Science.gov

Sample records for hepatic enzyme activity

  1. Hepatic biotransformation and antioxidant enzyme activities in Mediterranean fish from different habitat depths.

    PubMed

    Ribalta, C; Sanchez-Hernandez, J C; Sole, M

    2015-11-01

    Marine fish are threatened by anthropogenic chemical discharges. However, knowledge on adverse effects on deep-sea fish or their detoxification capabilities is limited. Herein, we compared the basal activities of selected hepatic detoxification enzymes in several species (Solea solea, Dicentrarchus labrax, Trachyrhynchus scabrus, Mora moro, Cataetix laticeps and Alepocehalus rostratus) collected from the coast, middle and lower slopes of the Blanes Canyon region (Catalan continental margin, NW Mediterranean Sea). The xenobiotic-detoxifying enzymes analysed were the phase-I carboxylesterases (CbEs), and the phase-II conjugation activities uridine diphosphate glucuronyltransferase (UDPGT) and glutathione S-transferase (GST). Moreover, some antioxidant enzyme activities, i.e., catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR), were also included in this comparative study. Because CbE activity is represented by multiple isoforms, the substrates α-naphthyl acetate (αNA) and ρ-nitrophenyl acetate (ρNPA) were used in the enzyme assays, and in vitro inhibition kinetics with dichlorvos were performed to compare interspecific CbE sensitivity. Activity of xenobiotic detoxification enzymes varied among the species, following a trend with habitat depth and body size. Thus, UDPGT and some antioxidant enzyme activities decreased in fish inhabiting lower slopes of deep-sea, whereas UDPGT and αNA-CbE activities were negatively related to fish size. A trend between CbE activities and the IC50 values for dichlorvos suggested S. solea and M. moro as potentially more sensitive to anticholinesterasic pesticides, and T. scabrus as the most resistant one. A principal component analysis considering all enzyme activities clearly identified the species but this grouping was not related to habitat depth or phylogeny. Although these results can be taken as baseline levels of the main xenobiotic detoxification enzymes in Mediterranean fish, further research is

  2. Acute effects of oral and intravenous ethanol on rat hepatic enzyme activities.

    PubMed

    Stifel, F B; Greene, H L; Lufkin, E G; Wrensch, M R; Hagler, L; Herman, R H

    1976-05-28

    1. Oral administration of ethanol (3 ml) of 95% in 12 ml total volume over a two day period) significantly decrease plasma glucose and insulin levels and the activities of two key gluconeogenic enzymes, pyruvate carboxylase (pyruvate: CO2 ligase (ADP), EC 6.4.1.1) and fructose diphosphatase, (D-Fru-1,6-P2 1-phosphohydrolase, EC 3.1.3.11), and one glycolytic enzyme, fructose-1,6-P2 aldolase (Fru-1,6-P2 D-glyceraldehyde-3-P lyase, EC 4.1.2.13). In each instance, the administration of 2400 mug daily of oral folate in conjuction with the ethanol prevented these alterations in carbohydrate metabolism. 2. Intravenous injection of ethanol produced a rapid decrease (within 10--15 min) in the activities of hepatic phosphofructokinase, (ATP:D-fructose-6-phosphate 6-phosphotransferase, EC 2.7.1.11), pyruvate kinase, (ATP:pyruvate phosphotransferase, EC 2.7.1.40), fructose diphosphatase and fructose-1,6-P2 aldolase. 3. Intravenous ethanol significantly increased hepatic cyclic AMP concentration approximately 60% within 10 min, while oral ethanol did not alter hepatic cyclic AMP concentrations. 4. These data confirm the known antagonism ethanol and folate and suggest that oral folate might offer a protective effect against hypoglycemia in rats receiving ethanol. PMID:179581

  3. Age-Related Changes in Hepatic Activity and Expression of Detoxification Enzymes in Male Rats

    PubMed Central

    Vyskočilová, Erika; Szotáková, Barbora; Skálová, Lenka; Bártíková, Hana; Hlaváčová, Jitka

    2013-01-01

    Process of aging is accompanied by changes in the biotransformation of xenobiotics and impairment of normal cellular functions by free radicals. Therefore, this study was designed to determine age-related differences in the activities and/or expressions of selected drug-metabolizing and antioxidant enzymes in young and old rats. Specific activities of 8 drug-metabolizing enzymes and 4 antioxidant enzymes were assessed in hepatic subcellular fractions of 6-week-old and 21-month-old male Wistar rats. Protein expressions of carbonyl reductase 1 (CBR1) and glutathione S-transferase (GST) were determined using immunoblotting. Remarkable age-related decrease in specific activities of CYP2B, CYP3A, and UDP-glucuronosyl transferase was observed, whereas no changes in activities of CYP1A2, flavine monooxygenase, aldo-keto reductase 1C, and antioxidant enzymes with advancing age were found. On the other hand, specific activity of CBR1 and GST was 2.4 folds and 5.6 folds higher in the senescent rats compared with the young ones, respectively. Interindividual variability in CBR1 activity increased significantly with rising age. We suppose that elevated activities of GST and CBR1 may protect senescent rats against xenobiotic as well as eobiotic electrophiles and reactive carbonyls, but they may alter metabolism of drugs, which are CBR1 and especially GSTs substrates. PMID:23971034

  4. Alterations in the activities of hepatic plasma-membrane and microsomal enzymes during liver regeneration.

    PubMed Central

    Deliconstantinos, G; Ramantanis, G

    1983-01-01

    A marked increase in the activities of rat liver plasma-membrane (Na+ + K+)-stimulated ATPase and microsomal Ca2+-stimulated ATPase was observed 18h after partial hepatectomy. Lipid analyses for both membrane preparations reveal that in partially hepatectomized rats the cholesterol and sphingomyelin content are decreased with a subsequent decrease in the cholesterol/phospholipid molar ratio compared with those of sham-operated animals. Changes in the allosteric properties of plasma-membrane (Na+ + K+)-stimulated ATPase by F- (as reflected by changes in the Hill coefficient) indicated a fluidization of the lipid bilayer of both membrane preparations in 18 h-regenerating liver. The amphipathic dodecyl glucoside incorporated into the hepatic plasma membranes evoked a marked increase in the (Na+ + K+)-stimulated ATPase and 5'-nucleotidase activities. The lack of effect of the glucoside on the Lubrol-PX-solubilized 5'-nucleotidase indicates that changes in the activities of the membrane-bound enzymes caused by the glucoside are due to modulation of the membrane fluidity. Dodecyl glucoside appears to increase the membrane fluidity, evaluated through changes in the Hill coefficient for plasma-membrane (Na+ + K+)-stimulated ATPase. The biological significance of these data is discussed in terms of the differences and changes in the interaction of membrane-bound enzymes with membrane lipids during liver regeneration. PMID:6309144

  5. Activity-based protein profiling identifies a host enzyme, carboxylesterase 1, which is differentially active during hepatitis C virus replication.

    PubMed

    Blais, David R; Lyn, Rodney K; Joyce, Michael A; Rouleau, Yanouchka; Steenbergen, Rineke; Barsby, Nicola; Zhu, Lin-Fu; Pegoraro, Adrian F; Stolow, Albert; Tyrrell, David L; Pezacki, John Paul

    2010-08-13

    Hepatitis C virus (HCV) relies on many interactions with host cell proteins for propagation. Successful HCV infection also requires enzymatic activity of host cell enzymes for key post-translational modifications. To identify such enzymes, we have applied activity-based protein profiling to examine the activity of serine hydrolases during HCV replication. Profiling of hydrolases in Huh7 cells replicating HCV identified CES1 (carboxylesterase 1) as a differentially active enzyme. CES1 is an endogenous liver protein involved in processing of triglycerides and cholesterol. We observe that CES1 expression and activity were altered in the presence of HCV. The knockdown of CES1 with siRNA resulted in lower levels of HCV replication, and up-regulation of CES1 was observed to favor HCV propagation, implying an important role for this host cell protein. Experiments in HCV JFH1-infected cells suggest that CES1 facilitates HCV release because less intracellular HCV core protein was observed, whereas HCV titers remained high. CES1 activity was observed to increase the size and density of lipid droplets, which are necessary for the maturation of very low density lipoproteins, one of the likely vehicles for HCV release. In transgenic mice containing human-mouse chimeric livers, HCV infection also correlates with higher levels of endogenous CES1, providing further evidence that CES1 has an important role in HCV propagation. PMID:20530478

  6. Oxidative Modification of Rat Sulfotransferase 1A1 Activity in Hepatic Tissue Slices Correlates with Effects on the Purified Enzyme

    PubMed Central

    Dammanahalli, Jagadeesha K.

    2012-01-01

    Mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of xenobiotics as well as numerous endogenous molecules. The major aryl (phenol) SULT in rat liver, rSULT1A1, has been used extensively as a model enzyme for understanding the catalytic function of SULTs. Previous studies showed that purified rSULT1A1 displays significant catalytic changes in the presence of GSSG and other oxidants. In the present study, the effects of diamide [1,1′-azobis(N,N-dimethylformamide)] and tert-butyl hydroperoxide (TBHP) on the activity of rSULT1A1 in rat hepatic slices were compared with the effects of these oxidants on a homogeneous preparation of the enzyme. Precision-cut hepatic slices were incubated with 10 μM 7-hydroxycoumarin (7-HC) in the presence of varied concentrations of either diamide or TBHP. Analysis of the 7-hydroxycoumarin sulfate released into the incubation medium indicated that both oxidants significantly increased the sulfation of 7-HC, and this occurred at optimal concentrations of 5 and 10 μM, respectively. Cellular GSH and GSSG levels in the hepatic slices were not significantly altered from control values at these concentrations of diamide and TBHP. Exposure of homogeneous rSULT1A1 to diamide or TBHP also increased the rate of sulfation of 7-HC, although the optimal concentrations of diamide and TBHP were lower (50- and 100-fold, respectively) than those required for effects with the hepatic slices. These results indicate that both diamide and TBHP may modify the rSULT1A1 in intact cells in a manner similar to that observed with the homogeneous purified enzyme. PMID:22041107

  7. Activity of hepatic but not skeletal muscle carnitine palmitoyltransferase enzyme is depressed by intravenous glucose infusions in lactating dairy cows.

    PubMed

    Al-Trad, B; Wittek, T; Gäbel, G; Fürll, M; Reisberg, K; Aschenbach, J R

    2010-12-01

    A positive energy balance in dairy cows pre-partum may decrease hepatic carnitine palmitoyltransferase (CPT) enzyme activity, which might contribute to disturbances of lipid metabolism post-partum. The purpose of this study was to investigate whether skeletal muscle CPT activity can also be downregulated during positive energy balance. Mid-lactating dairy cows were maintained on intravenous infusion of either saline (control) or glucose solutions that increased linearly over 24 days, remained at the 24-day level until day 28 and were suspended thereafter. Liver and skeletal muscle biopsies, as well as four diurnal blood samples, were taken on days 0, 8, 16, 24, and 32, representing infusion levels equivalent to 0%, 10%, 20%, 30% and 0% of the net energy for lactation (NE(L)) requirement respectively. Glucose infusion increased serum insulin concentrations on day 16 and 24 while plasma glucose levels were increased at only a single time point on day 24. Serum beta-hydroxybutyric acid concentrations decreased between day 8 and 24; whereas changes in non-esterified fatty acids were mostly insignificant. Total lipid contents of liver and skeletal muscle were not affected by treatment. Hepatic CPT activity decreased with glucose infusion (by 35% on day 24) and remained decreased on day 32. Hepatic expression levels of CPT-1A and CPT-2 mRNA were not significantly altered but tended to reflect the changes in enzyme activity. In contrast to the liver, no effect of glucose infusion was observed on skeletal muscle CPT activity. We conclude that suppression of CPT activity by positive energy balance appears to be specific for the liver in mid-lactating dairy cows. PMID:20546068

  8. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis

    PubMed Central

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2−/y) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2−/y mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  9. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis.

    PubMed

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2(-/y)) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2(-/y) mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1-7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what's more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1-7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1-7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  10. Effect of Antiviral Therapy on Serum Activity of Angiotensin Converting Enzyme in Patients with Chronic Hepatitis C

    PubMed Central

    Husic-Selimovic, Azra; Sofic, Amela; Huskic, Jasminko; Bulja, Deniz

    2016-01-01

    Introduction: Renin-angiotenzin system (RAS) is frequently activated in patients with chronic liver disease. Angiotenzin - II (AT-II), produced by angiotenzin converting enzyme (ACE), has many physiological effects, including an important role in liver fibrogenesis. Combined antiviral therapy with PEG-IFN and ribavirin besides its antiviral effect also leads to a reduction in liver parenchyma fibrosis. Aim of the study: Determining the value of ACE in serum of patients with chronic hepatitis C before and after combined antiviral therapy, as well as the value of ACE activities in sera of the control group. Materials and methods: We studied 50 patients treated at Gastroenterohepatology Department, in the time-period of four years. Value of ACE in serum was determined by Olympus AU 400 device, with application of kit “Infinity TN ACE Liquid Stable Reagent”. HCV RNA levels in sera were measured by real time PCR. HCV RNA test was performed with modular analysis of AMPLICOR and COBAS AMPLICOR HCV MONITOR test v2.0, which has proved infection and was used for quantification of the viruses and monitoring of the patients’ response to therapy. Liver histology was evaluated in accordance with the level of necroinflammation activity and stage of fibrosis. Results: Serum activities of ACE in chronic hepatitis C patients is statistically higher than the values in the control group (p=0.02). Antiviral therapy in chronic hepatitis C patients statistically decreases serum activities of ACE (p= 0.02) and indirectly affects fibrogenesis of the liver parenchyma. Correlation between ACE and ALT activity after the therapy was proved (0.3934). Conclusion: Our findings suggest that the activity of ACE in serum is a good indirect parameter of the liver damage, and could be used as an indirect prognostic factor of the level of liver parenchyma damage. Serum activity of ACE can be used as a parameter for non-invasive assessment of intensity of liver damage. PMID:27147779

  11. Characterization of hepatic enzyme activity in older adults with dementia: potential impact on personalizing pharmacotherapy

    PubMed Central

    Campbell, Noll L; Skaar, Todd C; Perkins, Anthony J; Gao, Sujuan; Li, Lang; Khan, Babar A; Boustani, Malaz A

    2015-01-01

    Objective To determine the frequency of pharmacogenomic variants and concurrent medications that may alter the efficacy and tolerability of acetylcholinesterase inhibitors (AChEIs). Materials and methods A multisite cross-sectional study was carried out across four memory care practices in the greater Indianapolis area. Participants were adults aged 65 years and older with a diagnosis of probable or possible Alzheimer’s disease (AD) (n=105). Blood samples and self-reported medication data were collected. Since two of the three AChEIs are metabolized by cytochrome P450 (CYP)-2D6, we determined the frequency of functional genetic variants in the CYP2D6 gene and calculated their predicted CYP2D6-activity scores. Concurrent medication data were collected from self-reported medication surveys, and their predicted effect on the pharmacokinetics of AChEIs was determined based on their known effects on CYP2D6 and CYP3A4/5 enzyme activities. Results Among the 105 subjects enrolled, 72% were female and 36% were African American. Subjects had a mean age of 79.6 years. The population used a mean of eight medications per day (prescription and nonprescription). The CYP2D6 activity score frequencies were 0 (3.8%), 0.5 (4.8%), 1.0 (36.2%), 1.5–2.0 (51.4%), and >2.0 (3.8%). Nineteen subjects (18.1%) used a medication considered a strong or moderate inhibitor of CYP2D6, and eight subjects (7.6%) used a medication considered a strong or moderate inhibitor of CYP3A4/5. In total, 28.6% of the study population was predicted to have reduced activity of the CYP2D6 or CYP3A4/5 enzymes due to either genetic variants or concomitant medications. Conclusion Both pharmacogenetic variants and concurrent drug therapies that are predicted to alter the pharmacokinetics of AChEIs should be evaluated in older adults with AD. Pharmacogenetic and drug-interaction data may help personalize AD therapy and increase adherence by improving tolerability. PMID:25609939

  12. POLYCHLORINATED BIPHENYLS AS INDUCERS OF HEPATIC MICROSOMAL ENZYMES: STRUCTURE-ACTIVITY RULES

    EPA Science Inventory

    A number of highly purified polychlorinated biphenyl (PCB) isomers and congeners were synthesized and administered to male Wistar rats at dosage levels of 30 and 150 micromol/kg. The effects of this in vivo treatment on the drug-metabolizing enzymes were determined by measuring t...

  13. Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine.

    PubMed

    Bjornvad, C R; Elnif, J; Sangild, P T

    2004-11-01

    For many mammalian species short-term fasting is associated with intestinal atrophy and decreased digestive capacity. Under natural conditions, strictly carnivorous animals often experience prey scarcity during winter, and they may therefore be particularly well adapted to short-term food deprivation. To examine how the carnivorous gastrointestinal tract is affected by fasting, small-intestinal structure, brush-border enzyme activities and hepatic structure and function were examined in fed mink (controls) and mink that had been fasted for 1-10 days. During the first 1-2 days of fasting, intestinal mass decreased more rapidly than total body mass and villus heights were reduced 25-40%. In contrast, tissue-specific activity of the brush-border enzymes sucrase, maltase, lactase, aminopeptidase A and dipeptidylpeptidase IV increased 0.5- to 1.5-fold at this time, but returned to prefasting levels after 6 days of fasting. After 6-10 days of fasting there was a marked increase in the activity of hepatic enzymes and accumulation of intra-hepatic lipid vacuoles. Thus, mink may be a useful model for studying fasting-induced intestinal atrophy and adaptation as well as mechanisms involved in accumulation of intra-hepatic lipids following food deprivation in strictly carnivorous domestic mammals, such as cats and ferrets. PMID:15503054

  14. Comparative toxicology of tetrachlorobiphenyls in mink and rats. I. Changes in hepatic enzyme activity and smooth endoplasmic reticulum volume

    SciTech Connect

    Gillette, D.M.; Corey, R.D.; Helferich, W.G.; McFarland, J.M.; Lowenstine, L.J.; Moody, D.E.; Hammock, B.D.; Shull, L.R.

    1987-01-01

    Mink have been shown previously to be extraordinarily sensitive to polychlorinated biphenyls (PCBs) and related classes of halogenated hydrocarbons. This study explored several aspects of the acute response of mink to two purified tetrachlorobiphenyl (TCB) congeners and compared their response with that of the rat, a less sensitive and more thoroughly studied species. Young female pastel mink and young female Sprague-Dawley rats received three daily intraperitoneal injections with equimolar doses of either 2,4,2',4'-TCB or 3,4,3',4'-TCB, and were sacrificed after 7 days. Two control groups were used for each species; one was allowed free access to food and the other was pair-fed to the 3,4,3',4'-TCB treatment group. Rats remained clinically normal, while mink treated with 3,4,3',4'-TCB developed severe anorexia, diarrhea, and melena. Both species had significant increases in hepatic cytochrome P-450 content and the characteristic shift in the spectral maxima from 450 to 448 nm in the 3,4,3',4'-TCB- but not in the 2,4,2',4'-TCB-treated animals. Rats but not mink had increased activities of several hepatic monooxygenases in response to both congeners while microsomal epoxide hydrolase was increased in rats after 2,4,2',4'-TCB and in mink after 3,4,3',4'-TCB. Significant increases in the relative volume of smooth endoplasmic reticulum within hepatocytes of 2,4,2',4'-TCB-treated rats but not mink were confirmed by ultrastructural morphometry. Accumulation of both congeners was greater in adipose tissue than in the liver of either species. In both species, concentrations in adipose tissue were much greater for 2,4,2',4'-TCB than for 3,4,3',4'-TCB. PCB toxicosis in mink, as in other species, appeared to be dependent on isomeric arrangement of chlorine substituents. However, unlike other species, the toxicosis was not associated with biochemical or morphological evidence of hepatic enzyme induction.

  15. Hepatic enzyme activity after combined administration of methylmercury, lead and cadmium in the pekin duck

    SciTech Connect

    Jordan, S.A.; Bhatnagar, M.K. )

    1990-04-01

    In order to assess adequately the environmental impact of heavy metals it is important to consider that they may occur simultaneously in the environment, where they may interact to alter their individual toxicities on living systems. Metals such as mercury (Hg), lead (Pb) and cadmium (Cd) can be found in all levels of the polluted ecosystem, and in animals inhabiting such areas. In the polluted aquatic environment waterfowl have been noted to accumulate high levels of these metals in their tissues. A major toxic manifestation of heavy metal exposure is the perturbation of a wide range of enzyme systems in virtually all subcellular compartments. With the exception of lead, little data is available on the effects of metals on avian enzyme systems. The present report describes the effects observed in vivo on acid phosphatase (AP), glutathione S-transferase (GST) and cytochrome c oxidase (cyt c ox) in the liver of pekin ducks exposed to combinations of methylmercury (MeHg), lead and cadmium.

  16. Multiple plasma enzyme activities in liver disease

    PubMed Central

    Hargreaves, T.; Janota, I.; Smith, M. J. H.

    1961-01-01

    The measurement of the plasma activities of glutamic-oxaloacetic and glutamic-pyruvic transaminases, aldolase, cholinesterase, and isocitric, lactic, and phosphogluconic dehydrogenases in random samples of blood was found to be of no value in the differential diagnosis of hepatitis, obstructive jaundice, hepatic cirrhosis, and neoplastic conditions involving the liver. Serial determinations of the enzyme activities provided useful information about the course of certain hepatic disorders, particularly acute viral hepatitis. PMID:13711559

  17. Comparison among Different Gilthead Sea Bream (Sparus aurata) Farming Systems: Activity of Intestinal and Hepatic Enzymes and 13C-NMR Analysis of Lipids

    PubMed Central

    Coco, Laura Del; Papadia, Paride; Pascali, Sandra A. De; Bressani, Giorgia; Storelli, Carlo; Zonno, Vincenzo; Fanizzi, Francesco Paolo

    2009-01-01

    In order to evaluate differences in general health and nutritional values of gilthead sea bream (Sparus aurata), the effects of semi-intensive, land-based tanks and sea-cages intensive rearing systems were investigated, and results compared with captured wild fish. The physiological state was determined by measuring the activity of three different intestinal digestive enzymes: alkaline phosphatase (ALP), leucine aminopeptidase (LAP) and maltase; and the activity of the hepatic ALP. Also, the hepatic content in protein, cholesterol, and lipid were assessed. 13C-NMR analysis for qualitative and quantitative characterization of the lipid fraction extracted from fish muscles for semi-intensive and land based tanks intensive systems was performed. The lipid fraction composition showed small but significant differences in the monounsaturated/saturated fatty acid ratio, with the semi-intensive characterized by higher monounsaturated and lower saturated fatty acid content with respect to land based tanks intensive rearing system. PMID:22253985

  18. E2 potentializes benzo(a)pyrene-induced hepatic cytochrome P450 enzyme activities in Nile tilapia at high concentrations.

    PubMed

    Rodrigues, Aline Cristina Ferreira; Moneró, Tatiana de Oliveira; Frighetto, Rosa Toyoko Shiraishi; de Almeida, Eduardo Alves

    2015-11-01

    In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia. PMID:25280508

  19. Mechanism-based inhibitory and peroxisome proliferator-activated receptor α-dependent modulating effects of silybin on principal hepatic drug-metabolizing enzymes.

    PubMed

    Wang, Hong; Yan, Tingting; Xie, Yuan; Zhao, Min; Che, Yuan; Zhang, Jun; Liu, Huiying; Cao, Lijuan; Cheng, Xuefang; Xie, Yang; Li, Feiyan; Qi, Qu; Wang, Guangji; Hao, Haiping

    2015-04-01

    Silybin, a major pharmacologically active compound in silymarin, has been widely used in combination with other prescriptions in the clinic to treat hepatitis and a host of other diseases. Previous studies suggested that silybin is a potential inhibitor of multiple drug-metabolizing enzymes (DMEs); however, the in vitro to in vivo translation and the mechanisms involved remain established. The aim of this study was to provide a mechanistic understanding of the regulatory effects of silybin on principal DMEs. Silybin (50 or 150 mg/kg/d) was administered to mice for a consecutive 14 days. The plasma and hepatic exposure of silybin were detected; the mRNA, protein levels, and enzyme activities of principal DMEs were determined. The results demonstrated that the enzyme activities of CYP1A2, CYP2C, CYP3A11, and UGT1A1 were significantly repressed, whereas little alteration of the mRNA and protein levels was observed. Silybin inhibits these DMEs in a mechanism-based and/or substrate-competitive manner. More importantly, silybin was found to be a weak agonist of peroxisome proliferator-activated receptor (PPAR)α, as evidenced from the molecular docking, reporter gene assay, and the targeting gene expression analysis. However, silybin could significantly compromise the activation of PPARα by fenofibrate, characterized with significantly repressed expression of PPARα targeting genes, including L-FABP, ACOX1, and UGT1A6. This study suggests that silybin, despite its low bioavailability, may inhibit enzyme activities of multiple DMEs in a mechanism-based mode, and more importantly, may confer significant drug-drug interaction with PPARα agonists via the repression of PPARα activation in a competitive mode. PMID:25587127

  20. Hepatitis and activity

    PubMed Central

    Krikler, Dennis M.

    1971-01-01

    The effects of physical activity during an attack of infectious hepatitis are discussed. There is no evidence that activity during convalescence produces any ill-effects. On the other hand, strenuous physical activity in the acute stage may be dangerous, possibly because hepatic blood-flow is reduced. PMID:5560143

  1. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti).

    PubMed

    Ye, Man-Hong; Nan, Yan-Lei; Ding, Meng-Meng; Hu, Jun-Bang; Liu, Qian; Wei, Wan-Hong; Yang, Sheng-Mei

    2016-01-01

    This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles. PMID:26850644

  2. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats.

    PubMed

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-03-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  3. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    PubMed Central

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  4. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  5. [Activity of the sphingomyelin cycle enzymes and concentration of products of sphingomyelin degradation in the rat liver in the course of acute toxic hepatitis].

    PubMed

    Serebrov, V Iu; Kuz'menko, D I; Burov, P G; Sapugol'tseva, O B

    2010-01-01

    Activity of key enzymes of a sphingomyelin cycle and the maintenance of its components (sphingomyelin, ceramide and sphingosine-1-phosphate) have been studied in livers of rats in dynamics of the acute toxic hepatitis caused by hypodermic introduction of an oil solution of CCl4. Sphingomyelinase activity significally increased already on early terms and remained increased over the whole period of observation. Activity of ceramidase insignificantly differed from the control level. The levels of sphingomyelin and sphingosine-1-phosphate did not undergo marked changes while ceramide content significally increased. Thus, balance between liver content of ceramide (proapoptotic) and the sphingosine-1-phosphate, being the antiapoptotic factor, was shifted towards ceramide. In sphingomyelin molecules there was a significant decrease in the content of fatty acids C18: and C22:2, while in ceramide molecules and sphingosine-1-phosphate only fatty acid C22:2 changed. In spite of significant decrease in content of some unsaturated fatty acids, calculated unsaturation coefficients of the fatty acid component of the sphingomyelin cycle metabolites. Thus, our results together with literature data suggests involvement of ceramide-mediated apoptosis in the pathogenesis of acute toxic hepatitis. Elimination of damaged hepatocytes facilitates realization of repair processes and optimization of cellular community of a liver. PMID:21341516

  6. A method for the determination of the hepatic enzyme activity catalyzing bile acid acyl glucuronide formation by high-performance liquid chromatography with pulsed amperometric detection.

    PubMed

    Ikegawa, S; Oohashi, J; Murao, N; Goto, J

    2000-05-01

    A method for the determination of the activity of hepatic glucuronyltransferase catalyzing formation of bile acid 24-glucuronides using high-performance liquid chromatography (HPLC) with pulsed amperometric detection (PAD) has been developed. Bile acid 24-glucuronides were simultaneously separated on a semimicrobore column, Capcell Pak C18UG120, using 20 mM ammonium phosphate (pH 6.0)-acetonitrile (27:10 and 16:10) as the mobile phase in the stepwise gradient elution mode. A 1 M potassium hydroxide solution for the hydrolysis of the 24-glucuronides, which liberates the corresponding bile acids and glucuronic acid, was mixed with the mobile phase in a post-column mode, and the resulting eluant was heated at 90 degrees C, the 24-glucuronides being monitored using a pulsed amperometric detector; the limit of detection was 10 ng. The proposed method was applied to the determination of the hepatic enzyme activity catalyzing bile acid 24-glucuronide formation and the result exhibited the efficient 24-glucuronide formation of the monohydroxylated bile acid, lithocholic acid. PMID:10850616

  7. Chronic alcohol intake up-regulates hepatic expressions of carotenoid cleavage enzymes and peroxisomal proliferator-activated receptors in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism.Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15’-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9910’-monooxygenase 2 (CMO2)...

  8. Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats.

    PubMed

    Rossi, Andrea S; Oliva, Maria E; Ferreira, Maria R; Chicco, Adriana; Lombardo, Yolanda B

    2013-05-01

    The present study analyses the effect of dietary chia seed rich in n-3 α-linolenic acid on the mechanisms underlying dyslipidaemia and liver steatosis developed in rats fed a sucrose-rich diet (SRD) for either 3 weeks or 5 months. The key hepatic enzyme activities such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), glucose-6-phosphate dehydrogenase (G-6-PDH), carnitine palmitoyltransferase-1 (CPT-1) and fatty acid oxidase (FAO) involved in lipid metabolism and the protein mass levels of sterol regulatory element-binding protein-1 (SREBP-1) and PPARα were studied. (1) For 3 weeks, Wistar rats were fed either a SRD with 11 % of maize oil (MO) as dietary fat or a SRD in which chia seed replaced MO (SRD+Chia). (2) A second group of rats were fed a SRD for 3 months. Afterwards, half the rats continued with the SRD while for the other half, MO was replaced by chia for 2 months (SRD+Chia). In a control group, maize starch replaced sucrose. Liver TAG and the aforementioned parameters were analysed in all groups. The replacement of MO by chia in the SRD prevented (3 weeks) or improved/normalised (5 months) increases in dyslipidaemia, liver TAG, FAS, ACC and G-6-PDH activities, and increased FAO and CPT-1 activities. Protein levels of PPARα increased, and the increased mature form of SREBP-1 protein levels in the SRD was normalised by chia in both protocols (1 and 2). The present study provides new data regarding some key mechanisms related to the fate of hepatic fatty acid metabolism that seem to be involved in the effect of dietary chia seed in preventing and normalising/improving dyslipidaemia and liver steatosis in an insulin-resistant rat model. PMID:22947172

  9. Interaction of cadmium with hepatic and testicular microsomal enzymes

    SciTech Connect

    Wetzel, L.T.

    1982-01-01

    Cadmium, a ubiquitous environmental pollutant, inhibits or activates a number of microsomal enzymes. Among the enzymes affected by cadmium are cytochrome P-450 containing mixed-function oxidases (MFO) which are present in both the liver and testis. Cadmium affects MFO activity, and as a result, cadmium-induced alterations in BP metabolism might alter BP toxicity in the liver or testis. In addition, MFO essential for testosterone production are located in the testis and cadmium-MFO interactions in the testis might alter androgen production. Therefore studies were carried out to evaluate the interaction of cadmium with heptic and testicular MFO. The results indicated that cadmium affected the activities of hepatic and testicular MFO and in so doing may influence the toxicity of BP and other chemicals in liver and testes. In addition, exposure to metals may also compromise testicular androgen biosynthesis.

  10. Effect of High Dietary Carbohydrate on the Growth Performance, Blood Chemistry, Hepatic Enzyme Activities and Growth Hormone Gene Expression of Wuchang Bream (Megalobrama amblycephala) at Two Temperatures

    PubMed Central

    Zhou, Chuanpeng; Ge, Xianping; Liu, Bo; Xie, Jun; Chen, Ruli; Ren, Mingchun

    2015-01-01

    The effects of high carbohydrate diet on growth, serum physiological response, and hepatic heat shock protein 70 expression in Wuchang bream were determined at 25°C and 30°C. At each temperature, the fish fed the control diet (31% CHO) had significantly higher weight gain, specific growth rate, protein efficiency ratio and hepatic glucose-6-phosphatase activities, lower feed conversion ratio and hepatosomatic index (HSI), whole crude lipid, serum glucose, hepatic glucokinase (GK) activity than those fed the high-carbohydrate diet (47% CHO) (p<0.05). The fish reared at 25°C had significantly higher whole body crude protein and ash, serum cholesterol and triglyceride, hepatic G-6-Pase activity, lower glycogen content and relative levels of hepatic growth hormone (GH) gene expression than those reared at 30°C (p<0.05). Significant interaction between temperature and diet was found for HSI, condition factor, hepatic GK activity and the relative levels of hepatic GH gene expression (p<0.05). PMID:25557816

  11. The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state.

    PubMed

    Alarcon, Valentina; Hernández, Sergio; Rubio, Lorena; Alvarez, Francisca; Flores, Yvo; Varas-Godoy, Manuel; De Ferrari, Giancarlo V; Kann, Michael; Villanueva, Rodrigo A; Loyola, Alejandra

    2016-01-01

    With about 350 million people chronically infected around the world hepatitis B is a major health problem. Template for progeny HBV synthesis is the viral genome, organized as a minichromosome (cccDNA) inside the hepatocyte nucleus. How viral cccDNA gene expression is regulated by its chromatin structure; more importantly, how the modulation of this structure impacts on viral gene expression remains elusive. Here, we found that the enzyme SetDB1 contributes to setting up a repressed cccDNA chromatin state. This repressive state is activated by the histone lysine demethylase-1 (LSD1). Consistently, inhibiting or reducing LSD1 levels led to repression of viral gene expression. This correlates with the transcriptionally repressive mark H3K9 methylation and reduction on the activating marks H3 acetylation and H3K4 methylation on viral promoters. Investigating the importance of viral proteins we found that LSD1 recruitment to viral promoters was dependent on the viral transactivator protein HBx. Moreover, the histone methyltransferase Set1A and HBx are simultaneously bound to the core promoter, and Set1A expression correlates with cccDNA H3K4 methylation. Our results shed light on the mechanisms of HBV regulation mediated by the cccDNA chromatin structure, offering new therapeutic targets to develop drugs for the treatment of chronically infected HBV patients. PMID:27174370

  12. The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state

    PubMed Central

    Alarcon, Valentina; Hernández, Sergio; Rubio, Lorena; Alvarez, Francisca; Flores, Yvo; Varas-Godoy, Manuel; De Ferrari, Giancarlo V.; Kann, Michael; Villanueva, Rodrigo A.; Loyola, Alejandra

    2016-01-01

    With about 350 million people chronically infected around the world hepatitis B is a major health problem. Template for progeny HBV synthesis is the viral genome, organized as a minichromosome (cccDNA) inside the hepatocyte nucleus. How viral cccDNA gene expression is regulated by its chromatin structure; more importantly, how the modulation of this structure impacts on viral gene expression remains elusive. Here, we found that the enzyme SetDB1 contributes to setting up a repressed cccDNA chromatin state. This repressive state is activated by the histone lysine demethylase-1 (LSD1). Consistently, inhibiting or reducing LSD1 levels led to repression of viral gene expression. This correlates with the transcriptionally repressive mark H3K9 methylation and reduction on the activating marks H3 acetylation and H3K4 methylation on viral promoters. Investigating the importance of viral proteins we found that LSD1 recruitment to viral promoters was dependent on the viral transactivator protein HBx. Moreover, the histone methyltransferase Set1A and HBx are simultaneously bound to the core promoter, and Set1A expression correlates with cccDNA H3K4 methylation. Our results shed light on the mechanisms of HBV regulation mediated by the cccDNA chromatin structure, offering new therapeutic targets to develop drugs for the treatment of chronically infected HBV patients. PMID:27174370

  13. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I.

    PubMed Central

    Park, E A; Mynatt, R L; Cook, G A; Kashfi, K

    1995-01-01

    The regulation of hepatic mitochondrial carnitine palmitoyltransferase-I (CPT-I) was studied in rats during starvation and insulin-dependent diabetes and in rat H4IIE cells. The Vmax. for CPT-I in hepatic mitochondrial outer membranes isolated from starved and diabetic rats increased 2- and 3-fold respectively over fed control values with no change in Km values for substrates. Regulation of malonyl-CoA sensitivity of CPT-I in isolated mitochondrial outer membranes was indicated by an 8-fold increase in Ki during starvation and by a 50-fold increase in Ki in the diabetic state. Peroxisomal and microsomal CPT also had decreased sensitivity to inhibition by malonyl-CoA during starvation. CPT-I mRNA abundance was 7.5 times greater in livers of 48-h-starved rats and 14.6 times greater in livers of insulin-dependent diabetic rats compared with livers of fed rats. In H4IIE cells, insulin increased CPT-I sensitivity to inhibition by malonyl-CoA in 4 h, and sensitivity continued to increase up to 24 h after insulin addition. CPT-I mRNA levels in H4IIE cells were decreased by insulin after 4 h and continued to decrease so that at 24 h there was a 10-fold difference. The half-life of CPT-I mRNA was 4 h in the presence of actinomycin D or with actinomycin D plus insulin. These results suggest that insulin regulates CPT-I by inhibiting transcription of the CPT-I gene. Images Figure 2 Figure 4 PMID:7575418

  14. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.

    PubMed

    Je, Jae-Young; Lee, Da-Bin

    2015-06-01

    Naturally occurring phenolic compounds are widely found in plants. Here, the phenolic composition and hepatoprotective effect of the butanolic extract (BE) from Nelumbo nucifera leaves against H2O2-induced hepatic damage in cultured hepatocytes were investigated. BE showed high total phenol and flavonoid contents, and major phenolic compounds are quercetin, catechin, ferulic acid, rutin, and protocatechuic acid by HPLC analysis. BE effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) cation radicals (IC50 values of 5.21 μg mL(-1) for DPPH and 6.22 μg mL(-1) for ABTS(+)) and showed strong reducing power. Pretreatment of BE prior to 650 μM H2O2 exposure markedly increased cell viability and suppressed H2O2-induced intracellular reactive oxygen species generation and AAPH-induced cell membrane lipid peroxidation. In addition, BE up-regulated intracellular glutathione levels under normal and oxidative stress conditions. Notably, the hepatoprotective effect of BE was directly correlated with the increased expression of superoxide dismutase-1 (SOD-1) by 0.62-fold, catalase (CAT) by 0.42-fold, and heme oxygenase-1 (HO-1) by 2.4-fold. Pretreatment of BE also increased the nuclear accumulation of Nrf2 by 8.1-fold indicating that increased SOD-1, CAT, and HO-1 expressions are Nrf2-mediated. PMID:25962859

  15. Photoperiodism and Enzyme Activity

    PubMed Central

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  16. Pericholecystic hepatic activity in cholescintigraphy

    SciTech Connect

    Smith, R.; Rosen, J.M.; Gallo, L.N.; Alderson, P.O.

    1985-09-01

    Gallbladder nonvisualization in cholescintigraphy has been shown to be a reliable finding in acute cholecystitis. In some cholescintigrams, the authors have observed faintly increased pericholecystic hepatic activity in conjunction with gallbladder nonvisualization. To determine the frequency and significance of the pericholecystic hepatic activity finding, they evaluated 334 consecutive adult patients who had cholescintigrams with technetium-99m diisopropylphenylcarboamoyl iminodiacetic acid. Pericholecystic hepatic activity was seen in 21% of the abnormal scans demonstrating gallbladder nonvisualization but in none of the other scans. Thirteen of these patients underwent surgery; 11 (85%) were found to have acute cholecystitis, and two (15%) had chronic cholecystitis. The pericholecystic hepatic activity sign is not specific for gangrenous cholecystitis or gallbladder perforation but does reliably indicate inflammatory gallbladder disease and is associated with a relatively high incidence of cholecystitis complicated by perforation.

  17. [Plasma cholinesterase activity in hepatic diseases].

    PubMed

    Araoud, Manel; Mhenni, Hamida; Hellara, Ilhem; Hellara, Olfa; Neffati, Fadoua; Douki, Wahiba; Mili, Marwa; Saffar, Hammouda; Najjar, Mohamed Fadhel

    2013-01-01

    Plasma cholinesterase activity (ChE) may vary in some pathological circumstances. We studied the changes in activity of this enzyme according to the type of liver injury, to assess the interest of this parameter in the diagnosis of liver diseases. Our study was performed on 102 patients with different liver diseases and 53 healthy controls. The ChE activity was lower in patients compared to control group (p < 0.0001), and more pronounced in cirrhotic patients compared to those suffering from hepatitis. Elevated activities of AST, ALT, GGT and ALP and bilirubinemia, and decreased albuminemia were noted in patients compared to controls (p < 0.001). Hypoalbuminemia was significantly important in cirrhotic patients compared to those suffering from cholestasis or hepatitis. A correlation between ChE and bilirubin, albumin and serum protein was found in patients with cirrhosis or those with chronic hepatitis. A significantly lower activity of ChE was found in patients with hepatic insufficiency (HI). In case of suspicion of HI, the prescription of ChE activity could guide or confirm the diagnosis of the impairment. PMID:23747666

  18. Platycodi radix saponin inhibits α-glucosidase in vitro and modulates hepatic glucose-regulating enzyme activities in C57BL/KsJ-db/db mice.

    PubMed

    Lee, Jeom-Sook; Choi, Myung-Sook; Seo, Kown-Il; Lee, Jin; Lee, Hae-In; Lee, Ju-Hye; Kim, Myung-Joo; Lee, Mi-Kyung

    2014-06-01

    This study investigated anti-diabetic activity of a concentrated saponin fraction from Platycodi radix (SK1) in C57BL/KsJ-db/db mice and its underlying mechanism. Mice were fed diet with 0.5 % SK1 (w/w) for 6 weeks. SK1 significantly lowered the blood glucose and glycosylated hemoglobin levels and improved glucose and insulin tolerance. The plasma and pancreatic insulin and C-peptide levels and fecal cholesterol content were increased, whereas plasma urea nitrogen, free fatty acid and triglyceride levels were decreased by SK1 supplementation. Glucokinase (GK) activity in the liver was significantly higher in the SK1 group than the control group, whereas the glucose-6-phosphatase (G6Pase) activity was lower. SK1 significantly down-regulated GK mRNA expression compared to the control group but did not affect G6Pase and glucose transporter 2 mRNA. Phosphoenolpyruvate carboxykinase activity and mRNA levels did not differ between groups. SK1 also markedly inhibited the small intestinal disaccharidases activities compared to those of control db/db mice. Furthermore, SK1 was a more effective α-glucosidase inhibitor than acarbose in vitro. Overall, these findings suggest that SK1 is a potential glucose-lowering agent that functions via inhibition of carbohydrate digestive enzyme activities and modulation of glucose-regulating enzyme activities in db/db mice. PMID:24105419

  19. Effects of ursodeoxycholic acid on serum liver enzymes and bile acid metabolism in chronic active hepatitis: a dose-response study.

    PubMed

    Crosignani, A; Battezzati, P M; Setchell, K D; Camisasca, M; Bertolini, E; Roda, A; Zuin, M; Podda, M

    1991-02-01

    The effect of ursodeoxycholic acid administration on liver function tests and on bile acid metabolism was investigated in 18 patients with chronic active hepatitis. Three different doses of ursodeoxycholic acid--250 mg, 500 mg and 750 mg--were administered daily to each patient for consecutive 2-mo periods. The order of doses was randomly assigned according to a replicated Latin-square design. A significant decrease in serum transaminases and gamma-glutamyl transpeptidase occurred with the lowest dose of ursodeoxycholic acid, which corresponded to 4 mg/kg body wt/day, and no further significant decrease with the higher doses was seen. Biliary bile acid composition was determined by high-performance liquid chromatography and gas chromatography-mass spectrometry. At entry the relative proportions of major bile acids were similar to those observed in normal individuals. During treatment the mean percentage of ursodeoxycholic acid in bile (22% with the 250 mg dose, 32% with the 500 mg dose and 34% with the 750 mg dose) was lower than values previously reported for patients with gallstones and normal liver function. The major bile acids were cholic, chenodeoxycholic and deoxycholic acids. A number of unusual bile acids were identified by gas chromatography-mass spectrometry, but these accounted for only 3% to 5% of the total and did not change during ursodeoxycholic acid therapy. No correlation between the improvement in liver function tests and the percentage of ursodeoxycholic acid in bile existed. These data suggest that even a slight enrichment of bile with ursodeoxycholic acid, as is attained with 250 mg/day, is effective in improving biochemical markers of liver function in patients with chronic active hepatitis. PMID:1671665

  20. Effects of methapyrilene on rat hepatic xenobiotic metabolizing enzymes and liver morphology.

    PubMed

    Graichen, M E; Neptun, D A; Dent, J G; Popp, J A; Leonard, T B

    1985-02-01

    Short-term treatment of rats with hepatocarcinogens elicits a consistent pattern of phenotypic changes in hepatic drug metabolizing enzymes, the most striking of which is a marked increase in microsomal epoxide hydrolase (EH) activity. The antihistaminic drug methapyrilene induces a high incidence of hepatocellular carcinoma in F-344 rats. The studies reported here were designed to assess the effects of methapyrilene on hepatic EH activity, cytochrome P-450-dependent mixed-function oxidase activities, liver morphology, and liver-derived serum enzymes. Male F-344 rats were treated with three daily oral doses of methapyrilene-HCl, up to 300 mg/kg/day, and were sacrificed 48 hr after the last dose. Hepatic microsomal EH and cytosolic DT-diaphorase activities were increased in a dose-related fashion, to 420 and 230% of control, respectively. Cytochrome P-450 content and benzphetamine-N-demethylase and ethoxycoumarin-O-deethylase activities were concomitantly decreased to 35-50% of control. Serum gamma-glutamyl transpeptidase and alanine aminotransferase activities were elevated 22- to 27-fold, and serum bile acids to 36-fold by treatment with methapyrilene. Periportal lesions, characterized by inflammation, nuclear and nucleolar enlargement, bile duct hyperplasia, and hepatocellular necrosis, were observed following methapyrilene administration. The severity of the periportal lesion correlated with elevations in the serum chemistry parameters. The increases noted in microsomal EH activity supports the suggestion that this enzyme may be a useful biochemical marker for exposure to hepatocarcinogens. PMID:2859228

  1. Leflunomide Induces Pulmonary and Hepatic CYP1A Enzymes via Aryl Hydrocarbon Receptor.

    PubMed

    Patel, Ananddeep; Zhang, Shaojie; Paramahamsa, Maturu; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-12-01

    Emerging evidence indicates that the aryl hydrocarbon receptor (AhR) plays a crucial role in normal physiologic homeostasis. Additionally, aberrant AhR signaling leads to several pathologic states in the lung and liver. Activation of AhR transcriptionally induces phase I (CYP1A) detoxifying enzymes. Although the effects of the classic AhR ligands such as 3-methylcholanthrene and dioxins on phase 1 enzymes are well studied in rodent lung, liver, and other organs, the toxicity profiles limit their use as therapeutic agents in humans. Hence, there is a need to identify and investigate nontoxic AhR ligands not only to understand the AhR biology but also to develop the AhR as a clinically relevant therapeutic target. Leflunomide is a Food and Drug Administration-approved drug in humans that is known to have AhR agonist activity in vitro. Whether it activates AhR and induces phase 1 enzymes in vivo is unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic CYP1A enzymes in C57BL/6J wild-type mice, but not in AhR-null mice. We performed real-time reverse-transcription polymerase chain reaction analyses for CYP1A1/2 mRNA expression, western blot assays for CYP1A1/2 protein expression, and ethoxyresorufinO-deethylase assay for CYP1A1 catalytic activity. Leflunomide increased CYP1A1/A2 mRNA, protein, and enzymatic activities in wild-type mice. In contrast, leflunomide failed to increase pulmonary and hepatic CYP1A enzymes in AhR-null mice. In conclusion, we provide evidence that leflunomide induces pulmonary and hepatic CYP1A enzymes via the AhR. PMID:26417045

  2. Enzyme activity determination using ultrasound

    NASA Astrophysics Data System (ADS)

    Holmes, M. J.; Southworth, T.; Watson, N. G.; Povey, M. J. W.

    2014-04-01

    Here are presented the results of a novel approach to the measurement of enzyme reaction rates in which ultrasound velocity measurement is used. Our results show enzyme activity is observable, in the acoustic context, and that furthermore this offers the potential to estimate the rate of reaction over different substrate concentrations and temperatures. Findings are corroborated with optical microscopy and rheological measurements. Ultrasound velocity measurement can be performed without the need for aliquot extraction and offers an efficient, non-invasive and dynamic method to monitor enzyme activity.

  3. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes.

    PubMed

    Kubínová, R; Machala, M; Minksová, K; Neca, J; Suchý, V

    2001-03-01

    Possible chemoprotective effects of the naturally occurring alkaloid boldine, a major alkaloid of boldo (Peumus boldus Mol.) leaves and bark, including in vitro modulations of drug-metabolizing enzymes in mouse hepatoma Hepa-1 cell line and mouse hepatic microsomes, were investigated. Boldine manifested inhibition activity on hepatic microsomal CYP1A-dependent 7-ethoxyresorufin O-deethylase and CYP3A-dependent testosterone 6 beta-hydroxylase activities and stimulated glutathione S-transferase activity in Hepa-1 cells. In addition to the known antioxidant activity, boldine could decrease the metabolic activation of other xenobiotics including chemical mutagens. PMID:11265593

  4. Altered mRNA expression of hepatic lipogenic enzyme and PPARalpha in rats fed dietary levan from Zymomonas mobilis.

    PubMed

    Kang, Soon Ah; Hong, Kyunghee; Jang, Ki-Hyo; Kim, Yun-Young; Choue, Ryowon; Lim, Yoongho

    2006-06-01

    Levan or high molecular beta-2,6-linked fructose polymer is produced extracellularly from sucrose-based substrates by bacterial levansucrase. In the present study, to investigate the effect of levan feeding on serum leptin, hepatic lipogenic enzyme and peroxisome proliferation-activated receptor (PPAR) alpha expression in high-fat diet-induced obese rats, 4-week-old Sprague-Dawley male rats were fed high-fat diet (beef tallow, 40% of calories as fat), and, 6 weeks later, the rats were fed 0%, 1%, 5% or 10% levan-supplemented diets for 4 weeks. Serum leptin and insulin level were dose dependently reduced in levan-supplemented diet-fed rats. The mRNA expressions of hepatic fatty acid synthase and acetyl CoA carboxylase, which are the key enzymes in fatty acid synthesis, were down-regulated by dietary levan. However, dietary levan did not affect the gene expression of hepatic malic enzyme, phosphatidate phosphohydrolase and HMG CoA reductase. Also, the lipogenic enzyme gene expression in the white adipose tissue (WAT) was not affected by the diet treatments. However, hepatic PPARalpha mRNA expression was dose dependently up-regulated by dietary levan, whereas PPARgamma in the WAT was not changed. The results suggest that the in vivo hypolipidemic effect of dietary levan, including anti-obesity and lipid-lowering, may result from the inhibition of lipogenesis and stimulation of lipolysis, accompanied with regulation of hepatic lipogenic enzyme and PPARalpha gene expression. PMID:16214330

  5. Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes inmice

    SciTech Connect

    Kleiner, Heather E. Xia, Xiaojun; Sonoda, Junichiro; Zhang, Jun; Pontius, Elizabeth; Abey, Jane; Evans, Ronald M.; Moore, David D.; DiGiovanni, John

    2008-10-15

    Cytochromes P450 (P450s) and glutathione S-transferases (GSTs) constitute two important enzyme families involved in carcinogen metabolism. Generally, P450s play activation or detoxifying roles while GSTs act primarily as detoxifying enzymes. We previously demonstrated that oral administration of the linear furanocoumarins, isopimpinellin and imperatorin, modulated P450 and GST activities in various tissues of mice. The purpose of the present study was to compare a broader range of naturally occurring coumarins (simple coumarins, and furanocoumarins of the linear and angular type) for their abilities to modulate hepatic drug-metabolizing enzymes when administered orally to mice. We now report that all of the different coumarins tested (coumarin, limettin, auraptene, angelicin, bergamottin, imperatorin and isopimpinellin) induced hepatic GST activities, whereas the linear furanocoumarins possessed the greatest abilities to induce hepatic P450 activities, in particular P450 2B and 3A. In both cases, this corresponded to an increase in protein expression of the enzymes. Induction of P4502B10, 3A11, and 2C9 by xenobiotics often is a result of activation of the pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Using a pregnane X receptor reporter system, our results demonstrated that isopimpinellin activated both PXR and its human ortholog SXR by recruiting coactivator SRC-1 in transfected cells. In CAR transfection assays, isopimpinellin counteracted the inhibitory effect of androstanol on full-length mCAR, a Gal4-mCAR ligand-binding domain fusion, and restored coactivator binding. Orally administered isopimpinellin induced hepatic mRNA expression of Cyp2b10, Cyp3a11, and GSTa in CAR(+/+) wild-type mice. In contrast, the induction of Cyp2b10 mRNA by isopimpinellin was attenuated in the CAR(-/-) mice, suggesting that isopimpinellin induces Cyp2b10 via the CAR receptor. Overall, the current data indicate that naturally occurring coumarins have

  6. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of

  7. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    PubMed Central

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  8. Changes in plasma and hepatic lipids, small intestinal histology and pancreatic enzyme activity due to aging and dietary fiber in rats.

    PubMed

    Schneeman, B O; Richter, D

    1993-07-01

    Rats were fed either a control diet or a control diet supplemented with wheat bran, psyllium husk or oat bran to increase intake of fiber. Groups of rats were killed after 3.5, 10, 15, or 18.5 mo of consuming the diets. Plasma cholesterol and triglyceride concentrations were significantly higher in 18.5-mo-old than younger animals. Fiber supplementation did not prevent the age-related increase in lipids. Cecal weight, including contents, was higher in the psyllium husk and oat bran groups than control, and smooth muscle thickness in the ileum of psyllium husk and oat bran animals was greater than control. The score for torn villi in the small intestine was lower than expected in the wheat bran group. Amylase activity in the pancreas declined significantly with age in all groups. In aging animals fiber supplementation may enhance ileal compensation for decreases in proximal intestinal function but does not prevent age-related changes in the gut or in lipid concentrations. PMID:7686573

  9. Chromosome abnormalities in chronic active hepatitis

    PubMed Central

    Stefanescu, D. T.; Moanga, M.; Teodorescu, M.; Brucher, J.

    1972-01-01

    An investigation on human peripheral blood lymphocyte chromosomes in chronic active hepatitis was carried out. A higher percentage of chromatid and chromosome lesions was recorded in all patients studied as compared with control groups—normal individuals, healthy subjects who had suffered from acute viral hepatitis, patients with alcoholic liver disease, and patients with mechanical jaundice due to cancer. The possible origin of these abnormalities is discussed. PMID:5076805

  10. Differential regulation of hepatic enzymes by polycyclic aromatic hydrocarbons and glucocorticoids

    SciTech Connect

    Smith, J.A.; Linder, M.W.; Fernandez, D.; Prough, R.A. )

    1991-03-15

    A putative glucocorticoid (GC) response element has been identified within the first intron of the P450IA1 gene and is apparently necessary for GC-dependent potentiation of polycyclic aromatic hydrocarbon (PAH) induction of P450IA1. In cultured rat hepatocytes, the synthetic GC, dexamethasone (DEX), potentiated PAH induction of both P450IA1 and glutathione S-transferase protein and mRNA. However, DEX caused a small decrease in PAH-dependent induction of NAD(P)H:quinone oxidoreductase (QOR) subunit protein and mRNA in culture. The potentiation of 3-methylcholanthrene (MC) dependent induction of hepatic P450IA1, GST and QOR by low doses of DEX was evaluated in neonatal and adult rats. In neonates, MC induction was potentiated 2-, 1.5-, and 1.4-fold for P450IA1, GST, and QOR activities, respectively, by DEX. However, in adult rats, DEX potentiated MC induction of P450IA1 activity, but repressed MC induction of GST and QOR. Western immunoanalysis and Northern analysis indicated that the changes in these activities were associated with parallel changes in the levels of immunoreactive proteins and mRNA. Glucocorticoids may have an age-dependent influence on the induction of hepatic enzymes by PAH possibly involving other regulatory factors, in addition to Ah and GC receptors.

  11. Effects of ciprofibrate and 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA) on the distribution of carnitine and CoA and their acyl-esters and on enzyme activities in rats. Relation between hepatic carnitine concentration and carnitine acetyltransferase activity.

    PubMed Central

    Bhuiyan, A K; Bartlett, K; Sherratt, H S; Agius, L

    1988-01-01

    The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine

  12. Complement activation in discordant hepatic xenotransplantation.

    PubMed

    Tector, A J; Chen, X; Soderland, C; Tchervenkov, J I

    1998-11-01

    Little is known about hyperacute rejection in hepatic xenotransplantation. Information from clinical xenoperfusions suggests that the liver may be rejected by a mechanism less vigorous than either kidney or heart xenografts. We used the in vitro model of porcine hepatic sinusoidal endothelial cells (PHEC) incubated with either complement replete or deficient human serum to determine the relative roles of the classical and alternate pathways of complement in the immediate response to hepatic xenotransplantation. Our results suggest that either the classical or alternate pathways are capable of independently activating the complement cascade upon exposure to the porcine hepatic sinusoidal endothelium. Our results also imply that either pathway alone is capable of initiating similar degrees of injury as the entire cascade. PMID:9915253

  13. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  14. (+)-Catechin attenuates activation of hepatic stellate cells.

    PubMed

    Bragança de Moraes, Cristina Machado; Bitencourt, Shanna; de Mesquita, Fernanda Cristina; Mello, Denizar; de Oliveira, Leticia Paranhos; da Silva, Gabriela Viegas; Lorini, Vinicius; Caberlon, Eduardo; de Souza Basso, Bruno; Schmid, Julia; Ferreira, Gabriela Acevedo; de Oliveira, Jarbas Rodrigues

    2014-04-01

    (+)-Catechin is a type of catechin present in large amounts in açaí fruits and cocoa seeds. Besides its antioxidant and anti-inflammatory activities, little is known about its effects in the liver, especially during hepatic fibrosis. We report here the effects of (+)-catechin on hepatic stellate cells. (+)-Catechin induced quiescent phenotype in GRX cells, along with an increase in lipid droplets. Proliferator-activated receptor γ mRNA expression was upregulated, whereas type I collagen mRNA expression was downregulated. Pro-inflammatory cytokines were not influenced by (+)-catechin, whereas the levels of interleukin 10 were significantly increased. The data provide evidence that (+)-catechin can reduce hepatic stellate cell activation. PMID:24353036

  15. Enzyme immunoassay for the detection of antibody to hepatitis E virus based on synthetic peptides.

    PubMed

    Favorov, M O; Khudyakov, Y E; Fields, H A; Khudyakova, N S; Padhye, N; Alter, M J; Mast, E; Polish, L; Yashina, T L; Yarasheva, D M

    1994-02-01

    Five synthetic peptides were prepared based on the nucleotide sequence of open reading frames 2 and 3 encoded in the hepatitis E virus (HEV) genome and were used to develop an enzyme immunoassay (EIA) for the detection of anti-HEV activity in sera. Three different approaches were employed to ascertain the optimal preparation of these peptides as an immunodiagnostic reagent, including (1) a mixture of unconjugated peptides, (2) conjugating individual peptides to bovine serum albumin (BSA) followed by mixing each conjugate at various concentrations, and (3) mixing the peptides before conjugation with BSA to create an artificial antigen complex. The third method was superior in discriminating anti-HEV activity in sera previously tested by Western blot (WB). A frequency distribution of optical density values demonstrated that the peptide-based EIA was able to readily discriminate anti-HEV positive sera from sera devoid of anti-HEV activity. To confirm anti-HEV activity a neutralization test was developed using a mixture of 5 unconjugated peptides. With the exception of sera containing high levels of anti-HEV activity, all sera were neutralized greater than 50%. Strong sera required a higher dilution before a 50% neutralization was achieved. The sensitivity of the WB compared to EIA was 89.5% with and overall concordance of 94.8%. The peptide-EIA was used to determine anti-HEV activity in sera collected from various populations worldwide. In six outbreaks of ET-NANB hepatitis in various geographic regions, anti-HEV activity was demonstrated in 78-100% of cases. The peptide-EIA also detected anti-HEV activity in 14 out of 14 follow-up sera obtained 4-6 months after onset of disease and in 2 of 2 of these patients 5 yr after the acute episode. Anti-HEV activity was found in 8.5% of sera obtain from a healthy population residing in an HEV endemic region and 0.5% in two non-endemic regions (P < 0.001). These data demonstrate that a synthetic peptide-based EIA is sensitive

  16. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models.

    PubMed

    Varma, Manthena V; El-Kattan, Ayman F

    2016-07-01

    A large body of evidence suggests hepatic uptake transporters, organic anion-transporting polypeptides (OATPs), are of high clinical relevance in determining the pharmacokinetics of substrate drugs, based on which recent regulatory guidances to industry recommend appropriate assessment of investigational drugs for the potential drug interactions. We recently proposed an extended clearance classification system (ECCS) framework in which the systemic clearance of class 1B and 3B drugs is likely determined by hepatic uptake. The ECCS framework therefore predicts the possibility of drug-drug interactions (DDIs) involving OATPs and the effects of genetic variants of SLCO1B1 early in the discovery and facilitates decision making in the candidate selection and progression. Although OATP-mediated uptake is often the rate-determining process in the hepatic clearance of substrate drugs, metabolic and/or biliary components also contribute to the overall hepatic disposition and, more importantly, to liver exposure. Clinical evidence suggests that alteration in biliary efflux transport or metabolic enzymes associated with genetic polymorphism leads to change in the pharmacodynamic response of statins, for which the pharmacological target resides in the liver. Perpetrator drugs may show inhibitory and/or induction effects on transporters and enzymes simultaneously. It is therefore important to adopt models that frame these multiple processes in a mechanistic sense for quantitative DDI predictions and to deconvolute the effects of individual processes on the plasma and hepatic exposure. In vitro data-informed mechanistic static and physiologically based pharmacokinetic models are proven useful in rationalizing and predicting transporter-mediated DDIs and the complex DDIs involving transporter-enzyme interplay. PMID:27385183

  17. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  18. Evaluation of enzyme immunoassay for anti-HBc IgM in the diagnosis of acute hepatitis B virus infection.

    PubMed

    Govindarajan, S; Ashcavai, M; Chau, K H; Nevalainen, D E; Peters, R L

    1984-09-01

    Corzyme-MTM (Abbott Laboratories, North Chicago, IL), a newly introduced kit for the measurement of serum IgM antihepatitis B core antigen by enzyme immunoassay, was evaluated for the diagnosis of acute B-viral hepatitis (AVH-B). The study included 175 acute viral hepatitis patients with transient hepatitis B surface antigen (HBsAg). Sera from 160 were tested on multiple occasions until their HBsAg cleared. IgM anti-HBc was found in 171 of 175 patients (98.4%) during the acute phase. The serum samples from 42 patients with liver biopsy-proven chronic active hepatitis, type B (CAH-B), and 18 patients with persistent hepatitis, type B (PH-B), were analyzed for the presence of IgM anti-HBc, using the same technic. None of the sera from 42 patients with CAH-B and only 2 of the 18 patients with PHB had IgM anti-HBc. Thus, the measuring IgM anti-HBc using Corzyme-M kit is helpful in the diagnosis of AVH-B and in the discrimination of acute from chronic HBV infections. PMID:6380271

  19. Enzyme Activity Experiments Using a Simple Spectrophotometer

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  20. Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice.

    PubMed

    Hall, Angela M; Soufi, Nisreen; Chambers, Kari T; Chen, Zhouji; Schweitzer, George G; McCommis, Kyle S; Erion, Derek M; Graham, Mark J; Su, Xiong; Finck, Brian N

    2014-07-01

    Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling. PMID:24595352

  1. N-vinylpyrrolidone dimer, a novel formulation excipient, causes hepatic and thyroid hypertrophy through the induction of hepatic microsomal enzymes in rats.

    PubMed

    Yang, Yi; Ciurlionis, Rita; Kowalkowski, Kenneth; Marsh, Kennan C; Bracken, William M; Blomme, Eric A G

    2012-01-01

    N-vinylpyrrolidone dimer (VPD) is a novel experimental formulation excipient intended for preclinical toxicology studies. In a previous 4-week toxicity study, VPD induced dose-dependent hepatocellular and thyroid gland hypertrophy in Sprague-Dawley (SD) rats. The objectives of the current investigation were to define the underlying molecular mechanisms of these changes. Two separate studies were conducted using male SD rats, daily doses of 300, 1000 or 3,000 mg/kg of VPD, and a positive control (phenobarbital at 75 mg/kg/day): (1) a 28-day study to monitor thyroid hormone levels after 7 and 28 days of dosing; (2) a 5-day study to evaluate hepatic and thyroid gland transcriptomic changes, as well as hepatic UGT activity levels. At VPD dosages of 300 mg/kg/day and higher, 2-fold increases of serum thyroid stimulating hormone (TSH) levels were observed in male SD rats after 28 days of dosing, while serum thyroxine (T4) and triiodothyronine (T3) levels were unchanged. Liver UGT enzyme activity levels were increased in VPD-treated rats after 5 days. In addition, in the 5-day study, VPD caused increased hepatic mRNA levels of a panel of drug metabolizing enzymes (DMEs) and transporters, including Cyp3a1, Cyp2b1, Ugt 2b1, and Abcc3. Similar patterns of induction were observed in primary rat hepatocytes exposed to VPD. Transcriptomic changes in the thyroid gland were identified for genes involved in thyroid hormone biosynthesis and in the FAK, PTEN, and Wnt/β-catenin signaling pathways. Collectively, these data indicate that VPD acts as an inducer of hepatic DMEs in SD rats and that this likely leads to enhanced peripheral metabolism of T3/T4, resulting in a feedback response characterized by increased serum TSH levels, and thyroid gland hypertrophy and hyperplasia. PMID:22037397

  2. POLYCHLORINATED BIPHENYLS AS INDUCERS OF HEPATIC MICROSOMAL ENZYMES: EFFECTS OF DI-ORTHO SUBSTITUTION

    EPA Science Inventory

    All of the 13 possible polychlorinated biphenyl (PCB) isomers and congeners substituted at both para positions, at least two meta positions (but not necessarily on the same ring) and at two ortho positions have been synthesized and tested as rat hepatic microsomal enzyme inducers...

  3. Effects of PCBs on plasma enzymes, testosterone level, and hepatic xenobiotic metabolism in the grey partridge, perdix perdlx

    SciTech Connect

    Abiola, F. ); Lorgue, G.; Riviere, J.L. ); Benoit, E. ); Soyez, D. )

    1989-09-01

    The hepatic cytochrome P-450-dependent monooxygenase (MO) system functions in oxidative biotransformation of a wide variety of both endogenous and exogenous (xenobiotic) compounds in many animal species. However, most of the previous studies were carried out with a narrow range of species and investigations on wild species are lacking. In this report, the authors describe the effects of a commercial mixture of PCBs (DP5) on the hepatic MO activities of the grey partridge (Perdix perdix). To more thoroughly investigate the inducing effects of DP5, they used two series of homologous substrates, alkylresorufins and alkoxycoumarins, and an endogenous compound, testosterone, which were shown in mammals to differentiate between different forms of cytochrome P-450. Furthermore, to more carefully assess the effects of DP5, they also measured the activity of two plasma marker enzymes, alanine transpeptidase (ALAT) and gamma-glutamyl transferase (gamma-GT), and the plasmatic concentration of testosterone.

  4. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  5. Enzyme Activities in Polarized Cell Membranes

    PubMed Central

    Bass, L.; McIlroy, D. K.

    1968-01-01

    The theoretical pH dependence of enzyme activities in membranes of low dielectric constant is estimated. It is shown that in biological membranes some types of enzymes may attain a limiting pH sensitivity such that an increment of only 0.2 pH unit (sufficient to induce action potentials in squid axons) causes a relative activity change of over 25%. The transients of enzyme activity generated by membrane depolarization and by pH increments in the bathing solution are discussed in relation to the transients of nervous excitation. PMID:5641405

  6. [Muscle enzyme activity and exercise].

    PubMed

    Gojanovic, B; Feihl, F; Gremion, G; Waeber, B

    2009-02-01

    Exercise is classically associated with muscular soreness, presenting one to two days later, delayed onset muscular soreness. Blood muscle enzymes and protein elevations are characteristic, and may cause renal failure. Creatin phosphokinase peak appears on the fourth day and depends on exercise type and individual parameters. This effect is attenuated with repeated bouts, by habituation. Metabolic complications are rare. The knowledge of this reaction, even with common exercises, allows to postpone investigations for a complex metabolic disorder, or to avoid stopping a medication for fear of a side effect, as with statins. Indeed, it is necessary to wait for seven days without any exercise before interpreting an elevated CK result. PMID:19180440

  7. Visualization of enzyme activities inside earthworm pores

    NASA Astrophysics Data System (ADS)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  8. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes.

    PubMed

    Stiborová, Marie; Černá, Věra; Moserová, Michaela; Mrízová, Iveta; Arlt, Volker M; Frei, Eva

    2015-01-01

    Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models. PMID:25547492

  9. Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Srinivasan, Subramani; Muruganathan, Udaiyar

    2016-04-25

    Diabetes mellitus is a clinically complex disease characterized by chronic hyperglycemia with metabolic disturbances. During diabetes, endogenous hepatic glucose production is increased as a result of impaired activities of the key enzymes of carbohydrate metabolism. The purpose of the present study was to evaluate the antidiabetic efficacy of citronellol, a citrus monoterpene in streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal injection of STZ (40 mg/kg b.w). STZ induced diabetic rats received citronellol orally at the doses of 25, 50, and 100 mg/kg b.w for 30 days. In this study the levels of plasma glucose, insulin, hemoglobin (Hb), glycated hemoglobin (HbA1C), glycogen, and the activities of carbohydrate metabolic enzymes, liver and kidney markers were evaluated. Oral administration of citronellol (50 mg/kg) for 30 days dose dependently improved the levels of insulin, Hb and hepatic glycogen with significant decrease in glucose and HbA1C levels. The altered activities of carbohydrate metabolic enzymes, hepatic and kidney markers were restored to near normal. Citronellol supplement was found to be effective in preserving the normal histological appearance of hepatic cells and insulin-positive β-cells in STZ-rats. Our results suggest that administration of citronellol attenuates the hyperglycemia in the STZ-induced diabetic rats by ameliorating the key carbohydrate metabolic enzymes and could be developed as a functional and nutraceutical ingredient in combating diabetes mellitus. PMID:26944432

  10. Effect of selenium deficiency on hepatic type I 5-iodothyronine deiodinase activity and hepatic thyroid hormone levels in the rat.

    PubMed Central

    Beckett, G J; Russell, A; Nicol, F; Sahu, P; Wolf, C R; Arthur, J R

    1992-01-01

    Selenium deficiency in rats for a period of up to 6 weeks inhibited both the production of 3,3',5-tri-iodothyronine (T3) from thyroxine (T4) (5'-deiodination) and also the catabolism of T3 to 3,3'-di-iodothyronine (5-deiodination) in liver homogenates. The hepatic stores of T3 were decreased by only 8% in selenium deficiency, despite the T3 production rate from T4 being only 7% of the rate found in selenium-supplemented rats. Hepatic glutathione S-transferase (GST) activity was increased in both hypothyroidism and selenium deficiency, but apparently by different mechanisms, since mRNA expression for this family of enzymes was lowered by hypothyroidism and increased in selenium deficiency. It is concluded that, since both T3 production and catabolism are inhibited by selenium deficiency, there is little change in hepatic T3 stores, and therefore the changes in the activity of certain hepatic enzymes, such as GST, that are found in selenium deficiency are not the result of tissue hypothyroidism. Images Fig. 1. PMID:1546962

  11. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity. PMID:26947072

  12. Proteomic characterization of hepatitis C eradication: enzyme switch in the healing liver.

    PubMed

    Babudieri, S; Soddu, A; Nieddu, P; Tanca, A; Madeddu, G; Addis, M F; Pagnozzi, D; Cossu-Rocca, P; Massarelli, G; Dore, M P; Uzzau, S; Mura, M S

    2013-07-01

    Lipid pathway impairment, decrease in the antioxidant pool and downregulation in amino-acid metabolism are just some of the metabolic variations attributed to chronic HCV infection. All of them have been studied separately, mainly in animal models. Thanks to proteomic analysis we managed to describe (for the fist time to the best of our knowledge), in vivo and in humans, the metabolic alterations caused by HCV, and the recovery of the same alterations during HCV treatment. We performed proteomic analysis on liver specimens of a 28-year-old woman affected by hepatitis C genotype 1a, alcoholism and diabetes mellitus type 1, before and after antiviral treatment with pegylated interferon alpha 2b and ribavirin. The subject, thanks to a patient-tailored therapy, reached Sustained Virological Response. Throughout the treatment period the patient was monitored with subsequent biochemical, clinical and psychological examinations. The data obtained by the patient's close monitoring suggest a direct interaction between insulin resistance and an active HCV genotype 1 infection, with a leading role played by the infection, and not by insulin resistance, as demonstrated by the sharp fall of the insulin units needed per day during treatment. The proteomic analysis showed that after therapy, a downregulation of enzymes involved in amino acid metabolism, glycolysis/gluconeogenesis and alcohol catabolism takes place, the latter probably due to cessation of alcohol abuse. On the contrary, the metabolic pathways linked to metabolism of the reactive oxygen species were upregulated after therapy. Finally, a significant alteration in the pathway regulated by peroxisome proliferator-activated receptor alpha (PPARA), a major regulator of lipid metabolism in the liver, was reported. These "real time" data confirm in vivo, in humans, that during HCV infection, the pathways related to fatty acids, glucose metabolism and free radical scavenging are inhibited. The same enzyme deficit is

  13. Predictors of Hepatitis B Cure Using Gene Therapy to Deliver DNA Cleavage Enzymes: A Mathematical Modeling Approach

    PubMed Central

    Schiffer, Joshua T.; Swan, Dave A.; Stone, Daniel; Jerome, Keith R.

    2013-01-01

    Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA), the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs), TAL effector nucleases (TALENs), and CRISPR-associated system 9 (Cas9) proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which will in turn

  14. Antimutagenic activity of oxidase enzymes

    SciTech Connect

    Agabeili, R.A.

    1986-11-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity.

  15. Enzyme activity in dialkyl phosphate ionic liquids.

    PubMed

    Thomas, Marie F; Li, Luen-Luen; Handley-Pendleton, Jocelyn M; van der Lelie, Daniel; Dunn, John J; Wishart, James F

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariella volvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v. PMID:22001053

  16. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  17. Effect of the combined probiotics with aflatoxin B₁-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression.

    PubMed

    Zuo, Rui-yu; Chang, Juan; Yin, Qing-qiang; Wang, Ping; Yang, Yu-rong; Wang, Xiao; Wang, Guo-qiang; Zheng, Qiu-hong

    2013-09-01

    In order to degrade aflatoxin B₁ (AFB₁), AFB₁-degrading microbes (probiotics) such as Lactobacillus casei, Bacillus subtilis and Pichia anomala, and the AFB₁-degrading enzyme from Aspergillus oryzae were selected and combined to make feed additive. Seventy-five 43-day-old male Arbor Acres broilers were randomly divided into 5 groups, 15 broilers for each group. The broilers were given with 5 kinds of diets such as the basal diet, 400 μg/kg AFB₁ supplement without feed additive, and 200, 400, 800 μg/kg AFB₁ supplement with 0.15% feed additive. The feeding experimental period was 30 d, which was used to determine production performance of broilers. In addition, serum, liver and chest muscle were selected for measuring AFB₁ residues, gene expressions, microscopic and antioxidant analyses. The results showed that adding 0.15% feed additive in broiler diets could significantly relieve the negative effect of AFB₁ on chicken's production performance and nutrient metabolic rates (P<0.05). It could also improve AFB₁ metabolism, hepatic cell structure, antioxidant activity, and many hepatic enzyme gene expressions involved in oxidoreductase, apoptosis, cell growth, immune system and metabolic process (P<0.05). It could be concluded that the feed additive was able to degrade AFB₁ and improve animal production. PMID:23831311

  18. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  19. Activities of xenobiotic metabolizing enzymes in rat placenta and liver in vitro.

    PubMed

    Fabian, Eric; Wang, Xinyi; Engel, Franziska; Li, Hequn; Landsiedel, Robert; van Ravenzwaay, Bennard

    2016-06-01

    In order to assess whether the placental metabolism of xenobiotic compounds should be taken into consideration for physiologically-based toxicokinetic (PBTK) modelling, the activities of seven phase I and phase II enzymes have been quantified in the 18-day placenta of untreated Wistar rats. To determine their relative contribution, these activities were compared to those of untreated adult male rat liver, using commonly accepted assays. The enzymes comprised cytochrome P450 (CYP), flavin-containing monooxygenase (FMO), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), esterase, UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST). In contrast to liver, no activities were measurable for 7-ethylresorufin-O-dealkylase (CYP1A), 7-pentylresorufin-O-dealkylase (CYP2B), 7-benzylresorufin-O-dealkylase (CYP2B, 2C and 3 A), UGT1, UGT2 and GST in placenta, indicating that the placental activity of these enzymes was well below their hepatic activity. Low activities in placenta were determined for FMO (4%), and esterase (8%), whereas the activity of placental ADH and ALDH accounted for 35% and 40% of the hepatic activities, respectively. In support of the negligible placental CYP activity, testosterone and six model azole fungicides, which were readily metabolized by rat hepatic microsomes, failed to exhibit any metabolic turnover with rat placental microsomes. Hence, with the possible exception of ADH and ALDH, the activities of xenobiotic-metabolizing enzymes in rat placenta are too low to warrant consideration in PBTK modelling. PMID:26944803

  20. Correlation of Tc-99m GSA hepatic studies with biopsies in patients with chronic active hepatitis.

    PubMed

    Tomiguchi, S; Kira, T; Oyama, Y; Nabeshima, M; Nakashima, R; Tsuji, A; Kojima, A; Takahashi, M; Yoshimatsu, S; Sagara, K

    1995-08-01

    To determine whether scintigraphic findings of Tc-99m DTPA-galactosyl-HSA (GSA) correspond to histopathologic findings, Tc-99m GSA hepatic scintigraphy and biopsy were compared in 65 patients with chronic active hepatitis. After injecting 185 MBq of Tc-99m GSA, anterior images were obtained at 5 minutes and 15 minutes. Scintigrams were classified into three grades according to the extent of visualization of the cardiac blood pool on 5 minute and 15 minute images. Biopsies were subjectively graded for findings of necrosis and fibrosis. Scintigraphic grades on 5 minute images were correlated with hepatic necrosis and fibrosis and those on 15-minute images with hepatic fibrosis. Scintigraphic abnormalities of Tc-99m GSA correlated well with histopathologic abnormalities, especially with hepatic fibrosis and necrosis in patients with chronic active hepatitis. PMID:7586877

  1. Human variation and CYP enzyme contribution in benfuracarb metabolism in human in vitro hepatic models.

    PubMed

    Abass, Khaled; Reponen, Petri; Mattila, Sampo; Rautio, Arja; Pelkonen, Olavi

    2014-01-13

    Human responses to the toxicological effects of chemicals are often complicated by a substantial interindividual variability in toxicokinetics, of which metabolism is often the most important factor. Therefore, we investigated human variation and the contributions of human-CYP isoforms to in vitro metabolism of benfuracarb. The primary metabolic pathways were the initial sulfur oxidation to benfuracarb-sulfoxide and the nitrogen-sulfur bond cleavage to carbofuran (activation). The Km, Vmax, and CL(int) values of carbofuran production in ten individual hepatic samples varied 7.3-, 3.4-, and 5.4-fold, respectively. CYP2C9 and CYP2C19 catalyzed benfuracarb sulphur oxidation. Carbofuran formation, representing from 79% to 98% of the total metabolism, was catalyzed predominantly by CYP3A4. The calculated relative contribution of CYP3A4 to carbofuran formation was 93%, while it was 4.4% for CYP2C9. The major contribution of CYP3A4 in benfuracarb metabolism was further substantiated by showing a strong correlation with CYP3A4-selective markers midazolam-1'-hydroxylation and omeprazole-sulfoxidation (r=0.885 and 0.772, respectively). Carbofuran formation was highly inhibited by the CYP3A inhibitor ketoconazole. Moreover, CYP3A4 marker activities were relatively inhibited by benfuracarb. These results confirm that human CYP3A4 is the major enzyme involved in the in vitro activation of benfuracarb and that CYP3A4-catalyzed metabolism is the primary source of interindividual differences. PMID:24016712

  2. Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer.

    PubMed

    Hou, Chen; Wang, Yongyao; Zhu, Erkang; Yan, Chunhong; Zhao, Lin; Wang, Xiaojie; Qiu, Yingfeng; Shen, Hui; Sun, Xuejun; Feng, Zhihui; Liu, Jiankang; Long, Jiangang

    2016-03-01

    Diet-induced nonalcoholic fatty liver disease (NAFLD) is characterized by profound lipid accumulation and associated with an inflammatory response, oxidative stress and hepatic mitochondrial dysfunction. We previously demonstrated that some mitochondrial nutrients effectively ameliorated high fat diet (HFD)-induced hepatic steatosis and metabolic disorders. Molecular hydrogen in hydrogen-rich liquid or inhaling gas, which has been confirmed in scavenging reactive oxygen species and preventing mitochondrial decay, improved metabolic syndrome in patients and animal models. Coral calcium hydride (CCH) is a new solid molecular hydrogen carrier made of coral calcium. However, whether and how CCH impacts HFD-induced hepatic steatosis remains uninvestigated. In the present study, we applied CCH to a HFD-induced NAFLD rat model for 13 weeks. We found that CCH durably generated hydrogen in vivo and in vitro. CCH treatment significantly reduced body weight gain, improved glucose and lipid metabolism and attenuated hepatic steatosis in HFD-induced obese rats with no influence on food and water intake. Moreover, CCH effectively improved HFD-induced hepatic mitochondrial dysfunction, reduced oxidative stress, and activated phase II enzymes. Our results suggest that CCH is an efficient hydrogen-rich agent, which could prevent HFD-induced NAFLD via activating phase II enzymes and improving mitochondrial function. PMID:26774456

  3. Halophilic enzyme activation induced by salts

    PubMed Central

    Ortega, Gabriel; Laín, Ana; Tadeo, Xavier; López-Méndez, Blanca; Castaño, David; Millet, Oscar

    2011-01-01

    Halophilic archea (halobacteriae) thrive in hypersaline environments, avoiding osmotic shock by increasing the ion concentration of their cytoplasm by up to 3–6 M. To remain folded and active, their constitutive proteins have evolved towards a biased amino acid composition. High salt concentration affects catalytic activity in an enzyme-dependent way and a unified molecular mechanism remains elusive. Here, we have investigated a DNA ligase from Haloferax volcanii (Hv LigN) to show that K+ triggers catalytic activity by preferentially stabilising a specific conformation in the reaction coordinate. Sodium ions, in turn, do not populate such isoform and the enzyme remains inactive in the presence of this co-solute. Our results show that the halophilic amino acid signature enhances the enzyme's thermodynamic stability, with an indirect effect on its catalytic activity. This model has been successfully applied to reengineer Hv LigN into an enzyme that is catalytically active in the presence of NaCl. PMID:22355525

  4. Proteomic analysis for the impact of hypercholesterolemia on expressions of hepatic drug transporters and metabolizing enzymes.

    PubMed

    Liu, Yan; Pu, Qiang-Hong; Wu, Ming-Jun; Yu, Chao

    2016-10-01

    1. Our objective is to investigate the alterations of hepatic drug transporters and metabolizing enzymes in hypercholesterolemia. Male Sprague-Dawley rats were fed high-cholesterol chows for 8 weeks to induce hypercholesterolemia. Protein levels of hepatic drug transporters and metabolizing enzymes were analyzed by iTRAQ labeling coupled with LC TRIPLE-TOF. 2. Total 239 differentially expressed proteins were identified using proteomic analysis. Among those, protein levels of hepatic drug transporters (MRP2, ABCD3, OAT2, SLC25A12, SCL38A3, SLC2A2 and SLC25A5) and metabolizing enzymes (CYP2B3, CYP2C7, CYP2C11, CYP2C13, CYP4A2 and UGT2B) were markedly reduced, but the levels of CYP2C6 and CYP2E1 were increased in hypercholesterolemia group compared to control. Decreased expressions of drug transporters MRP2 and OAT2 were further confirmed by real time quantitative PCR (RT-qPCR) and western blot. 3. Ingenuity pathway analysis revealed that these differentially expressed proteins were regulated by various signaling pathways including nuclear receptors and inflammatory cytokines. One of the nuclear receptor candidates, liver X receptor alpha (LXRα), was further validated by RT-qPCR and western blot. Additionally, LXRα agonist T0901317 rescued the reduced expressions of MRP2 and OAT2 in HepG2 cells in hypercholesterolemic serum treatment. 4. Our present results indicated that hypercholesterolemia affected the expressions of various drug transporters and metabolizing enzymes in liver via nuclear receptors pathway. Especially, decreased function of LXRα contributes to the reduced expressions of MRP2 and OAT2. PMID:26887802

  5. Enzyme Specific Activity in Functionalized Nanoporous Supports

    SciTech Connect

    Lei, Chenghong; Soares, Thereza A.; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.

    2008-03-26

    Enzyme specific activity can be increased or decreased to a large extent by changing protein loading density in functionalized nanoporous support, where organophosphorus hydrolase can display a constructive orientation and thus leave a completely open entrance for substrate even at higher protein loading density, but glucose oxidase can not.

  6. An NMR Study of Enzyme Activity.

    ERIC Educational Resources Information Center

    Peterman, Keith E.; And Others

    1989-01-01

    A laboratory experiment designed as a model for studying enzyme activity with a basic spectrometer is presented. Included are background information, experimental procedures, and a discussion of probable results. Stressed is the value of the use of Nuclear Magnetic Resonance in biochemistry. (CW)

  7. Effects of tin-protoporphyrin administration on hepatic xenobiotic metabolizing enzymes in the juvenile rat

    SciTech Connect

    Stout, D.L.; Becker, F.F.

    1988-01-01

    The heme analogue tin-protoporphyrin IX (SnP) is a potent inhibitor of microsomal heme oxygenase. Administration of SnP to neonatal rats can prevent hyperbilirubinemia by blocking the postnatal increase of heme oxygenase activity. Apparently innocuous at therapeutic doses, it is of potential clinical value for chemoprevention of neonatal jaundice. We found that when 50-g male Sprague-Dawley rats were treated daily with 50 mumol of SnP/kg sc for 6 days, hepatic microsomal cytochromes b5 and P-450 were significantly diminished. Cytochrome P-450 reductase, two P-450-dependent monooxygenases, aminopyrine demethylase and benzo(a)pyrene hydroxylase, and catalase, a peroxisomal hemoprotein, were also significantly diminished. These results suggested that SnP might significantly affect the metabolism of other xenobiotics. This possibility was confirmed by the finding that hexobarbital-induced sleep lasted 4 times longer in SnP-treated rats than in controls. Inhibition of protein synthesis by SnP was ruled out as the cause of hemoprotein loss when administration of (/sup 3/H)leucine to SnP-treated and control rats demonstrated that proteins of the microsomal, cytosolic, and plasma membrane fractions of the livers from both groups incorporated similar levels of leucine. When /sup 55/FeCl/sub 3/ and (2-/sup 14/C)glycine were administered to measure heme synthesis, heme extract from the livers of SnP-treated rats contained 4 times more label from iron and glycine than did heme from control livers. Despite the apparent increased rate of heme synthesis in SnP-treated rats, each of the three cell fractions demonstrated a significant loss of heme but contained sizable amounts of SnP. These findings suggest that SnP causes a decrease of functional hemoprotein and partial loss of enzymic activity by displacing intracellular heme.

  8. Hepatic Enzyme Alterations in HIV Patients on Antiretroviral Therapy: A Case-Control Study in a Hospital Setting in Ghana

    PubMed Central

    Osakunor, Derick Nii Mensah; Obirikorang, Christian; Fianu, Vincent; Asare, Isaac; Dakorah, Mavis

    2015-01-01

    Background Diagnosing hepatic injury in HIV infection can be a herculean task for clinicians as several factors may be involved. In this study, we sought to determine the effects of antiretroviral therapy (ART) and disease progression on hepatic enzymes in HIV patients. Methods A case-control study conducted from January to May 2014 at the Akwatia Government Hospital, Eastern region, Ghana, The study included 209 HIV patients on ART (designated HIV-ART) and 132 ART-naive HIV patients (designated HIV-Controls). Data gathered included demography, clinical history and results of blood tests for hepatic enzymes. We employed the Fisher’s, Chi-square, unpaired t-test and Pearson’s correlation in analysis, using GraphPad Prism and SPSS. A P value < 0.05 was considered significant. Results Median CD4 lymphocyte count of HIV-ART participants (604.00 cells/mm3) was higher than that of HIV-Controls (491.50 cells/mm3; P = 0.0005). Mean values of ALP, ALT, AST and GGT did not differ between the two groups compared (P > 0.05). There was a significant positive correlation between hepatic enzymes (ALP, ALT, AST and GGT) for both groups (p < 0.01 each). Duration of ART correlated positively with ALT (p < 0.05). The effect size of disease progression on hepatic enzymes for both groups was small. Conclusion Antiretroviral therapy amongst this population has minimal effects on hepatic enzymes and does not suggest modifications in therapy. Hepatic injury may occur in HIV, even in the absence of ART and other traditional factors. Monitoring of hepatic enzymes is still important in HIV patients. PMID:26247879

  9. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice.

    PubMed

    Bharali, Rupjyoti; Tabassum, Jawahira; Azad, Mohammed Rekibul Haque

    2003-01-01

    The modulatory effects of a hydro-alcoholic extract of drumsticks of Moringa oliefera Lam at doses of 125 mg/kg bodyweight and 250 mg/ kg body weight for 7 and 14 days, respectively, were investigated with reference to drug metabolising Phase I (Cytochrome b(5) and Cytochrome p(450) ) and Phase II (Glutathione-S- transferase) enzymes, anti-oxidant enzymes, glutathione content and lipid peroxidation in the liver of 6-8 week old female Swiss albino mice. Further, the chemopreventive efficacy of the extract was evaluated in a two stage model of 7,12 - dimethylbenz(a)anthracene induced skin papillomagenesis. Significant increase (p<0.05 to p<0.01) in the activities of hepatic cytochrome b(5), cytochrome p(450), catalase, glutathione peroxidase ( GPx ), glutathione reductase (GR), acid soluble sulfhydryl content (-SH ) and a significant decrease ( p<0.01 ) in the hepatic MDA level were observed at both dose levels of treatment when compared with the control values. Glutathione-S- transferase ( GST )activity was found to be significantly increased (p<0.01 ) only at the higher dose level. Butylated hydroxyanisol (BHA ) fed at a dose of 0.75% in the diet for 7 and 14 days (positive control ) caused a significant increase (p<0.05 to p<0.01) in the levels of hepatic phase I and phase II enzymes, anti- oxidant enzymes, glutathione content and a decrease in lipid peroxidation. The skin papillomagenesis studies demonstrated a significant decrease (p<0.05 ) in the percentage of mice with papillomas, average number of papillomas per mouse and papillomas per papilloma bearing mouse when the animals received a topical application of the extract at a dose of 5mg/ kg body weight in the peri-initiation phase 7 days before and 7 days after DMBA application, Group II ), promotional phase (from the day of croton oil application and continued till the end of the experiment, Group III ) and both peri and post initiation stages (from 7 days prior to DMBA application and continued till the

  10. Hepatitis

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  11. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  12. Comparison of Enzyme Immunoassays for Detection of Antibodies to Hepatitis D Virus in Serum.

    PubMed

    Chow, Siu-Kei; Atienza, Ederlyn E; Cook, Linda; Prince, Harry; Slev, Patricia; Lapé-Nixon, Mary; Jerome, Keith R

    2016-08-01

    Serology remains critical for diagnosing hepatitis D virus (HDV) infection, which affects 15 to 20 million people worldwide, but the literature on characterizing commercial enzyme immunoassays (EIAs) dates back to 15 years ago. We evaluated 2 commercial EIAs currently available for detecting anti-HDV antibodies. The DiaSorin assay demonstrated 100% sensitivity and specificity. Using a modified cutoff value, the Cusabio assay demonstrated a sensitivity of 81.3% and specificity of 90.9%. Our data show that recently developed EIAs are reliable for anti-HDV antibody detection. PMID:27280621

  13. The Action of Antidiabetic Plants of the Canadian James Bay Cree Traditional Pharmacopeia on Key Enzymes of Hepatic Glucose Homeostasis

    PubMed Central

    Nachar, Abir; Vallerand, Diane; Musallam, Lina; Lavoie, Louis; Arnason, John; Haddad, Pierre S.

    2013-01-01

    We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada) to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase) and glycogen synthase (GS) activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK), Akt, and Glycogen synthase kinase-3 (GSK-3) were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines. PMID:23864882

  14. Epigenetic Changes during Hepatic Stellate Cell Activation

    PubMed Central

    Götze, Silke; Schumacher, Eva C.; Kordes, Claus; Häussinger, Dieter

    2015-01-01

    Background and Aims Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC. Methods and Results The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism. Conclusions In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism. PMID:26065684

  15. Effect of squalene synthase inhibition on the expression of hepatic cholesterol biosynthetic enzymes, LDL receptor, and cholesterol 7 alpha hydroxylase.

    PubMed

    Ness, G C; Zhao, Z; Keller, R K

    1994-06-01

    Squalene synthase catalyzes the committed step in the biosynthesis of sterols. Treating rats with zaragozic acid A, a potent inhibitor of squalene synthase, caused marked increases in hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, HMG-CoA reductase, squalene synthase, and LDL receptor mRNA levels. The increase in HMG-CoA reductase mRNA fully accounted for the increases seen in enzyme protein and activity. Farnesyl pyrophosphate synthase mRNA and activity were only slightly increased by zaragozic acid A, while cholesterol 7 alpha hydroxylase mRNA levels were decreased substantially. When rats were pretreated with zaragozic acid A, there was no change in mRNA levels for the cholesterol biosynthetic enzymes or cholesterol 7 alpha hydroxylase upon subsequent treatment with mevalonolactone. Under these same conditions, the enzymatic activity of HMG-CoA reductase was also unaffected. Mevalonolactone treatment reduced the zaragozic acid A-mediated increase in hepatic LDL receptor mRNA levels. Feeding cholesterol eliminated the zaragozic acid A-induced increase in HMG-CoA reductase mRNA levels. These results suggest that inhibition of squalene synthase decreases the level of a squalene-derived regulatory product, resulting in altered amounts of several mRNAs and coordinate increases in HMG-CoA reductase mRNA, protein, and activity. The increase in HMG-CoA reductase gene expression was closely related to the degree of inhibition of cholesterol synthesis caused by zaragozic acid A. PMID:7911291

  16. Exercise training down-regulates hepatic lipogenic enzymes in meal-fed rats: fructose versus complex-carbohydrate diets.

    PubMed

    Fiebig, R; Griffiths, M A; Gore, M T; Baker, D H; Oscai, L; Ney, D M; Ji, L L

    1998-05-01

    The maximal activity and mRNA abundance of hepatic fatty acid synthase (FAS) and other lipogenic enzymes were investigated in rats meal-fed either a high fructose (F) or a high cornstarch (C) diet. The diet contained 50% F or C (g/100 g), casein (20%), cornstarch (16.13%), corn oil (5%), minerals (5.37%), vitamins (1%) and Solka-floc (2%). Female Sprague-Dawley rats (n = 44) were randomly divided into C or F groups that were meal-fed for 3 h/d; each group was subdivided into exercise-trained (T) and untrained (U) groups. Treadmill training was performed 4 h after the initiation of the meal at 25 m/min, 10% grade for 2 h/d, 5 d/wk, for 10 wk. Rats were killed 9 h after the meal and 27 h after the last training session. F-fed rats had significantly higher activities of all lipogenic enzymes assayed and mRNA abundance of FAS and acetyl-coenzyme A carboxylase (ACC) than C rats (P < 0.05). Concentrations of plasma insulin and glucose and liver pyruvate were not altered by F feeding. Proportions of the fatty acids 18:2 and 20:4 were lower, whereas those of 16:0 and 16:1 were higher, in livers of F than of C rats (P < 0.05). Training decreased FAS activity by 50% (P < 0.05), without affecting FAS mRNA level in C rats; this down-regulation was absent in the F rats. ACC mRNA abundance tended to be lower in CT than in CU rats (P < 0.075). L-Type pyruvate kinase activity was lower in FT than in FU rats (P < 0.05), whereas other lipogenic enzyme activities did not differ between T and U rats of each diet group. We conclude that hepatic lipogenic enzyme induction by high carbohydrate meal feeding may be inhibited by exercise training and that a fructose-rich diet may attenuate this training-induced down-regulation. PMID:9566986

  17. Hepatic ischemia-reperfusion syndrome after partial liver resection (LR): hepatic venous oxygen saturation, enzyme pattern, reduced and oxidized glutathione, procalcitonin and interleukin-6.

    PubMed

    Kretzschmar, Michael; Krüger, Antie; Schirrmeister, Wulf

    2003-06-01

    The hepatic ischemia-reperfusion syndrome was investigated in 28 patients undergoing elective partial liver resection with intraoperative occlusion of hepatic inflow (Pringle maneuver) using the technique of liver vein catheterization. Hepatic venous oxygen saturation (ShvO2) was monitored continuously up to 24 hours after surgery. Aspartate aminotransferase, glutamate dehydrogenase, gamma-glutamyl transpeptidase, pseudocholinesterase, alpha-glutathione S-transferase, reduced and oxidized glutathione, procalcitonine, and interleukin-6 were serially measured both before and after Pringle maneuver during the resection and postoperatively in arterial and/or hepatic venous blood. ShvO2 measurement demonstrated that peri- and postoperative management was suitable to maintain an optimal hepatic oxygen supply. As expected, we were able to demonstrate a typical enzyme pattern of postischemic liver injury. There was a distinct decrease of reduced glutathione levels both in arterial and hepatic venous plasma after LR accompanied by a strong increase in oxidized glutathione concentration during the phase of reperfusion. We observed increases in procalcitonin and interleukin-6 levels both in arterial and hepatic venous blood after declamping. Our data support the view that liver resection in man under conditions of inflow occlusion resulted in ischemic lesion of the liver (loss of glutathione synthesizing capacity with disturbance of protection against oxidative stress) and an additional impairment during reperfusion (liberation of reactive oxygen species, local and systemic inflammation reaction with cytokine production). Additionally, we found some evidence for the assumption that the liver has an export function for reduced glutathione into plasma in man. PMID:12877355

  18. Mitochondrial uncouplers inhibit hepatic stellate cell activation

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction participates in the progression of several pathologies. Although there is increasing evidence for a mitochondrial role in liver disease, little is known about its contribution to hepatic stellate cell (HSC) activation. In this study we investigated the role of mitochondrial activity through mild uncoupling during in vitro activation of HSCs. Methods Cultured primary human and mouse HSCs were treated with the chemical uncouplers FCCP and Valinomycin. ATP levels were measured by luciferase assay and production of reactive oxygen species was determined using the fluorescent probe DCFH-DA. Possible cytotoxicity by uncoupler treatment was evaluated by caspase 3/7 activity and cytoplasmic protease leakage. Activation of HSCs and their response to the pro-fibrogenic cytokine TGF-β was evaluated by gene expression of activation markers and signal mediators using RT-qPCR. Proliferation was measured by incorporation of EdU and protein expression of α-smooth muscle actin was analyzed by immunocytochemistry and western blot. Results FCCP and Valinomycin treatment mildly decreased ATP and reactive oxygen species levels. Both uncouplers increased the expression of mitochondrial genes such as Tfam and COXIV while inducing morphological features of quiescent mouse HSCs and abrogating TGF-β signal transduction. Mild uncoupling reduced HSC proliferation and expression of pro-fibrogenic markers of mouse and human HSCs. Conclusions Mild mitochondrial uncoupling inhibits culture-induced HSC activation and their response to pro-fibrogenic cytokines like TGF-β. These results therefore suggest mitochondrial uncoupling of HSCs as a strategy to reduce progression of liver fibrosis. PMID:22686625

  19. Hepatic Expression of Detoxification Enzymes Is Decreased in Human Obstructive Cholestasis Due to Gallstone Biliary Obstruction

    PubMed Central

    Chai, Jin; Feng, Xinchan; Zhang, Liangjun; Chen, Sheng; Cheng, Ying; He, Xiaochong; Yang, Yingxue; He, Yu; Wang, Huaizhi; Wang, Rongquan; Chen, Wensheng

    2015-01-01

    Background & Aims Levels of bile acid metabolic enzymes and membrane transporters have been reported to change in cholestasis. These alterations (e.g. CYP7A1 repression and MRP4 induction) are thought to be adaptive responses that attenuate cholestatic liver injury. However, the molecular mechanisms of these adaptive responses in human obstructive cholestasis due to gallstone biliary obstruction remain unclear. Methods We collected liver samples from cholestatic patients with biliary obstruction due to gallstones and from control patients without liver disease (n = 22 per group). The expression levels of bile acid synthetic and detoxification enzymes, membrane transporters, and the related nuclear receptors and transcriptional factors were measured. Results The levels of bile acid synthetic enzymes, CYP7B1 and CYP8B1, and the detoxification enzyme CYP2B6 were increased in cholestatic livers by 2.4-fold, 2.8-fold, and 1.9-fold, respectively (p<0.05). Conversely, the expression levels of liver detoxification enzymes, UGT2B4/7, SULT2A1, GSTA1-4, and GSTM1-4, were reduced by approximately 50% (p<0.05) in human obstructive cholestasis. The levels of membrane transporters, OSTβ and OCT1, were increased 10.4-fold and 1.8-fold, respectively, (p<0.05), whereas those of OSTα, ABCG2 and ABCG8 were all decreased by approximately 40%, (p<0.05) in human cholestatic livers. Hepatic nuclear receptors, VDR, HNF4α, RXRα and RARα, were induced (approximately 2.0-fold, (p<0.05) whereas FXR levels were markedly reduced to 44% of control, (p<0.05) in human obstructive cholestasis. There was a significantly positive correlation between the reduction in FXR mRNA and UGT2B4/7, SULT2A1, GSTA1, ABCG2/8 mRNA levels in livers of obstructive cholestatic patients (p<0.05). Conclusions The levels of hepatic detoxification enzymes were significantly decreased in human obstructive cholestasis, and these decreases were positively associated with a marked reduction of FXR levels. These findings

  20. Induction of hepatic drug metabolizing enzymes by coal fly ash in rats

    SciTech Connect

    Srivastava, P.K.; Singh, Y.; Tyagi, S.R.; Misra, U.K.

    1987-12-01

    The effect of intratracheal administration of fly ash, its benzene-extracted residue and the benzene extract has been studied on the activities of hepatic mixed-function oxidases in the rat. Fly ash and its fractions significantly increased the levels of cytochrome P-450, cytochrome b/sub 5/, cytochrome b/sub 5/ reductase, NADPH-cytochrome c reductase, aminopyrine N-demethylase, aniline hydroxylase, and glutathione S-transferase in a dose-dependent manner. Phenobarbital or 3-methylcholanthrene treatment along with the administration of fly ash or its fractions showed an additive effect on the activities of the mixed-function oxidases. The observed effects were due to chemical component, i.e., organic and inorganic fractions of fly ash, and not due to its particulate nature. This was shown by the administration of glass beads, which did not cause any alteration in the activities of hepatic mixed-function oxidases.

  1. Chemoprotective influence of Zanthoxylum sps. on hepatic carcinogen metabolizing and antioxidant enzymes and skin papillomagenesis in murine model.

    PubMed

    Rajamani, Paulraj; Banerjeet, Sanjeev; Rao, A Ramesha

    2011-11-01

    In the present study, the putative potential of pericarp of dried fruit of Zanthoxylum (Rutaceae Family), a common spice additive in India's west coast cuisines, in protecting against carcinogenesis has been reported. Extract from dried fruit of Zanthoxylum was orally administered to mice at two dose levels: 100 and 200 mg/kg body wt. for 14 days. Results reveal bifunctional nature of Zanthoxylum species as deduced from its potential to induce phase-I and phase-II enzyme activities associated with carcinogen activation and detoxification in the liver of mice. Hepatic glutathione S-transferase and DT-diaphorase were found significantly elevated by the treatment. Zanthoxylum was also effective in augmenting the antioxidant enzyme activities of glutathione peroxidase, superoxide dismutase and catalase albeit significantly by high dose of the extract (P < 0.05; P < 0.01). Reduced glutathione was also significantly elevated in the liver of treated animals (P < 0.05). The present study also investigated peri-initiation application of acetone extract of Zanthoxylum on initiated mouse skin. Results showed a significant reduction in tumor incidence from 68% to 36% (P < 0.05); as well as, a reduction in tumor burden per effective mouse from 3.87 to 0.72 (P < 0.01). Cumulatively, the findings strongly suggest cancer chemopreventive potential of Zanthoxylum sps. PMID:22126017

  2. RNA-Sequencing Quantification of Hepatic Ontogeny and Tissue Distribution of mRNAs of Phase II Enzymes in Mice

    PubMed Central

    Gunewardena, Sumedha; Cui, Julia Y.; Yoo, Byunggil; Zhong, Xiao-bo; Klaassen, Curtis D.

    2013-01-01

    Phase II conjugating enzymes play key roles in the metabolism of xenobiotics. In the present study, RNA sequencing was used to elucidate hepatic ontogeny and tissue distribution of mRNA expression of all major known Phase II enzymes, including enzymes involved in glucuronidation, sulfation, glutathione conjugation, acetylation, methylation, and amino acid conjugation, as well as enzymes for the synthesis of Phase II cosubstrates, in male C57BL/6J mice. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. Many of these Phase II enzymes were expressed at much higher levels in adult livers than in perinatal livers, such as Ugt1a6b, -2a3, -2b1, -2b5, -2b36, -3a1, and -3a2; Gsta1, -m1, -p1, -p2, and -z1; mGst1; Nat8; Comt; Nnmt; Baat; Ugdh; and Gclc. In contrast, hepatic mRNA expression of a few Phase II enzymes decreased during postnatal liver development, such as mGst2, mGst3, Gclm, and Mat2a. Hepatic expression of certain Phase II enzymes peaked during the adolescent stage, such as Ugt1a1, Sult1a1, Sult1c2, Sult1d1, Sult2as, Sult5a1, Tpmt, Glyat, Ugp2, and Mat1a. In adult mice, the total transcripts for Phase II enzymes were comparable in liver, kidney, and small intestine; however, individual Phase II enzymes displayed marked tissue specificity among the three organs. In conclusion, this study unveils for the first time developmental changes in mRNA abundance of all major known Phase II enzymes in mouse liver, as well as their tissue-specific expression in key drug-metabolizing organs. The age- and tissue-specific expression of Phase II enzymes indicate that the detoxification of xenobiotics is highly regulated by age and cell type. PMID:23382457

  3. Modulation of insulin degrading enzyme activity and liver cell proliferation

    PubMed Central

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald; Gretz, Norbert; Dooley, Steven; Pfeiffer, Andreas FH; Rudovich, Natalia

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis. PMID:25945652

  4. Liver Enzymes in Children with beta-Thalassemia Major: Correlation with Iron Overload and Viral Hepatitis

    PubMed Central

    Salama, Khaled M.; Ibrahim, Ola M.; Kaddah, Ahmed M.; Boseila, Samia; Ismail, Leila Abu; Hamid, May M. Abdel

    2015-01-01

    BACKGROUND: Beta Thalassemia is the most common chronic hemolytic anemia in Egypt (85.1%) with an estimated carrier rate of 9-10.2%. Injury to the liver, whether acute or chronic, eventually results in an increase in serum concentrations of Alanine transaminase (ALT) and Aspartate transaminase (AST). AIM: Evaluating the potentiating effect of iron overload & viral hepatitis infection on the liver enzymes. PATIENTS AND METHODS: Eighty (80) thalassemia major patients were studied with respect to liver enzymes, ferritin, transferrin saturation, HBsAg, anti-HCV antibody and HCV-PCR for anti-HCV positive patients. RESULTS: Fifty % of the patients were anti-HCV positive and 55% of them were HCV-PCR positive. Patients with elevated ALT and AST levels had significantly higher mean serum ferritin than those with normal levels. Anti-HCV positive patients had higher mean serum ferritin, serum ALT, AST and GGT levels and higher age and duration of blood transfusion than the negative group. HCV-PCR positive patients had higher mean serum ferritin and serum ALT and also higher age and duration of blood transfusion than the negative group. CONCLUSION: Iron overload is a main leading cause of elevated liver enzymes, and presence of HCV infection is significantly related to the increased iron overload. PMID:27275237

  5. Contaminants in eggs of colonial waterbirds and hepatic cytochrome P450 enzyme levels in pipped tern embryos, Washington State

    USGS Publications Warehouse

    Blus, L.J.; Melancon, M.J.; Hoffman, D.J.; Henny, C.J.

    1998-01-01

    Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryos (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994

  6. Contaminants in eggs of colonial waterbirds and hepatic cytochrome P450 enzyme levels in pipped tern embryos, Washington State.

    PubMed

    Blus, L J; Melancon, M J; Hoffman, D J; Henny, C J

    1998-10-01

    Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994. PMID:9732482

  7. High-Throughput Analysis of Enzyme Activities

    SciTech Connect

    Guoxin Lu

    2007-12-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  8. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  9. Angiotensin Converting Enzyme Activity in Alopecia Areata

    PubMed Central

    Namazi, Mohammad Reza; Handjani, Farhad; Eftekhar, Ebrahim; Kalafi, Amir

    2014-01-01

    Background. Alopecia areata (AA) is a chronic inflammatory disease of the hair follicle. The exact pathogenesis of AA remains unknown, although recent studies support a T-cell mediated autoimmune process. On the other hand, some studies have proposed that the renin-angiotensin-aldosterone system (RAAS) may play a role in autoimmunity. Therefore, we assessed serum activity of angiotensin converting enzyme (ACE), a component of this system, in AA. Methods. ACE activity was measured in the sera of 19 patients with AA and 16 healthy control subjects. In addition, the relationship between severity and duration of the disease and ACE activity was evaluated. Results. Serum ACE activity was higher in the patient group (55.81 U/L) compared to the control group (46.41 U/L), but the difference was not statistically significant (P = 0.085). Also, there was no correlation between ACE activity and severity (P = 0.13) and duration of disease (P = 0.25) in the patient group. Conclusion. The increased serum ACE activity found in this study may demonstrate local involvement of the RAAS in the pathogenesis of AA. Assessment of ACE in a study with a larger sample size as well as in tissue samples is recommended in order to further evaluate the possible role of RAAS in AA. PMID:25349723

  10. Gene Expression Variability in Human Hepatic Drug Metabolizing Enzymes and Transporters

    PubMed Central

    Yang, Lun; Price, Elvin T.; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang

    2013-01-01

    Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications. PMID:23637747

  11. Regulatory effects of testosterone and 17 beta-oestradiol on the metabolism of dimethylnitrosamine by renal and hepatic microsomal enzymes from BALB/c mice.

    PubMed

    Ampy, F R; Asseffa, A

    1988-01-01

    Previous investigations with BALB/c mice have demonstrated that no sex-related differences exist in the ability of liver microsomal fractions (S-9) to biotransform dimethylnitrosamine (DMN) to its active mutagenic metabolites as evidenced by bacterial screening assays. In contrast, kidney microsomal enzymes from adult male BALB/c mice and not from females, castrates, and immature animals, were capable of activating DMN. The present study was designed to test the effects of testosterone and oestradiol on DMN bioactivation by hepatic or renal microsomal enzymes. Mutagenic assays were performed using liver and kidney microsomal enzymes with the histidine deficient mutant Salmonella typhimurium TA100. Results indicate that testosterone treatment of female BALB/c mice resulted in an increase in the ability of their renal microsomal enzymes to metabolize DMN to its active mutagenic intermediates. Renal microsomal enzymes from female mice treated with 17 beta-oestradiol had no effect on DMN metabolism. However, the ability of the renal microsomal enzymes treated with 17 beta-oestradiol to bioactivate DMN was significantly decreased in males. PMID:3229148

  12. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    PubMed

    Katsanou, Efrosini S; Kyriakopoulou, Katerina; Emmanouil, Christina; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Machera, Kyriaki

    2014-01-01

    Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE. PMID:24950217

  13. Antioxidant enzymes activities in obese Tunisian children

    PubMed Central

    2013-01-01

    Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls), aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx). Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p < 0.05). Mean activities of anti-radical GPx and CAT enzymes were not affected by the BMI increase. Although, total cholesterol levels were statistically higher in the obese group, there was no significant association with the SOD activity. Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response. PMID:23360568

  14. A Comparative Study for the Evaluation of Two Doses of Ellagic Acid on Hepatic Drug Metabolizing and Antioxidant Enzymes in the Rat

    PubMed Central

    Celik, Gurbet; Semiz, Aslı; Karakurt, Serdar; Arslan, Sevki; Adali, Orhan; Sen, Alaattin

    2013-01-01

    The present study was designed to evaluate different doses of ellagic acid (EA) in vivo in rats for its potential to modulate hepatic phases I, II, and antioxidant enzymes. EA (10 or 30 mg/kg/day, intragastrically) was administered for 14 consecutive days, and activity, protein, and mRNA levels were determined. Although the cytochrome P450 (CYP) 2B and CYP2E enzyme activities were decreased significantly, the activities of all other enzymes were unchanged with the 10 mg/kg/day EA. In addition, western-blot and qRT-PCR results clearly corroborated the above enzyme expressions. On the other hand, while the NAD(P)H:quinone oxidoreductase 1 (NQO1), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were increased significantly, CYP1A, 2B, 2C, 2E, and 19 enzyme activities were reduced significantly with 30 mg/kg/day EA. In addition, CYP2B, 2C6, 2E1, and 19 protein and mRNA levels were substantially decreased by the 30 mg/kg/day dose of EA, but the CYP1A protein, and mRNA levels were not changed. CYP3A enzyme activity, protein and mRNA levels were not altered by neither 10 nor 30 mg/kg/day ellagic acid. These results indicate that EA exerts a dose-dependent impact on the metabolism of chemical carcinogens and drugs by affecting the enzymes involved in xenobiotics activation/detoxification and antioxidant pathways. PMID:23971029

  15. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    SciTech Connect

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin; Park, Min Jung; Kim, Kwang Jin; Cheong, JaeHun . E-mail: molecule85@pusan.ac.kr

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfected with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.

  16. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARγ and Fatty Acid Uptake.

    PubMed

    Labrie, Marilyne; Lalonde, Simon; Najyb, Ouafa; Thiery, Maxime; Daneault, Caroline; Des Rosiers, Chrisitne; Rassart, Eric; Mounier, Catherine

    2015-01-01

    Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARγ expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Consequently, PPARγ target genes Plin2 and Cide A/C are overexpressed, leading to increased lipid droplets formation. Expression of the fatty acid transporter CD36, another PPARgamma target, is also increased in Tg mice associated with elevated fatty acid uptake as measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme. Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in vivo is not significantly different between WT and Tg mice. In addition, expression of carnitine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregulated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of PPARγ. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA and a decrease in plasmatic AA concentration. Taken together, our results demonstrate that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARγ transcriptional activity by AA leading to increased fatty acid uptake by the liver. PMID:26083030

  17. Hepatic Glycogen Supercompensation Activates AMP-Activated Protein Kinase, Impairs Insulin Signaling, and Reduces Glycogen Deposition in the Liver

    PubMed Central

    Winnick, Jason J.; An, Zhibo; Ramnanan, Christopher J.; Smith, Marta; Irimia, Jose M.; Neal, Doss W.; Moore, Mary Courtney; Roach, Peter J.; Cherrington, Alan D.

    2011-01-01

    OBJECTIVE The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver’s ability to take up and metabolize glucose. RESEARCH DESIGN AND METHODS During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO2) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion. RESULTS Fructose infusion increased net hepatic glycogen synthesis (0.7 ± 0.5 vs. 6.4 ± 0.4 mg/kg/min; P < 0.001), causing a large difference in hepatic glycogen content (62 ± 9 vs. 100 ± 3 mg/g; P < 0.001). Hepatic glycogen supercompensation (fructose infusion group) did not alter NHGU, but it reduced the percent of NHGU directed to glycogen (79 ± 4 vs. 55 ± 6; P < 0.01) and increased the percent directed to lactate (12 ± 3 vs. 29 ± 5; P = 0.01) and oxidation (9 ± 3 vs. 16 ± 3; P = NS). This change was associated with increased AMP-activated protein kinase phosphorylation, diminished insulin signaling, and a shift in glycogenic enzyme activity toward a state discouraging glycogen accumulation. CONCLUSIONS These data indicate that increases in hepatic glycogen can generate a state of hepatic insulin resistance, which is characterized by impaired glycogen synthesis despite preserved NHGU. PMID:21270252

  18. Enzyme and root activities in surface-flow constructed wetlands.

    PubMed

    Kong, Ling; Wang, Yu-Bin; Zhao, Li-Na; Chen, Zhang-He

    2009-07-01

    Sixteen small-scale wetlands planted with four plant species were constructed for domestic wastewater purification. The objective of this study was to determine the correlations between contaminant removal and soil enzyme activity, root activity, and growth in the constructed wetlands. The results indicated that correlations between contaminant removal efficiency and enzyme activity varied depending on the contaminants. The removal efficiency of NH4+ was significantly correlated with both urease and protease activity in all wetlands, and the removal of total phosphorus and soluble reactive phosphorus was significantly correlated with phosphatase activity in most wetlands, while the removal of total nitrogen, NO3(-) , and chemical oxygen demand (COD) was significantly correlated with enzyme activity only in a few instances. Correlations between soil enzyme activity and root activity varied among species. Activities of all enzymes were significantly correlated with root activity in Vetiveria zizanioides and Phragmites australis wetlands, but not in Hymenocallis littoralis wetlands. Significant correlations between enzyme activity and root biomass and between enzyme activity and root growth were found mainly in Cyperus flabelliformis wetlands. Root activity was significantly correlated with removal efficiencies of all contaminants except NO3(-) and COD in V. zizanioides wetlands. Enzyme activities and root activity showed single-peak seasonal patterns. Activities of phosphatase, urease, and cellulase were significantly higher in the top layer of the substrate than in the deeper layers, and there were generally no significant differences between the deeper layers (deeper than 15 cm). PMID:19497608

  19. Novel 2-oxoimidazolidine-4-carboxylic acid derivatives as Hepatitis C virus NS3-4A serine protease inhibitors: synthesis, activity, and X-ray crystal structure of an enzyme inhibitor complex

    SciTech Connect

    Arasappan, Ashok; Njoroge, F. George; Parekh, Tejal N.; Yang, Xiaozheng; Pichardo, John; Butkiewicz, Nancy; Prongay, Andrew; Yao, Nanhua; Girijavallabhan, Viyyoor

    2008-06-30

    Synthesis and HCV NS3 serine protease inhibitory activity of some novel 2-oxoimidazolidine-4-carboxylic acid derivatives are reported. Inhibitors derived from this new P2 core exhibited activity in the low {micro}M range. X-ray structure of an inhibitor, 15c bound to the protease is presented.

  20. Alterations in hepatic mRNA expression of phase II enzymes and xenobiotic transporters after targeted disruption of hepatocyte nuclear factor 4 alpha.

    PubMed

    Lu, Hong; Gonzalez, Frank J; Klaassen, Curtis

    2010-12-01

    Hepatocyte nuclear factor 4 alpha (HNF4a) is a liver-enriched master regulator of liver function. HNF4a is important in regulating hepatic expression of certain cytochrome P450s. The purpose of this study was to use mice lacking HNF4a expression in liver (HNF4a-HNull) to elucidate the role of HNF4a in regulating hepatic expression of phase II enzymes and transporters in mice. Compared with male wild-type mice, HNF4a-HNull male mouse livers had (1) markedly lower messenger RNAs (mRNAs) encoding the uptake transporters sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide (Oatp) 1a1, Oatp2b1, organic anion transporter 2, sodium phosphate cotransporter type 1, sulfate anion transporter 1, sodium-dependent vitamin C transporter 1, the phase II enzymes Uridine 5'-diphospho (UDP)-glucuronosyltransferase (Ugt) 2a3, Ugt2b1, Ugt3a1, Ugt3a2, sulfotransferase (Sult) 1a1, Sult1b1, Sult5a1, the efflux transporters multidrug resistance-associated protein (Mrp) 6, and multidrug and toxin extrusion 1; (2) moderately lower mRNAs encoding Oatp1b2, organic cation transporter (Oct) 1, Ugt1a5, Ugt1a9, glutathione S-transferase (Gst) m4, Gstm6, and breast cancer resistance protein; but (3) higher mRNAs encoding Oatp1a4, Octn2, Ugt1a1, Sult1e1, Sult2a2, Gsta4, Gstm1-m3, multidrug resistance protein (Mdr) 1a, Mrp3, and Mrp4. Hepatic signaling of nuclear factor E2-related factor 2 and pregnane X receptor appear to be activated in HNF4a-HNull mice. In conclusion, HNF4a deficiency markedly alters hepatic mRNA expression of a large number of phase II enzymes and transporters, probably because of the loss of HNF4a, which is a transactivator and a determinant of gender-specific expression and/or adaptive activation of signaling pathways important in hepatic regulation of these phase II enzymes and transporters. PMID:20935164

  1. Virus-specific mRNA capping enzyme encoded by hepatitis E virus.

    PubMed

    Magden, J; Takeda, N; Li, T; Auvinen, P; Ahola, T; Miyamura, T; Merits, A; Kääriäinen, L

    2001-07-01

    Hepatitis E virus (HEV), a positive-strand RNA virus, is an important causative agent of waterborne hepatitis. Expression of cDNA (encoding amino acids 1 to 979 of HEV nonstructural open reading frame 1) in insect cells resulted in synthesis of a 110-kDa protein (P110), a fraction of which was proteolytically processed to an 80-kDa protein. P110 was tightly bound to cytoplasmic membranes, from which it could be released by detergents. Immunopurified P110 catalyzed transfer of a methyl group from S-adenosylmethionine (AdoMet) to GTP and GDP to yield m(7)GTP or m(7)GDP. GMP, GpppG, and GpppA were poor substrates for the P110 methyltransferase. There was no evidence for further methylation of m(7)GTP when it was used as a substrate for the methyltransferase. P110 was also a guanylyltransferase, which formed a covalent complex, P110-m(7)GMP, in the presence of AdoMet and GTP, because radioactivity from both [alpha-(32)P]GTP and [(3)H-methyl]AdoMet was found in the covalent guanylate complex. Since both methyltransferase and guanylyltransferase reactions are strictly virus specific, they should offer optimal targets for development of antiviral drugs. Cap analogs such as m(7)GTP, m(7)GDP, et(2)m(7)GMP, and m(2)et(7)GMP inhibited the methyltransferase reaction. HEV P110 capping enzyme has similar properties to the methyltransferase and guanylyltransferase of alphavirus nsP1, tobacco mosaic virus P126, brome mosaic virus replicase protein 1a, and bamboo mosaic virus (a potexvirus) nonstructural protein, indicating there is a common evolutionary origin of these distantly related plant and animal virus families. PMID:11413290

  2. Hepatitis

    MedlinePlus

    ... has been associated with drinking contaminated water. Hepatitis Viruses Type Transmission Prognosis A Fecal-oral (stool to ... risk for severe disease. Others A variety of viruses can affect the liver Signs and Symptoms Hepatitis ...

  3. Evaluation of a novel chemiluminescent microplate enzyme immunoassay for hepatitis B surface antigen detection.

    PubMed

    Yang, Lin; Song, Liu-Wei; Fang, Lin-Lin; Wu, Yong; Ge, Sheng-Xiang; Li, Hui; Yuan, Quan; Zhang, Jun; Xia, Ning-Shao

    2016-02-01

    Hepatitis B virus surface antigen (HBsAg) is an important biomarker used in the diagnosis of hepatitis B virus (HBV) infection, but false-negative results are still reported in the detection of HBsAg using commercial assays. In this study, we evaluated the qualitative properties of a novel HBsAg chemiluminescence enzyme immunoassay (CLEIA) assay--WTultra. WHO standard sample dilution series and samples from low-level HBsAg carriers (<1 ng/mL) were used to evaluate the sensitivity of the WTultra assay. Boston Biomedica, Inc. (BBI) hepatitis B seroconversion panels were used to assess the ability of the WTultra assay to detect the window period. In addition, dilution series of 22 serum samples with different genotypes, serotypes and HBsAg mutations were used to assess the WTultra assay, and these were compared with other commercial assays. The lower detection limit of the WTultra assay was 0.012 IU/mL, and it showed a high sensitivity (97.52%, 95% CI, 94.95-99.00) in the detection of 282 low-level HBsAg carriers (<1 ng/mL). In samples with various HBV genotypes, serotypes and HBsAg mutations, the WTultra assay yielded 117 positive results in 132 samples, which was significantly higher than the results with the other four commercial assays (89, 83, 65 and 45, respectively, p<0.01). In the assays of mutant strains, the WTultra assay detected 82 positive results in 90 samples, which was significantly better than the results for the Hepanostika HBsAg Ultra (58 positive) and Architect (55 positive) (p<0.01) assays, which in turn were significantly better than the Murex V.3 (41 positive, p=0.026) and AxSYM V2 (29 positive, p<0.01) assays. However, in the detection of 42 samples of wild-type strains with various genotypes and serotypes, no significant differences were observed among the WTultra (35 positive), Architect (28 positive) and Hepanostika HBsAg Ultra (31 positive) assays. However, the WTultra assay detected significantly more samples than the Murex V.3 (24

  4. Hepatic Enzyme Decline after Pediatric Blunt Trauma: A Tool for Timing Child Abuse?

    ERIC Educational Resources Information Center

    Baxter, Amy L.; Lindberg, Daniel M.; Burke, Bonnie L.; Shults, Justine; Holmes, James F.

    2008-01-01

    Objectives: Previous research in adult patients with blunt hepatic injuries has suggested a pattern of serum hepatic transaminase concentration decline. Evaluating this decline after pediatric blunt hepatic trauma could establish parameters for estimating the time of inflicted injuries. Deviation from a consistent transaminase resolution pattern…

  5. Paradoxical control properties of enzymes within pathways: can activation cause an enzyme to have increased control?

    PubMed Central

    Kholodenko, B N; Brown, G C

    1996-01-01

    It is widely assumed that within a metabolic pathway inhibition of an enzyme causes the control exerted by that enzyme over the flux through its own reaction to increase, whereas activation causes its control to decrease. This assumption forms the basis of a number of experimental methods. For a pathway conceptually divided into two enzyme groups connected via a single metabolite we have derived a general condition under which this assumption is false, and thus the pathway shows paradoxical control behaviour, i.e. increased control with activation and decreased control with inhibition of an enzyme or group of enzymes. Paradoxical control behaviour occurs widely when enzyme activity is altered by changing Km (if an enzyme is already close to saturation by its substrate), but may also occur with changes in Vmax. when the elasticity to the linking metabolite increases with its concentration (as in some cases of sigmoidal and exponential kinetics or for reactions catalysed by isoenzymes). These findings suggest that enzymes with sigmoidal kinetics may have low control in the absence of activation, but may gain control with activation, and thus have beneficial regulatory properties. PMID:8615766

  6. Single-antibody in situ enzyme immunoassay for infectivity titration of hepatitis A virus.

    PubMed

    Borovec, S; Uren, E

    1997-10-01

    Hepatitis A virus (HAV) establishes a persistent infection in cultured cells, with minimal effect on host cell metabolism. As a result, the virus produces very little, if any, cytopathic effect (CPE), even with cell culture-adapted strains. This feature precludes the use of a plaque or standard endpoint assay (using CPE as an indicator of infection) for the titration of infectious virus. The radioimmunofocus assay (RIFA) is the standard method for HAV titration, though this method is labour intensive and requires the use of radioisotopes. To this end, a single-antibody in situ enzyme immunoassay (EIA) has been developed, using binding of a perioxidase-labelled monoclonal antibody to fixed cell monolayers as an indicator of infection. This novel assay is highly reproducible, can be read by eye, and is suitable for high throughput situations. Furthermore, the assay has been validated against the RIFA making it suitable for use in studies validating the safety of therapeutic biologicals for human use. PMID:9395142

  7. Spatial distribution of enzyme activities in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  8. Self-Assembly of Amyloid Fibrils That Display Active Enzymes

    PubMed Central

    Zhou, Xiao-Ming; Entwistle, Aiman; Zhang, Hong; Jackson, Antony P; Mason, Thomas O; Shimanovich, Ulyana; Knowles, Tuomas P J; Smith, Andrew T; Sawyer, Elizabeth B; Perrett, Sarah

    2014-01-01

    Enzyme immobilization is an important strategy to enhance the stability and recoverability of enzymes and to facilitate the separation of enzymes from reaction products. However, enzyme purification followed by separate chemical steps to allow immobilization on a solid support reduces the efficiency and yield of the active enzyme. Here we describe polypeptide constructs that self-assemble spontaneously into nanofibrils with fused active enzyme subunits displayed on the amyloid fibril surface. We measured the steady-state kinetic parameters for the appended enzymes in situ within fibrils and compare these with the identical protein constructs in solution. Finally, we demonstrated that the fibrils can be recycled and reused in functional assays both in conventional batch processes and in a continuous-flow microreactor. PMID:25937845

  9. Liver Enzymes Are Associated With Hepatic Insulin Resistance, Insulin Secretion, and Glucagon Concentration in Healthy Men and Women

    PubMed Central

    Bonnet, Fabrice; Ducluzeau, Pierre-Henri; Gastaldelli, Amalia; Laville, Martine; Anderwald, Christian H.; Konrad, Thomas; Mari, Andrea; Balkau, Beverley

    2011-01-01

    OBJECTIVE The pathophysiological mechanisms to explain the association between risk of type 2 diabetes and elevated concentrations of γ-glutamyltransferase (GGT) and alanineaminotransferase (ALT) remain poorly characterized. We explored the association of liver enzymes with peripheral and hepatic insulin resistance, insulin secretion, insulin clearance, and glucagon concentration. RESEARCH DESIGN AND METHODS We studied 1,309 nondiabetic individuals from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study; all had a euglycemic-hyperinsulinemic clamp and an oral glucose tolerance test (OGTT) with assessment of insulin secretion and hepatic insulin extraction. The hepatic insulin resistance index was calculated in 393 individuals. RESULTS In both men and women, plasma concentrations of GGT and ALT were inversely related with insulin sensitivity (M/I) (all P < 0.01). Likewise, the hepatic insulin resistance index was positively correlated with both GGT (r = 0.37, P < 0.0001, men; r = 0.36, P < 0.0001, women) and ALT (r = 0.25, P = 0.0005, men; r = 0.18, P = 0.01, women). These associations persisted in multivariable models. Increased GGT and ALT were significantly associated with higher insulin secretion rates and with both reduced endogenous clearance of insulin and hepatic insulin extraction during the OGTT (P = 0.0005 in men; P = 0.003 in women). Plasma fasting glucagon levels increased over ALT quartiles (men, quartile 4 vs. quartile 1 11.2 ± 5.1 vs. 9.3 ± 3.8 pmol/L, respectively, P = 0.0002; women, 9.0 ± 4.3 vs. 7.6 ± 3.1, P = 0.001). CONCLUSIONS In healthy individuals, increased GGT and ALT were biomarkers of both systemic and hepatic insulin resistance with concomitant increased insulin secretion and decreased hepatic insulin clearance. The novel finding of a positive correlation between ALT and fasting glucagon level concentrations warrants confirmation in type 2 diabetes. PMID:21521874

  10. Intracellular localization of mevalonate-activating enzymes in plant cells

    PubMed Central

    Rogers, L. J.; Shah, S. P. J.; Goodwin, T. W.

    1966-01-01

    Mevalonate-activating enzymes are shown to be present in the chloroplasts of French-bean leaves. The chloroplast membrane is impermeable to mevalonic acid. Mevalonate-activating enzymes also appear to be found outside the chloroplast. These results support the view that terpenoid biosynthesis in the plant cell is controlled by a combination of enzyme segregation and specific membrane permeability. ImagesFig. 1.Fig. 2. PMID:5947149

  11. Activities of biotransformation enzymes in pheasant (Phasianus colchicus) and their modulation by in vivo administration of mebendazole and flubendazole.

    PubMed

    Savlík, M; Polácková, L; Szotáková, B; Lamka, J; Velík, J; Skálová, L

    2007-08-01

    Basal activities of certain pheasant hepatic and intestinal biotransformation enzymes and modulation of their activities by anthelmintics flubendazole (FLBZ) and mebendazole (MBZ) were investigated in subcellular fractions that were prepared from liver and small intestine of control and FLBZ or MBZ treated birds. Several oxidation, reduction and conjugation enzyme activities were assessed. In the liver, treatment of pheasants by FLBZ or MBZ caused very slight or no changes in monooxygenase activities and conjugation enzymes. More significative changes were detected in small intestine. Metyrapone and daunorubicin reductase activities were increased by both substances in the liver. This is the first evidence that certain benzimidazoles modulate reductases of carbonyl group. With respect to the relatively slight extent of the changes caused by FLBZ or MBZ we can assume that repeated administration of therapeutic doses of both FLBZ and MBZ has probably no serious influence on pheasant biotransformation enzyme system. PMID:17316720

  12. Experiment K304: Studies of specific hepatic enzymes and liver constituents involved in the conversion of carbohydrates to lipids in rats exposed to prolonged space flight

    NASA Technical Reports Server (NTRS)

    Abraham, S.; Klein, H. P.; Lin, C. Y.; Volkmann, C.; Tigranyan, R. A.; Vetrova, E. G.

    1981-01-01

    The effects of space flight on the activities of 26 enzymes concerned with carbohydrate and lipid metabolism in hepatic tissue taken from male Wistar rats are investigated. These activities were measured in the various hepatic cell compartments, i.e., cytosol, mitochondria and microsomes. In addition, the levels of glycogen, total lipids, phospholipids, triglycerides, cholesterol, cholesterol esters, and the fatty acid composition of the rat livers were also examined and quantified. A similar group of ground-based rats treated in an identical manner served as controls. Both flight and synchronous control rats were sacrificed at three time intervals: R+0, 7-11 hours after recovery; R+6, after 6 days; R+6(S), after 6 days (having undergone 2-5 hour periods of fixed stress in a "backupward" position on days 0, 3, 4, 5 and 6) and R+29, after 29 days post-flight. Although most of the enzyme activities and the amounts of liver constituents studied were unaffected by the period of weightlessness, some significant differences were observed.

  13. Hepatic steroid inactivating enzymes, hepatic portal blood flow, and corpus luteum blood perfusion in lactating dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In ruminants, a decrease in pregnancy rates may be due to decreased concentrations of progesterone (P4). It is important to note that both production from the corpus luteum and/or hepatic steroid inactivation impacts peripheral concentrations of P4. Cattle with an elevated dry matter intake have inc...

  14. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    SciTech Connect

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  15. Enzyme family-specific and activity-based screening of chemical libraries using enzyme microarrays.

    PubMed

    Funeriu, Daniel P; Eppinger, Jörg; Denizot, Lucile; Miyake, Masato; Miyake, Jun

    2005-05-01

    The potential of protein microarrays in high-throughput screening (HTS) still remains largely unfulfilled, essentially because of the difficulty of extracting meaningful, quantitative data from such experiments. In the particular case of enzyme microarrays, low-molecular-weight fluorescent affinity labels (FALs) can function as ideally suited activity probes of the microarrayed enzymes. FALs form covalent bonds with enzymes in an activity-dependent manner and therefore can be used to characterize enzyme activity at each enzyme's address, as predetermined by the microarraying process. Relying on this principle, we introduce herein thematic enzyme microarrays (TEMA). In a kinetic setup we used TEMAs to determine the full set of kinetic constants and the reaction mechanism between the microarrayed enzymes (the theme of the microarray) and a family-wide FAL. Based on this kinetic understanding, in an HTS setup we established the practical and theoretical methodology for quantitative, multiplexed determination of the inhibition profile of compounds from a chemical library against each microarrayed enzyme. Finally, in a validation setup, K(i)(app) values and inhibitor profiles were confirmed and refined. PMID:15821728

  16. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  17. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Lee, Mi-Rin; Kim, Hye-Kyung; Kim, Nan-young; Kim, Seung-Hyun; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia. PMID:24349058

  18. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J. |

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  19. Chronic active hepatitis experience of Groote Schuur Hospital, 1964 - 1977.

    PubMed

    Poreh, S; Kirsch, R E; Terblanche, J; Saunders, S J

    1980-06-14

    From 1964 to 1977, 54 patients with clinical, biochemical and histological criteria of chronic active hepatitis were seen at Groote Schuur Hospital, Cape Town. Our experience with this disease is reviewed, and the diagnosis and mangement are commented on. PMID:7404076

  20. Successful Interferon Therapy Reverses Enhanced Hepatic Progenitor Cell Activation in Patients with Chronic Hepatitis C.

    PubMed

    Noritake, Hidenao; Kobayashi, Yoshimasa; Ooba, Yukimasa; Matsunaga, Erika; Ohta, Kazuyoshi; Shimoyama, Shin; Yamazaki, Satoru; Chida, Takeshi; Kawata, Kazuhito; Sakaguchi, Takanori; Suda, Takafumi

    2015-12-01

    The enhanced accumulation of hepatic progenitor cells (HPCs) is related to the risk of progression to hepatocellular carcinoma (HCC). Interferon (IFN) treatment reduces HCC risk in patients with chronic hepatitis C virus (HCV) infection. However, the underlying mechanisms remain unclear. The aim of this study was to examine the effects of IFN treatment on HPC activation in HCV patients. Immunohistochemical detection and computer-assisted quantitative image analyses of cytokeratin 7 (CK7) were performed to evaluate HPC activation in paired pre- and post-treatment liver biopsies from 18 HCV patients with sustained virological response (SVR) to IFN-based therapy and from 23 patients without SVR, as well as normal liver tissues obtained from surgical resection specimens of 10 patients. Pretreatment HCV livers showed increased CK7 immunoreactivity, compared with normal livers (HCV: median, 1.38%; normal: median, 0.69%, P=0.006). IFN treatment reduced hepatic CK7 immunoreactivity (median, 1.57% pre-IFN vs. 0.69% post-IFN, P=0.006) in SVR patients, but not in non-SVR patients. The development of HCC following IFN treatment was encountered in 3 non-SVR patients who showed high post-IFN treatment CK7 immunoreactivity (>4%). Successful IFN therapy can reverse enhanced HPC activation in HCV patients, which may contribute to the reduced risk of HCC development in these patients. PMID:26308703

  1. Hepatitis

    MedlinePlus

    ... be serious. Some can lead to scarring, called cirrhosis, or to liver cancer. Sometimes hepatitis goes away by itself. If it does not, it can be treated with drugs. Sometimes hepatitis lasts a lifetime. Vaccines can help prevent some viral forms.

  2. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis.

    PubMed

    Lian, Fan; Wang, Yu; Xiao, Youjun; Wu, Xiwen; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-10-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T‑cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. a mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA‑induced liver injury and a normal control. Blood samples were obtained to detect the levels of aminotransferases and inflammatory cytokines. Liver specimens were collected, and hematoxylin‑eosin staining was used for histopathological examination and detection. Apoptosis was evaluated using the terminal deoxynucleotidyl-transferase‑mediated dUTP nick end labeling (TUNEL) method. The expression levels of apoptosis‑associated genes and proteins were determined by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that FXR was downregulated at the mRNA and protein level in the liver specimens of mice induced with ConA‑induced hepatitis. Increased levels of aminotransferases and inflammatory cytokines, including interferon‑γ, tumor necrosis factor‑α, interleukin (IL)‑4 and IL‑2, were detected in ConA‑treated mice. The mice pretreated with the FXR agonist, CDCA, were more resistant to ConA hepatitis, as indicated by reduced levels of alanine transaminase/aspartate aminotransferase and aminotransferases. The activation of FXR ameliorated hepatocyte apoptosis, as demonstrated by TUNEL analysis and downregulation of the Fas/Fas ligand, tumor necrosis factor‑related apoptosis‑inducing ligand and caspase‑3. Taken together, FXR activation ameliorated liver injury and suppressed inflammatory cytokines in ConA‑induced hepatitis. FXR, therefore, exerts a protective role against ConA-induced apoptosis. PMID

  3. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  4. Enzyme activities along a latitudinal transect in Western Siberia

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wild, Birgit; Eloy Alves, Ricardo J.; Gentsch, Norman; Gittel, Antje; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Takriti, Mounir; Richter, Andreas

    2014-05-01

    Decomposition of soil organic matter (SOM) and thus carbon and nutrient cycling in soils is mediated by the activity of extracellular enzymes. The specific activities of these enzymes and their ratios to each other represent the link between the composition of soil organic matter and the nutrient demand of the microbial community. Depending on the difference between microbial nutrient demand and substrate availability, extracellular enzymes can enhance or slow down different nutrient cycles in the soil. We investigated activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase) in the topsoil organic horizon, topsoil mineral horizon and subsoil horizon in seven ecosystems along a 1,500 km-long North-South transect in Western Siberia. The transect included sites in the southern tundra, northern taiga, middle taiga, southern taiga, forest-steppe (in forested patches as well as in adjacent meadows) and Steppe. We found that enzyme patterns varied stronger with soil depth than between ecosystems. Differences between horizons were mainly based on the increasing ratio of oxidative enzymes to hydrolytic enzymes. Differences between sites were more pronounced in topsoil than in subsoil mineral horizons, but did not reflect the north-south transect and the related gradients in temperature and precipitation. The observed differences between sites in topsoil horizons might therefore result from differences in vegetation rather than climatic factors. The decreasing variability in the enzyme pattern with depth might also indicate that the composition of soil organic matter becomes more similar with soil depth, most likely by an increasing proportion of microbial remains compared to plant derived constituents of SOM. This also indicates, that SOM becomes less divers the more it is processed by soil microorganisms. Our findings highlight the importance of soil depth on enzyme

  5. Activation and stabilization of enzymes in ionic liquids.

    PubMed

    Moniruzzaman, Muhammad; Kamiya, Noriho; Goto, Masahiro

    2010-06-28

    As environmentally benign "green" solvents, room temperature ionic liquids (ILs) have been used as solvents or (co)solvents in biocatalytic reactions and processes for a decade. The technological utility of enzymes can be enhanced greatly by their use in ionic liquids (ILs) rather than in conventional organic solvents or in their natural aqueous reaction media. In fact, the combination of green properties and unique tailor-made physicochemical properties make ILs excellent non-aqueous solvents for enzymatic catalysis with numerous advantages over other solvents, including high conversion rates, high selectivity, better enzyme stability, as well as better recoverability and recyclability. However, in many cases, particularly in hydrophilic ILs, enzymes show relative instability and/or lower activity compared with conventional solvents. To improve the enzyme activity as well as stability in ILs, various attempts have been made by modifying the form of the enzymes. Examples are enzyme immobilization onto support materials via adsorption or multipoint attachment, lyophilization in the presence of stabilizing agents, chemical modification with stabilizing agents, formation of cross-linked enzyme aggregates, pretreatment with polar organic solvents or enzymes combined with suitable surfactants to form microemulsions. The use of these enzyme preparations in ILs can dramatically increase the solvent tolerance, enhance activity as well as stability, and improve enantioselectivity. This perspective highlights a number of pronounced strategies being used successfully for activation and stabilization of enzymes in non-aqueous ILs media. This review is not intended to be comprehensive, but rather to present a general overview of the potential approaches to activate enzymes for diverse enzymatic processes and biotransformations in ILs. PMID:20445940

  6. How should enzyme activities be used in fish growth studies?

    PubMed

    Pelletier; Blier; Dutil; Guderley

    1995-01-01

    The activity of glycolytic and oxidative enzymes was monitored in the white muscle of Atlantic cod Gadus morhua experiencing different growth rates. A strong positive relationship between the activity of two glycolytic enzymes and individual growth rate was observed regardless of whether the enzyme activity was expressed as units per gram wet mass, units per gram dry mass or with respect to muscle protein and DNA content. The most sensitive response to growth rate was observed when pyruvate kinase and lactate dehydrogenase activities were expressed as units per microgram DNA, and this may be useful as an indicator of growth rate in wild fish. In contrast, no relationship between the activities of oxidative enzymes and growth rate was observed when cytochrome c oxidase and citrate synthase activities were expressed as units per gram protein. Apparently, the aerobic capacity of white muscle in cod is not specifically increased to match growth rate. PMID:9319392

  7. Effect of cadmium, mercury, and zinc on the hepatic microsomal enzymes of Channa punctatus

    SciTech Connect

    Dalal, R.; Bhattacharya, S. )

    1994-06-01

    The increased use of heavy metals like cadmium and mercury in industry and agriculture, and their subsequent intrusion in indeterminate amounts into the environment has caused ecological and biological changes. In vivid contrast, zinc, one of the essential elements, and used in the cosmetic industry, is known to play a pivotal roles in various cellular processes. The seriousness and longevity of these metals in the environment are compounded by the fact that they are non-degradable with significant oxidizing capacity and substantial affinity for electronegative nucleophilic species in proteins and enzymes. Exposure of aquatic animals, especially fish, to these toxic metals for a prolonged period produces an intrinsic toxicity in relation to susceptible organs and/or tissues, although no serious morphological or anatomical changes in the animal or even their feeding behavior may occur. The p-hydroxylation of aniline by aniline hydroxylase (AH) and the N-demethylation of amines to generate formaldehyde (HCHO) by aminopyrine demethylase (APD) are the two oxygen-dependent reactions of microsomal mixed-function oxidase (MFOs) which control the pharmacological and toxicological activities of xenobiotics in mammalian and other species. While both these classical enzymes in fish are reported to demonstrate relatively low specific activity, they are used as criteria for delineating polluted areas. Unlike mammalian species, however, intoxication and interference of MFO enzymes by metal toxicants, especially during prolonged exposure, has not been investigated. The present report describes the results of studies from the concurrent exposure for 28 d to cadmium (CdCl[sub 2]), mercury (HgCl[sub 2]) or zinc (ZnCl[sub 2]) individually, on the AH and APD activities and microsomal protein content in liver of freshwater teleost Channa punctatus.

  8. The hormonal regulation of hepatic microsomal 11beta-hydroxysteroid dehydrogenase activity in the rat.

    PubMed

    Lax, E R; Ghraf, R; Schriefers, H

    1978-10-01

    Hepatic microsomal 11beta-hydroxysteroid dehydrogenase activity is higher in male than in female rat liver. Gonadectomy on day 25 of life only affects the activity in the adult male animal, causing a decrease towards the normal female level. Administration of testosterone to gonadectomized rats of either sex causes the induction of typical male activity levels. On the basis of these experiments, this enzyme activity may be classified as an drogen-dependent. However, 11beta-hydroxysteroid dehydrogenase differs from other known androgen-dependent activities in that administration of oestradiol to gonadectomized animals of either sex causes a further significant repression of the activity to levels close to the limits of detection. Hypophysectomy on day 50 of life does not affect the activity in 75 day-old male rats, but causes the appearance of typically male activity levels in females. These results indicate that the hypophysis exerts a repressive influence on hepatic 11beta-hydroxysteroid dehydrogenase in female rats. The facts that this activity is not influenced by androgen or oestrogen administration once the pituitary has been removed demonstrates the obligatory role of the hypophysis for sex hormone action. PMID:696183

  9. Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice.

    PubMed

    Hagopian, Kevork; Ramsey, Jon J; Weindruch, Richard

    2003-03-01

    The influence of caloric restriction (CR) from 2 months of age on the activities of liver glycolytic enzymes and metabolite levels was studied in young and old mice. Livers were sampled 48 h after the last scheduled feeding time. Old mice on CR showed significant decreases in the activities of all the enzymes studied, except for aldolase, triosephosphate isomerase and phosphoglycerate mutase, which were unchanged. The metabolites glucose, glucose-6-phosphate, fructose-6-phosphate, pyruvate and lactate were lower while fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, dihydroxyacetone phosphate, 3-phosphoglycerate and phosphoenolpyruvate were increased in old CR. Young mice on CR also showed reduced enzyme activities, except for aldolase, triosephosphate isomerase and enolase which were unchanged when compared with young controls. The metabolites glucose, glucose-6-phosphate, fructose-6-phosphate and pyruvate were decreased when compared with young controls, while phosphoenolpyruvate was increased. Ketone bodies increased (65%) in old, but not young, CR mice while fructose-2,6-bisphosphate decreased in both young (22%) and old CR (28%) mice. The results indicate that decreased hepatic glucose levels in CR mice are associated with decreased enzyme activities but not a uniform decrease in metabolite levels. Increased ketone body levels indicate increased utilization of non-carbohydrate fuels while decreased fructose-2,6-bisphosphate level suggests its importance in the control of glycolysis in CR. PMID:12581789

  10. TREATABILITY STUDY BULLETIN: ENZYME-ACTIVATED CELLULOSE TECHNOLOGY - THORNECO, INC

    EPA Science Inventory

    The Enzyme-Activated Cellulose Technology developed by Thorneco, Inc. uses cellulose placed into one or more cylindrical towers to remove metals and organic compounds from an aqueous solution. The cellulose is coated with a proprietary enzyme. Operating parameters that can affe...

  11. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    SciTech Connect

    Woodhead, A.D.; Achey, P.M.

    1981-01-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biologic purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm, Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in perserving the integrity of embryonic DNA during this free-living stage.

  12. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    SciTech Connect

    Woodhead, A.D.; Achey, P.M.

    1981-06-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biological purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in preserving the integrity of embryonic DNA during this free-living stage.

  13. Activation of immobilized enzymes by acoustic wave resonance oscillation.

    PubMed

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-12-01

    Acoustic wave resonance oscillation has been used successfully in the development of methods to activate immobilized enzyme catalysts. In this study, resonance oscillation effects were demonstrated for enzyme reactions on galactose oxidase (GAD), D-amino acid oxidase (DAAO), and L-amino acid oxidase (LAAO), all of which were immobilized covalently on a ferroelectric lead zirconate titanate (PZT) device that could generate thickness-extensional resonance oscillations (TERO) of acoustic waves. For galactose oxidation on immobilized GAD in a microreactor, TERO generation immediately increased enzyme activity 2- to 3-fold. Eliminating TERO caused a slight decrease in the activity, with ∼90% of the enhanced activity retained while the reaction proceeded. Contact of the enhanced enzyme with a galactose-free solution caused almost complete reversion of the activity to the original low level before TERO generation, indicating that, not only TERO-induced GAD activation, but also preservation of the increased activity, required a galactose substrate. Similar activity changes with TERO were observed for enzyme reactions on DAAO and LAAO. Kinetic analysis demonstrated that TERO helped strengthen the interactions of the immobilized enzyme with the reactant substrate and promoted formation of an activation complex. PMID:25442945

  14. Superoxide dismutase activity as a measure of hepatic oxidative stress in cattle following ethionine administration.

    PubMed

    Abd Ellah, Mahmoud R; Okada, Keiji; Goryo, Masanobu; Oishi, Akihiro; Yasuda, Jun

    2009-11-01

    The goal of this study was to assess if oxidative stress, as measured by alterations in the concentrations of antioxidant enzymes in the liver and erythrocytes of cattle, could be induced following dl-ethionine administration. Whole blood, serum and liver biopsy samples were collected 0, 4, 7 and 10 days after intra-peritoneal ethionine administration to five cows. The activities of the antioxidant enzymes copper zinc superoxide dismutase (Cu, Zn SOD) and catalase were assessed in the liver biopsies which were also examined histopathologically. Significant increases in hepatic Cu, Zn SOD concentrations (P<0.01) were noted on days 7 and 10 post-treatment. Hepatic catalase activity decreased significantly (P<0.01) on days 4, 7 and 10 post-treatment and erythrocyte Cu, Zn SOD activity was significantly increased on day 10. Serum biochemical analysis revealed a significant increase (P<0.01) in non-esterified fatty acid concentrations on day 4 and significant decreases in total cholesterol and phospholipid levels on days 4 (P<0.05), 7 (P<0.01) and 10 (P<0.01). In this model system, dl-ethionine administration was effective in inducing oxidative stress particularly reflected in the liver. PMID:18585936

  15. The NS3 proteinase domain of hepatitis C virus is a zinc-containing enzyme.

    PubMed Central

    Stempniak, M; Hostomska, Z; Nodes, B R; Hostomsky, Z

    1997-01-01

    NS3 proteinase of hepatitis C virus (HCV), contained within the N-terminal domain of the NS3 protein, is a chymotrypsin-like serine proteinase responsible for processing of the nonstructural region of the HCV polyprotein. In this study, we examined the sensitivity of the NS3 proteinase to divalent metal ions, which is unusual behavior for this proteinase class. By using a cell-free coupled transcription-translation system, we found that HCV polyprotein processing can be activated by Zn2+ (and, to a lesser degree, by Cd2+, Pb2+, and Co2+) and inhibited by Cu2+ and Hg2+ ions. Elemental analysis of the purified NS3 proteinase domain revealed the presence of zinc in an equimolar ratio. The zinc content was unchanged in a mutated NS3 proteinase in which active-site residues His-57 and Ser-139 were replaced with Ala, suggesting that the zinc atom is not directly involved in catalysis but rather may have a structural role. Based on data from site-directed mutagenesis combined with zinc content determination, we propose that Cys-97, Cys-99, Cys-145, and His-149 coordinate the structural zinc in the HCV NS3 proteinase. A similar metal binding motif is found in 2A proteinases of enteroviruses and rhinoviruses, suggesting that these 2A proteinases and HCV NS3 proteinase are structurally related. PMID:9060645

  16. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  17. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development.

    PubMed

    Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N; Smith, Jordan N; Corley, Richard A; Wright, Aaron T

    2016-07-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  18. Lipid metabolizing enzyme activities modulated by phospholipid substrate lateral distribution.

    PubMed

    Salinas, Dino G; Reyes, Juan G; De la Fuente, Milton

    2011-09-01

    Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters--without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes. PMID:21108012

  19. Function and biotechnology of extremophilic enzymes in low water activity

    PubMed Central

    2012-01-01

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  20. Hepatic ERK activity plays a role in energy metabolism.

    PubMed

    Jiao, Ping; Feng, Bin; Li, Yujie; He, Qin; Xu, Haiyan

    2013-08-15

    Mitogen activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK) and P38, have been reported to play important roles in energy homeostasis. In this study, we show that the activity of extracellular signal-regulated kinase (ERK) is increased in the livers of diet induced and genetically obese mice. Activation of ERK in the livers of lean mice by over-expressing the constitutively active MAPK kinase 1 (MEK CA) results in decreased energy expenditure, lowered expression of genes involved in fatty acid oxidation, increases fasting hyperglycemia and causes systemic insulin resistance. Interestingly, hepatic glycogen content is markedly increased and expression of G6Pase gene is decreased in mice over-expressing MEK CA compared to control mice expressing green fluorescent protein (GFP), therefore hepatic glucose output is not likely the major contributor of hyperglycemia. One potential mechanism of decreased expression of G6Pase gene by MEK CA is likely due to ERK mediated phosphorylation and cytosolic retention of FOXO1. Adipocytes isolated from MEK CA mice display increased lipolysis. Circulating levels of free fatty acids (FFAs) in these mice are also increased, which possibly contribute to systemic insulin resistance and subsequent hyperglycemia. Consistent with these results, knocking down ERK expression in the liver of diet induced obese (DIO) mice improves systemic insulin and glucose tolerance. These results indicate that increased hepatic ERK activity in DIO mice may contribute to increased liver glycogen content and decreased energy expenditure in obesity. PMID:23732116

  1. Profiling Kinase Activity during Hepatitis C Virus Replication Using a Wortmannin Probe.

    PubMed

    Desrochers, Geneviève F; Sherratt, Allison R; Blais, David R; Nasheri, Neda; Ning, Zhibin; Figeys, Daniel; Goto, Natalie K; Pezacki, John Paul

    2015-09-11

    To complete its life cycle, the hepatitis C virus (HCV) induces changes to numerous aspects of its host cell. As kinases act as regulators of many pathways utilized by HCV, they are likely enzyme targets for virally induced inhibition or activation. Herein, we used activity-based protein profiling (ABPP), which allows for the identification of active enzymes in complex protein samples and the quantification of their activity, to identify kinases that displayed differential activity in HCV-expressing cells. We utilized an ABPP probe, wortmannin-yne, based on the kinase inhibitor wortmannin, which contains a pendant alkyne group for bioconjugation using bioorthogonal chemistry. We observed changes in the activity of kinases involved in the mitogen-activated protein kinase pathway, apoptosis pathways, and cell cycle control. These results establish changes to the active kinome, as reported by wortmannin-yne, in the proteome of human hepatoma cells actively replicating HCV. The observed changes include kinase activity that affect viral entry, replication, assembly, and secretion, implying that HCV is regulating the pathways that it uses for its life cycle through modulation of the active kinome. PMID:27617927

  2. Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Gregor; Grotzky, Andrea; Lukić, Ružica; Matoori, Simon; Luciani, Paola; Yu, Hao; Zhang, Baozhong; Walde, Peter; Schlüter, A. Dieter; Gauthier, Marc A.; Leroux, Jean-Christophe

    2013-07-01

    Methods to stabilize and retain enzyme activity in the gastrointestinal tract are investigated rarely because of the difficulty of protecting proteins from an environment that has evolved to promote their digestion. Preventing the degradation of enzymes under these conditions, however, is critical for the development of new protein-based oral therapies. Here we show that covalent conjugation to polymers can stabilize orally administered therapeutic enzymes at different locations in the gastrointestinal tract. Architecturally and functionally diverse polymers are used to protect enzymes sterically from inactivation and to promote interactions with mucin on the stomach wall. Using this approach the in vivo activity of enzymes can be sustained for several hours in the stomach and/or in the small intestine. These findings provide new insight and a firm basis for the development of new therapeutic and imaging strategies based on orally administered proteins using a simple and accessible technology.

  3. Hepatitis C virus-specific T-cell response correlates with hepatitis activity and donor IL28B genotype early after liver transplantation.

    PubMed

    Tsuzaki, Ryuichiro; Takaki, Akinobu; Yagi, Takahito; Ikeda, Fusao; Koike, Kazuko; Iwasaki, Yoshiaki; Shiraha, Hidenori; Miyake, Yasuhiro; Sadamori, Hiroshi; Shinoura, Susumu; Umeda, Yuzo; Yoshida, Ryuichi; Nobuoka, Daisuke; Utsumi, Masashi; Nakayama, Eiichi; Fujiwara, Toshiyoshi; Yamamoto, Kazuhide

    2014-01-01

    It is not known how the immune system targets hepatitis C virus (HCV)-infected HLA-mismatched hepatocytes under immune-suppressed conditions after orthotopic liver transplantation (OLT). In addition, the relationship between the HCV-specific immune response and IL28B variants as predictors of HCV clearance has not been well-characterized. We determined the IL28B polymorphisms for 57 post-OLT HCV carriers, and we assessed the HCV-specific immune responses by measuring the peripheral blood mononuclear cell-derived HCV-specific interferon-gamma (IFN-γ) response using an enzyme-linked immunospot assay. At 1-3 years after OLT, patients with no active hepatitis showed higher total spots on the immunospot assay. At>3 years after OLT, patients with resolved HCV showed higher levels of core, NS3, NS5A, and total spots compared to the chronic hepatitis patients. The IL28B major genotype in the donors correlated with higher spot counts for NS5A and NS5B proteins at 1-3 years after OLT. In the post-OLT setting, the HCV-specific immune response could be strongly induced in patients with no active hepatitis with an IL28B major donor or sustained virological response. Strong immune responses in the patients with no active hepatitis could only be maintained for 3 years and diminished later. It may be beneficial to administer IFN treatment starting 3 years after OLT, to induce the maximum immunological effect. PMID:25338486

  4. Using shotgun sequence data to find active restriction enzyme genes.

    PubMed

    Zheng, Yu; Posfai, Janos; Morgan, Richard D; Vincze, Tamas; Roberts, Richard J

    2009-01-01

    Whole genome shotgun sequence analysis has become the standard method for beginning to determine a genome sequence. The preparation of the shotgun sequence clones is, in fact, a biological experiment. It determines which segments of the genome can be cloned into Escherichia coli and which cannot. By analyzing the complete set of sequences from such an experiment, it is possible to identify genes lethal to E. coli. Among this set are genes encoding restriction enzymes which, when active in E. coli, lead to cell death by cleaving the E. coli genome at the restriction enzyme recognition sites. By analyzing shotgun sequence data sets we show that this is a reliable method to detect active restriction enzyme genes in newly sequenced genomes, thereby facilitating functional annotation. Active restriction enzyme genes have been identified, and their activity demonstrated biochemically, in the sequenced genomes of Methanocaldococcus jannaschii, Bacillus cereus ATCC 10987 and Methylococcus capsulatus. PMID:18988632

  5. Silk microgels formed by proteolytic enzyme activity.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Chiellini, Federica; Kaplan, David L; Chiellini, Emo

    2013-09-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study. PMID:23756227

  6. Hepatic ATF6 Increases Fatty Acid Oxidation to Attenuate Hepatic Steatosis in Mice Through Peroxisome Proliferator-Activated Receptor α.

    PubMed

    Chen, Xuqing; Zhang, Feifei; Gong, Qi; Cui, Aoyuan; Zhuo, Shu; Hu, Zhimin; Han, Yamei; Gao, Jing; Sun, Yixuan; Liu, Zhengshuai; Yang, Zhongnan; Le, Yingying; Gao, Xianfu; Dong, Lily Q; Gao, Xin; Li, Yu

    2016-07-01

    The endoplasmic reticulum quality control protein activating transcription factor 6 (ATF6) has emerged as a novel metabolic regulator. Here, we show that adenovirus-mediated overexpression of the dominant-negative form of ATF6 (dnATF6) increases susceptibility to develop hepatic steatosis in diet-induced insulin-resistant mice and fasted mice. Overexpression of dnATF6 or small interfering RNA-mediated knockdown of ATF6 decreases the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα)/retinoid X receptor complex, and inhibits oxygen consumption rates in hepatocytes, possibly through inhibition of the binding of PPARα to the promoter of its target gene. Intriguingly, ATF6 physically interacts with PPARα, enhances the transcriptional activity of PPARα, and triggers activation of PPARα downstream targets, such as CPT1α and MCAD, in hepatocytes. Furthermore, hepatic overexpression of the active form of ATF6 promotes hepatic fatty acid oxidation and protects against hepatic steatosis in diet-induced insulin-resistant mice. These data delineate the mechanism by which ATF6 controls the activity of PPARα and hepatic mitochondria fatty acid oxidation. Therefore, strategies to activate ATF6 could be used as an alternative avenue to improve liver function and treat hepatic steatosis in obesity. PMID:27207533

  7. Hepatic and extrahepatic distribution of ornithine urea cycle enzymes in holocephalan elephant fish (Callorhinchus milii).

    PubMed

    Takagi, Wataru; Kajimura, Makiko; Bell, Justin D; Toop, Tes; Donald, John A; Hyodo, Susumu

    2012-04-01

    Cartilaginous fish comprise two subclasses, the Holocephali (chimaeras) and Elasmobranchii (sharks, skates and rays). Little is known about osmoregulatory mechanisms in holocephalan fishes except that they conduct urea-based osmoregulation, as in elasmobranchs. In the present study, we examined the ornithine urea cycle (OUC) enzymes that play a role in urea biosynthesis in the holocephalan elephant fish, Callorhinchus milii (cm). We obtained a single mRNA encoding carbamoyl phosphate synthetase III (cmCPSIII) and ornithine transcarbamylase (cmOTC), and two mRNAs encoding glutamine synthetases (cmGSs) and two arginases (cmARGs), respectively. The two cmGSs were structurally and functionally separated into two types: brain/liver/kidney-type cmGS1 and muscle-type cmGS2. Furthermore, two alternatively spliced transcripts with different sizes were found for cmgs1 gene. The longer transcript has a putative mitochondrial targeting signal (MTS) and was predominantly expressed in the liver and kidney. MTS was not found in the short form of cmGS1 and cmGS2. A high mRNA expression and enzyme activities were found in the liver and muscle. Furthermore, in various tissues examined, mRNA levels of all the enzymes except cmCPSIII were significantly increased after hatching. The data show that the liver is the important organ for urea biosynthesis in elephant fish, but, extrahepatic tissues such as the kidney and muscle may also contribute to the urea production. In addition to the role of the extrahepatic tissues and nitrogen metabolism, the molecular and functional characteristics of multiple isoforms of GSs and ARGs are discussed. PMID:22227372

  8. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients

    PubMed Central

    2014-01-01

    Background Type 2 diabetes is an endocrine disorder that affects a large percentage of patients. High blood glucose causes fatty deposits in the liver which is likely to increase in SGOT and SGPT activities. Significant increase in SGOT/SGPT and low HDL levels is observed in patients with diabetes. Serum fructosamine concentration reflects the degree of blood glucose control in diabetic patients. This study was aimed to investigate the antidiabetic, hypolipidemic and hepatoprotective effects of supplementation of Boswellia serrata in type2 diabetic patients. Methods 60 type 2 diabetic patients from both sexes (30 males and 30 females) were dedicated to the control and intervention groups (30 subjects per group). Boswellia serrata gum resin in amount of 900 mg daily for 6 weeks were orally administered (as three 300 mg doses) in intervention group and the control group did not receive anything. Blood samples were taken at the beginning of the study and after 6 weeks. Blood levels of fructosamine, lipid profiles as well as hepatic enzyme in type 2 diabetic patients were measured. Results Treatment of diabetic patient with Boswellia serrata was caused to significant increase in blood HDL levels as well as a remarkable decrease in cholesterol, LDL, fructosamine (p < 0.05) SGPT and SGOT levels after 6 weeks (p < 0.01). In spite of reduction of serum triglyceride, VLDL levels in intervention group, we did not detect a significant difference after 6 weeks. Conclusion This study showed that Boswellia serrata supplementation can be beneficial in controlling blood parameters in patients with type 2 diabetes. Therefore, its use can be useful in patients with medicines. PMID:24495344

  9. Characterization of human liver enzymes involved in the biotransformation of boceprevir, a hepatitis C virus protease inhibitor.

    PubMed

    Ghosal, Anima; Yuan, Yuan; Tong, Wei; Su, Ai-Duen; Gu, Chunyan; Chowdhury, Swapan K; Kishnani, Narendra S; Alton, Kevin B

    2011-03-01

    Boceprevir (SCH 503034), a protease inhibitor, is under clinical development for the treatment of human hepatitis C virus infections. In human liver microsomes, formation of oxidative metabolites after incubations with [(14)C]boceprevir was catalyzed by CYP3A4 and CYP3A5. In addition, the highest turnover was observed in recombinant CYP3A4 and CYP3A5. After a single radiolabeled dose to human, boceprevir was subjected to two distinct pathways, namely cytochrome P450-mediated oxidation and ketone reduction. Therefore, attempts were made to identify the enzymes responsible for the formation of carbonyl-reduced metabolites. Human liver S9 and cytosol converted ∼ 28 and ∼ 68% of boceprevir to M28, respectively, in the presence of an NADPH-generating system. Screening of boceprevir with recombinant human aldo-keto reductases (AKRs) revealed that AKR1C2 and AKR1C3 exhibited catalytic activity with respect to the formation of M+2 metabolites (M28 and M31). The formation of M28 was inhibited by 100 μM flufenamic acid (80.3%), 200 μM mefenamic acid (83.7%), and 100 μM phenolphthalein (86.1%), known inhibitors of AKRs, suggesting its formation through carbonyl reduction pathway. Formation of M28 was also inhibited by 100 μM diazepam (75.1%), 1 mM ibuprofen (70%), and 200 μM diflunisal (89.4%). These data demonstrated that CYP3A4 and CYP3A5 are primarily responsible for the formation of oxidative metabolites and the formation of M28 and M31, the keto-reduced metabolites, are most likely mediated by AKR1C2 and AKR1C3. Because the biotransformation and clearance of boceprevir involves two different enzymatic pathways, boceprevir is less likely to be a victim of significant drug-drug interaction with concomitant medication affecting either of these pathways. PMID:21123164

  10. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats

    PubMed Central

    Ramesh, B; Karuna, R; Sreenivasa, Reddy S; Haritha, K; Sai, Mangala D; Sasi, Bhusana Rao B; Saralakumari, D

    2012-01-01

    Objective To study the antioxidant efficacy of Commiphora mukul (C. mukul) gum resin ethanolic extract in streptozotocin (STZ) induced diabetic rats. Methods The male Wistar albino rats were randomly divided into four groups of eight animals each: Control group (C), CM-treated control group (C+CMEE), Diabetic control group (D), CM- treated diabetic group (D+CMEE). Diabetes was induced by intraperitoneal injection of STZ (55 mg/kg/ bwt). After being confirmed the diabetic rats were treated with C. mukul gum resin ethanolic extract (CMEE) for 60 days. The biochemical estimations like antioxidant, oxidative stress marker enzymes and hepatic marker enzymes of tissues were performed. Results The diabetic rats showed increased level of enzymatic activities aspartate aminotransaminase (AST), alanine aminotransaminase (ALT) in liver and kidney and oxidative markers like lipid peroxidation (LPO) and protein oxidation (PO) in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control group. Administration of CMEE (200 mg/kg bw) to diabetic rats for 60 days significantly reversed the above parameters towards normalcy. Conclusions In conclusion, our data indicate the preventive role of C. mukul against STZ-induced diabetic oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of diabetes and aggravated antioxidant status. PMID:23569867

  11. Synergetic Effects of Nanoporous Support and Urea on Enzyme Activity

    SciTech Connect

    Lei, Chenghong; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.

    2007-02-01

    Here we report that synergetic effects of functionalized nanoporous support and urea on enzyme activity enhancement. Even in 8.0 M urea, the specific activity of GI entrapped in FMS was still higher than the highest specific activity of GI free in solution, indicating the strong tolerance of GI in FMS to the high concentration of urea.

  12. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  13. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  14. Evaluation of the assumptions of an ontogeny model of rat hepatic cytochrome P450 activity.

    PubMed

    Alcorn, Jane; Elbarbry, Fawzy A; Allouh, Mohammed Z; McNamara, Patrick J

    2007-12-01

    We previously reported an ontogeny model of hepatic cytochrome P450 (P450) activity that predicts in vivo P450 elimination from in vitro intrinsic clearance. The purpose of this study was to conduct investigations into key assumptions of the P450 ontogeny model using the developing rat model system. We used two developmentally dissimilar enzymes, CYP2E1 and CYP1A2, and male rats (n = 4) at age groups representing critical developmental stages. Total body and liver weights and hepatic microsomal protein contents were measured. Following high-performance liquid chromatography analysis, apparent K(M) and V(max) estimates were calculated using nonlinear regression analysis for CYP2E1- and CYP1A2-mediated chlorzoxazone 6-hydroxylation and methoxyresorufin O-dealkylation, and V(max) estimates for p-nitrophenol and phenacetin hydroxylations, respectively. Hepatic scaling factors and V(max) values provided estimates for infant scaling factors (ISF). The data show microsomal protein contents increased with postnatal age and reached adult values after postnatal day (PD) 7. Apparent K(M) values were similar at all developmental stages except at < or =PD7. Developmental increases in probe substrate V(max) values did not correlate with the biphasic increase in immunoquantifiable P450. The activity of two different probe substrates for each P450 covaried as a function of age. A plot of observed ISF values as a function of age reflected the developmental pattern of rat hepatic P450. In summation, these observations diverge from several of the model's assumptions. Further investigations are required to explain these inconsistencies and to investigate whether the developing rat may provide a predictive paradigm for pediatric risk assessment for P450-mediated elimination processes. PMID:17881659

  15. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    PubMed

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. PMID:26901781

  16. Interfacial activation-based molecular bioimprinting of lipolytic enzymes.

    PubMed Central

    Mingarro, I; Abad, C; Braco, L

    1995-01-01

    Interfacial activation-based molecular (bio)-imprinting (IAMI) has been developed to rationally improve the performance of lipolytic enzymes in nonaqueous environments. The strategy combinedly exploits (i) the known dramatic enhancement of the protein conformational rigidity in a water-restricted milieu and (ii) the reported conformational changes associated with the activation of these enzymes at lipid-water interfaces, which basically involves an increased substrate accessibility to the active site and/or an induction of a more competent catalytic machinery. Six model enzymes have been assayed in several model reactions in nonaqueous media. The results, rationalized in light of the present biochemical and structural knowledge, show that the IAMI approach represents a straightforward, versatile method to generate manageable, activated (kinetically trapped) forms of lipolytic enzymes, providing under optimal conditions nonaqueous rate enhancements of up to two orders of magnitude. It is also shown that imprintability of lipolytic enzymes depends not only on the nature of the enzyme but also on the "quality" of the interface used as the template. PMID:7724558

  17. Nonlinear (amplified) relationship between nuclear occupancy by triiodothyronine and the appearance rate of hepatic alpha-glycerophosphate dehydrogenase and malic enzyme in the rat.

    PubMed Central

    Oppenheimer, J H; Coulombe, P; Schwartz, H L; Gutfeld, N W

    1978-01-01

    Three separate approaches were applied to examine the general relationship between R, the rate of induction of specific enzymes (mitochondrial alpha-glycero-phosphate dehydrogenase and cytosolic malic enzyme) and q, the fractional nuclear occupancy by triiodothyronine in male Sprague-Dawley rats. Daily 200-microgram injections of triiodothyronine per 10u g body wt for 7 days resulted in saturation of the hepatic nuclear sites and the achievement of an apparent new steady state of enzyme levels. The increase achieved over base-line hypothyroid levels was then compared with the increment over hypothyroid base line characteristic of intact euthyroid animals with 47% of nuclear sites occupied. The maximal theoretical reate of steady-state enzyme induction could be protected on the basis of the observed maximal increase in enzyme activity observed 1 day after the injection of graded doses of hormone and lambda, the known fractional rate of enzyme dissipation. The 24-h dose-response studies were used to generate R as a continuous function of q, both in hypothyroid as well as in euthyroid animals. This approach involved the numerical solution of an ordinary differential equation describing the rate of change of enzyme as a function of R, which was assumed to be uniquely related to q. Results of these analyses indicated that the ratio of the maximal rate of induction of enzyme at full occupancy to the rate of induction under euthyroid conditions assumes a value between 9.0 and 19.5, depending on the precise analytic and experimental approach applied. This value is far in excess of the theoretical ratio 2.13 which on would anticipate if R were linearly related to q and 47% of the nuclear sites occupied under physiological conditions. Thus, the signal for enzyme induction appears to undergo progressjive amplification with increasing nuclear occupancy. Moreover, the curve describing the relationship between R and q appears highly nonlinear throughout (concave upwards

  18. Expression of SPARC by activated hepatic stellate cells and its correlation with the stages of fibrogenesis in human chronic hepatitis.

    PubMed

    Nakatani, Kazuki; Seki, Shuichi; Kawada, Norifumi; Kitada, Takuya; Yamada, Takao; Sakaguchi, Hiroki; Kadoya, Hirokazu; Ikeda, Kazuo; Kaneda, Kenji

    2002-11-01

    Secreted protein, acidic and rich in cysteine (SPARC), which functions in tissue remodeling, has been reported to be expressed by myofibroblasts in liver cirrhosis and hepatocellular carcinoma. This study aimed to reveal its expression in chronic hepatitis. Immuno-light and electron microscopy demonstrated that SPARC was expressed by nerve fibers and hepatic stellate cells (HSCs) in the liver parenchyma and myofibroblasts in the fibrous septa. Reaction products were localized in the rough endoplasmic reticulum and nuclear envelope. Serial section analysis demonstrated that SPARC, platelet-derived growth factor receptor-beta, and alpha-smooth muscle actin were co-expressed by HSCs. Quantitative analysis demonstrated that, while SPARC-positive HSCs were sparse in control livers, they significantly increased in number in the livers with chronic hepatitis. There were, however, no significant differences in number among the grades of activity, the stages of fibrosis, or etiology (virus-infected or autoimmune, hepatitis B virus or hepatitis C virus). In liver cirrhosis, however, they significantly decreased in number. The present results indicate that SPARC is expressed by activated HSCs in chronic hepatitis, suggesting the involvement of SPARC in hepatic fibrogenesis after chronic injuries. PMID:12447677

  19. Cadmium effect on microsomal drug-metabolizing enzyme activity in rat livers with respect to differences in age and sex

    SciTech Connect

    Ando, M.

    1982-04-01

    The effect of cadmium on the hepatic microsomal drug-metabolizing enzyme system was investigated. Cadmium chloride caused the conversion of cytochrome P-450 to P-420 in rat liver microsomes. The destruction of cytochrome P-450 by cadmium caused the reduction of microsomal drug-metabolizing enzyme activity and prolonged the pentobarbital sleeping time. There is a sex-related difference in the ability of cadmium to inhibit the hepatic drug metabolism in rats: male rats are more sensitive to cadmium than females. The effective period when cadmium prolonged their sleep depended upon the age of rats; older rats were more sensitive to cadmium than younger ones. The maximum increase of sleeping time depended upon the dose level of cadium, and the rate constant of the equations seems to depend upon the age of the animals.

  20. Activation of hepatic branched-chain 2-oxoacid dehydrogenase by rat liver cytosolic supernatant.

    PubMed

    Hauschildt, S

    1986-10-29

    Hepatic branched-chain 2-oxoacid dehydrogenase is inactivated by nutritional alterations. Reactivation occurs during preincubation of intact mitochondria in the presence of rat liver cytosolic supernatant. Cytosolic supernatant contains two factors capable of reactivating the enzyme. On gel-filtration (Sephadex G-100), one factor (AF1) elutes in the molecular range of 35,000-40,000 and the other factor (AF2) elutes slightly later than inorganic phosphate. AF2 is stable against heat denaturation and treatment with proteinases. It is destroyed by alkaline phosphatase and in the presence of Ap5A, atractyloside, CaCl2 and NaF its stimulatory effect on branched-chain 2-oxoacid dehydrogenase activity is abolished. Inhibition of activation by NaF suggests that a phosphatase might be involved in the activation process. PMID:3768411

  1. Chokeberry (Aronia melanocarpa) juice modulates 7,12-dimethylbenz[a]anthracene induced hepatic but not mammary gland phase I and II enzymes in female rats.

    PubMed

    Szaefer, Hanna; Krajka-Kuźniak, Violetta; Ignatowicz, Ewa; Adamska, Teresa; Baer-Dubowska, Wanda

    2011-03-01

    Chokeberry is a rich source of procyanidins known to have several types of biological activity including anticarcinogenic potential in experimental models. In this study we examined the effect of chokeberry juice on the hepatic and mammary gland carcinogen metabolizing enzyme expression altered by the polycyclic aromatic hydrocarbon, 7,12-dimethylbenz[a]anthracene (DMBA). Sprague-Dawley rats were gavaged with chokeberry juice (8 ml/kg b.w.) for 28 consecutive days. DMBA was administered i.p. on the 27th and the 28th days. Pretreatment with chokeberry juice reduced the activity of CYP1A1 and increased that of CYP2B involved in metabolic activation/detoxication of DMBA in rat liver, as well as expression and activity of phase II enzymes. Chokeberry juice had no effect on these parameters in the mammary gland and DMBA induced DNA damage in rat blood cells. These results together with our earlier observations indicate that metabolic alterations induced by chokeberry feeding are tissue specific and depend on the class of carcinogen. PMID:21787703

  2. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones. PMID:25913319

  3. PCB153 and p,p'-DDE disorder thyroid hormones via thyroglobulin, deiodinase 2, transthyretin, hepatic enzymes and receptors.

    PubMed

    Liu, Changjiang; Ha, Mei; Li, Lianbing; Yang, Kedi

    2014-10-01

    Polychlorinated biphenyls (PCBs) and DDT are widespread environmental persistent organic pollutants that have various adverse effects on reproduction, development and endocrine function. In order to elucidate effects of PCBs and DDT on thyroid hormone homeostasis, Sprague-Dawley rats were dosed with PCB153 and p,p'-DDE intraperitoneally (ip) for five consecutive days and sacrificed within 24 h after the last dose. Results indicated that after combined exposure to PCB153 and p,p'-DDE, total thyroxine , free thyroxine, total triiodothyronine, and thyroid-stimulating hormone in serum were decreased, whereas free triiodothyronine and thyrotropin-releasing hormone were not affected. Thyroglobulin and transthyretin levels in serum were significantly reduced. mRNA expression of deiodinases 2 (D2) was also suppressed, while D1 and D3 levels were not significantly influenced after combined exposure. PCB153 and p,p'-DDE induced hepatic enzymes, UDPGTs, CYP1A1, CYP2B1, and CYP3A1 mRNA expressions being significantly elevated. Moreover, TRα1, TRβ1, and TRHr expressions in the hypothalamus displayed increasing trends after combined exposure to PCB153 and p,p'-DDE. Taken together, observed results indicate that PCB153 and p,p'-DDE could disorder thyroid hormone homeostasis via thyroglobulin, deiodinase 2, transthyretin, hepatic enzymes, and hormone receptors. PMID:24878560

  4. Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes mellitus

    PubMed Central

    2014-01-01

    Background Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses. Methods Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications. Parameters investigated were antioxidant potential, oxidative stress, and the immunity by in vivo experiments. Results The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly (P < 0.05). Experimental diets increased the tocopherol contents (P < 0.01) and enhanced the expression of hepatic enzymes (P < 0.01). Correlation matrix further indicated that antioxidant potential is positively associated (P < 0.05) responsible for the modulation of hepatic enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications. Conclusions Overall, results of present study supported the traditional use of N. sativa and its derived products as a treatment for hyperglycemia and allied abnormalities. Moreover, N. sativa fixed and essential oils significantly ameliorate free radicals and improve antioxidant capacity thus reducing the risk of diabetic complications. PMID:24939518

  5. Screening for enzyme activity in turbid suspensions with scattered light.

    PubMed

    Huber, Robert; Wulfhorst, Helene; Maksym, Lukas; Stehr, Regina; Pöhnlein, Martin; Jäger, Gernot; Spiess, Antje C; Büchs, Jochen

    2011-01-01

    New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition. PMID:21302369

  6. Enzyme-polymer composites with high biocatalytic activity and stability

    SciTech Connect

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.; Nauman, E B.; Dordick, Jonathan S.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease in activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.

  7. Chimeric enzymes with improved cellulase activities

    SciTech Connect

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  8. Relative potency based on hepatic enzyme induction predicts immunosuppressive effects of a mixture of PCDDS/PCDFS and PCBS

    SciTech Connect

    Smialowicz, R.J.; DeVito, M.J. Williams, W.C.; Birnbaum, L.S.

    2008-03-15

    The toxic equivalency factor (TEF) approach was employed to compare immunotoxic potency of mixtures containing polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), using the antibody response to sheep erythrocytes (SRBC). Mixture-1 (MIX-1) contained TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-pentachlorodibenzofuran (1-PeCDF), 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF), and 1,2,3,4,6,7,8,9-octachlorodibenzofuran (OCDF). Mixture-2 (MIX-2) contained MIX-1 and the following PCBs, 3,3',4,4'-tetrachlorobiphenyl (IUPAC No. 77), 3,3',4,4',5-pentachlorobiphenyl (126), 3,3',4,4',5,5N-hexachlorobiphenyl (169), 2,3,3',4,4'-pentachlorobiphenyl (105), 2,3',4,4',5-pentachlorobiphenyl (118), and 2,3,3',4,4',5-hexachlorobiphenyl (156). The mixture compositions were based on relative chemical concentrations in food and human tissues. TCDD equivalents (TEQ) of the mixture were estimated using relative potency factors from hepatic enzyme induction in mice [DeVito, M.J., Diliberto, J.J., Ross, D.G., Menache, M.G., Birnbaum, L.S., 1997. Dose-response relationships for polyhalogenated dioxins and dibenzofurans following subchronic treatment in mice. I .CYP1A1 and CYP1A2 enzyme activity in liver, lung and skin. Toxicol. Appl. Pharmacol. 130, 197-208; DeVito, M.J., Menache, G., Diliberto, J.J., Ross, D.G., Birnbaum L.S., 2000. Dose-response relationships for induction of CYP1A1 and CYP1A2 enzyme activity in liver, lung, and skin in female mice following subchronic exposure to polychlorinated biphenyls. Toxicol. Appl. Pharmacol. 167, 157-172] Female mice received 0, 1.5, 15, 150 or 450 ng TCDD/kg/day or approximately 0, 1.5, 15, 150 or 450 ng TEQ/kg/day of MIX-1 or MIX-2 by gavage 5 days per week for 13 weeks. Mice were immunized 3 days after the last exposure and 4 days later, body, spleen, thymus, and liver weights were measured

  9. Stereochemical aspects of vinylcyclohexene bioactivation in rodent hepatic microsomes and purified human cytochrome P450 enzyme systems.

    PubMed

    Fontaine, S M; Mash, E A; Hoyer, P B; Sipes, I G

    2001-02-01

    The racemic mixture of 4-vinylcyclohexene (VCH) forms ovotoxic epoxides [VCH-1,2-epoxide, VCH-7,8-epoxide, and vinylcyclohexene diepoxide (VCD)] by cytochrome P450 (CYP) in B6C3F(1) female mice. These epoxides deplete primordial and primary follicles. The current studies compared in vitro epoxidation of (R)-VCH with that of (S)-VCH in hepatic microsomes prepared from adult female B6C3F(1) mice and Fischer 344 rats. Bioactivation of VCH in the rat was significantly less compared with that in the mouse. (R)-VCH formed significantly more VCH-1,2-epoxide as compared with (S)-VCH in both species, and less VCH-7,8-epoxide in the mouse. Neither of the enantiomers formed detectable amounts of VCD in the mouse or rat. Hepatic microsomes prepared from mice and rats pretreated with CYP-inducing agents (phenobarbital and acetone) were also incubated with (R)-VCH or (S)-VCH. Although monoepoxide formation was not increased enantioselectively in the mouse, VCD was formed preferentially from (R)-VCH as compared with (S)-VCH. Pretreatment with VCH resulted in nonstereoselective increases in both monoepoxide and diepoxide formation. In the rat, these pretreatments resulted in nonstereoselective increases in monoepoxide formation, but VCD formation was not detectable. Incubations with human CYP2E1 enzyme revealed that (R)-VCH formed significantly more VCH-1,2-epoxide and less VCH-7,8-epoxide than (S)-VCH. Human CYP2A6 was limited in its ability to form epoxides from either enantiomer of VCH. Human CYP2B6 preferentially formed VCH-7,8-epoxide compared with VCH-1,2-epoxide, and to a greater extent from (R)-VCH than from (S)-VCH. These results demonstrate regioselectivity and enantioselectivity in the bioactivation of VCH in rodent hepatic microsomes as well as in expressed human CYP enzymes. PMID:11159809

  10. Interactions of the hepatitis C virus protease inhibitor faldaprevir with cytochrome P450 enzymes: in vitro and in vivo correlation.

    PubMed

    Sabo, John P; Kort, Jens; Ballow, Charles; Kashuba, Angela D M; Haschke, Manuel; Battegay, Manuel; Girlich, Birgit; Ting, Naitee; Lang, Benjamin; Zhang, Wei; Cooper, Curtis; O'Brien, Drané; Seibert, Eleanore; Chan, Tom S; Tweedie, Donald; Li, Yongmei

    2015-04-01

    The potential inhibition of the major human cytochrome P450 (CYP) enzymes by faldaprevir was evaluated both in vitro and in clinical studies (healthy volunteers and hepatitis C virus [HCV] genotype 1-infected patients). In vitro studies indicated that faldaprevir inhibited CYP2B6, CYP2C9, and CYP3A, and was a weak-to-moderate inactivator of CYP3A4. Faldaprevir 240 mg twice daily in healthy volunteers demonstrated moderate inhibition of hepatic and intestinal CYP3A (oral midazolam: 2.96-fold increase in AUC(0-24 h)), weak inhibition of hepatic CYP3A (intravenous midazolam: 1.56-fold increase in AUC(0-24 h)), weak inhibition of CYP2C9 ([S]-warfarin: 1.29-fold increase in AUC(0-120 h)), and had no relevant effects on CYP1A2, CYP2B6, or CYP2D6. Faldaprevir 120 mg once daily in HCV-infected patients demonstrated weak inhibition of hepatic and intestinal CYP3A (oral midazolam: 1.52-fold increase in AUC(0-∞)), and had no relevant effects on CYP2C9 or CYP1A2. In vitro drug-drug interaction predictions based on inhibitor concentration ([I])/inhibition constant (Ki) ratios tended to overestimate clinical effects and a net-effect model provided a more accurate approach. These studies suggest that faldaprevir shows a dose-dependent inhibition of CYP3A and CYP2C9, and does not induce CYP isoforms. PMID:25449227

  11. Improving Activity of Salt-Lyophilized Enzymes in Organic Media

    NASA Astrophysics Data System (ADS)

    Borole, Abhijeet P.; Davison, Brian H.

    Lyophilization with salts has been identified as an important method of activating enzymes in organic media. Using salt-activated enzymes to transform molecules tethered to solid surfaces in organic phase requires solubilization of enzymes in the solvents. Methods of improving performance of salt-lyophilized enzymes, further, via chemical modification, and use of surfactants and surfactants to create fine emulsions prior to lyophilization are investigated. The reaction system used is transesterification of N-acetyl phenylalanine ethyl ester with methanol or propanol. Initial rate of formation of amino acid esters by subtilisin Carlsberg (SC) was studied and found to increase two to sevenfold by either chemical modification or addition of surfactants in certain solvents, relative to the salt (only)-lyophilized enzyme. The method to prepare highly dispersed enzymes in a salt-surfactant milieu also improved activity by two to threefold. To test the effect of chemical modification on derivatization of drug molecules, acylation of bergenin was investigated using chemically modified SC.

  12. Distribution and activity of hydrogenase enzymes in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Glombitza, C.; Spivack, A. J.; D'Hondt, S. L.; Kallmeyer, J.

    2013-12-01

    Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process rather than an overall microbial activity. Since hydrogenase enzymes are intracellular and ubiquitous in subsurface microbial communities, the enzyme activity represents a measure of total activity of the entire microbial community. A hydrogenase activity assay could quantify total metabolic activity without having to identify specific processes. This would be a major advantage in subsurface biosphere studies, where several metabolic processes can occur simultaneously. We quantified hydrogenase enzyme activity and distribution in sediment samples from different aquatic subsurface environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico) using a tritium-based assay. We found enzyme activity at all sites and depths. Volumetric hydrogenase activity did not show much variability between sites and sampling depths, whereas cell-specific activity ranged from 10-5 to 1 nmol H2 cell-1 d-1. Activity was lowest in sediment layers where nitrate was detected. Higher activity was associated with samples in which sulfate was the predominant electron acceptor. We found highest activity in samples from environments with >10 ppm methane in the pore water. The results show that cell-specific hydrogenase enzyme activity increases with decreasing energy yield of the electron acceptor used. It is not possible to convert volumetric or cell-specific hydrogenase activity into a

  13. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein.

    PubMed

    Evans, David C; O'Connor, Desmond; Lake, Brian G; Evers, Raymond; Allen, Christopher; Hargreaves, Richard

    2003-07-01

    "Reaction phenotyping" studies were performed with eletriptan (ETT) to determine its propensity to interact with coadministered medications. Its ability to serve as a substrate for human P-glycoprotein (P-gp) was also investigated since a central mechanism of action has been proposed for this "triptan" class of drug. In studies with a characterized bank of human liver microsome preparations, a good correlation (r2 = 0.932) was obtained between formation of N-desmethyl eletriptan (DETT) and CYP3A4-catalyzed testosterone 6 beta-hydroxylation. DETT was selected to be monitored in our studies since it represents a significant ETT metabolite in humans, circulating at concentrations 10 to 20% of those observed for parent drug. ETT was metabolized to DETT by recombinant CYP2D6 (rCYP2D6) and rCYP3A4, and to a lesser extent by rCYP2C9 and rCYP2C19. The metabolism of ETT to DETT in human liver microsomes was markedly inhibited by troleandomycin, erythromycin, miconazole, and an inhibitory antibody to CYP3A4, but not by inhibitors of other major P450 enzymes. ETT had little inhibitory effect on any of the P450 enzymes investigated. ETT was determined to be a good substrate for human P-gp in vitro. In bidirectional transport studies across LLC-MDR1 and LLC-Mdr1a cell monolayers, ETT had a BA/AB transport ratio in the range 9 to 11. This finding had significance in vivo since brain exposure to ETT was reduced 40-fold in Mdr1a+/+ relative to Mdr1a-/- mice. ETT metabolism to DETT is therefore catalyzed primarily by CYP3A4, and plasma concentrations are expected to be increased when coadministered with inhibitors of CYP3A4 and P-gp activity. PMID:12814962

  14. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  15. Evaluation of the Novel HISCL Chemiluminescence Enzyme Immunoassay for Laboratory Screening of Hepatitis C Virus.

    PubMed

    Feng, Shu; Wei, Bin; Liu, Qianqian; Wang, Tingting; Li, Dongdong; Rao, Chenli; Tao, Chuanmin; Wang, Lanlan

    2016-07-01

    The hepatitis C virus (HCV) antibody assay remains the first-line screening test to identify HCV infection. The newly arrived HISCL Anti-HCV assay had a satisfactory seroconversion sensitivity. Its sensitivity and specificity were 98.97 and 100% for clinical samples. In general, the HISCL Anti-HCV assay may be a novel choice for clinical HCV screening. PMID:27170643

  16. Effects of hepatic enzyme inducers on thyroxine (T4) catabolism in primary rat hepatocytes

    EPA Science Inventory

    Nuclear receptor agonists such as phenobarbital (PB), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and 3-methylcholantrene (3-MC) decrease circulating thyroxine (T4) concentrations in rats. It is suspected that this decrease occurs through the induction of hepatic metabolizing en...

  17. INFLUENCE OF OZONE AND NITROGEN DIOXIDE ON HEPATIC MICROSOMAL ENZYMES IN MICE

    EPA Science Inventory

    Since ambient concentrations of ozone and nitrogen dioxide increase drug-induced sleeping time in female mice, potential mechanisms were sought by investigating the effects of these gases on hepatic microsomal mixed-function oxidases in female CD-1 mice. Exposure to ozone did not...

  18. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  19. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    PubMed

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  20. Regulation of Human Hepatic Drug Transporter Activity and Expression by Diesel Exhaust Particle Extract

    PubMed Central

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  1. Modulation of hepatic drug metabolizing enzymes by dietary doses of thymoquinone in female New Zealand White rabbits.

    PubMed

    Elbarbry, Fawzy; Ragheb, Ahmed; Marfleet, Travis; Shoker, Ahmed

    2012-11-01

    Herbal medicines can affect drug metabolizing enzymes. Therefore the effect of thymoquinone (TQ), the active ingredient of black seeds, was examined on rabbit liver drug metabolizing enzymes. Two groups of New Zealand female rabbits received TQ at 10 and 20 mg/kg/day orally and a control group of six animals each were killed after 8 weeks. Blood and livers were harvested and the activity of cytochrome P450 (CYP) and phase II enzymes in the microsomal and cytosolic preparations were measured by HPLC and ELISA methods. The liver enzymes ALT/AST and albumin were similar in the three groups. CYP1A2, CYP3A4, but not CYP2E1, were significantly diminished by TQ treatment. Of the phase II enzymes, glutathione-S-transferase (GST) and glutathione peroxidase (GPx) were significantly induced by the high TQ dose, while the total glutathione levels were unaffected. Glutathione reductase (GR), on the other hand, was significantly induced in the two experimental groups. Thymoquinone has differential effects on CYP and phase II enzymes. Inhibition of some CYP enzyme activities may lead to a hazardous herb-drug interaction. Induction of GR activity may explain the salutatory effect of the black seeds in inhibiting the generation of bioactive metabolites known to promote carcinogenesis and oxidative cell damage. PMID:22422469

  2. Chemoproteomic profiling of host and pathogen enzymes active in cholera

    PubMed Central

    Hatzios, Stavroula K.; Hubbard, Troy; Sasabe, Jumpei; Munera, Diana; Clark, Lars; Bachovchin, Daniel A.; Qadri, Firdausi; Ryan, Edward T.; Davis, Brigid M.; Weerapana, Eranthie; Waldor, Matthew K.

    2016-01-01

    Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human cholera stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, while genetic disruption of all four proteases increased the abundance and binding of an intestinal lectin—intelectin—to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialogue in an animal model of infection. PMID:26900865

  3. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  4. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  5. Chronic administration of caderofloxacin, a new fluoroquinolone, increases hepatic CYP2E1 expression and activity in rats

    PubMed Central

    Liu, Li; Miao, Ming-xing; Zhong, Ze-yu; Xu, Ping; Chen, Yang; Liu, Xiao-dong

    2016-01-01

    Aim: Caderofloxacin is a new fluoroquinolone that is under phase III clinical trials in China. Here we examined the effects of caderofloxacin on rat hepatic cytochrome P450 (CYP450) isoforms as well as the potential of caderofloxacin interacting with co-administered drugs. Methods: Male rats were treated with caderofloxacin (9 mg/kg, ig) once or twice daily for 14 consecutive days. The effects of caderofloxacin on CYP3A, 2D6, 2C19, 1A2, 2E1 and 2C9 were evaluated using a “cocktail” of 6 probes (midazolam, dextromethorphan, omeprazole, theophylline, chlorzoxazone and diclofenac) injected on d 0 (prior to caderofloxacin exposure) and d 15 (after caderofloxacin exposure). Hepatic microsomes from the caderofloxacin-treated rats were used to assess CYP2E1 activity and chlorzoxazone metabolism. The expression of CYP2E1 mRNA and protein in hepatic microsomes was analyzed with RT-PCR and Western blotting, respectively. Results: Fourteen-day administration of caderofloxacin significantly increased the activity of hepatic CYP2E1, leading to enhanced metabolism of chlorzoxazone. In vitro microsomal study confirmed that CYP2E1 was a major metabolic enzyme involved in chlorzoxazone metabolism, and the 14-d administration of caderofloxacin significantly increased the activity of CYP2E1 in hepatic microsomes, resulting in increased formation of 6-hydroxychlorzoxazone. Furthermore, the 14-d administration of caderofloxacin significantly increased the expression of CYP2E1 mRNA and protein in liver microsomes, which was consistent with the pharmacokinetic results. Conclusion: Fourteen-day administration of caderofloxacin can induce the expression and activity of hepatic CYP2E1 in rats. When caderofloxacin is administered, a potential drug-drug interaction mediated by CYP2E1 induction should be considered. PMID:26838075

  6. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  7. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  8. Activation Energy of Extracellular Enzymes in Soils from Different Biomes

    PubMed Central

    Steinweg, J. Megan; Jagadamma, Sindhu; Frerichs, Joshua; Mayes, Melanie A.

    2013-01-01

    Enzyme dynamics are being incorporated into soil carbon cycling models and accurate representation of enzyme kinetics is an important step in predicting belowground nutrient dynamics. A scarce number of studies have measured activation energy (Ea) in soils and fewer studies have measured Ea in arctic and tropical soils, or in subsurface soils. We determined the Ea for four typical lignocellulose degrading enzymes in the A and B horizons of seven soils covering six different soil orders. We also elucidated which soil properties predicted any measurable differences in Ea. β-glucosidase, cellobiohydrolase, phenol oxidase and peroxidase activities were measured at five temperatures, 4, 21, 30, 40, and 60°C. Ea was calculated using the Arrhenius equation. β-glucosidase and cellobiohydrolase Ea values for both A and B horizons in this study were similar to previously reported values, however we could not make a direct comparison for B horizon soils because of the lack of data. There was no consistent relationship between hydrolase enzyme Ea and the environmental variables we measured. Phenol oxidase was the only enzyme that had a consistent positive relationship between Ea and pH in both horizons. The Ea in the arctic and subarctic zones for peroxidase was lower than the hydrolases and phenol oxidase values, indicating peroxidase may be a rate limited enzyme in environments under warming conditions. By including these six soil types we have increased the number of soil oxidative enzyme Ea values reported in the literature by 50%. This study is a step towards better quantifying enzyme kinetics in different climate zones. PMID:23536898

  9. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylationa

    PubMed Central

    Chow, Jenny D.Y.; Lawrence, Robert T.; Healy, Marin E.; Dominy, John E.; Liao, Jason A.; Breen, David S.; Byrne, Frances L.; Kenwood, Brandon M.; Lackner, Carolin; Okutsu, Saeko; Mas, Valeria R.; Caldwell, Stephen H.; Tomsig, Jose L.; Cooney, Gregory J.; Puigserver, Pere B.; Turner, Nigel; James, David E.; Villén, Judit; Hoehn, Kyle L.

    2014-01-01

    Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space. PMID:24944901

  10. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    SciTech Connect

    Fungjou Lu; Youngshin Chen . Dept. of Biochemistry); Tienshang Huang . Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  11. Targeting Cellular Squalene Synthase, an Enzyme Essential for Cholesterol Biosynthesis, Is a Potential Antiviral Strategy against Hepatitis C Virus

    PubMed Central

    Saito, Kyoko; Shirasago, Yoshitaka; Suzuki, Tetsuro; Aizaki, Hideki; Hanada, Kentaro; Wakita, Takaji; Nishijima, Masahiro

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) exploits host membrane cholesterol and its metabolism for progeny virus production. Here, we examined the impact of targeting cellular squalene synthase (SQS), the first committed enzyme for cholesterol biosynthesis, on HCV production. By using the HCV JFH-1 strain and human hepatoma Huh-7.5.1-derived cells, we found that the SQS inhibitors YM-53601 and zaragozic acid A decreased viral RNA, protein, and progeny production in HCV-infected cells without affecting cell viability. Similarly, small interfering RNA (siRNA)-mediated knockdown of SQS led to significantly reduced HCV production, confirming the enzyme as an antiviral target. A metabolic labeling study demonstrated that YM-53601 suppressed the biosynthesis of cholesterol and cholesteryl esters at antiviral concentrations. Unlike YM-53601, the cholesterol esterification inhibitor Sandoz 58-035 did not exhibit an antiviral effect, suggesting that biosynthesis of cholesterol is more important than that of cholesteryl esters for HCV production. YM-53601 inhibited transient replication of a JFH-1 subgenomic replicon and entry of JFH-1 pseudoparticles, suggesting that at least suppression of viral RNA replication and entry contributes to the antiviral effect of the drug. Collectively, our findings highlight the importance of the cholesterol biosynthetic pathway in HCV production and implicate SQS as a potential target for antiviral strategies against HCV. IMPORTANCE Hepatitis C virus (HCV) is known to be closely associated with host cholesterol and its metabolism throughout the viral life cycle. However, the impact of targeting cholesterol biosynthetic enzymes on HCV production is not fully understood. We found that squalene synthase, the first committed enzyme for cholesterol biosynthesis, is important for HCV production, and we propose this enzyme as a potential anti-HCV target. We provide evidence that synthesis of free cholesterol is more important than that of esterified

  12. Modulating enzyme activity using ionic liquids or surfactants.

    PubMed

    Goldfeder, Mor; Fishman, Ayelet

    2014-01-01

    One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme-water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems. PMID:24281758

  13. Diminution of Hepatic Response to 7, 12-dimethylbenz(α)anthracene by Ethyl Acetate Fraction of Acacia catechu Willd. through Modulation of Xenobiotic and Anti-Oxidative Enzymes in Rats

    PubMed Central

    Kumar, Rakesh; Kaur, Rajbir; Singh, Amrit Pal; Arora, Saroj

    2014-01-01

    Background Liver is the primary metabolizing site of body and is prone to damage by exogenous as well as endogenous intoxicants. Polycyclic aromatic hydrocarbons such as 7, 12- dimethylbenz(α)anthracene (DMBA) is an exogenous hepatotoxin, which is well known for modulating phase I, II and anti-oxidative enzymes of liver. Plants contain plethora of polyphenolic compounds which can reverse the damaging effect of various xenobiotics. The present study investigated protective role of the ethyl acetate fraction of Acacia catechu Willd. (EAF) against DMBA induced alteration in hepatic metabolizing and anti-oxidative enzymes in rats. Methodology and Principal Findings The rats were subjected to hepatic damage by treating with DMBA for 7 weeks on alternative days and treatment schedule was terminated at the end of 14 weeks. The rats were euthanized at the end of protocol and livers were homogenized. The liver homogenates were used to analyse phase I (NADPH-cytochrome P450 reducatse, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome b5), phase II (glutathione-S-transferase, DT diaphorase and γ-Glutamyl transpeptidase) and antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, guiacol peroxidase and lactate dehydrogenase). Furthermore, other oxidative stress parameters (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes and reduced glutathione) and liver marker enzymes (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase and alkaline phosphatase) were also studied. The DMBA induced significant changes in activity of hepatic enzymes that was reversed by treatment with three dose levels of EAF. Conclusion It is concluded that EAF affords hepato-protection against DMBA in rats through modulation of phase I, II and anti-oxidative enzymes. PMID:24587216

  14. Suppression of silent information regulator 1 activity in noncancerous tissues of hepatocellular carcinoma: Possible association with non-B non-C hepatitis pathogenesis

    PubMed Central

    Konishi, Hideyuki; Shirabe, Ken; Nakagawara, Hidekazu; Harimoto, Norifumi; Yamashita, Yo-Ichi; Ikegami, Toru; Yoshizumi, Tomoharu; Soejima, Yuji; Oda, Yoshinao; Maehara, Yoshihiko

    2015-01-01

    Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase. In mice, mSirt1 deficiency causes the onset of fatty liver via regulation of the hepatic nutrient metabolism pathway. In this study, we demonstrate SIRT1 expression, activity and NAD+ regulation using noncancerous liver tissue specimens from hepatocellular carcinoma patients with non-B non-C (NBNC) hepatitis. SIRT1 expression levels were higher in NBNC patients than in healthy donors, while SIRT1 histone H3K9 deacetylation activity was suppressed in NBNC patients. In the liver of hepatitis patients, decreased NAD+ amounts and its regulatory enzyme nicotinamide phosphoribosyltransferase expression levels were observed, and this led to inhibition of SIRT1 activity. SIRT1 expression was associated with HIF1 protein accumulation in both the NBNC liver and liver cancer cell lines. These results may indicate that the NBNC hepatitis liver is exposed to hypoxic conditions. In HepG2 cells, hypoxia induced inflammatory chemokines, such as CXCL10 and MCP-1. These inductions were suppressed in rich NAD+ condition, and by SIRT1 activator treatment. In conclusion, hepatic SIRT1 activity was repressed in NBNC patients, and normalization of NAD+ amounts and activation of SIRT1 could improve the inflammatory condition in the liver of NBNC hepatitis patients. PMID:25736100

  15. Antidiabetic activity of Sedum dendroideum: metabolic enzymes as putative targets for the bioactive flavonoid kaempferitrin.

    PubMed

    Da Silva, Daniel; Casanova, Livia Marques; Marcondes, Mariah Celestino; Espindola-Netto, Jair Machado; Paixão, Larissa Pereira; De Melo, Giany Oliveira; Zancan, Patricia; Sola-Penna, Mauro; Costa, Sônia Soares

    2014-05-01

    The aim of this study was to evaluate the antidiabetic potential of a leaf extract and flavonoids from Sedum dendroideum (SD). Additionally, our goals were to establish a possible structure/activity relationship between these flavonoids and to assess the most active flavonoid on the glycolytic enzyme 6-phosphofructo-1-kinase (PFK). SD juice (LJ), a flavonoid-rich fraction (BF), and separately five flavonoids were evaluated intraperitoneally for their acute hypoglycemic activity in normal and streptozotocin-induced diabetic mice. First, the major flavonoids kaempferol 3,7-dirhamnoside or kaempferitrin (1), kaempferol 3-glucoside-7-rhamnoside (2), and kaempferol 3-neohesperidoside-7-rhamnoside (3) were tested. Then, the monoglycosides kaempferol 7-rhamnoside (5) and kaempferol 3-rhamnoside (6) were assayed to establish their structure/activity relationship. The effect of 1 on PFK was evaluated in skeletal muscle, liver, and adipose tissue from treated mice. LJ (400 mg/kg), BF (40 mg/kg), and flavonoid 1 (4 mg/kg) reduced glycemia in diabetic mice (120 min) by 52, 53, and 61%, respectively. Flavonoids 2, 3, 5, and 6 were inactive or showed little activity, suggesting that the two rhamnosyl moieties in kaempferitrin are important requirements. Kaempferitrin enhanced the PFK activity chiefly in hepatic tissue, suggesting that it is able to stimulate tissue glucose utilization. This result is confirmed testing kaempferitrin on C2C12 cell line, where it enhanced glucose consumption, lactate production, and the key regulatory glycolytic enzymes. The hypoglycemic activity of kaempferitrin depends on the presence of both rhamnosyl residues in the flavonoid structure when intraperitoneally administered. Our findings show for the first time that a flavonoid is capable of stimulating PFK in a model of diabetes and that kaempferitrin stimulates glucose-metabolizing enzymes. This study contributes to the knowledge of the mechanisms by which this flavonoid exerts its hypoglycemic

  16. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

    PubMed Central

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-01-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  17. A 19F NMR Study of Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Peterman, Keith E.; Lentz, Kevin; Duncan, Jeffery

    1998-10-01

    This basic enzyme activity laboratory experiment demonstrates how 19F NMR can be used in biochemical studies and presents the advantages of 19F NMR over 1H NMR for studies of this nature. N-Trifluoroacetylglycine was selected as a commercially available model fluorine-tagged substrate that readily undergoes acylase I-catalyzed hydrolysis to produce trifluoroacetic acid and glycine. Progress of the reaction was monitored by following conversion of the trifluoroacetyl moiety peak of N-trifluoroacetylglycine to trifluoroacetic acid. The extent of hydrolysis was determined by comparing integrated ratios of the two 19F NMR peaks. A plot of percent hydrolysis versus enzyme concentration was used to calculate unit activity of the enzyme. This is a viable laboratory experiment for junior/senior-level courses in instrumental analytical chemistry, biochemistry, molecular biology, or spectroscopy.

  18. Interdomain communications in bifunctional enzymes: how are different activities coordinated?

    PubMed

    Nagradova, Natalya

    2003-08-01

    Although bifunctional enzymes containing two different active centers located within separate domains are quite common in living systems, the significance of this bifunctionality is not always clear, and the molecular mechanisms of site-site interactions in such complex systems have come under the scrutiny of science only in recent years. This review summarizes recent data on the mechanisms of communication between active centers in bifunctional enzymes. Three types of enzymes are considered: (1) those catalyzing consecutive reactions of a metabolic pathway and exhibiting substrate channeling (glutamate synthase and imidazole glycerol phosphate synthase), (2) those catalyzing consecutive reactions without substrate channeling (lysine-ketoglutarate reductase/saccharopine dehydrogenase), and (3) those catalyzing opposed reactions (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase). The functional role of interdomain communications is briefly discussed. PMID:14609201

  19. Detection of DNA polymerase activities associated with purified duck hepatitis B virus core particles by using an activity gel assay.

    PubMed Central

    Oberhaus, S M; Newbold, J E

    1993-01-01

    Replication of hepadnaviruses involves reverse transcription of an intermediate RNA molecule. It is generally accepted that this replication scheme is carried out by a virally encoded, multifunctional polymerase which has DNA-dependent DNA polymerase, reverse transcriptase, and RNase H activities. Biochemical studies of the polymerase protein(s) have been limited by the inability to purify useful quantities of functional enzyme from virus particles and, until recently, to express enzymatically active polymerase proteins in heterologous systems. An activity gel assay which detects in situ catalytic activities of DNA polymerases after electrophoresis in partially denaturing polyacrylamide gels was used by M.R. Bavand and O. Laub (J. Virol. 62:626-628, 1988) to show the presence of DNA- and RNA-dependent DNA polymerase activities associated with hepatitis B virus particles produced in vitro. This assay has provided the only means by which hepadnavirus polymerase proteins have been detected in association with enzymatic activities. Since conventional methods have not allowed purification of useful quantities of enzymatically active polymerase protein(s), we have devised a protocol for purifying large quantities of duck hepatitis B virus (DHBV) core particles to near homogeneity. These immature virus particles contain DNA- and RNA-dependent DNA polymerase activities, as shown in the endogenous DNA polymerase assay. We have used the activity gel assay to detect multiple DNA- and RNA-dependent DNA polymerase proteins associated with these purified DHBV core particles. These enzymatically active proteins appear larger than, approximately the same size as, and smaller than an unmodified DHBV polymerase protein predicted from the polymerase open reading frame. This is the first report of the detection of active hepadnavirus core-associated DNA polymerase proteins derived from a natural host. Images PMID:8411359

  20. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    PubMed

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying; Naleway, John Joseph

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  1. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  2. Effects of adding some dietary fibers to a cystine diet on the activities of liver antioxidant enzymes and serum enzymes in rats.

    PubMed

    He, Guochun; Aoyama, Yoritaka

    2003-03-01

    This study investigates whether some dietary fibers can the toxicity due to cystine added to the diet. Wistar rats were investigated for the effects of adding pectin, sugar beet fiber or konjac mannan to a cystine diet on the growth rate and on the activities of liver antioxidant enzymes and serum enzymes. The addition of pectin, sugar beet fiber or konjac mannan to the cystine diet resulted in a significant increase in both the food intake and body weight gain. Feeding the cystine diet caused lower activities of total and Cu,Zn-superoxide dismutase, and of catalase in the liver. The addition of pectin to the cystine diet counteracted the activities of the total and Cu,Zn-superoxide dismutase, and of catalase in liver. Of the dietary fibers tested, konjac mannan prevented the elevation of the two enzyme activities in the serum induced by feeding the cystine diet, indicating that this fiber might have the ability to alleviate hepatic damage due to dietary cystine. PMID:12723612

  3. A study on the flexibility of enzyme active sites

    PubMed Central

    2011-01-01

    Background A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted. Results Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites. Conclusions This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites. PMID:21342563

  4. Enzyme activities by indicator of quality in organic soil

    NASA Astrophysics Data System (ADS)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  5. Hepatoprotective activity of Symplocos racemosa bark on carbon tetrachloride-induced hepatic damage in rats

    PubMed Central

    Wakchaure, Dhananjay; Jain, Dilpesh; Singhai, Abhay Kumar; Somani, Rahul

    2011-01-01

    The present study aims to evaluate the hepatoprotective activity of ethanol extract of Symplocos racemosa (EESR) bark on carbon tetrachloride (CCl4)-induced hepatic damage in rats. CCl4 with olive oil (1 : 1) (0.2 ml/kg, i.p.) was administered for ten days to induce hepatotoxicity. EESR (200 and 400 mg/kg, p.o.) and silymarin (100 mg/kg p.o.) were administered concomitantly for fourteen days. The degree of hepatoprotection was measured using serum transaminases (AST and ALT), alkaline phosphatase, bilirubin, albumin, and total protein levels. Metabolic function of the liver was evaluated by thiopentone-induced sleeping time. Antioxidant activity was assessed by measuring liver malondialdehyde, glutathione, catalase, and superoxide dismutase levels. Histopathological changes of liver sample were also observed. Significant hepatotoxicity was induced by CCl4 in experimental animals. EESR treatment showed significant dose-dependent restoration of serum enzymes, bilirubin, albumin, total proteins, and antioxidant levels. Improvements in hepatoprotection and morphological and histopathological changes were also observed in the EESR treated rats. It was therefore concluded that EESR bark is an effective hepatoprotective agent in CCl4-induced hepatic damage, and has potential clinical applications for treatment of liver diseases. PMID:22022156

  6. MICROBIAL COMMUNITY STRUCTURE AND ENZYME ACTIVITIES IN SEMIARID AGRICULTURAL SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of management on the microbial community structure and enzyme activities of three semiarid soils from Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in cotton -peanut (Arachis h...

  7. Carbohydrate active enzymes revealed in Coptotermes formosanus transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A normalized cDNA library of Coptotermes formosanus was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. Sequencing of this library generated 131,637 EST and 25,939 unigenes were assembled. Carbohydrate active enzymes (CAZymes) revealed in this library we...

  8. MICROBIAL SUCCESSION AND INTESTINAL ENZYME ACTIVITIES IN THE DEVELOPING RAT

    EPA Science Inventory

    The succession of gastrointestinal flora in the developing rat was studied, concomitant with studies of intestinal enzyme activity. Aerobes and anaerobes were identified as members of 4 major bacterial groups, i.e., Lactobacilli spp., Gram positive enterococci, Gram negative rods...

  9. Variation in Soil Enzyme Activities in a Temperate Agroforestry Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of agroforestry and grass buffers into row crop watersheds improves overall environmental quality, including soil quality. The objective of this study was to examine management and landscape effects on soil carbon, soil nitrogen, microbial diversity, enzyme activity, and DNA concentrati...

  10. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  11. A Metal-Based Inhibitor of NEDD8-Activating Enzyme

    PubMed Central

    Chan, Daniel Shiu-Hin; Leung, Chung-Hang; Wang, Hui-Min; Ma, Dik-Lung

    2012-01-01

    A cyclometallated rhodium(III) complex [Rh(ppy)2(dppz)]+ (1) (where ppy = 2-phenylpyridine and dppz = dipyrido[3,2-a:2′,3′-c]phenazine dipyridophenazine) has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE). The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme. PMID:23185368

  12. Hepatoprotective and anti-hepatitis C viral activity of Platycodon grandiflorum extract on carbon tetrachloride-induced acute hepatic injury in mice.

    PubMed

    Kim, Tae-Won; Lim, Jong-Hwan; Song, In-Bae; Park, Sang-Jin; Yang, Jae-Won; Shin, Jung Cheul; Suh, Joo-Won; Son, Hwa-Young; Cho, Eun-Sang; Kim, Myoung-Seok; Lee, Sang-Wook; Kim, Jong-Woo; Yun, Hyo-In

    2012-01-01

    The present study aims to evaluate the anti-HCV activity of hotwater extract from Platycodon grandiflorum (BC703) with HCV genotype 1b subgenomic replicon system and investigate its hepatoprotective activity on carbon tetrachloride (CCl(4))-induced acute liver damage in mice. BC703 produced significant hepatoprotective effects against CCl(4)-induced acute hepatic injury by decreasing the activities of serum enzymes, nitric oxide and lipid peroxidation. Histopathological studies further substantiated the protective effect of BC703. Furthermore, BC703 inhibited the HCV RNA replication with an EC(50) value and selective index (CC(50)/EC(50)) of 2.82 µg/mL and above 35.46, respectively. However, digested BC703 using a simulated gastric juice showed poor protective effect against CCl(4)-induced hepatotoxicity in mice and decreased anti-HCV activity as compared to the intact BC703. Although further studies are necessary, BC703 may be a beneficial agent for the management of acute hepatic injury and chronic HCV infection. PMID:22878389

  13. Influence of liver disease and environmental factors on hepatic monooxygenase activity in vitro.

    PubMed

    Brodie, M J; Boobis, A R; Bulpitt, C J; Davies, D S

    1981-01-01

    The effects of liver disease and environmental factors on hepatic microsomal cytochrome P-450 content, NADPH-cytochrome c reductase (reductase) activity and aryl hydrocarbon hydroxylase (AHH) activity have been simultaneously investigated in 70 patients undergoing diagnostic liver biopsy. The activity of reductase was not significantly affected by the presence of liver disease or any of the environmental factors studied. Cytochrome P-450 content decreased with increasing severity of liver disease whereas AHH activity was only significantly reduced in biopsies showing hepatocellular destruction. None of the parameters of monooxygenase activity varied significantly with the age or sex of the patients. Alcohol excess was associated with decreased cytochrome P-450 content and AHH activity and this effect was independent of the histological status of the biopsy. Both high caffeine intake and cigarette smoking increased AHH activity in the absence of any change in cytochrome P-450 content. There was a positive correlation between the number of meat meals eaten per week and cytochrome P-450 content. Chronic treatment with enzyme-inducing anticonvulsants appeared to increase both cytochrome P-450 content and AHH activity. Despite differential effects of liver disease and environmental influences on cytochrome P-450 content and AHH activity there was a highly significant correlation between the two parameters. The results of the present study correlate well with the known effects of disease and environment on drug metabolism in vivo. PMID:7308271

  14. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors.

    PubMed

    Wang, X; Wang, G; Shi, J; Aa, J; Comas, R; Liang, Y; Zhu, H-J

    2016-06-01

    The aim of the study was to determine the effect of carboxylesterase 1 (CES1) genetic variation on the activation of angiotensin-converting enzyme inhibitor (ACEI) prodrugs. In vitro incubation study of human liver, intestine and kidney s9 fractions demonstrated that the ACEI prodrugs enalapril, ramipril, perindopril, moexipril and fosinopril are selectively activated by CES1 in the liver. The impact of CES1/CES1VAR and CES1P1/CES1P1VAR genotypes and diplotypes on CES1 expression and activity on enalapril activation was investigated in 102 normal human liver samples. Neither the genotypes nor the diplotypes affected hepatic CES1 expression and activity. Moreover, among several CES1 nonsynonymous variants studied in transfected cell lines, the G143E (rs71647871) was a loss-of-function variant for the activation of all ACEIs tested. The CES1 activity on enalapril activation in human livers with the 143G/E genotype was approximately one-third of that carrying the 143G/G. Thus, some functional CES1 genetic variants (for example, G143E) may impair ACEI activation, and consequently affect therapeutic outcomes of ACEI prodrugs. PMID:26076923

  15. Hepatic Enzyme's Reference Intervals and Their Modulating Factors in Western Indian Population.

    PubMed

    Maksane, Shalini N; Dandekar, Sucheta P; Shukla, Akash; Bhatia, Shobna

    2016-03-01

    The reference intervals (RIs) of serum aminotransferases and Gamma-glutamyl transferase (GGT) have been established many years ago. Recent RIs are not available. The prospective study was conducted to re-evaluate the RIs of liver enzymes and the effect of demographic and anthropometric variables on them in western Indian population. A total of 1059 blood donors comprised the study population. Anthropometry and serum liver enzymes levels were measured. Subjects were categorized into normal weight and overweight by using body mass index (BMI) and waist circumference (WC). For RI determination, non-parametric methodology recommended by IFCC/CLSI was adopted. Mann-Whitney test and Spearman's rank correlation were used for statistical analysis. Upper limit of normal reference value of liver enzymes were lower in female compared to male. (ALT-23.55 F vs 36.00 M, GGT-34.58 F vs 36.20 M) When RI of liver enzymes were calculated according to body mass index, the upper limit of normal of ALT and GGT were higher in overweight group compared to normal weight group. (ALT-38.00 vs 27.00 IU/L and GGT-37.59 vs 35.26 IU/L). In both male and female, liver enzymes correlated significantly with age. WC and BMI were positively correlated with AST, ALT and GGT in both subgroups and the correlation was stronger in male. Demographic factors should be considered for making liver enzyme tests more clinically relevant. Gender based partitioning should be adopted for serum alanine aminotransferase (ALT) and GGT reference values for Western Indian population. PMID:26855497

  16. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells

    PubMed Central

    Wong, Tsz Yan; Lin, Shu-mei; Leung, Lai K.

    2015-01-01

    High blood cholesterol has been associated with cardiovascular diseases. The enzyme HMG CoA reductase (HMGCR) is responsible for cholesterol synthesis, and inhibitors of this enzyme (statins) have been used clinically to control blood cholesterol. Sterol regulatory element binding protein (SREBP) -2 is a key transcription factor in cholesterol metabolism, and HMGCR is a target gene of SREBP-2. Attenuating SREBP-2 activity could potentially minimize the expression of HMGCR. Luteolin is a flavone that is commonly detected in plant foods. In the present study, Luteolin suppressed the expression of SREBP-2 at concentrations as low as 1 μM in the hepatic cell lines WRL and HepG2. This flavone also prevented the nuclear translocation of SREBP-2. Post-translational processing of SREBP-2 protein was required for nuclear translocation. Luteolin partially blocked this activation route through increased AMP kinase (AMPK) activation. At the transcriptional level, the mRNA and protein expression of SREBP-2 were reduced through luteolin. A reporter gene assay also verified that the transcription of SREBF2 was weakened in response to this flavone. The reduced expression and protein processing of SREBP-2 resulted in decreased nuclear translocation. Thus, the transcription of HMGCR was also decreased after luteolin treatment. In summary, the results of the present study showed that luteolin modulates HMGCR transcription by decreasing the expression and nuclear translocation of SREBP-2. PMID:26302339

  17. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    PubMed

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation. PMID:27342868

  18. Vanadium chemoprevention of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis: probable involvement of representative hepatic phase I and II xenobiotic metabolizing enzymes.

    PubMed

    Bishayee, A; Oinam, S; Basu, M; Chatterjee, M

    2000-09-01

    Vanadium, a non-platinum group metal and dietary micronutrient, is now proving to act as a promising antitumor agent. The present study was conducted to ascertain its antineoplastic potential against an experimental mammary carcinogenesis. Female Sprague-Dawley rats, at 50 days of age, were treated with 7,12-dimethylbenz(a)anthracene (DMBA) (0.5 mg/100 g body weight) by a single tail vein injection in an oil emulsion. Vanadium (ammonium monovanadate) at the concentration of 0.5 ppm was supplemented in drinking water and given ad libitum to the experimental group immediately after the carcinogen treatment and it continued until the termination of the study (24 weeks for histological and biochemical observations and 35 weeks for morphological findings). It was found that vanadium treatment brought about a substantial protection against DMBA-induced mammary carcinogenesis. This was evident from histological findings that showed no sign of hyperplasia or abnormality after vanadium treatment. There was a significant reduction in incidence (P < 0.05), total number, multiplicity (P < 0.01) and size of palpable mammary tumors and delay in mean latency period of tumor appearance (P < 0.001) following vanadium supplementation compared to DMBA control. From the cumulative results of various hepatic biochemical indices namely, lipid peroxidation, reduced glutathione level, superoxide dismutase activity, cytochrome P450 content and glutathione S-transferase activity, the anticarcinogenic potential of vanadium was well reflected through stabilization of these parameters. Results of the study indicate that the anticarcinogenic activity of vanadium during DMBA-initiated mammary carcinogenesis is mediated through alteration of hepatic antioxidant status as well as modulation of phase I and II drug metabolizing enzymes. On the basis of the observed results, vanadium can be considered as a readily available, promising and novel cancer chemopreventive agent. PMID:11097089

  19. Effect of standardized cranberry extract on the activity and expression of selected biotransformation enzymes in rat liver and intestine.

    PubMed

    Bártíková, Hana; Boušová, Iva; Jedličková, Pavla; Lněničková, Kateřina; Skálová, Lenka; Szotáková, Barbora

    2014-01-01

    The use of dietary supplements containing cranberry extract is a common way to prevent urinary tract infections. As consumption of these supplements containing a mixture of concentrated anthocyanins and proanthocyanidins has increased, interest in their possible interactions with drug-metabolizing enzymes has grown. In this in vivo study, rats were treated with a standardized cranberry extract (CystiCran®) obtained from Vaccinium macrocarpon in two dosage schemes (14 days, 0.5 mg of proanthocyanidins/kg/day; 1 day, 1.5 mg of proanthocyanidins/kg/day). The aim of this study was to evaluate the effect of anthocyanins and proanthocyanidins contained in this extract on the activity and expression of intestinal and hepatic biotransformation enzymes: cytochrome P450 (CYP1A1, CYP1A2, CYP2B and CYP3A), carbonyl reductase 1 (CBR1), glutathione-S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Administration of cranberry extract led to moderate increases in the activities of hepatic CYP3A (by 34%), CYP1A1 (by 38%), UGT (by 40%), CBR1 (by 17%) and GST (by 13%), while activities of these enzymes in the small intestine were unchanged. No changes in the relative amounts of these proteins were found. Taken together, the interactions of cranberry extract with simultaneously administered drugs seem not to be serious. PMID:25237750

  20. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  1. [Activity of hydrogen sulfide production enzymes in kidneys of rats].

    PubMed

    Mel'nyk, A V; Pentiuk, O O

    2009-01-01

    An experimental research of activity and kinetic descriptions of enzymes participating in formation of hydrogen sulfide in the kidney of rats has been carried out. It was established that cystein, homocystein and thiosulphate are the basic substrates for hydrogen sulfide synthesis. The higest activity for hydrogen sulfide production belongs to thiosulfate-dithiolsulfurtransferase and cysteine aminotransferase, less activity is characteristic of cystathionine beta-synthase and cystathio-nine gamma-lyase. The highest affinity to substrate is registered for thiosulfate-dithiolsulfurtransferase and cystathionine gamma-lyase. It is discovered that the substrate inhibition is typical of all hydrogen sulfide formation enzymes, although this characteristic is the most expressed thiosulfat-dithiolsulfurtransferase. PMID:20387629

  2. A biologically active surface enzyme assembly that attenuates thrombus formation

    PubMed Central

    Qu, Zheng; Muthukrishnan, Sharmila; Urlam, Murali K.; Haller, Carolyn A.; Jordan, Sumanas W.; Kumar, Vivek A.; Marzec, Ulla M.; Elkasabi, Yaseen; Lahann, Joerg; Hanson, Stephen R.

    2013-01-01

    Activation of hemostatic pathways by blood-contacting materials remains a major hurdle in the development of clinically durable artificial organs and implantable devices. We postulate that surface-induced thrombosis may be attenuated by the reconstitution onto blood contacting surfaces of bioactive enzymes that regulate the production of thrombin, a central mediator of both clotting and platelet activation cascades. Thrombomodulin (TM), a transmembrane protein expressed by endothelial cells, is an established negative regulator of thrombin generation in the circulatory system. Traditional techniques to covalently immobilize enzymes on solid supports may modify residues contained within or near the catalytic site, thus reducing the bioactivity of surface enzyme assemblies. In this report, we present a molecular engineering and bioorthogonal chemistry approach to site-specifically immobilize a biologically active recombinant human TM fragment onto the luminal surface of small diameter prosthetic vascular grafts. Bioactivity and biostability of TM modified grafts is confirmed in vitro and the capacity of modified grafts to reduce platelet activation is demonstrated using a non-human primate model. These studies indicate that molecularly engineered interfaces that display TM actively limit surface-induced thrombus formation. PMID:23532366

  3. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  4. Increased serum cortisol binding in chronic active hepatitis

    SciTech Connect

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG.

  5. Influence of environmental static electric field on antioxidant enzymes activities in hepatocytes of mice.

    PubMed

    Wu, S X; Xu, Y Q; Di, G Q; Jiang, J H; Xin, L; Wu, T Y

    2016-01-01

    With the increasing voltage of direct current transmission line, the intensity of the environmental static electric field has also increased. Thus, whether static electric fields cause biological injury is an important question. In this study, the effects of chronic exposure to environmental static electric fields on some antioxidant enzymes activities in the hepatocytes of mice were investigated. Male Institute of Cancer Research mice were exposed for 35 days to environmental static electric fields of different electric field intensities of 9.2-21.85 kV/m (experiment group I, EG-I), 2.3-15.4 kV/m (experiment group II, EG-II), and 0 kV/m (control group, CG). On days 7, 14, 21, and 35 of the exposure cycle, liver homogenates were obtained and the activities of antioxidant enzymes like superoxide dismutase, glutathione S-transferase, and glutathione peroxidase were determined, as well as the concentration of malonaldehyde. The results revealed a significant increase in superoxide dismutase activity in both EG-I and EG-II on the 7th (P < 0.05) and 35th days (P < 0.01) of the exposure cycle compared to that in the control group. However, the other test indices such as glutathione S-transferase, glutathione peroxidase, and malonaldehyde showed only minimal changes during the exposure cycle. These results revealed a weak relationship between the exposure to environmental static electric fields and hepatic oxidative stress in living organisms. PMID:27525865

  6. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression Through the Life Stages of the Mouse

    EPA Science Inventory

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been ca...

  7. Stoichiometry of soil enzyme activity at global scale.

    PubMed

    Sinsabaugh, Robert L; Lauber, Christian L; Weintraub, Michael N; Ahmed, Bony; Allison, Steven D; Crenshaw, Chelsea; Contosta, Alexandra R; Cusack, Daniela; Frey, Serita; Gallo, Marcy E; Gartner, Tracy B; Hobbie, Sarah E; Holland, Keri; Keeler, Bonnie L; Powers, Jennifer S; Stursova, Martina; Takacs-Vesbach, Cristina; Waldrop, Mark P; Wallenstein, Matthew D; Zak, Donald R; Zeglin, Lydia H

    2008-11-01

    Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-N-acetylglucosaminidase and phosphatase g(-1) soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g(-1) soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage. PMID:18823393

  8. Hepatic 5'-monodeiodinase activity in teleosts in vitro: A survey of thirty-three species.

    PubMed

    Leatherland, J F; Reddy, P K; Yong, A N; Leatherland, A; Lam, T J

    1990-01-01

    The in vitro hepatic 5'-monodeiodination of thyroxine (T4) to triiodothyronine (T3) in Oreochromis mossambicus, Channa striata, Clarias batrachus, Cyprinus carpio and Oxyeleotris marmorata was found to be time, pH and temperature dependent, and related to the amount of substrate (T4) and homogenate introduced into the reaction vessel, in a manner which was consistent with Menton-Michaelis kinetics, and thus indicative of an enzyme-regulated process. Dithiothreitol introduced into the reaction vessel stimulated T3 production in a dose-related manner.Hepatic 5'-monodeiodinase activity was also detected in a further 28 species of teleosts suggesting that the peripheral monodeiodination of T4, which is well-documented in salmonids, is also widespread amongst other teleost fishes. All species examined exhibited evidence of enzymatic deiodination, but there were marked differences in Km and Vmax values between the species. There was no apparent phylogenetic or environmental relationships to explain the widely divergent Km and/or Vmax values, nor was there a correlation between Km and Vmax when the species were considered together. PMID:24221892

  9. [A Case of Severe Chronic Active Epstein-Barr Virus Infection with Aplastic Anemia and Hepatitis].

    PubMed

    Lee, Ja In; Lee, Sung Won; Han, Nam Ik; Ro, Sang Mi; Noh, Yong-Sun; Jang, Jeong Won; Bae, Si Hyun; Choi, Jong Young; Yoon, Seung Kew

    2016-01-25

    Epstein-Barr virus (EBV) causes various acute and chronic diseases. Chronic active EBV infection (CAEBV) is characterized by infectious mononucleosis-like symptoms that persist for more than 6 months with high viral loads in peripheral blood and/or an unusual pattern of anti-EBV antibodies. Severe CAEBV is associated with poor prognosis with severe symptoms, an extremely high EBV-related antibody titer, and hematologic complications that often include hemophagocytic lymphohistiocytosis. However, CAEBV which led to the development of aplastic anemia (AA) has not been reported yet. A 73-year-old woman was admitted to our hospital with intermittent fever, general weakness and elevated liver enzymes. In the serologic test, EBV-related antibody titer was elevated, and real-time quantitative-PCR in peripheral blood showed viral loads exceeding 10(4) copies/μg DNA. Liver biopsy showed characteristic histopathological changes of EBV hepatitis and in situ hybridization with EBV-encoded RNA-1 was positive for EBV. Pancytopenia was detected in peripheral blood, and the bone marrow aspiration biopsy showed hypocellularity with replacement by adipocytes. AA progressed and the patient was treated with prednisolone but deceased 8 months after the diagnosis due to multiple organ failure and opportunistic infection. Herein, we report a rare case of severe CAEBV in an adult patient accompanied by AA and persistent hepatitis. PMID:26809631

  10. Activities of N-mineralization enzymes associated with soil aggregates in three different tillage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil enzymes released by microorganisms play a significant role in N mineralization process that determines N availability for plant growth. Soil aggregates of different sizes provide diverse microhabitats for microorganisms and therefore influence soil enzyme activities. We hypothesize that enzyme ...