytic activity of S. aureus, and in-line with their antibiofilm activities, increased cell aggregation. A chemical structure-activity relationship study revealed that two hydroxyl units at the C-1 and C-2 positions of anthraquinone play important roles in antibiofilm and anti-hemolytic activities. Transcriptional analyses showed that alizarin repressed the α-hemolysin hla gene, biofilm-related genes (psmα, rbf, and spa), and modulated the expressions of cid/lrg genes (the holin/antiholin system). These findings suggest anthraquinones, especially alizarin, are potentially useful for controlling biofilm formation and the virulence of S. aureus. PMID:26763935

  20. Complement Alternative Pathway Activation in Human Nonalcoholic Steatohepatitis

    PubMed Central

    Segers, Filip M.; Verdam, Froukje J.; de Jonge, Charlotte; Boonen, Bas; Driessen, Ann; Shiri-Sverdlov, Ronit; Bouvy, Nicole D.; Greve, Jan Willem M.; Buurman, Wim A.; Rensen, Sander S.

    2014-01-01

    The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10) or with NASH (n = 12) using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01) in subjects with NASH despite reduced native C3 concentrations (0.94±0.12 vs. 0.57±0.09; p<0.01). Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05) and C3c/C3 activation ratio (rs = 0.59; p<0.05). C3c, C3 activation status (C3c/C3 ratio) and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05). Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00±0.19 vs. 0.71±0.07, p = 0.26; factor D: 1.00±0.21 vs. 0.66±0.14, p = 0.29;). Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00±0.14 vs. 2.37±0.72; p = 0.22; protein: 0.51±0.11 vs. 1.97±0.67; p = 0.28). In contrast, factor H mRNA was downregulated in patients with NASH (1.00±0.09 vs. 0.71±0.06; p<0.05) and a similar trend was observed with hepatic protein levels (1.12±0.16 vs. 0.78±0.07; p = 0.08). Collectively, these data suggest a role for alternative pathway

  1. High Antimicrobial Effectiveness with Low Hemolytic and Cytotoxic Activity for PEG/Quaternary Copolyoxetanes

    PubMed Central

    2015-01-01

    The alkyl chain length of quaternary ammonium/PEG copolyoxetanes has been varied to discern effects on solution antimicrobial efficacy, hemolytic activity and cytotoxicity. Monomers 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) were used to prepare precursor P[(BBOx)(ME2Ox)-50:50–4 kDa] copolyoxetane via cationic ring opening polymerization. The 1:1 copolymer composition and Mn (4 kDa) were confirmed by 1H NMR spectroscopy. After C–Br substitution by a series of tertiary amines, ionic liquid Cx-50 copolyoxetanes were obtained, where 50 is the mole percent of quaternary repeat units and “x” is quaternary alkyl chain length (2, 6, 8, 10, 12, 14, or 16 carbons). Modulated differential scanning calorimetry (MDSC) studies showed Tgs between −40 and −60 °C and melting endotherms for C14–50 and C16–50. Minimum inhibitory concentrations (MIC) were determined for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. A systematic dependence of MIC on alkyl chain length was found. The most effective antimicrobials were in the C6–50 to C12–50 range. C8–50 had better overall performance with MICs of 4 μg/mL, E. coli; 2 μg/mL, S. aureus; and 24 μg/mL, P. aeruginosa. At 5 × MIC, C8–50 effected >99% kill in 1 h against S. aureus, E. coli, and P. aeruginosa challenges of 108 cfu/mL; log reductions (1 h) were 7, 3, and 5, respectively. To provide additional insight into polycation interactions with bacterial membranes, a geometric model based on the dimensions of E. coli is described that provides an estimate of the maximum number of polycations that can chemisorb. Chain dimensions were estimated for polycation C8–50 with a molecular weight of 5 kDa. Considering the approximations for polycation chemisorption (PCC), it is surprising that a calculation based on geometric considerations gives a C8–50 concentration within a factor of 2 of the MIC, 4.0 (±1.2) μg/mL for

  2. High antimicrobial effectiveness with low hemolytic and cytotoxic activity for PEG/quaternary copolyoxetanes.

    PubMed

    King, Allison; Chakrabarty, Souvik; Zhang, Wei; Zeng, Xiaomei; Ohman, Dennis E; Wood, Lynn F; Abraham, Sheena; Rao, Raj; Wynne, Kenneth J

    2014-02-10

    The alkyl chain length of quaternary ammonium/PEG copolyoxetanes has been varied to discern effects on solution antimicrobial efficacy, hemolytic activity and cytotoxicity. Monomers 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) were used to prepare precursor P[(BBOx)(ME2Ox)-50:50-4 kDa] copolyoxetane via cationic ring opening polymerization. The 1:1 copolymer composition and Mn (4 kDa) were confirmed by (1)H NMR spectroscopy. After C-Br substitution by a series of tertiary amines, ionic liquid Cx-50 copolyoxetanes were obtained, where 50 is the mole percent of quaternary repeat units and "x" is quaternary alkyl chain length (2, 6, 8, 10, 12, 14, or 16 carbons). Modulated differential scanning calorimetry (MDSC) studies showed Tgs between -40 and -60 °C and melting endotherms for C14-50 and C16-50. Minimum inhibitory concentrations (MIC) were determined for Escherichia coli , Staphylococcus aureus , and Pseudomonas aeruginosa . A systematic dependence of MIC on alkyl chain length was found. The most effective antimicrobials were in the C6-50 to C12-50 range. C8-50 had better overall performance with MICs of 4 μg/mL, E. coli ; 2 μg/mL, S. aureus ; and 24 μg/mL, P. aeruginosa . At 5 × MIC, C8-50 effected >99% kill in 1 h against S. aureus , E. coli , and P. aeruginosa challenges of 10(8) cfu/mL; log reductions (1 h) were 7, 3, and 5, respectively. To provide additional insight into polycation interactions with bacterial membranes, a geometric model based on the dimensions of E. coli is described that provides an estimate of the maximum number of polycations that can chemisorb. Chain dimensions were estimated for polycation C8-50 with a molecular weight of 5 kDa. Considering the approximations for polycation chemisorption (PCC), it is surprising that a calculation based on geometric considerations gives a C8-50 concentration within a factor of 2 of the MIC, 4.0 (±1.2) μg/mL for E. coli . Cx-50

  3. Persistent complement activation on tumor cells in breast cancer.

    PubMed Central

    Niculescu, F.; Rus, H. G.; Retegan, M.; Vlaicu, R.

    1992-01-01

    The neoantigens of the C5b-9 complement complex, IgG, C3, C4, S-protein/vitronectin, fibronectin, and macrophages were localized on 17 samples of breast cancer and on 6 samples of benign breast tumors using polyclonal or monoclonal antibodies and the streptavidin-biotin-peroxidase technique. All the tissue samples with carcinoma in each the TNM stages presented C5b-9 deposits on the membranes of tumor cells, thin granules on cell remnants, and diffuse deposits in the necrotic areas. When chemotherapy and radiation therapy preceded surgery, C5b-9 deposits were more intense and extended. The C5b-9 deposits were absent in all the samples with benign lesions. S-protein/vitronectin was present as fibrillar deposits in the connective tissue matrix and as diffuse deposits around the tumor cells, less intense and extended than fibronectin. IgG, C3, and C4 deposits were present only in carcinoma samples. The presence of C5b-9 deposits is indicative of complement activation and its subsequent pathogenetic effects in breast cancer. Images Figure 1 PMID:1374587

  4. Non-linear dynamics of the complement system activation.

    PubMed

    Korotaevskiy, Andrey A; Hanin, Leonid G; Khanin, Mikhail A

    2009-12-01

    The complement system (CS) plays a prominent role in the immune defense. The goal of this work is to study the dynamics of activation of the classic and alternative CS pathways based on the method of mathematical modeling. The principal difficulty that hinders modeling effort is the absence of the measured values of kinetic constants of many biochemical reactions forming the CS. To surmount this difficulty, an optimization procedure consisting of constrained minimization of the total protein consumption by the CS was designed. The constraints made use of published data on the in vitro kinetics of elimination of the Borrelia burgdorferi bacteria by the CS. Special features of the problem at hand called for a significant modification of the general constrained optimization procedure to include a mathematical model of the bactericidal effect of the CS in the iterative setting. Determination of the unknown kinetic constants of biochemical reactions forming the CS led to a fully specified mathematical model of the dynamics of cell killing induced by the CS. On the basis of the model, effects of the initial concentrations of complements and their inhibitors on the bactericidal action of the CS were studied. Proteins playing a critical role in the regulation of the bactericidal action of the CS were identified. Results obtained in this work serve as an important stepping stone for the study of functioning of the CS as a whole as well as for developing methods for control of pathogenic processes. PMID:19854207

  5. Antibody-independent activation of the classical pathway of human serum complement by lipid A is restricted to re-chemotype lipopolysaccharide and purified lipid A.

    PubMed Central

    Vukajlovich, S W

    1986-01-01

    Incubation of most bacterial lipopolysaccharides (LPS) with normal human sera at 37 degrees C activates the serum complement system, resulting in decreased levels of hemolytic complement. A panel of R-chemotype LPS preparations isolated from Salmonella minnesota rough mutant strains, as well as smooth wild-type LPS from S. minnesota, Escherichia coli O55-B5, Serratia marcescens, and Yersinia enterolitica, were used to examine the effect of LPS polysaccharide chain length on LPS lipid (lipid A)-dependent activation of the classical pathway of complement (CPC). To examine specific lipid A-dependent activation of the CPC, sera deficient in alternative pathway of complement activity were prepared by the removal of factor D. Absorption of normal human sera with formalinized rabbit erythrocytes was found to remove natural antibodies, factors capable of forming LPS complexes which activate the CPC, or both. By using such factor D-depleted formalinized rabbit erythrocyte-absorbed normal human sera, only isolated lipid A and Re-chemotype LPS (R595 LPS) were found to activate the CPC. Thus, the presence of the additional monosaccharide L-glycero-D-mannoheptose in the Rd2 LPS oligosaccharide chain compared with the L-glycero-D-mannoheptose-deficient Re-chemotype LPS structure is sufficient to block lipid A-dependent activation of the CPC by LPS. PMID:3744547

  6. Free Radical Scavenging, Cytotoxic and Hemolytic Activities from Leaves of Acacia nilotica (L.) Wild. ex. Delile subsp. indica (Benth.) Brenan

    PubMed Central

    Kalaivani, T.; Rajasekaran, C.; Suthindhiran, K.; Mathew, Lazar

    2011-01-01

    Dietary intake of phytochemicals having antioxidant activity is associated with a lower risk of mortality from many diseases. Therefore, the aim of this study was to determine the free radical scavenging, cytotoxic and hemolytic activities of leaves of Acacia nilotica by using various methods. The results of the present study revealed that ethanol extract was the most effective and IC50 value was found to be 53.6 μg mL−1 for Vero cell lines and 28.9 μg mL−1 for Hela cell lines in cytotoxicity assays. The zone of color retention was 14.2 mm in β-carotene bleaching assay, which was as significant as positive control, butylated hydroxy toluene. None of the tested extracts possessed any hemolytic activity against rat and human erythrocytes revealing their cytotoxic mechanism and non-toxicity. Thus, only the ethanol extract could be considered as a potential source of anticancer and antioxidant compounds. Further phytochemical studies will be performed for specification of the biologically active principles. PMID:21799676

  7. Glycoproteins, antigens, and regulation of complement activation on the surface of the protozoan parasite Trypanosoma lewisi: implications for immune evasion

    SciTech Connect

    Sturtevant, J.E.

    1985-01-01

    The surface antigens and glycoproteins of the rat parasitic protozoan, Trypanosoma lewisi were characterized. Radioiodination with /sup 125/I identified 10 out of more 40 polypeptides separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis. All of these components were identified as glycoproteins by peroxidase-conjugated Conconavalin A (HR-Con A) lectin affinoblotting. This analysis detected that quantitative but not qualitative changes occurred during infection. Localization of most of the reactive determinants was indicated by immunoblotting extracts of radioiodinated T. lewisi. Changes in the antigenicity as related to survival in the host are discussed. The presence of IgG and IgM on the surface of T. lewisi isolated from intact and ..gamma..-irradiated rats (irr.) and that determinants bind Ig from uninfected rat sera (NRS) was indicated by flow cytometric analysis. Immunoblotting identified the major NRS IgG binding component as the 74 kd surface glycoprotein. Complement component C3 deposition during infection was indicated by flow cytometric analysis and immunoblotting. Incubation of intact T. lewisi with normal human sera indicated that C3, C5, and factor B deposition was Mg/sup 2 +/ dependent, Ca/sup 2 +/ independent and deposited C3 was rapidly processed to hemolytically inactive fragments. Radioiodination of intact and protease T. lewisi after cultivation identified three components which correlate with resistance to lysis. This suggests that surface moieties on intact T. lewisi modulate host complement activity by restricting C3/C5 convertase activity.

  8. Complement Factor H-Related 5-Hybrid Proteins Anchor Properdin and Activate Complement at Self-Surfaces.

    PubMed

    Chen, Qian; Manzke, Melanie; Hartmann, Andrea; Büttner, Maike; Amann, Kerstin; Pauly, Diana; Wiesener, Michael; Skerka, Christine; Zipfel, Peter F

    2016-05-01

    C3 glomerulopathy (C3G) is a severe kidney disease for which no specific therapy exists. The causes of C3G are heterogeneous, and defective complement regulation is often linked to C3G pathogenesis. Copy number variations in the complement factor H-related (CFHR) gene cluster on chromosome 1q32 and CFHR5 mutant proteins associate with this disease. Here, we identified CFHR5 as a pattern recognition protein that binds to damaged human endothelial cell surfaces and to properdin, the human complement activator. We found the two N-terminal short consensus repeat domains of CFHR5 contact properdin and mediate dimer formation. These properdin-binding segments are duplicated in two mutant CFHR5 proteins, CFHR2-CFHR5Hyb from German patients with C3G and CFHR5Dup from Cypriot patients with C3G. Each of these mutated proteins assembled into large multimeric complexes and, compared to CFHR5, bound damaged human cell surfaces and properdin with greater intensity and exacerbated local complement activation. This enhanced surface binding and properdin recruitment was further evidenced in the mesangia of a transplanted and explanted kidney from a German patient with a CFHR2-CFHR5Hyb protein. Enhanced properdin staining correlated with local complement activation with C3b and C5b-9 deposition on the mesangial cell surface in vitro This gain of function in complement activation for two disease-associated CFHR5 mutants describes a new disease mechanism of C3G, which is relevant for defining appropriate treatment options for this disorder. PMID:26432903

  9. Human L-ficolin, a Recognition Molecule of the Lectin Activation Pathway of Complement, Activates Complement by Binding to Pneumolysin, the Major Toxin of Streptococcus pneumoniae

    PubMed Central

    Ali, Youssif M.; Kenawy, Hany I.; Muhammad, Adnan; Sim, Robert B.

    2013-01-01

    The complement system is an essential component of the immune response, providing a critical line of defense against different pathogens including S. pneumoniae. Complement is activated via three distinct pathways: the classical (CP), the alternative (AP) and the lectin pathway (LP). The role of Pneumolysin (PLY), a bacterial toxin released by S. pneumoniae, in triggering complement activation has been studied in vitro. Our results demonstrate that in both human and mouse sera complement was activated via the CP, initiated by direct binding of even non-specific IgM and IgG3 to PLY. Absence of CP activity in C1q−/− mouse serum completely abolished any C3 deposition. However, C1q depleted human serum strongly opsonized PLY through abundant deposition of C3 activation products, indicating that the LP may have a vital role in activating the human complement system on PLY. We identified that human L-ficolin is the critical LP recognition molecule that drives LP activation on PLY, while all of the murine LP recognition components fail to bind and activate complement on PLY. This work elucidates the detailed interactions between PLY and complement and shows for the first time a specific role of the LP in PLY-mediated complement activation in human serum. PMID:24349316

  10. Current treatment of atypical hemolytic uremic syndrome

    PubMed Central

    Kaplan, Bernard S.; Ruebner, Rebecca L.; Spinale, Joann M.; Copelovitch, Lawrence

    2014-01-01

    Summary Tremendous advances have been made in understanding the pathogenesis of atypical Hemolytic Uremic Syndrome (aHUS), an extremely rare disease. Insights into the molecular biology of aHUS resulted in rapid advances in treatment with eculizumab (Soliris®, Alexion Pharmaceuticals Inc.). Historically, aHUS was associated with very high rates of mortality and morbidity. Prior therapies included plasma therapy and/or liver transplantation. Although often life saving, these were imperfect and had many complications. We review the conditions included under the rubric of aHUS: S. pneumoniae HUS (SpHUS), inborn errors of metabolism, and disorders of complement regulation, emphasizing their differences and similarities. We focus on the clinical features, diagnosis, and pathogenesis, and treatment of aHUS that results from mutations in genes encoding alternative complement regulators, SpHUS and HUS associated with inborn errors of metabolism. Mutations in complement genes, or antibodies to their protein products, result in unregulated activity of the alternate complement pathway, endothelial injury, and thrombotic microangiopathy (TMA). Eculizumab is a humanized monoclonal antibody that inhibits the production of the terminal complement components C5a and the membrane attack complex (C5b-9) by binding to complement protein C5a. This blocks the proinflammatory and cytolytic effects of terminal complement activation. Eculizumab use has been reported in many case reports, and retrospective and prospective clinical trials in aHUS. There have been few serious side effects and no reports of tachphylaxis or drug resistance. The results are very encouraging and eculizumab is now recognized as the treatment of choice for aHUS. PMID:25343125

  11. Measuring initiator caspase activation by bimolecular fluorescence complementation.

    PubMed

    Parsons, Melissa J; Bouchier-Hayes, Lisa

    2015-01-01

    Initiator caspases, including caspase-2, -8, and -9, are activated by the proximity-driven dimerization that occurs after their recruitment to activation platforms. Here we describe the use of caspase bimolecular fluorescence complementation (caspase BiFC) to measure this induced proximity. BiFC assays rely on the use of a split fluorescent protein to identify protein-protein interactions in cells. When fused to interacting proteins, the fragments of the split fluorescent protein (which do not fluoresce on their own) can associate and fluoresce. In this protocol, we use the fluorescent protein Venus, a brighter and more photostable variant of yellow fluorescent protein (YFP), to detect the induced proximity of caspase-2. Plasmids encoding two fusion products (caspase-2 fused to either the amino- or carboxy-terminal halves of Venus) are transfected into cells. The cells are then treated with an activating (death) stimulus. The induced proximity (and subsequent activation) of caspase-2 in the cells is visualized as Venus fluorescence. The proportion of Venus-positive cells at a single time point can be determined using fluorescence microscopy. Alternatively, the increase in fluorescence intensity over time can be evaluated by time-lapse confocal microscopy. The caspase BiFC strategy described here should also work for other initiator caspases, such as caspase-8 or -9, as long as the correct controls are used. PMID:25561623

  12. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production.

    PubMed

    Moghimi, S Moein; Hamad, Islam; Andresen, Thomas L; Jørgensen, Kent; Szebeni, Janos

    2006-12-01

    Methoxy(polyethylene glycol), mPEG, -grafted liposomes are known to exhibit prolonged circulation time in the blood, but their infusion into a substantial percentage of human subjects triggers immediate non-IgE-mediated hypersensitivity reactions. These reactions are strongly believed to arise from anaphylatoxin production through complement activation. Despite the general view that vesicle surface camouflaging with mPEG should dramatically suppress complement activation, here we show that bilayer enrichment of noncomplement activating liposomes [dipalmitoylphosphatidylcholine (DPPC) vesicles] with phospholipid-mPEG conjugate induces complement activation resulting in vesicle recognition by macrophage complement receptors. The extent of vesicle uptake, however, is dependent on surface mPEG density. We have delineated the likely structural features of phospholipid-mPEG conjugate responsible for PEGylated liposome-induced complement activation in normal as well as C1q-deficient human sera, using DPPC vesicles bearing the classical as well as newly synthesized lipid-mPEG conjugates. With PEGylated DPPC vesicles, the net anionic charge on the phosphate moiety of phospholipid-mPEG conjugate played a key role in activation of both classical and alternative pathways of complement and anaphylatoxin production (reflected in significant rises in SC5b-9, C4d, and C3a-desarg levels in normal human sera as well as SC5b-9 in EGTA-chelated/Mg2+ supplemented serum), since methylation of the phosphate oxygen of phospholipid-mPEG conjugate, and hence the removal of the negative charge, totally prevented complement activation. To further corroborate on the role of the negative charge in complement activation, vesicles bearing anionic phospholipid-mPEG conjugates, but not the methylated phospholipid-mPEG, were shown to significantly decrease serum hemolytic activity and increase plasma thromboxane B2 levels in rats. In contrast to liposomes, phospholipid-mPEG micelles had no effect on

  13. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy.

    PubMed

    Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong

    2015-05-01

    Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. PMID:25205734

  14. Systemic complement activation, lung injury, and products of lipid peroxidation.

    PubMed Central

    Ward, P A; Till, G O; Hatherill, J R; Annesley, T M; Kunkel, R G

    1985-01-01

    Previously we have demonstrated that systemic activation of the complement system after intravenous injection of cobra venom factor (CVF) results in acute lung injury as reflected by increases in the vascular permeability of the lung as well as by morphologic evidence of damage to lung vascular endothelial cells. In using the vascular permeability of the lung as the reference, the current studies show a quantitative correlation between lung injury and the appearance in plasma of lipid peroxidation products (conjugated dienes) as well as increased concentrations of lactic dehydrogenase (LDH) and one of its isoenzymes (LDH-4). After injection of CVF, extracts of lungs also showed elevated levels of conjugated dienes, whereas no elevations were found in extracts of liver, kidney, and spleen. There was no evidence in CVF-injected rats of renal or hepatic injury as reflected by the lack of development of proteinuria and the failure to detect increased serum levels of liver-related enzymes. Other peroxidation products identified in plasma of CVF-injected rats involved hydroperoxides and fluorescent compounds with features of Schiff bases. Not surprisingly, malondialdehyde was not found to be a reliable plasma indicator of lipid peroxidation associated with oxygen radical-mediated lung vascular injury. In using a model of oxygen radical-independent lung injury induced by oleic acid, although large amounts of LDH and LDH-4 were found in the plasma, no increases in plasma levels of conjugated dienes were detected. In CVF-injected animals treated with interventions protective against lung injury (neutrophil depletion, catalase, hydroxyl radical scavengers, or iron chelators), there were striking reductions in the plasma levels of conjugated dienes, hydroperoxides, and fluorochromic products. Morphometric analysis of lung sections revealed that the protective interventions did not interfere with the accumulation of neutrophils in lung interstitial capillaries after systemic

  15. Fatal carboplatin-induced immune hemolytic anemia in a child with a brain tumor

    PubMed Central

    Haley, Kristina M; Russell, Thomas B; Boshkov, Lynn; Leger, Regina M; Garratty, George; Recht, Michael; Nazemi, Kellie J

    2014-01-01

    Drug-induced immune hemolytic anemia (DIIHA) is an uncommon side effect of pharmacologic intervention. A rare mediator of DIIHA, carboplatin is an agent used to treat many pediatric cancers. We describe here, the first case of fatal carboplatin induced DIIHA in a pediatric patient and a brief review of the literature. Our patient developed acute onset of multi-organ failure with evidence of complement activation, secondary to a drug induced red cell antibody. Early recognition of the systemic insult associated with carboplatin induced hemolytic anemia may allow for future affected patients to receive plasmapheresis, a potentially effective therapy. PMID:24868179

  16. Complement activation in the context of stem cells and tissue repair

    PubMed Central

    Schraufstatter, Ingrid U; Khaldoyanidi, Sophia K; DiScipio, Richard G

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a. PMID:26435769

  17. Antibody-independent activation of the classical pathway of complement by Epstein-Barr virus.

    PubMed

    Martin, H; McConnell, I; Gorick, B; Hughes-Jones, N C

    1987-03-01

    A purified preparation of Epstein-Barr virus (EBV) has been shown to activate the classical complement pathway by direct interaction with the first component of complement, C1, without the intervention of antibody. No evidence was found for activation of the alternative pathway. Following classical pathway activation the specific affinity of EBV for B cells can be presumed to be lost since the virus will become opsonized for clearance by phagocytic cells bearing complement receptors, CR1 and CR3. This activation is further evidence that complement plays a role in defence mechanisms independently of antibody activity. PMID:3038440

  18. Atypical Hemolytic-Uremic Syndrome: A Clinical Review.

    PubMed

    Nayer, Ali; Asif, Arif

    2016-01-01

    Atypical hemolytic-uremic syndrome (HUS) is a rare life-threatening disorder characterized by microangiopathic hemolytic anemia, thrombocytopenia, and ischemic injury to organs, especially the kidneys. Microvascular injury and thrombosis are the dominant histologic findings. Complement activation through the alternative pathway plays a critical role in the pathogenesis of atypical HUS. Genetic abnormalities involving complement regulatory proteins and complement components form the molecular basis for complement activation. Endothelial cell dysfunction, probably because of the effects of complement activation, is an intermediate stage in the pathophysiologic cascade. Atypical HUS has a grave prognosis. Although mortality approaches 25% during the acute phase, end-stage renal disease develops in nearly half of patients within a year. Atypical HUS has a high recurrence rate after renal transplantation, and recurrent disease often leads to graft loss. Plasma therapy in the form of plasma exchange or infusion has remained the standard treatment for atypical HUS. However, many patients do not respond to plasma therapy and some require prolonged treatment. Approved by the Food and Drug Administration in the treatment of atypical HUS, eculizumab is a humanized monoclonal antibody that blocks cleavage of complement C5 into biologically active mediators of inflammation and cytolysis. Although case reports have shown the efficacy of eculizumab, randomized clinical trials are lacking. Therapeutic strategies targeting endothelial cells have demonstrated promising results in experimental settings. Therefore, inhibitors of angiotensin-converting enzyme, HMG-CoA reductase, and xanthine oxidase as well as antioxidants, such as ascorbic acid, may have salutary effects in patients with atypical HUS. PMID:24681522

  19. Critical appraisal of eculizumab for atypical hemolytic uremic syndrome

    PubMed Central

    Palma, Lilian M Pereira; Langman, Craig B

    2016-01-01

    The biology of atypical hemolytic uremic syndrome has been shown to involve inability to limit activation of the alternative complement pathway, with subsequent damage to systemic endothelial beds and the vasculature, resulting in the prototypic findings of a thrombotic microangiopathy. Central to this process is the formation of the terminal membrane attack complex C5b-9. Recently, application of a monoclonal antibody that specifically binds to C5, eculizumab, became available to treat patients with atypical hemolytic uremic syndrome, replacing plasma exchange or infusion as primary therapy. This review focuses on the evidence, based on published clinical trials, case series, and case reports, on the efficacy and safety of this approach. PMID:27110144

  20. [Separation of lysozyme from sera with complement or antibody activities (author's transl)].

    PubMed

    Müller, F; Oetting, C; Beck, E

    1975-10-01

    A gel-filtration method for separating lysozyme from sera with haemolytic complement activity and/or antibody activity is described. It is shown that the gel-filtration has only a small effect, whereas bentonite absorption results in a known lost of haemolytic complement activity. PMID:129979

  1. Complement activity is associated with disease severity in multifocal motor neuropathy

    PubMed Central

    Vlam, Lotte; Cats, Elisabeth A.; Harschnitz, Oliver; Jansen, Marc D.; Piepers, Sanne; Veldink, Jan Herman; Franssen, Hessel; Stork, Abraham C.J.; Heezius, Erik; Rooijakkers, Suzan H.M.; Herpers, Bjorn L.; van Strijp, Jos A.; van den Berg, Leonard H.

    2015-01-01

    Objective: To investigate whether high innate activity of the classical and lectin pathways of complement is associated with multifocal motor neuropathy (MMN) and whether levels of innate complement activity or the potential of anti-GM1 antibodies to activate the complement system correlate with disease severity. Methods: We performed a case-control study including 79 patients with MMN and 79 matched healthy controls. Muscle weakness was documented with Medical Research Council scale sum score and axonal loss with nerve conduction studies. Activity of the classical and lectin pathways of complement was assessed by ELISA. We also determined serum mannose-binding lectin (MBL) concentrations and polymorphisms in the MBL gene (MBL2) and quantified complement-activating properties of anti-GM1 IgM antibodies by ELISA. Results: Activity of the classical and lectin pathways, MBL2 genotypes, and serum MBL concentrations did not differ between patients and controls. Complement activation by anti-GM1 IgM antibodies was exclusively mediated through the classical pathway and correlated with antibody titers (p < 0.001). Logistic regression analysis showed that both high innate activity of the classical pathway of complement and high complement-activating capacity of anti-GM1 IgM antibodies were significantly associated with more severe muscle weakness and axonal loss. Conclusion: High innate activity of the classical pathway of complement and efficient complement-activating properties of anti-GM1 IgM antibodies are determinants of disease severity in patients with MMN. These findings underline the importance of anti-GM1 antibody–mediated complement activation in the pathogenesis and clinical course of MMN. PMID:26161430

  2. Clinical hypothermia temperatures increase complement activation and cell destruction via the classical pathway

    PubMed Central

    2014-01-01

    Background Therapeutic hypothermia is a treatment modality that is increasingly used to improve clinical neurological outcomes for ischemia-reperfusion injury-mediated diseases. Antibody-initiated classical complement pathway activation has been shown to contribute to ischemia-reperfusion injury in multiple disease processes. However, how therapeutic hypothermia affects complement activation is unknown. Our goal was to measure the independent effect of temperature on complement activation, and more specifically, examine the relationship between clinical hypothermia temperatures (31–33°C), and complement activation. Methods Antibody-sensitized erythrocytes were used to assay complement activation at temperatures ranging from 0-41°C. Individual complement pathway components were assayed by ELISA, Western blot, and quantitative dot blot. Peptide Inhibitor of complement C1 (PIC1) was used to specifically inhibit activation of C1. Results Antibody-initiated complement activation resulting in eukaryotic cell lysis was increased by 2-fold at 31°C compared with 37°C. Antibody-initiated complement activation in human serum increased as temperature decreased from 37°C until dramatically decreasing at 13°C. Quantitation of individual complement components showed significantly increased activation of C4, C3, and C5 at clinical hypothermia temperatures. In contrast, C1s activation by heat-aggregated IgG decreased at therapeutic hypothermia temperatures consistent with decreased enzymatic activity at lower temperatures. However, C1q binding to antibody-coated erythrocytes increased at lower temperatures, suggesting that increased classical complement pathway activation is mediated by increased C1 binding at therapeutic hypothermia temperatures. PIC1 inhibited hypothermia-enhanced complement-mediated cell lysis at 31°C by up to 60% (P = 0.001) in a dose dependent manner. Conclusions In summary, therapeutic hypothermia temperatures increased antibody

  3. Different hydroxyapatite magnetic nanoparticles for medical imaging: Its effects on hemostatic, hemolytic activity and cellular cytotoxicity.

    PubMed

    Laranjeira, Marta S; Moço, Ana; Ferreira, Jorge; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Ferreira, Paulo J; Monteiro, Fernando J

    2016-10-01

    Magnetic nanoparticles (MNPs) should be highly biocompatible, stable and safely eliminated from the body, and can therefore be successfully used in modern medicine. Synthetic hydroxyapatite (HAP) has well established biocompatible and non-inflammatory properties, as well as a highly stable and flexible structure that allows for an easy incorporation of magnetic ions. This study characterized and compared the in vitro cytotoxicity and hemocompatibility of hydroxyapatite MNPs doped with different ions (Gd(3+/)Fe(2+)/Fe(3+)/Co(2+)). HAP doped with 10% of Gd and Fe(III) presented the highest magnetic moments. Our results showed that Gd doped HAP nanoparticles are non-cytotoxic, hemocompatible, non-hemolytic and non-thrombogenic, in contrast with Fe(III) doped HAP that can be considered thrombogenic. For these reasons we propose that, Gd doped HAP nanoparticles have the most potential for application as a MRI contrast agents. However, use of Fe (III) doped HAP as MRI contrast agents should be further investigated. PMID:27388965

  4. Complement-mediated 'bystander' damage initiates host NLRP3 inflammasome activation.

    PubMed

    Suresh, Rahul; Chandrasekaran, Prabha; Sutterwala, Fayyaz S; Mosser, David M

    2016-05-01

    Complement activation has long been associated with inflammation, primarily due to the elaboration of the complement anaphylotoxins C5a and C3a. In this work, we demonstrate that the phagocytosis of complement-opsonized particles promotes host inflammatory responses by a new mechanism that depends on the terminal complement components (C5b-C9). We demonstrate that during the phagocytosis of complement-opsonized particles, the membrane attack complex (MAC) of complement can be transferred from the activating particle to the macrophage plasma membrane by a 'bystander' mechanism. This MAC-mediated bystander damage initiates NLRP3 inflammasome activation, resulting in caspase-1 activation and IL-1β and IL-18 secretion. Inflammasome activation is not induced when macrophages phagocytize unopsonized particles or particles opsonized with serum deficient in one of the terminal complement components. The secretion of IL-1β and IL-18 by macrophages depends on NLRP3, ASC (also known as PYCARD) and caspase-1, as macrophages deficient in any one of these components fail to secrete these cytokines following phagocytosis. The phagocytosis of complement-opsonized particles increases leukocyte recruitment and promotes T helper 17 cell (TH17) biasing. These findings reveal a new mechanism by which complement promotes inflammation and regulates innate and adaptive immunity. PMID:27006116

  5. Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay.

    PubMed

    Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M

    2015-08-01

    While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer. PMID:26119290

  6. A Novel Quantitative Hemolytic Assay Coupled with Restriction Fragment Length Polymorphisms Analysis Enabled Early Diagnosis of Atypical Hemolytic Uremic Syndrome and Identified Unique Predisposing Mutations in Japan

    PubMed Central

    Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro

    2015-01-01

    For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (≥50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460

  7. Probable systemic lupus erythematosus with cell-bound complement activation products (CB-CAPS).

    PubMed

    Lamichhane, D; Weinstein, A

    2016-08-01

    Complement activation is a key feature of systemic lupus erythematosus (SLE). Detection of cell-bound complement activation products (CB-CAPS) occurs more frequently than serum hypocomplementemia in definite lupus. We describe a patient with normocomplementemic probable SLE who did not fulfill ACR classification criteria for lupus, but the diagnosis was supported by the presence of CB-CAPS. PMID:26911153

  8. The role of complement activation in atherogenesis: the first 40 years.

    PubMed

    Vlaicu, Sonia I; Tatomir, Alexandru; Rus, Violeta; Mekala, Armugam P; Mircea, Petru A; Niculescu, Florin; Rus, Horea

    2016-02-01

    The pathogenesis of atherosclerotic inflammation is a multi-step process defined by the interweaving of excess modified lipid particles, monocyte-macrophages populations, and innate immune and adaptive immunity effectors. A part of innate immunity, the complement system, is an important player in the induction and progression of atherosclerosis. The accumulation of either oxidized or enzymatically modified LDL-bound to C-reactive protein or not-prompts complement activation leading to the assembly of the terminal complement C5b-9 complex in the atherosclerotic lesion. The sublytic C5b-9 assembly leads to the activation and proliferation of smooth muscle and endothelial cells, accompanied by the release of various chemotactic, pro-adhesion, and procoagulant cytokines from these cells. Response gene to complement (RGC)-32, an essential effector of the terminal complement complex C5b-9, also affects atherogenesis, propelling vascular smooth muscle cell proliferation and migration, stimulating endothelial proliferation, and promoting vascular lesion formation. A substantial amount of experimental work has suggested a role for the complement system activation during atherosclerotic plaque formation, with the proximal classical complement pathway seemingly having a protective effect and terminal complement contributing to accelerated atherogenesis. All these data suggest that complement plays an important role in atherogenesis. PMID:26091721

  9. In vitro and in vivo changes in human complement caused by silage.

    PubMed Central

    Olenchock, S A; May, J J; Pratt, D S; Lewis, D M; Mull, J C; Stallones, L

    1986-01-01

    Aqueous extracts of silage samples from four farms in up-state New York were reacted in vitro with normal human serum. Hemolytic levels of complement component C3 were consumed in a dose-dependent fashion, and the four extracts differed in their relative activity rankings. Studies with chelated serum indicate that the alternative complement pathway is involved in the activation, and the active fragment C3b was demonstrated. Serum levels of hemolytic C3 and C4 in vivo were quantified before and after farmers performed their normal silo unloading operations. Although the study groups were small, suggestive evidence of in vivo complement consumption was found. IgE-related allergy did not appear to be of significance to the study groups. Complement activation may be an initiator of or contributor to adverse reactions in farmers who are exposed to airborne silage dusts. Images FIGURE 2. FIGURE 3. PMID:3709488

  10. Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer

    PubMed Central

    Meyer, Saskia; Leusen, Jeanette HW; Boross, Peter

    2014-01-01

    The complement system is a powerful tool of the innate immune system to eradicate pathogens. Both in vitro and in vivo evidence indicates that therapeutic anti-tumor monoclonal antibodies (mAbs) can activate the complement system by the classical pathway. However, the contribution of complement to the efficacy of mAbs is still debated, mainly due to the lack of convincing data in patients. A beneficial role for complement during mAb therapy is supported by the fact that cancer cells often upregulate complement-regulatory proteins (CRPs). Polymorphisms in various CRPs were previously associated with complement-mediated disorders. In this review the role of complement in anti-tumor mAb therapy will be discussed with special emphasis on strategies aiming at modifying complement activity. In the future, clinical efficacy of mAbs with enhanced effector functions together with comprehensive analysis of polymorphisms in CRPs in mAb-treated patients will further clarify the role of complement in mAb therapy. PMID:25517299

  11. Partial ADAMTS13 deficiency in atypical hemolytic uremic syndrome

    PubMed Central

    Feng, Shuju; Eyler, Stephen J.; Zhang, Yuzhou; Maga, Tara; Nester, Carla M.; Kroll, Michael H.

    2013-01-01

    Complement dysregulation leads to atypical hemolytic uremic syndrome (aHUS), while ADAMTS13 deficiency causes thrombotic thrombocytopenic purpura. We investigated whether genetic variations in the ADAMTS13 gene partially explain the reduced activity known to occur in some patients with aHUS. We measured complement activity and ADAMTS13 function, and completed mutation screening of multiple complement genes and ADAMTS13 in a large cohort of aHUS patients. In over 50% of patients we identified complement gene mutations. Surprisingly, 80% of patients also carried at least 1 nonsynonymous change in ADAMTS13, and in 38% of patients, multiple ADAMTS13 variations were found. Six of the 9 amino acid substitutions in ADAMTS13 were common single nucleotide polymorphisms; however, 3 variants—A747V, V832M, and R1096H— were rare, with minor allele frequencies of 0.0094%, 0.5%, and 0.32%, respectively. Reduced complement and ADAMTS13 activity (<60% of normal activity) were found in over 60% and 50% of patients, respectively. We concluded that partial ADAMTS13 deficiency is a common finding in aHUS patients and that genetic screening and functional tests of ADAMTS13 should be considered in these patients. PMID:23847193

  12. Effects of L-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Yang, Yun; Wu, Feng

    2010-04-01

    Surface modification of polyethylene terephthalate (PET) films was performed with L-arginine ( L-Arg) to gain an improved anticoagulant surface. The surface chemistry changes of modified films were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The in vitro anticoagulant activities of the surface-modified PET films were evaluated by blood clotting test, hemolytic test, and the measurement of clotting time including plasma recalcification time (PRT), activated partial thromboplastin time (APTT), and prothrombin time (PT). The data of blood coagulation index (BCI) for L-arginine modified PET films (PET-Arg) was larger than that for PET at the same blood-sample contact time. The hemolysis ratio for PET-Arg was less than that for PET and within the accepted standard for biomaterials. The PRT and APTT for PET-Arg were significantly prolonged by 189 s and 25 s, respectively, compared to those for the unmodified PET. All results suggested that the currently described modification method could be a possible candidate to create antithrombogenic PET surfaces which would be useful for further medical applications.

  13. [Atypical HUS caused by complement-related abnormalities].

    PubMed

    Yoshida, Yoko; Matsumoto, Masanori

    2015-02-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. The term aHUS was historically used to distinguish this disorder from Shiga-toxin producing Escherichia coli (STEC)-HUS. Many aHUS cases (approximately 70%) are reportedly caused by uncontrolled complement activation due to genetic mutations in the alternative pathway, including complement factor H (CFH), complement factor I (CFI), membrane cofactor protein (MCP), thrombomodulin (THBD), complement component C3 (C3), and complement factor B (CFB). Mutations in the coagulation pathway, such as diacylglycerol kinase ε (DGKE) and plasminogen, are also reported to be causes of aHUS. In this review, we have focused on aHUS due to complement dysfunction. aHUS is suspected based on plasma ADAMTS13 activity of 10% or more, and being negative for STEC-HUS, in addition to the aforementioned triad. Complement genetic studies provide a more specific diagnosis of aHUS. Plasma therapy is the first-line treatment for patients with aHUS and should be initiated as soon as the diagnosis is suspected. Recently, eculizumab, a humanized monoclonal antibody against C5, was shown to be an effective treatment for aHUS. Therefore, early diagnosis and identification of the underlying pathogenic mechanism is important for improving the outcome of aHUS. PMID:25765799

  14. Extra-Renal Manifestations of Complement-Mediated Thrombotic Microangiopathies

    PubMed Central

    Hofer, Johannes; Rosales, Alejandra; Fischer, Caroline; Giner, Thomas

    2014-01-01

    Thrombotic microangiopathies (TMA) are rare but severe disorders, characterized by endothelial cell activation and thrombus formation leading to hemolytic anemia, thrombocytopenia, and organ failure. Complement over activation in combination with defects in its regulation is described in an increasing number of TMA and if primary for the disease denominated as atypical hemolytic-uremic syndrome. Although TMA predominantly affects the renal microvasculature, extra-renal manifestations are observed in 20% of patients including involvement of the central nerve system, cardiovascular system, lungs, skin, skeletal muscle, and gastrointestinal tract. Prompt diagnosis and treatment initiation are therefore crucial for the prognosis of disease acute phase and the long-term outcome. This review summarizes the available evidence on extra-renal TMA manifestations and discusses the role of acute and chronic complement activation by highlighting its complex interaction with inflammation, coagulation, and endothelial homeostasis. PMID:25250305

  15. Clinical Practice Guidelines for the Management of Atypical Hemolytic Uremic Syndrome in Korea.

    PubMed

    Cheong, Hae Il; Jo, Sang Kyung; Yoon, Sung Soo; Cho, Heeyeon; Kim, Jin Seok; Kim, Young Ok; Koo, Ja Ryong; Park, Yong; Park, Young Seo; Shin, Jae Il; Yoo, Kee Hwan; Oh, Doyeun

    2016-10-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare syndrome characterized by micro-angiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The major pathogenesis of aHUS involves dysregulation of the complement system. Eculizumab, which blocks complement C5 activation, has recently been proven as an effective agent. Delayed diagnosis and treatment of aHUS can cause death or end-stage renal disease. Therefore, a diagnosis that differentiates aHUS from other forms of thrombotic microangiopathy is very important for appropriate management. These guidelines aim to offer recommendations for the diagnosis and treatment of patients with aHUS in Korea. The guidelines have largely been adopted from the current guidelines due to the lack of evidence concerning the Korean population. PMID:27550478

  16. Cold agglutinin-mediated autoimmune hemolytic anemia.

    PubMed

    Berentsen, Sigbjørn; Randen, Ulla; Tjønnfjord, Geir E

    2015-06-01

    Cold antibody types account for about 25% of autoimmune hemolytic anemias. Primary chronic cold agglutinin disease (CAD) is characterized by a clonal lymphoproliferative disorder. Secondary cold agglutinin syndrome (CAS) complicates specific infections and malignancies. Hemolysis in CAD and CAS is mediated by the classical complement pathway and is predominantly extravascular. Not all patients require treatment. Successful CAD therapy targets the pathogenic B-cell clone. Complement modulation seems promising in both CAD and CAS. Further development and documentation are necessary before clinical use. We review options for possible complement-directed therapy. PMID:26043385

  17. High Fc Density Particles Result in Binary Complement Activation but Tunable Macrophage Phagocytosis

    NASA Astrophysics Data System (ADS)

    Sulchek, Todd; Pacheco, Patricia; White, David

    2014-03-01

    Macrophage phagocytosis and complement system activation represent two key components of the immune system and both can be activated through the presentation of multiple Fc domains of IgG antibodies. We have created functionalized micro- and nanoparticles with various densities of Fc domains to understand the modulation of the immune system for eventual use as a novel immunomodulation platform. Phagocytosis assays were carried out by adding functionalized particles to macrophage cells and quantitatively determined using fluorescent microscopy and flow cytometry. Complement system activation by the functionalized particles in human serum was quantified with an enzyme immunoassay. Our phagocytosis assay revealed a strong dependence on particle size and Fc density. For small particles, as the Fc density increased, the number of particles phagocytosed also increased. Large particles were phagocytosed at significantly lower levels and showed no dependency on Fc density. Complement was successfully activated at levels comparable to positive controls for small particles at high Fc densities. However at low Fc densities, there is a significant decrease in complement activation. This result suggests a binary response for complement system activation with a threshold density for successful activation. Therefore, varying the Fc density on micro/nanoparticles resulted in a tunable response in macrophage phagocytosis while a more binary response for complement activation.

  18. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Oliveira, Jonathas Sales de; Evangelista, Antônio José de Jesus; Serpa, Rosana; Silva, Aline Lobão da; Aguiar, Felipe Rodrigues Magalhães de; Pereira, Vandbergue Santos; Castelo-Branco, Débora de Souza Collares Maia; Pereira-Neto, Waldemiro Aquino; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2016-08-30

    The aim of this study was to evaluate the in vitro hemolytic activity and biofilm antifungal susceptibility of veterinary and human Candida tropicalis strains, as well as their pathogenesis against Caenorhabditis elegans. Twenty veterinary isolates and 20 human clinical isolates of C. tropicalis were used. The strains were evaluated for their hemolytic activity and biofilm production. Biofilm susceptibility to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin was assessed using broth microdilution assay. The in vivo evaluation of strain pathogenicity was investigated using the nematode C. elegans. Hemolytic factor was observed in 95% of the strains and 97.5% of the isolates showed ability to form biofilm. Caspofungin and amphotericin B showed better results than azole antifungals against mature biofilms. Paradoxical effect on mature biofilm metabolic activity was observed at elevated concentrations of caspofungin (8-64μg/mL). Azole antifungals were not able to inhibit mature C. tropicalis biofilms, even at the higher tested concentrations. High mortality rates of C. elegans were observed when the worms were exposed to with C. tropicalis strains, reaching up to 96%, 96h after exposure of the worms to C. tropicalis strains. These results reinforce the high pathogenicity of C. tropicalis from veterinary and human sources and show the effectiveness of caspofungin and amphotericin B against mature biofilms of this species. PMID:27527785

  19. Classical and lectin complement pathway activity in polyneuropathy associated with IgM monoclonal gammopathy.

    PubMed

    Stork, Abraham C J; Cats, Elisabeth A; Vlam, Lotte; Heezius, Erik; Rooijakkers, Suzan; Herpers, Bjorn; de Jong, Ben A W; Rijkers, Ger; van Strijp, Jos; Notermans, Nicolette C; van den Berg, Leonard H; van der Pol, W-Ludo

    2016-01-15

    Polyneuropathy associated with IgM monoclonal gammopathy (IgM-PNP) is a slowly progressive, sensorimotor neuropathy. It is assumed that complement activation contributes to IgM-PNP pathogenesis. We investigated whether innate differences in complement activity of the classical and mannose binding lectin (MBL) pathways are associated with IgM-PNP or its severity. We measured complement activity using ELISA and determined MBL serumc oncentrations and MBL gene polymorphisms in 83 patients and 83 healthy controls. We did not observe differences between IgM-PNP patients and healthy controls nor associations with different disease severities. Differences in innate complement activity are not likely to explain susceptibility to or severity of IgM-PNP. PMID:26711574

  20. Targeting mechanisms at sites of complement activation for imaging and therapy.

    PubMed

    Holers, V Michael

    2016-06-01

    The complement system plays a key role in many acute injury states as well as chronic autoimmune and inflammatory diseases. Localized complement activation and alternative pathway-mediated amplification on diverse target surfaces promote local recruitment of pro-inflammatory cells and elaboration of other mediators. Despite a general understanding of the architecture of the system, though, many of the mechanisms that underlie site-specific complement activation and amplification in vivo are incompletely understood. In addition, there is no capability yet to measure the level of local tissue site-specific complement activation in patients without performing biopsies to detect products using immunohistochemical techniques. Herein is reviewed emerging evidence obtained through clinical research studies of human rheumatoid arthritis along with translational studies of its disease models which demonstrate that several parallel mechanisms are involved in site-specific amplification of activation of the complement system in vivo. Among these processes are de-regulation of the alternative pathway, effector pathway-catalyzed amplification of proximal complement activation, recognition of injury-associated ligands by components of the lectin pathway, and engagement of pathogenic natural antibodies that recognize a limited set of injury-associated neoepitopes. Studies suggest that each of these inter-related processes can play key roles in amplification of complement-dependent injury on self-tissues in vivo. These findings, in addition to development of an imaging strategy described herein designed to quantitatively measure local complement C3 fixation, have relevance to therapeutic and diagnostic strategies targeting the complement system. PMID:25979851

  1. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2016-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  2. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  3. Complement regulation: physiology and disease relevance

    PubMed Central

    2015-01-01

    The complement system is part of the innate immune response and as such defends against invading pathogens, removes immune complexes and damaged self-cells, aids organ regeneration, confers neuroprotection, and engages with the adaptive immune response via T and B cells. Complement activation can either benefit or harm the host organism; thus, the complement system must maintain a balance between activation on foreign or modified self surfaces and inhibition on intact host cells. Complement regulators are essential for maintaining this balance and are classified as soluble regulators, such as factor H, and membrane-bound regulators. Defective complement regulators can damage the host cell and result in the accumulation of immunological debris. Moreover, defective regulators are associated with several autoimmune diseases such as atypical hemolytic uremic syndrome, dense deposit disease, age-related macular degeneration, and systemic lupus erythematosus. Therefore, understanding the molecular mechanisms by which the complement system is regulated is important for the development of novel therapies for complement-associated diseases. PMID:26300937

  4. Atypical Hemolytic Uremic Syndrome and Chronic Ulcerative Colitis Treated with Eculizumab

    PubMed Central

    Webb, Tennille N.; Griffiths, Heidi; Miyashita, Yosuke; Bhatt, Riha; Jaffe, Ronald; Moritz, Michael; Hofer, Johannes; Swiatecka-Urban, Agnieszka

    2016-01-01

    Background Hemolytic-uremic syndrome (HUS) presents with hemolytic anemia, thrombocytopenia, and thrombotic microangiopathy of the kidney and usually results from Shiga-toxin induced activation of the alternative complement pathway. Gastroenteritis is a common feature of the Shiga-toxin producing Escherichia coli HUS, referred to as STEC-HUS. An inherited or acquired complement dysregulation may lead to HUS referred to as non-STEC or atypical (a)HUS. Although gastroenteritis is not a common presentation of aHUS, some patients develop ischemic colitis and may be misdiagnosed as acute appendicitis or acute ulcerative colitis (UC). Case Diagnosis –Treatment We present a patient with low circulating complement (C) 3 levels who developed aHUS in the course of chronic active UC. Resolution of renal and gastrointestinal manifestations in response to treatment with eculizumab, a humanized monoclonal antibody against terminal C5 protein suggests the role of alternative complement in the pathogenesis of both, aHUS and UC. Conclusion This case illustrates that dysregulation of the alternative complement pathway may manifest in other organs besides the kidney and that the circulating C3 levels do not correlate with the disease activity or the clinical response to eculizumab. PMID:27135055

  5. Complement Test

    MedlinePlus

    ... helpful? Also known as: C1; C1q; C2; C3; C4; CH50; CH100 (among others) Formal name: Complement Activity; ... whether the system is functioning normally. C3 and C4 are the most frequently measured complement proteins. Total ...

  6. C1q binding and complement activation by prions and amyloids.

    PubMed

    Sim, Robert B; Kishore, Uday; Villiers, Christian L; Marche, Patrice N; Mitchell, Daniel A

    2007-01-01

    C1q binds to many non-self and altered-self-materials. These include microorganisms, immune complexes, apoptotic and necrotic cells and their breakdown products, and amyloids. C1q binding to amyloid fibrils found as extracellular deposits in tissues, and subsequent complement activation are involved in the pathology of several amyloid diseases, such as Alzheimer's disease. Prion diseases, such as scrapie also involve formation of amyloid by polymerization of the host prion protein (PrP). Complement activation is likely to contribute to neuronal damage in the end stages of prion diseases, but is also thought to participate in the initial infection, dissemination and replication stages. Infectious prion particles are likely to bind C1q and activate the complement system. Bound complement proteins may then influence the uptake and transport of prion particles by dendritic cells (DCs) and their subsequent proliferation at sites such as follicular DCs. PMID:17544820

  7. Characterization of a Novel Hemolytic Activity of Human IgG Fractions Arising from Diversity in Protein and Oligosaccharide Components

    PubMed Central

    Zhang, Yueling; Ye, Xiangqun; Zhong, Mingqi; Cao, Jinsong; Zou, Haiying; Chen, Jiehui

    2014-01-01

    Human IgG is a well-established multifunctional antigen specific immunoglobulin molecule of the adaptive immune system. However, an antigen nonspecific immunological function of human IgG has never been reported. In this study, human IgG was isolated using ammonium sulfate fractional precipitation and diethylaminoethanol (DEAE) cellulose 52 ion exchange chromatography, from which h-IgG and hs-IgG fractions were purified on the basis of their differential binding to rabbit anti-shrimp hemocyanin antibody (h) and rabbit anti-shrimp hemocyanin's small subunit antibody (hs), respectively. We found that h-IgG had a higher hemolytic activity than hs-IgG against erythrocytes from humans, rabbits, mice and chickens, whereas the control IgG showed negligible activity. h-IgG could interact directly with erythrocyte membranes, and this interaction was suppressed by high molecular weight osmoprotectants, showing that it may follow a colloid-osmotic mechanism. In comparative proteomics and glycomics studies, h-IgG and hs-IgG yielded 20 and 5 significantly altered protein spots, respectively, on a 2-D gel. The mean carbohydrate content of h-IgG and hs-IgG was approximately 3.6- and 2-fold higher than that of IgG, respectively, and the α-d-mannose/α-d-glucose content was in the order of h-IgG>hs-IgG>IgG. In this study, a novel antigen nonspecific immune property of human IgG was investigated, and the diversity in the protein constituents and glycosylation levels may have functional signficance. PMID:24465658

  8. Anti-complement activity of the Ixodes scapularis salivary protein Salp20.

    PubMed

    Hourcade, Dennis E; Akk, Antonina M; Mitchell, Lynne M; Zhou, Hui-fang; Hauhart, Richard; Pham, Christine T N

    2016-01-01

    Complement, a major component of innate immunity, presents a rapid and robust defense of the intravascular space. While regulatory proteins protect host cells from complement attack, when these measures fail, unrestrained complement activation may trigger self-tissue injury, leading to pathologic conditions. Of the three complement activation pathways, the alternative pathway (AP) in particular has been implicated in numerous disease and injury states. Consequently, the AP components represent attractive targets for therapeutic intervention. The common hard-bodied ticks from the family Ixodidae derive nourishment from the blood of their mammalian hosts. During its blood meal the tick is exposed to host immune effectors, including the complement system. In defense, the tick produces salivary proteins that can inhibit host immune functions. The Salp20 salivary protein of Ixodes scapularis inhibits the host AP pathway by binding properdin and dissociating C3bBbP, the active C3 convertase. In these studies we examined Salp20 activity in various complement-mediated pathologies. Our results indicate that Salp20 can inhibit AP-dependent pathogenesis in the mouse. Its efficacy may be part in due to synergic effects it provides with the endogenous AP regulator, factor H. While Salp20 itself would be expected to be highly immunogenic and therefore inappropriate for therapeutic use, its emergence speaks for the potential development of a non-immunogenic Salp20 mimic that replicates its anti-properdin activity. PMID:26675068

  9. A novel method for direct measurement of complement convertases activity in human serum.

    PubMed

    Blom, A M; Volokhina, E B; Fransson, V; Strömberg, P; Berghard, L; Viktorelius, M; Mollnes, T E; López-Trascasa, M; van den Heuvel, L P; Goodship, T H; Marchbank, K J; Okroj, M

    2014-10-01

    Complement convertases are enzymatic complexes that play a central role in sustaining and amplification of the complement cascade. Impairment of complement function leads directly or indirectly to pathological conditions, including higher infection rate, kidney diseases, autoimmune- or neurodegenerative diseases and ischaemia-reperfusion injury. An assay for direct measurement of activity of the convertases in patient sera is not available. Existing assays testing convertase function are based on purified complement components and, thus, convertase formation occurs under non-physiological conditions. We designed a new assay, in which C5 blocking compounds enabled separation of the complement cascade into two phases: the first ending at the stage of C5 convertases and the second ending with membrane attack complex formation. The use of rabbit erythrocytes or antibody-sensitized sheep erythrocytes as the platforms for convertase formation enabled easy readout based on measurement of haemolysis. Thus, properties of patient sera could be studied directly regarding convertase activity and membrane attack complex formation. Another advantage of this assay was the possibility to screen for host factors such as C3 nephritic factor and other anti-complement autoantibodies, or gain-of-function mutations, which prolong the half-life of complement convertases. Herein, we present proof of concept, detailed description and validation of this novel assay. PMID:24853370

  10. [L forms of Staphylococcus aureus. Behavior of coagulase, hemolytic and desoxyribonuclease activities and antibiotic sensitivity].

    PubMed

    Loschiavo, F; Giarrizzo, S

    1977-01-01

    L Forms derived from strains of coagulase positive Staphylococcus aureus, have, on the whole, preserved their DNAsic, haemolitic and coagulastic activities. L. forms showed high resistence to antibiotics acting on the bacterial cell-wall. The sensibility to other antibiotics was, roughly, analogous for the L forms as well as for the bacterial strains ones, with the exception of the clortetraciclin and the diidrostreptomicin, ehich proved to be comparatively more active on the L forms. PMID:614141

  11. Inhibition of aberrant complement activation by a dimer of acetylsalicylic acid.

    PubMed

    Lee, Moonhee; Wathier, Matthew; Love, Jennifer A; McGeer, Edith; McGeer, Patrick L

    2015-10-01

    We here report synthesis for the first time of the acetyl salicylic acid dimer 5,5'-methylenebis(2-acetoxybenzoic acid) (DAS). DAS inhibits aberrant complement activation by selectively blocking factor D of the alternative complement pathway and C9 of the membrane attack complex. We have previously identified aurin tricarboxylic and its oligomers as promising agents in this regard. DAS is much more potent, inhibiting erythrocyte hemolysis by complement-activated serum with an IC50 in the 100-170 nanomolar range. There are numerous conditions where self-damage from the complement system has been implicated in the pathology, including such chronic degenerative diseases of aging as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and age-related macular degeneration. Consequently, there is a high priority for the discovery and development of agents that can successfully treat such conditions. DAS holds considerable promise for being such an agent. PMID:26248865

  12. Strategies for Surveillance of Pediatric Hemolytic Uremic Syndrome: Foodborne Diseases Active Surveillance Network (FoodNet), 2000–2007

    PubMed Central

    Ong, Kanyin L.; Apostal, Mirasol; Comstock, Nicole; Hurd, Sharon; Webb, Tameka Hayes; Mickelson, Stephanie; Scheftel, Joni; Smith, Glenda; Shiferaw, Beletshachew; Boothe, Effie

    2012-01-01

    Background. Postdiarrheal hemolytic uremic syndrome (HUS) is the most common cause of acute kidney failure among US children. The Foodborne Diseases Active Surveillance Network (FoodNet) conducts population-based surveillance of pediatric HUS to measure the incidence of disease and to validate surveillance trends in associated Shiga toxin–producing Escherichia coli (STEC) O157 infection. Methods. We report the incidence of pediatric HUS, which is defined as HUS in children <18 years. We compare the results from provider-based surveillance and hospital discharge data review and examine the impact of different case definitions on the findings of the surveillance system. Results. During 2000–2007, 627 pediatric HUS cases were reported. Fifty-two percent of cases were classified as confirmed (diarrhea, anemia, microangiopathic changes, low platelet count, and acute renal impairment). The average annual crude incidence rate for all reported cases of pediatric HUS was 0.78 per 100 000 children <18 years. Regardless of the case definition used, the year-to-year pattern of incidence appeared similar. More cases were captured by provider-based surveillance (76%) than by hospital discharge data review (68%); only 49% were identified by both methods. Conclusions. The overall incidence of pediatric HUS was affected by key characteristics of the surveillance system, including the method of ascertainment and the case definitions. However, year-to-year patterns were similar for all methods examined, suggesting that several approaches to HUS surveillance can be used to track trends. PMID:22572665

  13. Molecules Great and Small: The Complement System.

    PubMed

    Mathern, Douglas R; Heeger, Peter S

    2015-09-01

    The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell-derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell-mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit

  14. Antifungal Imidazole-Decorated Cationic Amphiphiles with Markedly Low Hemolytic Activity.

    PubMed

    Benhamou, Raphael I; Steinbuch, Kfir B; Fridman, Micha

    2016-08-01

    Herein we report that an imidazole-decorated cationic amphiphile derived from the pseudo-disaccharide nebramine has potent antifungal activity against strains of Candida glabrata pathogens. In combination with the natural bis-benzylisoquinoline alkaloid tetrandrine the reported antifungal cationic amphiphile demonstrated synergistic antifungal activity against Candida albicans pathogens. This unique membrane disruptor caused no detectible mammalian red blood cell hemolysis at concentrations up to more than two orders of magnitude greater than its minimal inhibitory concentrations against the tested C. glabrata strains. We provide evidence that potency against C. glabrata may be associated with differences between the drug efflux pumps of C. albicans and C. glabrata. Imidazole decorated-cationic amphiphiles show promise for the development of less toxic membrane-disrupting antifungal drugs and drug combinations. PMID:27258738

  15. Soluble complement complex C5b-9 promotes microglia activation.

    PubMed

    Yang, Chao; Yang, Li; Liu, Yong

    2014-02-15

    Soluble C5b-9 has been described as a pro-inflammatory mediator that triggers cell activation rather than inducing cell death. Microglia is the most important immune cell involved in inflammatory response in the CNS. Although microglia activation induced by various stimuli has been well characterized, the role of C5b-9 in microglia has not been well studied. In the current experiment, we utilized assembled functional C5b-9 to treat microglia and analyzed the function. We found that soluble C5b-9 could promote microglia activation by up-regulation of costimulatory molecules and increase cytokine secretion. Our results suggested that soluble C5b-9 possessed immunoregulatory potential on microglia. PMID:24434076

  16. SALSA: A Regulator of the Early Steps of Complement Activation on Mucosal Surfaces

    PubMed Central

    Reichhardt, Martin Parnov; Meri, Seppo

    2016-01-01

    Complement is present mainly in blood. However, following mechanical damage or inflammation, serous exudates enter the mucosal surfaces. Here, the complement proteins interact with other endogenous molecules to keep microbes from entering the parenteral tissues. One of the mucosal proteins known to interact with the early complement components of both the classical and the lectin pathway is the salivary scavenger and agglutinin (SALSA). SALSA is also known as deleted in malignant brain tumors 1 and gp340. It is found both attached to the epithelium and secreted into the surrounding fluids of most mucosal surfaces. SALSA has been shown to bind directly to C1q, mannose-binding lectin, and the ficolins. Through these interactions SALSA regulates activation of the complement system. In addition, SALSA interacts with surfactant proteins A and D, secretory IgA, and lactoferrin. Ulcerative colitis and Crohn’s disease are examples of diseases, where complement activation in mucosal tissues may occur. This review describes the latest advances in our understanding of how the early complement components interact with the SALSA molecule. Furthermore, we discuss how these interactions may affect disease propagation on mucosal surfaces in immunological and inflammatory diseases. PMID:27014265

  17. A novel peptide inhibitor of classical and lectin complement activation including ABO incompatibility

    PubMed Central

    Mauriello, Clifford T.; Pallera, Haree K.; Sharp, Julia A.; Woltmann, Jon L.; Qian, Shizhi; Hair, Pamela S.; van der Pol, Pieter; van Kooten, Cees; Thielens, Nicole M.; Lattanzio, Frank A.; Cunnion, Kenji M.; Krishna, Neel K.

    2012-01-01

    Previous experiments from our laboratories have identified peptides derived from the human astrovirus coat protein (CP) that bind C1q and mannose binding lectin (MBL) inhibiting activation of the classical and lectin pathways of complement, respectively. The purpose of this study was to evaluate the function of these coat protein peptides (CPPs) in an in vitro model of complement-mediated disease (ABO incompatibility), preliminarily assess their in vivo complement suppression profile and develop more highly potent derivatives of these molecules. E23A, a 30 amino acid CPP derivative previously demonstrated to inhibit classical pathway activation was able to dose-dependently inhibit lysis of AB erythrocytes treated with mismatched human O serum. Additionally, when injected into rats, E23A inhibited the animals’ serum from lysing antibody-sensitized erythrocytes, providing preliminary in vivo functional evidence that this CPP can cross the species barrier to inhibit serum complement activity in rodents. A rational drug design approach was implemented to identify more potent CPP derivatives, resulting in the identification and characterization of a 15 residue peptide (Polar Assortant (PA)), which demonstrated both superior inhibition of classical complement pathway activation and robust binding to C1q collagen-like tails. PA also inhibited ABO incompatibility in vitro and demonstrated in vivo complement suppression up to 24 hours post-injection. CPP’s ability to inhibit ABO incompatibility in vitro, proof of concept in vivo inhibitory activity in rats and the development of the highly potent PA derivative set the stage for preclinical testing of this molecule in small animal models of complement-mediated disease. PMID:22906481

  18. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis.

    PubMed

    Ning, C; Li, Y-Y; Wang, Y; Han, G-C; Wang, R-X; Xiao, H; Li, X-Y; Hou, C-M; Ma, Y-F; Sheng, D-S; Shen, B-F; Feng, J-N; Guo, R-F; Li, Y; Chen, G-J

    2015-11-01

    Colitis-associated colorectal cancer (CAC) is the most serious complication of inflammatory bowel disease (IBD). Excessive complement activation has been shown to be involved in the pathogenesis of IBD. However, its role in the development of CAC is largely unknown. Here, using a CAC model induced by combined administration of azoxymethane (AOM) and dextran sulfate sodium (DSS), we demonstrated that complement activation was required for CAC pathogenesis. Deficiency in key components of complement (e.g., C3, C5, or C5a receptor) rendered tumor repression in mice subjected to AOM/DSS. Mechanistic investigation revealed that complement ablation dramatically reduced proinflammatory cytokine interleukin (IL)-1β levels in the colonic tissues that was mainly produced by infiltrating neutrophils. IL-1β promoted colon carcinogenesis by eliciting IL-17 response in intestinal myeloid cells. Furthermore, complement-activation product C5a represented a potent inducer for IL-1β in neutrophil, accounting for downregulation of IL-1β levels in the employed complement-deficient mice. Overall, our study proposes a protumorigenic role of complement in inflammation-related colorectal cancer and that the therapeutic strategies targeting complement may be beneficial for the treatment of CAC in clinic. PMID:25736459

  19. Anti-complementary constituents of Houttuynia cordata and their targets in complement activation cascade.

    PubMed

    Jiang, Yun; Lu, Yan; Zhang, Yun-Yi; Chen, Dao-Feng

    2014-01-01

    Activity-guided fractionation for complement inhibitors led to the isolation of 23 known compounds from Houttuynia cordata Thunb. Seven flavonoids, two alkaloids, one coumarin and two phenols showed anti-complementary activity. Preliminary inhibitory mechanism of four flavonoids, including quercitrin, afzelin, isoquercitrin and quercetin in the complement activation cascade were examined for the first time. The results indicated that the target components of flavonols are different from those of flavonosides, and the glycoside moieties may be necessary to block C3 and C4 components. PMID:24423008

  20. Deficient activity of the alternative pathway of complement in beta thalassemia major.

    PubMed

    Corry, J M; Marshall, W C; Guthrie, L A; Peerless, A G; Johnston, R B

    1981-06-01

    Patients with thalassemia major suffer frequent and serious infections, especially after splenectomy. To explore the basis for this susceptibility, we examined activity of the complement system in sera from 24 patients. All sera had normal or increased activity of the classic complement pathway. However, six of the 24 (three with and three without splenectomy) had abnormal alternative pathway function, and mean alternative pathway activity was significantly decreased in both splenectomized and nonsplenectomized patients. Mean concentrations of C3, factor B, properdin, and immunoglobulins were normal. Defective alternative pathway function, especially in conjunction with asplenia, could contribute to the propensity to infection that exists in thalassemia. PMID:6908998

  1. Polyphosphate suppresses complement via the terminal pathway

    PubMed Central

    Wat, Jovian M.; Foley, Jonathan H.; Krisinger, Michael J.; Ocariza, Linnette Mae; Lei, Victor; Wasney, Gregory A.; Lameignere, Emilie; Strynadka, Natalie C.; Smith, Stephanie A.; Morrissey, James H.

    2014-01-01

    Polyphosphate, synthesized by all cells, is a linear polymer of inorganic phosphate. When released into the circulation, it exerts prothrombotic and proinflammatory activities by modulating steps in the coagulation cascade. We examined the role of polyphosphate in regulating the evolutionarily related proteolytic cascade complement. In erythrocyte lysis assays, polyphosphate comprising more than 1000 phosphate units suppressed total hemolytic activity with a concentration to reduce maximal lysis to 50% that was 10-fold lower than with monophosphate. In the ion- and enzyme-independent terminal pathway complement assay, polyphosphate suppressed complement in a concentration- and size-dependent manner. Phosphatase-treated polyphosphate lost its ability to suppress complement, confirming that polymer integrity is required. Sequential addition of polyphosphate to the terminal pathway assay showed that polyphosphate interferes with complement only when added before formation of the C5b-7 complex. Physicochemical analyses using native gels, gel filtration, and differential scanning fluorimetry revealed that polyphosphate binds to and destabilizes C5b,6, thereby reducing the capacity of the membrane attack complex to bind to and lyse the target cell. In summary, we have added another function to polyphosphate in blood, demonstrating that it dampens the innate immune response by suppressing complement. These findings further establish the complex relationship between coagulation and innate immunity. PMID:24335501

  2. Structure-activity relationships for substrate-based inhibitors of human complement factor B.

    PubMed

    Ruiz-Gómez, Gloria; Lim, Junxian; Halili, Maria A; Le, Giang T; Madala, Praveen K; Abbenante, Giovanni; Fairlie, David P

    2009-10-01

    Human complement is a cascading network of plasma proteins important in immune defense, cooperatively effecting recognition, opsonization, destruction, and removal of pathogens and infected/damaged cells. Overstimulated or unregulated complement activation can result in immunoinflammatory diseases. Key serine proteases in this cascade are difficult to study due to their multiprotein composition, short lifetimes, formation on membranes, or serum circulation as inactive zymogens. Factor B is inactive at pH 7, but a catalytically active serine protease under alkaline conditions, enabling structure-activity relationship studies for 63 substrate-based peptide inhibitors with 4-7 residues and a C-terminal aldehyde. A potent factor B inhibitor was hexpeptide Ac-RLTbaLAR-H (IC(50) 250 nM, pH 9.5), which at pH 7 also blocked formation of membrane attack complex via the "alternative pathway" of complement activation and inhibited human complement mediated lysis of rabbit erythrocytes. Inhibitors of factor B may be valuable probes and drug leads for complement mediated immunity and disease. PMID:19743866

  3. Mild hypothermia inhibits systemic and cerebral complement activation in a swine model of cardiac arrest

    PubMed Central

    Gong, Ping; Zhao, Hong; Hua, Rong; Zhang, Mingyue; Tang, Ziren; Mei, Xue; Cui, Juan; Li, Chunsheng

    2015-01-01

    Complement activation has been implicated in ischemia/reperfusion injury. This study aimed to determine whether mild hypothermia (HT) inhibits systemic and cerebral complement activation after resuscitation from cardiac arrest. Sixteen minipigs resuscitated from 8 minutes of untreated ventricular fibrillation were randomized into two groups: HT group (n=8), treated with HT (33°C) for 12 hours; and normothermia group (n=8), treated similarly as HT group except for cooling. Blood samples were collected at baseline and 0.5, 6, 12, and 24 hours after return of spontaneous circulation (ROSC). The brain cortex was harvested 24 hours after ROSC. Complement and pro-inflammatory markers were detected using enzyme-linked immunosorbent assay. Neurologic deficit scores were evaluated 24 hours after ROSC. C1q, Bb, mannose-binding lectin (MBL), C3b, C3a, C5a, interleukin-6, and tumor necrosis factor-α levels were significantly increased under normothermia within 24 hours after ROSC. However, these increases were significantly reduced by HT. Hypothermia decreased brain C1q, MBL, C3b, and C5a contents 24 hours after ROSC. Hypothermic pigs had a better neurologic outcome than normothermic pigs. In conclusion, complement is activated through classic, alternative, and MBL pathways after ROSC. Hypothermia inhibits systemic and cerebral complement activation, which may provide an additional mechanism of cerebral protection. PMID:25757755

  4. Noninvasive Imaging of Activated Complement in Ischemia-Reperfusion Injury Post–Cardiac Transplant

    PubMed Central

    Sharif-Paghaleh, E; Yap, M L; Meader, L L; Chuamsaamarkkee, K; Kampmeier, F; Badar, A; Smith, R A; Sacks, S; Mullen, G E

    2015-01-01

    Ischemia-reperfusion injury (IRI) is inevitable in solid organ transplantation, due to the transplanted organ being ischemic for prolonged periods prior to transplantation followed by reperfusion. The complement molecule C3 is present in the circulation and is also synthesized by tissue parenchyma in early response to IRI and the final stable fragment of activated C3, C3d, can be detected on injured tissue for several days post-IRI. Complement activation post-IRI was monitored noninvasively by single photon emission computed tomography (SPECT) and CT using 99mTc-recombinant complement receptor 2 (99mTc-rCR2) in murine models of cardiac transplantation following the induction of IRI and compared to 99mTc-rCR2 in C3−/− mice or with the irrelevant protein 99mTc-prostate–specific membrane antigen antibody fragment (PSMA). Significant uptake with 99mTc-rCR2 was observed as compared to C3−/− or 99mTc-PSMA. In addition, the transplanted heart to muscle ratio of 99mTc-rCR2 was significantly higher than 99mTc-PSMA or C3−/−. The results were confirmed by histology and autoradiography. 99mTc-rCR2 can be used for noninvasive detection of activated complement and in future may be used to quantify the severity of transplant damage due to complement activation postreperfusion. PMID:25906673

  5. Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis.

    PubMed

    Eriksson, Charlotta E; Studahl, Marie; Bergström, Tomas

    2016-06-15

    Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation. PMID:27235358

  6. Application of a hemolysis assay for analysis of complement activation by perfluorocarbon nanoparticles

    PubMed Central

    Pham, Christine T.N.; Thomas, Dennis G.; Beiser, Julia; Mitchell, Lynne M.; Huang, Jennifer L.; Senpan, Angana; Hu, Grace; Gordon, Mae; Baker, Nathan A.; Pan, Dipanjan; Lanza, Gregory M.; Hourcade, Dennis E.

    2013-01-01

    Nanoparticles offer new options for medical diagnosis and therapeutics with their capacity to specifically target cells and tissues with imaging agents and/or drug payloads. The unique physical aspects of nanoparticles present new challenges for this promising technology. Studies indicate that nanoparticles often elicit moderate to severe complement activation. Using human in vitro assays that corroborated the mouse in vivo results we previously presented mechanistic studies that define the pathway and key components involved in modulating complement interactions with several gadolinium-functionalized perfluorocarbon nanoparticles (PFOB). Here we employ a modified in vitro hemolysis-based assay developed in conjunction with the mouse in vivo model to broaden our analysis to include PFOBs of varying size, charge and surface chemistry and examine the variations in nanoparticle-mediated complement activity between individuals. This approach may provide the tools for an in-depth structure-activity relationship study that will guide the eventual development of biocompatible nanoparticles. PMID:24211337

  7. Chemotaxigenesis and activation of the alternative complement pathway by encapsulated and non-encapsulated Cryptococcus neoformans.

    PubMed Central

    Laxalt, K A; Kozel, T R

    1979-01-01

    In the presence of serum, whole cells of encapsulated and non-encapsulated Cryptococcus neoformans generated a chemotactic response by neutrophils. Heat inactivation of serum ablated all chemotactic activity. Cryptococcal polysaccharide was not chemotaxigenic. Assays for alternative complement pathway activation such as depletion of alternative complement pathway factor B or electrophoretic conversion of factor B closely paralleled chemotaxis assays. Cells of encapsulated and non-encapsulated C. neoformans activated the alternative complement pathway, whereas cryptococcal polysaccharide was inactive. Failure of the capsular material to activate the alternative pathway was not due to serotype specificity because polysaccharide of several serotypes failed to achieve activation. The results suggest that chemotaxigenesis and alternative complement pathway activation are functions of the yeast cell wall. The results support our proposal that the cryptococcal capsul does not prevent potential opsonins from reaching binding and activation sites at the yeast cell wall or the release of biologically active soluble cleavage products into the surrounding medium; however, cell wall-bound cleavage products remain bound to the cell wall beneath the capsule. Therefore, they are unable to participate as opsonins in phagocytosis. PMID:397927

  8. Classroom Active Learning Complemented by an Online Discussion Forum to Teach Sustainability

    ERIC Educational Resources Information Center

    Dengler, Mary

    2008-01-01

    This paper identifies some of the pedagogical benefits of an active learning course delivery complemented by an online discussion forum to teach sustainability by evaluating the case of a geography master's course. The potential benefits and some challenges of an active learning course delivery to teach sustainability in geography and related…

  9. Complement System Part II: Role in Immunity

    PubMed Central

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  10. Monomeric C-reactive protein inhibits renal cell-directed complement activation mediated by properdin.

    PubMed

    O'Flynn, Joseph; van der Pol, Pieter; Dixon, Karen O; Prohászka, Zoltán; Daha, Mohamed R; van Kooten, Cees

    2016-06-01

    Previous studies have shown that complement activation on renal tubular cells is involved in the induction of interstitial fibrosis and cellular injury. Evidence suggests that the tubular cell damage is initiated by the alternative pathway (AP) of complement with properdin having an instrumental role. Properdin is a positive regulator of the AP, which can bind necrotic cells as well as viable proximal tubular epithelial cells (PTECs), inducing complement activation. Various studies have indicated that in the circulation there is an unidentified inhibitor of properdin. We investigated the ability of C-reactive protein (CRP), both in its monomeric (mCRP) and pentameric (pCRP) form, to inhibit AP activation and injury in vitro on renal tubular cells by fluorescent microscopy, ELISA, and flow cytometry. We demonstrated that preincubation of properdin with normal human serum inhibits properdin binding to viable PTECs. We identified mCRP as a factor able to bind to properdin in solution, thereby inhibiting its binding to PTECs. In contrast, pCRP exhibited no such binding and inhibitory effect. Furthermore, mCRP was able to inhibit properdin-directed C3 and C5b-9 deposition on viable PTECs. The inhibitory ability of mCRP was not unique for viable cells but also demonstrated for binding to necrotic Jurkat cells, a target for properdin binding and complement activation. In summary, mCRP is an inhibitor of properdin in both binding to necrotic cells and viable renal cells, regulating complement activation on the cell surface. We propose that mCRP limits amplification of tissue injury by controlling properdin-directed complement activation by damaged tissue and cells. PMID:26984957

  11. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves

    PubMed Central

    2013-01-01

    Background Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Methods Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Results Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Conclusions Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids. PMID:23800043

  12. Bactericidal/permeability-increasing protein promotes complement activation for neutrophil-mediated phagocytosis on bacterial surface

    PubMed Central

    Nishimura, H; Gogami, A; Miyagawa, Y; Nanbo, A; Murakami, Y; Baba, T; Nagasawa, S

    2001-01-01

    The neutrophil bactericidal/permeability-increasing protein (BPI) has both bactericidal and lipopolysaccharide-neutralizing activities. The present study suggests that BPI also plays an important role in phagocytosis of Escherichia coli by neutrophils through promotion of complement activation on the bacterial surface. Flow cytometric analysis indicated that fluorescein-labelled E. coli treated with BPI were phagocytosed in the presence of serum at two- to five-fold higher levels than phagocytosis of the bacteria without the treatment. In contrast, phagocytosis of the fluoresceined bacteria with or without treatment by BPI did not occur at all in the absence of serum. The phagocytosis stimulated by BPI and serum was dose-dependent. The effect of BPI on phagocytosis in the presence of serum was not observed on Gram-positive bacteria (Staphylococcus aureus). Interestingly, the complement C3b/iC3b fragments were deposited onto the bacterial surface also as a function of the BPI concentration under conditions similar to those for phagocytosis. Furthermore, the BPI-promoted phagocytosis was blocked completely by anti-C3 F(ab′)2 and partially by anti-complement receptor (CR) type 1 and/or anti-CR type 3. These findings suggest that BPI accelerates complement activation to opsonize bacteria with complement-derived fragments, leading to stimulation of phagocytosis by neutrophils via CR(s). PMID:11529944

  13. Roles of the valine clusters in domain 3 of the hemolytic lectin CEL-III in its oligomerization and hemolytic abilities.

    PubMed

    Hisamatsu, Keigo; Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2009-01-01

    The hemolytic lectin CEL-III and its site-directed mutants were expressed in Escherichia coli cells. Replacement of the valine clusters in domain 3 with alanine residues led to increased self-oligomerization in solution and higher hemolytic activity. The results suggest the involvement of these valine clusters in CEL-III oligomerization and hemolytic activity. PMID:19356139

  14. A thermoactive secreted phospholipase A₂ purified from the venom glands of Scorpio maurus: relation between the kinetic properties and the hemolytic activity.

    PubMed

    Louati, Hanen; Krayem, Najeh; Fendri, Ahmed; Aissa, Imen; Sellami, Mohamed; Bezzine, Sofiane; Gargouri, Youssef

    2013-09-01

    A lipolytic activity was located in the scorpion venom glands (telsons), from which a phospholipase A₂ (Sm-PLVG) was purified. Like known phospholipases A₂ from scorpion venom, which are 14-18 kDa proteins, the purified Scorpio maurus-Phospholipase from Venom Glands (Sm-PLVG) has a molecular mass of 17 kDa containing long and short chains linked by disulfide bridge. It has a specific activity of 5500 U/mg measured at 47 °C and pH 8.5 using phosphatidylcholine as a substrate in presence of 8 mM NaTDC and 12 mM CaCl₂. The NH₂-terminal amino acid sequences of the purified Sm-PLVG showed similarities with those of long and short chains of some previously purified phospholipases from venom scorpions. Moreover, the Sm-PLVG exhibits hemolytic activity toward human, rabbit or rat erythrocytes. This hemolytic activity was related to its ability to interact with phospholipids' monolayer at high surface pressure. These properties are similar to those of phospholipases isolated from snake venoms. PMID:23831286

  15. Local and systemic activation of the whole complement cascade in human leukocytoclastic cutaneous vasculitis; C3d,g and terminal complement complex as sensitive markers.

    PubMed Central

    Dauchel, H; Joly, P; Delpech, A; Thomine, E; Sauger, F; Le Loet, X; Lauret, P; Tron, F; Fontaine, M; Ripoche, J

    1993-01-01

    We have studied complement activation both in plasma samples and in lesional skin from patients with leukocytoclastic cutaneous vasculitis (LCV). Enzyme immunoassay (EIA) quantification of the complement activation markers, C3d,g and the terminal complement complex (TCC) in plasma, showed that their levels were significantly increased in 66% and 55% of the patients, respectively (n = 29) compared with healthy controls, whereas the standard measurements of C3, factor B, C1q, C4 and C2 were generally within normal range. Elevations of C3d,g and TCC levels in plasma were significantly correlated. Importantly, a significant correlation was found between the severity of the vasculitis and both C3d,g and TCC plasma levels. Immunofluorescence studies of skin biopsy specimens demonstrated simultaneous presence of perivascular dermal deposits of C3d,g and TCC in lesional skin from 96% and 80% respectively of the patients (n = 25). There was a significant correlation between the intensity of the deposits of both markers. Clusterin, a TCC inhibitory protein, was always found at the same sites of perivascular TCC deposits. Immunofluorescence studies at the epidermal basement membrane zone (BMZ) revealed in each case deposits of C3d,g which were accompanied by TCC deposits in 52% of the biopsy specimens. These data demonstrate that there is a local and systemic activation of the whole complement cascade in human LCV. The presence of both C3d,g and clusterin-associated TCC perivascular deposits suggests an intervention of a regulatory mechanism of local complement activation in LCV. Finally, measurement of plasma C3d,g and TCC appears to be a sensitive indicator of systemic complement activation and disease severity in LCV. Images Fig. 1 Fig. 2 PMID:8485913

  16. Alginate microsphere compositions dictate different mechanisms of complement activation with consequences for cytokine release and leukocyte activation.

    PubMed

    Ørning, Pontus; Hoem, Kine Samset; Coron, Abba Elizabeth; Skjåk-Bræk, Gudmund; Mollnes, Tom Eirik; Brekke, Ole-Lars; Espevik, Terje; Rokstad, Anne Mari

    2016-05-10

    The inflammatory potential of 12 types of alginate-based microspheres was assessed in a human whole blood model. The inflammatory potential could be categorized from low to high based on the four main alginate microsphere types; alginate microbeads, liquefied core poly-l-ornithine (PLO)-containing microcapsules, liquefied core poly-l-lysine (PLL)-containing microcapsules, and solid core PLL-containing microcapsules. No complement or inflammatory cytokine activation was detected for the Ca/Ba alginate microbeads. Liquefied core PLO- and PLL-containing microcapsules induced significant fluid phase complement activation (TCC), but with low complement surface deposition (anti-C3c), and a low proinflammatory cytokine secretion, with exception of an elevated MCP-1(CCL2) secretion. The solid core PLL-containing microcapsules generated lower TCC but a marked complement surface deposition and significant induction of the proinflammatory cytokines interleukin (IL-1)β, TNF, IL-6, the chemokines IL-8 (CXCL8), and MIP-1α (CCL3) and MCP-1(CCL2). Inhibition with compstatin (C3 inhibitor) completely abolished complement surface deposition, leukocyte adhesion and the proinflammatory cytokines. The C5 inhibitions partly lead to a reduction of the proinflammatory cytokines. The leukocyte adhesion was abolished by inhibitory antibodies against CD18 and partly reduced by CD11b, but not by CD11c. Anti-CD18 significantly reduced the (IL-1)β, TNF, IL-6 and MIP-1α and anti-CD11b significantly reduced the IL-6 and VEGF secretion. MCP-1 was strongly activated by anti-CD18 and anti-CD11b. In conclusion the initial proinflammatory cytokine responses are driven by the microspheres potential to trigger complement C3 (C3b/iC3b) deposition, leukocyte activation and binding through complement receptor CR3 (CD11b/CD18). MCP-1 is one exception dependent on the fluid phase complement activation mediated through CR3. PMID:26993426

  17. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways

    PubMed Central

    Yuen, Joshua; Pluthero, Fred G.; Douda, David N.; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H. A.; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b–9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their “AP tool kit” to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  18. NETosing Neutrophils Activate Complement Both on Their Own NETs and Bacteria via Alternative and Non-alternative Pathways.

    PubMed

    Yuen, Joshua; Pluthero, Fred G; Douda, David N; Riedl, Magdalena; Cherry, Ahmed; Ulanova, Marina; Kahr, Walter H A; Palaniyar, Nades; Licht, Christoph

    2016-01-01

    Neutrophils deposit antimicrobial proteins, such as myeloperoxidase and proteases on chromatin, which they release as neutrophil extracellular traps (NETs). Neutrophils also carry key components of the complement alternative pathway (AP) such as properdin or complement factor P (CFP), complement factor B (CFB), and C3. However, the contribution of these complement components and complement activation during NET formation in the presence and absence of bacteria is poorly understood. We studied complement activation on NETs and a Gram-negative opportunistic bacterial pathogen Pseudomonas aeruginosa (PA01, PAKwt, and PAKgfp). Here, we show that anaphylatoxin C5a, formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA), which activates NADPH oxidase, induce the release of CFP, CFB, and C3 from neutrophils. In response to PMA or P. aeruginosa, neutrophils secrete CFP, deposit it on NETs and bacteria, and induce the formation of terminal complement complexes (C5b-9). A blocking anti-CFP antibody inhibited AP-mediated but not non-AP-mediated complement activation on NETs and P. aeruginosa. Therefore, NET-mediated complement activation occurs via both AP- and non AP-based mechanisms, and AP-mediated complement activation during NETosis is dependent on CFP. These findings suggest that neutrophils could use their "AP tool kit" to readily activate complement on NETs and Gram-negative bacteria, such as P. aeruginosa, whereas additional components present in the serum help to fix non-AP-mediated complement both on NETs and bacteria. This unique mechanism may play important roles in host defense and help to explain specific roles of complement activation in NET-related diseases. PMID:27148258

  19. Complement factor H related proteins (CFHRs).

    PubMed

    Skerka, Christine; Chen, Qian; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T

    2013-12-15

    Factor H related proteins comprise a group of five plasma proteins: CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5, and each member of this group binds to the central complement component C3b. Mutations, genetic deletions, duplications or rearrangements in the individual CFHR genes are associated with a number of diseases including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathies (C3 glomerulonephritis (C3GN), dense deposit disease (DDD) and CFHR5 nephropathy), IgA nephropathy, age related macular degeneration (AMD) and systemic lupus erythematosus (SLE). Although complement regulatory functions were attributed to most of the members of the CFHR protein family, the precise role of each CFHR protein in complement activation and the exact contribution to disease pathology is still unclear. Recent publications show that CFHR proteins form homo- as well as heterodimers. Genetic abnormalities within the CFHR gene locus can result in hybrid proteins with affected dimerization or recognition domains which cause defective functions. Here we summarize the recent data about CFHR genes and proteins in order to better understand the role of CFHR proteins in complement activation and in complement associated diseases. PMID:23830046

  20. Relative contribution of contact and complement activation to inflammatory reactions in arthritic joints.

    PubMed Central

    Abbink, J J; Kamp, A M; Nuijens, J H; Erenberg, A J; Swaak, A J; Hack, C E

    1992-01-01

    Although both the complement and contact system are thought to contribute to the inflammatory reaction in arthritic joints, only activation of complement has so far been well established, whereas contact activation and its contribution to arthritis has not been systematically explored. Complement and contact activation were assessed in 71 patients with inflammatory arthropathies and 11 with osteoarthritis using sensitive assays for C3a, and C1-inhibitor (C1INH)-kallikrein and C1INH-factor XIIa complexes respectively. Increased plasma concentrations of kallikrein-and factor XIIa-C1INH complexes were found in two and seven of the 71 patients with inflammatory arthropathies, respectively, and in none of the patients with osteoarthritis. Increased synovial fluid concentrations of kallikrein and factor XIIa complexes occurred in 13 and 15 patients with inflammatory joint diseases respectively, and in two patients with osteoarthritis. Contact system parameters did not correlate with clinical symptoms, local activity, or neutrophil activation. In contrast, synovial fluid concentrations of C3a and C1INH-C1 complexes were increased in all patients and in 20 patients with inflammatory arthropathies respectively, and were higher in patients with a higher local activity score. Synovial fluid C3a correlated with parameters of neutrophil activation such as lactoferrin. Increased plasma concentrations of C3a and C1INH-C1 complexes occurred in 13 and 11 patients with inflammatory joint diseases, and in one and two patients with osteoarthritis respectively. Plasma concentrations of C3a correlated with the number of painful joints. Thus contact activation occurs only sporadically in patients with arthritis and contributes little if anything to the local inflammatory reaction and neutrophil activation. These latter events are significantly related to the extent of complement activation. PMID:1444625

  1. Levan-induced glomerulitis in rabbits: a possible role for direct complement activation in situ.

    PubMed Central

    Stark, H.; Alkalay, A.; Ben-Bassat, M.; Hazaz, B.; Joshua, H.

    1985-01-01

    Since high-molecular-weight levan is known to reduce capillary permeability to large molecules, an experiment was designed to investigate whether this agent may attenuate the glomerulonephritis associated with acute serum sickness in rabbits. The study, in fact, demonstrated an enhancing effect of levan, which caused increased glomerular proliferative changes and leucocyte infiltration and, possibly, increased IgG deposition in this experimental model. In addition, rabbits injected only with levan also demonstrated mild glomerulitis and C3 deposition. In one of four rabbits examined, this was accompanied by a marked fall in the serum level of total haemolysing complement. Levan was demonstrated to cause activation of complement when incubated with normal rabbit serum in vitro. We believe that these findings are best explained on the basis of complement activation in situ by levan in the glomeruli, probably via the alternative pathway, with the resulting inflammatory response. In the case of BSA-injected rabbits, this response is believed to be additive to that of the classical immune complex-mediated complement activation. Images Fig. 1 PMID:3986130

  2. Therapeutic control of complement activation at the level of the central component C3.

    PubMed

    Ricklin, Daniel; Lambris, John D

    2016-06-01

    The increasing recognition of the complement system's association with diseases of the inflammatory spectrum and with biomaterial and transplant-related complications has generated growing interest in the therapeutic modulation of this innate immune cascade. As a central functional hub that largely drives the activation, amplification, and effector generation of the complement response, the plasma protein C3 has long been recognized as an attractive target. While pharmacological modulation of C3 activation may offer a powerful opportunity to interfere with or even prevent complement-driven pathologies, the development of C3 inhibitors has often been accompanied by concerns regarding the safety and feasibility of this approach. Although no C3-targeted inhibitors have thus far been approved for clinical use, several promising concepts and candidates have emerged in recent years. At the same time, experiences from preclinical development and clinical trials are slowly providing a more detailed picture of therapeutic complement inhibition at the level of C3. This review highlights the current therapeutic strategies to control C3 activation and discusses the possibilities and challenges on the road to bringing C3-targeted therapeutics to the clinic. PMID:26101137

  3. Complement-fixing Activity of Fulvic Acid from Shilajit and Other Natural Sources

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Shilajit has been used traditionally in folk medicine for treatment of a variety of disorders, including syndromes involving excessive complement activation. Extracts of Shilajit contain significant amounts of fulvic acid (FA), and it has been suggested that FA is responsible for many therapeutic properties of Shilajit. However, little is known regarding physical and chemical properties of Shilajit extracts, and nothing is known about their effects on the complement system. To address this issue, we fractionated extracts of commercial Shilajit using anion exchange and size-exclusion chromatography. One neutral (S-I) and two acidic (S-II and S-III) fractions were isolated, characterized, and compared with standardized FA samples. The most abundant fraction (S-II) was further fractionated into three sub-fractions (S-II-1 to S-II-3). The van Krevelen diagram showed that the Shilajit fractions are products of polysaccharide degradation, and all fractions, except S-II-3, contained type II arabinogalactan. All Shilajit fractions exhibited dose-dependent complement-fixing activity in vitro with high potency. Furthermore, we found a strong correlation between complement-fixing activity and carboxylic group content in the Shilajit fractions and other FA sources. These data provide a molecular basis to explain at least part of the beneficial therapeutic properties of Shilajit and other humic extracts. PMID:19107845

  4. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome

    PubMed Central

    Lemaire, Mathieu; Frémeaux-Bacchi, Véronique; Schaefer, Franz; Choi, Murim; Tang, Wai Ho; Le Quintrec, Moglie; Fakhouri, Fadi; Taque, Sophie; Nobili, François; Martinez, Frank; Ji, Weizhen; Overton, John D.; Mane, Shrikant M.; Nürnberg, Gudrun; Altmüller, Janine; Thiele, Holger; Morin, Denis; Deschenes, Georges; Baudouin, Véronique; Llanas, Brigitte; Collard, Laure; Majid, Mohammed A.; Simkova, Eva; Nürnberg, Peter; Rioux-Leclerc, Nathalie; Moeckel, Gilbert W.; Gubler, Marie Claire; Hwa, John; Loirat, Chantal; Lifton, Richard P.

    2013-01-01

    Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure1. Atypical HUS (aHUS) can result from genetic or autoimmune factors2 that lead to pathologic complement cascade activation3. By exome sequencing we identify recessive mutations in DGKE (diacylglycerol kinase epsilon) that co-segregate with aHUS in 9 unrelated kindreds, defining a distinctive Mendelian disease. Affected patients present with aHUS before age 1, have persistent hypertension, hematuria and proteinuria (sometimes nephrotic range), and develop chronic kidney disease with age. DGKE is found in endothelium, platelets, and podocytes. Arachidonic acid-containing diacylglycerols (DAG) activate protein kinase C, which promotes thrombosis. DGKE normally inactivates DAG signaling. We infer that loss of DGKE function results in a pro-thrombotic state. These findings identify a new mechanism of pathologic thrombosis and kidney failure and have immediate implications for treatment of aHUS patients. PMID:23542698

  5. Complement activation on poly(ethylene oxide)-like RFGD-deposited surfaces

    PubMed Central

    Szott, Luisa Mayorga; Stein, M. Jeanette; Ratner, Buddy D.; Horbett, Thomas A.

    2010-01-01

    Non-specific protein adsorption, particularly fibrinogen (Fg), is thought to be an initiating step in the foreign body response (FBR) to biomaterials by promoting phagocyte attachment. In previous studies, we therefore prepared radio frequency glow discharge (RFGD) polyethylene oxide (PEO)-like tetraglyme coatings (CH3O(CH2CH2O)4CH3) adsorbing less than 10 ng/cm2 Fg and showed that they had the expected low monocyte adhesion in vitro. However, when these were implanted in vivo, many adherent inflammatory cells and a fibrous capsule were found, suggesting the role of alternative proteins, such as activated complement proteins, in the FBR to these materials. We therefore investigated complement interactions with the tetraglyme surfaces. First, because of its well known role in complement C3 activation, we measured the hydroxyl group (-OH) content of tetraglyme, but found it to be very low. Second, we measured C3 adsorption to tetraglyme from plasma. Low amounts of C3 adsorbed on tetraglyme, though it displayed higher binding strength than the control surfaces. Finally, complement activation was determined by measuring C3a and SC5b-9 levels in serum after incubating with tetraglyme, as well as other surfaces that served as positive and negative controls, namely poly(vinyl alcohol) hydrogels, Silastic sheeting, and poly(ethylene glycol) self-assembled monolayers with different end groups. Despite displaying low hydroxyl group concentration, relatively high C3a and SC5b-9 levels were found in serum exposed to tetraglyme, similar to the values due to our positive control, PVA. Our results support the conclusion that complement activation by tetraglyme is a possible mechanism involved in the FBR to these biomaterials. PMID:21105163

  6. [Autoimmune hemolytic anemia in children].

    PubMed

    Becheur, M; Bouslama, B; Slama, H; Toumi, N E H

    2015-01-01

    Autoimmune hemolytic anemia is a rare condition in children which differs from the adult form. It is defined by immune-mediated destruction of red blood cells caused by autoantibodies. Characteristics of the autoantibodies are responsible for the various clinical entities. Classifications of autoimmune hemolytic anemia include warm autoimmune hemolytic anemia, cold autoimmune hemolytic anemia, and paroxysmal cold hemoglobinuria. For each classification, this review discusses the epidemiology, etiology, clinical presentation, laboratory evaluation, and treatment options. PMID:26575109

  7. Using an in vitro xenoantibody-mediated complement-dependent cytotoxicity model to evaluate the complement inhibitory activity of the peptidic C3 inhibitor Cp40

    PubMed Central

    Wang, Junxiang; Wang, Lu; Xiang, Ying; Ricklin, Daniel; Lambris, John D.; Chen, Gang

    2016-01-01

    Simple and reliable methods for evaluating the inhibitory effects of drug candidates on complement activation are essential for preclinical development. Here, using an immortalized porcine aortic endothelial cell line (iPEC) as target, we evaluated the feasibility and effectiveness of an in vitro xenoantibody-mediated complement-dependent cytotoxicity (CDC) model for evaluating the complement inhibitory activity of Cp40, a potent analog of the peptidic C3 inhibitor compstatin. The binding of human xenoantibodies to iPECs led to serum dilution-dependent cell death. Pretreatment of the human serum with Cp40 almost completely inhibited the deposition of C3 fragments and C5b-9 on the cells, resulting in a dose-dependent inhibition of CDC against the iPECs. Using the same method to compare the effects of Cp40 on complement activation in humans, rhesus and cynomolgus monkeys, we found that the inhibitory patterns were similar overall. Thus, the in vitro xenoantibody-mediated CDC assay may have considerable potential for future clinical use. PMID:26548839

  8. Human complement C3 deficiency: Th1 induction requires T cell-derived complement C3a and CD46 activation.

    PubMed

    Ghannam, Arije; Fauquert, Jean-Luc; Thomas, Caroline; Kemper, Claudia; Drouet, Christian

    2014-03-01

    Human T helper type 1 (Th1) responses are essential in defense. Although T cell receptor (TCR) and co-stimulator engagement are indispensable for T cell activation, stimulation of additional receptor pathways are also necessary for effector induction. For example, engagement of the complement regulator CD46 by its ligand C3b generated upon TCR activation is required for IFN-γ production as CD46-deficient patients lack Th1 responses. Utilizing T cells from two C3-deficient patients we demonstrate here that normal Th1 responses also depend on signals mediated by the anaphylatoxin C3a receptor (C3aR). Importantly, and like in CD46-deficient patients, whilst Th1 induction are impaired in C3-deficient patients in vitro, their Th2 responses are unaffected. Furthermore, C3-deficient CD4(+) T cells present with reduced expression of CD25 and CD122, further substantiating the growing notion that complement fragments regulate interleukin-2 receptor (IL-2R) assembly and that disturbance of complement-guided IL-2R assembly contributes to aberrant Th1 effector responses. Lastly, sustained intrinsic production of complement fragments may participate in the Th1 contraction phase as both C3a and CD46 engagement regulate IL-10 co-expression in Th1 cells. These data suggest that C3aR and CD46 activation via intrinsic generation of their respective ligands is an integral part of human Th1 (but not Th2) immunity. PMID:24321396

  9. Fcγ and Complement Receptors and Complement Proteins in Neutrophil Activation in Rheumatoid Arthritis: Contribution to Pathogenesis and Progression and Modulation by Natural Products

    PubMed Central

    Paoliello-Paschoalato, Adriana Balbina; Marchi, Larissa Fávaro; de Andrade, Micássio Fernandes; Kabeya, Luciana Mariko; Donadi, Eduardo Antônio; Lucisano-Valim, Yara Maria

    2015-01-01

    Rheumatoid arthritis (RA) is a highly disabling disease that affects all structures of the joint and significantly impacts on morbidity and mortality in RA patients. RA is characterized by persistent inflammation of the synovial membrane lining the joint associated with infiltration of immune cells. Eighty to 90% of the leukocytes infiltrating the synovia are neutrophils. The specific role that neutrophils play in the onset of RA is not clear, but recent studies have evidenced that they have an important participation in joint damage and disease progression through the release of proteolytic enzymes, reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps, in particular during frustrated phagocytosis of immune complexes (ICs). In addition, the local and systemic activation of the complement system contributes to the pathogenesis of RA and other IC-mediated diseases. This review discusses (i) the participation of Fcγ and complement receptors in mediating the effector functions of neutrophils in RA; (ii) the contribution of the complement system and ROS-dependent and ROS-independent mechanisms to joint damage in RA; and (iii) the use of plant extracts, dietary compounds, and isolated natural compounds in the treatment of RA, focusing on modulation of the effector functions of neutrophils and the complement system activity and/or activation. PMID:26346244

  10. Characterization of the third component of complement (C3) after activation by cigarette smoke

    SciTech Connect

    Kew, R.R.; Ghebrehiwet, B.; Janoff, A.

    1987-08-01

    Activation of lung complement by tobacco smoke may be an important pathogenetic factor in the development of pulmonary emphysema in smokers. We previously showed that cigarette smoke can modify C3 and activate the alternative pathway of complement in vitro. However, the mechanism of C3 activation was not fully delineated in these earlier studies. In the present report, we show that smoke-treated C3 induces cleavage of the alternative pathway protein, Factor B, when added to serum containing Mg-EGTA. This effect of cigarette smoke is specific for C3 since smoke-treated C4, when added to Mg-EGTA-treated serum, fails to activate the alternative pathway and fails to induce Factor B cleavage. Smoke-modified C3 no longer binds significant amounts of (/sup 14/C)methylamine (as does native C3), and relatively little (/sup 14/C)methylamine is incorporated into its alpha-chain. Thus, prior internal thiolester bond cleavage appears to have occurred in C3 activated by cigarette smoke. Cigarette smoke components also induce formation of noncovalently associated, soluble C3 multimers, with a Mr ranging from 1 to 10 million. However, prior cleavage of the thiolester bond in C3 with methylamine prevents the subsequent formation of these smoke-induced aggregates. These data indicate that cigarette smoke activates the alternative pathway of complement by specifically modifying C3 and that these modifications include cleavage of the thiolester bond in C3 and formation of noncovalently linked C3 multimers.

  11. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation

    PubMed Central

    Liszewski, M. Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G.; Fara, Antonella F.; Subias, Marta; Pickering, Matthew C.; Drouet, Christian; Meri, Seppo; Arstila, T. Petteri; Pekkarinen, Pirkka T.; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P.; Kemper, Claudia

    2013-01-01

    Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  12. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

    PubMed

    Liszewski, M Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G; Fara, Antonella F; Subias, Marta; Pickering, Matthew C; Drouet, Christian; Meri, Seppo; Arstila, T Petteri; Pekkarinen, Pirkka T; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P; Kemper, Claudia

    2013-12-12

    Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  13. Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation.

    PubMed

    Lui, Hansen; Zhang, Jiasheng; Makinson, Stefanie R; Cahill, Michelle K; Kelley, Kevin W; Huang, Hsin-Yi; Shang, Yulei; Oldham, Michael C; Martens, Lauren Herl; Gao, Fuying; Coppola, Giovanni; Sloan, Steven A; Hsieh, Christine L; Kim, Charles C; Bigio, Eileen H; Weintraub, Sandra; Mesulam, Marek-Marsel; Rademakers, Rosa; Mackenzie, Ian R; Seeley, William W; Karydas, Anna; Miller, Bruce L; Borroni, Barbara; Ghidoni, Roberta; Farese, Robert V; Paz, Jeanne T; Barres, Ben A; Huang, Eric J

    2016-05-01

    Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency. PMID:27114033

  14. No association between dysplasminogenemia with p.Ala620Thr mutation and atypical hemolytic uremic syndrome.

    PubMed

    Miyata, Toshiyuki; Uchida, Yumiko; Yoshida, Yoko; Kato, Hideki; Matsumoto, Masanori; Kokame, Koichi; Fujimura, Yoshihiro; Nangaku, Masaomi

    2016-08-01

    Atypical hemolytic uremic syndrome (aHUS), a form of thrombotic microangiopathy, is caused by the uncontrolled activation of the alternative pathway of complement on the cell surface that leads to microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. A recent genetic analysis of aHUS patients identified deleterious mutations not only in complement or complement regulatory genes but also in the plasminogen gene, suggesting that subnormal plasminogen activity may be related to the degradation of thrombi in aHUS. Dysplasminogenemia, which is caused by a genetic variant in the plasminogen gene, PLG:p.Ala620Thr, is commonly observed in the northeast Asian populations, including Japanese. To examine the association between dysplasminogenemia and aHUS, we genotyped PLG:p.Ala620Thr in 103 Japanese patients with aHUS. We identified five aHUS patients with PLG:p.Ala620Thr; the minor allele frequency (MAF) was thus 0.024. The MAF in the patient group was not significantly different from those obtained from a general Japanese population (MAF = 0.020) and the Japanese genetic variation HGDV database (MAF = 0.021) (P = 0.62 and 0.61, respectively). We concluded that, although carriers with PLG:p.Ala620Thr show low plasminogen activity, this is not a predisposing variant for aHUS and that individuals of dysplasminogenemia are not at significantly increased risk of aHUS. PMID:27194432

  15. Cloning and Characterization of the Gene Encoding the Major Cell-Associated Phospholipase A of Legionella pneumophila, plaB, Exhibiting Hemolytic Activity

    PubMed Central

    Flieger, Antje; Rydzewski, Kerstin; Banerji, Sangeeta; Broich, Markus; Heuner, Klaus

    2004-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular pathogen of amoebae, macrophages, and epithelial cells. The pathology of Legionella infections involves alveolar cell destruction, and several proteins of L. pneumophila are known to contribute to this ability. By screening a genomic library of L. pneumophila, we found an additional L. pneumophila gene, plaB, which coded for a hemolytic activity and contained a lipase consensus motif in its deduced protein sequence. Moreover, Escherichia coli harboring the L. pneumophila plaB gene showed increased activity in releasing fatty acids predominantly from diacylphospho- and lysophospholipids, demonstrating that it encodes a phospholipase A. It has been reported that culture supernatants and cell lysates of L. pneumophila possess phospholipase A activity; however, only the major secreted lysophospholipase A PlaA has been investigated on the molecular level. We therefore generated isogenic L. pneumophila plaB mutants and tested those for hemolysis, lipolytic activities, and intracellular survival in amoebae and macrophages. Compared to wild-type L. pneumophila, the plaB mutant showed reduced hemolysis of human red blood cells and almost completely lost its cell-associated lipolytic activity. We conclude that L. pneumophila plaB is the gene encoding the major cell-associated phospholipase A, possibly contributing to bacterial cytotoxicity due to its hemolytic activity. On the other hand, in view of the fact that the plaB mutant multiplied like the wild type both in U937 macrophages and in Acanthamoeba castellanii amoebae, plaB is not essential for intracellular survival of the pathogen. PMID:15102773

  16. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation.

    PubMed

    Ahmed, Umul Kulthum; Maller, N Claire; Iqbal, Asif J; Al-Riyami, Lamyaa; Harnett, William; Raynes, John G

    2016-05-27

    Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications. PMID:27044740

  17. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation*

    PubMed Central

    Ahmed, Umul Kulthum; Maller, N. Claire; Iqbal, Asif J.; Al-Riyami, Lamyaa; Harnett, William; Raynes, John G.

    2016-01-01

    Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications. PMID:27044740

  18. Complement activation and cytokine response by BioProtein, a bacterial single cell protein.

    PubMed

    Sikkeland, L I B; Thorgersen, E B; Haug, T; Mollnes, T E

    2007-04-01

    The bacterial single cell protein (BSCP), BioProtein, is dried bacterial mass derived from fermentation of the gram negative bacteria Methylococcus capsulatus, used for animal and fish feed. Workers in this industry suffer frequently from pulmonary and systemic symptoms which may be induced by an inflammatory reaction. The aim of the present study was to examine the effect of BSCP on inflammation in vitro as evaluated by complement activation and cytokine production. Human serum was incubated with BSCP and complement activation products specific for all pathways were detected by enzyme-linked immunosorbent assay (ELISA). Human whole blood anti-coagulated with lepirudin was incubated with BSCP and a panel of 27 biological mediators was measured using multiplex technology. BSCP induced a dose-dependent complement activation as revealed by a pronounced increase in alternative and terminal pathway activation (fivefold and 20-fold, respectively) at doses from 1 microg BSCP/ml serum and a similar, but less extensive (two- to fourfold) increase in activation of the lectin and classical pathways at doses from 100 and 1000 microg BSCP/ml serum, respectively. Similarly, BSCP induced a dose-dependent production of a number of cytokines, chemokines and growth factors in human whole blood. At doses as low as 0 x 05-0 x 5 microg BSCP/ml blood a substantial increase was seen for tumour necrosis factor (TNF)-alpha, interleukin (IL)-1-beta, IL-6, interferon (IFN)-gamma, IL-8, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, IL-4, IL-9, IL-17, IL-1Ra, granulocyte-colony-stimulating factor (G-CSF) and vascular endothelial growth factor (VEGF). Thus, BSCP induced a substantial activation of all three initial complement pathways as well as a pronounced cytokine response in vitro, indicating a potent inflammatory property of this agent. PMID:17302729

  19. Von Willebrand factor regulates complement on endothelial cells.

    PubMed

    Noone, Damien G; Riedl, Magdalena; Pluthero, Fred G; Bowman, Mackenzie L; Liszewski, M Kathryn; Lu, Lily; Quan, Yi; Balgobin, Steve; Schneppenheim, Reinhard; Schneppenheim, Sonja; Budde, Ulrich; James, Paula; Atkinson, John P; Palaniyar, Nades; Kahr, Walter H A; Licht, Christoph

    2016-07-01

    Atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura have traditionally been considered separate entities. Defects in the regulation of the complement alternative pathway occur in atypical hemolytic uremic syndrome, and defects in the cleavage of von Willebrand factor (VWF)-multimers arise in thrombotic thrombocytopenic purpura. However, recent studies suggest that both entities are related as defects in the disease-causing pathways overlap or show functional interactions. Here we investigate the possible functional link of VWF-multimers and the complement system on endothelial cells. Blood outgrowth endothelial cells (BOECs) were obtained from 3 healthy individuals and 2 patients with Type 3 von Willebrand disease lacking VWF. Cells were exposed to a standardized complement challenge via the combination of classical and alternative pathway activation and 50% normal human serum resulting in complement fixation to the endothelial surface. Under these conditions we found the expected release of VWF-multimers causing platelet adhesion onto BOECs from healthy individuals. Importantly, in BOECs derived from patients with von Willebrand disease complement C3c deposition and cytotoxicity were more pronounced than on BOECs derived from normal individuals. This is of particular importance as primary glomerular endothelial cells display a heterogeneous expression pattern of VWF with overall reduced VWF abundance. Thus, our results support a mechanistic link between VWF-multimers and the complement system. However, our findings also identify VWF as a new complement regulator on vascular endothelial cells and suggest that VWF has a protective effect on endothelial cells and complement-mediated injury. PMID:27236750

  20. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1

    PubMed Central

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M.; Nyström, Sofia; Hinkula, Jorma

    2015-01-01

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  1. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1.

    PubMed

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M; Nyström, Sofia; Hinkula, Jorma; Larsson, Marie

    2015-08-15

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  2. Complement receptor activity of recombinant porcine CR1-like protein expressed in a eukaryotic system.

    PubMed

    Yin, Wei; Wei, Xiaoming; Jiang, Junbing; Fan, Kuohai; Zhao, Junxing; Sun, Na; Wang, Zhiwei; Sun, Yaogui; Ma, Haili; Zhao, Xin; Li, Hongquan

    2016-08-01

    Primate complement receptor type 1 (CR1) protein, a single-chain transmembrane glycoprotein, plays an important role in immune adherence and clearing complement-opsonized immune complexes. Here, the mRNA of the porcine primate-like complement receptor (CR1-like) gene was analyzed, and two domain sequences with potential functions were cloned into the pwPICZalpha vector for expression in Pichia pastoris. The recombinant proteins were purified with both Protein Pure Ni-NTA resin and strong anion exchange resin. The activities of the purified recombinant proteins were evaluated by SDS-PAGE, western blotting, and complement receptor assays. The results indicated that two domains of the CR1-like protein, CCP36 and CCP811 with molecular weights of 29.8 kDa and 30 kDa, respectively, were successfully expressed in P. pastoris. These two recombinant proteins possess some of the functions of the primate CR1 protein. Using these two proteins coupled with an antibody blocking technique, we also showed that CR1-like is expressed on natural porcine erythrocytes. PMID:26903010

  3. Increased Complement C1q Level Marks Active Disease in Human Tuberculosis

    PubMed Central

    Zhang, Mingxia; Liu, Haiying; Zhang, Guoliang; Deng, Qunyi; Huang, Jian; Gao, Zhiliang; Zhou, Boping; Feng, Carl G.; Chen, Xinchun

    2014-01-01

    Background Complement functions as an important host defense system and complement C5 and C7 have been implicated in immunopathology of tuberculosis. However, little is known about the role of other complement components in tuberculosis. Methods Complement gene expression in peripheral blood mononuclear cells of tuberculosis patients and controls were determined using whole genome transcriptional microarray assays. The mRNA and protein levels of three C1q components, C1qA, C1qB, and C1qC, were further validated by qRT-PCR and enzyme-linked immunosorbent assay, respectively. The percentages of C1q expression in CD14 positive cells were determined by flow cytometry. Finally, C1qC protein level was quantified in the pleural fluid of tuberculosis and non-tuberculosis pleurisy. Results C1q expression increases significantly in the peripheral blood of patients with active tuberculosis compared to healthy controls and individuals with latent TB infection. The percentage of C1q-expressing CD14 positive cells is significantly increased in active TB patients. C1q expression in the peripheral blood correlates with sputum smear positivity in tuberculosis patients and is reduced after anti-tuberculosis chemotherapy. Notably, receiver operating characteristic analysis showed that C1qC mRNA levels in peripheral blood efficiently discriminate active from latent tuberculosis infection and healthy controls. Additionally, C1qC protein level in pleural effusion shows improved power in discriminating tuberculosis from non-tuberculosis pleurisy when compared to other inflammatory markers, such as IL-6 and TNF-α. Conclusions C1q expression correlates with active disease in human tuberculosis. C1q could be a potential diagnostic marker to discriminate active tuberculosis from latent tuberculosis infection as well as tuberculosis pleurisy from non-tuberculosis pleurisy. PMID:24647646

  4. Clinical significance of complement deficiencies.

    PubMed

    Pettigrew, H David; Teuber, Suzanne S; Gershwin, M Eric

    2009-09-01

    The complement system is composed of more than 30 serum and membrane-bound proteins, all of which are needed for normal function of complement in innate and adaptive immunity. Historically, deficiencies within the complement system have been suspected when young children have had recurrent and difficult-to-control infections. As our understanding of the complement system has increased, many other diseases have been attributed to deficiencies within the complement system. Generally, complement deficiencies within the classical pathway lead to increased susceptibility to encapsulated bacterial infections as well as a syndrome resembling systemic lupus erythematosus. Complement deficiencies within the mannose-binding lectin pathway generally lead to increased bacterial infections, and deficiencies within the alternative pathway usually lead to an increased frequency of Neisseria infections. However, factor H deficiency can lead to membranoproliferative glomerulonephritis and hemolytic uremic syndrome. Finally, deficiencies within the terminal complement pathway lead to an increased incidence of Neisseria infections. Two other notable complement-associated deficiencies are complement receptor 3 and 4 deficiency, which result from a deficiency of CD18, a disease known as leukocyte adhesion deficiency type 1, and CD59 deficiency, which causes paroxysmal nocturnal hemoglobinuria. Most inherited deficiencies of the complement system are autosomal recessive, but properidin deficiency is X-linked recessive, deficiency of C1 inhibitor is autosomal dominant, and mannose-binding lectin and factor I deficiencies are autosomal co-dominant. The diversity of clinical manifestations of complement deficiencies reflects the complexity of the complement system. PMID:19758139

  5. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    SciTech Connect

    van Rensburg, C.E.J.; Naude, P.J.

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  6. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics.

    PubMed

    Verhoef, Johan J F; Carpenter, John F; Anchordoquy, Thomas J; Schellekens, Huub

    2014-12-01

    Conjugation of polyethylene glycol (PEG) to therapeutics has proven to be an effective approach to increase the serum half-life. However, the increased use of PEGylated therapeutics has resulted in unexpected immune-mediated side-effects. There are claims that these are caused by anti-PEG antibodies inducing rapid clearance. These claims are however hampered by the lack of standardized and well-validated antibody assays. PEGylation has also been associated with the activation of the complement system causing severe hypersensitivity reactions. Here, we critically review the clinical and analytical tools used. In addition, we propose an explanation of the immune-mediated side-effects of PEGylated products based on the haptogenic properties of PEG, responsible for complement activation and the induction of anti-PEG antibodies. PMID:25205349

  7. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA.

    PubMed

    Thomas, K A; Valenzuela, N M; Gjertson, D; Mulder, A; Fishbein, M C; Parry, G C; Panicker, S; Reed, E F

    2015-08-01

    Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro. PMID:25904443

  8. Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins[W

    PubMed Central

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-01-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis. PMID:21821776

  9. Differential activity of candidate microbicides against early steps of HIV-1 infection upon complement virus opsonization

    PubMed Central

    2010-01-01

    Background HIV-1 in genital secretions may be opsonized by several molecules including complement components. Opsonized HIV-1 by complement enhances the infection of various mucosal target cells, such as dendritic cells (DC) and epithelial cells. Results We herein evaluated the effect of HIV-1 complement opsonization on microbicide candidates' activity, by using three in vitro mucosal models: CCR5-tropic HIV-1JR-CSF transcytosis through epithelial cells, HIV-1JR-CSF attachment on immature monocyte-derived dendritic cells (iMDDC), and infectivity of iMDDC by CCR5-tropic HIV-1BaL and CXCR4-tropic HIV-1NDK. A panel of 10 microbicide candidates [T20, CADA, lectines HHA & GNA, PVAS, human lactoferrin, and monoclonal antibodies IgG1B12, 12G5, 2G12 and 2F5], were investigated using cell-free unopsonized or opsonized HIV-1 by complements. Only HHA and PVAS were able to inhibit HIV trancytosis. Upon opsonization, transcytosis was affected only by HHA, HIV-1 adsorption on iMDDC by four molecules (lactoferrin, IgG1B12, IgG2G5, IgG2G12), and replication in iMDDC of HIV-1BaL by five molecules (lactoferrin, CADA, T20, IgG1B12, IgG2F5) and of HIV-1NDK by two molecules (lactoferrin, IgG12G5). Conclusion These observations demonstrate that HIV-1 opsonization by complements may modulate in vitro the efficiency of candidate microbicides to inhibit HIV-1 infection of mucosal target cells, as well as its crossing through mucosa. PMID:20546571

  10. Solution Structures of Complement C2 and Its C4 Complexes Propose Pathway-specific Mechanisms for Control and Activation of the Complement Proconvertases.

    PubMed

    Mortensen, Sofia; Jensen, Jan K; Andersen, Gregers R

    2016-08-01

    The lectin (LP) and classical (CP) pathways are two of the three main activation cascades of the complement system. These pathways start with recognition of different pathogen- or danger-associated molecular patterns and include identical steps of proteolytic activation of complement component C4, formation of the C3 proconvertase C4b2, followed by cleavage of complement component C2 within C4b2 resulting in the C3 convertase C4b2a. Here, we describe the solution structures of the two central complexes of the pathways, C3 proconvertase and C3 convertase, as well as the unbound zymogen C2 obtained by small angle x-ray scattering analysis. We analyzed both native and enzymatically deglycosylated C4b2 and C2 and showed that the resulting structural models were independent of the glycans. The small angle x-ray scattering-derived models suggest a different activation mode for the CP/LP C3 proconvertase as compared with that established for the alternative pathway proconvertase C3bB. This is likely due to the rather different structural and functional properties of the proteases activating the proconvertases. The solution structure of a stabilized form of the active CP/LP C3 convertase C4b2a is strikingly similar to the crystal structure of the alternative pathway C3 convertase C3bBb, which is in accordance with their identical functions in cleaving the complement proteins C3 and C5. PMID:27252379

  11. Rare loss-of-function mutation in complement component C3 provides insight into molecular and pathophysiological determinants of complement activity

    PubMed Central

    Sfyroera, Georgia; Ricklin, Daniel; Reis, Edimara S.; Chen, Hui; Wu, Emilia L.; Kaznessis, Yiannis N.; Ekdahl, Kristina N.; Nilsson, Bo; Lambris, John D.

    2015-01-01

    The plasma protein C3 is a central element in the activation and effector functions of the complement system. A hereditary dysfunction of C3 that prevents complement activation via the alternative pathway (AP) was described previously in a Swedish family, but its genetic cause and molecular consequences have remained elusive. Here we provide these missing links by pinpointing the dysfunction to a point mutation in the β-chain of C3 (c.1180T>C; p.Met373Thr). In the patient’s plasma, AP activity was completely abolished and could only be reconstituted with the addition of normal C3. The M373T mutation was localized to the macroglobulin domain 4 (MG4) of C3, which contains a binding site for the complement inhibitor compstatin and is considered critical for the interaction of C3 with the AP C3 convertase. Structural analyses suggested that the mutation disturbs the integrity of MG4 and induces conformational changes that propagate into adjacent regions. Indeed, C3 M373T showed an altered binding pattern for compstatin and surface-bound C3b, and the presence of Thr-373 in either the C3 substrate or convertase-affiliated C3b impaired C3 activation and opsonization. In contrast to known gain-of-function mutations in C3, patients affected by this loss-of-function mutation did not develop familial disease, but rather showed diverse and mostly episodic symptoms. Our study therefore reveals the molecular mechanism of a relevant loss-of-function mutation in C3 and provides insight into the function of the C3 convertase, the differential involvement of C3 activity in clinical conditions, and some potential implications of therapeutic complement inhibition. PMID:25712219

  12. Pathogenesis of aortic dilatation in mucopolysaccharidosis VII mice may involve complement activation

    PubMed Central

    Baldo, Guilherme; Wu, Susan; Howe, Ruth A.; Ramamoothy, Meera; Knutsen, Russell H.; Fang, Jiali; Mecham, Robert P.; Liu, Yuli; Wu, Xiaobo; Atkinson, John P.; Ponder, Katherine P.

    2012-01-01

    Mucopolysaccharidosis VII (MPS VII) is due to mutations within the gene encoding the lysosomal enzyme β-glucuronidase, and results in the accumulation of glycosaminoglycans. MPS VII causes aortic dilatation and elastin fragmentation, which is associated with upregulation of the elastases cathepsin S (CtsS) and matrix metalloproteinase 12 (MMP12). To test the role of these enzymes, MPS VII mice were crossed with mice deficient in CtsS or MMP12, and the effect upon aortic dilatation was determined. CtsS deficiency did not protect against aortic dilatation in MPS VII mice, but also failed to prevent an upregulation of cathepsin enzyme activity. Further analysis with substrates and inhibitors specific for particular cathepsins suggests that this enzyme activity was due to CtsB, which could contribute to elastin fragmentation. Similarly, MMP12 deficiency and deficiency of both MMP12 and CtsS could not prevent aortic dilatation in MPS VII mice. Microarray and reverse-transcriptase real-time PCR were performed to look for upregulation of other elastases. This demonstrated that mRNA for complement component D was elevated in MPS VII mice, while immunostaining demonstrated high levels of complement component C3 on surfaces within the aortic media. Finally, we demonstrate that neonatal intravenous injection of a retroviral vector encoding β-glucuronidase reduced aortic dilatation. We conclude that neither CtsS nor MMP12 are necessary for elastin fragmentation in MPS VII mouse aorta, and propose that CtsB and/or complement component D may be involved. Complement may be activated by the GAGs that accumulate, and may play a role in signal transduction pathways that upregulate elastases. PMID:21944884

  13. A Novel Complotype Combination Associates with Age-Related Macular Degeneration and High Complement Activation Levels in vivo

    PubMed Central

    Paun, Constantin C.; Lechanteur, Yara T. E.; Groenewoud, Joannes M. M.; Altay, Lebriz; Schick, Tina; Daha, Mohamed R.; Fauser, Sascha; Hoyng, Carel B.; den Hollander, Anneke I.; de Jong, Eiko K.

    2016-01-01

    The complement system is the first line of defense against foreign intruders, and deregulation of this system has been described in multiple diseases. In age-related macular degeneration (AMD), patients have higher complement activation levels compared to controls. Recently, a combination of three single nucleotide polymorphisms (SNPs) in genes of the complement system, referred to as a complotype, has been described to increase complement activation in vitro. Here we describe a novel complotype composed of CFB (rs4151667)-CFB (rs641153)-CFH (rs800292), which is strongly associated with both AMD disease status (p = 5.84*10−13) and complement activation levels in vivo (p = 8.31*10−9). The most frequent genotype combination of this complotype was associated with the highest complement activation levels in both patients and controls. These findings are relevant in the context of complement-lowering treatments for AMD that are currently under development. Patients with a genetic predisposition to higher complement activation levels will potentially benefit the most of such treatments. PMID:27241480

  14. A Novel Complotype Combination Associates with Age-Related Macular Degeneration and High Complement Activation Levels in vivo.

    PubMed

    Paun, Constantin C; Lechanteur, Yara T E; Groenewoud, Joannes M M; Altay, Lebriz; Schick, Tina; Daha, Mohamed R; Fauser, Sascha; Hoyng, Carel B; den Hollander, Anneke I; de Jong, Eiko K

    2016-01-01

    The complement system is the first line of defense against foreign intruders, and deregulation of this system has been described in multiple diseases. In age-related macular degeneration (AMD), patients have higher complement activation levels compared to controls. Recently, a combination of three single nucleotide polymorphisms (SNPs) in genes of the complement system, referred to as a complotype, has been described to increase complement activation in vitro. Here we describe a novel complotype composed of CFB (rs4151667)-CFB (rs641153)-CFH (rs800292), which is strongly associated with both AMD disease status (p = 5.84*10(-13)) and complement activation levels in vivo (p = 8.31*10(-9)). The most frequent genotype combination of this complotype was associated with the highest complement activation levels in both patients and controls. These findings are relevant in the context of complement-lowering treatments for AMD that are currently under development. Patients with a genetic predisposition to higher complement activation levels will potentially benefit the most of such treatments. PMID:27241480

  15. Novel Twin Streptolysin S-Like Peptides Encoded in the sag Operon Homologue of Beta-Hemolytic Streptococcus anginosus

    PubMed Central

    Tabata, Atsushi; Nakano, Kota; Ohkura, Kazuto; Tomoyasu, Toshifumi; Kikuchi, Ken; Whiley, Robert A.

    2013-01-01

    Streptococcus anginosus is a member of the anginosus group streptococci, which form part of the normal human oral flora. In contrast to the pyogenic group streptococci, our knowledge of the virulence factors of the anginosus group streptococci, including S. anginosus, is not sufficient to allow a clear understanding of the basis of their pathogenicity. Generally, hemolysins are thought to be important virulence factors in streptococcal infections. In the present study, a sag operon homologue was shown to be responsible for beta-hemolysis in S. anginosus strains by random gene knockout. Interestingly, contrary to pyogenic group streptococci, beta-hemolytic S. anginosus was shown to have two tandem sagA homologues, encoding streptolysin S (SLS)-like peptides, in the sag operon homologue. Gene deletion and complementation experiments revealed that both genes were functional, and these SLS-like peptides were essential for beta-hemolysis in beta-hemolytic S. anginosus. Furthermore, the amino acid sequence of these SLS-like peptides differed from that of the typical SLS of S. pyogenes, especially in their propeptide domain, and an amino acid residue indicated to be important for the cytolytic activity of SLS in S. pyogenes was deleted in both S. anginosus homologues. These data suggest that SLS-like peptides encoded by two sagA homologues in beta-hemolytic S. anginosus may be potential virulence factors with a different structure essential for hemolytic activity and/or the maturation process compared to the typical SLS present in pyogenic group streptococci. PMID:23292771

  16. Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode.

    PubMed

    Forneris, Federico; Wu, Jin; Xue, Xiaoguang; Ricklin, Daniel; Lin, Zhuoer; Sfyroera, Georgia; Tzekou, Apostolia; Volokhina, Elena; Granneman, Joke Cm; Hauhart, Richard; Bertram, Paula; Liszewski, M Kathryn; Atkinson, John P; Lambris, John D; Gros, Piet

    2016-05-17

    Regulators of complement activation (RCA) inhibit complement-induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i-iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b-binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease-related mutations and immune evasion. PMID:27013439

  17. C1-bypass complement-activation pathway in patients with chronic urticaria and angio-oedema.

    PubMed

    Ballow, M; Ward, G W; Gershwin, M E; Day, N K

    1975-08-01

    During the routine screening of 152 patients with urticaria or angio-oedema for hypocomplementaemia, 4 patients were found to have low serum levels of the third component of complement (C). These patients were noteworthy and differed from previous reports of patients with urticaria-like skin lesions and hypocomplementaemia because of the absence of immune-complex disease. In addition to the low C3, 2 of these patients were unique on the basis of low serum levels of haemolytic C1, C1q, C1s, and properdin factor B, but normal concentrations of C4 and C2. These C abnormalities may reflect a new clinical entity, and these cases form the first description in man of the C1-bypass complement-activation pathway. PMID:49798

  18. Complement activation and choriocapillaris loss in early AMD: Implications for pathophysiology and therapy

    PubMed Central

    Whitmore, S.Scott; Sohn, Elliott H.; Chirco, Kathleen R.; Drack, Arlene V.; Stone, Edwin M.; Tucker, Budd A.; Mullins, Robert F.

    2015-01-01

    Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies. PMID:25486088

  19. Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes.

    PubMed

    Degn, Søren E; Kjaer, Troels R; Kidmose, Rune T; Jensen, Lisbeth; Hansen, Annette G; Tekin, Mustafa; Jensenius, Jens C; Andersen, Gregers R; Thiel, Steffen

    2014-09-16

    Defining mechanisms governing translation of molecular binding events into immune activation is central to understanding immune function. In the lectin pathway of complement, the pattern recognition molecules (PRMs) mannan-binding lectin (MBL) and ficolins complexed with the MBL-associated serine proteases (MASP)-1 and MASP-2 cleave C4 and C2 to generate C3 convertase. MASP-1 was recently found to be the exclusive activator of MASP-2 under physiological conditions, yet the predominant oligomeric forms of MBL carry only a single MASP homodimer. This prompted us to investigate whether activation of MASP-2 by MASP-1 occurs through PRM-driven juxtaposition on ligand surfaces. We demonstrate that intercomplex activation occurs between discrete PRM/MASP complexes. PRM ligand binding does not directly escort the transition of MASP from zymogen to active enzyme in the PRM/MASP complex; rather, clustering of PRM/MASP complexes directly causes activation. Our results support a clustering-based mechanism of activation, fundamentally different from the conformational model suggested for the classical pathway of complement. PMID:25197071

  20. Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes

    PubMed Central

    Degn, Søren E.; Kjaer, Troels R.; Kidmose, Rune T.; Jensen, Lisbeth; Hansen, Annette G.; Tekin, Mustafa; Jensenius, Jens C.; Andersen, Gregers R.; Thiel, Steffen

    2014-01-01

    Defining mechanisms governing translation of molecular binding events into immune activation is central to understanding immune function. In the lectin pathway of complement, the pattern recognition molecules (PRMs) mannan-binding lectin (MBL) and ficolins complexed with the MBL-associated serine proteases (MASP)-1 and MASP-2 cleave C4 and C2 to generate C3 convertase. MASP-1 was recently found to be the exclusive activator of MASP-2 under physiological conditions, yet the predominant oligomeric forms of MBL carry only a single MASP homodimer. This prompted us to investigate whether activation of MASP-2 by MASP-1 occurs through PRM-driven juxtaposition on ligand surfaces. We demonstrate that intercomplex activation occurs between discrete PRM/MASP complexes. PRM ligand binding does not directly escort the transition of MASP from zymogen to active enzyme in the PRM/MASP complex; rather, clustering of PRM/MASP complexes directly causes activation. Our results support a clustering-based mechanism of activation, fundamentally different from the conformational model suggested for the classical pathway of complement. PMID:25197071

  1. Effects of two types of cobra venom factor on porcine complement activation and pulmonary artery pressure.

    PubMed Central

    Cheung, A K; Parker, C J; Wilcox, L

    1989-01-01

    Autologous porcine plasma that has been incubated with cuprophan haemodialysis membranes causes pulmonary hypertension and peripheral leucopenia following reinfusion into swine. These effects appear to be mediated by biologically active fragments of C3 and C5 that are generated as a consequence of ex vivo activation of complement. Putatively, C5a induces the leucopenia; however, the specific contributions of products of C3 and C5 activation to the pulmonary vasoconstriction have not been elucidated. In the present study, the effects of in vivo infusion of two different types of cobra venom factor (CVF) on peripheral leucocyte count and pulmonary artery pressure in the swine are reported. The CVF from Naja n. naja (CVF(TN)) was shown to activate both porcine C3 and C5, whereas the CVF from Naja h. haje (CVF(NH)) activated only C3. Both types of CVF produced pulmonary hypertension. Significant peripheral leucopenia, however, was observed only with CVF(TN). These results suggest that activation products of C3 contribute to the pulmonary hypertension but not to the peripheral leucopenia observed during haemodialysis using dialysis membranes that activate complement. PMID:12412765

  2. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities.

    PubMed

    Xiang, Jinsong; Li, Xihong; Chen, Yadong; Lu, Yang; Yu, Mengjun; Chen, Xuejie; Zhang, Wenting; Zeng, Yan; Sun, Luming; Chen, Songlin; Sha, Zhenxia

    2015-11-01

    Complement factor I (Cfi) is a soluble serine protease which plays a crucial role in the modulation of complement cascades. In the presence of substrate modulating cofactors (such as complement factor H, C4bp, CR1, etc), Cfi cleaves and inactivates C3b and C4b, thereby controlling the complement-mediated processes. In this study, we sequenced and characterized Cfi gene from Cynoglossus Semilaevis (designated as CsCfi) for the first time. The full-length cDNA of CsCfi was 2230 bp in length, including a 98 bp 5'-untranslated region (UTR), a 164 bp 3'-UTR and a 1968 bp open reading frame (ORF). It encoded a polypeptide of 656 amino acids, with a molecular mass of 72.28 kDa and an isoelectric point of 7.71. A signal peptide was defined at N-terminus, resulting in a 626-residue mature protein. Multiple sequence alignment revealed that Cfi proteins were well conserved with the typical modular architecture and identical active sites throughout the vertebrates, which suggested the conserved function of Cfi. Phylogenetic analysis indicated that CsCfi and the homologous Cfi sequences from teleosts clustered into a clade, separating from another clade from the cartilaginous fish and other vertebrates. Tissue expression profile analysis by quantitative real-time PCR (qRT-PCR) showed that CsCfi mRNA constitutively expressed in all tested tissues, with the predominant expression in liver and the lowest in stomach. Temporal expression levels of CsCfi after challenging with Vibrio anguillarum showed different expression patterns in intestine, spleen, skin, blood, head kidney and liver. The recombinant CsCfi (rCsCfi) protein showed broad-spectrum antimicrobial activities against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and Shewanella putrefaciens. The research revealed that CsCfi plays an important role in C. Semilaevis immunity. PMID:26148855

  3. Oligomerization of Mannan-binding Lectin Dictates Binding Properties and Complement Activation.

    PubMed

    Kjaer, T R; Jensen, L; Hansen, A; Dani, R; Jensenius, J C; Dobó, J; Gál, P; Thiel, S

    2016-07-01

    The complement system is a part of the innate immune system and is involved in recognition and clearance of pathogens and altered-self structures. The lectin pathway of the complement system is initiated when soluble pattern recognition molecules (PRMs) with collagen-like regions bind to foreign or altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to micro organisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37 °C, we found higher binding of tetrameric MBL to Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger with all of the MASPs and MAp44, compared to trimeric MBL. As a direct consequence of the weaker interaction with the MASPs, we found that trimeric rMBL was inferior to tetrameric rMBL in activating the complement system. Our data suggest that the oligomeric state of MBL is crucial both for the binding properties and the effector function of MBL. PMID:27104295

  4. Acquisition of regulators of complement activation by Streptococcus pyogenes serotype M1.

    PubMed

    Pandiripally, Vinod; Gregory, Eugene; Cue, David

    2002-11-01

    Opsonization of bacteria by complement proteins is an important component of the immune response. The pathogenic bacterium Streptococcus pyogenes has evolved multiple mechanisms for the evasion of complement-mediated opsonization. One mechanism involves the binding of human regulators of complement activation such as factor H (FH) and FH-like protein 1 (FHL-1). Acquisition of these regulatory proteins can limit deposition of the opsonin C3b on bacteria, thus decreasing the pathogen's susceptibility to phagocytosis. Binding of complement regulatory proteins by S. pyogenes has previously been attributed to the streptococcal M and M-like proteins. Here, we report that the S. pyogenes cell surface protein Fba can mediate binding of FH and FHL-1. We constructed mutant derivatives of S. pyogenes that lack Fba, M1 protein, or both proteins and assayed the strains for FH binding, susceptibility to phagocytosis, and C3 deposition. Fba expression was found to be sufficient for binding of purified FH as well as for binding of FH and FHL-1 from human plasma. Plasma adsorption experiments also revealed that M1(+) Fba(+) streptococci preferentially bind FHL-1, whereas M1(-) Fba(+) streptococci have similar affinities for FH and FHL-1. Fba was found to contribute to the survival of streptococci incubated with human blood and to inhibit C3 deposition on bacterial cells. Streptococci harvested from log-phase cultures readily bound FH, but binding was greatly reduced for bacteria obtained from stationary-phase cultures. Bacteria cultured in the presence of the protease inhibitor E64 maintained FH binding activity in stationary phase, suggesting that Fba is removed from the cell surface via proteolysis. Western analyses confirmed that E64 stabilizes cell surface expression of Fba. These data indicate that Fba is an antiopsonic, antiphagocytic protein that may be regulated by cell surface proteolysis. PMID:12379699

  5. Acquisition of Regulators of Complement Activation by Streptococcus pyogenes Serotype M1

    PubMed Central

    Pandiripally, Vinod; Gregory, Eugene; Cue, David

    2002-01-01

    Opsonization of bacteria by complement proteins is an important component of the immune response. The pathogenic bacterium Streptococcus pyogenes has evolved multiple mechanisms for the evasion of complement-mediated opsonization. One mechanism involves the binding of human regulators of complement activation such as factor H (FH) and FH-like protein 1 (FHL-1). Acquisition of these regulatory proteins can limit deposition of the opsonin C3b on bacteria, thus decreasing the pathogen's susceptibility to phagocytosis. Binding of complement regulatory proteins by S. pyogenes has previously been attributed to the streptococcal M and M-like proteins. Here, we report that the S. pyogenes cell surface protein Fba can mediate binding of FH and FHL-1. We constructed mutant derivatives of S. pyogenes that lack Fba, M1 protein, or both proteins and assayed the strains for FH binding, susceptibility to phagocytosis, and C3 deposition. Fba expression was found to be sufficient for binding of purified FH as well as for binding of FH and FHL-1 from human plasma. Plasma adsorption experiments also revealed that M1+ Fba+ streptococci preferentially bind FHL-1, whereas M1− Fba+ streptococci have similar affinities for FH and FHL-1. Fba was found to contribute to the survival of streptococci incubated with human blood and to inhibit C3 deposition on bacterial cells. Streptococci harvested from log-phase cultures readily bound FH, but binding was greatly reduced for bacteria obtained from stationary-phase cultures. Bacteria cultured in the presence of the protease inhibitor E64 maintained FH binding activity in stationary phase, suggesting that Fba is removed from the cell surface via proteolysis. Western analyses confirmed that E64 stabilizes cell surface expression of Fba. These data indicate that Fba is an antiopsonic, antiphagocytic protein that may be regulated by cell surface proteolysis. PMID:12379699

  6. The Serum Complement System: A Simplified Laboratory Exercise to Measure the Activity of an Important Component of the Immune System

    ERIC Educational Resources Information Center

    Inglis, Jordan E.; Radziwon, Kimberly A.; Maniero, Gregory D.

    2008-01-01

    The immune system is a vital physiological component that affords animals protection from disease and is composed of innate and adaptive mechanisms that rely on cellular and dissolved components. The serum complement system is a series of dissolved proteins that protect against a variety of pathogens. The activity of complement in serum can be…

  7. Bacillus anthracis peptidoglycan activates human platelets through FcγRII and complement

    PubMed Central

    Sun, Dawei; Popescu, Narcis I.; Raisley, Brent; Keshari, Ravi S.; Dale, George L.; Lupu, Florea

    2013-01-01

    Platelet activation frequently accompanies sepsis and contributes to the sepsis-associated vascular leakage and coagulation dysfunction. Our previous work has implicated peptidoglycan (PGN) as an agent causing systemic inflammation in gram-positive sepsis. We used flow cytometry and fluorescent microscopy to define the effects of PGN on the activation of human platelets. PGN induced platelet aggregation, expression of the activated form of integrin αIIbβ3, and exposure of phosphatidylserine (PS). These changes were dependent on immunoglobulin G and were attenuated by the Fcγ receptor IIa–blocking antibody IV.3, suggesting they are mediated by PGN–anti-PGN immune complexes signaling through Fcγ receptor IIa. PS exposure was not blocked by IV.3 but was sensitive to inhibitors of complement activation. PGN was a potent activator of the complement cascade in human plasma and caused deposition of C5b-9 on the platelet surface. Platelets with exposed PS had greatly accelerated prothrombinase activity. We conclude that PGN derived from gram-positive bacteria is a potent platelet agonist when complexed with anti-PGN antibody and could contribute to the coagulation dysfunction accompanying gram-positive infections. PMID:23733338

  8. Role of complement in porphyrin-induced photosensitivity

    SciTech Connect

    Lim, H.W.; Gigli, I.

    1981-01-01

    Addition of porphyrins to sera of guinea pigs in vitro, followed by irradiation with 405 nm light, resulted in dose-dependent inhibitions of hemolytic activity of complement. With guinea pig as an animal model, we also found that systemically administered porphyrins, followed by irradiation with 405 nm light, resulted in dose-dependent inhibition of CH50 in vivo. The erythrocytes from porphyrin-treated guinea pigs showed an increased susceptibility to hemolysis induced by 405 nm irradiation in vitro. Clinical changes in these animals were limited to light-exposed areas and consisted of erythema, crusting, and delayed growth of hair. Histologically, dermal edema, dilation of blood vessels, and infiltration of mononuclear and polymorphonuclear cells were observed. Guinea pigs irradiated with ultraviolet-B developed erythema, but had no alteration of their complement profiles. It is suggested that complement products may play a specific role in the pathogenesis of the cutaneous lesions of some porphyrias.

  9. C5a anaphylatoxin as a product of complement activation up-regulates the complement inhibitory factor H in rat Kupffer cells.

    PubMed

    Schlaf, Gerald; Nitzki, Frauke; Heine, Ines; Hardeland, Rüdiger; Schieferdecker, Henrike L; Götze, Otto

    2004-11-01

    The 155-kDa complement regulator factor H (FH) is the predominant soluble regulatory protein of the complement system. It acts as a cofactor for the factor I-mediated conversion of the component C3b to iC3b, competes with factor B for a binding site on C3b and C3(H2O) and promotes the dissociation of the C3bBb complex. The primary site of synthesis is the liver, i.e. FH-specific mRNA and protein were identified in both hepatocytes (HC) and Kupffer cells (KC). Previous studies in rat primary HC and KC had shown that the proinflammatory cytokine IFN-gamma influences the balance between activation and inhibition of the complement system through up-regulation of the inhibitory FH. In this study we show that C5a, as a product of complement activation, stimulates the expression of FH-specific mRNA and protein in KC and thus induces a negative feedback. Quantitative-competitive RT-PCR showed an approximate threefold C5a-induced up-regulation of FH. ELISA analyses revealed a corresponding increase in FH protein in the supernatants of KC. The up-regulation of FH was completely inhibited by the C5a-blocking monoclonal antibody 6-9F. Furthermore, an involvement of LPS and IFN-gamma was excluded, which strongly indicates a direct effect of C5a on the expression of FH in KC. PMID:15376195

  10. Structural insights into the initiating complex of the lectin pathway of complement activation.

    PubMed

    Kjaer, Troels R; Le, Le T M; Pedersen, Jan Skov; Sander, Bjoern; Golas, Monika M; Jensenius, Jens Christian; Andersen, Gregers R; Thiel, Steffen

    2015-02-01

    The proteolytic cascade of the complement system is initiated when pattern-recognition molecules (PRMs) bind to ligands, resulting in the activation of associated proteases. In the lectin pathway of complement, the complex of mannan-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1) initiates the pathway by activating a second protease, MASP-2. Here we present a structural study of a PRM/MASP complex and derive the overall architecture of the 450 kDa MBL/MASP-1 complex using small-angle X-ray scattering and electron microscopy. The serine protease (SP) domains from the zymogen MASP-1 dimer protrude from the cone-like MBL tetramer and are separated by at least 20 nm. This suggests that intracomplex activation within a single MASP-1 dimer is unlikely and instead supports intercomplex activation, whereby the MASP SP domains are accessible to nearby PRM-bound MASPs. This activation mechanism differs fundamentally from the intracomplex initiation models previously proposed for both the lectin and the classical pathway. PMID:25579818

  11. Effect of beta-propiolactone treatment on the complement activation mediated by equine antisera.

    PubMed

    Guidolin, R; Morais, J F; Stephano, M A; Marcelino, J R; Yamaguchi, I K; Higashi, H G

    1997-01-01

    Reduction of complement activation through an alteration of the Fc fragment of immunoglobulins by beta-propiolactone treatment was carried out in equine antisera raised against rabies virus, Bothrops venoms and diphtherial toxin. Results were evaluated by means of an anaphylactic test performed on guinea-pigs, and compared to the ones obtained with the same sera purified by saline precipitation (ammonium sulfate), followed or not by enzymatic digestion with pepsin. Protein purity levels for antibothropic serum were 184.5 mg/g and 488.5 mg/g in beta-propiolactone treated and pepsin-digested sera, respectively. The recovery of specific activity was 100% and 62.5% when using antibothropic serum treated by beta-propiolactone and pepsin digestion, respectively. The antidiphtherial and anti-rabies sera treated with beta-propiolactone and pepsin presented protein purity levels of 5,698 and 7,179 Lf/g, 16,233 and 6,784 IU/g, respectively. The recovery of specific activity for these antisera were 88.8%, 77.7%, 100% and 36.5%, respectively. beta-propiolactone treatment induced a reduction in complement activation, tested "in vivo", without significant loss of biological activity. This treatment can be used in the preparation of heterologous immunoglobulins for human use. PMID:9394526

  12. [Clinical application of blood matching with hemolytic test in vitro for transfusion treatment of crisis puerpera with acute hemolytic anemia].

    PubMed

    Yuan, Min; Tang, Cong-Hai; Gan, Wei-Wei; Wu, A-Yang; Yang, Hui-Cong; Zhang, Tian-Xin; Huang, Yan Xue; Qiu, Lu-Zhen; Chen, Hong-Pu; Lin, Feng-Li

    2014-08-01

    This study was aimed to establish the matching method of hemolytic test in vitro, and to guide the transfusion treatment for puerpera with acute hemolytic disease. The donor's erythrocytes were sensibilized by all the antibodies in plasma of patient in vitro and were added with complement, after incubation for 6.5 hours at 38 °C, the hemolysis or no hemolysis were observed. It is safe to transfuse if the hemolysis did not occur. The results showed that when the matching difficulty happened to puerpera with acute hemolytic disease, the compatible donor could be screened by hemolytic test in vitro. There were no untoward effects after transfusion of 6 U leukocyte-depleted erythrocyte suspension. The all hemoglobin, total bilirubins, indirect bilirubin, reticulocyte, D-dimex and so on were rapidly improved in patient after transfusion , showing obvious clinical efficacy of treatment. It is concluded that when the matching results can not judge accurately compatible or incompatible through the routine method of cross matching, the agglutinated and no-hemolytic erythrocytes can be screened by hemolytic test in vitro and can be transfused with good efficacy; the hemoglobin level can be promoted rapidly, and no untoward effects occur. PMID:25130835

  13. An international consensus approach to the management of atypical hemolytic uremic syndrome in children.

    PubMed

    Loirat, Chantal; Fakhouri, Fadi; Ariceta, Gema; Besbas, Nesrin; Bitzan, Martin; Bjerre, Anna; Coppo, Rosanna; Emma, Francesco; Johnson, Sally; Karpman, Diana; Landau, Daniel; Langman, Craig B; Lapeyraque, Anne-Laure; Licht, Christoph; Nester, Carla; Pecoraro, Carmine; Riedl, Magdalena; van de Kar, Nicole C A J; Van de Walle, Johan; Vivarelli, Marina; Frémeaux-Bacchi, Véronique

    2016-01-01

    Atypical hemolytic uremic syndrome (aHUS) emerged during the last decade as a disease largely of complement dysregulation. This advance facilitated the development of novel, rational treatment options targeting terminal complement activation, e.g., using an anti-C5 antibody (eculizumab). We review treatment and patient management issues related to this therapeutic approach. We present consensus clinical practice recommendations generated by HUS International, an international expert group of clinicians and basic scientists with a focused interest in HUS. We aim to address the following questions of high relevance to daily clinical practice: Which complement investigations should be done and when? What is the importance of anti-factor H antibody detection? Who should be treated with eculizumab? Is plasma exchange therapy still needed? When should eculizumab therapy be initiated? How and when should complement blockade be monitored? Can the approved treatment schedule be modified? What approach should be taken to kidney and/or combined liver-kidney transplantation? How should we limit the risk of meningococcal infection under complement blockade therapy? A pressing question today regards the treatment duration. We discuss the need for prospective studies to establish evidence-based criteria for the continuation or cessation of anticomplement therapy in patients with and without identified complement mutations. PMID:25859752

  14. [Activity of key enzymes of heme metabolism and cytochrome P-450 content in the rat liver in experimental rhabdomyolysis and hemolytic anemia].

    PubMed

    Kaliman, P A; Inshina, N N; Strel'chenko, E V

    2003-01-01

    The 5-aminolevulinate synthase, heme oxygenase, tryptophan-2,3-dioxygenase activities, the content of total heme and cytochrome P-450 content in the rat liver and absorption spectrum of blood serum in Soret region under glycerol model of rhabdomiolisis and hemolytic anemia caused by single phenylhydrazine injection have been investigated. The glycerol injection caused a considerable accumulation of heme-containing products in the serum and the increase of the total heme content, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as the increase of the 5-aminolevulinate synthase and heme oxygenase activities in the liver during the first hours of its action and the decrease of cytochrome P-450 content in 24 h. Administration of phenylhydrazine lead to the increasing of hemolysis products content in blood serum too, although it was less expressed. The phenylhydrazine injection caused the increase of activities of 5-aminolevulinate synthase, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as decrease of cytochrome P-450 content in the rat liver in 2 h. The increase of the total heme content and heme oxygenase activity has been observed in 24 h. The effect of heme arrival from the blood stream, as well as a direct influence of glycerol and phenylhydrazine on the investigated parameters are discussed. PMID:14577161

  15. Antibacterial activity of peptides derived from the C-terminal region of a hemolytic lectin, CEL-III, from the marine invertebrate Cucumaria echinata.

    PubMed

    Hatakeyama, Tomomitsu; Suenaga, Tomoko; Eto, Seiichiro; Niidome, Takuro; Aoyagi, Haruhiko

    2004-01-01

    Several synthetic peptides derived from the C-terminal domain sequence of a hemolytic lectin, CEL-III, were examined as to their action on bacteria and artificial lipid membranes. Peptide P332 (KGVIFAKASVSVKVTASLSK-NH(2)), corresponding to the sequence from residue 332, exhibited strong antibacterial activity toward Gram-positive bacteria. Replacement of each Lys in P332 by Ala markedly decreased the activity. However, when all Lys were replaced by Arg, the antibacterial activity increased, indicating the importance of positively charged residues at these positions. Replacement of Val by Leu also led to higher antibacterial activity, especially toward Gram-negative bacteria. The antibacterial activity of these peptides was correlated with their membrane-permeabilizing activity toward the bacterial inner membrane and artificial lipid vesicles, indicating that the antibacterial action is due to perturbation of bacterial cell membranes, leading to enhancement of their permeability. These results also suggest that the hydrophobic region of CEL-III, from which P332 and its analogs were derived, may play some role in the interaction with target cell membranes to trigger hemolysis. PMID:14999010

  16. Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin.

    PubMed

    Foley, Jonathan H; Walton, Bethany L; Aleman, Maria M; O'Byrne, Alice M; Lei, Victor; Harrasser, Micaela; Foley, Kimberley A; Wolberg, Alisa S; Conway, Edward M

    2016-03-01

    Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin-antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. PMID:27077125

  17. Effect of some essential oils on phagocytosis and complement system activity.

    PubMed

    Pérez-Rosés, Renato; Risco, Ester; Vila, Roser; Peñalver, Pedro; Cañigueral, Salvador

    2015-02-11

    The aim of the present study was to investigate the in vitro activity of 15 essential oils, 4 essential oil fractions, and 3 pure compounds (thymol, carvacrol, and eugenol) on phagocytosis by human neutrophils and on complement system. Samples were characterized by GC and GC-MS. Most of the oils (nutmeg, clove, niaouli, tea tree, bay laurel, lemon, red thyme, ginger), nutmeg terpenes, eugenol, and carvacrol showed mild to moderate inhibition of phagocytosis (25-40% inhibition at doses ranging from 40 to 60 μg/mL); highest inhibitory activity was found for thymol (72% at 56 μg/mL), whereas the mixture of bornyl and isobornyl acetates showed a mild stimulating activity (21% at 56 μg/mL). All samples were inactive in the alternative pathway of complement system, whereas on classical pathway, clove oil, eugenol, palmarosa oil, red thyme oil, tarragon oil, and carvacrol showed the highest activity, with IC50 values ranging from 65 to 78 μg/mL. PMID:25599399

  18. Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin

    PubMed Central

    Foley, Jonathan H.; Walton, Bethany L.; Aleman, Maria M.; O'Byrne, Alice M.; Lei, Victor; Harrasser, Micaela; Foley, Kimberley A.; Wolberg, Alisa S.; Conway, Edward M.

    2016-01-01

    Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin–antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clot weight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis, we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolution. PMID:27077125

  19. Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation*

    PubMed Central

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-01-01

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457

  20. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules.

    PubMed

    Mosqueira, V C; Legrand, P; Gulik, A; Bourdon, O; Gref, R; Labarre, D; Barratt, G

    2001-11-01

    The aim of our work was to examine the relationship between modifications of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an investigation of their properties, such as surface charge, size, hydrophilicity, morphology and homogeneity. This is the first time that such properties have been correlated with biological interactions for NC, a novel carrier system with a structure more complex than nanospheres. C3 crossed immunoelectrophoresis revealed the reduced activation for NC with longer PEG chain and higher density, although all formulations induced C3 cleavage to a lesser or greater extent. NC bearing PEG covalently bound to the surface were weaker activators of complement than plain PLA [poly(D,L-lactide)] NC or nanospheres (NS). Furthermore, the fluorescent/confocal microscopy of J774A1 cells in contact with NC reveal a dramatically reduced interaction with PEG-bearing NC. However, the way in which PEG was attached (covalent or adsorbed) seemed to affect the mechanism of uptake. Taken together, these results suggest that the low level of protein binding to NC covered with a high density of 20kDa PEG chains is likely to be due to the steric barriers surrounding these particles, which prevents protein adsorption and reduces their interaction with macrophages. PMID:11575471

  1. [Sequential changes in acute phase reactant proteins and complement activation in patients with acute head injuries].

    PubMed

    Ikeda, Y; Matsuura, H; Nakazawa, S

    1987-12-01

    The role of immunological mechanisms in head injury is not clearly defined. In this study we investigated the immunological function in patients with acute head injuries. Serum acute phase reactant proteins (APRP), complement activation and immunoglobulines as immunological parameters were studied. APRP are produced in the liver and increase in cancer patients as well as those with acute and chronic inflammations, trauma and autoimmune diseases. APRP are known to be one of the immunosuppressive factors in the serum. Forty patients with acute head injuries were studied. Thirty-four patients were male and six patients were female, ages ranged from 12 to 81 years. Serial blood samples were obtained during the first seven days of trauma. The Glasgow Coma Score (GCS) were recorded at the time of admission for all patients. Clinical outcome was assessed at the time of discharge according to the Glasgow Outcome Scale. The "good" group consisted of patients with good recovery or moderate disability. The "bad" group consisted of patients with severe disability, persistent vegetative state and death. The concentrations of immunoglobulines (IgG, IgM, IgA) were within normal range and humoral immunity was not affected. Complement activation at the time of admission was closely related to GCS (p less than 0.01), but the levels of C4, C3, and C3 activator except for these of CH50 were within normal range.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2451531

  2. Pectin isolated from white cabbage--structure and complement-fixing activity.

    PubMed

    Westereng, Bjørge; Yousif, Osman; Michaelsen, Terje E; Knutsen, Svein Halvor; Samuelsen, Anne Berit

    2006-08-01

    This study was done to investigate whether white cabbage contained polysaccharides with immunostimulatory activity using the complement-fixing test as an indicator. The main polysaccharide isolated was of pectin nature. Methanolysis and (13)C-NMR showed that the polymers consisted of highly esterified alpha-galactopyranoside (alpha-GalpA), significant amounts of alpha-arabinose furanoside (alpha-Araf), beta-Galp and lesser amounts of rhamnose in the pyranose form (Rhap) and xylose in the pyranose form (Xylp). Linkage analyses showed that the alpha-GalpA residues were mainly 1,4-linked with small amounts of 1,3,4-linkages. The alpha-Araf residues were mainly terminally (t)- and 1,5-linked, whereas beta-Galp was t-, 1,3-, 1,6-, and 1,3,6-linked. Positive Yariv reaction indicated polymers with arabinogalactan type 2 like structures. alpha-Rhap was mainly present as 1,2- and 1,2,4-linked residues and Xylp was t- and 1,4-linked. The molecular weight varied greatly and was from 10 to 150 kDa. Cabbage polymers had biological activity and this complement-fixing activity was greatly affected by hydrolytic removal of Araf from pectic side chains. PMID:16865748

  3. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... Drugs that can cause this type of hemolytic anemia include: Cephalosporins (a class of antibiotics), most common ...

  4. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner

    PubMed Central

    Schafer, Dorothy P; Lehrman, Emily K; Kautzman, Amanda G; Koyama, Ryuta; Mardinly, Alan R; Yamasaki, Ryo; Ransohoff, Richard M; Greenberg, Michael E; Barres, Ben A; Stevens, Beth

    2012-01-01

    SUMMARY Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses. PMID:22632727

  5. Complement cascade and kidney transplantation: The rediscovery of an ancient enemy

    PubMed Central

    Mella, Alberto; Messina, Maria; Lavacca, Antonio; Biancone, Luigi

    2014-01-01

    The identification of complement activity in serum and immunohistochemical samples represents a core element of nephropathology. On the basis of this observation, different experimental models and molecular studies have shown the role of this cascade in glomerular disease etiology, but the absence of inhibiting drugs have limited its importance. Since 2006, the availability of target-therapies re-defined this ancient pathway, and its blockage, as the new challenging frontier in renal disease treatment. In the graft, the complement cascade is able to initiate and propagate the damage in ischemia-reperfusion injury, C3 glomerulopathy, acute and chronic rejection, atypical hemolytic uremic syndrome and, probably, in many other conditions. The importance of complement-focused research is revealed by the evidence that eculizumab, the first complement-targeting drug, is now considered a valid option in atypical hemolytic uremic syndrome treatment but it is also under investigation in all the aforementioned conditions. In this review we evaluate the importance of complement cascade in renal transplantation diseases, focusing on available treatments, and we propose a speculative identification of areas where complement inhibition may be a promising strategy. PMID:25346889

  6. In vivo activation of complement by IgA in a rat model.

    PubMed Central

    Stad, R K; Bogers, W M; Thoomes-van der Sluys, M E; Van Es, L A; Daha, M R

    1992-01-01

    In this study we investigated the capacity of rat IgA to activate complement (C) in vivo in a rat model. Rat monomeric (m-), dimeric (d-) and polymeric (p-) IgA MoAbs were injected intravenously and assessed for deposition of C3 and C4 on IgA. By ELISA it was shown that both d- and p-IgA bound C3 whereas no binding of C3 by m-IgA was observed. Polymeric IgA was more efficient in binding of C3 as compared with d-IgA. However, in haemolytic assays no consistent decrease of plasma complement levels was observed except for dimeric IgA which induced a marginal consumption of AP50. When rats were pre-treated with cobra venom factor (CVF) to deplete C3, no C3 deposition was found on m-, d- or p-IgA. Neither m- nor d- or p-IgA was able to bind C4 in vivo. In agreement with the results described above, large sized polymeric IgA was shown to be taken up by Kupffer cells (KC) together with C3. No C3 was detected when rats were depleted of C using CVF. Taken together, the experimental data suggest that d- and p-IgA are able to activate C via the alternative pathway in vivo. PMID:1733628

  7. Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects.

    PubMed

    Cavalcante, R R; Pereira, M H; Gontijo, N F

    2003-07-01

    The saliva of haematophagous insects has a series of pharmacological activities which may favour blood feeding. In the present study, an inhibitory effect on the complement system was observed in salivary extracts obtained from the phlebotomine sand flies Lutzomyia longipalpis and Lu. migonei. Saliva from Lu. longipalpis was capable of inhibiting both the classical and alternative pathways, while that from Lu. migonei acted only on the former. Other haematophagous insect species were screened for inhibition of the classical pathway. The triatomine bugs Panstrongylus megistus, Triatoma brasiliensis and Rhodnius prolixus were also able to inhibit the classical pathway whereas the mosquito Aedes aegyti and flea Ctenocephalides felis were not. The activity of Lu. longipalpis saliva on the classical pathway was partially characterized. The inhibitor is a protein of Mr 10000-30000 Da, which is very resistant to denaturation by heat. The inhibition of the complement system by phlebotomine sand flies may have a role in the transmission of Leishmania to the vertebrate hosts. The inhibitor molecule is thus a promising component of a vaccine to target salivary immunomodulators. PMID:12885192

  8. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    PubMed Central

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  9. Sundanese Complementation

    ERIC Educational Resources Information Center

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  10. Activation of the classical and alternative pathways of complement by Treponema pallidum subsp. pallidum and Treponema vincentii.

    PubMed

    Fitzgerald, T J

    1987-09-01

    Both in vivo and in vitro studies have indicated that complement plays an important role in the syphilitic immune responses. Few quantitative data are available concerning activation of the classical pathway by Treponema pallidum subsp. pallidum, and no information is available on treponemal activation of the alternative pathway. Activation of both pathways was compared by using T. pallidum subsp. pallidum and the nonpathogen T. vincentii. With rabbit and human sources of complement, both organisms rapidly activated the classical pathway, as shown by hemolysis of sensitized sheep erythrocytes and by the generation of soluble C4a. With human sources of complement, both organisms also activated the alternative pathway, as shown by hemolysis of rabbit erythrocytes and by the generation of soluble C3a in the presence of magnesium ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). During incubation, organisms remained actively mobile and did not lyse, indicating that activation was a function of complement reactivity with the intact outer treponemal surface. In addition, freshly harvested T. pallidum subsp. pallidum immediately activated both pathways of complement; preincubation of organisms did not enhance complement reactivity. T. vincentii was a more potent activator of this pathway. T. pallidum subsp. pallidum contained almost four times as much surface sialic acid as T. vincentii did. When sialic acid was enzymatically removed from T. pallidum subsp. pallidum, enhanced activation of the alternative pathway was detected. It is proposed that T. pallidum subsp. pallidum retards complement-mediated damage by the alternative pathway through surface-associated sialic acid. This may be an important virulence determinant that enables these organisms to readily disseminate through the bloodstream to infect other tissues. PMID:3305362

  11. Alternative Pathway Dysregulation and the Conundrum of Complement Activation by IgG4 Immune Complexes in Membranous Nephropathy

    PubMed Central

    Borza, Dorin-Bogdan

    2016-01-01

    Membranous nephropathy (MN), a major cause of nephrotic syndrome, is a non-inflammatory immune kidney disease mediated by IgG antibodies that form glomerular subepithelial immune complexes. In primary MN, autoantibodies target proteins expressed on the podocyte surface, often phospholipase A2 receptor (PLA2R1). Pathology is driven by complement activation, leading to podocyte injury and proteinuria. This article overviews the mechanisms of complement activation and regulation in MN, addressing the paradox that anti-PLA2R1 and other antibodies causing primary MN are predominantly (but not exclusively) IgG4, an IgG subclass that does not fix complement. Besides immune complexes, alterations of the glomerular basement membrane (GBM) in MN may lead to impaired regulation of the alternative pathway (AP). The AP amplifies complement activation on surfaces insufficiently protected by complement regulatory proteins. Whereas podocytes are protected by cell-bound regulators, the GBM must recruit plasma factor H, which inhibits the AP on host surfaces carrying certain polyanions, such as heparan sulfate (HS) chains. Because HS chains present in the normal GBM are lost in MN, we posit that the local complement regulation by factor H may be impaired as a result. Thus, the loss of GBM HS in MN creates a micro-environment that promotes local amplification of complement activation, which in turn may be initiated via the classical or lectin pathways by subsets of IgG in immune complexes. A detailed understanding of the mechanisms of complement activation and dysregulation in MN is important for designing more effective therapies. PMID:27199983

  12. Alternative Pathway Dysregulation and the Conundrum of Complement Activation by IgG4 Immune Complexes in Membranous Nephropathy.

    PubMed

    Borza, Dorin-Bogdan

    2016-01-01

    Membranous nephropathy (MN), a major cause of nephrotic syndrome, is a non-inflammatory immune kidney disease mediated by IgG antibodies that form glomerular subepithelial immune complexes. In primary MN, autoantibodies target proteins expressed on the podocyte surface, often phospholipase A2 receptor (PLA2R1). Pathology is driven by complement activation, leading to podocyte injury and proteinuria. This article overviews the mechanisms of complement activation and regulation in MN, addressing the paradox that anti-PLA2R1 and other antibodies causing primary MN are predominantly (but not exclusively) IgG4, an IgG subclass that does not fix complement. Besides immune complexes, alterations of the glomerular basement membrane (GBM) in MN may lead to impaired regulation of the alternative pathway (AP). The AP amplifies complement activation on surfaces insufficiently protected by complement regulatory proteins. Whereas podocytes are protected by cell-bound regulators, the GBM must recruit plasma factor H, which inhibits the AP on host surfaces carrying certain polyanions, such as heparan sulfate (HS) chains. Because HS chains present in the normal GBM are lost in MN, we posit that the local complement regulation by factor H may be impaired as a result. Thus, the loss of GBM HS in MN creates a micro-environment that promotes local amplification of complement activation, which in turn may be initiated via the classical or lectin pathways by subsets of IgG in immune complexes. A detailed understanding of the mechanisms of complement activation and dysregulation in MN is important for designing more effective therapies. PMID:27199983

  13. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation.

    PubMed

    Färber, Katrin; Cheung, Giselle; Mitchell, Daniel; Wallis, Russell; Weihe, Eberhard; Schwaeble, Wilhelm; Kettenmann, Helmut

    2009-02-15

    Microglia, central nervous system (CNS) resident phagocytic cells, persistently police the integrity of CNS tissue and respond to any kind of damage or pathophysiological changes. These cells sense and rapidly respond to danger and inflammatory signals by changing their cell morphology; by release of cytokines, chemokines, or nitric oxide; and by changing their MHC expression profile. We have shown previously that microglial biosynthesis of the complement subcomponent C1q may serve as a reliable marker of microglial activation ranging from undetectable levels of C1q biosynthesis in resting microglia to abundant C1q expression in activated, nonramified microglia. In this study, we demonstrate that cultured microglial cells respond to extrinsic C1q with a marked intracellular Ca(2+) increase. A shift toward proinflammatory microglial activation is indicated by the release of interleukin-6, tumor necrosis factor-alpha, and nitric oxide and the oxidative burst in rat primary microglial cells, an activation and differentiation process similar to the proinflammatory response of microglia to exposure to lipopolysaccharide. Our findings indicate 1) that extrinsic plasma C1q is involved in the initiation of microglial activation in the course of CNS diseases with blood-brain barrier impairment and 2) that C1q synthesized and released by activated microglia is likely to contribute in an autocrine/paracrine way to maintain and balance microglial activation in the diseased CNS tissue. PMID:18831010

  14. Identification of C3 acceptors responsible for complement activation in Crithidia fasciculata

    SciTech Connect

    Guether, M.L.T.; Travassos, L.R.; Schenkman, S.

    1988-11-01

    Crithidia fasciculata, an insect trypanosomatid is readily lysed by normal human serum at concentrations as low as 3%. Lysis occurs in the presence of Mg+2-EGTA and is antibody independent, indicating that the alternative pathway of complement activation is involved. Analysis of (131I)C3 deposition on C. fasciculata cells using C8-deficient serum, revealed that about 4 x 10(5) C3 molecules bound to each cell. Most of the C3 was bound to cells as C3b, part of it forming high molecular weight complexes, which could be dissociated by methylamine treatment at alkaline pH. To characterize the C3 acceptors on C. fasciculata, surface-iodinated cells were incubated with C8D or heat-inactivated serum, extracted and immunoprecipitated with anti-C3 or anti-arabinogalactan antisera. Analysis of the immunoprecipitated material on SDS gels showed high-molecular weight components, which disappeared after methylamine treatment, giving rise to a component of 200 kDa molecular size. This 200-kDa component corresponded to a purified arabinogalactan complex, which was immunoprecipitated from labeled cell extracts, without incubation with C8D, using anti-arabinogalactan antibodies. These results suggest that the arabinogalactan glycoconjugate is a C3 acceptor in C. fasciculata during complement activation. Purified arabinogalactan complexes were able to inactivate C3 in vitro. Solubilization in KOH to cleave the peptide moiety rendered it unable to inactivate C3. Apparently, the aggregated state of the purified arabinogalactan component at the cell surface is important for C3 deposition and activation.

  15. Increased Autoreactivity of the Complement-Activating Molecule Mannan-Binding Lectin in a Type 1 Diabetes Model

    PubMed Central

    Østergaard, Jakob Appel; Ruseva, Marieta Milkova; Malik, Talat Habib; Hoffmann-Petersen, Ingeborg Torp; Pickering, Matthew Caleb; Thiel, Steffen; Hansen, Troels Krarup

    2016-01-01

    Background. Diabetic kidney disease is the leading cause of end-stage renal failure despite intensive treatment of modifiable risk factors. Identification of new drug targets is therefore of paramount importance. The complement system is emerging as a potential new target. The lectin pathway of the complement system, initiated by the carbohydrate-recognition molecule mannan-binding lectin (MBL), is linked to poor kidney prognosis in diabetes. We hypothesized that MBL activates complement upon binding within the diabetic glomerulus. Methods. We investigated this by comparing complement deposition and activation in kidneys from streptozotocin-induced diabetic mice and healthy control mice. Results. After 20 weeks of diabetes, glomerular deposition of MBL was significantly increased. Diabetic animals had 2.0-fold higher (95% CI 1.6–2.5) immunofluorescence intensity from anti-MBL antibodies compared with controls (P < 0.001). Diabetes and control groups did not differ in glomerular immunofluorescence intensity obtained by antibodies against complement factors C4, C3, and C9. However, the circulating complement activation product C3a was increased in diabetes as compared to control mice (P = 0.04). Conclusion. 20 weeks of diabetes increased MBL autoreactivity in the kidney and circulating C3a concentration. Together with previous findings, these results indicate direct effects of MBL within the kidney in diabetes. PMID:26977416

  16. Increased Autoreactivity of the Complement-Activating Molecule Mannan-Binding Lectin in a Type 1 Diabetes Model.

    PubMed

    Østergaard, Jakob Appel; Ruseva, Marieta Milkova; Malik, Talat Habib; Hoffmann-Petersen, Ingeborg Torp; Pickering, Matthew Caleb; Thiel, Steffen; Hansen, Troels Krarup

    2016-01-01

    Background. Diabetic kidney disease is the leading cause of end-stage renal failure despite intensive treatment of modifiable risk factors. Identification of new drug targets is therefore of paramount importance. The complement system is emerging as a potential new target. The lectin pathway of the complement system, initiated by the carbohydrate-recognition molecule mannan-binding lectin (MBL), is linked to poor kidney prognosis in diabetes. We hypothesized that MBL activates complement upon binding within the diabetic glomerulus. Methods. We investigated this by comparing complement deposition and activation in kidneys from streptozotocin-induced diabetic mice and healthy control mice. Results. After 20 weeks of diabetes, glomerular deposition of MBL was significantly increased. Diabetic animals had 2.0-fold higher (95% CI 1.6-2.5) immunofluorescence intensity from anti-MBL antibodies compared with controls (P < 0.001). Diabetes and control groups did not differ in glomerular immunofluorescence intensity obtained by antibodies against complement factors C4, C3, and C9. However, the circulating complement activation product C3a was increased in diabetes as compared to control mice (P = 0.04). Conclusion. 20 weeks of diabetes increased MBL autoreactivity in the kidney and circulating C3a concentration. Together with previous findings, these results indicate direct effects of MBL within the kidney in diabetes. PMID:26977416

  17. Studies on the phenylethanoid glycosides with anti-complement activity from Paulownia tomentosa var. tomentosa wood.

    PubMed

    Si, Chuan-Ling; Deng, Xiao-Juan; Liu, Zhong; Kim, Jin-Kyu; Bae, Young-Soo

    2008-01-01

    Four epimeric phenylethanoid glycosides, including a new one, R,S-beta-ethoxy-beta-(3,4-dihydroxyphenyl)-ethyl-O-alpha-L-rhamnopyranosyl(1-->3)-beta-D-(6-O-E-caffeoyl)-glucopyranoside named isoilicifolioside A (1), and three known compounds, ilicifolioside A (2), campneoside II (3), and isocampneoside II (4), were isolated from Paulownia tomentosa var. tomentosa wood. The structures of the four compounds were elucidated by the interpretation of 1D and 2D NMR and MS spectra. This is the first report of the chemical profile of this tree. Compounds 1-4 exhibited excellent anti-complement activity with IC(50) values less than 74 microM, compared with tiliroside (IC(50) = 104 microM) and rosmarinic acid (IC(50) = 182 microM) that were used as positive controls. PMID:19031237

  18. Fragments of ATM which have dominant-negative or complementing activity.

    PubMed Central

    Morgan, S E; Lovly, C; Pandita, T K; Shiloh, Y; Kastan, M B

    1997-01-01

    The ATM protein has been implicated in pathways controlling cell cycle checkpoints, radiosensitivity, genetic instability, and aging. Expression of ATM fragments containing a leucine zipper motif in a human tumor cell line abrogated the S-phase checkpoint after ionizing irradiation and enhanced radiosensitivity and chromosomal breakage. These fragments did not abrogate irradiation-induced G1 or G2 checkpoints, suggesting that cell cycle checkpoint defects alone cannot account for chromosomal instability in ataxia telangiectasia (AT) cells. Expression of the carboxy-terminal portion of ATM, which contains the PI-3 kinase domain, complemented radiosensitivity and the S-phase checkpoint and reduced chromosomal breakage after irradiation in AT cells. These observations suggest that ATM function is dependent on interactions with itself or other proteins through the leucine zipper region and that the PI-3 kinase domain contains much of the significant activity of ATM. PMID:9121450

  19. Complement Activation-Related Pseudoallergy Caused by Nanomedicines and its Testing In Vitro and In Vivo

    NASA Astrophysics Data System (ADS)

    Szebeni, Janos; Urbanics, Rudolf

    Nanotechnology has has been giving birth to a variety of therapeutic and diagnostic products, referred to as nanomedicines (NM), whose successes are based on improved efficacy and/or diminished toxicity. However, these benefits are not without a price. The introduction into the clinics of many NM revealed the presence of an acute immune response to the particles, manifested in hypersensitivity reactions (HSR). The phenomenon is often due to the structural similarity of reactogenic NM to viruses, which may trigger the nonspecific arm of humoral immunity, the complement (C) system to an immediate eliminatory response. The clinical manifestations of this reaction, called C activation-related pseudoallergy (CARPA), include cardiopulmonary distress, which is a safety risk for NM, particularly in the case of cardiac patients with atopic constitution. Thus, understanding CARPA and ways of its prediction and prevention represents an important challenge in NM R&D.

  20. [Autoimmune hemolytic anemia].

    PubMed

    Karasawa, Masamitsu

    2008-03-01

    Diagnosis of autoimmune hemolytic anemia (AIHA) requires both serologic evidence of an autoantibody and hemolysis. Based on the characteristic temperature reactivity of the autoantibody to red cell membranes, AIHA is classified into warm AIHA or cold AIHA (cold agglutinin disease and paroxysmal cold hemoglobinuria). Sensitized RBCs are destructed by intravascular and/or extravascular hemolysis. On the basis of etiology, AIHA are classified as idiopathic or secondary. The common cause of secondary AIHA is lymphoproliferative disorders, autoimmune diseases, and infections. The first line therapy of patients with warm AIHA is glucocorticoids and primary treatment for cold AIHA is avoiding cold exposure. The other standard treatments include splenectomy and immunosuppressive drugs. Recently, rituximab, a monoclonal anti-CD20 antibody, has been used in refractory AIHA with excellent responses. PMID:18326320

  1. Epstein-Barr virus regulates activation and processing of the third component of complement.

    PubMed

    Mold, C; Bradt, B M; Nemerow, G R; Cooper, N R

    1988-09-01

    Serum incubated with purified EBV was found to contain C3 cleavage fragments characteristic of C3c. Since the cofactors necessary for such cleavage of C3b by factor I are not normally present in serum, EBV was tested for factor I cofactor activity. Purified EBV from both human and marmoset EBV-producing cell lines was found to act as a cofactor for the factor I-mediated breakdown C3b to iC3b and iC3b to C3c and C3dg. EBV also acted as a cofactor for the factor I-mediated cleavage of C4b to iC4b and iC4b to C4c and C4d. EBV from both the human and marmoset cell lines accelerated the decay of the alternative pathway C3 convertase. The classical pathway C3 convertase was unaffected. Multiple lines of evidence eliminated the possibility that marmoset or human CR1 was responsible for the functional activities of EBV preparations. The spectrum of activities was different from CR1 in that EBV and EBV-expressing cell lines failed to rosette with C3b or particles bearing C3b, the primary functional assay for CR1, and EBV did not accelerate classical pathway C3 convertase decay, another property of CR1. In addition, CR1 could not be detected immunologically on marmoset or human EBV-expressing cells and mAbs to CR1 failed to alter EBV-produced decay acceleration and factor I cofactor activities, although the antibodies blocked the same CR1-dependent functional activities. The multiple complement regulatory activities exhibited by purified EBV derived from human and marmoset cells differ from those of any of the known C3 or C4 regulatory proteins. These various activities would be anticipated to provide survival value for the virus by subverting complement- and cell-dependent host defense mechanisms. PMID:2844953

  2. Complement Component C3 and Butyrylcholinesterase Activity Are Associated with Neurodegeneration and Clinical Disability in Multiple Sclerosis

    PubMed Central

    Al Nimer, Faiez; Vijayaraghavan, Swetha; Sandholm, Kerstin; Khademi, Mohsen; Olsson, Tomas; Nilsson, Bo; Ekdahl, Kristina Nilsson; Darreh-Shori, Taher; Piehl, Fredrik

    2015-01-01

    Dysregulation of the complement system is evident in many CNS diseases but mechanisms regulating complement activation in the CNS remain unclear. In a recent large rat genome-wide expression profiling and linkage analysis we found co-regulation of complement C3 immediately downstream of butyrylcholinesterase (BuChE), an enzyme hydrolyzing acetylcholine (ACh), a classical neurotransmitter with immunoregulatory effects. We here determined levels of neurofilament-light (NFL), a marker for ongoing nerve injury, C3 and activity of the two main ACh hydrolyzing enzymes, acetylcholinesterase (AChE) and BuChE, in cerebrospinal fluid (CSF) from patients with MS (n = 48) and non-inflammatory controls (n = 18). C3 levels were elevated in MS patients compared to controls and correlated both to disability and NFL. C3 levels were not induced by relapses, but were increased in patients with ≥9 cerebral lesions on magnetic resonance imaging and in patients with progressive disease. BuChE activity did not differ at the group level, but was correlated to both C3 and NFL levels in individual samples. In conclusion, we show that CSF C3 correlates both to a marker for ongoing nerve injury and degree of disease disability. Moreover, our results also suggest a potential link between intrathecal cholinergic activity and complement activation. These results motivate further efforts directed at elucidating the regulation and effector functions of the complement system in MS, and its relation to cholinergic tone. PMID:25835709

  3. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex.

    PubMed

    Garcia, Brandon L; Zhi, Hui; Wager, Beau; Höök, Magnus; Skare, Jon T

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. PMID:26808924

  4. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    PubMed Central

    Wager, Beau; Höök, Magnus; Skare, Jon T.

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. PMID:26808924

  5. Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation

    PubMed Central

    Leinhase, Iris; Holers, V Michael; Thurman, Joshua M; Harhausen, Denise; Schmidt, Oliver I; Pietzcker, Malte; Taha, Mohy E; Rittirsch, Daniel; Huber-Lang, Markus; Smith, Wade R; Ward, Peter A; Stahel, Philip F

    2006-01-01

    Background Neuroprotective strategies for prevention of the neuropathological sequelae of traumatic brain injury (TBI) have largely failed in translation to clinical treatment. Thus, there is a substantial need for further understanding the molecular mechanisms and pathways which lead to secondary neuronal cell death in the injured brain. The intracerebral activation of the complement cascade was shown to mediate inflammation and tissue destruction after TBI. However, the exact pathways of complement activation involved in the induction of posttraumatic neurodegeneration have not yet been assessed. In the present study, we investigated the role of the alternative complement activation pathway in contributing to neuronal cell death, based on a standardized TBI model in mice with targeted deletion of the factor B gene (fB-/-), a "key" component required for activation of the alternative complement pathway. Results After experimental TBI in wild-type (fB+/+) mice, there was a massive time-dependent systemic complement activation, as determined by enhanced C5a serum levels for up to 7 days. In contrast, the extent of systemic complement activation was significantly attenuated in fB-/- mice (P < 0.05,fB-/- vs. fB+/+; t = 4 h, 24 h, and 7 days after TBI). TUNEL histochemistry experiments revealed that posttraumatic neuronal cell death was clearly reduced for up to 7 days in the injured brain hemispheres of fB-/- mice, compared to fB+/+ littermates. Furthermore, a strong upregulation of the anti-apoptotic mediator Bcl-2 and downregulation of the pro-apoptotic Fas receptor was detected in brain homogenates of head-injured fB-/- vs. fB+/+ mice by Western blot analysis. Conclusion The alternative pathway of complement activation appears to play a more crucial role in the pathophysiology of TBI than previously appreciated. This notion is based on the findings of (a) the significant attenuation of overall complement activation in head-injured fB-/- mice, as determined by a

  6. Use of Eculizumab in Atypical Hemolytic Uremic Syndrome, Complicating Systemic Lupus Erythematosus.

    PubMed

    Bermea, Rene S; Sharma, Niharika; Cohen, Kenneth; Liarski, Vladimir M

    2016-09-01

    Atypical hemolytic uremic syndrome is characterized by the presence of thrombocytopenia, microangiopathic hemolytic anemia, and end-organ injury. In this report, we describe two patients with systemic lupus erythematosus who presented with findings compatible with atypical hemolytic uremic syndrome, complicated by acute kidney injury that was refractory to conventional therapies. Both patients exhibited a response to eculizumab, a monoclonal antibody to complement protein C5, with stabilization of their platelet count. On 1-year follow-up from their initial presentation, their hematologic disease remained in remission without recurrence. PMID:27556240

  7. Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration.

    PubMed

    Johnson, Lincoln V; Forest, David L; Banna, Christopher D; Radeke, Carolyn M; Maloney, Michelle A; Hu, Jane; Spencer, Christine N; Walker, Aimee M; Tsie, Marlene S; Bok, Dean; Radeke, Monte J; Anderson, Don H

    2011-11-01

    We introduce a human retinal pigmented epithelial (RPE) cell-culture model that mimics several key aspects of early stage age-related macular degeneration (AMD). These include accumulation of sub-RPE deposits that contain molecular constituents of human drusen, and activation of complement leading to formation of deposit-associated terminal complement complexes. Abundant sub-RPE deposits that are rich in apolipoprotein E (APOE), a prominent drusen constituent, are formed by RPE cells grown on porous supports. Exposure to human serum results in selective, deposit-associated accumulation of additional known drusen components, including vitronectin, clusterin, and serum amyloid P, thus suggesting that specific protein-protein interactions contribute to the accretion of plasma proteins during drusen formation. Serum exposure also leads to complement activation, as evidenced by the generation of C5b-9 immunoreactive terminal complement complexes in association with APOE-containing deposits. Ultrastructural analyses reveal two morphologically distinct forms of deposits: One consisting of membrane-bounded multivesicular material, and the other of nonmembrane-bounded particle conglomerates. Collectively, these results suggest that drusen formation involves the accumulation of sub-RPE material rich in APOE, a prominent biosynthetic product of the RPE, which interacts with a select group of drusen-associated plasma proteins. Activation of the complement cascade appears to be mediated via the classical pathway by the binding of C1q to ligands in APOE-rich deposits, triggering direct activation of complement by C1q, deposition of terminal complement complexes and inflammatory sequelae. This model system will facilitate the analysis of molecular and cellular aspects of AMD pathogenesis, and the testing of new therapeutic agents for its treatment. PMID:21969589

  8. Complement Blockade with a C1 Esterase Inhibitor in Paroxysmal Nocturnal Hemoglobinuria

    PubMed Central

    DeZern, Amy E.; Uknis, Marc; Yuan, Xuan; Mukhina, Galina L; Varela, Juan; Saye, JoAnne; Pu, Jeffrey; Brodsky, Robert A.

    2014-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, clonal, hematopoietic stem cell disorder that manifests with a complement-mediated hemolytic anemia, bone marrow failure and a propensity for thrombosis. These patients experience both intra- and extravascular hemolysis in the context of underlying complement activation. Currently eculizumab effectively blocks the intravascular hemolysis PNH. There remains an unmet clinical need for a complement inhibitor with activity early in the complement cascade to block complement at the classical and alternative pathways. C1 esterase inhibitor (C1INH) is an endogenous human plasma protein that has broad inhibitory activity in the complement pathway through inhibition of the classical pathway by binding C1r and C1s and inhibits the mannose-binding lectin-associated serine proteases in the lectin pathway. In this study, we show that commercially available plasma derived C1INH prevents lysis induced by the alternative complement pathway, of PNH erythrocytes in human serum. Importantly, C1INH was able to block the accumulation of C3 degradation products on CD55 deficient erythrocytes from PNH patient on eculizumab therapy. This could suggest a role for inhibition of earlier phases of the complement cascade than that currently inhibited by eculizumab for incomplete or non-responders to that therapy. PMID:25034232

  9. Activation of the alternative complement pathway by natural antibody to glycolipids in guinea-pig serum.

    PubMed Central

    Okada, N; Yasuda, T; Tsumita, T; Okada, H

    1983-01-01

    Liposomes containing paragloboside (PG) on their membrane were readily lysed by C4-deficient guinea-pig serum (C4D-GPS) through activation of the alternative complement pathway (ACP). Therefore we examined the reactivity of several types of guinea-pig serum (GPS) on PG-liposomes and determined that all GPS except that from specific pathogen-free (SPF) Hartley guinea-pigs had lytic capacity in Mg-EGTA-GVB (gelatin veronal-buffered saline containing Mg++ and ethyleneglycol-bis(beta-aminoethyl ether)N,N'-tetraacetate). This lytic capacity of GPS corresponded with the amount of natural antibody to PG in those sera. Although GPS of SPF guinea-pigs (SPF-GPS) could not lyse PG-liposomes in Mg-EGTA-GVB, it could lyse the liposomes when heated C4D-GPS or Hartley GPS was added. Natural antibody to PG in the heated sera was regarded to have sensitized PG-liposomes to lysis by SPF-GPS via ACP activation. Since the antibody to PG-liposomes was removed by lacto-N-nor-hexaosylceramide which has the same chemical structure in the terminal oligosaccharide, the antibody to PG in GPS was suggested to have a specificity to the terminal structure of oligosaccharide shared by lacto-N-nor-hexaosylceramide. Furthermore, the IgM fraction, which had been prepared by gel filtration of heated C4D-GPS on a Sephadex G200 column, could also sensitize PG-liposomes to lytic reaction of SPF-GPS in Mg-EGTA-GVB. This sensitizing capacity of heated C4D-GPS was suppressed by absorption of the serum or its IgM fraction with anti-guinea-pig mu-chain antibody coupled to Sepharose. Therefore, it was concluded that the lysis of PG-liposomes by GPS in Mg-EGTA-GVB was a result of ACP activation mediated by natural antibodies to PG of the IgM type which are present in usual GPS. This conclusion indicated that natural antibodies of the IgM type might play a role with ACP in host defence, especially in C4-deficient guinea-pigs where the classical complement pathway is impaired. PMID:6193057

  10. Self-nonself discrimination by the complement system.

    PubMed

    Meri, Seppo

    2016-08-01

    The alternative pathway (AP) of complement can recognize nonself structures by only two molecules, C3b and factor H. The AP deposits C3b covalently on nonself structures via an amplification system. The actual discrimination is performed by factor H, which has binding sites for polyanions (sialic acids, glycosaminoglycans, phospholipids). This robust recognition of 'self' protects our own intact viable cells and tissues, while activating structures are recognized by default. Foreign targets are opsonized for phagocytosis or killed. Mutations in factor H predispose to severe diseases. In hemolytic uremic syndrome, they promote complement attack against blood cells and vascular endothelial cells and lead, for example, to kidney and brain damage. Even pathogens can exploit factor H. In fact, the ability to bind factor H discriminates most pathogenic microbes from nonpathogenic ones. PMID:27393384

  11. Linkage Specificity and Role of Properdin in Activation of the Alternative Complement Pathway by Fungal Glycans

    PubMed Central

    Agarwal, Sarika; Specht, Charles A.; Huang, Haibin; Ostroff, Gary R.; Ram, Sanjay; Rice, Peter A.; Levitz, Stuart M.

    2011-01-01

    ABSTRACT Fungal cell walls are predominantly composed of glucans, mannans, and chitin. Recognition of these glycans by the innate immune system is a critical component of host defenses against the mycoses. Complement, an important arm of innate immunity, plays a significant role in fungal pathogenesis, especially the alternative pathway (AP). Here we determine that the glycan monosaccharide composition and glycosidic linkages affect AP activation and C3 deposition. Furthermore, properdin, a positive regulator of the AP, contributes to these functions. AP activation by glycan particles that varied in composition and linkage was measured by C3a generation in serum treated with 10 mM EGTA and 10 mM Mg2+ (Mg-EGTA-treated serum) (AP specific; properdin functional) or Mg-EGTA-treated serum that lacked functional properdin. Particles that contained either β1→3 or β1→6 glucans or both generated large and similar amounts of C3a when the AP was intact. Blocking properdin function resulted in 5- to 10-fold-less C3a production by particulate β1→3 glucans. However, particulate β1→6 glucans generated C3a via the AP only in the presence of intact properdin. Interestingly, zymosan and glucan-mannan particles (GMP), which contain both β-glucans and mannans, also required properdin to generate C3a. The β1→4 glycans chitin and chitosan minimally activated C3 even when properdin was functional. Finally, properdin binding to glucan particles (GP) and zymosan in serum required active C3. Properdin colocalized with bound C3, suggesting that in the presence of serum, properdin bound indirectly to glycans through C3 convertases. These findings provide a better understanding of how properdin facilitates AP activation by fungi through interaction with the cell wall components. PMID:21878570

  12. Effects of Repeated Complement Activation Associated with Chronic Treatment of Cynomolgus Monkeys with 2'-O-Methoxyethyl Modified Antisense Oligonucleotide.

    PubMed

    Shen, Lijiang; Engelhardt, Jeffrey A; Hung, Gene; Yee, Jenna; Kikkawa, Rie; Matson, John; Tayefeh, Bryan; Machemer, Todd; Giclas, Patricia C; Henry, Scott P

    2016-08-01

    The effects of repeated complement activation in cynomolgus monkeys after chronic antisense oligonucleotide (ASO) treatment were evaluated by using ISIS 104838, a representative 2'-O-methoxyethyl (2'-MOE) modified ASO. The treatment was up to 9 months with a total weekly dose of 30 mg/kg, given either as daily [4.3 mg/kg/day, subcutaneous (s.c.) injection] or once weekly [30 mg/kg, either as s.c. injection or 30-min intravenous (i.v.) infusion]. Acute elevations of complement split products (Bb and C3a) and a transient decrease in C3 occurred after the first dose and were drug plasma concentration dependent. However, with repeated complement activation after chronic ASO treatment, there were progressive increases in basal (predose) levels of Bb and C3a, and a sustained C3 reduction in all treated groups. There was also a progressive increase in C3d-bound circulating immune complex (CIC) that was considered secondary to the C3 depletion. Evidence of vascular inflammation was observed, mostly in the liver, kidney, and heart, and correlated with severe C3 depletion and increases in plasma IgG and IgM. Vascular inflammation was accompanied by increased C3 and IgM immunereactivity in the affected vasculatures and endothelial activation markers in serum. In summary, repeated complement activations in monkeys lead to a sustained decrease in circulating C3 over time. The concomitantly increased inflammatory signals and decreased CIC clearance due to impairment of complement function may lead to vascular inflammation after chronic ASO treatment in monkeys. However, based on the known sensitivity of monkeys to ASO-induced complement activation, these findings have limited relevance to humans. PMID:27140858

  13. Autoimmune hemolytic anemia: classification and therapeutic approaches.

    PubMed

    Sève, Pascal; Philippe, Pierre; Dufour, Jean-François; Broussolle, Christiane; Michel, Marc

    2008-12-01

    Autoimmune hemolytic anemia (AIHA) is a relatively uncommon cause of anemia. Classifications of AIHA include warm AIHA, cold AIHA (including mainly chronic cold agglutinin disease and paroxysmal cold hemoglobinuria), mixed-type AIHA and drug-induced AIHA. AIHA may also be further subdivided on the basis of etiology. Management of AIHA is based mainly on empirical data and on small, retrospective, uncontrolled studies. The therapeutic options for treating AIHA are increasing with monoclonal antibodies and, potentially, complement inhibitory drugs. Based on data available in the literature and our experience, we propose algorithms for the treatment of warm AIHA and cold agglutinin disease in adults. Therapeutic trials are needed in order to better stratify treatment, taking into account the promising efficacy of rituximab. PMID:21082924

  14. Novel Complement Inhibitor Limits Severity of Experimentally Myasthenia Gravis

    PubMed Central

    Soltys, Jindrich; Kusner, Linda L.; Young, Andrew; Richmonds, Chelliah; Hatala, Denise; Gong, Bendi; Shanmugavel, Vaithesh; Kaminski, Henry J.

    2011-01-01

    Objective Complement mediated injury of the neuromuscular junction is considered a primary disease mechanism in human myasthenia gravis and animal models of experimentally acquired myasthenia gravis (EAMG). We utilized active and passive models of EAMG to investigate the efficacy of a novel C5 complement inhibitor rEV576, recombinantly produced protein derived from tick saliva, in moderating disease severity. Methods Standardized disease severity assessment, serum complement hemolytic activity, serum cytotoxicity, acetylcholine receptor (AChR) antibody concentration, IgG subclassification, and C9 deposition at the neuromuscular junction were used to assess the effect of complement inhibition on EAMG induced by administration of AChR antibody or immunization with purified AChR. Results Administration of rEV576 in passive transfer EAMG limited disease severity as evidenced by 100% survival rate and a low disease severity score. In active EAMG, rats with severe and mild EAMG were protected from worsening of disease and had limited weight loss. Serum complement activity (CH50) in severe and mild EAMG was reduced to undetectable levels during treatment, and C9 deposition at the neuromuscular junction was reduced. Treatment with rEV576 resulted in reduction of toxicity of serum from severe and mild EAMG rats. Levels of total AChR IgG, and IgG2a antibodies were similar, but unexpectedly, the concentration of complement fixing IgG1 antibodies was lower in a group of rEV576-treated animals, suggesting an effect of rEV576 on cellular immunity. Interpretation Inhibition of complement significantly reduced weakness in two models of EAMG. C5 inhibition could prove to be of significant therapeutic value in human myasthenia gravis. PMID:19194881

  15. Human genes for three complement components that regulate the activation of C3 are tightly linked.

    PubMed

    Rodriguez de Cordoba, S; Lublin, D M; Rubinstein, P; Atkinson, J P

    1985-05-01

    A new cluster of complement component genes, including C4BP, C3bR, and FH, is described. Family segregation data indicate that FH is linked to the genes for C4-bp and C4bR, previously reported to be linked and to maintain linkage disequilibrium. This cluster is not linked to the major histocompatibility complex, which contains the genes for the complement components, C4, C2, and factor B, or to the C3 locus. These data further suggest that the organization of genes for functionally related proteins in clusters may be a rule for the complement system. PMID:3157763

  16. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides

    NASA Astrophysics Data System (ADS)

    Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C.; Raghava, Gajendra P. S.

    2016-03-01

    Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., “FKK”, “LKL”, “KKLL”, “KWK”, “VLK”, “CYCR”, “CRR”, “RFC”, “RRR”, “LKKL”) are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/).

  17. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides

    PubMed Central

    Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C.; Raghava, Gajendra P. S.

    2016-01-01

    Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., “FKK”, “LKL”, “KKLL”, “KWK”, “VLK”, “CYCR”, “CRR”, “RFC”, “RRR”, “LKKL”) are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/). PMID:26953092

  18. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides.

    PubMed

    Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C; Raghava, Gajendra P S

    2016-01-01

    Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., "FKK", "LKL", "KKLL", "KWK", "VLK", "CYCR", "CRR", "RFC", "RRR", "LKKL") are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/). PMID:26953092

  19. The kinetics and distribution of C9 and SC5b-9 in vivo: effects of complement activation.

    PubMed Central

    Greenstein, J D; Peake, P W; Charlesworth, J A

    1995-01-01

    Many diseases associated with complement activation are characterized by tissue deposition of components of the terminal complement complex (TCC). The ninth component of complement (C9) plays an important role in the cytolytic effects, and may contribute to the non-lethal cell-regulating functions of the TCC. In this study we examined the behaviour of radiolabelled human C9 and its soluble complexed form SC5b-9 in vivo in order to determine the effects of complement activation on its turnover, distribution and molecular size. In normal rabbits the metabolic parameters of 125I-C9 (median and range) were: plasma half-life (t1/2) 25.9 (20.6-29.5) h, fractional catabolic rate (FCR) 5.7 (5.3-7.0)%/h, and extravascular/intravascular ratio (EV/IV) 0.7 (0.6-1.1). The distribution of radiolabelled C9 amongst body tissues was similar to that observed for rabbit serum albumin (RSA). Activation of the complement cascade with i.v. injection of cobra venom factor (CVF) resulted in rapid disappearance of C9 from the plasma and accumulation of protein-bound radiolabeled in the spleen (exceeding the plasma concentration) and the liver. RSA metabolism and distribution were unaffected by CVF. Fine performance liquid chromatography (FPLC) gel filtration of plasma samples suggested that monomeric C9 was the only major radiolabelled protein present during normal turnovers, whereas CVF administration was accompanied by the prompt appearance of a high mol. wt species consistent in size with SC5b-9. When injected directly, 125I-SC5b-9 disappeared rapidly from the plasma, falling by 50% in 0.7 (0.6-0.8) h, and less than 15% remaining after 4 h with accumulation of protein-bound label in the spleen and liver. These results demonstrate the complexity of C9 metabolism during complement activation. PMID:7697921

  20. A Revised Mechanism for the Activation of Complement C3 to C3b

    PubMed Central

    Rodriguez, Elizabeth; Nan, Ruodan; Li, Keying; Gor, Jayesh; Perkins, Stephen J.

    2015-01-01

    The solution structure of complement C3b is crucial for the understanding of complement activation and regulation. C3b is generated by the removal of C3a from C3. Hydrolysis of the C3 thioester produces C3u, an analog of C3b. C3b cleavage results in C3c and C3d (thioester-containing domain; TED). To resolve functional questions in relation to C3b and C3u, analytical ultracentrifugation and x-ray and neutron scattering studies were used with C3, C3b, C3u, C3c, and C3d, using the wild-type allotype with Arg102. In 50 mm NaCl buffer, atomistic scattering modeling showed that both C3b and C3u adopted a compact structure, similar to the C3b crystal structure in which its TED and macroglobulin 1 (MG1) domains were connected through the Arg102–Glu1032 salt bridge. In physiological 137 mm NaCl, scattering modeling showed that C3b and C3u were both extended in structure, with the TED and MG1 domains now separated by up to 6 nm. The importance of the Arg102–Glu1032 salt bridge was determined using surface plasmon resonance to monitor the binding of wild-type C3d(E1032) and mutant C3d(A1032) to immobilized C3c. The mutant did not bind, whereas the wild-type form did. The high conformational variability of TED in C3b in physiological buffer showed that C3b is more reactive than previously thought. Because the Arg102-Glu1032 salt bridge is essential for the C3b-Factor H complex during the regulatory control of C3b, the known clinical associations of the major C3S (Arg102) and disease-linked C3F (Gly102) allotypes of C3b were experimentally explained for the first time. PMID:25488663

  1. Activity Recognition Using Community Data to Complement Small Amounts of Labeled Instances.

    PubMed

    Garcia-Ceja, Enrique; Brena, Ramon F

    2016-01-01

    Human Activity Recognition (HAR) is an important part of ambient intelligence systems since it can provide user-context information, thus allowing a greater personalization of services. One of the problems with HAR systems is that the labeling process for the training data is costly, which has hindered its practical application. A common approach is to train a general model with the aggregated data from all users. The problem is that for a new target user, this model can perform poorly because it is biased towards the majority type of users and does not take into account the particular characteristics of the target user. To overcome this limitation, a user-dependent model can be trained with data only from the target user that will be optimal for this particular user; however, this requires a considerable amount of labeled data, which is cumbersome to obtain. In this work, we propose a method to build a personalized model for a given target user that does not require large amounts of labeled data. Our method uses data already labeled by a community of users to complement the scarce labeled data of the target user. Our results showed that the personalized model outperformed the general and the user-dependent models when labeled data is scarce. PMID:27314355

  2. Complement activation in divers after repeated air/heliox dives and its possible relevance to DCS.

    PubMed

    Hjelde, A; Bergh, K; Brubakk, A O; Iversen, O J

    1995-03-01

    Plasma levels of the anaphylatoxin C5a were measured in 19 divers performing repeated air dives. Blood samples were collected immediately before the first dive and 2 h after the first and the second or third dive. Serum obtained at the same times was subjected to complement activation in vitro by air bubbles. Six divers developed symptoms of decompression sickness (DCS). Most intravascular bubbles were observed in divers with the lowest plasma levels of C5a. Postdive plasma levels of C5a did not increase compared with predive levels, nor were postdive levels significantly different after two or three dives compared with the first dive. Repeated dives did not influence the amounts of C5a generated in vitro. Neither plasma levels of C5a nor C5a generated in vitro were significantly different in divers who experienced symptoms of DCS vs. divers without symptoms of DCS. We conclude that plasma level of C5a and measurement of C5a generation in vitro cannot be used to predict DCS. PMID:7775308

  3. Activity Recognition Using Community Data to Complement Small Amounts of Labeled Instances †

    PubMed Central

    Garcia-Ceja, Enrique; Brena, Ramon F.

    2016-01-01

    Human Activity Recognition (HAR) is an important part of ambient intelligence systems since it can provide user-context information, thus allowing a greater personalization of services. One of the problems with HAR systems is that the labeling process for the training data is costly, which has hindered its practical application. A common approach is to train a general model with the aggregated data from all users. The problem is that for a new target user, this model can perform poorly because it is biased towards the majority type of users and does not take into account the particular characteristics of the target user. To overcome this limitation, a user-dependent model can be trained with data only from the target user that will be optimal for this particular user; however, this requires a considerable amount of labeled data, which is cumbersome to obtain. In this work, we propose a method to build a personalized model for a given target user that does not require large amounts of labeled data. Our method uses data already labeled by a community of users to complement the scarce labeled data of the target user. Our results showed that the personalized model outperformed the general and the user-dependent models when labeled data is scarce. PMID:27314355

  4. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals.

    PubMed

    Szebeni, Janos

    2014-10-01

    Intravenous injection of a variety of nanotechnology enhanced (liposomal, micellar, polymer-conjugated) and protein-based (antibodies, enzymes) drugs can lead to hypersensitivity reactions (HSRs), also known as infusion, or anaphylactoid reactions. The molecular mechanism of mild to severe allergy symptoms may differ from case to case and is mostly not known, however, in many cases a major cause, or contributing factor is activation of the complement (C) system. The clinical relevance of C activation-related HSRs, a non-IgE-mediated pseudoallergy (CARPA), lies in its unpredictability and occasional lethal outcome. Accordingly, there is an unmet medical need to develop laboratory assays and animal models that quantitate CARPA. This review provides basic information on CARPA; a short history, issues of nomenclature, incidence, classification of reactogenic drugs and symptoms, and the mechanisms of C activation via different pathways. It is pointed out that anaphylatoxin-induced mast cell release may not entirely explain the severe reactions; a "second hit" on allergy mediating cells may also contribute. In addressing the increasing requirements for CARPA testing, the review evaluates the available assays and animal models, and proposes a possible algorithm for the screening of reactogenic drugs and hypersensitive patients. Finally, an analogy is proposed between CARPA and the classic stress reaction, suggesting that CARPA represents a "blood stress" reaction, a systemic fight of the body against harmful biological and chemical agents via the anaphylatoxin/mast-cell/circulatory system axis, in analogy to the body's fight of physical and emotional stress via the hypothalamo/pituitary/adrenal axis. In both cases the response to a broad variety of noxious effects are funneled into a uniform pattern of physiological changes. PMID:25124145

  5. A Serine Protease Isolated from the Bristles of the Amazonic Caterpillar, Premolis semirufa, Is a Potent Complement System Activator

    PubMed Central

    Villas Boas, Isadora Maria; Pidde-Queiroz, Giselle; Magnoli, Fabio Carlos; Gonçalves-de-Andrade, Rute M.; van den Berg, Carmen W.; Tambourgi, Denise V.

    2015-01-01

    Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly

  6. Sex differences in body fluid homeostasis: Sex chromosome complement influences on bradycardic baroreflex response and sodium depletion induced neural activity.

    PubMed

    Vivas, L; Dadam, F M; Caeiro, X E

    2015-12-01

    Clinical and basic findings indicate that angiotensin II (ANG II) differentially modulates hydroelectrolyte and cardiovascular responses in male and female. But are only the activational and organizational hormonal effects to blame for such differences? Males and females not only differ in their sex (males are born with testes and females with ovaries) but also carry different sex chromosome complements and are thus influenced throughout life by different genomes. In this review, we discuss our recent studies in order to evaluate whether sex chromosome complement is in part responsible for gender differences previously observed in ANG II bradycardic-baroreflex response and sodium depletion-induced sodium appetite and neural activity. To test the hypothesis that XX or XY contributes to the dimorphic ANG II bradycardic-baroreflex response, we used the four core genotype mouse model, in which the effects of gonadal sex (testes or ovaries) and sex chromosome complement (XX or XY) are dissociated. The results indicate that ANG II bradycardic-baroreflex sexual dimorphic response may be ascribed to differences in sex chromosomes, indicating an XX-sex chromosome complement facilitatory bradycardic-baroreflex control of heart rate. Furthermore, we evaluated whether genetic differences within the sex chromosome complement may differentially modulate the known sexually dimorphic sodium appetite as well as basal or induced brain activity due to physiological stimulation of the renin-angiotensin system by furosemide and low-sodium treatment. Our studies demonstrate an organizational hormonal effect on sexually dimorphic induced sodium intake in mice, while at the brain level (subfornical organ and area postrema) we showed a sex chromosome complement effect in sodium-depleted mice, suggesting a sex chromosome gene participation in the modulation of neural pathways underlying regulatory response to renin-angiotensin stimulation. PMID:26260434

  7. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly.

    PubMed

    Spitzer, Dirk; Mitchell, Lynne M; Atkinson, John P; Hourcade, Dennis E

    2007-08-15

    Complement promotes the rapid recognition and elimination of pathogens, infected cells, and immune complexes. The biochemical basis for its target specificity is incompletely understood. In this report, we demonstrate that properdin can directly bind to microbial targets and provide a platform for the in situ assembly and function of the alternative pathway C3 convertases. This mechanism differs from the standard model wherein nascent C3b generated in the fluid phase attaches nonspecifically to its targets. Properdin-directed complement activation occurred on yeast cell walls (zymosan) and Neisseria gonorrhoeae. Properdin did not bind wild-type Escherichia coli, but it readily bound E. coli LPS mutants, and the properdin-binding capacity of each strain correlated with its respective serum-dependent AP activation rate. Moreover, properdin:single-chain Ab constructs were used to direct serum-dependent complement activation to novel targets. We conclude properdin participates in two distinct complement activation pathways: one that occurs by the standard model and one that proceeds by the properdin-directed model. The properdin-directed model is consistent with a proposal made by Pillemer and his colleagues >50 years ago. PMID:17675523

  8. Complement component 3 (C3)

    MedlinePlus

    C3 and C4 are the most commonly measured complement components. A complement test may be used to monitor people with an ... normal levels of the complement proteins C3 and C4 . Complement activity varies throughout the body. For example, ...

  9. Complement Activation by Giardia duodenalis Parasites through the Lectin Pathway Contributes to Mast Cell Responses and Parasite Control.

    PubMed

    Li, Erqiu; Tako, Ernest A; Singer, Steven M

    2016-04-01

    Infection with Giardia duodenalis is one of the most common causes of diarrheal disease in the world. While numerous studies have identified important contributions of adaptive immune responses to parasite control, much less work has examined innate immunity and its connections to the adaptive response during this infection. We explored the role of complement in immunity to Giardia using mice deficient in mannose-binding lectin (Mbl2) or complement factor 3a receptor (C3aR). Both strains exhibited delayed clearance of parasites and a reduced ability to recruit mast cells in the intestinal submucosa. C3aR-deficient mice had normal production of antiparasite IgA, butex vivo T cell recall responses were impaired. These data suggest that complement is a key factor in the innate recognition of Giardia and that recruitment of mast cells and activation of T cell immunity through C3a are important for parasite control. PMID:26831470

  10. Modified Ham test for atypical hemolytic uremic syndrome

    PubMed Central

    Gavriilaki, Eleni; Yuan, Xuan; Ye, Zhaohui; Ambinder, Alexander J.; Shanbhag, Satish P.; Streiff, Michael B.; Kickler, Thomas S.; Moliterno, Alison R.; Sperati, C. John

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy (TMA) characterized by excessive activation of the alternative pathway of complement (APC). Atypical HUS is frequently a diagnosis of exclusion. Differentiating aHUS from other TMAs, especially thrombotic thrombocytopenic purpura (TTP), is difficult due to overlapping clinical manifestations. We sought to develop a novel assay to distinguish aHUS from other TMAs based on the hypothesis that paroxysmal nocturnal hemoglobinuria cells are more sensitive to APC-activated serum due to deficiency of glycosylphosphatidylinositol- anchored complement regulatory proteins (GPI-AP). Here, we demonstrate that phosphatidylinositol-specific phospholipase C–treated EA.hy926 cells and PIGA-mutant TF-1 cells are more susceptible to serum from aHUS patients than parental EA.hy926 and TF-1 cells. We next studied 31 samples from 25 patients with TMAs, including 9 with aHUS and 12 with TTP. Increased C5b-9 deposition was evident by confocal microscopy and flow cytometry on GPI-AP–deficient cells incubated with aHUS serum compared with heat-inactivated control, TTP, and normal serum. Differences in cell viability were observed in biochemically GPI-AP–deficient cells and were further increased in PIGA-deficient cells. Serum from patients with aHUS resulted in a significant increase of nonviable PIGA-deficient TF-1 cells compared with serum from healthy controls (P < .001) and other TMAs (P < .001). The cell viability assay showed high reproducibility, sensitivity, and specificity in detecting aHUS. In conclusion, we developed a simple, rapid, and serum-based assay that helps to differentiate aHUS from other TMAs. PMID:25862562

  11. Effects of Amoxicillin, Gentamicin, and Moxifloxacin on the Hemolytic Activity of Staphylococcus aureus In Vitro and In Vivo

    PubMed Central

    Worlitzsch, Dieter; Kaygin, Hayal; Steinhuber, Andrea; Dalhoff, Axel; Botzenhart, Konrad; Döring, Gerd

    2001-01-01

    . aureus infections α-toxin activity is controlled by neutrophil elastase. PMID:11120965

  12. Activation of rat complement by soluble and insoluble rat IgA immune complexes.

    PubMed

    Rits, M; Hiemstra, P S; Bazin, H; Van Es, L A; Vaerman, J P; Daha, M R

    1988-12-01

    The ability of rat monoclonal IgA, specific for 2,4-dinitrophenyl (DNA), to activate the complement (C) system of the rat was investigated using aggregated IgA or IgA immune complexes (IC). IgA was coated onto a solid phase, and tested for its capacity to bind C3 upon incubation at 37 degrees C in normal rat serum (NRS) in the presence of Mg-EGTA. Binding of C3 was observed dependent on the dose of dimeric (d-), polymeric (p-) and secretory IgA tested. In contrast, little C3 fixation was observed in this system with monomeric (m-) rat IgA or with mouse m- and d-IgA (MOPC315). Soluble and insoluble rat IgA IC were prepared using dinitrophenylated rat serum albumin (DNP8RSA) as antigen (Ag), and assessed for C activation. It was shown that insoluble IC (immune precipitates; IP) containing m-, d- or pIgA of rat origin activate the alternative pathway of rat C, as demonstrated by their capacity to induce C consumption in NRS in the presence of Mg-EGTA. When p- and m-IgA IP were compared for their capacity to activate C, it was found that p-IgA activated C four times as efficiently as m-IgA IP (at 2 mg/ml). Soluble rat IgA IC were prepared in an excess of DNP8RSA, fractionated by gel filtration on Sepharose 6B, and analyzed for C activation and antibody (Ab)/Ag ratio. In contrast to m-IgA IP, soluble m-IgA did not activate C. On the other hand soluble d-IgA IC activated C dependent on their concentration and size: at a concentration of 0.1 mg/ml high-molecular weight d-IgA IC with a high Ab/Ag ratio were four times as efficient as low-molecular weight IC with a low Ab/Ag ratio, and twice as efficient as IP prepared at equivalence. To demonstrate the induction by IgA of the assembly of the terminal membrane attack complex, trinitrophenyl (TNP)-conjugated rat red blood cells (TNP-RRBC) coated with d- or p-IgA were shown to be lysed in NRS in the presence of Mg-EGTA. No lysis of m-IgA-coated TNP-RRBC was observed. The results in this study demonstrate that both soluble and

  13. The Overlapping Roles of Antimicrobial Peptides and Complement in Recruitment and Activation of Tumor-Associated Inflammatory Cells

    PubMed Central

    Al-Rayahi, Izzat A. M.; Sanyi, Raghad H. H.

    2015-01-01

    Antimicrobial peptides (AMPs) represent a group of small (6–100 amino acids), biologically active molecules, which are produced by plants, mammals, and microorganisms (1). An important element of the innate immune response, AMP, possesses potent antibiotic, antifungal, and antiviral activities. Furthermore, AMP may be involved in a number of other processes such as angiogenesis and modulation of the immune response such as stimulation of chemokines and chemotaxis of leukocytes. AMPs have been proposed as alternative therapies for infectious diseases. AMP may also exert cytotoxic activity against tumor cells. Further understanding of the biological function of these peptides during tumor development and progression may aid in the development of novel anti-tumor therapies with refined application of innate molecules. AMP and complement have distinct roles to play in shaping the microenvironment (Table 1). Components of the complement system are integral contributors in responding to infection and sterile inflammation. Moreover, complement plays a role in the trafficking of cells in the tumor microenvironment, and thereby possibly in the immune response to cancer. This article will try to outline characteristics of AMP and complement in mobilization and recruitment of cells in tumor microenvironment. PMID:25657649

  14. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (aHUS), fatal Stx-HUS, C3 glomerulonephritis, and the HELLP syndrome

    PubMed Central

    Fang, Celia J.; Fremeaux-Bacchi, Veronique; Liszewski, M. Kathryn; Pianetti, Gaia; Noris, Marina; Goodship, Timothy H. J.

    2008-01-01

    The hemolytic uremic syndrome (HUS) is a triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment. Genetic studies demonstrate that heterozygous mutations of membrane cofactor protein (MCP;CD46) predispose to atypical HUS (aHUS), which is not associated with exposure to Shiga toxin (Stx). Among the initial 25 MCP mutations in patients with aHUS were 2, R69W and A304V, that were expressed normally and for which no dysfunction was found. The R69W mutation is in complement control protein module 2, while A304V is in the hydrophobic transmembrane domain. In addition to 3 patients with aHUS, the A304V mutation was identified in 1 patient each with fatal Stx-HUS, the HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome, and glomerulonephritis with C3 deposits. A major goal was to assess if these putative mutations lead to defective complement regulation. Permanent cell lines expressing the mutated proteins were complement “challenged,” and membrane control of C3 fragment deposition was monitored. Both the R69W and A304V MCP mutations were deficient in their ability to control the alternative pathway of complement activation on a cell surface, illustrating the importance of modeling transmembrane proteins in situ. PMID:17914026

  15. Correlation between Activity and Domain Complementation in Adenylyl Cyclase Demonstrated with a Novel Fluorescence Resonance Energy Transfer Sensor.

    PubMed

    Ritt, Michael; Sivaramakrishnan, Sivaraj

    2016-04-01

    Adenylyl cyclase (AC) activity relies on multiple effectors acting through distinct binding sites. Crystal structures have revealed the location of these sites, and biochemical studies have explored the kinetics of ACs, but the interplay between conformation and activity remains incompletely understood. Here, we describe a novel fluorescence resonance energy transfer (FRET) sensor that functions both as a soluble cyclase and a reporter of complementation within the catalytic domain. We report a strong linear correlation between catalytic domain complementation and cyclase activity upon stimulation with forskolin and Gαs. Exploiting this, we dissect the mechanism of action of a series of forskolin analogs and a P-site inhibitor, 2'-d3'-AMP. Finally, we demonstrate that this sensor is functional in live cells, wherein it reports forskolin-stimulated activity of AC. PMID:26801393

  16. Complement and Viral Pathogenesis

    PubMed Central

    Stoermer, Kristina A.; Morrison, Thomas E.

    2011-01-01

    The complement system functions as an immune surveillance system that rapidly responds to infection. Activation of the complement system by specific recognition pathways triggers a protease cascade, generating cleavage products that function to eliminate pathogens, regulate inflammatory responses, and shape adaptive immune responses. However, when dysregulated, these powerful functions can become destructive and the complement system has been implicated as a pathogenic effector in numerous diseases, including infectious diseases. This review highlights recent discoveries that have identified critical roles for the complement system in the pathogenesis of viral infection. PMID:21292294

  17. Management of hemolytic-uremic syndrome in children

    PubMed Central

    Grisaru, Silviu

    2014-01-01

    Acute renal failure associated with a fulminant, life-threatening systemic disease is rare in previously healthy young children; however, when it occurs, the most common cause is hemolytic-uremic syndrome (HUS). In most cases (90%), this abrupt and devastating illness is a result of ingestion of food or drink contaminated with pathogens that produce very potent toxins. Currently, there are no proven treatment options that can directly inactivate the toxin or effectively interfere with the cascade of destructive events triggered by the toxin once it gains access to the bloodstream and binds its receptor. However, HUS is self-limited, and effective supportive management during the acute phase is proven to be a life saver for children affected by HUS. A minority of childhood HUS cases, approximately 5%, are caused by various genetic mutations causing uncontrolled activation of the complement system. These children, who used to have a poor prognosis leading to end-stage renal disease, now have access to exciting new treatment options that can preserve kidney function and avoid disease recurrences. This review provides a summary of the current knowledge on the epidemiology, pathophysiology, and clinical presentation of childhood HUS, focusing on a practical approach to best management measures. PMID:24966691

  18. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... In some cases, a drug can cause the immune system to mistake your own red blood cells for foreign substances. The body responds by making ...

  19. Hemolytic anemia caused by chemicals and toxins

    MedlinePlus

    Anemia - hemolytic - caused by chemicals or toxins ... Possible substances that can cause hemolytic anemia include: Anti-malaria drugs (quinine compounds) Arsenic Dapsone Intravenous water infusion (not half-normal saline or normal saline) Metals (chromium/chromates, ...

  20. Thymoma with Autoimmune Hemolytic Anemia

    PubMed Central

    Suzuki, Kensuke; Inomata, Minehiko; Shiraishi, Shiori; Hayashi, Ryuji; Tobe, Kazuyuki

    2014-01-01

    A 38-year-old Japanese male was referred to our hospital with abnormal chest X-ray results and severe Coombs-positive hemolytic anemia. He was diagnosed with a stage IV, WHO type A thymoma and was treated with oral prednisolone (1 mg/kg/day) and subsequent chemotherapy. After chemotherapy, the patient underwent surgical resection of the thymoma. Hemolysis rapidly disappeared and did not return after the discontinuation of oral corticosteroids. Corticosteroid therapy may be preferable to chemotherapy or thymoma surgical resection in the management of autoimmune hemolytic anemia with thymoma. PMID:25722666

  1. Complement Activation Is Required for Induction of a Protective Antibody Response against West Nile Virus Infection

    PubMed Central

    Mehlhop, Erin; Whitby, Kevin; Oliphant, Theodore; Marri, Anantha; Engle, Michael; Diamond, Michael S.

    2005-01-01

    Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response. PMID:15919902

  2. Microangiopathic Hemolytic Anemia and Thrombocytopenia in Patients With Cancer.

    PubMed

    Morton, Jordan M; George, James N

    2016-06-01

    The unexpected occurrence of thrombotic microangiopathy (TMA), characterized by microangiopathic hemolytic anemia and thrombocytopenia, in a patient with cancer requires urgent diagnosis and appropriate management. TMA is a term used to describe multiple syndromes caused by microvascular thrombosis, including thrombotic thrombocytopenic purpura (TTP), Shiga toxin-mediated hemolytic uremic syndrome, and complement-mediated TMA. In patients with cancer, systemic microvascular metastases and bone marrow involvement can cause microangiopathic hemolytic anemia and thrombocytopenia. This occurs most often in patients with known metastatic cancer, but microangiopathic hemolytic anemia and thrombocytopenia may occur unexpectedly in patients without known metastatic disease or be the presenting features of undiagnosed cancer. TMA may also be caused by commonly used chemotherapy agents, either through dose-dependent toxicity or an acute immune-mediated reaction. These causes of TMA must be distinguished from TTP, which results from a severe deficiency of ADAMTS13 and is the most common cause of TMA among adults without cancer. The importance of this distinction is to avoid inappropriate use of plasma exchange, which is associated with major complications. Plasma exchange is the essential treatment for TTP, but it has no known benefit for patients with cancer-induced or drug-induced TMA. We will describe cancer-induced and drug-induced TMA using the experience of the Oklahoma TTP-Hemolytic Uremic Syndrome Registry and data from a systematic review of all published reports of drug-induced TMA. We will illustrate the principles of evaluation and management of these disorders with patients' stories. PMID:27288467

  3. Lysis of horse red blood cells mediated by antibody-independent activation of the alternative pathway of chicken complement.

    PubMed Central

    Ohta, H; Yoshikawa, Y; Kai, C; Yamanouchi, K; Okada, H

    1984-01-01

    Horse red blood cells (HRBC) were found to be lysed when incubated with fresh normal chicken serum (NCS). By comparison of the properties of the lysis of HRBC with those of the complement-dependent lysis of sheep red blood cells (SRBC) sensitized with haemolytic antibody via the classical pathway, the following differences were observed between the two haemolytic phenomena. (i) The lysis of HRBC was independent on antibody in contrast to the antibody dependence of the lysis of sensitized SRBC. (ii) The lysis of HRBC was dependent on Mg but not on Ca ion, whereas the lysis of sensitized SRBC required both Mg and Ca ions. (iii) Treatment of NCS with carrageenan that acts as an inactivator of the first component of complement (C1) inhibited the lysis of sensitized SRBC but not the lysis of HRBC. (iv) C1 was consumed in the lysis of sensitized SRBC but not in the lysis of HRBC. (v) Cobra venom factor (CVF), C3 inactivator via the alternative complement pathway, inhibited the lysis of HRBC but not the lysis of sensitized SRBC. (vi) Minimal reaction times for the lysis of HRBC and for the lysis of sensitized SRBC were 90 and 60 min, respectively. These findings indicate that the lysis of HRBC was caused by the antibody-independent activation of complement via the alternative pathway. PMID:6430791

  4. Exploring the potential benefits of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system diseases.

    PubMed

    Kotwal, Girish J; Fernando, Nilisha; Zhou, Jianhua; Valter, Krisztina

    2014-10-01

    Aging is a major risk factor for the development of diseases related to the central nervous system (CNS), such as Alzheimer's disease (AD) and age-related macular degeneration (AMD). In both cases, linkage studies and genome-wide association studies found strong links with complement regulatory genes and disease risk. In AD, both CLU and CR1 genes were implicated in the late-onset form of the disease. In AMD, polymorphisms in CFH, CFB and C2 were similarly implicated. The cost of caring for patients with AD or AMD is approaching billions of dollars, and with the baby boomers reaching their 60's, this amount is likely to increase further. Intervention using complement inhibitors for individuals in their early 50s who are at a higher risk of disease development, (testing positive for genetic risk factors), could slow the progression of AD or AMD and possibly prevent the severity of late stage symptoms. Although we have used the vaccinia virus complement control protein (VCP) to elucidate the role of complement in CNS diseases, it has merely been an investigational tool but not the only possible potential therapeutic agent. PMID:25052409

  5. HIV-1 induces complement factor C3 synthesis in astrocytes and neurons by modulation of promoter activity.

    PubMed

    Bruder, Cornelia; Hagleitner, Magdalena; Darlington, Gretchen; Mohsenipour, Iradj; Würzner, Reinhard; Höllmüller, Isolde; Stoiber, Heribert; Lass-Flörl, Cornelia; Dierich, Manfred P; Speth, Cornelia

    2004-02-01

    Virus-induced complement expression and activation in the brain is hypothesized to contribute to the process of neurodegeneration in AIDS-associated neurological disorders. Previous experiments have shown that the human immunodeficiency virus (HIV) upregulates the low basal production of complement factor C3 in astrocytes and neurons. Since inhibition of complement synthesis and activation in the brain may represent a putative therapeutic goal to prevent virus-induced damage, we analysed the mechanism of the HIV-induced modulation of C3 expression. Detailed studies using different C3 promoter constructs revealed that HIV activates the synthesis of C3 by stimulation of the promoter. This HIV-induced promoter activation could be measured both in different astrocytic cell lines and in neurons. Deletion constructs of the C3 promoter defined the IL-6/IL-1beta responsive element within the promoter region as a central element for the responsiveness of the C3 promoter towards the influence of HIV. A binding site for the transcription factor C/EBPdelta was identified as important regulatory domain within the IL-6/IL-1beta responsive element, since a point mutation which eliminates the binding capacity of C/EBPdelta to this site also abolishes the induction by HIV-1. Similarly, the viral proteins Nef and gp41 which had also been shown to stimulate the synthesis of C3, exert their effect via the IL-6/IL-1beta responsive element with binding of the transcription factor C/EBPdelta representing the critical step. Our experiments clearly define the mechanism for the induction of complement factors in the HIV-infected brain and reveal a decisive role of the regulator protein C/EBPdelta for the HIV-induced increase in C3 expression. PMID:14725791

  6. Critical Role and Therapeutic Control of the Lectin Pathway of Complement Activation in an Abortion-Prone Mouse Mating.

    PubMed

    Petitbarat, Marie; Durigutto, Paolo; Macor, Paolo; Bulla, Roberta; Palmioli, Alessandro; Bernardi, Anna; De Simoni, Maria-Grazia; Ledee, Nathalie; Chaouat, Gerard; Tedesco, Francesco

    2015-12-15

    The abortion-prone mating combination CBA/J × DBA/2 has been recognized as a model of preeclampsia, and complement activation has been implicated in the high rate of pregnancy loss observed in CBA/J mice. We have analyzed the implantation sites collected from DBA/2-mated CBA/J mice for the deposition of the complement recognition molecules using CBA/J mated with BALB/c mice as a control group. MBL-A was observed in the implantation sites of CBA/J × DBA/2 combination in the absence of MBL-C and was undetectable in BALB/c-mated CBA/J mice. Conversely, C1q was present in both mating combinations. Searching for other complement components localized at the implantation sites of CBA/J × DBA/2, we found C4 and C3, but we failed to reveal C1r. These data suggest that complement is activated through the lectin pathway and proceeds to completion of the activation sequence as revealed by C9 deposition. MBL-A was detected as early as 3.5 d of pregnancy, and MBL-A deficiency prevented pregnancy loss in the abortion-prone mating combination. The contribution of the terminal complex to miscarriage was supported by the finding that pregnancy failure was largely inhibited by the administration of neutralizing Ab to C5. Treatment of DBA/2-mated CBA/J mice with Polyman2 that binds to MBL-A with high affinity proved to be highly effective in controlling the activation of the lectin pathway and in preventing fetal loss. PMID:26561549

  7. Complement activation pathways: a bridge between innate and adaptive immune responses in asthma.

    PubMed

    Wills-Karp, Marsha

    2007-07-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, is no exception. The emerging paradigm is that C3a production at the airway surface serves as a common pathway for the induction of Th2-mediated inflammatory responses to a variety of environmental triggers of asthma (i.e., allergens, pollutants, viral infections, cigarette smoke). In contrast, C5a plays a dual immunoregulatory role by protecting against the initial development of a Th2-polarized adaptive immune response via its ability to induce tolerogenic dendritic cell subsets. On the other hand, C5a drives type 2-mediated inflammatory responses once inflammation ensues. Thus, alterations in the balance of generation of the various components of the complement pathway either due to environmental exposure changes or genetic alterations in genes of the complement cascade may underlie the recent rise in asthma prevalence in westernized countries. PMID:17607007

  8. Complete absence of the third component of complement in man.

    PubMed Central

    Ballow, M; Shira, J E; Harden, L; Yang, S Y; Day, N K

    1975-01-01

    A 4-yr-old female patient who has recurrent infections with encapsulated bacteria and gramnegative organisms was found to have a complete absence of total hemolytic complement and C3. Total hemolytic complement was reconstituted by the addition of functionally pure C3. With the exception of a moderately reduced homolytic C4, all other C components, measured homolytically and by radial immunodiffusion, were present in normal amounts. By Ouchterlong analysis, the patient's serum contained C3b inactivator and properdin but no antigenic C3. Activation of the alternate pathway was examined by purified cobra venom factor (CVF) and inulin. Neither of these substances led to activation of properdin factor B to B. On addition of partially purified Cordis C3, in four out of four instances and with different preparations of Cordis C3, activation of factor B to B occurred in the inulin-serum-C3 mixture. In contrast, activation of factor B to B occurred only once out of four times with CVF-serum-C3 mixtures. Immune adherence was found to be normal in the patient's serum and could be removed by anti-C4 antiserum of hydrazine treatment. A marked opsonic defect was present against Escherichia coli. Serum bactericidal activity against a rough strain of E. coli was also defective. The ability to mobilize an infalmmatory response was examined by Rebuck skin window technique. A delay in neutrophil migration occurred until the 6th h. In vitro lymphocyte transformation and serum immunoglobulins were normal. The proportion of peripheral blood T cells forming spontaneous sheep erythrocyte rosettes and the percentage of B cells forming EAC rosettes by the C3 receptor were normal. The significance of the absence of C3 in our patient is emphasized by the increased number of infections with encapsulated bacteria and the decreased functional biological activities of the C system, important in host defense mechanism(s). Images PMID:1159084

  9. [Hemolytic anemias and vitamin B12 deficieny].

    PubMed

    Dietzfelbinger, Hermann; Hubmann, Max

    2015-08-01

    Hemolytic anemias consist of corpuscular, immun-hemolytic and toxic hemolytic anemias. Within the group of corpuscular hemolytic anemias, except for the paroxysmal nocturnal hemoglobinuria (PNH), all symptoms are caused by underlying heredetiary disorders within the red blood cell membran (hereditary spherocytosis), deficiencies of red cell enzymes (G6PDH- and pyrovatkinase deficiency) or disorders in the hemoglobin molecule (thalassaemia and sickle cell disease). Immune-hemolytic anemias are acquired hemolytic anemias and hemolysis is caused by auto- or allo-antibodies which are directed against red blood cell antigens. They are classified as warm, cold, mixed type or drug-induced hemolytic anemia. Therapy consists of glucocorticoids and other immunsuppressive drugs. Pernicious anemia is the most important vitamin B12 deficiency disorder. Diagnosis relies on cobalamin deficiency and antibodies to intrinsic factor. The management should focus on a possibly life-long replacement treatment with cobalamin. PMID:26306021

  10. Structural characterization of a homogalacturonan from Capparis spinosa L. fruits and anti-complement activity of its sulfated derivative.

    PubMed

    Wang, Huijun; Wang, Hongwei; Shi, Songshan; Duan, Jinyou; Wang, Shunchun

    2012-08-01

    A water-soluble polysaccharide CSPS-2B-2 with a molecular mass of 8.8 kDa, was obtained from the fruits of Capparis spinosa L. Chemical and NMR spectral analysis verified CSPS-2B-2 was a linear poly-(1-4)-α-D-galactopyranosyluronic acid in which 12.9±0.4% of carboxyl groups existed as methyl ester and 2.6±0.1% of D-GalpA residues were acetylated. A sulfated derivative Sul-2B-2 with a sulfation degree of 0.88±0.02 was prepared via the substitution of C-2 and/or C-3 of GalpA residues in CSPS-2B-2. Bioassay on the complement and coagulation system demonstrated that Sul-2B-2 (CH(50): 3.5±0.2 μg/mL) had a stronger inhibitory effect on the activation of complement system through the classic pathway than that of heparin (CH(50): 8.9±0.3 μg/mL). Interestingly, Sul-2B-2 at low dose even middle dose (for example 52 μg/mL) had no effect on coagulation system, which was totally different from heparin. Thus, our observation indicated that Sul-2B-2 was more efficient than heparin in inhibiting the activation of the complement system through classical pathway and exhibiting a relatively less anti-coagulant activity. These results suggested that the sulfated derivative Sul-2B-2 prepared from the homogalacturonan in the fruits of Capparis spinosa L, might be a promising drug candidate in case of necessary therapeutic complement inhibition. PMID:22752400

  11. Functional anatomy of complement factor H.

    PubMed

    Makou, Elisavet; Herbert, Andrew P; Barlow, Paul N

    2013-06-11

    Factor H (FH) is a soluble regulator of the proteolytic cascade at the core of the evolutionarily ancient vertebrate complement system. Although FH consists of a single chain of similar protein modules, it has a demanding job description. Its chief role is to prevent complement-mediated injury to healthy host cells and tissues. This entails recognition of molecular patterns on host surfaces combined with control of one of nature's most dangerous examples of a positive-feedback loop. In this way, FH modulates, where and when needed, an amplification process that otherwise exponentially escalates the production of the pro-inflammatory, pro-phagocytic, and pro-cytolytic cleavage products of complement proteins C3 and C5. Mutations and single-nucleotide polymorphisms in the FH gene and autoantibodies against FH predispose individuals to diseases, including age-related macular degeneration, dense-deposit disease, and atypical hemolytic uremic syndrome. Moreover, deletions or variations of genes for FH-related proteins also influence the risk of disease. Numerous pathogens hijack FH and use it for self-defense. As reviewed herein, a molecular understanding of FH function is emerging. While its functional oligomeric status remains uncertain, progress has been achieved in characterizing its three-dimensional architecture and, to a lesser extent, its intermodular flexibility. Models are proposed, based on the reconciliation of older data with a wealth of recent evidence, in which a latent circulating form of FH is activated by its principal target, C3b tethered to a self-surface. Such models suggest hypotheses linking sequence variations to pathophysiology, but improved, more quantitative, functional assays and rigorous data analysis are required to test these ideas. PMID:23701234

  12. Differential effects of complement activation products c3a and c5a on cardiovascular function in hypertensive pregnant rats.

    PubMed

    Lillegard, Kathryn E; Loeks-Johnson, Alex C; Opacich, Jonathan W; Peterson, Jenna M; Bauer, Ashley J; Elmquist, Barbara J; Regal, Ronald R; Gilbert, Jeffrey S; Regal, Jean F

    2014-11-01

    Early-onset pre-eclampsia is characterized by decreased placental perfusion, new-onset hypertension, angiogenic imbalance, and endothelial dysfunction associated with excessive activation of the innate immune complement system. Although our previous studies demonstrated that inhibition of complement activation attenuates placental ischemia-induced hypertension using the rat reduced uterine perfusion pressure (RUPP) model, the important product(s) of complement activation has yet to be identified. We hypothesized that antagonism of receptors for complement activation products C3a and C5a would improve vascular function and attenuate RUPP hypertension. On gestational day (GD) 14, rats underwent sham surgery or vascular clip placement on ovarian arteries and abdominal aorta (RUPP). Rats were treated once daily with the C5a receptor antagonist (C5aRA), PMX51 (acetyl-F-[Orn-P-(D-Cha)-WR]), the C3a receptor antagonist (C3aRA), SB290157 (N(2)-[(2,2-diphenylethoxy)acetyl]-l-arginine), or vehicle from GD 14-18. Both the C3aRA and C5aRA attenuated placental ischemia-induced hypertension without affecting the decreased fetal weight or decreased concentration of free circulating vascular endothelial growth factor (VEGF) also present in this model. The C5aRA, but not the C3aRA, attenuated placental ischemia-induced increase in heart rate and impaired endothelial-dependent relaxation. The C3aRA abrogated the acute pressor response to C3a peptide injection, but it also unexpectedly attenuated the placental ischemia-induced increase in C3a, suggesting nonreceptor-mediated effects. Overall, these results indicate that both C3a and C5a are important products of complement activation that mediate the hypertension regardless of the reduction in free plasma VEGF. The mechanism by which C3a contributes to placental ischemia-induced hypertension appears to be distinct from that of C5a, and management of pregnancy-induced hypertension is likely to require a broad anti

  13. [Study on hemolytic mechanism of polyphyllin II].

    PubMed

    Ning, Li-hua; Zhou, Bo; Zhang, Yao-xiang; Li, Xin-ping

    2015-09-01

    To study the hemolytic effect of polyphyllin II (PP II) mediated by anion channel protein and glucose transporter 1 (GLUT1), in order to initially reveal its hemolytic mechanism in vitro. In the experiment, the spectrophotometric method was adopted to detect the hemolysis of PP II in vitro and the effect of anion channel-related solution and blocker, glucose channel-related inhibitor and multi-target drugs dehydroepiandrosterone (DHEA) and diazepam on the hemolysis of PP II. The scanning electron microscope and transmission electron microscope were used to observe the effect of PP II on erythrocyte (RBC) morphology. The results showed that PP II -processed blood cells were severely deformed into spherocytes, acanthocyturia and vesicae. According to the results of the PP II hemolysis experiment in vitro, the anion hypertonic solution LiCl, NaHCO3, Na2SO4 and PBS significantly inhibited the hemolysis induced by PP II (P < 0.05), while blockers NPPB and DIDS remarkably promoted it (P < 0.01). Hyperosmotic sodium chloride, fructose and glucose at specific concentrations notably antagonized the hemolysis induced by PP II (P < 0.05). The glucose channel inhibitor Cytochalasin B and verapamil remarkably antagonized the hemolysis induced by PP II (P < 0.01). The hemolysis induced by PP II could also be antagonized by 1 gmol x L(1) diazepam and 100 μmol x L(-1) DHEA pretreated for 1 min (P < 0.01). In conclusion, the hemolytic mechanism of PP II in vitro may be related to the increase in intracellular osmotic pressure and rupture of erythrocytes by changing the anion channel transport activity, with GLUT1 as the major competitive interaction site. PMID:26983211

  14. Targeting complement in therapy.

    PubMed

    Kirschfink, M

    2001-04-01

    With increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases, strategies that interfere with its deleterious action have become a major focus in pharmacological research. Endogenous soluble complement inhibitors (C1 inhibitor, recombinant soluble complement receptor 1, antibodies) blocking key proteins of the cascade reaction, neutralizing the action of the complement-derived anaphylatoxin C5a, or interfering with complement receptor 3 (CR3, CD18/11b)-mediated adhesion of inflammatory cells to the vascular endothelium have successfully been tested in various animal models over the past years. Promising results consequently led to clinical trials. Furthermore, incorporation of membrane-bound complement regulators (decay-accelerating factor (CD55), membrane co-factor protein (CD46), CD59) in transgenic animals has provided a major step forward in protecting xenografts from hyperacute rejection. At the same time, the poor contribution of complement to the antitumor response, which is caused by multiple resistance mechanisms that hamper the efficacy of antibody-based tumor therapy, is increasingly recognized and requires pharmacologic intervention. First attempts have now been made to interfere with the resistance mechanisms, thereby improving complement-mediated tumor cell destruction. PMID:11414360

  15. Complement-mediated bactericidal activity of human antibodies to poly alpha 2-->8 N-acetylneuraminic acid, the capsular polysaccharide of Neisseria meningitidis serogroup B.

    PubMed

    Mandrell, R E; Azmi, F H; Granoff, D M

    1995-11-01

    Serum antibodies to Neisseria meningitidis group B (MenB) polysaccharide are reported not to elicit bacteriolysis in the presence of human complement. To reexamine this question, we evaluated the ability of two human IgM anti-MenB polysaccharide monoclonal antibodies (MAbs) and seven human MenB polysaccharide-reactive human IgM paraproteins to elicit bacteriolysis. In the presence of human complement, both MAbs and five of the seven paraproteins were bactericidal at antibody concentrations of 0.25-9.6 micrograms/mL (50% killing). Activity of the respective antibodies was enhanced 200- to > 10,000-fold when rabbit complement was used instead of human complement. With rabbit complement, the bactericidal activity of human IgM polyclonal antibody or MAb to Haemophilus influenzae type b (Hib) polysaccharide but not human IgG polyclonal antibody or MAb to Hib polysaccharide was similarly augmented. Thus, for both MenB and Hib, IgM antipolysaccharide antibodies elicit complement-mediated bactericidal activity in the presence of human complement, and the use of rabbit complement yields spuriously high activity. PMID:7594665

  16. Protease inhibitors decrease IgG shedding from Staphylococcus aureus, increasing complement activation and phagocytosis efficiency.

    PubMed

    Fernandez Falcon, Maria F; Echague, Charlene G; Hair, Pamela S; Nyalwidhe, Julius O; Cunnion, Kenji M

    2011-10-01

    Staphylococcus aureus is a major pathogen for immunologically intact humans and its pathogenesis is a model system for evasion of host defences. Antibodies and complement are essential elements of the humoral immune system for prevention and control of S. aureus infections. The specific hypothesis for the proposed research is that S. aureus modifies humoral host defences by cleaving IgG that has bound to the bacterial surface, thereby inhibiting opsonophagocytosis. S. aureus was coated with pooled, purified human IgG and assayed for the shedding of cleaved IgG fragments using ELISA and Western blot analysis. Surface-bound IgG was shed efficiently from S. aureus in the absence of host blood proteins. Broad-spectrum protease inhibitors prevented cleavage of IgG from the S. aureus surface, suggesting that staphylococcal proteases are responsible for IgG cleavage. Serine protease inhibitors and cysteine protease inhibitors decreased the cleavage of surface-bound IgG; however, a metalloprotease inhibitor had no effect. Using protease inhibitors to prevent the cleavage of surface-bound IgG increased the binding of complement C3 fragments on the surface of S. aureus, increased the association with human neutrophils and increased phagocytosis by human neutrophils. PMID:21636671

  17. Complement activation on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura.

    PubMed

    Peerschke, Ellinor I B; Andemariam, Biree; Yin, Wei; Bussel, James B

    2010-02-01

    The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 x 10(9)/l) (P = 0.027) and thrombocytopenia (platelet count < 100 x 10(9)/l) (P = 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacological therapies, an enhanced response to splenectomy was noted (P < 0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495

  18. Creating functional sophistication from simple protein building blocks, exemplified by factor H and the regulators of complement activation.

    PubMed

    Makou, Elisavet; Herbert, Andrew P; Barlow, Paul N

    2015-10-01

    Complement control protein modules (CCPs) occur in numerous functionally diverse extracellular proteins. Also known as short consensus repeats (SCRs) or sushi domains each CCP contains approximately 60 amino acid residues, including four consensus cysteines participating in two disulfide bonds. Varying in length and sequence, CCPs adopt a β-sandwich type fold and have an overall prolate spheroidal shape with N- and C-termini lying close to opposite poles of the long axis. CCP-containing proteins are important as cytokine receptors and in neurotransmission, cell adhesion, blood clotting, extracellular matrix formation, haemoglobin metabolism and development, but CCPs are particularly well represented in the vertebrate complement system. For example, factor H (FH), a key soluble regulator of the alternative pathway of complement activation, is made up entirely from a chain of 20 CCPs joined by short linkers. Collectively, therefore, the 20 CCPs of FH must mediate all its functional capabilities. This is achieved via collaboration and division of labour among these modules. Structural studies have illuminated the dynamic architectures that allow FH and other CCP-rich proteins to perform their biological functions. These are largely the products of a highly varied set of intramolecular interactions between CCPs. The CCP can act as building block, spacer, highly versatile recognition site or dimerization mediator. Tandem CCPs may form composite binding sites or contribute to flexible, rigid or conformationally 'switchable' segments of the parent proteins. PMID:26517887

  19. Complement Activation on Platelets Correlates with a Decrease in Circulating Immature Platelets in Patients with Immune Thrombocytopenic Purpura

    PubMed Central

    Peerschke, Ellinor I.B.; Andemariam, Biree; Yin, Wei; Bussel, James B.

    2010-01-01

    The role of the complement system in immune thrombocytopenic purpura (ITP) is not well defined. We examined plasma from 79 patients with ITP, 50 healthy volunteers, and 25 patients with non-immune mediated thrombocytopenia, to investigate their complement activation/fixation capacity (CAC) on immobilized heterologous platelets. Enhanced CAC was found in 46 plasma samples (59%) from patients with ITP, but no samples from patients with non-immune mediated thrombocytopenia. Plasma from healthy volunteers was used for comparison. In patients with ITP, an enhanced plasma CAC was associated with a decreased circulating absolute immature platelet fraction (A-IPF) (<15 × 109/L) (p = 0.027) and thrombocytopenia (platelet count less than 100K/μl) (p= 0.024). The positive predictive value of an enhanced CAC for a low A-IPF was 93%, with a specificity of 77%. The specificity and positive predictive values increased to 100% when plasma CAC was defined strictly by enhanced C1q and/or C4d deposition on test platelets. Although no statistically significant correlation emerged between CAC and response to different pharmacologic therapies, an enhanced response to splenectomy was noted (p <0.063). Thus, complement fixation may contribute to the thrombocytopenia of ITP by enhancing clearance of opsonized platelets from the circulation, and/or directly damaging platelets and megakaryocytes. PMID:19925495

  20. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs.

    PubMed

    Szebeni, Janos; Storm, Gert

    2015-12-18

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs. long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. PMID:26182876

  1. CR2 is the primary acceptor site for C3 during alternative pathway activation of complement on human peripheral B lymphocytes.

    PubMed

    Marquart, H V; Svehag, S E; Leslie, R G

    1994-07-01

    Human cells infected with certain viruses acquire the ability to activate the alternative pathway (AP) of complement. Complement receptor 2 on EBV-infected lymphoblastoid cell lines has been reported to act as the covalent binding site for C3b during AP activation. Using flow cytometry, we investigated the ability of normal human peripheral blood leukocytes to activate the AP in homologous serum. Deposition of C3 fragments was determined as a measurement of complement activation on each of the subpopulations of the blood cells. Incubating human peripheral blood leukocytes with homologous or autologous serum resulted in C3 deposition on B cells and, to a lesser extent, on monocytes and polymorphonuclear leukocytes. Complement activation in the presence of Mg2+ ions and EGTA revealed major involvement of the AP in the case of B cells, and to a lesser extent for other leukocyte populations examined. Preincubation of the leukocytes with polyclonal anti-complement receptor 2 Ab markedly decreased the C3 fragment deposition, as a result of in vitro AP activation, on B cells, indicating that on normal human B cells this receptor may be involved in AP activation. Freshly isolated, normal human B cells also bear low but significant amounts of C3d,g fragments on their membranes, indicating that this AP activation also occurs in vivo. AP activation was partially decreased in the presence of autologous erythrocytes (RBC) suggesting that complement regulatory proteins on RBC play a role in limiting the AP activation in vivo. PMID:7515925

  2. Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats.

    PubMed

    Lynch, Nicholas J; Willis, Colin L; Nolan, Christopher C; Roscher, Silke; Fowler, Maxine J; Weihe, Eberhard; Ray, David E; Schwaeble, Wilhelm J

    2004-01-01

    A reliable way to visualise the state of microglial activation is to monitor the microglial gene expression profile. Microglia are the only CNS resident cells that synthesise C1q, the recognition sub-component of the classical complement pathway, in vivo. C1q biosynthesis in resting ramified microglia is often low, but it increases dramatically in activated microglia. In this study, the expression of C1q was used to monitor microglial activation at all stages of 3-chloropropanediol-induced neurotoxicity, a new model of blood-brain barrier (BBB) breakdown. In rats, 3-chloropropanediol produces very focused lesions in the brain, characterised by early astrocyte swelling and loss, followed by neuronal death and barrier dysfunction. Using in situ hybridisation, immunohistochemistry, and real-time RT-PCR, we found that increased C1q biosynthesis and microglial activation precede BBB dysfunction by at least 18 and peak 48 h after injection of 3-chloropropanediol, which coincides with the onset of active haemorrhage. Microglial activation is biphasic; an early phase of global activation is followed by a later phase in which microglial activation becomes increasingly focused in the lesions. During the early phase, expression of the pro-inflammatory mediators interleukin-1beta (IL1beta), tumour necrosis factor alpha (TNFalpha) and early growth response-1 (Egr-1) increased in parallel with C1q, but was restricted to the lesions. Expression of C1q (but not IL1beta, TNFalpha or Egr-1) remains high after BBB function is restored, and is accompanied by late up-regulation of the C1q-associated serine proteases, C1r and C1s, suggesting that microglial biosynthesis of the activation complex of the classical pathway may support the removal of cell debris by activation of complement. PMID:14644096

  3. Hemolytic Uremic Syndrome: Toxins, Vessels, and Inflammation

    PubMed Central

    Cheung, Victoria; Trachtman, Howard

    2014-01-01

    Hemolytic uremic syndrome (HUS) is characterized by thrombotic microangiopathy of the glomerular microcirculation and other vascular beds. Its defining clinical phenotype is acute kidney injury (AKI), microangiopathic anemia, and thrombocytopenia. There are many etiologies of HUS including infection by Shiga toxin-producing bacterial strains, medications, viral infections, malignancy, and mutations of genes coding for proteins involved in the alternative pathway of complement. In the aggregate, although HUS is a rare disease, it is one of the most common causes of AKI in previously healthy children and accounts for a sizable number of pediatric and adult patients who progress to end stage kidney disease. There has been great progress over the past 20 years in understanding the pathophysiology of HUS and its related disorders. There has been intense focus on vascular injury in HUS as the major mechanism of disease and target for effective therapies for this acute illness. In all forms of HUS, there is evidence of both systemic and intra-glomerular inflammation and perturbations in the immune system. Renewed investigation into these aspects of HUS may prove helpful in developing new interventions that can attenuate glomerular and tubular injury and improve clinical outcomes in patients with HUS. PMID:25593915

  4. Hemolytic uremic syndrome: toxins, vessels, and inflammation.

    PubMed

    Cheung, Victoria; Trachtman, Howard

    2014-01-01

    Hemolytic uremic syndrome (HUS) is characterized by thrombotic microangiopathy of the glomerular microcirculation and other vascular beds. Its defining clinical phenotype is acute kidney injury (AKI), microangiopathic anemia, and thrombocytopenia. There are many etiologies of HUS including infection by Shiga toxin-producing bacterial strains, medications, viral infections, malignancy, and mutations of genes coding for proteins involved in the alternative pathway of complement. In the aggregate, although HUS is a rare disease, it is one of the most common causes of AKI in previously healthy children and accounts for a sizable number of pediatric and adult patients who progress to end stage kidney disease. There has been great progress over the past 20 years in understanding the pathophysiology of HUS and its related disorders. There has been intense focus on vascular injury in HUS as the major mechanism of disease and target for effective therapies for this acute illness. In all forms of HUS, there is evidence of both systemic and intra-glomerular inflammation and perturbations in the immune system. Renewed investigation into these aspects of HUS may prove helpful in developing new interventions that can attenuate glomerular and tubular injury and improve clinical outcomes in patients with HUS. PMID:25593915

  5. A Case of Microangiopathic Hemolytic Anemia after Myxoma Excision and Mitral Valve Repair Presenting as Hemolytic Uremic Syndrome

    PubMed Central

    Park, Young Joo; Kim, Sang Pil; Shin, Ho-Jin

    2016-01-01

    Microangiopathic hemolytic anemia occurs in a diverse group of disorders, including thrombotic thrombocytopenic purpura, hemolytic uremic syndrome, and prosthetic cardiac valves. Hemolytic anemia also occurs as a rare complication after mitral valve repair. In this report, we describe a case of microangiopathic hemolytic anemia following myxoma excision and mitral valve repair, which was presented as hemolytic uremic syndrome. PMID:27081450

  6. A Case of Microangiopathic Hemolytic Anemia after Myxoma Excision and Mitral Valve Repair Presenting as Hemolytic Uremic Syndrome.

    PubMed

    Park, Young Joo; Kim, Sang Pil; Shin, Ho-Jin; Choi, Jung Hyun

    2016-03-01

    Microangiopathic hemolytic anemia occurs in a diverse group of disorders, including thrombotic thrombocytopenic purpura, hemolytic uremic syndrome, and prosthetic cardiac valves. Hemolytic anemia also occurs as a rare complication after mitral valve repair. In this report, we describe a case of microangiopathic hemolytic anemia following myxoma excision and mitral valve repair, which was presented as hemolytic uremic syndrome. PMID:27081450

  7. Circulating conversion products of C3 in liver disease. Evidence for in vivo activation of the complement system

    PubMed Central

    Teisberg, P.; Gjone, E.

    1973-01-01

    Circulating conversion products of the third component of human complement (C3) were sought for in different forms of liver disease by the method of antigen–antibody crossed electrophoresis. Immunochemical determinations of C3 and C4 by the single radial immunodiffusion method were performed simultaneously. The conversion product C3b was found in four out of twelve patients with chronic active hepatitis (CAH) and in seven out of nine with primary biliary cirrhosis (PBC). C3b was also seen in a patient with the special form of acute hepatitis characterized by arthritic prodromas and a high titre of hepatitis-associated antigen (HAA) in serum in the acute phase. The group of CAH patients had low serum C3 and C4 regardless of whether C3 breakdown products could be demonstrated or not. In PBC normal serum levels of C3 and C4 were generally found. It is concluded that in some patients with CAH and in a majority of the patients with PBC activation of complement takes place in vivo, possibly on immune complexes deposited in the liver. The serum level of C3 is not a good parameter of immunologic activity in liver disease. ImagesFig. 1 PMID:4201114

  8. Potent inhibition of the classical pathway of complement by a novel C1q-binding peptide derived from the human astrovirus coat protein.

    PubMed

    Gronemus, Jenny Q; Hair, Pamela S; Crawford, Katrina B; Nyalwidhe, Julius O; Cunnion, Kenji M; Krishna, Neel K

    2010-01-01

    Previous work from our laboratories has demonstrated that purified, recombinant human astrovirus coat protein (HAstV CP) binds C1q and mannose-binding lectin (MBL) inhibiting activation of the classical and lectin pathways of complement, respectively. Analysis of the 787 amino acid CP molecule revealed that residues 79-139 share limited sequence homology with human neutrophil defensin-1 (HNP-1), a molecule previously demonstrated to bind C1q and MBL, inhibiting activation of the classical and lectin pathways of complement, respectively. A 30 amino acid peptide derived from this region of the CP molecule competitively inhibited the binding of wild-type CP to C1q. The parent peptide and various derivatives were subsequently assayed for C1q binding, inhibition of C1 and C4 activation as well as suppression of complement activation in hemolytic assays. The parent peptide and several derivatives inhibited complement activation in these functional assays to varying degrees. One peptide derivative in particular (E23A) displayed superior inhibition of complement activation in multiple assays of classical complement pathway activation. Further analysis revealed homology to a plant defensin allowing development of a proposed structural model for E23A. Based upon these findings, we hypothesize that further rationale optimization of E23A may result in a promising therapeutic inhibitor for the treatment of inflammatory and autoimmune diseases in which dysregulated activation of the classical and lectin pathways of complement contribute to pathogenesis. PMID:20728940

  9. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps.

    PubMed

    Schneider, Andrea E; Sándor, Noémi; Kárpáti, Éva; Józsi, Mihály

    2016-04-01

    Factor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma and on certain host surfaces. In addition to being a complement regulator, FH can bind to various cells via specific receptors, including binding to neutrophil granulocytes through complement receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, however, poorly understood. Because neutrophils are important innate immune cells in inflammatory processes and the host defense against pathogens, we aimed at studying the effects of FH on various neutrophil functions, including the generation of extracellular traps. FH co-localized with CD11b on the surface of neutrophils isolated from peripheral blood of healthy individuals, and cell-bound FH retained its cofactor activity and enhanced C3b degradation. Soluble FH supported neutrophil migration and immobilized FH induced cell spreading. In addition, immobilized but not soluble FH enhanced IL-8 release from neutrophils. FH alone did not trigger the cells to produce neutrophil extracellular traps (NETs), but NET formation induced by PMA and by fibronectin plus fungal β-glucan were inhibited by immobilized, but not by soluble, FH. Moreover, in parallel with NET formation, immobilized FH also inhibited the production of reactive oxygen species induced by PMA and by fibronectin plus β-glucan. Altogether, these data indicate that FH has multiple regulatory roles on neutrophil functions. While it can support the recruitment of neutrophils, FH may also exert anti-inflammatory effects and influence local inflammatory and antimicrobial reactions, and reduce tissue damage by modulating NET formation. PMID:26938503

  10. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation

    PubMed Central

    Martínez-Barricarte, Rubén; Heurich, Meike; Valdes-Cañedo, Francisco; Vazquez-Martul, Eduardo; Torreira, Eva; Montes, Tamara; Tortajada, Agustín; Pinto, Sheila; Lopez-Trascasa, Margarita; Morgan, B. Paul; Llorca, Oscar; Harris, Claire L.; Rodríguez de Córdoba, Santiago

    2010-01-01

    Dense deposit disease (DDD) is a severe renal disease characterized by accumulation of electron-dense material in the mesangium and glomerular basement membrane. Previously, DDD has been associated with deficiency of factor H (fH), a plasma regulator of the alternative pathway (AP) of complement activation, and studies in animal models have linked pathogenesis to the massive complement factor 3 (C3) activation caused by this deficiency. Here, we identified a unique DDD pedigree that associates disease with a mutation in the C3 gene. Mutant C3923ΔDG, which lacks 2 amino acids, could not be cleaved to C3b by the AP C3-convertase and was therefore the predominant circulating C3 protein in the patients. However, upon activation to C3b by proteases, or to C3(H2O) by spontaneous thioester hydrolysis, C3923ΔDG generated an active AP C3-convertase that was regulated normally by decay accelerating factor (DAF) but was resistant to decay by fH. Moreover, activated C3b923ΔDG and C3(H2O)923ΔDG were resistant to proteolysis by factor I (fI) in the presence of fH, but were efficiently inactivated in the presence of membrane cofactor protein (MCP). These characteristics cause a fluid phase–restricted AP dysregulation in the patients that continuously activated and consumed C3 produced by the normal C3 allele. These findings expose structural requirements in C3 that are critical for recognition of the substrate C3 by the AP C3-convertase and for the regulatory activities of fH, DAF, and MCP, all of which have implications for therapeutic developments. PMID:20852386

  11. Alternative and classical complement pathway activity in sera from colostrum-fed and colostrum-deprived neonatal pigs.

    PubMed Central

    Renshaw, H W; Gilmore, R J

    1980-01-01

    Haemolytic assays were used to compare alternative and classical complement (C) pathway activities in sera obtained from neonatal pigs reared on porcine colostrum, bovine colostrum or an immunoglobulin-free synthetic diet. Dramatic increases in immunoglobulin concentrations were noted in the colostrum-fed animals during the first day of life, but there was not a concurrent, marked increase in either classical or alternative C pathway activity. Whether fed on homologous or heterologous colostrum, neonatal pigs had a similar gradual increase in alternative and classical C pathway activity in the post-natal period. If direct passive absorption of C components occurs in newborn pigs, it has only a minor influence on functional levels of alternative and classical C pathway activity in their sera. In pigs fed homologous and heterologous colostrum there was, respectively, an 83% and 80% increase in classical pathway activity, but only a 13% and 12% increase in alternative pathway activity during the first 3 days of life. Pigs fed the immunoglobulin-free synthetic diet had a 37% increase in classical C and a 24% increase in alternative C pathway activity. Part of the increase in classical C pathway activity in the post-natal period may be caused by a stimulating factor in colostrum. Most if not all of the increase in alternative C pathway activity and some of the increase in classical C pathway activity is most likely caused by normal humoral homeostatic mechanisms in the neonatal pig. PMID:7429550

  12. Analysis of Risk Alleles and Complement Activation Levels in Familial and Non-Familial Age-Related Macular Degeneration

    PubMed Central

    Saksens, Nicole T. M.; Lechanteur, Yara T. E.; Verbakel, Sanne K.; Groenewoud, Joannes M. M.; Daha, Mohamed R.; Schick, Tina; Fauser, Sascha; Boon, Camiel J. F.; Hoyng, Carel B.; den Hollander, Anneke I.

    2016-01-01

    Aims Age-related macular degeneration (AMD) is a multifactorial disease, in which complement-mediated inflammation plays a pivotal role. A positive family history is an important risk factor for developing AMD. Certain lifestyle factors are shown to be significantly associated with AMD in non-familial cases, but not in familial cases. This study aimed to investigate whether the contribution of common genetic variants and complement activation levels differs between familial and sporadic cases with AMD. Methods and Results 1216 AMD patients (281 familial and 935 sporadic) and 1043 controls (143 unaffected members with a family history of AMD and 900 unrelated controls without a family history of AMD) were included in this study. Ophthalmic examinations were performed, and lifestyle and family history were documented with a questionnaire. Nine single nucleotide polymorphisms (SNPs) known to be associated with AMD were genotyped, and serum concentrations of complement components C3 and C3d were measured. Associations were assessed in familial and sporadic individuals. The association with risk alleles of the age-related maculopathy susceptibility 2 (ARMS2) gene was significantly stronger in sporadic AMD patients compared to familial cases (p = 0.017 for all AMD stages and p = 0.003 for advanced AMD, respectively). ARMS2 risk alleles had the largest effect in sporadic cases but were not significantly associated with AMD in densely affected families. The C3d/C3 ratio was a significant risk factor for AMD in sporadic cases and may also be associated with familial cases. In patients with a densely affected family this effect was particularly strong with ORs of 5.37 and 4.99 for all AMD and advanced AMD respectively. Conclusion This study suggests that in familial AMD patients, the common genetic risk variant in ARMS2 is less important compared to sporadic AMD. In contrast, factors leading to increased complement activation appear to play a larger role in patients with a

  13. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation

    PubMed Central

    Bulla, Roberta; Tripodo, Claudio; Rami, Damiano; Ling, Guang Sheng; Agostinis, Chiara; Guarnotta, Carla; Zorzet, Sonia; Durigutto, Paolo; Botto, Marina; Tedesco, Francesco

    2016-01-01

    Complement C1q is the activator of the classical pathway. However, it is now recognized that C1q can exert functions unrelated to complement activation. Here we show that C1q, but not C4, is expressed in the stroma and vascular endothelium of several human malignant tumours. Compared with wild-type (WT) or C3- or C5-deficient mice, C1q-deficient (C1qa−/−) mice bearing a syngeneic B16 melanoma exhibit a slower tumour growth and prolonged survival. This effect is not attributable to differences in the tumour-infiltrating immune cells. Tumours developing in WT mice display early deposition of C1q, higher vascular density and an increase in the number of lung metastases compared with C1qa−/− mice. Bone marrow (BM) chimeras between C1qa−/− and WT mice identify non-BM-derived cells as the main local source of C1q that can promote cancer cell adhesion, migration and proliferation. Together these findings support a role for locally synthesized C1q in promoting tumour growth. PMID:26831747

  14. Regulation of C3 Activation by the Alternative Complement Pathway in the Mouse Retina.

    PubMed

    Williams, Jennifer A E; Stampoulis, Dimitris; Gunter, Chloe E; Greenwood, John; Adamson, Peter; Moss, Stephen E

    2016-01-01

    The purpose of this study was to examine the retinas of mice carrying hemizygous and null double deletions of Cfb-/- and Cfh-/-, and to compare these with the single knockouts of Cfb, Cfh and Cfd. Retinas were isolated from wild type (WT), Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfh-/-/Cfb+/-, Cfb-/-, Cfh-/- Cfd-/-, and Cfd+/- mice. Complement proteins were evaluated by western blotting, ELISA and immunocytochemistry, and retinal morphology was assessed using toluidine blue stained semi-thin sections. WT mice showed staining for C3 and its breakdown products in the retinal vasculature and the basal surface of the retinal pigment epithelium (RPE). Cfb-/- mice exhibited a similar C3 staining pattern to WT in the retinal vessels but a decrease in C3 and its breakdown products at the basal surface of the RPE. Deletion of both Cfb and Cfh restored C3 to levels similar to those observed in WT mice, however this reversal of phenotype was not observed in Cfh-/-/Cfb+/- or Cfb-/-/Cfh+/- mice. Loss of CFD caused an increase in C3 and a decrease in C3 breakdown products along the basal surface of the RPE. Overall the retinal morphology and retinal vasculature did not appear different across the various genotypes. We observed that C3 accumulates at the basal RPE in Cfb-/-, Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfd-/- and WT mice, but is absent in Cfh-/- and Cfh-/-/Cfb+/- mice, consistent with its consumption in the serum of mice lacking CFH when CFB is present. C3 breakdown products along the surface of the RPE were either decreased or absent when CFB, CFH or CFD was deleted or partially deleted. PMID:27564415

  15. Regulation of C3 Activation by the Alternative Complement Pathway in the Mouse Retina

    PubMed Central

    Williams, Jennifer A. E.; Stampoulis, Dimitris; Gunter, Chloe E.; Greenwood, John; Adamson, Peter

    2016-01-01

    The purpose of this study was to examine the retinas of mice carrying hemizygous and null double deletions of Cfb-/- and Cfh-/-, and to compare these with the single knockouts of Cfb, Cfh and Cfd. Retinas were isolated from wild type (WT), Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfh-/-/Cfb+/-, Cfb-/-, Cfh-/- Cfd-/-, and Cfd+/- mice. Complement proteins were evaluated by western blotting, ELISA and immunocytochemistry, and retinal morphology was assessed using toluidine blue stained semi-thin sections. WT mice showed staining for C3 and its breakdown products in the retinal vasculature and the basal surface of the retinal pigment epithelium (RPE). Cfb-/- mice exhibited a similar C3 staining pattern to WT in the retinal vessels but a decrease in C3 and its breakdown products at the basal surface of the RPE. Deletion of both Cfb and Cfh restored C3 to levels similar to those observed in WT mice, however this reversal of phenotype was not observed in Cfh-/-/Cfb+/- or Cfb-/-/Cfh+/- mice. Loss of CFD caused an increase in C3 and a decrease in C3 breakdown products along the basal surface of the RPE. Overall the retinal morphology and retinal vasculature did not appear different across the various genotypes. We observed that C3 accumulates at the basal RPE in Cfb-/-, Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfd-/- and WT mice, but is absent in Cfh-/- and Cfh-/-/Cfb+/- mice, consistent with its consumption in the serum of mice lacking CFH when CFB is present. C3 breakdown products along the surface of the RPE were either decreased or absent when CFB, CFH or CFD was deleted or partially deleted. PMID:27564415

  16. Classical complement activation and acquired immune response pathways are not essential for retinal degeneration in the rd1 mouse

    PubMed Central

    Rohrer, Bärbel; Demos, Christina; Frigg, Rico; Grimm, Christian

    2007-01-01

    Misregulation of the innate immune response and other immune-related processes have been suggested to play a critical role in the pathogenesis of a number of different neurodegenerative diseases, including age related macular degeneration. In an animal model for photoreceptor degeneration, several genes of the innate and acquired immune system were found to be differentially regulated in the retina during the degenerative process. In addition to this differential regulation of individual genes, we found that in the rd1 retina a significantly higher number of genes involved in immune-related responses were expressed at any given time during the degenerative period. The peak of immune-related gene expression was at postnatal day 14, coinciding with the peak of photoreceptor apoptosis in the rd1 mouse. We directly tested the potential involvement of acquired and innate immune responses in initiation and progression of photoreceptor degeneration by analyzing double mutant animals. Retinal morphology and photoreceptor apoptosis of rd1 mice on a SCID genetic background (no mature T- and B-cells) or in combination with a RAG-1 (no functional B- and T-cells) or a C1qα (no functional classical complement activation pathway) knockout was followed during the degenerative process using light microscopy or TUNEL staining, respectively. Although complement factor C1qα was highly up-regulated in the rd1 retina concomitantly with the degenerative process, lack of this protein did not protect the rd1 retina. Similarly, retinal degeneration and photoreceptor apoptosis appeared to proceed normally in the rd1 mouse lacking functional B- and T-cells. Our results suggest that both, the classical complement system of innate immunity and a functional acquired immune response are not essential for the degenerative process in the rd1 mouse retina. PMID:17069800

  17. Tsetse GmmSRPN10 Has Anti-complement Activity and Is Important for Successful Establishment of Trypanosome Infections in the Fly Midgut

    PubMed Central

    Ooi, Cher-Pheng; Haines, Lee R.; Southern, Daniel M.; Lehane, Michael J.; Acosta-Serrano, Alvaro

    2015-01-01

    The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission. PMID:25569180

  18. Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut.

    PubMed

    Ooi, Cher-Pheng; Haines, Lee R; Southern, Daniel M; Lehane, Michael J; Acosta-Serrano, Alvaro

    2015-01-01

    The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2-4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission. PMID:25569180

  19. Expression of active streptolysin O in Escherichia coli as a maltose-binding-protein--streptolysin-O fusion protein. The N-terminal 70 amino acids are not required for hemolytic activity.

    PubMed

    Weller, U; Müller, L; Messner, M; Palmer, M; Valeva, A; Tranum-Jensen, J; Agrawal, P; Biermann, C; Döbereiner, A; Kehoe, M A; Bhakdi, S

    1996-02-15

    Streptolysin 0 (SLO) is the prototype of a family of cytolysins that consists of proteins which bind to cholesterol and form very large transmembrane pores. Structure/function studies on the pore-forming cytolysin SLO have been complicated by the proteolytic inactivation of a substantial portion of recombinant SLO (rSLO) expressed in Escherichia coli. To overcome this problem, translational fusions between the E. coli maltose-binding protein (MBP) gene and SLO were constructed, using the vectors pMAL-p2 and pMAL-c2. MBP-SLO fusion proteins were degraded if secreted into the E. coli periplasm, but intact, soluble MBP-SLO fusion proteins were produced at high levels in the cytoplasm. Active SLO with the expected N-terminus was separated from the MBP carrier by cleavage with factor Xa. Cleavage with plasmin or trypsin also yielded active, but slightly smaller forms of SLO. Surprisingly, uncleaved MBP-SLO was also hemolytic and cytotoxic to human fibroblasts and keratinocytes. The MBP-SLO fusion protein displayed equal activities to SLO. Sucrose density gradient analyses showed that the fusion protein assembled into polymers, and no difference in structure was discerned compared with polymers formed by native SLO. These studies show that the N-terminal 70 residues of mature (secreted) SLO are not required for pore formation and that the N-terminus of the molecule is probably not inserted into the bilayer. In addition, they provide a simple means for producing mutants for structure/function studies and highly purified SLO for use as a permeabilising reagent in cell biology research. PMID:8617283

  20. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes.

    PubMed

    Jane-wit, Dan; Surovtseva, Yulia V; Qin, Lingfeng; Li, Guangxin; Liu, Rebecca; Clark, Pamela; Manes, Thomas D; Wang, Chen; Kashgarian, Michael; Kirkiles-Smith, Nancy C; Tellides, George; Pober, Jordan S

    2015-08-01

    Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB-inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5(+)endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC(+) endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt(+)NIK(+) signalosome on Rab5(+) endosomes. PMID:26195760

  1. The role of complement, platelet-activating factor and leukotriene B4 in a reversed passive Arthus reaction.

    PubMed Central

    Rossi, A. G.; Norman, K. E.; Donigi-Gale, D.; Shoupe, T. S.; Edwards, R.; Williams, T. J.

    1992-01-01

    1. The mechanisms underlying oedema formation induced in a reversed passive Arthus (RPA) reaction and, for comparison, in response to zymosan in rabbit skin were investigated. 2. Oedema formation at skin sites was quantified by the accumulation of intravenously-injected 125I-labelled human serum albumin. 3. Recombinant soluble complement receptor type 1 (sCR1), administered locally in rabbit skin, suppressed oedema formation induced in the RPA reaction and by zymosan. 4. The platelet-activating factor (PAF) antagonists, WEB 2086 and PF10040 administered locally, inhibited oedema formation induced in the RPA reaction and by PAF but not by zymosan. 5. A locally administered leukotriene B4 (LTB4) antagonist, LY-255283, inhibited oedema formation induced by LTB4 but did not inhibit oedema responses to PAF, zymosan or the RPA reaction. 6. The results demonstrate a role for complement in oedema formation in both the RPA reaction and in response to zymosan. An important contribution by PAF is indicated in the RPA reaction but not in response to zymosan whereas no evidence was obtained to suggest a role for LTB4 in either inflammatory response. PMID:1330163

  2. Bovine Colostrum Contains Immunoglobulin G Antibodies against Intimin, EspA, and EspB and Inhibits Hemolytic Activity Mediated by the Type Three Secretion System of Attaching and Effacing Escherichia coli▿

    PubMed Central

    Vilte, Daniel A.; Larzábal, Mariano; Cataldi, Ángel A.; Mercado, Elsa C.

    2008-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is the main cause of hemolytic-uremic syndrome, an endemic disease in Argentina which had an incidence in 2005 of 13.9 cases per 100,000 children younger than 5 years old. Cattle appear to be a major reservoir of EHEC, and a serological response to EHEC antigens has been demonstrated in natural and experimental infections. In the current study, antibodies against proteins implicated in EHEC's ability to form attaching and effacing lesions, some of which are exported to the host cell via a type three secretion system (TTSS), were identified in bovine colostrum by Western blot analysis. Twenty-seven (77.0%) of the 35 samples examined contained immunoglobulin G (IgG) antibodies against the three proteins assayed in this study: EspA, EspB, and the carboxy-terminal 280 amino acids of γ-intimin, an intimin subtype associated mainly with O157:H7 and O145:H- serotypes. Every colostrum sample was able to inhibit, in a range between 45.9 and 96.7%, the TTSS-mediated hemolytic activity of attaching and effacing E. coli. The inhibitory effect was partially mediated by IgG and lactoferrin. In conclusion, we found that early colostrum from cows contains antibodies, lactoferrin, and other unidentified substances that impair TTSS function in attaching and effacing E. coli strains. Bovine colostrum might act by reducing EHEC colonization in newborn calves and could be used as a prophylactic measure to protect non-breast-fed children against EHEC infection in an area of endemicity. PMID:18562563

  3. Bovine colostrum contains immunoglobulin G antibodies against intimin, EspA, and EspB and inhibits hemolytic activity mediated by the type three secretion system of attaching and effacing Escherichia coli.

    PubMed

    Vilte, Daniel A; Larzábal, Mariano; Cataldi, Angel A; Mercado, Elsa C

    2008-08-01

    Enterohemorrhagic Escherichia coli (EHEC) is the main cause of hemolytic-uremic syndrome, an endemic disease in Argentina which had an incidence in 2005 of 13.9 cases per 100,000 children younger than 5 years old. Cattle appear to be a major reservoir of EHEC, and a serological response to EHEC antigens has been demonstrated in natural and experimental infections. In the current study, antibodies against proteins implicated in EHEC's ability to form attaching and effacing lesions, some of which are exported to the host cell via a type three secretion system (TTSS), were identified in bovine colostrum by Western blot analysis. Twenty-seven (77.0%) of the 35 samples examined contained immunoglobulin G (IgG) antibodies against the three proteins assayed in this study: EspA, EspB, and the carboxy-terminal 280 amino acids of gamma-intimin, an intimin subtype associated mainly with O157:H7 and O145:H- serotypes. Every colostrum sample was able to inhibit, in a range between 45.9 and 96.7%, the TTSS-mediated hemolytic activity of attaching and effacing E. coli. The inhibitory effect was partially mediated by IgG and lactoferrin. In conclusion, we found that early colostrum from cows contains antibodies, lactoferrin, and other unidentified substances that impair TTSS function in attaching and effacing E. coli strains. Bovine colostrum might act by reducing EHEC colonization in newborn calves and could be used as a prophylactic measure to protect non-breast-fed children against EHEC infection in an area of endemicity. PMID:18562563

  4. MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked

    PubMed Central

    Dobó, József; Szakács, Dávid; Oroszlán, Gábor; Kortvely, Elod; Kiss, Bence; Boros, Eszter; Szász, Róbert; Závodszky, Péter; Gál, Péter; Pál, Gábor

    2016-01-01

    MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways. PMID:27535802

  5. MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked.

    PubMed

    Dobó, József; Szakács, Dávid; Oroszlán, Gábor; Kortvely, Elod; Kiss, Bence; Boros, Eszter; Szász, Róbert; Závodszky, Péter; Gál, Péter; Pál, Gábor

    2016-01-01

    MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways. PMID:27535802

  6. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies

    NASA Astrophysics Data System (ADS)

    Fornaguera, Cristina; Calderó, Gabriela; Mitjans, Montserrat; Vinardell, Maria Pilar; Solans, Conxita; Vauthier, Christine

    2015-03-01

    The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising alternative for delivery of drugs to specific cells. However, studies on their interaction with diverse blood components using different techniques are still lacking. Therefore, in the present work, the interaction of PLGA nanoparticles with blood components was described using different complementary techniques. The influence of different encapsulated compounds/functionalizing agents on these interactions was also reported. It is worth noting that all these techniques can be simply performed, without the need for highly sophisticated apparatus or skills. Moreover, their transference to industries and application of quality control could be easily performed. Serum albumin was adsorbed onto all types of tested nanoparticles. The saturation concentration was dependent on the nanoparticle size. In contrast, fibrinogen aggregation was dependent on nanoparticle surface charge. The complement activation was also influenced by the nanoparticle functionalization; the presence of a functionalizing agent increased complement activation, while the addition of an encapsulated compound only caused a slight increase. None of the nanoparticles influenced the coagulation cascade at low concentrations. However, at high concentrations, cationized nanoparticles did activate the coagulation cascade. Interactions of nanoparticles with erythrocytes did not reveal any hemolysis. Interactions of PLGA nanoparticles with blood proteins depended both on the nanoparticle properties and the protein studied. Independent of their loading/surface functionalization, PLGA nanoparticles did not influence the coagulation cascade and did not induce hemolysis of erythrocytes; they could be defined as safe concerning induction of embolization and cell lysis.The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising

  7. Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness

    PubMed Central

    Whitehead, Bradley; Wu, LinPing; Hvam, Michael Lykke; Aslan, Husnu; Dong, Mingdong; Dyrskjøt, Lars; Ostenfeld, Marie Stampe; Moghimi, Seyed Moein; Howard, Kenneth Alan

    2015-01-01

    Background Exosomes have been implicated in tumour progression and metastatic spread. Little is known of the effect of mechanical and innate immune interactions of malignant cell-derived exosomes on endothelial integrity, which may relate to increased extravasation of circulating tumour cells and, therefore, increased metastatic spread. Methods Exosomes isolated from non-malignant immortalized HCV-29 and isogenic malignant non-metastatic T24 and malignant metastatic FL3 bladder cells were characterized by nanoparticle tracking analysis and quantitative nanomechanical mapping atomic force microscopy (QNM AFM) to determine size and nanomechanical properties. Effect of HCV-29, T24 and FL3 exosomes on human umbilical vein endothelial cell (HUVEC) monolayer integrity was determined by transendothelial electrical resistance (TEER) measurements and transport was determined by flow cytometry. Complement activation studies in human serum of malignant and non-malignant cell-derived exosomes were performed. Results FL3, T24 and HCV-29 cells produced exosomes at similar concentration per cell (6.64, 6.61 and 6.46×104 exosomes per cell for FL3, T24 and HCV-29 cells, respectively) and of similar size (120.2 nm for FL3, 127.6 nm for T24 and 117.9 nm for HCV-29, respectively). T24 and FL3 cell-derived exosomes exhibited a markedly reduced stiffness, 95 MPa and 280 MPa, respectively, compared with 1,527 MPa with non-malignant HCV-29 cell-derived exosomes determined by QNM AFM. FL3 and T24 exosomes induced endothelial disruption as measured by a decrease in TEER in HUVEC monolayers, whereas no effect was observed for HCV-29 derived exosomes. FL3 and T24 exosomes traffic more readily (11.6 and 21.4% of applied exosomes, respectively) across HUVEC monolayers than HCV-29 derived exosomes (7.2% of applied exosomes). Malignant cell-derived exosomes activated complement through calcium-sensitive pathways in a concentration-dependent manner. Conclusions Malignant (metastatic and non

  8. Specific alterations in complement protein activity of little brown myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites.

    PubMed

    Moore, Marianne S; Reichard, Jonathan D; Murtha, Timothy D; Zahedi, Bita; Fallier, Renee M; Kunz, Thomas H

    2011-01-01

    White-nose syndrome (WNS) is the most devastating condition ever reported for hibernating bats, causing widespread mortality in the northeastern United States. The syndrome is characterized by cutaneous lesions caused by a recently identified psychrophilic and keratinophylic fungus (Geomyces destructans), depleted fat reserves, atypical behavior, and damage to wings; however, the proximate cause of mortality is still uncertain. To assess relative levels of immunocompetence in bats hibernating in WNS-affected sites compared with levels in unaffected bats, we describe blood plasma complement protein activity in hibernating little brown myotis (Myotis lucifugus) based on microbicidal competence assays using Escherichia coli, Staphylococcus aureus and Candida albicans. Blood plasma from bats collected during mid-hibernation at WNS-affected sites had higher bactericidal ability against E. coli and S. aureus, but lower fungicidal ability against C. albicans when compared with blood plasma from bats collected at unaffected sites. Within affected sites during mid-hibernation, we observed no difference in microbicidal ability between bats displaying obvious fungal infections compared to those without. Bactericidal ability against E. coli decreased significantly as hibernation progressed in bats collected from an affected site. Bactericidal ability against E. coli and fungicidal ability against C. albicans were positively correlated with body mass index (BMI) during late hibernation. We also compared complement activity against the three microbes within individuals and found that the ability of blood plasma from hibernating M. lucifugus to lyse microbial cells differed as follows: E. coli>S. aureus>C. albicans. Overall, bats affected by WNS experience both relatively elevated and reduced innate immune responses depending on the microbe tested, although the cause of observed immunological changes remains unknown. Additionally, considerable trade-offs may exist between energy

  9. A peptide derived from the parasite receptor, complement C2 receptor inhibitor trispanning, suppresses immune complex-mediated inflammation in mice.

    PubMed

    Inal, Jameel M; Schneider, Brigitte; Armanini, Marta; Schifferli, Jürg A

    2003-04-15

    Complement C2 receptor inhibitor trispanning (CRIT) is a Schistosoma protein that binds the human complement protein, C2. We recently showed that peptides based on the ligand binding region of CRIT inhibit the classical pathway (CP) of complement activation in human serum, using hemolytic assays and so speculated that on the parasite surface CRIT has the function of evading human complement. We now show that in vitro the C2-binding 11-aa C terminus of the first extracellular domain of CRIT, a 1.3-kDa peptide termed CRIT-H17, inhibits CP activation in a species-specific manner, inhibiting mouse and rat complement but not that from guinea pig. Hitherto, the ability of CRIT to regulate complement in vivo has not been assessed. In this study we show that by inhibiting the CP, CRIT-H17 is able to reduce immune complex-mediated inflammation (dermal reversed passive Arthus reaction) in BALB/c mice. Upon intradermal injection of CRIT-H17, and similarly with recombinant soluble complement receptor type 1, there was a 41% reduction in edema and hemorrhage, a 72% reduction in neutrophil influx, and a reduced C3 deposition. Furthermore, when H17 was administered i.v. at a 1 mg/kg dose, inflammation was reduced by 31%. We propose that CRIT-H17 is a potential therapeutic agent against CP complement-mediated inflammatory tissue destruction. PMID:12682267

  10. E3-Independent Constitutive Monoubiquitination Complements Histone Methyltransferase Activity of SETDB1.

    PubMed

    Sun, Lidong; Fang, Jia

    2016-06-16

    Ubiquitination typically occurs through the sequential action of three enzymes catalyzing ubiquitin activation (E1), conjugation (E2), and ligation (E3) and regulates diverse eukaryotic cellular processes. Although monoubiquitination commonly confers nondegradative activities, mechanisms underlying its temporal and spatial regulation and functional plasticity still remain largely unknown. Here we demonstrate that SETDB1, a major histone H3K9 methyltransferase is monoubiquitinated at the evolutionarily conserved lysine-867 in its SET-Insertion domain. This ubiquitination is directly catalyzed by UBE2E family of E2 enzymes in an E3-independent manner while the conjugated-ubiquitin (Ub) is protected from active deubiquitination. The resulting constitutive lysine-867 monoubiquitination is essential for SETDB1's enzymatic activity and endogenous retrovirus silencing in murine embryonic stem cells. Furthermore, the canonical hydrophobic patch on the conjugated-Ub is critical for Ub protection and function. Together, our findings highlight an E3-independent mechanism for monoubiquitination and reveal mechanistic details of SETDB1's enzymatic activity and the functional significance of its SET-Insertion. PMID:27237050

  11. Complement-mediated neutrophil activation in sepsis- and trauma-related adult respiratory distress syndrome. Clarification with radioaerosol lung scans

    SciTech Connect

    Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.

    1987-01-01

    Complement-mediated neutrophil activation (CMNA) has been proposed as an important pathogenic mechanism causing acute microvascular lung injury in the adult respiratory distress syndrome (ARDS). To clarify the relationship between CMNA and evolving lung injury, we studied 26 patients with multiple trauma and sepsis within 24 hours of risk establishment for ARDS. Pulmonary alveolar-capillary permeability (PACP) was quantified as the clearance rate of a particulate radioaerosol. Seventeen patients (65%) had increased PACP (six developed ARDS) while nine (35%) had normal PACP (none developed ARDS; clearance rates of 3.4%/min and 1.5%/min, respectively). These patients, regardless of evidence of early lung injury, had elevated plasma C3adesArg levels and neutrophil chemotactic desensitization to C5a/C5adesArg. Plasma C3adesArg levels correlated weakly, but significantly, with PACP. Thus, CMNA may be a necessary, but not a sufficient, pathogenic mechanism in the evolution of ARDS.

  12. Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations

    PubMed Central

    Salvadori, Maurizio; Bertoni, Elisabetta

    2013-01-01

    Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both “traditional therapy” (including plasma therapy, kidney and kidney-liver transplantation) and “new therapies”. The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody “eculizumab”. Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy. PMID:24255888

  13. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  14. Complement modulatory activity of bisbenzylisoquinoline alkaloids isolated from Isopyrum thalictroides--I. Influence on classical pathway in human serum.

    PubMed

    Ivanovska, N; Nikolova, P; Hristova, M; Philipov, S; Istatkova, R

    1999-05-01

    Eleven bisbenzylisoquinoline alkaloids (BBI) were isolated from the plant Isopyrum thalictroides (L.). Treatment of normal human serum (NHS) with BBI resulted in a diminution of the haemolytic activity of the classical pathway (CP). The mode of action of the main alkaloids isopyruthaline (It1), fangchinoline (It2) and isotalictrine (It3) on CP activation was investigated in vitro. The inhibition was time- and temperature-related and for Itl and It3 depended on the concentration of Ca2+ and Mg2+ ions. It was established that the substances reduced C1 haemolytic activity. It2 and It3 enhanced the complement consumption caused by heat aggregated human IgG (HAGG). The BBI prevented the formation of C3 convertase of the classical pathway. The loss of haemolytic activity was partially restored by the addition of C142 reagent (zymosan-treated guinea pig serum) to alkaloids-treated NHS. The addition of the late components C3-9 (EDTA-treated rat sera) recovered to some extent the haemolytic activity of It1-treated NHS, but not of It2- and It3-treated NHS. PMID:10408629

  15. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade

    PubMed Central

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2014-01-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it’s plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it’s current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation aggregation. We discuss our findings in the context of tick feeding physiology. PMID:25454607

  16. Atypical Hemolytic Uremic Syndrome: Differential Diagnosis from TTP/HUS and Management.

    PubMed

    Yenerel, Mustafa N

    2014-09-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare form of thrombotic microangiopathy (TMA). It has an unfavorable outcome with death rates as high as 25% during the acute phase and up to 50% of cases progressing to end-stage renal failure. Uncontrolled complement activation through the alternative pathway is thought to be the main underlying pathopysiology of aHUS and corresponds to all the deleterious findings of the disease. Thrombotic thrombocytopenic purpura (TTP) and Shiga toxin-associated HUS are the 2 other important TMA diseases. Although differentiating HUS from TTP is relatively easy in children with a preceding diarrheal illness or invasive S. pneumoniae, differentiating aHUS from TTP or other microangiopathic disorders can present a major diagnostic challenge in adults. ADAMTS13 analysis is currently the most informative diagnostic test for differentiating TTP, congenital TTP, and aHUS. Today empiric plasma therapy still is recommended by expert opinion to be used as early as possible in any patient with symptoms of aHUS. The overall treatment goal remains restoration of a physiological balance between activation and control of the alternative complement pathway. So it is a reasonable approach to block the terminal complement complex with eculizumab in order to prevent further organ injury and increase the likelihood organ recovery. Persistence of hemolysis or lack of improvement of renal function after 3-5 daily plasmaphereses have to be regarded as the major criteria for uncontrolled TMA even if platelet count has normalized and as an indication to switch the treatment to eculizumab. Eculizumab has changed the future perspectives of patients with aHUS and both the FDA and the EMA have approved it as life-long treatment. However, there are still some unresolved issues about the follow-up such as the optimal duration of eculizumab treatment and whether it can be stopped or how to stop the therapy. PMID:25319590

  17. Indolo[3,2-b]quinoline Derivatives Suppressed the Hemolytic Activity of Beta-Pore Forming Toxins, Aerolysin-Like Hemolysin Produced by Aeromonas sobria and Alpha-Hemolysin Produced by Staphylococcus aureus.

    PubMed

    Takahashi, Eizo; Fujinami, Chiaki; Kuroda, Teruo; Takeuchi, Yasuo; Miyoshi, Shin-Ichi; Arimoto, Sakae; Negishi, Tomoe; Okamoto, Keinosuke

    2016-01-01

    In an attempt to discover inhibitory compounds against pore-forming toxins, some of the major toxins produced by bacteria, we herein examined the effects of four kinds of indolo[3,2-b]quinoline derivatives on hemolysis induced by the aerolysin-like hemolysin (ALH) of Aeromonas sobria and also by the alpha-hemolysin of Staphylococcus aureus. The results showed that hemolysis induced by ALH was significantly reduced by every derivative, while that induced by alpha-hemolysis was significantly reduced by three out of the four derivatives. However, the degrees of reduction induced by these derivatives were not uniform. Each derivative exhibited its own activity to inhibit the respective hemolysin. Compounds 1 and 2, which possessed the amino group bonding the naphthalene moiety at the C-11 position of indolo[3,2-b]quinoline, had strong inhibitory effects on the activity of ALH. Compound 4 which consisted of benzofuran and quinoline had strong inhibitory effects on the activity of alpha-hemolysin. These results indicated that the amino group bonding the naphthalene moiety of compounds 1 and 2 assisted in their ability to inhibit ALH activity, while the oxygen atom at the 10 position of compound 4 strengthened its interaction with alpha-hemolysin. These compounds also suppressed the hemolytic activity of the supernatant of A. sobria or A. hydrophila, suggesting that these compounds were effective at the site of infection of these bacteria. PMID:26725434

  18. Complement Inhibition for Prevention and Treatment of Antibody-Mediated Rejection in Renal Allograft Recipients.

    PubMed

    Jordan, S C; Choi, J; Kahwaji, J; Vo, A

    2016-04-01

    Therapeutic interventions aimed at the human complement system are recognized as potentially important strategies for the treatment of inflammatory and autoimmune diseases because there is often evidence of complement-mediated injury according to pathologic assessments. In addition, there are a large number of potential targets, both soluble and cell bound, that might offer potential for new drug development, but progress in this area has met with significant challenges. Currently, 2 drugs are approved aimed at inhibition of complement activation. The first option is eculizumab (anti-C5), which is approved for the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Eculizumab has also been studied in human transplantation for the treatment and prevention of antibody-mediated rejection (ABMR). Initial data from uncontrolled studies suggested a significant benefit of eculizumab for the prevention of ABMR in highly HLA-sensitized patients, but a subsequent randomized, placebo-controlled trial failed to meet its primary endpoint. Anecdotal data, primarily from case studies, showed benefits in treating complement-mediated ABMR. A second approved complement-inhibiting therapy is C1 esterase inhibitor (C1-INH), which is approved for use in patients with hereditary angioedema, a condition caused by mutations in the gene that codes for C1-INH. A recent placebo-controlled trial of C1-INH for prevention of ABMR in HLA-sensitized patients found that the drug was safe, with evidence for inhibition of systemic complement activation and complement-activating donor-specific antibodies. Other drugs are now under development. PMID:27234741

  19. Analysis of the complement sensitivity of oral treponemes and the potential influence of FH binding, FH cleavage and dentilisin activity on the pathogenesis of periodontal disease

    PubMed Central

    Miller, Daniel P.; McDowell, John V.; Bell, Jessica K.; Goetting-Minesky, Melissa P.; Fenno, J. Christopher; Marconi, Richard T.

    2014-01-01

    SUMMARY Treponema denticola, a periopathogen, evades complement-mediated killing by binding the negative complement regulatory protein factor H (FH) to its surface via the FhbB protein. Paradoxically, bound FH is cleaved by T. denticola’s dentilisin protease, a process hypothesized to trigger localized dysregulation of complement activation in periodontal pockets. The ability of other oral treponemes to evade complement-mediated killing and bind and cleave FH has not been assessed. In this report, we demonstrate that representative isolates of T. socranskii, T. medium, T. pectinovorum and T. maltophilum are also serum resistant while T. vincentii and T. amylovorum are serum sensitive. While T. denticola’s ability to evade complement-mediated killing is strictly dependent on FH binding, other serum resistant treponemal species lack FhbB and do not bind FH indicating an FH-independent mechanism of complement evasion. To assess the influence of FhbB sequence variation on FH binding and cleavage by T. denticola, fhbB sequences were determined for 30 isolates. Three distinct phyletic types were identified. While all T. denticola strains bound FH and were serum resistant, differences in binding kinetics, dentilisin activity, and FH cleavage ability were observed. Based on these analyses, we hypothesize that the composition of the T. denticola population is a determining factor that influences the progression and severity of periodontal disease. PMID:24815960

  20. Effects of Ca2+ on refolding of the recombinant hemolytic lectin CEL-III.

    PubMed

    Hisamatsu, Keigo; Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2009-05-01

    CEL-III is a hemolytic lectin isolated from Cucumaria echinata. Although recombinant CEL-III (rCEL-III) expressed in Escherichia coli showed very weak hemolytic activity compared with native protein, it was considerably enhanced by refolding in the presence of Ca(2+). This suggests that Ca(2+) supported correct folding of the carbohydrate-binding domains of rCEL-III, leading to effective binding to the cell surface and subsequent self-oligomerization. PMID:19420692

  1. Hereditary deficiency of the sixth component of complement in man. I. Immunochemical, biologic, and family studies.

    PubMed Central

    Leddy, J P; Frank, M M; Gaither, T; Baum, J; Klemperer, M R

    1974-01-01

    An 18-yr-old black woman in good general health was found to lack serum hemolytic complement activity. The sixth component of complement (C6) was undetectable by functional assay of serum or plasma and by immunoprecipitin analysis of serum. Functional titers of all other complement components were normal. The absence of C6 in the patient's serum could not be accounted for by a circulating C6 inhibitor, and addition of functionally pure C6 to the patient's serum restored hemolytic activity to normal. Both parents of the proband and five of six available siblings had approximately half the normal levels of functional C6. The other sibling had a normal C6 level. These data suggest that both parents and five siblings are heterozygous for C6 deficiency, while the proband is homozygous and one sibling is normal. Thus, C6 deficiency appears to follow classic mendelian inheritance, with all three possible genotypes recognizable within the family. Functional properties of the proband's C6-deficient serum included total absence of bactericidal activity against Salmonella typhi 0 901 and Hemophilus influenzae, type b, and inability to mediate lysis of red blood cells from patients with paroxysmal nocturnal hemoglobinuria in either the acidified serum or "sugar water" tests. The proband's serum did, however, exhibit a normal capacity (a) to generate chemotactic activity during incubation with bacterial endotoxin or aggregated IgG, (b) to mediate the immune adherence phenomenon, and (c) to coat human red blood cells, sensitized by cold agglutinins, with C4 and C3. Images PMID:11344568

  2. The Holozoan Capsaspora owczarzaki Possesses a Diverse Complement of Active Transposable Element Families

    PubMed Central

    Carr, Martin; Suga, Hiroshi

    2014-01-01

    Capsaspora owczarzaki, a protistan symbiont of the pulmonate snail Biomphalaria glabrata, is the centre of much interest in evolutionary biology due to its close relationship to Metazoa. The whole genome sequence of this protist has revealed new insights into the ancestral genome composition of Metazoa, in particular with regard to gene families involved in the evolution of multicellularity. The draft genome revealed the presence of 23 families of transposable element, made up from DNA transposon as well as long terminal repeat (LTR) and non-LTR retrotransposon families. The phylogenetic analyses presented here show that all of the transposable elements identified in the C. owczarzaki genome have orthologous families in Metazoa, indicating that the ancestral metazoan also had a rich diversity of elements. Molecular evolutionary analyses also show that the majority of families has recently been active within the Capsaspora genome. One family now appears to be inactive and a further five families show no evidence of current transposition. Most individual element copies are evolutionarily young; however, a small proportion of inserts appear to have persisted for longer in the genome. The families present in the genome show contrasting population histories and appear to be in different stages of their life cycles. Transcriptome data have been analyzed from multiple stages in the C. owczarzaki life cycle. Expression levels vary greatly both between families and between different stages of the life cycle, suggesting an unexpectedly complex level of transposable element regulation in a single celled organism. PMID:24696401

  3. Role of membrane depolarization and extracellular calcium in increased complement receptor expression during neutrophil (PMN) activation

    SciTech Connect

    Berger, M.; Wetzler, E.; Birx, D.L.

    1986-03-05

    During PMN activation the surface expression of receptors (R) for C3b and C3bi increases rapidly. This is necessary for optimal cell adhesion, migration, and phagocytosis. Following stimulation with fMLP or LTB-4, the increased expression of C3bR depends only on the Ca/sup + +/ released from intracellular stores and is not inhibited by 5mM EDTA, while the increase in C3biR also requires extracellular Ca/sup + +/. CR expression also increases when the PMN are depolarized with 140 mM K/sup +/, but with this stimulus, EDTA inhibits C3bR by 67% and C3biR 100%, suggesting that intracellular Ca/sup + +/ stores may not be released. Pertussis toxin caused dose-dependent inhibition of both CR responses to fMLP and also inhibited the increases in both CR induced by K/sup +/. Membrane depolarization (monitored by di-O-C5 fluorescence) due to fMLP was similarly inhibited by toxin but the depolarization due to K/sup +/ was not. The dose of phorbol myristate acetate that maximally increased CR expression, 0.1 ng/ml, did not depolarize the membrane. These results suggest that membrane depolarization is neither necessary nor sufficient for increased CR expression. A Ca/sup + +/ and GTP binding protein-dependent enzyme such as phospholipase C is necessary to the amplify initial signals generated either by release of Ca/sup + +/ stores or by opening voltage dependent Ca/sup + +/ channels following membrane depolarization.

  4. Liposomes modified with superhydrophilic polymer linked to a nonphospholipid anchor exhibit reduced complement activation and enhanced circulation.

    PubMed

    Nag, Okhil K; Yadav, Vivek R; Croft, Brandon; Hedrick, Andria; Awasthi, Vibhudutta

    2015-01-01

    We report the synthesis of an acyl-anchored superhydrophilic polymer (SHP) for external surface modification of liposome surface. N¹-(2-aminoethyl)-N⁴-hexadecyl-2-tetradecylsuccinamide conjugated with SHP (HDAS-SHP) was synthesized and used for modifying the liposome surface. Unlike polyethylene glycol (PEG)-phospholipids, which are commonly used for manufacturing stealth liposomes, HDAS-SHP is devoid of both PEG and phosphoryl groups and possesses a zwitterionic polymeric chain. Circulation persistence of the ⁹⁹(m)Tc-labeled HDAS-SHP liposomes was documented by gamma camera imaging. After 24 h postinjection, approximately 30% of injected HDAS-SHP liposomes were present in blood as compared with only 4.5% of the plain liposomes. HDAS-SHP liposomes inhibited complement activation. They were found to be amenable to pH-gradient-based active loading of Adriamycin in a stable manner. At 37°C, HDAS-SHP liposomes provided better encapsulation efficiencies than the liposomes modified with DSPE-PEG₂₀₀₀. These results provide a strong basis for HDAS-SHP as a viable alternative to PEG-phospholipids for imparting stealth characteristics to drug delivery vehicles such as liposomes. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:114-123, 2015. PMID:25393628

  5. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Ricklin, Daniel; Huang, Yijun; Reis, Edimara S.; Chen, Hui; Ricci, Patrizia; Lin, Zhuoer; Pascariello, Caterina; Raia, Maddalena; Sica, Michela; Del Vecchio, Luigi; Pane, Fabrizio; Lupu, Florea; Notaro, Rosario; Resuello, Ranillo R. G.; DeAngelis, Robert A.; Lambris, John D.

    2014-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated intravascular hemolysis due to the lack of CD55 and CD59 on affected erythrocytes. The anti-C5 antibody eculizumab has proven clinically effective, but uncontrolled C3 activation due to CD55 absence may result in opsonization of erythrocytes, possibly leading to clinically meaningful extravascular hemolysis. We investigated the effect of the peptidic C3 inhibitor, compstatin Cp40, and its long-acting form (polyethylene glycol [PEG]-Cp40) on hemolysis and opsonization of PNH erythrocytes in an established in vitro system. Both compounds demonstrated dose-dependent inhibition of hemolysis with IC50 ∼4 µM and full inhibition at 6 µM. Protective levels of either Cp40 or PEG-Cp40 also efficiently prevented deposition of C3 fragments on PNH erythrocytes. We further explored the potential of both inhibitors for systemic administration and performed pharmacokinetic evaluation in nonhuman primates. A single intravenous injection of PEG-Cp40 resulted in a prolonged elimination half-life of >5 days but may potentially affect the plasma levels of C3. Despite faster elimination kinetics, saturating inhibitor concentration could be reached with unmodified Cp40 through repetitive subcutaneous administration. In conclusion, peptide inhibitors of C3 activation effectively prevent hemolysis and C3 opsonization of PNH erythrocytes, and are excellent, and potentially cost-effective, candidates for further clinical investigation. PMID:24497537

  6. Renal cell carcinoma and autoimmune hemolytic anemia.

    PubMed

    Lands, R; Foust, J

    1996-04-01

    A previously healthy man who became bedridden because of malaise, fatigue, and weakness was found to have an autoimmune hemolytic anemia (AIHA). In the course of his evaluation for the AIHA, he was found, coincidentally, to have a renal cell carcinoma. The AIHA was marginally responsive to therapy with corticosteroids, but it resolved promptly after excision of the cancer. This case represents probably a rarely observed association between a nonhematologic malignancy and autoimmune hemolytic anemia. PMID:8614893

  7. Heterocomplexes of Mannose-binding Lectin and the Pentraxins PTX3 or Serum Amyloid P Component Trigger Cross-activation of the Complement System*

    PubMed Central

    Ma, Ying Jie; Doni, Andrea; Skjoedt, Mikkel-Ole; Honoré, Christian; Arendrup, Maiken; Mantovani, Alberto; Garred, Peter

    2011-01-01

    The long pentraxin 3 (PTX3), serum amyloid P component (SAP), and C-reactive protein belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain but not C-reactive protein. MBL-PTX3 complex formation resulted in recruitment of C1q, but this was not seen for the MBL-SAP complex. However, both MBL-PTX3 and MBL-SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 led to communication between the lectin and classical complement pathways via recruitment of C1q, whereas SAP-enhanced complement activation occurs via a hitherto unknown mechanism. Taken together, MBL-pentraxin heterocomplexes trigger cross-activation of the complement system. PMID:21106539

  8. Treatment of autoimmune hemolytic anemias

    PubMed Central

    Zanella, Alberto; Barcellini, Wilma

    2014-01-01

    Autoimmune hemolytic anemia (AIHA) is a relatively uncommon disorder caused by autoantibodies directed against self red blood cells. It can be idiopathic or secondary, and classified as warm, cold (cold hemagglutinin disease (CAD) and paroxysmal cold hemoglobinuria) or mixed, according to the thermal range of the autoantibody. AIHA may develop gradually, or have a fulminant onset with life-threatening anemia. The treatment of AIHA is still not evidence-based. The first-line therapy for warm AIHA are corticosteroids, which are effective in 70–85% of patients and should be slowly tapered over a time period of 6–12 months. For refractory/relapsed cases, the current sequence of second-line therapy is splenectomy (effective approx. in 2 out of 3 cases but with a presumed cure rate of up to 20%), rituximab (effective in approx. 80–90% of cases), and thereafter any of the immunosuppressive drugs (azathioprine, cyclophosphamide, cyclosporin, mycophenolate mofetil). Additional therapies are intravenous immunoglobulins, danazol, plasma-exchange, and alemtuzumab and high-dose cyclophosphamide as last resort option. As the experience with rituximab evolves, it is likely that this drug will be located at an earlier point in therapy of warm AIHA, before more toxic immunosuppressants, and in place of splenectomy in some cases. In CAD, rituximab is now recommended as first-line treatment. PMID:25271314

  9. Streptococcus pneumoniae Phosphoglycerate Kinase Is a Novel Complement Inhibitor Affecting the Membrane Attack Complex Formation*

    PubMed Central

    Blom, Anna M.; Bergmann, Simone; Fulde, Marcus; Riesbeck, Kristian; Agarwal, Vaibhav

    2014-01-01

    The Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that causes infections ranging from acute otitis media to life-threatening invasive disease. Pneumococci have evolved several strategies to circumvent the host immune response, in particular the complement attack. The pneumococcal glycolytic enzyme phosphoglycerate kinase (PGK) is both secreted and bound to the bacterial surface and simultaneously binds plasminogen and its tissue plasminogen activator tPA. In the present study we demonstrate that PGK has an additional role in modulating the complement attack. PGK interacted with the membrane attack complex (MAC) components C5, C7, and C9, thereby blocking the assembly and membrane insertion of MAC resulting in significant inhibition of the hemolytic activity of human serum. Recombinant PGK interacted in a dose-dependent manner with these terminal pathway proteins, and the interactions were ionic in nature. In addition, PGK inhibited C9 polymerization both in the fluid phase and on the surface of sheep erythrocytes. Interestingly, PGK bound several MAC proteins simultaneously. Although C5 and C7 had partially overlapping binding sites on PGK, C9 did not compete with either one for PGK binding. Moreover, PGK significantly inhibited MAC deposition via both the classical and alternative pathway at the pneumococcal surface. Additionally, upon activation plasmin(ogen) bound to PGK cleaved the central complement protein C3b thereby further modifying the complement attack. In conclusion, our data demonstrate for the first time to our knowledge a novel pneumococcal inhibitor of the terminal complement cascade aiding complement evasion by this important pathogen. PMID:25281746

  10. Production and functional activity of a recombinant von Willebrand factor-A domain from human complement factor B.

    PubMed Central

    Williams, S C; Hinshelwood, J; Perkins, S J; Sim, R B

    1999-01-01

    Factor B is a five-domain 90 kDa serine protease proenzyme which is part of the human serum complement system. It binds to other complement proteins C3b and properdin, and is activated by the protease factor D. The fourth domain of factor B is homologous to the type A domain of von Willebrand Factor (vWF-A). A full-length human factor B cDNA clone was used to amplify the region encoding the vWF-A domain (amino acids 229-444 of factor B). A fusion protein expression system was then used to generate it in high yield in Escherichia coli, where thrombin cleavage was used to separate the vWF-A domain from its fusion protein partner. A second vWF-A domain with improved stability and solubility was created using a Cys(267)-->Ser mutation and a four-residue C-terminal extension of the first vWF-A domain. The recombinant domains were investigated by analytical gel filtration, sucrose density centrifugation and analytical ultracentrifugation, in order to show that both domains were monomeric and possessed compact structures that were consistent with known vWF-A crystal structures. This expression system and its characterization permitted the first investigation of the function of the isolated vWF-A domain. It was able to inhibit substantially the binding of (125)I-labelled factor B to immobilized C3b. This demonstrated both the presence of a C3b binding site in this portion of factor B and a ligand-binding property of the vWF-A domain. The site at which factor D cleaves factor B is close to the N-terminus of both recombinant vWF-A domains. Factor D was shown to cleave the vWF-A domain in the presence or absence of C3b, whereas the cleavage of intact factor B under the same conditions occurs only in the presence of C3b. PMID:10477273

  11. Cardiac Sirt1 mediates the cardioprotective effect of caloric restriction by suppressing local complement system activation after ischemia-reperfusion.

    PubMed

    Yamamoto, Tsunehisa; Tamaki, Kayoko; Shirakawa, Kohsuke; Ito, Kentaro; Yan, Xiaoxiang; Katsumata, Yoshinori; Anzai, Atsushi; Matsuhashi, Tomohiro; Endo, Jin; Inaba, Takaaki; Tsubota, Kazuo; Sano, Motoaki; Fukuda, Keiichi; Shinmura, Ken

    2016-04-15

    Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion (I/R) injury. We previously found the essential roles of endothelial nitric oxide synthase in the development of CR-induced cardioprotection and Sirt1 activation during CR (Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M, Ishii I. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol308: H894-H903, 2015). However, the exact mechanism by which Sirt1 in cardiomyocytes mediates the cardioprotective effect of CR remains undetermined. We subjected cardiomyocyte-specificSirt1knockout (CM-Sirt1(-/-)) mice and the corresponding control mice to either 3-mo ad libitum feeding or CR (-40%). Isolated perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. The recovery of left ventricle function after I/R was improved, and total lactate dehydrogenase release into the perfusate during reperfusion was attenuated in the control mice treated with CR, but a similar cardioprotective effect of CR was not observed in the CM-Sirt1(-/-)mice. The expression levels of cardiac complement component 3 (C3) at baseline and the accumulation of C3 and its fragments in the ischemia-reperfused myocardium were attenuated by CR in the control mice, but not in the CM-Sirt1(-/-)mice. Resveratrol treatment also attenuated the expression levels of C3 protein in cultured neonatal rat ventricular cardiomyocytes. Moreover, the degree of myocardial I/R injury in conventionalC3knockout (C3(-/-)) mice treated with CR was similar to that in the ad libitum-fedC3(-/-)mice, although the expression levels of Sirt1 were enhanced by CR. These results demonstrate that cardiac Sirt1 plays an essential role in CR-induced cardioprotection against I/R injury by suppressing cardiac C3 expression. This is the first report suggesting that

  12. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes

    SciTech Connect

    Venema, J.; van Hoffen, A.; Karcagi, V.; Natarajan, A.T.; van Zeeland, A.A.; Mullenders, L.H. )

    1991-08-01

    The authors have measured the removal of UV-induced pyrimidine dimers from DNA fragments of the adenosine deaminase (ADA) and dihydrofolate reductase (DHFR) genes in primary normal human and xeroderma pigmentosum complementation group C (XP-C) cells. Using strand-specific probes, we show that in normal cells, preferential repair of the 5{prime} part of the ADA gene is due to the rapid and efficient repair of the transcribed strand. Within 8 h after irradiation with UV at 10 J m-2, 70% of the pyrimidine dimers in this strand are removed. The nontranscribed strand is repaired at a much slower rate, with 30% dimers removed after 8 h. Repair of the transcribed strand in XP-C cells occurs at a rate indistinguishable from that in normal cells, but the nontranscribed strand is not repaired significantly in these cells. Similar results were obtained for the DHFR gene. In the 3{prime} part of the ADA gene, however, both normal and XP-C cells perform fast and efficient repair of either strand, which is likely to be caused by the presence of transcription units on both strands. The factor defective in XP-C cells is apparently involved in the processing of DNA damage in inactive parts of the genome, including nontranscribed strands of active genes. These findings have important implications for the understanding of the mechanism of UV-induced excision repair and mutagenesis in mammalian cells.

  13. Cartilage specific collagen activates macrophages and the alternative pathway of complement: evidence for an immunopathogenic concept of rheumatoid arthritis.

    PubMed Central

    Hanauske-Abel, H M; Pontz, B F; Schorlemmer, H U

    1982-01-01

    We studied the effect of human interstitial collagen types I, II, and III on serum-free cultured mouse macrophages and on the complement classical and alternative pathways in human and guinea-pig serum. Type II collagen produced a dose-dependent consumption and conversion of C3 and factor B both in the homologous and in the heterologous system. This effect on the alternative pathway was reproduced in genetically C4-deficient guinea-pig serum and could be triggered by native, triple helical type II molecules, by their component alpha chains, and the CNBr peptide mixture. Addition of type II collagen to the mouse macrophage cultures induced not only a dose- and time-dependent secretion of lysosomal enzymes, but also the generation of a supernatant factor cytotoxic for mouse mastocytoma P 815 cells. Collagen of types I and III were conspicuously less active or inactive in all assays. The studies demonstrate properties of the collagen specific for cartilage which, on a molecular level, suggest its direct, local participation in the production and perpetuation of rheumatoid arthritis. Images PMID:7073345

  14. Sustained Systemic Glucocerebrosidase Inhibition Induces Brain α-Synuclein Aggregation, Microglia and Complement C1q Activation in Mice

    PubMed Central

    Rocha, Emily M.; Smith, Gaynor A.; Park, Eric; Cao, Hongmei; Graham, Anne-Renee; Brown, Eilish; McLean, Jesse R.; Hayes, Melissa A.; Beagan, Jonathan; Izen, Sarah C.; Perez-Torres, Eduardo

    2015-01-01

    Abstract Aims: Loss-of-function mutations in GBA1, which cause the autosomal recessive lysosomal storage disease, Gaucher disease (GD), are also a key genetic risk factor for the α-synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase and reductions in this enzyme result in the accumulation of the glycolipid substrates glucosylceramide and glucosylsphingosine. Deficits in autophagy and lysosomal degradation pathways likely contribute to the pathological accumulation of α-synuclein in PD. In this report we used conduritol-β-epoxide (CBE), a potent selective irreversible competitive inhibitor of glucocerebrosidase, to model reduced glucocerebrosidase activity in vivo, and tested whether sustained glucocerebrosidase inhibition in mice could induce neuropathological abnormalities including α-synucleinopathy, and neurodegeneration. Results: Our data demonstrate that daily systemic CBE treatment over 28 days caused accumulation of insoluble α-synuclein aggregates in the substantia nigra, and altered levels of proteins involved in the autophagy lysosomal system. These neuropathological changes were paralleled by widespread neuroinflammation, upregulation of complement C1q, abnormalities in synaptic, axonal transport and cytoskeletal proteins, and neurodegeneration. Innovation: A reduction in brain GCase activity has been linked to sporadic PD and normal aging, and may contribute to the susceptibility of vulnerable neurons to degeneration. This report demonstrates that systemic reduction of GCase activity using chemical inhibition, leads to neuropathological changes in the brain reminiscent of α-synucleinopathy. Conclusions: These data reveal a link between reduced glucocerebrosidase and the development of α-synucleinopathy and pathophysiological abnormalities in mice, and support the development of GCase therapeutics to reduce α-synucleinopathy in PD and related disorders

  15. Accelerated Tumor Growth Mediated by Sub-lytic Levels of Antibody-Induced Complement Activation is Associated with Activation of the PI3K/AKT Survival Pathway

    PubMed Central

    Wu, Xiaohong; Ragupathi, Govind; Panageas, Katherine; Hong, Feng; Livingston, Philip O.

    2013-01-01

    Purpose We addressed the possibility that low levels of tumor cell bound antibodies targeting gangliosides might accelerate tumor growth. Experimental Design To test this hypothesis, we treated mice with a range of mAb doses against GM2, GD2, GD3 and CD20 after challenge with tumors expressing these antigens and tested the activity of the same mAbs in-vitro. We also explored the mechanisms behind the complement-mediated tumor growth acceleration that we observed and an approach to overcome it. Results Serologically detectable levels of IgM-mAb against GM2 are able to delay or prevent tumor growth of high GM2-expressing cell lines both in-vitro and in a SCID mouse model, while very low levels of this mAb resulted in slight but consistent acceleration of tumor growth in both settings. Surprisingly, this is not restricted to IgM antibodies targeting GM2 but consistent against IgG-mAb targeting GD3 as well. These findings were mirrored by in-vitro studies with antibodies against these antigens as well as GD2 and CD20 (with Rituxan), and shown to be complement-dependent in all cases. Complement-mediated accelerated growth of cultured tumor cell lines initiated by low mAb levels was associated with activation of the PI3K/AKT survival pathway and significantly elevated levels of both p-AKT and p-PRAS40. This complement-mediated PI3K-activation and accelerated tumor growth in-vitro and in-vivo are eliminated by PI3K-inhibitors NVP-BEZ235 and Wortmannin. These PI3K-inhibitors also significantly increased efficacy of high doses of these 4 mAbs. Conclusion Our findings suggest that manipulation of the PI3K/AKT pathway and its signaling network can significantly increase the potency of passively administered mAbs and vaccine-induced-antibodies targeting a variety of tumor-cell-surface-antigens. PMID:23833306

  16. In vitro and in vivo downregulation of C3 by lipoteichoic acid isolated from Lactobacillus plantarum K8 suppressed cytokine-mediated complement system activation.

    PubMed

    Jeon, Boram; Kim, Hye Rim; Kim, Hangeun; Chung, Dae Kyun

    2016-07-01

    Complement component 3 (C3) is one of the proteins associated with complement cascades. C3 plays an essential role in three different pathways-the alternative, classical and lectin pathways. It is well known that cytokines activate complement system and increase complement component C3 production. In the current study, we found that lipoteichoic acid isolated from Lactobacillus plantarum K8 (pLTA) inhibited tumor necrosis factor-alpha (TNF-α) or interferon-gamma (IFN-γ)-mediated C3 mRNA and protein expression in HaCaT cells. pLTA inhibited C3 expression through the inhibition of the phosphorylation of p65 and p38 in the TNF-α-treated cells, while the inhibition of STAT1/2 and JAK2 phosphorylation by pLTA contributed to the reduction of C3 in IFN-γ-treated cells. When mice were pre-injected with pLTA followed by re-injection of TNF-α, serum C3 level was decreased as compared to TNF-α-injected only. Further studies revealed that membrane attack complex (MAC) increased by TNF-α injection was lessened in pLTA-pre-injected mice. A bactericidal assay using mouse sera showed that MAC activity in pLTA-pre-injected mice was lower than in TNF-α only-injected mice. These results suggest that pLTA can suppress inflammatory cytokine-mediated complement activation through the inhibition of C3 synthesis. pLTA application has the potential to alleviate complement-mediated diseases caused by excessive inflammation. PMID:27231239

  17. C3 glomerulopathy–associated CFHR1 mutation alters FHR oligomerization and complement regulation

    PubMed Central

    Tortajada, Agustín; Yébenes, Hugo; Abarrategui-Garrido, Cynthia; Anter, Jaouad; García-Fernández, Jesús M.; Martínez-Barricarte, Rubén; Alba-Domínguez, María; Malik, Talat H.; Bedoya, Rafael; Pérez, Rocío Cabrera; Trascasa, Margarita López; Pickering, Matthew C.; Harris, Claire L.; Sánchez-Corral, Pilar; Llorca, Oscar; Rodríguez de Córdoba, Santiago

    2013-01-01

    C3 glomerulopathies (C3G) are a group of severe renal diseases with distinct patterns of glomerular inflammation and C3 deposition caused by complement dysregulation. Here we report the identification of a familial C3G-associated genomic mutation in the gene complement factor H–related 1 (CFHR1), which encodes FHR1. The mutation resulted in the duplication of the N-terminal short consensus repeats (SCRs) that are conserved in FHR2 and FHR5. We determined that native FHR1, FHR2, and FHR5 circulate in plasma as homo- and hetero-oligomeric complexes, the formation of which is likely mediated by the conserved N-terminal domain. In mutant FHR1, duplication of the N-terminal domain resulted in the formation of unusually large multimeric FHR complexes that exhibited increased avidity for the FHR1 ligands C3b, iC3b, and C3dg and enhanced competition with complement factor H (FH) in surface plasmon resonance (SPR) studies and hemolytic assays. These data revealed that FHR1, FHR2, and FHR5 organize a combinatorial repertoire of oligomeric complexes and demonstrated that changes in FHR oligomerization influence the regulation of complement activation. In summary, our identification and characterization of a unique CFHR1 mutation provides insights into the biology of the FHRs and contributes to our understanding of the pathogenic mechanisms underlying C3G. PMID:23728178

  18. Biocompatibility and pathways of initial complement pathway activation with Phisio- and PMEA-coated cardiopulmonary bypass circuits during open-heart surgery.

    PubMed

    Thiara, A S; Mollnes, T E; Videm, V; Andersen, V Y; Svennevig, K; Kolset, S O; Fiane, A E

    2011-03-01

    A randomized open-heart surgery study comprising 30 patients was undertaken to compare the biocompatibility of Phisio-(phosphorylcholine) and PMEA-(poly-2-methoxyethyl acrylate) coated cardiopulmonary bypass (CPB) circuits and to assess the initial complement pathway activation during open-heart surgery. Blood samples were obtained at five time points, from the start of surgery to 24 hours postoperatively. The following analyses were performed: haemoglobin, lactate dehydrogenase, leukocyte and platelet counts, myeloperoxidase and neutrophil-activating peptide-2, thrombin-anti-thrombin complexes, syndecan-1 and the complement activation products C1rs-C1-inhibitor complexes, C4bc, C3bc, C3bBbP and the terminal complement complex (TCC). No significant inter-group difference was found in any parameters, except for the concentration of TCC which was moderately lower in the PMEA group at termination of CPB. Complement activation during open-heart surgery was mainly mediated through the alternative pathway. In conclusion, PMEA- and Phisio-coated circuits displayed similar biocompatibility with respect to inflammatory and haemostatic responses during and after open-heart surgery. PMID:21177724

  19. The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection.

    PubMed

    Kurokawa, Kenji; Takahashi, Kazue; Lee, Bok Luel

    2016-10-01

    Staphylococcus aureus is a Gram-positive bacterial pathogen that is decorated by glycopolymers, including wall teichoic acid (WTA), peptidoglycan, lipoteichoic acid, and capsular polysaccharides. These bacterial surface glycopolymers are recognized by serum antibodies and a variety of pattern recognition molecules, including mannose-binding lectin (MBL). Recently, we demonstrated that human serum MBL senses staphylococcal WTA. Whereas MBL in infants who have not yet fully developed adaptive immunity binds to S. aureus WTA and activates complement serum, MBL in adults who have fully developed adaptive immunity cannot bind to WTA because of an inhibitory effect of serum anti-WTA IgG. Furthermore, we showed that human anti-WTA IgGs purified from pooled adult serum IgGs triggered activation of classical complement-dependent opsonophagocytosis against S. aureus. Because the epitopes of WTA that are recognized by anti-WTA IgG and MBL have not been determined, we constructed several S. aureus mutants with altered WTA glycosylation. Our intensive biochemical studies provide evidence that the β-GlcNAc residues of WTA are required for the induction of anti-WTA IgG-mediated opsonophagocytosis and that both β- and α-GlcNAc residues are required for MBL-mediated complement activation. The molecular interactions of other S. aureus cell wall components and host recognition proteins are also discussed. In summary, in this review, we discuss the biological importance of S. aureus cell surface glycopolymers in complement activation and host defense responses. PMID:27424796

  20. Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo

    PubMed Central

    Stefan, E.; Aquin, S.; Berger, N.; Landry, C. R.; Nyfeler, B.; Bouvier, M.; Michnick, S. W.

    2007-01-01

    The G protein-coupled receptor (GPCR) superfamily represents the most important class of pharmaceutical targets. Therefore, the characterization of receptor cascades and their ligands is a prerequisite to discovering novel drugs. Quantification of agonist-induced second messengers and downstream-coupled kinase activities is central to characterization of GPCRs or other pathways that converge on GPCR-mediated signaling. Furthermore, there is a need for simple, cell-based assays that would report on direct or indirect actions on GPCR-mediated effectors of signaling. More generally, there is a demand for sensitive assays to quantify alterations of protein complexes in vivo. We describe the development of a Renilla luciferase (Rluc)-based protein fragment complementation assay (PCA) that was designed specifically to investigate dynamic protein complexes. We demonstrate these features for GPCR-induced disassembly of protein kinase A (PKA) regulatory and catalytic subunits, a key effector of GPCR signaling. Taken together, our observations show that the PCA allows for direct and accurate measurements of live changes of absolute values of protein complex assembly and disassembly as well as cellular imaging and dynamic localization of protein complexes. Moreover, the Rluc-PCA has a sufficiently high signal-to-background ratio to identify endogenously expressed Gαs protein-coupled receptors. We provide pharmacological evidence that the phosphodiesterase-4 family selectively down-regulates constitutive β-2 adrenergic- but not vasopressin-2 receptor-mediated PKA activities. Our results show that the sensitivity of the Rluc-PCA simplifies the recording of pharmacological profiles of GPCR-based candidate drugs and could be extended to high-throughput screens to identify novel direct modulators of PKA or upstream components of GPCR signaling cascades. PMID:17942691

  1. A Case of Atypical Hemolytic Uremic Syndrome Successfully Treated with Eculizumab

    PubMed Central

    Thajudeen, B.; Sussman, A.; Bracamonte, E.

    2013-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare thrombotic microangiopathy (TMA) characterized by the triad of hemolytic anemia, thrombocytopenia, and acute renal failure. Eculizumab, a monoclonal complement C5 antibody which prevents the induction of the terminal complement cascade, has recently emerged as a therapeutic option for aHUS. We report a case of aHUS successfully treated with eculizumab. A 51-year-old male was admitted to the hospital following a mechanical fall. His past medical history was significant for rheumatic valve disease and mitral valve replacement; he was on warfarin for anticoagulation. A computed tomography scan of the head revealed a right-sided subdural hematoma due to coagulopathy resulting from a supratherapeutic international normalized ratio (INR). Following treatment with prothrombin complex concentrate to reverse the INR, urine output dropped and his serum creatinine subsequently increased to 247.52 μmol/l from the admission value of 70.72 μmol/l. Laboratory evaluation was remarkable for hemolytic anemia, thrombocytopenia, elevated lactate dehydrogenase (LDH), low haptoglobin, and low complement C3. A renal biopsy was consistent with TMA, favoring a diagnosis of aHUS. Treatment with eculizumab was initiated which resulted in the stabilization of his hemoglobin, platelets, and LDH. Hemodialysis was terminated after 2.5 months due to improvement in urine output and solute clearance. The interaction between thrombin and complement pathway might be responsible for the pathogenesis of aHUS in this case. Eculizumab is an effective therapeutic agent in the treatment of aHUS. Early targeting of the complement system may modify disease progression and thus treat aHUS more effectively. PMID:24570684

  2. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice

    PubMed Central

    2013-01-01

    Background Glaucoma is an age-related neurodegenerative disorder involving the loss of retinal ganglion cells (RGCs), which results in blindness. Studies in animal models have shown that activation of inflammatory processes occurs early in the disease. In particular, the complement cascade is activated very early in DBA/2J mice, a widely used mouse model of glaucoma. A comprehensive analysis of the role of the complement cascade in DBA/2J glaucoma has not been possible because DBA/2J mice are naturally deficient in complement component 5 (C5, also known as hemolytic complement, Hc), a key mediator of the downstream processes of the complement cascade, including the formation of the membrane attack complex. Methods To assess the role of C5 in DBA/2J glaucoma, we backcrossed a functional C5 gene from strain C57BL/6J to strain DBA/2J for at least 10 generations. The prevalence and severity of glaucoma was evaluated using ocular examinations, IOP measurements, and assessments of optic nerve damage and RGC degeneration. To understand how C5 affects glaucoma, C5 expression was assessed in the retinas and optic nerves of C5-sufficient DBA/2J mice, using immunofluorescence. Results C5-sufficient DBA/2J mice developed a more severe glaucoma at an earlier age than standard DBA/2J mice, which are therefore protected by C5 deficiency. Components of the membrane attack complex were found to be deposited at sites of axonal injury in the optic nerve head and associated with RGC soma in the retina. Conclusion C5 plays an important role in glaucoma, with its deficiency lessening disease severity. These results highlight the importance of fully understanding the role of the complement cascade in neurodegenerative diseases. Inhibiting C5 may be beneficial as a therapy for human glaucoma. PMID:23806181

  3. Splenic RNA and MicroRNA Mimics Promote Complement Factor B Production and Alternative Pathway Activation via Innate Immune Signaling.

    PubMed

    Zou, Lin; Feng, Yan; Xu, Ganqiong; Jian, Wenling; Chao, Wei

    2016-03-15

    Complement factor B (cfB) is an essential component of the alternative pathway (AP) and plays an important role in the pathogenesis of polymicrobial sepsis. However, the mechanism leading to cfB production and AP activation during sepsis remains poorly understood. In this study, we found that plasma cell-free RNA was significantly increased following cecal ligation and puncture (CLP), an animal model of polymicrobial sepsis, and was closely associated with sepsis severity. Quantitative RT-PCR and microRNA (miRNA) array analysis revealed an increase in bacterial RNA and multiple host miRNAs (miR-145, miR-146a, miR-122, miR-210) in the blood following CLP. Treatment with tissue RNA or synthetic miRNA mimics (miR-145, miR-146a, miR-122, miR-34a) induced a marked increase in cfB production in cardiomyocytes or macrophages. The newly synthesized cfB released into medium was biologically active because it participated in AP activation initiated by cobra venom factor. Genetic deletion of TLR7 or MyD88, but not TLR3, and inhibition of the MAPKs (JNK and p38) or NF-κB abolished miR-146a-induced cfB production. In vivo, CLP led to a significant increase in splenic cfB expression that correlated with the plasma RNA or miRNA levels. Peritoneal injection of RNA or miR-146a led to an increase in cfB expression in the peritoneal space that was attenuated in MyD88-knockout or TLR7-knockout mice, respectively. These findings demonstrate that host cellular RNA and specific miRNAs are released into the circulation during polymicrobial sepsis and may function as extracellular mediators capable of promoting cfB production and AP activation through specific TLR7 and MyD88 signaling. PMID:26889043

  4. Systemic lupus erythematosus and primary fibromyalgia can be distinguished by testing for cell-bound complement activation products

    PubMed Central

    Wallace, Daniel J; Silverman, Stuart L; Conklin, John; Barken, Derren; Dervieux, Thierry

    2016-01-01

    Objective We sought to establish the performance of cell-bound complement activation products (CB-CAPs) as a diagnostic tool to distinguish primary fibromyalgia (FM) from systemic lupus erythematosus (SLE). Methods A total of 75 SLE and 75 primary FM adult subjects who fulfilled appropriate classification criteria were enrolled prospectively. CB-CAPs (erythrocyte-C4d (EC4d) and B-lymphocyte-C4d (BC4d)) were determined by flow cytometry. Antinuclear antibodies (ANAs) were determined using indirect immunofluorescence while other autoantibodies were determined by solid-phase assays. The CB-CAPs in a multi-analyte assay with algorithm (MAAA) relied on two consecutive tiers of analysis that was reported as an overall positive or negative assessment. Test performance was assessed using sensitivity, specificity, positive and negative likelihood ratio (LR). Results ANAs yielded 80% positives for SLE and 33% positives for FM. High CB-CAP expression (EC4d >14 units or BC4d >60 units) was 43% sensitive and 96% specific for SLE. The CB-CAPs in MAAA assessment was evaluable in 138 of the 150 subjects enrolled (92%) and yielded 60% sensitivity (CI 95% 48% to 72%) for SLE with no FM patient testing positive (100% specificity). A positive test result was associated with a strong positive LR for SLE (>24, CI 95%; 6 to 102), while a negative test result was associated with a moderate negative LR (0.40; CI 95% 0.30 to 0.54). Conclusion Our data indicate that CB-CAPs in MAAA can distinguish FM from SLE. PMID:26870391

  5. Invariant NKT Cell Development Requires a Full Complement of Functional CD3 ζ Immunoreceptor Tyrosine-Based Activation Motifs

    PubMed Central

    Becker, Amy M.; Blevins, Jon S.; Tomson, Farol L.; Eitson, Jennifer L.; Medeiros, Jennifer J.; Yarovinsky, Felix; Norgard, Michael V.; van Oers, Nicolai S. C.

    2010-01-01

    Invariant NKT (iNKT) cells regulate early immune responses to infections, in part because of their rapid release of IFN-γ and IL-4. iNKT cells are proposed to reduce the severity of Lyme disease following Borrelia burgdorferi infection. Unlike conventional T cells, iNKT cells express an invariant αβ TCR that recognizes lipids bound to the MHC class I-like molecule, CD1d. Furthermore, these cells are positively selected following TCR interactions with glycolipid/CD1d complexes expressed on CD4+CD8+ thymocytes. Whereas conventional T cell development can proceed with as few as 4/10 CD3 immunoreceptor tyrosine-based activation motifs (ITAMs), little is known about the ITAM requirements for iNKT cell selection and expansion. We analyzed iNKT cell development in CD3 ζ transgenic lines with various tyrosine-to-phenylalanine substitutions (YF) that eliminated the functions of the first (YF1,2), third (YF5,6), or all three (YF1–6) CD3 ζ ITAMs. iNKT cell numbers were significantly reduced in the thymus, spleen, and liver of all YF mice compared with wild type mice. The reduced numbers of iNKT cells resulted from significant reductions in the expression of the early growth response 2 and promyelocytic leukemia zinc finger transcription factors. In the mice with few to no iNKT cells, there was no difference in the severity of Lyme arthritis compared with wild type controls, following infections with the spirochete B. burgdorferi. These findings indicate that a full complement of functional CD3 ζ ITAMs is required for effective iNKT cell development. The Journal of Immunology, 2010, 184: 6822–6832. PMID:20483726

  6. The complement system and adverse pregnancy outcomes.

    PubMed

    Regal, Jean F; Gilbert, Jeffrey S; Burwick, Richard M

    2015-09-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child. PMID:25802092

  7. Human complement protein C9 is a calcium binding protein. Structural and functional implications.

    PubMed

    Thielens, N M; Lohner, K; Esser, A F

    1988-05-15

    Human complement protein C9 is shown to be a metalloprotein that binds 1 mol of Ca2+/mol of C9 with a dissociation constant of 3 micron as measured by equilibrium dialysis. Incubation with EDTA removes the bound calcium, resulting in a apoprotein with decreased thermal stability. This loss in stability leads to aggregation and, therefore, to loss of hemolytic activity upon heating to a few degrees above the physiological temperature. Heat-induced aggregation of apoC9 can be prevented by salts that stabilize proteins according to the Hofmeister series of lyotropic ions, suggesting that the ion in native C9 may ligand with more than one structural element or domain of the protein. Ligand blotting indicates that the calcium binding site is located in the amino-terminal half of the protein. Removal of calcium by inclusion of EDTA in assay mixtures has no effect on the hemolytic activity of C9, and its capacity to bind to C8 in solution, or to small unilamellar lipid vesicles at temperatures at or below the physiological range. Although we do not know yet the precise structural and functional role of the bound calcium, it is clear that it provides thermal stability to C9 and it may have a function in regulation of membrane insertion. PMID:3360798

  8. Discontinuation of eculizumab maintenance treatment for atypical hemolytic uremic syndrome: a report of 10 cases.

    PubMed

    Ardissino, Gianluigi; Testa, Sara; Possenti, Ilaria; Tel, Francesca; Paglialonga, Fabio; Salardi, Stefania; Tedeschi, Silvana; Belingheri, Mirco; Cugno, Massimo

    2014-10-01

    Atypical hemolytic uremic syndrome (aHUS) is a life-threatening thrombotic microangiopathy, and as many as 70% of patients with aHUS have mutations in the genes encoding complement regulatory proteins. Eculizumab, a humanized recombinant monoclonal antibody targeting C5, has been used successfully in patients with aHUS since 2009. The standard maintenance treatment requires life-long eculizumab therapy, but the possibility of discontinuation has not yet been tested systematically. We report the safety of discontinuing eculizumab treatment in 10 patients who stopped treatment with the aim of minimizing the risk of adverse reactions, reducing the risk of meningitis, and improving quality of life while also reducing the considerable treatment costs. Disease activity was monitored closely at home by means of urine dipstick testing for hemoglobin. During the cumulative observation period of 95 months, 3 of the 10 patients experienced relapse within 6 weeks of discontinuation, but then immediately resumed treatment and completely recovered. Our experience supports the possibility of discontinuing eculizumab therapy with strict home monitoring for early signs of relapse in patients with aHUS who achieve stable remission. PMID:24656451

  9. Enzymatic and hemolytic properties of Propionibacterium acnes and related bacteria.

    PubMed

    Hoeffler, U

    1977-12-01

    The production of chondroitin sulfatase, hyaluronidase, deoxyribonuclease, gelatinase, phosphatase, lecithinase, and hemolysins was examined in 95 strains of Propionibacterium acnes and four related species of anaerobic, respectively, microaerophilic coryneform bacteria (P. avidum, P. lymphophilum, P. granulosum, and Corynebacterium minutissimum). All enzymes could be demonstrated in at least one representative of the species tested. Those Propionibacterium species most frequently found in acne vulgaris lesions, i.e., P. acnes and P. granulosum, proved to be the most active organisms concerning the production of the enzymes tested. P. avidum, on the other hand, showed the highest rate of hemolytic activity. PMID:201661

  10. Inherited deficiency of second component of complement and HLA haplotype A10,B18 associated with inflammatory bowel disease.

    PubMed

    Slade, J D; Luskin, A T; Gewurz, H; Kraft, S C; Kirsner, J B; Zeitz, H J

    1978-06-01

    A patient with inflammatory bowel disease and sacroiliitis had haplotypes A10,B18 and Aw32,b18 at the major histocompatibility locus. Serum total complement and C2 hemolytic complement activities were undetectable; levels of the remaining C1-C9 components were normal. The parents, both siblings, and a child each had half-normal levels of C2 and either the A10,B18 or the Aw32,b18 hla haplotype. In a second unrelated family, an only child and both parents developed inflammatory bowel disease. The father and child had HLA haplotype A10,B18, but, along with the mother, each had normal serum levels of hemolytic C and C2. Homozygous C2 deficiency, often in association with the A10,B18 haplotype, has previously been linked with various autoimmune diseases and with propensity to infection. Our findings suggest that C2 deficiency or this haplotype also may predispose to inflammatory diseases of the intestine. PMID:666136

  11. Biochemical and physiological analyses of a hemolytic toxin isolated from a sea anemone Actineria villosa.

    PubMed

    Uechi, Gen-Ichiro; Toma, Hiromu; Arakawa, Takeshi; Sato, Yoshiya

    2005-05-01

    A species of venomous sea anemone Actineria villosa was recently found inhabiting the coastal areas of Okinawa, Japan. This marine animal produces various proteinous toxins, so that a local health organization was called for medical treatment for those who had accidental contact with this animal. In this study we analyzed the biochemical and physiological properties of hemolytic protein from A. villosa. The toxin purified from the tentacles of the animals was found to be a protein with a molecular weight of approximately 19 kDa. We named this newly found hemolytic toxin of A. villosa, Avt-I. Incubation of the toxin with sphingomyelin inhibited hemolytic activity by up to 85%, showing that Avt-I may target sphingomyelin on the erythrocyte membrane. The hemolytic activity was stably maintained at temperatures below 45 degrees C, however, a sharp linear decrease in heat stability was observed within the range of 45-55 degrees C. Our results provide the first evidence that A. villosa produces a toxin with strong hemolytic activity similar in biochemical and physiological properties to other members of actinoporin family previously isolated from related species of sea anemones. PMID:15804525

  12. The Complement System in Schizophrenia

    PubMed Central

    Mayilyan, Karine R.; Weinberger, Daniel R.; Sim, Robert B.

    2009-01-01

    summary Several lines of evidence suggest that immunological factors contribute to schizophrenia. Since 1989, the role of complement, a major effector of innate immunity and an adjuvant of adaptive immunity, has been explored in schizophrenia. Increased activity of C1, C3, C4 complement components in schizophrenia has been reported by two or more groups. Two studies on different subject cohorts showed increased MBL-MASP-2 activity in patients versus controls. More then one report indicated a significant high frequency of FB*F allotype and low prevalence of the FS phenotype of complement factor B in schizophrenia. From the data reported, it is likely that the disorder is accompanied by alterations of the complement classical and lectin pathways, which undergo dynamic changes, depending on the illness course and the state of neuro-immune crosstalk. Recent findings, implicating complement in neurogenesis, synapse remodeling and pruning during brain development, suggest a reexamination of the potential role of complement in neurodevelopmental processes contributing to schizophrenia susceptibility. It is plausible that the multicomponent complement system has more than one dimensional association with schizophrenia susceptibility, pathopsychology and illness course, understanding of which will bring a new perspective for possible immunomodulation and immunocorrection of the disease. PMID:18560619

  13. The pathogenesis of arthritis associated with acute hepatitis-B surface antigen-positive hepatitis. Complement activation and characterization of circulating immune complexes.

    PubMed Central

    Wands, J R; Mann, E; Alpert, E; Isselbacher, K J

    1975-01-01

    Circulating immune complexes were identified in cryoproteins isolated from serial samples of serum from six patients with acute viral hepatitis with and without arthritic symptoms. Cryoprecipitates were analyzed for the presence of hepatitis-B surface antigen (HBsAg) and hepatitis-B surface antibody (anti-HBs) by hemagglutination inhibition and hemagglutination. Complement components were detected by counter electrophoresis, and immunoglobulins were detected by gel diffusion. HBsAg, IgG, and IgM were identified in cryoprecipitates from all hepatitis patients, but were higher in concentration in patients with arthritis. Only cryoprecipitates from hepatitis patients with arthritis contained IgA and complement components C3, C4, and C5 as well as IgG and IgM, which disappear with resolution of the arthritis. The subtypes of IgG in these cryoprecipitates were predominantly the complement-fixing IgG1 and IgG3, HBsAg and anti-HBs were concentrated several-fold in the cryoprecipitates when compared to the serum concentration. Sequential studies in two patients demonstrated that the initial appearance of anti-HBs in the cryoprotein complex was associated with the detection in the complex of IgM suggesting a primary immune response to HBsAg. The C3 activator fragment (C3A) of the properdin complex was found in fresh serum obtained from three hepatitis patients with arthritis and not in uncomplicated hepatitis. The cryoprecipitable immune complexes from patients with arthritis converted C3PA in fresh normal sera to C3A in vitro whereas cryoprotein isolated from patients with uncomplicated hepatitis had no such effect. Thus, the transient appearance of circulating complement-fixing immune complexes in patients with the arthritis of acute hepatitis is associated with activation of both classical and alternate complement pathways and suggests that they play an important role in the pathogenesis of these serum sickness-like extrahepatic symptoms. Images PMID:1123429

  14. A Single Residue Change in Vibrio harveyi Hemolysin Results in the Loss of Phospholipase and Hemolytic Activities and Pathogenicity for Turbot (Scophthalmus maximus)▿

    PubMed Central

    Sun, Boguang; Zhang, Xiao-Hua; Tang, Xuexi; Wang, Shushan; Zhong, Yingbin; Chen, Jixiang; Austin, Brian

    2007-01-01

    Vibrio harveyi hemolysin, an important virulence determinant in fish pathogenesis, was further characterized, and the enzyme was identified as a phospholipase B by gas chromatography. Site-directed mutagenesis revealed that a specific residue, Ser153, was critical for its enzymatic activity and for its virulence in fish. PMID:17220231