Science.gov

Sample records for hepatic glycogen formation

  1. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state

    SciTech Connect

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1989-06-01

    The relative contributions of the direct and the indirect pathways to hepatic glycogen formation following a glucose load given to humans four hours after a substantial breakfast have been examined. Glucose loads labeled with (6-(/sup 14/)C)glucose were given to six healthy volunteers along with diflunisal (1 g) or acetaminophen (1.5 g), drugs excreted in urine as glucuronides. Distribution of /sup 14/C in the glucose unit of the glucuronide was taken as a measure of the extent to which glucose was deposited directly in liver glycogen (ie, glucose----glucose-6-phosphate----glycogen) rather than indirectly (ie, glucose----C3-compound----glucose-6-phosphate----glycogen). The maximum contribution to glycogen formation by the direct pathway was estimated to be 77% +/- 4%, which is somewhat higher than previous estimates in humans fasted overnight (65% +/- 1%, P less than 0.05). Thus, the indirect pathway of liver glycogen formation following a glucose load is operative in both the overnight fasted and the fed state, although its contribution may be somewhat less in the fed state.

  2. Hepatic glycogen in humans. II. Gluconeogenetic formation after oral and intravenous glucose

    SciTech Connect

    Radziuk, J. )

    1989-08-01

    The amount of glycogen that is formed by gluconeogenetic pathways during glucose loading was quantitated in human subjects. Oral glucose loading was compared with its intravenous administration. Overnight-fasted subjects received a constant infusion or (3-{sup 3}H)glucose and a marker for gluconeogenesis, (U-{sup 14}C)lactate or sodium ({sup 14}C)bicarbonate ({sup 14}C)bicarbonate. An unlabeled glucose load was then administered. Postabsorptively, or after glucose infusion was terminated, a third tracer ((6-{sup 3}H)glucose) infusion was initiated along with a three-step glucagon infusion. Without correcting for background stimulation of ({sup 14}C)glucose production or for dilution of {sup 14}C with citric acid cycle carbon in the oxaloacetate pool, the amount of glycogen mobilized by the glucagon infusion that was produced by gluconeogenesis during oral glucose loading was 2.9 +/- 0.7 g calculated from (U-{sup 14}C)-lactate incorporation and 7.4 +/- 1.3 g calculated using ({sup 14}C)bicarbonate as a gluconeogenetic marker. During intravenous glucose administration the latter measurement also yielded 7.2 +/- 1.1 g. When the two corrections above are applied, the respective quantities became 5.3 +/- 1.7 g for (U-{sup 14}C)lactate as tracer and 14.7 +/- 4.3 and 13.9 +/- 3.6 g for oral and intravenous glucose with ({sup 14}C)bicarbonate as tracer (P less than 0.05, vs. ({sup 14}C)-lactate as tracer). When (2-{sup 14}C)acetate was infused, the same amount of label was incorporated into mobilized glycogen regardless of which route of glucose administration was used. Comparison with previous data also suggests that {sup 14}CO{sub 2} is a potentially useful marker for the gluconeogenetic process in vivo.

  3. Minimal hepatic glucose-6-phosphatase-α activity required to sustain survival and prevent hepatocellular adenoma formation in murine glycogen storage disease type Ia

    PubMed Central

    Lee, Young Mok; Kim, Goo-Young; Pan, Chi-Jiunn; Mansfield, Brian C.; Chou, Janice Y.

    2015-01-01

    Glycogen storage disease type Ia (GSD-Ia), characterized by impaired glucose homeostasis and chronic risk of hepatocellular adenoma (HCA), is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. In a previous 70–90 week-study, we showed that a recombinant adeno-associated virus (rAAV) vector-mediated gene transfer that restores more than 3% of wild-type hepatic G6Pase-α activity in G6pc−/− mice corrects hepatic G6Pase-α deficiency with no evidence of HCA. We now examine the minimal hepatic G6Pase-α activity required to confer therapeutic efficacy. We show that rAAV-treated G6pc−/− mice expressing 0.2% of wild-type hepatic G6Pase-α activity suffered from frequent hypoglycemic seizures at age 63–65 weeks but mice expressing 0.5–1.3% of wild-type hepatic G6Pase-α activity (AAV-LL mice) sustain 4–6 h of fast and grow normally to age 75–90 weeks. Despite marked increases in hepatic glycogen accumulation, the AAV-LL mice display no evidence of hepatic abnormalities, hepatic steatosis, or HCA. Interprandial glucose homeostasis is maintained by the G6Pase-α/glucose-6-phosphate transporter (G6PT) complex, and G6PT-mediated microsomal G6P uptake is the rate-limiting step in endogenous glucose production. We show that hepatic G6PT activity is increased in AAV-LL mice. These findings are encouraging for clinical studies of G6Pase-α gene-based therapy for GSD-Ia. PMID:26937391

  4. Influence of stevioside on hepatic glycogen levels in fasted rats.

    PubMed

    Hübler, M O; Bracht, A; Kelmer-Bracht, A M

    1994-04-01

    The influence of stevioside, the sweet glycoside of Stevia rebaudiana leaves, on the glycogen levels of fasted rats was investigated. In one set of experiments, single doses of stevioside (200 mumol) or steviol (200 mumol) were given orally to 24-hours fasted rats, either alone or simultaneously with fructose. Under these conditions both stevioside and steviol increased the initial glycogen deposition in the liver. In another set of experiments, stevioside was given to the rats in the drinking water at the beginning of the fasting periods (5:00 p.m.) of 24 and 48 hours. Two different concentrations were given, 1.0 and 2.0 mM. Increased hepatic glycogen levels were found at 48 hours with stevioside (1.0 mM) and at 24 hours with stevioside (2.0 mM). Steviol had no effect on hepatic glycogen levels when given in the drinking water. It can be concluded that stevioside exerts a stimulatory action on hepatic glycogen synthesis under gluconeogenic conditions. PMID:8042003

  5. Hepatic Glycogen Supercompensation Activates AMP-Activated Protein Kinase, Impairs Insulin Signaling, and Reduces Glycogen Deposition in the Liver

    PubMed Central

    Winnick, Jason J.; An, Zhibo; Ramnanan, Christopher J.; Smith, Marta; Irimia, Jose M.; Neal, Doss W.; Moore, Mary Courtney; Roach, Peter J.; Cherrington, Alan D.

    2011-01-01

    OBJECTIVE The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver’s ability to take up and metabolize glucose. RESEARCH DESIGN AND METHODS During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO2) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion. RESULTS Fructose infusion increased net hepatic glycogen synthesis (0.7 ± 0.5 vs. 6.4 ± 0.4 mg/kg/min; P < 0.001), causing a large difference in hepatic glycogen content (62 ± 9 vs. 100 ± 3 mg/g; P < 0.001). Hepatic glycogen supercompensation (fructose infusion group) did not alter NHGU, but it reduced the percent of NHGU directed to glycogen (79 ± 4 vs. 55 ± 6; P < 0.01) and increased the percent directed to lactate (12 ± 3 vs. 29 ± 5; P = 0.01) and oxidation (9 ± 3 vs. 16 ± 3; P = NS). This change was associated with increased AMP-activated protein kinase phosphorylation, diminished insulin signaling, and a shift in glycogenic enzyme activity toward a state discouraging glycogen accumulation. CONCLUSIONS These data indicate that increases in hepatic glycogen can generate a state of hepatic insulin resistance, which is characterized by impaired glycogen synthesis despite preserved NHGU. PMID:21270252

  6. Familial nephropathy associated with hepatic type of glycogen storage disease.

    PubMed

    Sonobe, H; Ogawa, K; Takahashi, I

    1976-11-01

    The female patient was diagnosed as having Von Gierke's disease at 14 years of age, based on clinical manifestations, laboratory examination and liver biopsy. At 19 years of age she had uremia and died from its deterioration at 24 years of age. The parents were consanguineous, and a 27-year-old sister is presently hospitalized for renal insufficiency with hepatomegaly. On autopsy, the patient's kidneys were highly contracted and contained a number of small cysts, mainly in the medulla. Histological examination indicated periglomerular fibrosis, glomerular hyalinization, tubular atrophy or cystic dilatation and intersitial fibrosis with round cell infiltration. These findings correspond to Fanconi's familial juvenile nephronophthisis, except for age. The liver was markedly enlarged and indicated severe, glycogen deposits, but the kidney did not contain glycogen deposits. It can, therefore, be presumed that the renal lesions were not a secondary consequence of long-term glycogen deposits but that renal and hepatic lesions were associated with each other. PMID:1070908

  7. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans

    SciTech Connect

    Shulman, G.I.; Cline, G.; Schumann, W.C.; Chandramouli, V.; Kumaran, K.; Landau, B.R. )

    1990-09-01

    The effect of fasting vs. refeeding on hepatic glycogen repletion by the direct pathway, i.e., glucose----glucose 6-phosphate (G-6-P)----glycogen, was determined. Acetaminophen was administered during an infusion of glucose labeled with (1-13C)- and (6-14C)glucose into four healthy volunteers after an overnight fast and into the same subjects 4 h after breakfast. 13C enrichments in C-1 and C-6 of glucose formed from urinary acetaminophen glucuronide compared with enrichments in C-1 and C-6 of plasma glucose provided an estimate of glycogen formation by the direct pathway. The specific activity of glucose from the glucuronide compared with the specific activity of the plasma glucose, along with the percentages of 14C in C-1 and C-6 of the glucose from the glucuronide, also provided an estimate of the amount of glycogen formed by the direct pathway. The estimates were similar. Those from (6-14C)glucose would have been higher than from (1-13C)glucose if the pentose cycle contribution to overall glucose utilization had been significant. After an overnight fast, during the last hour of infusion, 49 +/- 3% of the glycogen formed was formed via the direct pathway. After breakfast, at similar plasma glucose and insulin concentrations, the percentage increased to 69 +/- 7% (P less than 0.02). Thus the contributions of the pathways to hepatic glycogen formation depend on the dietary state of the individual. For a dietary regimen in which individuals consume multiple meals per day containing at least a moderate amount of carbohydrates most glycogen synthesis occurs by the direct pathway.

  8. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis.

    PubMed

    Winnick, Jason J; Kraft, Guillaume; Gregory, Justin M; Edgerton, Dale S; Williams, Phillip; Hajizadeh, Ian A; Kamal, Maahum Z; Smith, Marta; Farmer, Ben; Scott, Melanie; Neal, Doss; Donahue, E Patrick; Allen, Eric; Cherrington, Alan D

    2016-06-01

    Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion. PMID:27140398

  9. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis

    PubMed Central

    Kraft, Guillaume; Williams, Phillip; Hajizadeh, Ian A.; Kamal, Maahum Z.; Smith, Marta; Farmer, Ben; Scott, Melanie; Neal, Doss; Donahue, E. Patrick; Allen, Eric; Cherrington, Alan D.

    2016-01-01

    Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion. PMID:27140398

  10. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice

    PubMed Central

    Udoh, Uduak S.; Swain, Telisha M.; Filiano, Ashley N.; Gamble, Karen L.; Young, Martin E.

    2015-01-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. PMID:25857999

  11. Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools

    SciTech Connect

    Ritchie, D.G. )

    1990-01-01

    Cytokines, derived from a wide variety of cell types, are now believed to initiate many of the physiological responses accompanying the inflammatory phase that follows either Gram-negative septicemia or thermal injury. Because hypoglycemia (after endotoxic challenge) and hyperglycemia (after thermal injury) represent well-characterized responses to these injuries, we sought to determine whether hepatic glycogen metabolism could be altered by specific cytokines. Cultured adult rat hepatocytes were prelabeled with ({sup 14}C)glucose for 24 h, a procedure that resulted in the labeling of hepatic glycogen pools that subsequently could be depleted (with concomitant ({sup 14}C)glucose release) by either glucagon or norepinephrine. After the addition of a highly concentrated human monocyte-conditioned medium (MCM) or various cytokines to these prelabeled cells, ({sup 14}C)glucose release was stimulated by MCM and recombinant human interleukin 6 (IL-6) but was not stimulated by other cytokines tested. Furthermore, only antisera to IL-6 were capable of reducing the glucose-releasing factor activity found in MCM. These data therefore suggest a novel glucoregulatory role for IL-6.

  12. Hepatic glycogen synthesis in the fetal mouse: An ultrastructural, morphometric, and autoradiographic investigation of the relationship between the smooth endoplasmic reticulum and glycogen

    SciTech Connect

    Breslin, J.S.

    1989-01-01

    Fetal rodent hepatocytes undergo a rapid and significant accumulation of glycogen prior to birth. The distinct association of the smooth endoplasmic reticulum (SER) with glycogen during glycogen synthesis documented in the adult hepatocyte has not been clearly demonstrated in the fetus. The experiments described in this dissertation tested the hypothesis that SER is present and functions in the synthesis of fetal hepatic glycogen. Biochemical analysis, light microscopic (LM) histochemistry and electron microscope (EM) morphometry demonstrated that fetal hepatic glycogen synthesis began on day 15, with maximum accumulation occurring between days 17-19. Glycogen accumulation began in a small population of cells. Both the number of cells containing glycogen and the quantity of glycogen per cell increased as glycogen accumulated. Smooth endoplasmic reticulum (SER) was observed on day 14 of gestation and throughout fetal hepatic glycogen synthesis, primarily as dilated ribosome-free terminal extensions of rough endoplasmic reticulum (RER), frequently associated with glycogen. SER was in close proximity to isolated particles of glycogen and at the periphery of large compact glycogen deposits. Morphometry demonstrated that the membrane surface of SER in the average fetal hepatocyte increased as glycogen accumulated through day 18 and dropped significantly as glycogen levels peaked on day 19. Parallel alterations in RER membrane surface, indicated overall increases in ER membrane surface. Autoradiography following administration of {sup 3}H-galactose demonstrated that newly synthesized glycogen was deposited near profiles of SER at day 16 and at day 18; however, at day 18 the majority of label was uniformly distributed over glycogen remote from profiles of SER.

  13. Substrate-induced Nuclear Export and Peripheral Compartmentalization of Hepatic Glucokinase Correlates with Glycogen Deposition

    PubMed Central

    Shiota, Masa; Knobel, Susan M.; Piston, David W.; Cherrington, Alan D.; Magnuson, Mark A.

    2001-01-01

    Hepatic glucokinase (GK) is acutely regulated by binding to its nuclear-anchored regulatory protein (GKRP). Although GK release by GKRP is tightly coupled to the rate of glycogen synthesis, the nature of this association is obscure. To gain insight into this coupling mechanism under physiological stimulating conditions in primary rat hepatocytes, we analyzed the subcellular distribution of GK and GKRP with immunofluorescence, and glycogen deposition with glycogen cytochemical fluorescence, using confocal microscopyand quantitative image analysis. Following stimulation, a fraction of the GK signal translocated from the nucleus to the cytoplasm. The reduction in the nuclear to cytoplasmic ratio of GK, an index of nuclear export, correlated with a >50% increase in glycogen cytochemical fluorescence over a 60min stimulation period. Furthermore, glycogen accumulation was initially deposited in a peripheral pattern in hepatocytes similar to that of GK. These data suggest that a compartmentalization exists of both active GK and the initial sites of glycogen deposition at the hepatocyte surface. PMID:12369705

  14. Investigation and management of the hepatic glycogen storage diseases.

    PubMed

    Bhattacharya, Kaustuv

    2015-07-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease. PMID:26835382

  15. Investigation and management of the hepatic glycogen storage diseases

    PubMed Central

    2015-01-01

    The glycogen storage diseases (GSD) comprise a group of disorders that involve the disruption of metabolism of glycogen. Glycogen is stored in various organs including skeletal muscle, the kidneys and liver. The liver stores glycogen to supply the rest of the body with glucose when required. Therefore, disruption of this process can lead to hypoglycaemia. If glycogen is not broken down effectively, this can lead to hepatomegaly. Glycogen synthase deficiency leads to impaired glycogen synthesis and consequently the liver is small. Glycogen brancher deficiency can lead to abnormal glycogen being stored in the liver leading to a quite different disorder of progressive liver dysfunction. Understanding the physiology of GSD I, III, VI and IX guides dietary treatments and the provision of appropriate amounts and types of carbohydrates. There has been recent re-emergence in the literature of the use of ketones in therapy, either in the form of the salt D,L-3-hydroxybutyrate or medium chain triglyceride (MCT). High protein diets have also been advocated. Alternative waxy maize based starches seem to show promising early data of efficacy. There are many complications of each of these disorders and they need to be prospectively surveyed and managed. Liver and kidney transplantation is still indicated in severe refractory disease. PMID:26835382

  16. Ultrasonographic features of hepatic adenomas in type I glycogen storage disease.

    PubMed

    Bowerman, R A; Samuels, B I; Silver, T M

    1983-02-01

    Focal hepatic masses were delineated by ultrasonography in three of five patients with type I glycogen storage disease (von Gierke's disease). Small hepatic adenomas were visualized as solitary or multiple hyperechoic solid lesions within enlarged, abnormally echogenic livers of increased attenuation. Larger adenomas were heterogeneous, with hypoechoic foci presumed to be secondary to necrosis, hemorrhage, or both. A previously unreported ultrasonographic finding is the markedly enhanced sound transmission identified deep to these solid tumors. PMID:6302304

  17. Hepatic glycogen deposition in a patient with anorexia nervosa and persistently abnormal transaminase levels.

    PubMed

    Kransdorf, Lisa N; Millstine, Denise; Smith, Maxwell L; Aqel, Bashar A

    2016-04-01

    Anorexia nervosa and other eating disorders characterized by calorie restriction have been associated with a variety of hepatic abnormalities. Fatty steatosis has been described in eating disorder patients. We report the rare finding of glycogen accumulation in the liver in a patient with anorexia nervosa, which to our knowledge is only the second such case reported in the literature. This case highlights the importance of monitoring for liver abnormalities in patients with restrictive eating disorders. PMID:26066296

  18. Pregnancy and pentobarbital anaesthesia modify hepatic synthesis of acylglycerol glycerol and glycogen from gluconeogenic precursors during fasting in rats.

    PubMed

    Zorzano, A; Herrera, E

    1988-12-01

    1. Incorporation of gluconeogenic precursors into blood glucose and hepatic glycogen and acylglycerol glycerol was examined in 24 h-fasted virgin rats by using a flooding procedure for substrate administration. At 10 min after their intravenous injection, the conversion of alanine or glycerol into liver glycogen or acylglycerol glycerol was proportional to glucose synthesis. 2. In 24 h-fasted 21-day-pregnant rats, the incorporation of alanine and glycerol into hepatic acylglycerol glycerol was markedly enhanced compared with the control group. In addition, during fasting at late pregnancy, the proportion of substrates directed to acylglycerol glycerol as compared with the fraction incorporated into glucose was augmented. 3. In pentobarbital-treated fasted rats, the incorporation of both alanine and pyruvate into circulating glucose and into hepatic glycogen and acylglycerol glycerol was increased. Pentobarbital treatment increased the proportion of substrates incorporated into liver glycogen, compared with the fraction appearing in circulating glucose. These changes were concomitant with a marked accumulation of glycogen. 4. The data indicate that, during fasting, gluconeogenesis provides glucose as well as hepatic glycogen and acylglycerol glycerol, independently of whether the substrates enter gluconeogenesis at the level of pyruvate or dihydroxyacetone phosphate. PMID:3223926

  19. Beta-endorphin infusion during exercise in rats does not alter hepatic or muscle glycogen.

    PubMed

    Jamurtas, A Z; Goldfarb, A H; Chung, S C; Hegde, S; Marino, C; Fatouros, I G

    2001-12-01

    The aim of this study was to determine whether beta-endorphin infusion influences liver or muscle glycogen concentration during exercise. Thirty-two rats (Harlan Co., IN, USA) with a body mass of 265-290 g were assigned at random to four groups, each of eight rats: (1) beta-endorphin infusion for 90 min at rest; (2) beta-endorphin infusion for 90 min while running on a rodent treadmill at 22 m x min(-1) and 0% grade; (3) saline infusion (0.9% NaCl) for 90 min at rest; and (4) saline infusion for 90 min while running on a rodent treadmill at 22 m x min(-1) and 0% grade. Beta-endorphin infusion elevated plasma beta-endorphin concentration by 2.5-fold at rest compared with saline infusion at rest, and by two-fold after exercise compared with saline infusion after exercise. Beta-endorphin infusion attenuated exercise-induced glucose concentration but did not alter the fasting hepatic glycogen concentration at rest or after exercise compared with saline infusion. Fasting hepatic glycogen decreased significantly as a result of 90 min of exercise independent of treatment. Deep intermedius muscle glycogen concentration at rest was similar after 90 min of both beta-endorphin and saline infusion and decreased significantly as a result of 90 min of exercise independent of treatment. Our results suggest that liver and muscle glycogenolysis is not responsible for the differences in plasma glucose with beta-endorphin infusion during exercise. PMID:11820687

  20. Increased Laforin and Laforin Binding to Glycogen Underlie Lafora Body Formation in Malin-deficient Lafora Disease*

    PubMed Central

    Tiberia, Erica; Turnbull, Julie; Wang, Tony; Ruggieri, Alessandra; Zhao, Xiao-Chu; Pencea, Nela; Israelian, Johan; Wang, Yin; Ackerley, Cameron A.; Wang, Peixiang; Liu, Yan; Minassian, Berge A.

    2012-01-01

    The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen. PMID:22669944

  1. Complete Normalization of Hepatic G6PC Deficiency in Murine Glycogen Storage Disease Type Ia Using Gene Therapy

    PubMed Central

    Yiu, Wai Han; Lee, Young Mok; Peng, Wen-Tao; Pan, Chi-Jiunn; Mead, Paul A; Mansfield, Brian C; Chou, Janice Y

    2010-01-01

    Glycogen storage disease type Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest disturbed glucose homeostasis. We examined the efficacy of liver G6Pase-α delivery mediated by AAV-GPE, an adeno-associated virus (AAV) serotype 8 vector expressing human G6Pase-α directed by the human G6PC promoter/enhancer (GPE), and compared it to AAV-CBA, that directed murine G6Pase-α expression using a hybrid chicken β-actin (CBA) promoter/cytomegalovirus (CMV) enhancer. The AAV-GPE directed hepatic G6Pase-α expression in the infused G6pc−/− mice declined 12-fold from age 2 to 6 weeks but stabilized at wild-type levels from age 6 to 24 weeks. In contrast, the expression directed by AAV-CBA declined 95-fold over 24 weeks, demonstrating that the GPE is more effective in directing persistent in vivo hepatic transgene expression. We further show that the rapid decline in transgene expression directed by AAV-CBA results from an inflammatory immune response elicited by the AAV-CBA vector. The AAV-GPE-treated G6pc−/− mice exhibit normal levels of blood glucose, blood metabolites, hepatic glycogen, and hepatic fat. Moreover, the mice maintained normal blood glucose levels even after 6 hours of fasting. The complete normalization of hepatic G6Pase-α deficiency by the G6PC promoter/enhancer holds promise for the future of gene therapy in human GSD-Ia patients. PMID:20389290

  2. Lobular and cellular patterns of early hepatic glycogen deposition in the rat as observed by light and electron microscopic radioautography after injection of /sup 3/H-galactose

    SciTech Connect

    Michaels, J.E.; Hung, J.T.; Garfield, S.A.; Cardell, R.R. Jr.

    1984-05-01

    Very low hepatic glycogen levels are achieved by overnight fasting of adrenalectomized (ADX) rats. Subsequent injection of dexamethasone (DEX), a synthetic glucocorticoid, stimulates marked increases in glycogen synthesis. Using this system and injecting /sup 3/H-galactose as a glycogen precursor 1 hr prior to sacrifice, the intralobular and intracellular patterns of labeled glycogen deposition were studied by light (LM) and electron (EM) microscopic radioautography. LM radioautography revealed that 1 hr after DEX treatment, labeling patterns for both periportal and centrilobular hepatocytes resembled those in rats with no DEX treatment: 18% of the hepatocytes were unlabeled, and 82% showed light labeling. Two hours after treatment with DEX, 14% of the hepatocytes remained unlabeled, and 78% were lightly labeled; however, 8% of the cells, located randomly throughout the lobule, were intensely labeled. An increased number of heavily labeled cells (26%) appeared 3 hr after DEX treatment; and by 5 hr 91% of the hepatocytes were intensely labeled. Label over the periportal cells at this time was aggregated, whereas centrilobular cells displayed dispersed label. EM radioautographs showed that 2 to 3 hr after DEX injection initial labeling of hepatocytes, regardless of their intralobular location, occurred over foci of smooth endoplasmic reticulum (SER) and small electron-dense particles of presumptive glycogen, and in areas of SER and distinct glycogen particles. After 5 hrs of treatment with DEX, the intracellular distribution of label reflected the glycogen patterns characteristic of periportal or centrilobular regions.

  3. Glycogen metabolism in humans.

    PubMed

    Adeva-Andany, María M; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-06-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5'-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis. Glycogenin catalyzes the formation of a short glucose polymer that is extended by the action of glycogen synthase. Glycogen branching enzyme introduces branch points in the glycogen particle at even intervals. Laforin and malin are proteins involved in glycogen assembly but their specific function remains elusive in humans. Glycogen is accumulated in the liver primarily during the postprandial period and in the skeletal muscle predominantly after exercise. In the cytosol, glycogen breakdown or glycogenolysis is carried out by two enzymes, glycogen phosphorylase which releases glucose 1-phosphate from the linear chains of glycogen, and glycogen debranching enzyme which untangles the branch points. In the lysosomes, glycogen degradation is catalyzed by α-glucosidase. The glucose 6-phosphatase system catalyzes the dephosphorylation of glucose 6-phosphate to glucose, a necessary step for free glucose to leave the cell. Mutations in the genes encoding the enzymes involved in glycogen metabolism cause glycogen storage diseases. PMID:27051594

  4. Labeling of hepatic glycogen after short- and long-term stimulation of glycogen synthesis in rats injected with 3H-galactose

    SciTech Connect

    Michaels, J.E.; Garfield, S.A.; Hung, J.T.; Cardell, R.R. Jr. )

    1990-08-01

    The effects of short- and long-term stimulation of glycogen synthesis elicited by dexamethasone were studied by light (LM) and electron (EM) microscopic radioautography (RAG) and biochemical analysis. Adrenalectomized rats were fasted overnight and pretreated for short- (3 hr) or long-term (14 hr) periods with dexamethasone prior to intravenous injection of tracer doses of 3H-galactose. Analysis of LM-RAGs from short-term rats revealed that about equal percentages (44%) of hepatocytes became heavily or lightly labeled 1 hr after labeling. The percentage of heavily labeled cells increased slightly 6 hr after labeling, and unlabeled glycogen became apparent in some hepatocytes. The percentage of heavily labeled cells had decreased somewhat 12 hr after labeling, and more unlabeled glycogen was evident. In the long-term rats 1 hr after labeling, a higher percentage of heavily labeled cells (76%) was observed compared to short-term rats, and most glycogen was labeled. In spite of the high amount of labeling seen initially, the percentage of heavily labeled hepatocytes had decreased considerably to 55% by 12 hr after injection; and sparsely labeled and unlabeled glycogen was prevalent. The EM-RAGs of both short- and long-term rats were similar. Silver grains were associated with glycogen patches 1 hr after labeling; 12 hr after labeling, the glycogen patches had enlarged; and label, where present, was dispersed over the enlarged glycogen clumps. Analysis of DPM/mg tissue corroborated the observed decrease in label 12 hr after administration in the long-term animals. The loss of label observed 12 hr after injection in the long-term pretreated rats suggests that turnover of glycogen occurred during this interval despite the net accumulation of glycogen that was visible morphologically and evident from biochemical measurement.

  5. A low calorie morning meal prevents the decline of hepatic glycogen stores: a pilot in vivo (13)C magnetic resonance study.

    PubMed

    Bawden, S J; Stephenson, M C; Ciampi, E; Hunter, K; Marciani, L; Spiller, R C; Aithal, G P; Morris, P G; Macdonald, I A; Gowland, P A

    2014-09-01

    Previous studies have reported a meal-induced rise in hepatic glycogen stores from baseline levels following a fast and it is generally assumed that glycogen levels rise steadily following meals throughout the day. However, measurements are normally taken in conditions that are not typical of the Western breakfast, which is relatively carbohydrate rich with a lower calorific content than most experimental test meals. As such, little is known about the normal metabolic response to a realistic, low calorie morning meal. Therefore, the aim of this pilot study was to evaluate the effects of a low dose oral glucose intake on hepatic glycogen levels following an overnight fast in healthy subjects. Glycogen levels were monitored in vivo using (13)C Magnetic Resonance Spectroscopy at baseline and hourly for 4 hours following either a 50 g glucose drink (773 kJ) or a control drink (0 kJ) given over two different visits. During the control visit hepatic glycogen levels decreased throughout the experiment with statistically significant decreases from baseline at 190 minutes (P < 0.05) and 250 minutes (P < 0.05). By contrast, the low dose glucose intake maintained glycogen concentrations with no significant decrease from baseline over 4 hours. A comparison between visits revealed that mean glycogen concentrations were significantly greater during the glucose visit (control visit, AUC = 218 ± 39 mol L(-1) min(-1); glucose visit, AUC = 305 ± 49 mol L(-1) min(-1); P < 0.05). Liver volume decreased significantly from baseline at 180 minutes (P < 0.05) post consumption in both groups, with no significant difference found between visits. Gastric content volumes were significantly higher for the glucose visit immediately following consumption (P < 0.001) and at 60 minutes (P = 0.007) indicating slower gastric emptying for the glucose compared with the control. In conclusion, following an overnight fast, a low dose oral glucose challenge prevents a reduction in hepatic glycogen

  6. A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification.

    PubMed

    Iverson, Sonya V; Eriksson, Sofi; Xu, Jianqiang; Prigge, Justin R; Talago, Emily A; Meade, Tesia A; Meade, Erin S; Capecchi, Mario R; Arnér, Elias S J; Schmidt, Edward E

    2013-10-01

    Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however, their constitutive metabolic state supported more robust GSH biosynthesis, glutathionylation, and glucuronidation systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage. PMID:23743293

  7. A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification

    PubMed Central

    Iverson, Sonya V.; Eriksson, Sofi; Xu, Jianqiang; Prigge, Justin R.; Talago, Emily A.; Meade, Tesia A.; Meade, Erin S.; Capecchi, Mario R.; Arnér, Elias S.J.; Schmidt, Edward E.

    2013-01-01

    Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug-metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however their constitutive metabolic state supported more robust GSH biosynthesis-, glutathionylation-, and glucuronidation-systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage. PMID:23743293

  8. Effect of chronic supplementation with branched-chain amino acids on the performance and hepatic and muscle glycogen content in trained rats.

    PubMed

    de Araujo, Jonas A; Falavigna, Gina; Rogero, Marcelo M; Pires, Ivanir S O; Pedrosa, Rogerio G; Castro, Inar A; Donato, Jose; Tirapegui, Julio

    2006-08-29

    The objective of this study was to evaluate the effects of a diet supplemented with branched-chain amino acids (BCAA; 3.57% and 4.76%) on the performance and glycogen metabolism of trained rats. Thirty-six adult male Wistar rats received the control diet (AIN-93M) (n=12) and two diets supplemented with BCAA (S1: AIN-93M+3.57% BCAA, n=12, and S2: AIN-93M+4.76% BCAA, n=12) for 6 weeks. The training protocol consisted of bouts of swimming exercise (60 min day(-1)) for 6 weeks at intensities close to the lactate threshold. On the last day of the experiment, all groups were trained for 1 h (1H) or were submitted to the exhaustion test (EX). The time to exhaustion did not differ between groups. The groups submitted to the exhaustion test presented a reduction in plasma glucose and an increase in plasma ammonia and blood lactate concentrations compared to the 1H condition. In the 1H condition, hepatic glycogen concentration was significantly higher in group S2 compared to the control diet and S1 groups (132% and 44%, respectively). Group S2 in the 1H condition presented a higher muscle glycogen concentration (45%) compared to the control diet group. In the EX condition, a significantly higher hepatic glycogen concentration was observed for group S2 compared to the control diet and S1 groups (262% and 222%, respectively). Chronic supplementation with BCAA promoted a higher hepatic and muscle glycogen concentration in trained animals, with this effect being dose dependent. PMID:16698042

  9. Inhibition of hepatic triglyceride formation by clofibrate

    PubMed Central

    Adams, Larry L.; Webb, William W.; Fallon, Harold J.

    1971-01-01

    The effect of clofibrate (CPIB) on hepatic glycerolipid formation has been studied in vivo and in vitro in the rat. Feeding 0.25% CPIB in laboratory chow significantly reduced serum triglyceride levels by 6 hr and concomitantly decreased the rate of glycerol-14C incorporation into hepatic and serum glycerides, in vivo. These changes persisted for at least 14 days. A similar decrease in serum triglyceride and glycerol incorporation into hepatic glycerides was observed in rats fed high glucose diets containing 0.25% CPIB. Serum glycerol was reduced by feeding CPIB for 14 days. The formation of diglyceride and triglyceride from 14C-sn-glycerol-3-P by rat liver homogenates was inhibited by addition of 1-40 mM CPIB to the reaction mixture. These results suggest that CPIB reduces hepatic glycerolipid synthesis, possibly by inhibition of one or more reactions in the esterification of sn-glycerol-3-P. This change may account for the early fall in serum triglyceride. At later time periods, serum glycerol levels fall and in some experiments, hepatic triglyceride content increases. Therefore, it is likely that additional metabolic alterations may contribute to the sustained hypotriglyceridemic effects of CPIB. PMID:5096518

  10. Focal hepatic infarction with bile lake formation

    SciTech Connect

    Peterson, I.M.; Neumann, C.H.

    1984-06-01

    Venous thrombosis associated with oral contraceptives is a well recognized phenomenon. Arterial thrombosis, while less common, is also a known risk, as evidenced by the increased incidence of cerebral vascular accidents and myocardial ischemia or infarction. The liver is relatively protected from the usual consequences of arterial thrombosis because of its dual blood supply. The authors present an unusual case of a young woman with a history of oral contraceptive and cigarette use who developed hepatic artery thrombosis and had focal liver lesions on computed tomography (CT) due to hepatic infarction and bile lake formation despite an intact portal venous system.

  11. NATURAL HISTORY OF HEPATOCELLULAR ADENOMA FORMATION IN GLYCOGEN STORAGE DISEASE TYPE I

    PubMed Central

    Wang, David Q.; Fiske, Laurie M.; Carreras, Caroline T.; Weinstein, David A.

    2011-01-01

    Objective To characterize the natural history and factors related to hepatocellular adenoma (HCA) development in glycogen storage disease type I (GSD I). Study design Retrospective chart review was performed for 117 patients with GSD I. Kaplan-Meier analysis of HCA progression among two groups of patients with GSD Ia (five-year mean triglyceride concentration ≤500 mg/dL and >500 mg/dL); analysis of serum triglyceride concentration, body mass index (BMI) standard deviation score (SDS), and height SDS between cases at time of HCA diagnosis and age- and sex-matched controls. Results Logrank analysis of Kaplan-Meier survival curve demonstrated a significant difference in progression to HCA between the five-year mean triglyceride groups (p = 0.008). No significant difference was detected in progression to adenoma event between sexes. Serum triglyceride concentration was significantly different at time of diagnosis of adenoma (737±422 mg/dL) compared with controls (335±195 mg/dL) (p = 0.009). Differences in height SDS (p = 0.051) and BMI SDS (p = 0.066) approached significance in our case-control analysis. Conclusion Metabolic control may be related to HCA formation in patients with GSD Ia. Optimizing metabolic control remains critical, and further studies are warranted to understand the pathogenesis of adenoma development. PMID:21481415

  12. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.

    PubMed

    Liu, Tong-Yan; Shi, Chang-Xiang; Gao, Run; Sun, Hai-Jian; Xiong, Xiao-Qing; Ding, Lei; Chen, Qi; Li, Yue-Hua; Wang, Jue-Jin; Kang, Yu-Ming; Zhu, Guo-Qing

    2015-11-01

    Increased glucose production and reduced hepatic glycogen storage contribute to metabolic abnormalities in diabetes. Irisin, a newly identified myokine, induces the browning of white adipose tissue, but its effects on gluconeogenesis and glycogenesis are unknown. In the present study, we investigated the effects and underlying mechanisms of irisin on gluconeogenesis and glycogenesis in hepatocytes with insulin resistance, and its therapeutic role in type 2 diabetic mice. Insulin resistance was induced by glucosamine (GlcN) or palmitate in human hepatocellular carcinoma (HepG2) cells and mouse primary hepatocytes. Type 2 diabetes was induced by streptozotocin/high-fat diet (STZ/HFD) in mice. In HepG2 cells, irisin ameliorated the GlcN-induced increases in glucose production, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression, and glycogen synthase (GS) phosphorylation; it prevented GlcN-induced decreases in glycogen content and the phosphoinositide 3-kinase (PI3K) p110α subunit level, and the phosphorylation of Akt/protein kinase B, forkhead box transcription factor O1 (FOXO1) and glycogen synthase kinase-3 (GSK3). These effects of irisin were abolished by the inhibition of PI3K or Akt. The effects of irisin were confirmed in mouse primary hepatocytes with GlcN-induced insulin resistance and in human HepG2 cells with palmitate-induced insulin resistance. In diabetic mice, persistent subcutaneous perfusion of irisin improved the insulin sensitivity, reduced fasting blood glucose, increased GSK3 and Akt phosphorylation, glycogen content and irisin level, and suppressed GS phosphorylation and PEPCK and G6Pase expression in the liver. Irisin improves glucose homoeostasis by reducing gluconeogenesis via PI3K/Akt/FOXO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via PI3K/Akt/GSK3-mediated GS activation. Irisin may be regarded as a novel therapeutic strategy for insulin resistance and type 2 diabetes. PMID

  13. History of Hepatic Bile Formation: Old Problems, New Approaches

    ERIC Educational Resources Information Center

    Javitt, Norman B.

    2014-01-01

    Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The…

  14. In vivo hepatic lipid quantification using MRS at 7 Tesla in a mouse model of glycogen storage disease type 1a

    PubMed Central

    Ramamonjisoa, Nirilanto; Ratiney, Helene; Mutel, Elodie; Guillou, Herve; Mithieux, Gilles; Pilleul, Frank; Rajas, Fabienne; Beuf, Olivier; Cavassila, Sophie

    2013-01-01

    The assessment of liver lipid content and composition is needed in preclinical research to investigate steatosis and steatosis-related disorders. The purpose of this study was to quantify in vivo hepatic fatty acid content and composition using a method based on short echo time proton magnetic resonance spectroscopy (MRS) at 7 Tesla. A mouse model of glycogen storage disease type 1a with inducible liver-specific deletion of the glucose-6-phosphatase gene (L-G6pc−/−) mice and control mice were fed a standard diet or a high-fat/high-sucrose (HF/HS) diet for 9 months. In control mice, hepatic lipid content was found significantly higher with the HF/HS diet than with the standard diet. As expected, hepatic lipid content was already elevated in L-G6pc−/− mice fed a standard diet compared with control mice. L-G6pc−/− mice rapidly developed steatosis which was not modified by the HF/HS diet. On the standard diet, estimated amplitudes from olefinic protons were found significantly higher in L-G6pc−/− mice compared with that in control mice. L-G6pc−/− mice showed no noticeable polyunsaturation from diallylic protons. Total unsaturated fatty acid indexes measured by gas chromatography were in agreement with MRS measurements. These results showed the great potential of high magnetic field MRS to follow the diet impact and lipid alterations in mouse liver. PMID:23596325

  15. Malignant Transformation of Hepatic Adenoma in Glycogen Storage Disease Type-1a: Report of an Exceptional Case Diagnosed on Surveillance Imaging

    PubMed Central

    Baheti, Akshay D.; Yeh, Matthew M.; O'Malley, Ryan; Lalwani, Neeraj

    2015-01-01

    Hepatocellular adenoma is a heterogeneous group of benign neoplasms arising from hepatocellular cells and can be subclassified into four major groups based on genotypic and phenotypic characteristics. These four subtypes are hepatocyte nuclear factor (HNF) 1α-inactivated, β-catenin–activated, inflammatory, and unclassified adenomas. Immunohistochemistry studies have demonstrated that since β-catenin–activated adenomas have a higher risk of malignant transformation, the identification of the subtype of adenoma remains crucial in patient management. However, malignant transformation of hepatic adenoma without β-catenin overexpression can be seen in 30–65% cases. We report a case of malignant transformation of hepatic adenoma without overexpression of β-catenin in a 31-year-old man with a known glycogen storage disease (GSD) Type-1a, which was diagnosed on surveillance magnetic resonance imaging (MRI). The MRI showed a mild interval increase in one lesion with relative stability of the other adenomas. The lesion was presumed to be suspicious for a hepatocellular carcinoma (HCC) and was confirmed on pathology. PMID:26430540

  16. Glycogen metabolism in humans☆☆☆

    PubMed Central

    Adeva-Andany, María M.; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-01-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5ʹ-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis. Glycogenin catalyzes the formation of a short glucose polymer that is extended by the action of glycogen synthase. Glycogen branching enzyme introduces branch points in the glycogen particle at even intervals. Laforin and malin are proteins involved in glycogen assembly but their specific function remains elusive in humans. Glycogen is accumulated in the liver primarily during the postprandial period and in the skeletal muscle predominantly after exercise. In the cytosol, glycogen breakdown or glycogenolysis is carried out by two enzymes, glycogen phosphorylase which releases glucose 1-phosphate from the linear chains of glycogen, and glycogen debranching enzyme which untangles the branch points. In the lysosomes, glycogen degradation is catalyzed by α-glucosidase. The glucose 6-phosphatase system catalyzes the dephosphorylation of glucose 6-phosphate to glucose, a necessary step for free glucose to leave the cell. Mutations in the genes encoding the enzymes involved in glycogen metabolism cause glycogen storage diseases. PMID:27051594

  17. Biomarker for Glycogen Storage Diseases

    ClinicalTrials.gov

    2016-08-25

    Fructose Metabolism, Inborn Errors; Glycogen Storage Disease; Glycogen Storage Disease Type I; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Glycogen Storage Disease Type VI; Glycogen Storage Disease Type VII; Glycogen Storage Disease Type VIII

  18. [Multiple calcium oxalate stone formation in a patient with glycogen storage disease type I (von Gierke's disease) and renal tubular acidosis type I: a case report].

    PubMed

    Kanematsu, A; Segawa, T; Kakehi, Y; Takeuchi, H

    1993-07-01

    A case of multiple urinary stones in a patient with glycogen storage disease type 1 (GSD-1) is reported. In spite of the presence of hyperuricemia, these stones did not consist of uric acid, but mainly of calcium oxalate. Laboratory studies revealed distal renal tubular acidosis and hypocitraturia, but no significant abnormality in calcium metabolism. We discussed the mechanism of calcium stone formation in our case, and its prophylactic treatment by oral administration of citrate compound. PMID:8362684

  19. Liver Glycogen Loading Dampens Glycogen Synthesis Seen in Response to Either Hyperinsulinemia or Intraportal Glucose Infusion

    PubMed Central

    Winnick, Jason J.; An, Zhibo; Kraft, Guillaume; Ramnanan, Christopher J.; Irimia, Jose M.; Smith, Marta; Lautz, Margaret; Roach, Peter J.; Cherrington, Alan D.

    2013-01-01

    The purpose of this study was to determine the effect of liver glycogen loading on net hepatic glycogen synthesis during hyperinsulinemia or hepatic portal vein glucose infusion in vivo. Liver glycogen levels were supercompensated (SCGly) in two groups (using intraportal fructose infusion) but not in two others (Gly) during hyperglycemic-normoinsulinemia. Following a 2-h control period during which fructose infusion was stopped, there was a 2-h experimental period in which the response to hyperglycemia plus either 4× basal insulin (INS) or portal vein glucose infusion (PoG) was measured. Increased hepatic glycogen reduced the percent of glucose taken up by the liver that was deposited in glycogen (74 ± 3 vs. 53 ± 5% in Gly+INS and SCGly+INS, respectively, and 72 ± 3 vs. 50 ± 6% in Gly+PoG and SCGly+PoG, respectively). The reduction in liver glycogen synthesis in SCGly+INS was accompanied by a decrease in both insulin signaling and an increase in AMPK activation, whereas only the latter was observed in SCGly+PoG. These data indicate that liver glycogen loading impairs glycogen synthesis regardless of the signal used to stimulate it. PMID:22923473

  20. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells.

    PubMed

    Otani, Satoshi; Kakinuma, Sei; Kamiya, Akihide; Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin; Asahina, Yasuhiro; Yamaguchi, Tomoyuki; Koshikawa, Naohiko; Seiki, Motoharu; Nakauchi, Hiromitsu; Watanabe, Mamoru

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14-deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14-deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14-deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14-deficient livers. We demonstrate that MMP-14-mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. PMID:26724533

  1. In vitro digestion of starches in a dynamic gastrointestinal model: an innovative study to optimize dietary management of patients with hepatic glycogen storage diseases.

    PubMed

    Nalin, Tatiéle; Venema, Koen; Weinstein, David A; de Souza, Carolina F M; Perry, Ingrid D S; van Wandelen, Mario T R; van Rijn, Margreet; Smit, G Peter A; Schwartz, Ida V D; Derks, Terry G J

    2015-05-01

    Uncooked cornstarch (UCCS) is a widely used treatment strategy for patients with hepatic glycogen storage disease (GSD). It has been observed that GSD-patients display different metabolic responses to different cornstarches. The objective was to characterize starch fractions and analyze the digestion of different starches in a dynamic gastrointestinal in vitro model. The following brands of UCCS were studied: Argo and Great Value from the United States of America; Brazilian Maizena Duryea and Yoki from Brazil; Dutch Maizena Duryea from the Netherlands. Glycosade, a modified starch, and sweet polvilho, a Brazilian starch extracted from cassava, were also studied. The starch fractions were analyzed by glycemic TNO index method and digestion analyses were determined by the TIM-1 system, a dynamic, computer-controlled, in vitro gastrointestinal model, which simulates the stomach and small intestine. The final digested amounts were between 84 and 86% for the UCCS and Glycosade, but was 75.5% for sweet povilho. At 180 min of the experiment, an important time-point for GSD patients, the digested amount of the starches corresponded to 67.9-71.5 for the UCCS and Glycosade, while it was 55.5% for sweet povilho. In an experiment with a mixture of sweet polvilho and Brazilian Maizena Duryea, a final digested amount of 78.4% was found, while the value at 180 min was 61.7%. Sweet polvilho seems to have a slower and extended release of glucose and looks like an interesting product to be further studied as it might lead to extended normoglycemia in GSD-patients. PMID:25224825

  2. Protein kinase R-like endoplasmic reticulum kinase and glycogen synthase kinase-3α/β regulate foam cell formation[S

    PubMed Central

    McAlpine, Cameron S.; Werstuck, Geoff H.

    2014-01-01

    Evidence suggests a causative role for endoplasmic reticulum (ER) stress in the development of atherosclerosis. This study investigated the potential role of glycogen synthase kinase (GSK)-3α/β in proatherogenic ER stress signaling. Thp1-derived macrophages were treated with the ER stress-inducing agents, glucosamine, thapsigargin, or palmitate. Using small-molecule inhibitors of specific unfolded protein response (UPR) signaling pathways, we found that protein kinase R-like ER kinase (PERK), but not inositol requiring enzyme 1 or activating transcription factor 6, is required for the activation of GSK3α/β by ER stress. GSK3α/β inhibition or siRNA-directed knockdown attenuated ER stress-induced expression of distal components of the PERK pathway. Macrophage foam cells within atherosclerotic plaques and isolated macrophages from ApoE−/− mice fed a diet supplemented with the GSK3α/β inhibitor valproate had reduced levels of C/EBP homologous protein (CHOP). GSK3α/β inhibition blocked ER stress-induced lipid accumulation and the upregulation of genes associated with lipid metabolism. In primary mouse macrophages, PERK inhibition blocked ER stress-induced lipid accumulation, whereas constitutively active S9A-GSK3β promoted foam cell formation and CHOP expression, even in cells treated with a PERK inhibitor. These findings suggest that ER stress-PERK-GSK3α/β signaling promotes proatherogenic macrophage lipid accumulation. PMID:25183803

  3. Glycogen storage diseases: New perspectives

    PubMed Central

    Özen, Hasan

    2007-01-01

    Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis. The overall GSD incidence is estimated 1 case per 20000-43000 live births. There are over 12 types and they are classified based on the enzyme deficiency and the affected tissue. Disorders of glycogen degradation may affect primarily the liver, the muscle, or both. Type Ia involves the liver, kidney and intestine (and Ib also leukocytes), and the clinical manifestations are hepatomegaly, failure to thrive, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia. Type IIIa involves both the liver and muscle, and IIIb solely the liver. The liver symptoms generally improve with age. Type IV usually presents in the first year of life, with hepatomegaly and growth retardation. The disease in general is progressive to cirrhosis. Type VI and IX are a heterogeneous group of diseases caused by a deficiency of the liver phosphorylase and phosphorylase kinase system. There is no hyperuricemia or hyperlactatemia. Type XI is characterized by hepatic glycogenosis and renal Fanconi syndrome. Type II is a prototype of inborn lysosomal storage diseases and involves many organs but primarily the muscle. Types V and VII involve only the muscle. PMID:17552001

  4. The 3T3-L1 adipocyte glycogen proteome

    PubMed Central

    2013-01-01

    Background Glycogen is a branched polysaccharide of glucose residues, consisting of α-1-4 glycosidic linkages with α-1-6 branches that together form multi-layered particles ranging in size from 30 nm to 300 nm. Glycogen spatial conformation and intracellular organization are highly regulated processes. Glycogen particles interact with their metabolizing enzymes and are associated with a variety of proteins that intervene in its biology, controlling its structure, particle size and sub-cellular distribution. The function of glycogen in adipose tissue is not well understood but appears to have a pivotal role as a regulatory mechanism informing the cells on substrate availability for triacylglycerol synthesis. To provide new molecular insights into the role of adipocyte glycogen we analyzed the glycogen-associated proteome from differentiated 3T3-L1-adipocytes. Results Glycogen particles from 3T3-L1-adipocytes were purified using a series of centrifugation steps followed by specific elution of glycogen bound proteins using α-1,4 glucose oligosaccharides, or maltodextrins, and tandem mass spectrometry. We identified regulatory proteins, 14-3-3 proteins, RACK1 and protein phosphatase 1 glycogen targeting subunit 3D. Evidence was also obtained for a regulated subcellular distribution of the glycogen particle: metabolic and mitochondrial proteins were abundant. Unlike the recently analyzed hepatic glycogen proteome, no endoplasmic proteins were detected, along with the recently described starch-binding domain protein 1. Other regulatory proteins which have previously been described as glycogen-associated proteins were not detected, including laforin, the AMPK beta-subunit and protein targeting to glycogen (PTG). Conclusions These data provide new molecular insights into the regulation of glycogen-bound proteins that are associated with the maintenance, organization and localization of the adipocyte glycogen particle. PMID:23521774

  5. Hepatitis

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  6. Specific features of glycogen metabolism in the liver.

    PubMed Central

    Bollen, M; Keppens, S; Stalmans, W

    1998-01-01

    Although the general pathways of glycogen synthesis and glycogenolysis are identical in all tissues, the enzymes involved are uniquely adapted to the specific role of glycogen in different cell types. In liver, where glycogen is stored as a reserve of glucose for extrahepatic tissues, the glycogen-metabolizing enzymes have properties that enable the liver to act as a sensor of blood glucose and to store or mobilize glycogen according to the peripheral needs. The prime effector of hepatic glycogen deposition is glucose, which blocks glycogenolysis and promotes glycogen synthesis in various ways. Other glycogenic stimuli for the liver are insulin, glucocorticoids, parasympathetic (vagus) nerve impulses and gluconeogenic precursors such as fructose and amino acids. The phosphorolysis of glycogen is mainly mediated by glucagon and by the orthosympathetic neurotransmitters noradrenaline and ATP. Many glycogenolytic stimuli, e.g. adenosine, nucleotides and NO, also act indirectly, via secretion of eicosanoids from non-parenchymal cells. Effectors often initiate glycogenolysis cooperatively through different mechanisms. PMID:9806880

  7. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways.

    PubMed

    Greenberg, Cynthia C; Jurczak, Michael J; Danos, Arpad M; Brady, Matthew J

    2006-07-01

    Glycogen is the storage form of carbohydrate for virtually every organism from yeast to primates. Most mammalian tissues store glucose as glycogen, with the major depots located in muscle and liver. The French physiologist Claude Bernard first identified a starch-like substance in liver and muscle and coined the term glycogen, or "sugar former," in the 1850s. During the 150 years since its identification, researchers in the field of glycogen metabolism have made numerous discoveries that are now recognized as significant milestones in biochemistry and cell signaling. Even so, more questions remain, and studies continue to demonstrate the complexity of the regulation of glycogen metabolism. Under classical definitions, the functions of glycogen seem clear: muscle glycogen is degraded to generate ATP during increased energy demand, whereas hepatic glycogen is broken down for release of glucose into the bloodstream to supply other tissues. However, recent findings demonstrate that the roles of glycogen metabolism in energy sensing, integration of metabolic pathways, and coordination of cellular responses to hormonal stimuli are far more complex. PMID:16478770

  8. Computed tomography of the liver and kidneys in glycogen storage disease.

    PubMed

    Doppman, J L; Cornblath, M; Dwyer, A J; Adams, A J; Girton, M E; Sidbury, J

    1982-02-01

    Glycogen, in concentrations encountered in von Gierke's disease, has computed tomography (CT) attenuation coefficients in the 50 to 70 Hounsfield unit (HU: 1,000 scale) range and accounts for the increased density of the liver. However, in eight patients with Type I glycogen storage disease, simultaneous hepatic infiltration with fat and glycogen led to a range of liver CT densities from 13 to 80 HU. Fatty infiltration may facilitate the demonstration of hepatic tumors in older patients with this disease. Half the patients showed increased attenuation coefficients of the renal cortex, indicating glycogen deposition in the kidneys. PMID:6950959

  9. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    SciTech Connect

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  10. Scintigraphic abnormalities in glycogen storage disease.

    PubMed

    Miller, J H; Gates, G F; Landing, B H; Kogut, M D; Roe, T F

    1978-04-01

    Fifteen patients with glycogen-storage disease type 1 (von Gierke's disease) were evaluated by serial scintigraphy, with a clearly recognizable pattern of an enlarged liver with diminished radionuclide accumulation, splenomegaly with considerably increased uptake and renomegaly. In seven of these patients with GSD-1 scintigraphy demonstrated focal defects of varying size. Small or stable defects suggest benign hepatic adenomata, whereas malignant change occurred in growing large lesions. The potential malignant end-point of hepatic-cell carcinoma in GSD-1 warrants careful serial liver scintigraphy with scintiangiography on a routine basis. PMID:204758

  11. Hepatitis

    MedlinePlus

    ... has been associated with drinking contaminated water. Hepatitis Viruses Type Transmission Prognosis A Fecal-oral (stool to ... risk for severe disease. Others A variety of viruses can affect the liver Signs and Symptoms Hepatitis ...

  12. Hepatitis

    MedlinePlus

    ... be serious. Some can lead to scarring, called cirrhosis, or to liver cancer. Sometimes hepatitis goes away by itself. If it does not, it can be treated with drugs. Sometimes hepatitis lasts a lifetime. Vaccines can help prevent some viral forms.

  13. Metabolic Crosstalk: Molecular Links Between Glycogen and Lipid Metabolism in Obesity

    PubMed Central

    Lu, Binbin; Bridges, Dave; Yang, Yemen; Fisher, Kaleigh; Cheng, Alan; Chang, Louise; Meng, Zhuo-Xian; Lin, Jiandie D.; Downes, Michael; Yu, Ruth T.; Liddle, Christopher; Evans, Ronald M.

    2014-01-01

    Glycogen and lipids are major storage forms of energy that are tightly regulated by hormones and metabolic signals. We demonstrate that feeding mice a high-fat diet (HFD) increases hepatic glycogen due to increased expression of the glycogenic scaffolding protein PTG/R5. PTG promoter activity was increased and glycogen levels were augmented in mice and cells after activation of the mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target SREBP1. Deletion of the PTG gene in mice prevented HFD-induced hepatic glycogen accumulation. Of note, PTG deletion also blocked hepatic steatosis in HFD-fed mice and reduced the expression of numerous lipogenic genes. Additionally, PTG deletion reduced fasting glucose and insulin levels in obese mice while improving insulin sensitivity, a result of reduced hepatic glucose output. This metabolic crosstalk was due to decreased mTORC1 and SREBP activity in PTG knockout mice or knockdown cells, suggesting a positive feedback loop in which once accumulated, glycogen stimulates the mTORC1/SREBP1 pathway to shift energy storage to lipogenesis. Together, these data reveal a previously unappreciated broad role for glycogen in the control of energy homeostasis. PMID:24722244

  14. Temporary accumulation of glycogen in the epithelial cells of the developing mouse submandibular gland.

    PubMed

    Matsuura, Sachiko; Koyama, Noriko; Kashimata, Masanori; Hayashi, Haruki; Kikuta, Akio

    2007-09-01

    Temporary accumulation of glycogen in the epithelial cells of the developing mouse submandibular gland was examined under light microscopic histochemistry and electron microscopy. To avoid loss of water-soluble glycogen during histological tissue preparation, fixation with ethanol and embedding in hydrophilic glycol methacrylate resin was used for light microscopy, and high-pressure freezing/freeze substitution for electron microscopy. Glycogen was detected on periodic acid-Schiff stain, periodic acid-thiosemicarbazide-silver proteinate reaction, and the digestion test with alpha-amylase. On embryonic day 14, glycogen began to accumulate in the proximal portions of the developing epithelial cords. On embryonic day 17, marked glycogen particles were seen at the basal portion of the ductal epithelial cells and an abrupt increase of glycogen accumulation occurred in the secretory cells in the terminal bulbs. Ultrastructural observation indicated large clumps of glycogen particles localized in the basal portion of the terminal bulb cells. The initiation of glycogen accumulation preceded the formation of lumens in the ducts and terminal bulbs. Furthermore, proliferation analysis by bromodeoxyuridine labeling showed that this glycogen accumulation followed the cessation of the epithelial cell proliferation. Postnatally, glycogen accumulation in the terminal bulbs became gradually inconspicuous and completely disappeared by postnatal day 3, but that in the ducts was retained until around postnatal day 12. Temporary glycogen accumulation after the cell proliferation and before/during the lumen formation and secretory granule formation suggests significant involvement of the carbohydrate metabolism in the organogenesis of the submandibular gland. PMID:17867343

  15. Stimulators and Inhibitors of Hepatic Porphyrin Formation in Human Sera

    PubMed Central

    Rifkind, Arleen B.; Sassa, Shigeru; Merkatz, Irwin R.; Winchester, Robert; Harber, Leonard; Kappas, Attallah

    1974-01-01

    Human sera were found to contain factors that stimulate and factors that inhibit porphyrin formation by cultured avian liver cells. The capacity of sera to stimulate or inhibit porphyrin formation varied in different hormonal states and in the porphyrias. Sera from 31 post partum women, eight of whom were not lactating, inhibited porphyrin formation to a mean level 30% below the level in control cultures and also inhibited drug and steroid stimulation of porphyrin formation. In contrast, mean porphyrin formation compared to control cultures was increased between 9 and 21% by sera from 52 normal subjects, 16 women on oral contraceptives, and 11 pregnant women. It was increased 193% by sera from nine subjects with acute intermittent porphyria and 172% by sera from 13 subjects with porphyria cutanea tarda. Heated sera or ethanol extracts of sera from all groups of subjects further increased the mean porphyrin stimulation by sera and, for the post partum subjects, eliminated the inhibitory effect. Ethanol extracts of sera from 28 oral contraceptive-treated women caused significantly greater mean stimulation of porphyrin formation than did extracts of sera from 30 normal women. While sera from 17 out of 22 porphyric subjects contained both stimulatory and inhibitory factors, 5 out of 22 had no evidence of an inhibitory component. There appeared to be heterogeneity in the occurrence of the factors among porphyrics. The factor(s) in sera responsible for porphyrin stimulation were heat-stable and insensitive to trypsin; were present in the supernates after ethanol precipitation of plasma proteins; were extractable in ethyl acetate and nondialyzable; and they migrated with the albumincontaining fraction of serum during electrophoresis. The factor(s) responsible for porphyrin inhibition were heat labile, sensitive to trypsin, and resistant to neuraminidase; were present in the ethanol precipitates of sera and were nondialyzable; and they migrated with the gamma globulin

  16. The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers.

    PubMed

    François, J; Villanueva, M E; Hers, H G

    1988-06-15

    The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation. Other effects of the glucose addition were a transient rise in the concentration of cyclic AMP and a more prolonged increase in the concentration of hexose 6-monophosphate and of fructose 2,6-bisphosphate. The activity of glycogen synthase increased about 4-fold and that of glycogen phosphorylase decreased 3-5-fold. These changes could be reversed by the removal of glucose from the medium and induced again by a new addition of the sugar. These effects of glucose were also obtained with glucose derivatives known to form the corresponding 6-phosphoester. Similar changes in glycogen synthase and glycogen phosphorylase activity were induced by glucose in a thermosensitive mutant deficient in adenylate cyclase (cdc35) when incubated at the permissive temperature of 26 degrees C, but were much more pronounced at the nonpermissive temperature of 35 degrees C. Under the latter condition, glycogen synthase was nearly fully activated and glycogen phosphorylase fully inactivated. Such large effects of glucose were, however, not seen in another adenylate-cyclase-deficient mutant (cyr1), able to incorporate exogenous cyclic AMP. When a nitrogen source or uncouplers were added to the incubation medium after glucose, they had effects on glycogen metabolism and on the activity of glycogen synthase and glycogen phosphorylase which were directly opposite to those of glucose. By contrast, like glucose, these agents also caused, under most experimental conditions, a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis. Under all experimental conditions, the rate of glycolysis was proportional to the concentration of fructose 2,6-bisphosphate. Uncouplers, but not a nitrogen source, also induced

  17. A Whole-Body Model for Glycogen Regulation Reveals a Critical Role for Substrate Cycling in Maintaining Blood Glucose Homeostasis

    PubMed Central

    Xu, Ke; Morgan, Kevin T.; Todd Gehris, Abby; Elston, Timothy C.; Gomez, Shawn M.

    2011-01-01

    Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active) and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile) cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into “whole-body” contextual models that mimic in vivo conditions. PMID:22163177

  18. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise.

    PubMed

    Kochan, R G; Lamb, D R; Lutz, S A; Perrill, C V; Reimann, E M; Schlender, K K

    1979-06-01

    We investigated the role of glycogen synthase in supranormal resynthesis (supercompensation) of skeletal muscle glycogen after exhaustive exercise. Six healthy men exercised 60 min by cycling with one leg at 75% VO2max, recovered 3 days on a low-carbohydrate diet, exercised again, and recovered 4 days on high-carbohydrate diet. Glycogen and glycogen synthase activities at several glucose-6-phosphate (G6P) concentrations were measured in biopsy samples of m. vastus lateralis. Dietary alterations alone did not affect glycogen, whereas exercise depleted glycogen stores. After the second exercise bout, glycogen returned to normal within 24 h and reached supercompensated levels by 48 h of recovery. Glycogen synthase activation state strikingly increased after exercise in exercised muscle and remained somewhat elevated for the first 48 h of recovery in both muscles. We suggest that 1) forms of glycogen synthase intermediate to I (G6P-independent) and D (G6P-dependent) forms are present in vivo, and 2) glycogen supercompensation can in part be explained by the formation of intermediate forms of glycogen synthase that exhibit relatively low activity ratios, but an increased sensitivity to activation by G6P. PMID:109015

  19. Natural Progression of Canine Glycogen Storage Disease Type IIIa

    PubMed Central

    Brooks, Elizabeth D; Yi, Haiqing; Austin, Stephanie L; Thurberg, Beth L; Young, Sarah P; Fyfe, John C; Kishnani, Priya S; Sun, Baodong

    2016-01-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies. PMID:26884409

  20. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    PubMed Central

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  1. Herniation of Duodenum into the Right Ventral Hepatic Peritoneal Cavity with Groove Formation at the Ventral Hepatic Surface in a 2-Week-Old Chicken

    PubMed Central

    HARIDY, Mohie; SASAKI, Jun; GORYO, Masanobu

    2013-01-01

    ABSTRACT Internal hernia in avian species is very rare. A necropsy of a 2-week-old SPF White Leghorn chicken revealed that a loop of the duodenum and part of the pancreas (4 × 2 × 1 cm) was protruding through the abnormal foramen (2.5 cm in diameter) in the right posthepatic septum into the right ventral hepatic peritoneal cavity. The herniated loop was located underneath the ventral hepatic surface, leaving a groove on the right hepatic lobe (2 × 1.5 × 0.4 cm). The part of the pancreas involved in the hernia was grossly enlarged. Microscopically, a zone of pressure atrophy of hepatic tissue was characterized by crowdedness of hepatocytes with pyknotic nuclei and faint eosinophilic cytoplasm and indistinct narrow sinusoids. The pancreas revealed hypertrophy of the acinar cells with an increase in the secretory granules and basophilic cytoplasm. This is the first report of duodenum herniation into the right ventral hepatic peritoneal cavity resulting in groove formation on the ventral hepatic surface in a 2-week-old chicken. PMID:23759688

  2. Glycogenotic hepatocellular carcinoma with glycogen-ground-glass hepatocytes: A heuristically highly relevant phenotype

    PubMed Central

    Bannasch, Peter

    2012-01-01

    Glycogenotic hepatocellular carcinoma (HCC) with glycogen-ground-glass hepatocytes has recently been described as an allegedly “novel variant” of HCC, but neither the historical background nor the heuristic relevance of this observation were put in perspective. In the present contribution, the most important findings in animal models and human beings related to the emergence and further evolution of excessively glycogen storing (glycogenotic) hepatocytes with and without ground glass features during neoplastic development have been summarized. Glycogenotic HCCs with glycogen-ground-glass hepatocytes represent highly differentiated neoplasms which contain subpopulations of cells phenotypically resembling those of certain types of preneoplastic hepatic foci and benign hepatocellular neoplasms. It is questionable whether the occurrence of glycogen-ground-glass hepatocytes in a glycogenotic HCC justifies its classification as a specific entity. The typical appearance of ground-glass hepatocytes is due to a hypertrophy of the smooth endoplasmic reticulum, which is usually associated with an excessive storage of glycogen and frequently also with an expression of the hepatitis B surface antigen. Sequential studies in animal models and observations in humans indicate that glycogen-ground-glass hepatocytes are a facultative, integral part of a characteristic cellular sequence commencing with focal hepatic glycogenosis potentially progressing to benign and malignant neoplasms. During this process highly differentiated glycogenotic cells including ground-glass hepatocytes are gradually transformed via various intermediate stages into poorly differentiated glycogen-poor, basophilic (ribosome-rich) cancer cells. Histochemical, microbiochemical, and molecular biochemical studies on focal hepatic glycogenosis and advanced preneoplastic and neoplastic lesions in tissue sections and laser-dissected specimens in rat and mouse models have provided compelling evidence for an early

  3. Deficient activity of dephosphophosphorylase kinase and accumulation of glycogen in the liver

    PubMed Central

    Hug, George; Schubert, William K.; Chuck, Gail

    1969-01-01

    Low activity of phosphorylase and increased concentration of glycogen were found in liver tissue from five children with asymptomatic hepatomegaly. In vitro activation of liver phosphorylase in these patients occurred at the rate of 10% or less of normal. Elimination of the defect by the addition of kinase that activates phosphorylase demonstrated the integrity of the phosphorylase enzyme and the deficient activity of dephophophosphorylase kinase. On the average, 60% of the phosphorylase enzyme of normal human liver was in the active form. Phosphorylase kinase of rabbit muscle activated phosphorylase of normal human liver to a final value that was significantly higher than the one obtained in the absence of muscle phosphorylase kinase. The ultrastructural examination of hepatic tissue from the five patients revealed increased amounts of glycogen. There was scarcity of endoplasmic reticulum. There was intercellular glycogen in continuity with the glycogen of the hepatocytes through breaks in their circumference. Lipid droplets with lucid areas in the form of needles and plates contained aggregates of glycogen. There were numerous lysosomes, some containing glycogen. Large vacuoles filled with glycogen and surrounded by a membrane were seen occasionally. The vacuoles might reflect the lysosomal pathway of glycogen degradation, since there was apparent fusion of such autophagic vacuoles with small vesicles resembling primary lysosomes. Images PMID:5774108

  4. Assignment of the gene encoding glycogen synthase (GYS) to human chromosome 19, band q13,3

    SciTech Connect

    Lehto, M. Helsinki Univ. ); Stoffel, M.; Espinosa, R. III; Beau, M.M. le; Bell, G.I. ); Groop, L. )

    1993-02-01

    The enzyme glycogen synthase (UDP glocose:glycogen 4-[alpha]-D-glucosyltransferase, EC 2.4.1.11) catalyzes the formation of glycogen from uridine diphosphate glucose (UPDG). Impaired activation of muscle glycogen synthase by insulin has been noted in patients with genetic risk of developing non-insulin-dependent diabets mellitus (NIDDM) and this may represent an early defect in the pathogenesis of this disorder. As such, glycogen synthase represents a candidate gene for contributing to genetic susceptibility. As a first step in studying the role of glycogen synthase in the genetics of NIDDM, we have isolated a cosmid encoding the human glycogen synthase gene (gene symbol GYS) and determined its chromosomal localization by fluorescence in situ hybridization. 4 refs., 1 fig.

  5. Dichloroacetate Stimulates Glycogen Accumulation in Primary Hepatocytes through an Insulin-Independent Mechanism

    SciTech Connect

    Lingohr, Melissa K.; Bull, Richard J.; Kato-Weinstein, Junko; Thrall, Brian D. )

    2002-01-01

    Dichloroacetate (DCA), a by-product of water chlorination, causes liver cancer in B6C3F1 mice. A hallmark response observed in mice exposed to carcinogenic doses of DCA is an accumulation of hepatic glycogen content. To distinguish whether the in vivo glycogenic effect of DCA was dependent on insulin and insulin signaling proteins, experiments were conducted in isolated hepatocytes where insulin concentrations could be controlled. In hepatocytes isolated from male B6C3F1 mice, DCA increased glycogen levels in a dose-related manner, independently of insulin. The accumulation of hepatocellular glycogen induced by DCA was not the result of decreased glycogenolysis, since DCA had no effect on the rate of glucagon-stimulated glycogen breakdown. Glycogen accumulation caused by DCA treatment was not hindered by inhibitors of extracellular-regulated protein kinase kinase (Erk1/2 kinase or MEK) or p70 kDa S6 protein kinase (p70(S6K)), but was completely blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin. Similarly, insulin-stimulated glycogen deposition was not influenced by the Erk1/2 kinase inhibitor, PD098509, or the p70(S6K) inhibitor, rapamycin. Unlike DCA-stimulated glycogen deposition, PI3K-inhibition only partially blocked the glycogenic effect of insulin. DCA did not cause phosphorylation of the downstream PI3K target protein, protein kinase B (PKB/Akt). The phosphorylation of PKB/Akt did not correlate to insulin-stimulated glycogenesis either. Similar to insulin, DCA in the medium decreased IR expression in isolated hepatocytes. The results indicate DCA increases hepatocellular glycogen accumulation through a PI3K-dependent mechanism that does not involve PKB/Akt and is, at least in part, different from the classical insulin-stimulated glycogenesis pathway. Somewhat surprisingly, insulin-stimulated glycogenesis also appears not to involve PKB/Akt in isolated murine hepatocytes.

  6. Link between Phosphate Starvation and Glycogen Metabolism in Corynebacterium glutamicum, Revealed by Metabolomics▿ †

    PubMed Central

    Woo, Han Min; Noack, Stephan; Seibold, Gerd M.; Willbold, Sabine; Eikmanns, Bernhard J.; Bott, Michael

    2010-01-01

    In this study, we analyzed the influence of phosphate (Pi) limitation on the metabolism of Corynebacterium glutamicum. Metabolite analysis by gas chromatography-time-of-flight (GC-TOF) mass spectrometry of cells cultivated in glucose minimal medium revealed a greatly increased maltose level under Pi limitation. As maltose formation could be linked to glycogen metabolism, the cellular glycogen content was determined. Unlike in cells grown under Pi excess, the glycogen level in Pi-limited cells remained high in the stationary phase. Surprisingly, even acetate-grown cells, which do not form glycogen under Pi excess, did so under Pi limitation and also retained it in stationary phase. Expression of pgm and glgC, encoding the first two enzymes of glycogen synthesis, phosphoglucomutase and ADP-glucose pyrophosphorylase, was found to be increased 6- and 3-fold under Pi limitation, respectively. Increased glycogen synthesis together with a decreased glycogen degradation might be responsible for the altered glycogen metabolism. Independent from these experimental results, flux balance analysis suggested that an increased carbon flux to glycogen is a solution for C. glutamicum to adapt carbon metabolism to limited Pi concentrations. PMID:20802079

  7. Genetics Home Reference: glycogen storage disease type IV

    MedlinePlus

    ... gene provides instructions for making the glycogen branching enzyme. This enzyme is involved in the production of glycogen , which ... to a shortage (deficiency) of the glycogen branching enzyme. As a result, glycogen is not formed properly. ...

  8. Glucagon-like peptide 1: a potent glycogenic hormone.

    PubMed

    Valverde, I; Morales, M; Clemente, F; López-Delgado, M I; Delgado, E; Perea, A; Villanueva-Peñacarrillo, M L

    1994-08-01

    GLP-1(7-36)amide is an insulinotropic peptide derived from the intestinal post-translational proglucagon process, the release of which is increased mainly after a carbohydrate meal; also, its anti-diabetogenic effect in normal and diabetic states has been reported. In this study, GLP-1(7-36)amide stimulates the formation of glycogen from glucose in isolated rat hepatocytes, such a glycogenic effect being achieved with physiological concentrations of the peptide. The GLP-1(7-36)amide-induced glycogenesis is abolished by glucagon, and it is accompanied by stimulation of the glycogen synthase alpha activity and by a decrease in the basal and glucagon-stimulated cyclic AMP content. These findings could explain, at least in part, the GLP-1(7-36)amide insulin-independent plasma glucose lowering effect. PMID:8050588

  9. FGF2 mediates hepatic progenitor cell formation during human pluripotent stem cell differentiation by inducing the WNT antagonist NKD1.

    PubMed

    Twaroski, Kirk; Mallanna, Sunil K; Jing, Ran; DiFurio, Francesca; Urick, Amanda; Duncan, Stephen A

    2015-12-01

    Fibroblast growth factors (FGFs) are required to specify hepatic fate within the definitive endoderm through activation of the FGF receptors (FGFRs). While the signaling pathways involved in hepatic specification are well understood, the mechanisms through which FGFs induce hepatic character within the endoderm are ill defined. Here we report the identification of genes whose expression is directly regulated by FGFR activity during the transition from endoderm to hepatic progenitor cell. The FGFR immediate early genes that were identified include those encoding transcription factors, growth factors, and signaling molecules. One of these immediate early genes encodes naked cuticle homolog 1 (NKD1), which is a repressor of canonical WNT (wingless-type MMTV integration site) signaling. We show that loss of NKD1 suppresses the formation of hepatic progenitor cells from human induced pluripotent stem cells and that this phenotype can be rescued by using a pharmacological antagonist of canonical WNT signaling. We conclude that FGF specifies hepatic fate at least in large part by inducing expression of NKD1 to transiently suppress the canonical WNT pathway. PMID:26637527

  10. FGF2 mediates hepatic progenitor cell formation during human pluripotent stem cell differentiation by inducing the WNT antagonist NKD1

    PubMed Central

    Twaroski, Kirk; Mallanna, Sunil K.; Jing, Ran; DiFurio, Francesca; Urick, Amanda; Duncan, Stephen A.

    2015-01-01

    Fibroblast growth factors (FGFs) are required to specify hepatic fate within the definitive endoderm through activation of the FGF receptors (FGFRs). While the signaling pathways involved in hepatic specification are well understood, the mechanisms through which FGFs induce hepatic character within the endoderm are ill defined. Here we report the identification of genes whose expression is directly regulated by FGFR activity during the transition from endoderm to hepatic progenitor cell. The FGFR immediate early genes that were identified include those encoding transcription factors, growth factors, and signaling molecules. One of these immediate early genes encodes naked cuticle homolog 1 (NKD1), which is a repressor of canonical WNT (wingless-type MMTV integration site) signaling. We show that loss of NKD1 suppresses the formation of hepatic progenitor cells from human induced pluripotent stem cells and that this phenotype can be rescued by using a pharmacological antagonist of canonical WNT signaling. We conclude that FGF specifies hepatic fate at least in large part by inducing expression of NKD1 to transiently suppress the canonical WNT pathway. PMID:26637527

  11. A Novel Pyridazinone Derivative Inhibits Hepatitis B Virus Replication by Inducing Genome-Free Capsid Formation

    PubMed Central

    Wang, Ya-Juan; Lu, Dong; Xu, Yi-Bin; Xing, Wei-Qiang; Tong, Xian-Kun; Wang, Gui-Feng; Feng, Chun-Lan; He, Pei-Lan; Zuo, Jian-Ping

    2015-01-01

    Here we first identified a novel pyridazinone derivative, compound 3711, as a nonnucleosidic hepatitis B virus (HBV) inhibitor in a cell model system. 3711 decreased extracellular HBV DNA levels by 50% (50% inhibitory concentration [IC50]) at 1.5 ± 0.2 μM and intracellular DNA levels at 1.9 ± 0.1 μM, which demonstrated antiviral activity at levels far below those associated with toxicity. Both the 3TC/ETV dually resistant L180M/M204I mutant and the adefovir (ADV)-resistant A181T/N236T mutant were as susceptible to 3711 as wild-type HBV. 3711 treatment induced the formation of genome-free capsids, a portion of which migrated faster on 1.8% native agarose gel. The induced genome-free capsids sedimented more slowly in isopycnic CsCl gradient centrifugation without significant morphological changes. 3711 treatment decreased levels of HBV DNA contained in both secreted enveloped virion and naked virus particles in supernatant. 3711 could interfere with capsid formation of the core protein (Cp) assembly domain. A Cp V124W mutant, which strengthens capsid interdimer interactions, recapitulated the effect of 3711 on capsid assembly. Pyridazinone derivative 3711, a novel chemical entity and HBV inhibitor, may provide a new opportunity to combat chronic HBV infection. PMID:26349829

  12. Hexokinase 2, Glycogen Synthase and Phosphorylase Play a Key Role in Muscle Glycogen Supercompensation

    PubMed Central

    Irimia, José M.; Rovira, Jordi; Nielsen, Jakob N.; Guerrero, Mario; Wojtaszewski, Jørgen F. P.; Cussó, Roser

    2012-01-01

    Background Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. Methods Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. Results In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 5′-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. Conclusions Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches. PMID:22860128

  13. Multiple Glycogen-binding Sites in Eukaryotic Glycogen Synthase Are Required for High Catalytic Efficiency toward Glycogen

    SciTech Connect

    Baskaran, Sulochanadevi; Chikwana, Vimbai M.; Contreras, Christopher J.; Davis, Keri D.; Wilson, Wayne A.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.

    2012-12-10

    Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V{sub max}/S{sub 0.5} for glycogen by 40- and 70-fold, respectively. Combined mutation of site-1 and site-2 decreased the V{sub max}/S{sub 0.5} for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells ({Delta}gsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a 'toehold mechanism,' keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.

  14. Hydrodynamic properties of 2-mercaptoethanol-modified glycogen.

    PubMed

    Geddes, R; Harvey, J D; Wills, P R

    1977-12-01

    Treatment of glycogen with 2-mercaptoethanol and iodoacetamide gives rise to a modified glycogen which resembles the original glycogen in its hydrodynamic behaviour but has a pronounced tendency to aggregate. The modified glycogen can be distinguished easily, by its diffusion coefficient, from glycogen degraded by more traditional methods of extraction. The 'fundamental' glycogen particle appears to be composed of two or three glycogen beta-particles linked by a single protein chain. PMID:598377

  15. Spheroid Formation and Evaluation of Hepatic Cells in a Three-Dimensional Culture Device

    PubMed Central

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2015-01-01

    In drug discovery, it is very important to evaluate liver cells within an organism. Compared to 2D culture methods, the development of 3D culture techniques for liver cells has been successful in maintaining long-term liver functionality with the formation of a hepatic-specific structure. The key to performing drug testing is the establishment of a stable in vitro evaluation system. In this article, we report a Tapered Stencil for Cluster Culture (TASCL) device developed to create liver spheroids in vitro. The TASCL device will be applied as a toxicity evaluation system for drug discovery. The TASCL device was created with an overall size of 10 mm × 10 mm, containing 400 microwells with a top aperture (500 µm × 500 µm) and a bottom aperture (300 µm diameter circular) per microwell. We evaluated the formation, recovery, and size of HepG2 spheroids in the TASCL device. The formation and recovery were both nearly 100%, and the size of the HepG2 spheroids increased with an increase in the initial cell seeding density. There were no significant differences in the sizes of the spheroids among the microwells. In addition, the HepG2 spheroids obtained using the TASCL device were alive and produced albumin. The morphology of the HepG2 spheroids was investigated using FE-SEM. The spheroids in the microwells exhibited perfectly spherical aggregation. In this report, by adjusting the size of the microwells of the TASCL device, uniform HepG2 spheroids were created, and the device facilitated more precise measurements of the liver function per HepG2 spheroid. Our TASCL device will be useful for application as a toxicity evaluation system for drug testing. PMID:26858908

  16. Spheroid Formation and Evaluation of Hepatic Cells in a Three-Dimensional Culture Device.

    PubMed

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2015-12-17

    In drug discovery, it is very important to evaluate liver cells within an organism. Compared to 2D culture methods, the development of 3D culture techniques for liver cells has been successful in maintaining long-term liver functionality with the formation of a hepatic-specific structure. The key to performing drug testing is the establishment of a stable in vitro evaluation system. In this article, we report a Tapered Stencil for Cluster Culture (TASCL) device developed to create liver spheroids in vitro. The TASCL device will be applied as a toxicity evaluation system for drug discovery. The TASCL device was created with an overall size of 10 mm × 10 mm, containing 400 microwells with a top aperture (500 µm × 500 µm) and a bottom aperture (300 µm diameter circular) per microwell. We evaluated the formation, recovery, and size of HepG2 spheroids in the TASCL device. The formation and recovery were both nearly 100%, and the size of the HepG2 spheroids increased with an increase in the initial cell seeding density. There were no significant differences in the sizes of the spheroids among the microwells. In addition, the HepG2 spheroids obtained using the TASCL device were alive and produced albumin. The morphology of the HepG2 spheroids was investigated using FE-SEM. The spheroids in the microwells exhibited perfectly spherical aggregation. In this report, by adjusting the size of the microwells of the TASCL device, uniform HepG2 spheroids were created, and the device facilitated more precise measurements of the liver function per HepG2 spheroid. Our TASCL device will be useful for application as a toxicity evaluation system for drug testing. PMID:26858908

  17. Brain glycogen decreases during prolonged exercise

    PubMed Central

    Matsui, Takashi; Soya, Shingo; Okamoto, Masahiro; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2011-01-01

    Abstract Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here, we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose, we exercised male Wistar rats on a treadmill for different durations (30–120 min) at moderate intensity (20 m min−1) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37–60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise. PMID:21521757

  18. Revisiting Glycogen Content in the Human Brain.

    PubMed

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  19. Studies in tissue glycogen in acute stress.

    PubMed

    De, A K; Dey, C; Debnath, P K

    1978-01-01

    The glycogen was estimated in liver, cardiac and skeletal muscles during the recovery period after electro-shock. The supercompensation in the level of glycogen was observed in cardiac and skeletal muscles at 1 1/2 and 5 hrs respectively during the recovery period, after electro-shock. The liver glycogen level was lower than the control value after electro-shock at least upto 5 hrs of recovery period. Further, the glycogen level was observed to be minimum when the ventricular glycogen showed its supercompensation at 1 1/2 hr of recovery period. The glycogen level of those three tissues returned to control level after 24 hrs of electro-shock. PMID:567192

  20. The inflammasome in alcoholic hepatitis: Its relationship with Mallory-Denk body formation.

    PubMed

    Peng, Yue; French, Barbara A; Tillman, Brittany; Morgan, Timothy R; French, Samuel W

    2014-10-01

    Recent studies indicate that the inflammasome activation plays important roles in the pathogenesis of alcoholic hepatitis (AH). Nod-like receptor protein 3 (NLRP3) is a key component of the macromolecular complex that is so called the inflammasome that triggers caspase 1-dependent maturation of the precursors of IL-1β and IL-18 cytokines. It is also known that the adaptor proteins including apoptosis-associated speck-like protein containing CARD (ASC) and the mitochondrial antiviral signaling protein (MAVS) are necessary for NLRP3-dependent inflammasome function. Steatohepatitis frequently includes Mallory-Denk body (MDB) formation. In the case of alcoholic steatohepatitis, MDB formation occurs in 80% of biopsies (French 1981; French 1981). While previous studies have focused on in vitro cell lines and mouse models, we are the first group to investigate inflammasome activation in AH liver biopsy specimen and correlate it with MDB formation. Expression of NOD1, NLRP3, ASC, NAIP, MAVS, caspase 1, IL-1β, IL-18, and other inflammatory components including IL-6, IL-10, TNF-α, IFN-γ, STAT3, and p65 was measured in three to eight formalin-fixed paraffin-embedded AH specimens and control normal liver specimens by immunofluorescence staining and quantified by immunofluorescence intensity. The specimens were double stained with ubiquitin to demonstrate the relationship between inflammasome activation and MDB formation. MAVS, caspase1, IL-18, and TNF-α showed increases in expression in AH compared to the controls (p<0.05), and NAIP expression markedly increased in AH compared to the controls (p<0.01). There was a trend that levels of NLRP3, ASC, caspase1, IL-18, IL-10, and p65 expression correlated with the number of MDBs found in the same field of measurement (correlation coefficients were between 0.62 and 0.93, p<0.05). Our results demonstrate the activation of the inflammasome in AH and suggest that MDB could be an indicator of the extent of inflammasome activation

  1. The inflammasome in alcoholic hepatitis: its relationship with Mallory-Denk body formation

    PubMed Central

    Peng, Yue; French, Barbara A.; Tillman, Brittany; Morgan, T; French, Samuel W.

    2014-01-01

    Recent studies indicate that the inflammasome activation plays important roles in pathogenesis of alcoholic hepatitis (AH). Nod-like receptor protein 3 (NLRP3) is a key component of the macromolecular complex so called the inflammasome that trigger caspase 1-dependent maturation of the precursors of IL-1β and IL-18 cytokines. It is also known that the adaptor proteins including apoptosis-associated speck-like protein containing CARD (ASC) and the mitochondrial antiviral signaling protein (MAVS) are necessary for NLRP3-dependent inflammasome function. Steatohepatitis frequently includes Mallory-Denk body (MDB) formation. In the case of alcoholic steatohepatitis, MDB formation occurs in 80% of biopsies (French 1981; French 1981). While previous studies have focused on in vitro cell lines and mouse models, we are the first group to investigate inflammasome activation in AH liver biopsy specimen and correlate it with MDB formation. Expression of NOD1, NLRP3, ASC, NAIP, MAVS, Caspase 1, IL-1β, IL-18, and other inflammatory components including IL-6, IL-10, TNF-α, IFN-γ, STAT3, p65 was measured in three to eight formalin-fixed paraffin-embedded AH specimens and control normal liver specimens by immunofluorescence staining and quantified by immunofluorescence intensity. The specimens were double stained with ubiquitin to demonstrate the relationship between inflammasome activation and MDB formation. MAVS, caspase1, IL-18, TNF-α showed increases in expression in AH compared to the controls (p<0.05), and NAIP expression markedly increased in AH compared to the controls (p<0.01). There was a trend that levels of NLRP3, ASC, caspase1, IL-18, IL-10, and p65 expression correlated with the number of MDBs found in the same field of measurement (correlation coefficients were between 0.62 to 0.93, p<0.05). Our results demonstrate the activation of the inflammasome in AH and suggest that MDB could be an indicator of the extent of inflammasome activation. PMID:25149528

  2. Glycogen: the forgotten cerebral energy store.

    PubMed

    Gruetter, Rolf

    2003-10-15

    The brain contains a significant amount of glycogen that is an order of magnitude smaller than that in muscle, but several-fold higher than the cerebral glucose content. Although the precise role of brain glycogen to date is unknown, it seems affected by focal activation, neurotransmitters, and overall electrical activity and hormones. Based on its relatively low concentration, the role of brain glycogen as a significant energy store has been discounted. This work reviews recent experimental evidence that brain glycogen is an important reserve of glucose equivalents: (1) glial glycogen can provide the majority of the glucose supply deficit during hypoglycemia for more than 100 min, consistent with the proposal that glial lactate is a fuel for neurons; (2) glycogen concentrations may be as high as 10 micromol/g, substantially higher than was thought previously; (3) glucose cycling in and out of glycogen amounts to approximately 1% of the cerebral metabolic rate of glucose (CMRglc) in human and rat brain, amounting to an effective stability of glycogen in the resting awake brain during euglycemia and hyperglycemia, (4) brain glycogen metabolism/concentrations are insulin/glucose sensitive; and (5) after a single episode of hypoglycemia, brain glycogen levels rebound to levels that exceed the pre-hypoglycemic concentrations (supercompensation). This experimental evidence supports the proposal that brain glycogen may be involved in the development of diabetes complications, specifically impaired glucose sensing (hypoglycemia unawareness) observed clinically in some diabetes patients under insulin treatment. It is proposed further that brain glycogen becomes important in any metabolic state where supply transiently cannot meet demand, such conditions that could occur during prolonged focal activation, sleep deprivation, seizures, and mild hypoxia. PMID:14515346

  3. Glycogen-lead relationship in the earthworm Dendrobaena rubida from a heavy metal site.

    PubMed

    Richards, K S; Ireland, M P

    1978-06-01

    Control individuals contained no lead in the chloragocytes but high alpha-glycogen rosette reserves. Starvation of contaminated earthworms for 4d caused a lead loss and the chlorgocytes possessed fewer debris vesicles than those of unstarved worms, suggesting that the debris vesicles may be the route for at least some of the lead loss. No glycogen deposits were observed in the chloragocytes of starved or unstarved earthworms from contaminated soil. Maintenance of contaminated earthworms in potting compost caused lead losses similar to those sustained by starvation, but the chloragocyte cytoplasm possessed beta-glycogen reserves. Specimens maintained in lead-spiked potting compost showed lead levels similar to those of earthworms taken directly from contaminated soil. No beta-glycogen accumulations were observed under this enriched regime. Although the possible interference of lead in carbohydrate metabolism is discussed, the results do not wholly support metabolic inhibition by lead. It is hypothesised that lead sequestration is energy-demanding and that in the absence of an energy-rich diet glycogen stores fail to accumulate. In the presence of an organic-rich medium, elevated lead levels preclude glycogen formation, because of the high sequestration-demand, but at lower lead levels beta-glycogen deposits occur if a high organic diet is available. PMID:659270

  4. Inhibition of bacterial cell wall-induced leukocyte recruitment and hepatic granuloma formation by TGF-beta gene transfer.

    PubMed

    Song, X; Zeng, L; Pilo, C M; Zagorski, J; Wahl, S M

    1999-10-01

    Intraperitoneal injection of streptococcal cell walls (SCW) into Lewis rats results in dissemination of SCW to the liver, spleen, bone marrow, and peripheral joints. The uptake of SCW by Kupffer cells in the liver initiates a chain of events largely mediated by T lymphocytes and macrophages. Local synthesis and secretion of cytokines and growth factors in response to the persistent SCW lead to the evolution and maintenance of a chronic T cell-dependent granulomatous response and result in granuloma formation and irreversible hepatic fibrosis. In an attempt to impede the development of the chronic granulomatous lesions in the liver, we injected a plasmid DNA encoding TGF-beta 1 i.m. to the SCW animals to determine the effect of TGF-beta 1 gene transfer on the course of liver inflammation and fibrosis. A single injection of plasmid DNA encoding TGF-beta 1 resulted in virtual abolition of the development of the SCW-induced hepatic granuloma formation and matrix expansion. TGF-beta 1 DNA not only reduced key proinflammatory cytokines including TNF-alpha, IL-1 beta, IFN-gamma, and IL-18, but also inhibited both CXC and CC chemokine production, thereby blocking inflammatory cell recruitment and accumulation in the liver. Moreover, TGF-beta 1 gene delivery inhibited its own expression in the liver tissue, which is otherwise up-regulated in SCW-injected animals. Our study suggests that TGF-beta 1 gene transfer suppresses hepatic granuloma formation by blocking the recruitment of inflammatory cells to the liver, and thus may provide a new approach to the control of hepatic granulomatous and fibrotic diseases. PMID:10491005

  5. Genetics Home Reference: glycogen storage disease type VII

    MedlinePlus

    ... Health Conditions glycogen storage disease type VII glycogen storage disease type VII Enable Javascript to view the ... Download PDF Open All Close All Description Glycogen storage disease type VII (GSDVII) is an inherited disorder ...

  6. ATP Depletion, a Possible Role in the Pathogenesis of Hyperuricemia in Glycogen Storage Disease Type I

    PubMed Central

    Greene, Harry L.; Wilson, Frederick A.; Hefferan, Patrick; Terry, Annie B.; Moran, Jose Roberto; Slonim, Alfred E.; Claus, Thomas H.; Burr, Ian M.

    1978-01-01

    Other investigators have shown that fructose infusion in normal man and rats acutely depletes hepatic ATP and Pi and increases the rate of uric acid formation by the degradation of preformed nucleotides. We postulated that a similar mechanism of ATP depletion might be present in patients with glucose-6-phosphatase deficiency (GSD-I) as a result of ATP consumption during glycogenolysis and resulting excess glycolysis. The postulate was tested by measurement of: (a) hepatic content of ATP, glycogen, phosphorylated sugars, and phosphorylase activities before and after increasing glycolysis by glucagon infusion and (b) plasma urate levels and urate excretion before and after therapy designed to maintain blood glucose levels above 70 mg/dl and thus prevent excess glycogenolysis and glycolysis. Glucagon infusion in seven patients with GSD-I caused a decrease in hepatic ATP from 2.25 ± 0.09 to 0.73 ± 0.06 μmol/g liver (P <0.01), within 5 min, persisting in one patient to 20 min (1.3 μmol/g). Three patients with GSD other than GSD-I (controls), and 10 normal rats, showed no change in ATP levels after glucagon infusion. Glucagon caused an increase in hepatic phosphorylase activity from 163 ± 21 to 311 ± 17 μmol/min per g protein (P <0.01), and a decrease in glycogen content from 8.96 ± 0.51 to 6.68 ± 0.38% weight (P <0.01). Hepatic content of phosphorylated hexoses measured in two patients, showed the following mean increases in response to glucagon; glucose-6-phosphate (from 0.25 to 0.98 μmol/g liver), fructose-6-phosphate (from 0.17 to 0.45 μmol/g liver), and fructose-1,6-diphosphate (from 0.09 to 1.28 μmol/g) within 5 min. These changes, except for glucose-6-phosphate, returned toward preinfusion levels within 20 min. Treatment consisted of continuous intragastric feedings of a high glucose dietary mixture. Such treatment increased blood glucose from a mean level of 62 (range 28-96) to 86 (range 71-143) mg/dl (P <0.02), decreased plasma glucagon from a mean

  7. Effect of oat bran on time to exhaustion, glycogen content and serum cytokine profile following exhaustive exercise

    PubMed Central

    2010-01-01

    The aim of this study was to evaluate the effect of oat bran supplementation on time to exhaustion, glycogen stores and cytokines in rats submitted to training. The animals were divided into 3 groups: sedentary control group (C), an exercise group that received a control chow (EX) and an exercise group that received a chow supplemented with oat bran (EX-O). Exercised groups were submitted to an eight weeks swimming training protocol. In the last training session, the animals performed exercise to exhaustion, (e.g. incapable to continue the exercise). After the euthanasia of the animals, blood, muscle and hepatic tissue were collected. Plasma cytokines and corticosterone were evaluated. Glycogen concentrations was measured in the soleus and gastrocnemius muscles, and liver. Glycogen synthetase-α gene expression was evaluated in the soleus muscle. Statistical analysis was performed using a factorial ANOVA. Time to exhaustion of the EX-O group was 20% higher (515 ± 3 minutes) when compared with EX group (425 ± 3 minutes) (p = 0.034). For hepatic glycogen, the EX-O group had a 67% higher concentrations when compared with EX (p = 0.022). In the soleus muscle, EX-O group presented a 59.4% higher glycogen concentrations when compared with EX group (p = 0.021). TNF-α was decreased, IL-6, IL-10 and corticosterone increased after exercise, and EX-O presented lower levels of IL-6, IL-10 and corticosterone levels in comparison with EX group. It was concluded that the chow rich in oat bran increase muscle and hepatic glycogen concentrations. The higher glycogen storage may improve endurance performance during training and competitions, and a lower post-exercise inflammatory response can accelerate recovery. PMID:20955601

  8. Effect of oat bran on time to exhaustion, glycogen content and serum cytokine profile following exhaustive exercise.

    PubMed

    Donatto, Felipe F; Prestes, Jonato; Frollini, Anelena B; Palanch, Adrianne C; Verlengia, Rozangela; Cavaglieri, Claudia Regina

    2010-01-01

    The aim of this study was to evaluate the effect of oat bran supplementation on time to exhaustion, glycogen stores and cytokines in rats submitted to training. The animals were divided into 3 groups: sedentary control group (C), an exercise group that received a control chow (EX) and an exercise group that received a chow supplemented with oat bran (EX-O). Exercised groups were submitted to an eight weeks swimming training protocol. In the last training session, the animals performed exercise to exhaustion, (e.g. incapable to continue the exercise). After the euthanasia of the animals, blood, muscle and hepatic tissue were collected. Plasma cytokines and corticosterone were evaluated. Glycogen concentrations was measured in the soleus and gastrocnemius muscles, and liver. Glycogen synthetase-α gene expression was evaluated in the soleus muscle. Statistical analysis was performed using a factorial ANOVA. Time to exhaustion of the EX-O group was 20% higher (515 ± 3 minutes) when compared with EX group (425 ± 3 minutes) (p = 0.034). For hepatic glycogen, the EX-O group had a 67% higher concentrations when compared with EX (p = 0.022). In the soleus muscle, EX-O group presented a 59.4% higher glycogen concentrations when compared with EX group (p = 0.021). TNF-α was decreased, IL-6, IL-10 and corticosterone increased after exercise, and EX-O presented lower levels of IL-6, IL-10 and corticosterone levels in comparison with EX group. It was concluded that the chow rich in oat bran increase muscle and hepatic glycogen concentrations. The higher glycogen storage may improve endurance performance during training and competitions, and a lower post-exercise inflammatory response can accelerate recovery. PMID:20955601

  9. Glucose and glycogen metabolism in erythrocytes from normal and glycogen storage disease type III subjects

    PubMed Central

    Moses, Shimon W.; Chayoth, Reuben; Levin, Stanley; Lazarovitz, Ela; Rubinstein, David

    1968-01-01

    Active glycogen metabolism has been demonstrated in both normal and glycogen-rich erythrocytes taken from patients with type III glycogen storage disease. Activity of all enzymes catalyzing the reactions required for the synthesis and degradation of glycogen have been demonstrated in the mature erythrocytes. Uniformly labeled glucose-14C is incorporated into glycogen in intact cells of both types during incubation. Replacement of the glucose-14C by unlabeled glucose in the medium resulted in a significant loss of radioactivity from cellular glycogen. In the absence of the substrate a progressive shortening of outer branches occurred during incubation of intact glucogen-rich cells. Using cells from patients with type III glycogen storage disease, which have sufficient glycogen content to be analyzed by β-amylolysis, we demonstrated that the glucosyl units are first incorporated in the outer tiers, then transferred to the core where they tend to accumulate due to the absence of amylo-1,6-glucosidase. The glycogen-rich cells have a more rapid rate of glucose utilization upon incubation which is not reflected by a higher lactate production. The increased rate of glucose utilization did not result from an increased rate of glucose incorporation into glycogen in affected cells. The rate of 14CO2 production from glucose-1-14C during incubation was not significantly different in the two types of cells unless methylene blue was added as an electron acceptor, in which case the glycogen-rich cells oxidized glucose to CO2 more rapidly. PMID:5240360

  10. Brain glycogen supercompensation following exhaustive exercise.

    PubMed

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals. PMID:22063629

  11. Activation of glycolysis and apoptosis in glycogen storage disease type Ia.

    PubMed

    Sun, Baodong; Li, Songtao; Yang, Liu; Damodaran, Tirupapuliyur; Desai, Dev; Diehl, Anna Mae; Alzate, Oscar; Koeberl, Dwight D

    2009-08-01

    The deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia, growth retardation, renal failure, hepatic adenomas, and hepatocellular carcinoma. Liver involvement includes the massive accumulation of glycogen and lipids due to accumulated glucose-6-phosphate and glycolytic intermediates. Proteomic analysis revealed elevations in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and other enzymes involved in glycolysis. GAPDH was markedly increased in murine G6Pase-deficient hepatocytes. The moonlighting role of GAPDH includes increasing apoptosis, which was demonstrated by increased TUNEL assay positivity and caspase 3 activation in the murine GSD-Ia liver. These analyses of hepatic involvement in GSD-Ia mice have implicated the induction of apoptosis in the pathobiology of GSD-Ia. PMID:19419892

  12. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state

    SciTech Connect

    Huang, M.T.; Veech, R.L.

    1988-03-01

    The pathway for hepatic glycogen synthesis in the postprandial state was studied in meal-fed rats chronically cannulated in the portal vein. Plasma glucose concentration in the portal vein was found to be 4.50 +/- 1.01 mM (mean +/- SE; n = 3) before a meal and 11.54 +/- 0.70 mM (mean +/- SE; n = 4) after a meal in rats meal-fed a diet consisting of 100% commercial rat chow for 7 d. The hepatic-portal difference of plasma glucose concentration showed that liver released glucose in the fasted state and either extracted or released glucose after feeding depending on plasma glucose concentration in the portal vein. The concentration of portal vein glucose at which liver changes from glucose releasing to glucose uptake was 8 mM, the Km of glucokinase. The rate of glycogen synthesis in liver during meal-feeding was found to be approximately 1 mumol glucosyl U/g wet wt/min in rats meal-fed a 50% glucose supplemented chow diet. The relative importance of the direct vs. indirect pathway for the replenishment of hepatic glycogen was determined by the incorporation of (3-/sup 3/H,U-/sup 14/C)glucose into liver glycogen. Labeled glucose was injected into the portal vein at the end of meal-feeding. The ratio of /sup 3/H//sup 14/C in the glucosyl units of glycogen was found to be 83-92% of the ratio in liver free glucose six minutes after the injection, indicating that the majority of exogenous glucose incorporated into glycogen did not go through glycolysis. The percent contribution of the direct versus indirect pathway was quantitated from the difference in the relative specific activity (RSA) of (/sup 3/H) and (/sup 14/C)-glycogen in rats infused with (3-/sup 3/H,U-/sup 14/C)glucose. No significant difference was found between the RSA of (/sup 3/H)glycogen and (/sup 14/C)glycogen, indicating further that the pathway for glycogen synthesis in liver from exogenous glucose is from the direct pathway.

  13. Mechanism of hepatic megamitochondria formation by ammonia derivatives. Correlation between structure of chemicals and their ability to induce the formation of megamitochondria.

    PubMed

    Wakabayashi, T; Horiuchi, M; Sakaguchi, M; Misawa, K; Onda, H; Iijima, M; Allmann, D W

    1984-09-01

    Correlation between the chemical structure and the ability to induce hepatic megamitochondria formation was studied by feeding mice and rats diets containing a wide spectrum of ammonia derivatives. Ammonia derivatives with electron-releasing groups, such as hydrazine, phenylhydrazine, hydroxylamine and aniline were effective in inducing megamitochondria. Ammonia derivatives with electron-withdrawing groups, such as formamide, sulfamic acid, acetamide were ineffective in inducing megamitochondria. Inducibility of ammonia derivatives with electron-releasing groups plus electron-withdrawing groups for the megamitochondria formation was dependent upon nucleophilicity of the chemical: 2,4-dinitrophenylhydrazine induced megamitochondria, while acetanilide did not induce megamitochondria. The megamitochondria formation induced by ammonia derivatives was a reversible process. Freeze-fracture studies on megamitochondria indicated that megamitochondria were formed by the fusion of adjacent mitochondria. Phosphorylating capacity of megamitochondria (hydrazine-induced megamitochondria, for example) were normal despite morphological changes. These data might suggest that the nucleophilicity of chemicals plays a key role in the induction of hepatic megamitochondria. These data might also suggest that the phenomenon is an adaptive process to changes of intracellular milieu. PMID:6468403

  14. An Aptamer against the Matrix Binding Domain on the Hepatitis B Virus Capsid Impairs Virion Formation

    PubMed Central

    Orabi, Ahmed; Bieringer, Maria; Geerlof, Arie

    2015-01-01

    ABSTRACT The hepatitis B virus (HBV) particle is an icosahedral nucleocapsid surrounded by a lipid envelope containing viral surface proteins. A small domain (matrix domain [MD]) in the large surface protein L and a narrow region (matrix binding domain [MBD]) including isoleucine 126 on the capsid surface have been mapped, in which point mutations such as core I126A specifically blocked nucleocapsid envelopment. It is possible that the two domains interact with each other during virion morphogenesis. By the systematic evolution of ligands by exponential enrichment (SELEX) method, we evolved DNA aptamers from an oligonucleotide library binding to purified recombinant capsids but not binding to the corresponding I126A mutant capsids. Aptamers bound to capsids were separated from unbound molecules by filtration. After 13 rounds of selections and amplifications, 16 different aptamers were found among 73 clones. The four most frequent aptamers represented more than 50% of the clones. The main aptamer, AO-01 (13 clones, 18%), showed the lowest dissociation constant (Kd) of 180 ± 82 nM for capsid binding among the four molecules. Its Kd for I126A capsids was 1,306 ± 503 nM. Cotransfection of Huh7 cells with AO-01 and an HBV genomic construct resulted in 47% inhibition of virion production at 3 days posttransfection, but there was no inhibition by cotransfection of an aptamer with a random sequence. The half-life of AO-01 in cells was 2 h, which might explain the incomplete inhibition. The results support the importance of the MBD for nucleocapsid envelopment. Inhibiting the MD-MBD interaction with a low-molecular-weight substance might represent a new approach for an antiviral therapy. IMPORTANCE Approximately 240 million people are persistently infected with HBV. To date, antiviral therapies depend on a single target, the viral reverse transcriptase. Future additional targets could be viral protein-protein interactions. We selected a 55-base-long single-stranded DNA

  15. [Role of HLA phenotype in the formation of chronic hepatitis C virus infection].

    PubMed

    Bondarenko, A L; Baramzina, S V

    2002-01-01

    Clinical, biochemical and immunological parameters depending on HLA-phenotypic features were examined in 107 patients aged 18-78 years with chronic hepatitis C virus (HCV) infection. Clinical and biochemical manifestations (asthenic, pain and cytolytic syndromes, hepatomegalia, hyperbilirubinemia, hypoprothrombin- and proteinemia), observed in hepatitis C, were more pronounced in patients having HLA-A30, B35, B41, Cw2, A1-B35, A9-B8. The carriers of B8 and B35 antigens were found to have inadequate immune response in HCV infection, manifested by progressive chronic process in the liver and the development of cirrhosis in patients with such specificity. PMID:12043154

  16. Glycogen metabolism in the rat retina.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2004-02-01

    It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid. PMID:14756809

  17. Targeting glycogen metabolism in bladder cancer

    PubMed Central

    Lew, Carolyn Ritterson; Guin, Sunny; Theodorescu, Dan

    2015-01-01

    Metabolism has been a heavily investigated topic in cancer research for the past decade. Although the role of aerobic glycolysis (the Warburg effect) in cancer has been extensively studied, abnormalities in other metabolic pathways are only just being understood in cancer. One such pathway is glycogen metabolism; its involvement in cancer development, particularly in urothelial malignancies, and possible ways of exploiting aberrations in this process for treatment are currently being studied. New research shows that the glycogen debranching enzyme amylo-α-1,6-glucosidase, 4-α-glucanotransferase (AGL) is a novel tumour suppressor in bladder cancer. Loss of AGL leads to rapid proliferation of bladder cancer cells. Another enzyme involved in glycogen debranching, glycogen phosphorylase, has been shown to be a tumour promoter in cancer, including in prostate cancer. Studies demonstrate that bladder cancer cells in which AGL expression is lost are more metabolically active than cells with intact AGL expression, and these cells are more sensitive to inhibition of both glycolysis and glycine synthesis—two targetable pathways. As a tumour promoter and enzyme, glycogen phosphorylase can be directly targeted, and preclinical inhibitor studies are promising. However, few of these glycogen phosphorylase inhibitors have been tested for cancer treatment in the clinical setting. Several possible limitations to the targeting of AGL and glycogen phosphorylase might also exist. PMID:26032551

  18. Biochemical Titration of Glycogen In vitro

    PubMed Central

    Pelletier, Joffrey; Bellot, Grégory; Pouysségur, Jacques; Mazure, Nathalie M.

    2013-01-01

    Glycogen is the main energetic polymer of glucose in vertebrate animals and plays a crucial role in whole body metabolism as well as in cellular metabolism. Many methods to detect glycogen already exist but only a few are quantitative. We describe here a method using the Abcam Glycogen assay kit, which is based on specific degradation of glycogen to glucose by glucoamylase. Glucose is then specifically oxidized to a product that reacts with the OxiRed probe to produce fluorescence. Titration is accurate, sensitive and can be achieved on cell extracts or tissue sections. However, in contrast to other techniques, it does not give information about the distribution of glycogen in the cell. As an example of this technique, we describe here the titration of glycogen in two cell lines, Chinese hamster lung fibroblast CCL39 and human colon carcinoma LS174, incubated in normoxia (21% O2) versus hypoxia (1% O2). We hypothesized that hypoxia is a signal that prepares cells to synthesize and store glycogen in order to survive1. PMID:24300406

  19. Polyprotein-Driven Formation of Two Interdependent Sets of Complexes Supporting Hepatitis C Virus Genome Replication

    PubMed Central

    Gomes, Rafael G. B.; Isken, Olaf; Tautz, Norbert; McLauchlan, John

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1. Using these constructs and other methods, we have assessed the polyprotein requirements for rescue of different lethal point mutations across NS3-5B. Mutations readily tractable to rescue broadly fell into two groupings: those requiring expression of a minimum NS3-5A and those requiring expression of a minimum NS3-5B polyprotein. A cis-acting mutation that blocked NS3 helicase activity, T1299A, was tolerated when introduced into either ORF within the intragenomic replicon, but unlike many other mutations required the other ORF to express a functional NS3-5B. Three mutations were identified as more refractile to rescue: one that blocked cleavage of the NS4B5A boundary (S1977P), another in the NS3 helicase (K1240N), and a third in NS4A (V1665G). Introduced into ORF1, these exhibited a dominant negative phenotype, but with K1240N inhibiting replication as a minimum NS3-5A polyprotein whereas V1665G and S1977P only impaired replication as a NS3-5B polyprotein. Furthermore, an S1977P-mutated NS3-5A polyprotein complemented other defects shown to be dependent on NS3-5A for rescue. Overall, our findings suggest the existence of two interdependent sets of protein complexes supporting RNA replication, distinguishable by the minimum polyprotein requirement needed for their formation. IMPORTANCE Positive-strand RNA viruses reshape the intracellular membranes of cells to form a compartment within which to replicate their genome, but little is known about the functional

  20. Formation of three-dimensional hepatic tissue by the bottom-up method using spheroids.

    PubMed

    Okudaira, Tatsuya; Amimoto, Naoki; Mizumoto, Hiroshi; Kajiwara, Toshihisa

    2016-08-01

    Liver regenerative medicine has attracted attention as a possible alternative to organ transplantation. To address the challenge of liver regenerative medicine, the development of a construction method has been proposed for liver tissue in vitro with a high cell density and high functionality for transplantation into patients with severe liver failure. In this study, we fabricated highly functional three-dimensional hepatic tissue by a bottom-up method using spheroids. The hepatic tissue was formed by stacking hepatocyte spheroids covered with human umbilical vein endothelial cells (HUVECs). Hepatic tissue constructs were evaluated for cell survival, liver-specific functions, and histologically. As a result, we identified improvements in liver-specific functions (ammonia removal and albumin secretion) and cell survival. In addition, HUVECs were regularly distributed at every 100 μm within the tissue, and live cells were present within the whole tissue construct throughout the culture period. In summary, we successfully fabricated highly functional hepatic tissue by the bottom-up method using HUVEC-covered hepatocyte spheroids. PMID:26803704

  1. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus.

    PubMed

    Atmaca, Murat; Ucler, Rifki; Kartal, Mehmet; Seven, Ismet; Alay, Murat; Bayram, Irfan; Olmez, Sehmus

    2015-01-01

    Glycogenic hepatopathy is a rare cause of high transaminase levels in type 1 diabetes mellitus. This condition, characterized by elevated liver enzymes and hepatomegaly, is caused by irreversible and excessive accumulation of glycogen in hepatocytes. This is a case report on a 19-year-old male case, diagnosed with glycogenic hepatopathy. After the diagnosis was documented by liver biopsy, the case was put on glycemic control which led to significant decline in hepatomegaly and liver enzymes. It was emphasized that, in type 1 diabetes mellitus cases, hepatopathy should also be considered in the differential diagnoses of elevated liver enzyme and hepatomegaly. PMID:26347835

  2. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus

    PubMed Central

    Atmaca, Murat; Ucler, Rifki; Kartal, Mehmet; Seven, Ismet; Alay, Murat; Bayram, Irfan; Olmez, Sehmus

    2015-01-01

    Glycogenic hepatopathy is a rare cause of high transaminase levels in type 1 diabetes mellitus. This condition, characterized by elevated liver enzymes and hepatomegaly, is caused by irreversible and excessive accumulation of glycogen in hepatocytes. This is a case report on a 19-year-old male case, diagnosed with glycogenic hepatopathy. After the diagnosis was documented by liver biopsy, the case was put on glycemic control which led to significant decline in hepatomegaly and liver enzymes. It was emphasized that, in type 1 diabetes mellitus cases, hepatopathy should also be considered in the differential diagnoses of elevated liver enzyme and hepatomegaly. PMID:26347835

  3. Immunohistochemical localization of glycogen synthase and GSK3β: control of glycogen content in retina.

    PubMed

    Pérezleón, Jorge Alberto; Osorio-Paz, Ixchel; Francois, Liliana; Salceda, Rocío

    2013-05-01

    Glycogen has an important role in energy handling in several brain regions. In the brain, glycogen is localized in astrocytes and its role in several normal and pathological processes has been described, whereas in the retina, glycogen metabolism has been scarcely investigated. The enzyme glycogen phosphorylase has been located in retinal Müller cells; however the cellular location of glycogen synthase (GS) and its regulatory partner, glycogen synthase kinase 3β (GSK3β), has not been investigated. Our aim was to localize these enzymes in the rat retina by immunofluorescence techniques. We found both GS and GSK3β in Müller cells in the synaptic layers, and within the inner segments of photoreceptor cells. The presence of these enzymes in Müller cells suggests that glycogen could be regulated within the retina as in other tissues. Indeed, we showed that glycogen content in the whole retina in vitro was increased by high glucose concentrations, glutamate, and insulin. In contrast, retina glycogen levels were not modified by norepinephrine nor by depolarization with high KCl concentrations. Insulin also induced an increase in glycogen content in cultured Müller cells. The effect of insulin in both, whole retina and cultured Müller cells was blocked by inhibitors of phosphatidyl-inositol 3-kinase, strongly suggesting that glycogen content in retina is modulated by the insulin signaling pathway. The expression of GS and GSK3β in the synaptic layers and photoreceptor cells suggests an important role of GSK3β regulating glycogen synthase in neurons, which opens multiple feasible roles of insulin within the retina. PMID:23512644

  4. No effect of glycogen level on glycogen metabolism during high intensity exercise.

    PubMed

    Vandenberghe, K; Hespel, P; Vanden Eynde, B; Lysens, R; Richter, E A

    1995-09-01

    This study examined the effect of glycogen supercompensation on glycogen breakdown, muscle and blood lactate accumulation, blood-pH, and performance during short-term high-intensity exercise. Young healthy volunteers performed two supramaximal (125% of VO2max) exercise tests on a bicycle ergometer, either for 1 min 45 s (protocol 1; N = 18) or to exhaustion (protocol 2; N = 14). The exercise tests were preceded by either 5 d on a controlled normal (N) diet, or by 2 d of glycogen-depleting exercise accompanied by the normal diet followed by 3 d on a carbohydrate-rich (CHR) diet. In protocol 1, preexercise muscle glycogen concentrations were 364 +/- 23 and 568 +/- 35 mumol.g-1 d.w. in the N and CHR condition, respectively (P < 0.05). During the exertion, glycogen concentration in the M. quadriceps decreased to the same extent in both groups. Accordingly, the exercise-induced increases in muscle and blood-lactate, and the fall in blood-pH were similar during N and CHR. In protocol 2, time to exhaustion was identical for N and CHR. It is concluded that during short-term intense exercise during which muscle glycogen availability exceeds glycogen demand, rate of glycogen breakdown, lactate accumulation, and performance are regulated irrespective of the preexercise muscle glycogen level. PMID:8531626

  5. Hypoxia Promotes Glycogen Accumulation through Hypoxia Inducible Factor (HIF)-Mediated Induction of Glycogen Synthase 1

    PubMed Central

    Pescador, Nuria; Garcia-Rocha, Mar; Ortiz-Barahona, Amaya; Vazquez, Silvia; Ordoñez, Angel; Cuevas, Yolanda; Saez-Morales, David; Garcia-Bermejo, Maria Laura; Landazuri, Manuel O.; Guinovart, Joan; del Peso, Luis

    2010-01-01

    When oxygen becomes limiting, cells reduce mitochondrial respiration and increase ATP production through anaerobic fermentation of glucose. The Hypoxia Inducible Factors (HIFs) play a key role in this metabolic shift by regulating the transcription of key enzymes of glucose metabolism. Here we show that oxygen regulates the expression of the muscle glycogen synthase (GYS1). Hypoxic GYS1 induction requires HIF activity and a Hypoxia Response Element within its promoter. GYS1 gene induction correlated with a significant increase in glycogen synthase activity and glycogen accumulation in cells exposed to hypoxia. Significantly, knockdown of either HIF1α or GYS1 attenuated hypoxia-induced glycogen accumulation, while GYS1 overexpression was sufficient to mimic this effect. Altogether, these results indicate that GYS1 regulation by HIF plays a central role in the hypoxic accumulation of glycogen. Importantly, we found that hypoxia also upregulates the expression of UTP:glucose-1-phosphate urydylyltransferase (UGP2) and 1,4-α glucan branching enzyme (GBE1), two enzymes involved in the biosynthesis of glycogen. Therefore, hypoxia regulates almost all the enzymes involved in glycogen metabolism in a coordinated fashion, leading to its accumulation. Finally, we demonstrated that abrogation of glycogen synthesis, by knock-down of GYS1 expression, impairs hypoxic preconditioning, suggesting a physiological role for the glycogen accumulated during chronic hypoxia. In summary, our results uncover a novel effect of hypoxia on glucose metabolism, further supporting the central importance of metabolic reprogramming in the cellular adaptation to hypoxia. PMID:20300197

  6. Pyruvate dehydrogenase kinase-4 contributes to the recirculation of gluconeogenic precursors during postexercise glycogen recovery

    PubMed Central

    Herbst, Eric A. F.; MacPherson, Rebecca E. K.; LeBlanc, Paul J.; Roy, Brian D.; Jeoung, Nam Ho; Harris, Robert A.

    2013-01-01

    During recovery from glycogen-depleting exercise, there is a shift from carbohydrate oxidation to glycogen resynthesis. The activity of the pyruvate dehydrogenase (PDH) complex may decrease to reduce oxidation of carbohydrates in favor of increasing gluconeogenic recycling of carbohydrate-derived substrates for this process. The precise mechanism behind this has yet to be elucidated; however, research examining mRNA content has suggested that the less-abundant pyruvate dehydrogenase kinase-4 (PDK4) may reduce PDH activation during exercise recovery. To investigate this, skeletal muscle and liver of wild-type (WT) and PDK4-knockout (PDK4-KO) mice were analyzed at rest (Rest), after exercise to exhaustion (Exh), and after 2 h of recovery with ad libitum feeding (Rec). Although there were no differences in exercise tolerance between genotypes, caloric consumption was doubled by PDK4-KO mice during Rec. Because of this, PDK4-KO mice at Rec supercompensated muscle glycogen to 120% of resting stores. Therefore, an extra group of PDK4-KO mice were pair-fed (PF) with WT mice during Rec for comparison. PF mice fully replenished muscle glycogen but recovered only 50% of liver glycogen stores. Concentrations of muscle lactate and alanine were also lower in PF than in WT mice, indicating that this decrease may lead to a potential reduction of recycled gluconeogenic substrates, due to oxidation of their carbohydrate precursors in skeletal muscle, leading to observed reductions in hepatic glucose and glycogen concentrations. Because of the impairments seen in PF PDK4-KO mice, these results suggest a role for PDK4 in regulating the PDH complex in muscle and promoting gluconeogenic precursor recirculation during recovery from exhaustive exercise. PMID:24305065

  7. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  8. Xanthohumol ameliorates atherosclerotic plaque formation, hypercholesterolemia, and hepatic steatosis in ApoE-deficient mice

    PubMed Central

    Doddapattar, Prakash; Radović, Branislav; Patankar, Jay V.; Obrowsky, Sascha; Jandl, Katharina; Nusshold, Christoph; Kolb, Dagmar; Vujić, Nemanja; Doshi, Lalit; Chandak, Prakash G.; Goeritzer, Madeleine; Ahammer, Helmut; Hoefler, Gerald; Sattler, Wolfgang; Kratky, Dagmar

    2013-01-01

    Scope Xanthohumol (XN), a prenylated antioxidative and anti-inflammatory chalcone from hops, exhibits positive effects on lipid and glucose metabolism. Based on its favorable biological properties, we investigated whether XN attenuates atherosclerosis in western-type diet-fed apolipoprotein-E-deficient (ApoE−/−) mice. Methods and results XN supplementation markedly reduced plasma cholesterol concentrations, decreased atherosclerotic lesion area, and attenuated plasma concentrations of the proinflammatory cytokine monocyte chemoattractant protein 1. Decreased hepatic triglyceride and cholesterol content, activation of AMP-activated protein kinase, phosphorylation and inactivation of acetyl-CoA carboxylase, and reduced expression levels of mature sterol regulatory element-binding protein (SREBP)-2 and SREBP-1c mRNA indicate reduced lipogenesis in the liver of XN-fed ApoE−/− mice. Concomitant induction of hepatic mRNA expression of carnitine palmitoyltransferase-1a in ApoE−/− mice-administered XN suggests increased fatty acid beta-oxidation. Fecal cholesterol concentrations were also markedly increased in XN-fed ApoE−/− mice compared with mice fed western-type diet alone. Conclusion The atheroprotective effects of XN might be attributed to combined beneficial effects on plasma cholesterol and monocyte chemoattractant protein 1 concentrations and hepatic lipid metabolism via activation of AMP-activated protein kinase. PMID:23650230

  9. Characterization of the highly branched glycogen from the thermoacidophilic red microalga Galdieria sulphuraria and comparison with other glycogens.

    PubMed

    Martinez-Garcia, Marta; Stuart, Marc C A; van der Maarel, Marc J E C

    2016-08-01

    The thermoacidophilic red microalga Galdieria sulphuraria synthesizes glycogen when growing under heterotrophic conditions. Structural characterization revealed that G. sulphuraria glycogen is the most highly branched glycogen described to date, with 18% of α-(1→6) linkages. Moreover, it differs from other glycogens because it is composed of short chains only and has a substantially smaller molecular weight and particle size. The physiological role of this highly branched glycogen in G. sulphuraria is discussed. PMID:27107958

  10. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  11. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase

    PubMed Central

    Tiraidis, Costas; Alexacou, Kyra-Melinda; Zographos, Spyros E.; Leonidas, Demetres D.; Gimisis, Thanasis; Oikonomakos, Nikos G.

    2007-01-01

    FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b–FR258900 complex and refined it to 2.2 Å resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45′ (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site. PMID:17600143

  12. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase.

    PubMed

    Tiraidis, Costas; Alexacou, Kyra-Melinda; Zographos, Spyros E; Leonidas, Demetres D; Gimisis, Thanasis; Oikonomakos, Nikos G

    2007-08-01

    FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 A resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site. PMID:17600143

  13. Cell Fusion Reprogramming Leads to a Specific Hepatic Expression Pattern during Mouse Bone Marrow Derived Hepatocyte Formation In Vivo

    PubMed Central

    Arza, Elvira; Alvarez-Barrientos, Alberto; Fabregat, Isabel; Garcia-Bravo, Maria; Meza, Nestor W.; Segovia, Jose C.

    2012-01-01

    The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation. PMID:22457803

  14. Variation in glycogen concentrations within mantle and foot tissue in Amblema plicata plicata: Implications for tissue biopsy sampling

    USGS Publications Warehouse

    Naimo, T.J.; Monroe, E.M.

    1999-01-01

    With the development of techniques to non-lethally biopsy tissue from unionids, a new method is available to measure changes in biochemical, contaminant, and genetic constituents in this imperiled faunal group. However, before its widespread application, information on the variability of biochemical components within and among tissues needs to be evaluated. We measured glycogen concentrations in foot and mantle tissue in Amblema plicata plicata (Say, 1817) to determine if glycogen was evenly distributed within and between tissues and to determine which tissue might be more responsive to the stress associated with relocating mussels. Glycogen was measured in two groups of mussels: those sampled from their native environment (undisturbed mussels) and quickly frozen for analysis and those relocated into an artificial pond (relocated mussels) for 24 months before analysis. In both undisturbed and relocated mussels, glycogen concentrations were evenly distributed within foot, but not within mantle tissue. In mantle tissue, concentrations of glycogen varied about 2-fold among sections. In addition, glycogen varied significantly between tissues in undisturbed mussels, but not in relocated mussels. Twenty-four months after relocation, glycogen concentrations had declined by 80% in mantle tissue and by 56% in foot tissue relative to the undisturbed mussels. These data indicate that representative biopsy samples can be obtained from foot tissue, but not mantle tissue. We hypothesize that mantle tissue could be more responsive to the stress of relocation due to its high metabolic activity associated with shell formation.

  15. Regulation of glucose and glycogen metabolism during and after exercise.

    PubMed

    Jensen, Thomas E; Richter, Erik A

    2012-03-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  16. Regulation of glucose and glycogen metabolism during and after exercise

    PubMed Central

    Jensen, Thomas E; Richter, Erik A

    2012-01-01

    Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation). PMID:22199166

  17. The VP4 Peptide of Hepatitis A Virus Ruptures Membranes through Formation of Discrete Pores

    PubMed Central

    Shukla, Ashutosh; Padhi, Aditya K.; Gomes, James

    2014-01-01

    ABSTRACT Membrane-active peptides, components of capsid structural proteins, assist viruses in overcoming the host membrane barrier in the initial stages of infection. Several such peptides have been identified, and their roles in membrane fusion or disruption have been characterized through biophysical studies. In several members of the Picornaviridae family, the role of the VP4 structural peptide in cellular-membrane penetration is well established. However, there is not much information on the membrane-penetrating capsid components of hepatitis A virus (HAV), an unusual member of this family. The VP4 peptide of HAV differs from its analogues in other picornaviruses in being significantly shorter in length and in lacking a signal for myristoylation, thought to be a critical requisite for VP4-mediated membrane penetration. Here we report, for the first time, that the atypical VP4 in HAV contains significant membrane-penetrating activity. Using a combination of biophysical assays and molecular dynamics simulation studies, we show that VP4 integrates into membrane vesicles through its N-terminal region to finally form discrete pores of 5- to 9-nm diameter, which induces leakage in the vesicles without altering their overall size or shape. We further demonstrate that the membrane activity of VP4 is specific toward vesicles mimicking the lipid content of late endosomes at acidic pH. Taken together, our data indicate that VP4 might be essential for the penetration of host endosomal membranes and release of the viral genome during HAV entry. IMPORTANCE Hepatitis A virus causes acute hepatitis in humans through the fecal-oral route and is particularly prevalent in underdeveloped regions with poor hygienic conditions. Although a vaccine for HAV exists, its high cost makes it unsuitable for universal application in developing countries. Studies on host-virus interaction for HAV have been hampered due to a lack of starting material, since the virus is extremely slow growing

  18. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer's disease.

    PubMed

    Maqbool, Mudasir; Mobashir, Mohammad; Hoda, Nasimul

    2016-01-01

    Neurodegenerative diseases are among the most challenging diseases with poorly known mechanism of cause and paucity of complete cure. Out of all the neurodegenerative diseases, Alzheimer's disease is the most devastating and loosening of thinking and judging ability disease that occurs in the old age people. Many hypotheses came forth in order to explain its causes. In this review, we have enlightened Glycogen Synthase Kinase-3 which has been considered as a concrete cause for Alzheimer's disease. Plaques and Tangles (abnormal structures) are the basic suspects in damaging and killing of nerve cells wherein Glycogen Synthase Kinase-3 has a key role in the formation of these fatal accumulations. Various Glycogen Synthase Kinase-3 inhibitors have been reported to reduce the amount of amyloid-beta as well as the tau hyperphosphorylation in both neuronal and nonneuronal cells. Additionally, Glycogen Synthase Kinase-3 inhibitors have been reported to enhance the adult hippocampal neurogenesis in vivo as well as in vitro. Keeping the chemotype of the reported Glycogen Synthase Kinase-3 inhibitors in consideration, they may be grouped into natural inhibitors, inorganic metal ions, organo-synthetic, and peptide like inhibitors. On the basis of their mode of binding to the constituent enzyme, they may also be grouped as ATP, nonATP, and allosteric binding sites competitive inhibitors. ATP competitive inhibitors were known earlier inhibitors but they lack efficient selectivity. This led to find the new ways for the enzyme inhibition. PMID:26562543

  19. Genetics Home Reference: glycogen storage disease type I

    MedlinePlus

    ... Orphanet: Glycogen storage disease due to glucose-6-phosphatase deficiency Patient Support and Advocacy Resources (7 links) ... JY, Mansfield BC. Mutations in the glucose-6-phosphatase-alpha (G6PC) gene that cause type Ia glycogen ...

  20. Fructose effect to enhance liver glycogen deposition is due to inhibition of glycogenolysis

    SciTech Connect

    Youn, J.; Kaslow, H.; Bergman, R.

    1987-05-01

    The effect of fructose on glycogen degradation was examined by measuring flux of (/sup 14/C) from prelabeled glycogen in perfused rat livers. During 2 h refeeding of fasted rats hepatic glycogen was labeled by injection of (U /sup 14/C) galactose (0.1 mg and 0.02 ..mu..Ci/g of body weight). Refed livers were perfused for 30 min with glucose only (10 mM) and for 60 min with glucose (10 mM) without (n=5) or with fructose (1, 2, 10 mM; n=5 for each). With fructose, label production immediately declined and remained suppressed through the end of perfusion (P < 0.05). Suppression was dose-dependent: steady state label production was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose (P < 0.0001), without significant changes in glycogen synthase or phosphorylase. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (F1P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.6 ..mu..moles/g of liver with 1, 2, and 10 mM fructose. Maximum inhibition of phosphorylase was 82%; FIP concentration for half inhibition was 0.57 ..mu..moles/g of liver, well within the concentration of F1P attained in refeeding. Fructose enhances net glycogen synthesis in liver by suppressing glycogenolysis and the suppression is presumably caused by allosteric inhibition of phosphorylase by F1P.

  1. Glycogen metabolism in the liver of the neonatal gsd/gsd and control (GSD/GSD) rat.

    PubMed Central

    Clark, D G; Neville, S D; Brinkman, M; Filsell, O H

    1982-01-01

    1. The metabolism of hepatic glycogen, labelled with [6-3H]glucose at day 19.5 of gestation and with 14C from [U-14C]galactose at delivery, was followed for 10 h in food-deprived gsd/gsd and control (GSD/GSD) neonatal rats. 2. In the affected pups glycogen was maintained at 12% (w/w) and there was no loss of incorporated radioactivity. 3. The 3H and 14C in glycogen from the controls were both decreased by 80%, but 14C was removed at 0--5 h and [6-3H]glucose at 5--10 h. 4. Blood glucose concentrations in the unaffected neonatal rats fell from 5.3 mM at 20 min to 1.7 mM after 10 h. In the gsd/gsd pups blood glucose concentration was decreased from 2 mM at birth to 0.3 mM at 2.5 h: it was maintained at 0.8 mM between 5 and 10 h. 5. In neonatal rats that had been dead for 10 h, hepatic glycogen was decreased by 34% in the controls and by 22% in the gsd/gsd pups. These results demonstrate that liver from the affected rats contains glycogenolytic activity, but that it is not expressed in living tissue. PMID:6953968

  2. Genetics Home Reference: glycogen storage disease type VI

    MedlinePlus

    ... a result, liver cells cannot use glycogen for energy. Since glycogen cannot be broken down, it accumulates within liver cells, causing these cells to become enlarged and dysfunctional. Learn more about the gene associated with glycogen storage disease type VI PYGL Related Information What is ...

  3. Effect of diabetes on glycogen metabolism in rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Hernández-Berrones, Jethro; Luna-Ulloa, Luis Bernardo; Coffe, Víctor; Salceda, Rocío

    2008-07-01

    Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation. PMID:18274898

  4. Genetics Home Reference: glycogen storage disease type IX

    MedlinePlus

    ... cellular energy is a simple sugar called glucose. Glucose is stored in muscle and liver cells in a form called glycogen. Glycogen can ... result, glycogen accumulates in and damages cells, and glucose is not available for ... in the liver leads to hepatomegaly, and the liver's inability to ...

  5. Glycogen contains phosphodiester groups that can be introduced by UDPglucose: glycogen glucose 1-phosphotransferase.

    PubMed

    Lomako, J; Lomako, W M; Whelan, W J; Marchase, R B

    1993-08-30

    Rabbit-muscle glycogen contains covalently bound phosphorus, equivalent to 1 phosphate group per 208 glucose residues. This often disputed, minor component was previously thought to represent a phosphomonoester group at C-6 of a glucose residue. Here we show that more than half the phosphorus is present as a phosphodiester, the remainder being monoester. A novel enzyme activity has been found in muscle that can account for the presence of the phosphodiester in glycogen. This is a UDPglucose: glycogen glucose 1-phosphotransferase that positions glucose 1-phosphate on C-6 of glucose residues in glycogen, forming a diester. The phosphomonoester groups present may arise by removal of the glucose residue originally transferred as glucose 1-phosphate. PMID:8396041

  6. Molecular Structure of Human-Liver Glycogen

    PubMed Central

    Deng, Bin; Sullivan, Mitchell A.; Chen, Cheng; Li, Jialun; Powell, Prudence O.; Hu, Zhenxia; Gilbert, Robert G.

    2016-01-01

    Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets. PMID:26934359

  7. Gender-related differences in the formation of skatole metabolites by specific CYP450 in porcine hepatic S9 fractions.

    PubMed

    Borrisser-Pairó, F; Rasmussen, M K; Ekstrand, B; Zamaratskaia, G

    2015-04-01

    Higher accumulation of skatole in the fat of male pigs compared with female pigs might be due to gender-related differences in the rate of skatole degradation. In the present study, skatole metabolites and cytochrome P450 (CYP450) isoforms involved in skatole metabolism were for the first time investigated in hepatic S9 fractions from six male and four female pigs (crossbred Landrace×Yorkshire dams and Duroc boar). Surprisingly, the rates of production of major skatole metabolites were similar in male and female pigs. The most abundant metabolite of skatole was 3-hydroxy-3-methyloxindole (HMOI) followed by 3-methyloxindole and indole-3-carbinol in both male and female S9 fractions. Concentrations of formed HMOI and 3-methyloxindole did not differ between the genders (P=0.124 for HMOI, and P=0.575 for 3-methyloxindole). Indole-3-carbinol formation was higher in S9 fractions from the females compared with male pigs (P=0.0001). Enzyme kinetic parameters were similar for both genders (P>0.05). In both male and female pigs, ellipticine, diallyl sulphide (DAS) and quercetin inhibited HMOI formation, confirming the involvement of CYP1A1 and CYP2E1. The formation of 3-methyloxindole was reduced in the presence of the CYP2E1 inhibitor DAS, and formation of indole-3-carbinol was reduced in the presence of CYP1A1 and CYP2A19 inhibitors. We found only minor differences in skatole metabolism between male and female pigs, particularly the involvement of CYP2C and CYP3A in indole-3-carbinol formation in female but not in male pigs. This is a very essential finding, suggesting the involvement of larger number of CYP450 isoforms in female pigs. On the other hand, indole-3-carbinol is a minor skatole metabolite, and the physiological significance of CYP2C and CYP3A involvement in its formation in female pigs, but not in male pigs, needs to be elucidated. Our results, however, should be interpreted with caution because of the low number of animals and possibility of breed and age

  8. Glycogen with short average chain length enhances bacterial durability

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  9. Radiometric assays for glycerol, glucose, and glycogen.

    PubMed

    Bradley, D C; Kaslow, H R

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus (1971, J. Biol. Chem. 246, 3885-3894) for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays. PMID:2817333

  10. Radiometric assays for glycerol, glucose, and glycogen

    SciTech Connect

    Bradley, D.C.; Kaslow, H.R. )

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with (32P)ATP and glycerokinase, residual (32P)ATP is hydrolyzed by heating in acid, and free (32P)phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays.

  11. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    SciTech Connect

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane; Faure, Robert; Marceau, Normand

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  12. Glycogen and its metabolism: some new developments and old themes

    PubMed Central

    Roach, Peter J.; Depaoli-Roach, Anna A.; Hurley, Thomas D.; Tagliabracci, Vincent S.

    2016-01-01

    Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease. PMID:22248338

  13. Hepatitis Risk Assessment

    MedlinePlus

    ... About the Division of Viral Hepatitis Contact Us File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  14. Reaction Kinetics of Substrate Transglycosylation Catalyzed by TreX of Sulfolobus solfataricus and Effects on Glycogen Breakdown

    PubMed Central

    Nguyen, Dang Hai Dang; Park, Jong-Tae; Shim, Jae-Hoon; Tran, Phuong Lan; Oktavina, Ershita Fitria; Nguyen, Thi Lan Huong; Lee, Sung-Jae; Park, Cheon-Seok; Li, Dan; Park, Sung-Hoon; Stapleton, David; Lee, Jin-Sil

    2014-01-01

    We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc4-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc4-β-CD as a glycogen mimic substrate showed that it followed the breakdown process of the well-known yeast and rat liver extract. TreX catalyzed both hydrolysis of α-1,6-glycosidic linkages and transglycosylation at relatively high (>0.5 mM) substrate concentrations. TreX transferred maltotetraosyl moieties from the donor substrate to acceptor molecules, resulting in the formation of two positional isomers of dimaltotetraosyl-α-1,6-β-cyclodextrin [(Glc4)2-β-CD]; these were 61,63- and 61,64-dimaltotetraosyl-α-1,6-β-CD. Use of a modified Michaelis-Menten equation to study substrate transglycosylation revealed that the kcat and Km values for transglycosylation were 1.78 × 103 s−1 and 3.30 mM, respectively, whereas the values for hydrolysis were 2.57 × 103 s−1 and 0.206 mM, respectively. Also, enzyme catalytic efficiency (the kcat/Km ratio) increased as the degree of polymerization of branch chains rose. In the model reaction system of Escherichia coli, glucose-1-phosphate production from glycogen by the glycogen phosphorylase was elevated ∼1.45-fold in the presence of TreX compared to that produced in the absence of TreX. The results suggest that outward shifting of glycogen branch chains via transglycosylation increases the number of exposed chains susceptible to phosphorylase action. We developed a model of the glycogen breakdown process featuring both hydrolysis and transglycosylation catalyzed by the debranching enzyme. PMID:24610710

  15. Glycogen metabolism in rat heart muscle cultures after hypoxia.

    PubMed

    Vigoda, Ayelet; Mamedova, Liaman K; Shneyvays, Vladimir; Katz, Abram; Shainberg, Asher

    2003-12-01

    Elevated glycogen levels in heart have been shown to have cardioprotective effects against ischemic injury. We have therefore established a model for elevating glycogen content in primary rat cardiac cells grown in culture and examined potential mechanisms for the elevation (glycogen supercompensation). Glycogen was depleted by exposing the cells to hypoxia for 2 h in the absence of glucose in the medium. This was followed by incubating the cells with 28 mM glucose in normoxia for up to 120 h. Hypoxia decreased glycogen content to about 15% of control, oxygenated cells. This was followed by a continuous increase in glycogen in the hypoxia treated cells during the 120 h recovery period in normoxia. By 48 h after termination of hypoxia, the glycogen content had returned to baseline levels and by 120 h glycogen was about 150% of control. The increase in glycogen at 120 h was associated with comparable relative increases in glucose uptake (approximately 180% of control) and the protein level of the glut-1 transporter (approximately 170% of control), whereas the protein level of the glut-4 transporter was decreased to < 10% of control. By 120 h, the hypoxia-treated cells also exhibited marked increases in the total (approximately 170% of control) and fractional activity of glycogen synthase (control, approximately 15%; hypoxia-treated, approximately 30%). Concomitantly, the hypoxia-treated cells also exhibited marked decreases in the total (approximately 50% of control) and fractional activity of glycogen phosphorylase (control, approximately 50%; hypoxia-treated, approximately 25%). Thus, we have established a model of glycogen supercompensation in cultures of cardiac cells that is explained by concerted increases in glucose uptake and glycogen synthase activity and decreases in phosphorylase activity. This model should prove useful in studying the cardioprotective effects of glycogen. PMID:14674711

  16. Identification of Disubstituted Sulfonamide Compounds as Specific Inhibitors of Hepatitis B Virus Covalently Closed Circular DNA Formation

    PubMed Central

    Cai, Dawei; Mills, Courtney; Yu, Wenquan; Yan, Ran; Aldrich, Carol E.; Saputelli, Jeffry R.; Mason, William S.; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2012-01-01

    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a central role in viral infection and persistence and is the basis for viral rebound after the cessation of therapy, as well as the elusiveness of a cure even after extended treatment. Therefore, there is an urgent need for the development of novel therapeutic agents that directly target cccDNA formation and maintenance. By employing an innovative cell-based cccDNA assay in which secreted HBV e antigen is a cccDNA-dependent surrogate, we screened an in-house small-molecule library consisting of 85,000 drug-like compounds. Two structurally related disubstituted sulfonamides (DSS), termed CCC-0975 and CCC-0346, emerged and were confirmed as inhibitors of cccDNA production, with low micromolar 50% effective concentrations (EC50s) in cell culture. Further mechanistic studies demonstrated that DSS compound treatment neither directly inhibited HBV DNA replication in cell culture nor reduced viral polymerase activity in the in vitro endogenous polymerase assay but synchronously reduced the levels of HBV cccDNA and its putative precursor, deproteinized relaxed circular DNA (DP-rcDNA). However, DSS compounds did not promote the intracellular decay of HBV DP-rcDNA and cccDNA, suggesting that the compounds interfere primarily with rcDNA conversion into cccDNA. In addition, we demonstrated that CCC-0975 was able to reduce cccDNA biosynthesis in duck HBV-infected primary duck hepatocytes. This is the first attempt, to our knowledge, to identify small molecules that target cccDNA formation, and DSS compounds thus potentially serve as proof-of-concept drug candidates for development into therapeutics to eliminate cccDNA from chronic HBV infection. PMID:22644022

  17. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    PubMed Central

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage. PMID:27148080

  18. Non-invasive quantification of brain glycogen absolute concentration

    PubMed Central

    van Heeswijk, Ruud B.; Xin, Lijing; Laus, Sabrina; Frenkel, Hanne; Lei, Hongxia; Gruetter, Rolf

    2009-01-01

    The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 ± 0.1 fold that of N-acetyl-aspartate (n = 11, R2 = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean ± SD: 5.8 ± 0.7 μmol/g) was in excellent agreement with that in vitro (6.4 ± 0.6 μmol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover. PMID:19013831

  19. Dietary whey protein hydrolysates increase skeletal muscle glycogen levels via activation of glycogen synthase in mice.

    PubMed

    Kanda, Atsushi; Morifuji, Masashi; Fukasawa, Tomoyuki; Koga, Jinichiro; Kanegae, Minoru; Kawanaka, Kentaro; Higuchi, Mitsuru

    2012-11-14

    Previously, we have shown that consuming carbohydrate plus whey protein hydrolysates (WPHs) replenished muscle glycogen after exercise more effectively than consuming intact whey protein or branched-chain amino acids (BCAAs). The mechanism leading to superior glycogen replenishment after consuming WPH is unclear. In this 5 week intervention, ddY mice were fed experimental diets containing WPH, a mixture of whey amino acids (WAAs), or casein (control). After the intervention, gastrocnemius muscle glycogen levels were significantly higher in the WPH group (4.35 mg/g) than in the WAA (3.15 mg/g) or control (2.51 mg/g) groups. In addition, total glycogen synthase (GS) protein levels were significantly higher in the WPH group (153%) than in the WAA (89.2%) or control groups, and phosphorylated GS levels were significantly decreased in the WPH group (51.4%). These results indicate that dietary WPH may increase the muscle glycogen content through increased GS activity. PMID:23113736

  20. MicroRNA 152 regulates hepatic glycogenesis by targeting PTEN.

    PubMed

    Wang, Shuyue; Wang, Lilin; Dou, Lin; Guo, Jun; Fang, Weiwei; Li, Meng; Meng, Xiangyu; Man, Yong; Shen, Tao; Huang, Xiuqing; Li, Jian

    2016-05-01

    Hepatic insulin resistance, defined as a diminished ability of hepatocytes to respond to the action of insulin, plays an important role in the development of type 2 diabetes and metabolic syndrome. Aberrant expression of mmu-miR-152-3p (miR-152) is related to the pathogenesis of tumors such as hepatitis B virus related hepatocellular carcinoma. However, the role of miR-152 in hepatic insulin resistance remains unknown. In the present study, we identified the potential role of miR-152 in regulating hepatic glycogenesis. The expression of miR-152 and the level of glycogen were significantly downregulated in the liver of db/db mice and mice fed a high fat diet. In vivo and in vitro results suggest that inhibition of miR-152 expression induced impaired glycogenesis in hepatocytes. Interestingly, miR-152 expression, glycogen synthesis and protein kinase B/glycogen synthase kinase (AKT/GSK) pathway activation were significantly decreased in the liver of mice injected with 16 μg·mL(-1) interleukin 6 (IL-6) by pumps for 7 days and in NCTC 1469 cells treated with 10 ng·mL(-1) IL-6 for 24 h. Moreover, hepatic overexpression of miR-152 rescued IL-6-induced impaired glycogenesis. Finally, phosphatase and tensin homolog (PTEN) was identified as a direct target of miR-152 to mediate hepatic glycogen synthesis. Our findings provide mechanistic insight into the effects of miR-152 on the regulation of the AKT/GSK pathway and the synthesis of glycogen in hepatocytes. Downregulated miR-152 induced impaired hepatic glycogenesis by targeting PTEN. PTEN participated in miR-152-mediated glycogenesis in hepatocytes via regulation of the AKT/GSK pathway. PMID:26996529

  1. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions.

    PubMed

    Yamada, Masumi; Utoh, Rie; Ohashi, Kazuo; Tatsumi, Kohei; Yamato, Masayuki; Okano, Teruo; Seki, Minoru

    2012-11-01

    We have developed a hydrogel-based cell cultivation platform for forming 3D restiform hepatic micro-organoids consisting of primary rat hepatocytes and feeder cells (Swiss 3T3 cells). Sodium alginate solutions containing hepatocytes/3T3 cells were continuously introduced into a microfluidic channel to produce cell-incorporating anisotropic Ba-alginate hydrogel microfibers, where hepatocytes at the center were closely sandwiched by 3T3 cells. Hydrogel fiber-based cultivation under high oxygen tension enabled the formation of heterotypic micro-organoids with a length of up to 1 mm and a diameter of ∼50 μm, mimicking the hepatic cord structures found in the liver, while maintaining a high hepatocyte viability (∼80%) over 30 days. Long-term observation of up to 90 days revealed a significant enhancement of hepatic functions because of heterotypic and homotypic cell-cell interactions, including albumin secretion and urea synthesis as well as expression of hepatocyte-specific genes, compared with conventional monolayer culture and single cultivation in the hydrogel fibers. The encapsulated hepatic constructs were recovered as scaffold-free micro-organoids by enzymatically digesting the hydrogel matrices using alginate lyase. This technique for creating heterotypic micro-organoids with precisely ordered multiple cell types will be useful for the development of a new liver tissue engineering approach and may be applicable to the fabrication of extracorporeal bioartificial liver (BAL) devices and assessment tools for drug development and testing. PMID:22906609

  2. Monogenic control of variations in antipyrine metabolite formation. New polymorphism of hepatic drug oxidation.

    PubMed Central

    Penno, M B; Vesell, E S

    1983-01-01

    To investigate mechanisms that control large variations among normal uninduced subjects in the elimination of the model compound antipyrine (AP) and other drugs, AP was administered to 144 subjects (83 unrelated adults and 61 members of 13 families). Thereafter, at regular intervals for 72 h, the urine of each subject was collected and concentrations of AP and its three main metabolites measured. From these urinary concentrations, rate constants for formation of each AP metabolite were calculated. Trimodal curves were observed when values for each AP rate constant were plotted in 83 unrelated subjects; probit plots of these values showed inflections at the two antimodes of each trimodal distribution. All members of our 13 families were assigned one of three phenotypes determined by where their AP metabolite rate constant placed them in the trimodal distributions derived from the 83 unrelated subjects. In each family, pedigree analysis to identify the mode of transmission of these three phenotypes was consistent with their monogenic control. These results provide evidence for a new polymorphism of drug oxidation in man. PMID:6863539

  3. Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure.

    PubMed

    Tsitsanou, K E; Oikonomakos, N G; Zographos, S E; Skamnaki, V T; Gregoriou, M; Watson, K A; Johnson, L N; Fleet, G W

    1999-04-01

    The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase. PMID:10211820

  4. Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure.

    PubMed Central

    Tsitsanou, K. E.; Oikonomakos, N. G.; Zographos, S. E.; Skamnaki, V. T.; Gregoriou, M.; Watson, K. A.; Johnson, L. N.; Fleet, G. W.

    1999-01-01

    The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase. PMID:10211820

  5. Viral Hepatitis

    MedlinePlus

    ... Public Home » For Veterans and the Public Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... the Public Veterans and Public Home How is Hepatitis C Treated? Find the facts about the newest ...

  6. PP2A inhibition results in hepatic insulin resistance despite Akt2 activation.

    PubMed

    Galbo, Thomas; Perry, Rachel J; Nishimura, Erica; Samuel, Varman T; Quistorff, Bjørn; Shulman, Gerald I

    2013-10-01

    In the liver, insulin suppresses hepatic gluconeogenesis by activating Akt, which inactivates the key gluconeogenic transcription factor FoxO1 (Forkhead Box O1). Recent studies have implicated hyperactivity of the Akt phosphatase Protein Phosphatase 2A (PP2A) and impaired Akt signaling as a molecular defect underlying insulin resistance. We therefore hypothesized that PP2A inhibition would enhance insulin-stimulated Akt activity and decrease glucose production. PP2A inhibitors increased hepatic Akt phosphorylation and inhibited FoxO1in vitro and in vivo, and suppressed gluconeogenesis in hepatocytes. Paradoxically, PP2A inhibition exacerbated insulin resistance in vivo. This was explained by phosphorylation of both hepatic glycogen synthase (GS) (inactivation) and phosphorylase (activation) resulting in impairment of glycogen storage. Our findings underline the significance of GS and Phosphorylase as hepatic PP2A substrates and importance of glycogen metabolism in acute plasma glucose regulation. PMID:24150286

  7. Attenuation of Helicteres isora L. bark extracts on streptozotocin-induced alterations in glycogen and carbohydrate metabolism in albino rats.

    PubMed

    Kumar, G; Sharmila Banu, G; Murugesan, A G

    2009-11-01

    The present study was undertaken to assess the effect of Helicteres isora L. on four important enzymes of carbohydrate metabolism (glucokinase [GK], hexokinase [HK] phosphofructokinase [PFK] and fructose-1, 6-bisphosphatase [FBP]) along with glycogen content of insulin-dependent (skeletal muscle and liver) and insulin-independent tissues (kidneys and brain) in streptozotocin (STZ; 60 mg/kg)-induced model of diabetes for 30 days. Administration of bark extracts (100, 200 mg/kg) for 30 days led to decrease in plasma glucose levels by approximately 9.60% and 22.04% and 19.18% and 33.93% on 15th and 30th day, respectively, of the experiment. Liver and two-kidney weight expressed as percentage of body weight significantly increased in diabetics (P < 0.05) versus normal controls. Renal glycogen content increased by 10 folds while hepatic and skeletal muscle glycogen content decreased by 75% and 68% in diabetic controls versus controls. H. isora did not affect glycogen content in any tissue. The decreased activities of PFK, GK, FBP and HK in diabetic controls were 40%, 50%, 50% and 60% and bark extract of H. isora partially corrected this alteration. The efficacy of the bark extract was comparable with Tolbutamide, a well-known hypoglycemic drug. PMID:19812119

  8. Three consecutive pregnancies in a patient with glycogen storage disease type IA (von Gierke's disease).

    PubMed

    Ryan, I P; Havel, R J; Laros, R K

    1994-06-01

    Glycogen storage disease type IA is associated with metabolic abnormalities that can compromise fetal outcome. Normal outcome can be achieved by maintaining euglycemia throughout gestation. We report three consecutive pregnancies in a patient with glycogen storage disease type IA. The patient, a 35-year-old woman, has been maintained on a regimen of nightly nasogastric or cornstarch feedings for the past 12 years with improving metabolic control, reduced liver size, and no progression of multiple hepatic adenomas. On confirmation of each pregnancy, early in the first trimester nightly feeding was changed from cornstarch ingestion to Polycose by nasogastric intubation, with good metabolic control. During the last trimester of each pregnancy metabolic control showed further improvement, with lowering of lactate, urate, and triglyceride levels. During the first pregnancy unexpected fetal death occurred at 33 weeks. During the last two pregnancies, the patient was admitted at 33 and 34 weeks, respectively, for closer supervision of metabolic status and fetal monitoring. She underwent a cesarean section at 35 weeks 4 days of gestation and was delivered of a girl. She underwent a repeat cesarean section at 35 weeks 2 days for the subsequent gestation and was delivered of a boy. Both infants are healthy and appear to be unaffected by von Gierke's disease. Hepatic adenomas did not enlarge during the pregnancies. Meticulous management resulted in normal pregnancy outcomes in two consecutive gestations. Rapid fetal growth late in the third trimester may require particularly careful supervision to maintain euglycemia. PMID:8203427

  9. Viral Hepatitis

    MedlinePlus

    ... with hepatitis? How does a pregnant woman pass hepatitis B virus to her baby? If I have hepatitis B, what does my baby need so that she ... Can I breastfeed my baby if I have hepatitis B? More information on viral hepatitis What is hepatitis? ...

  10. Muscle glycogen loading with a liquid carbohydrate supplement.

    PubMed

    Lamb, D R; Snyder, A C; Baur, T S

    1991-03-01

    This study compared two high carbohydrate (CHO) diets in 14 male runners for effects on muscle glycogen deposition, endurance, and sensations of gastrointestinal discomfort. Muscle glycogen was measured in the vastus lateralis at rest and run time to exhaustion at 75% VO2max was measured following 3-1/2 days on a 50% CHO diet. After 14 days the subjects consumed a 20% CHO diet and continued training to reduce glycogen. During the next 3-1/2 days, subjects ran less and consumed a 90% CHO diet emphasizing pasta and rice (Pasta, n = 7) or lesser amounts of pasta and rice supplemented by a maltodextrin beverage (Supplement, n = 7). Glycogen was again measured, followed by a second run to exhaustion. Compared to the 50% CHO diet, Pasta increased muscle glycogen by 27.1 +/- 12.2 mmoles/kg muscle (M +/- SE; P < 0.05) and run time by 15.7 +/- 5.9 min; Supplement increased glycogen by 43.2 +/- 13.5 mmoles/kg (P < 0.05) and run time by 29.0 +/- 7.4 min (P < 0.05). Total glycogen concentrations and run times were not significantly different for Pasta versus Supplement. Subjects reported less gastrointestinal discomfort and greater overall preference for Supplement than for Pasta. Thus, glycogen loading can be accomplished at least as effectively and more comfortably by substituting a maltodextrin drink for some of the pasta and rice in a glycogen loading diet. PMID:1844402

  11. Secondary metabolic changes in von Gierke's disease (Type I glycogen storage disease).

    PubMed

    Blackett, P R

    1982-01-01

    Deficiency of glucose-6-phosphatase in Type I glycogen storage disease (GSD) results in hypoglycemia and excessive accumulation of glucose-6-phosphate. As a result, lactic acid, uric acid, and lipids are formed as end-products. The formation of these metabolites are discussed with an emphasis on monitoring therapeutic progress. In addition, hyperlipidemia and associated changes in apolipoproteins are considered as indices of the clinical course. PMID:6753728

  12. Contributions of Glycogen to Astrocytic Energetics during Brain Activation

    PubMed Central

    Dienel, Gerald A.; Cruz, Nancy F.

    2014-01-01

    Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302

  13. Globular hepatic amyloid: an early stage in the pathway of amyloid formation: a study of 20 new cases.

    PubMed

    Makhlouf, Hala R; Goodman, Zachary D

    2007-10-01

    Only 25 cases of globular hepatic amyloidosis have been reported, mostly from the early 1980s. We reviewed clinical, histopathologic, and immunohistochemical features of 20 cases of hepatic globular amyloid out of 208 cases of liver amyloidosis seen at the Armed Forces Institute of Pathology since 1970. Fourteen (70%) were men and 6 were women with a median age of 67 years (range, 40 to 92 y). More than half of the patients were Hispanic. Ten of 20 patients were diagnosed with systemic amyloidosis. Histologically, all cases revealed round to oval-shaped sometimes laminated globules, 1 to 40 mum in diameter, and 6 cases had evidence of transition from globular to the more usual linear form. In all 20 cases, Congo red and/or Sirius red stained the globules red and showed an apple green birefringence under polarized light. Portal tracts and parenchyma were involved in 15/20 the cases, and sinusoidal deposition alone in 5 cases. Vascular deposition was very common with more than 3/4 of the cases showing mainly perivenular amyloid with both the terminal hepatic venules and portal vein branches being equally involved. A few intrahepatocellular globules were present in half of the cases. In conclusion, hepatic amyloidosis can rarely occur as a globular form, and the finding of intracellular amyloid globules and transitional forms of globular to linear patterns of deposition suggest that this is an early form of hepatic involvement by systemic amyloidosis. PMID:17895765

  14. A method for the determination of the hepatic enzyme activity catalyzing bile acid acyl glucuronide formation by high-performance liquid chromatography with pulsed amperometric detection.

    PubMed

    Ikegawa, S; Oohashi, J; Murao, N; Goto, J

    2000-05-01

    A method for the determination of the activity of hepatic glucuronyltransferase catalyzing formation of bile acid 24-glucuronides using high-performance liquid chromatography (HPLC) with pulsed amperometric detection (PAD) has been developed. Bile acid 24-glucuronides were simultaneously separated on a semimicrobore column, Capcell Pak C18UG120, using 20 mM ammonium phosphate (pH 6.0)-acetonitrile (27:10 and 16:10) as the mobile phase in the stepwise gradient elution mode. A 1 M potassium hydroxide solution for the hydrolysis of the 24-glucuronides, which liberates the corresponding bile acids and glucuronic acid, was mixed with the mobile phase in a post-column mode, and the resulting eluant was heated at 90 degrees C, the 24-glucuronides being monitored using a pulsed amperometric detector; the limit of detection was 10 ng. The proposed method was applied to the determination of the hepatic enzyme activity catalyzing bile acid 24-glucuronide formation and the result exhibited the efficient 24-glucuronide formation of the monohydroxylated bile acid, lithocholic acid. PMID:10850616

  15. Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages

    PubMed Central

    Ran, Lin; Yu, Qilin; Zhang, Shu; Xiong, Fei; Cheng, Jia; Yang, Ping; Xu, Jun-Fa; Nie, Hao; Zhong, Qin; Yang, Xueli; Yang, Fei; Gong, Quan; Kuczma, Michal; Kraj, Piotr; Gu, Weikuan; Ren, Bo-Xu; Wang, Cong-Yi

    2015-01-01

    ABSTRACT Acute schistosomiasis is characterized by pro-inflammatory responses against tissue- or organ-trapped parasite eggs along with granuloma formation. Here, we describe studies in Cx3cr1−/− mice and demonstrate the role of Cx3cr1 in the pathoetiology of granuloma formation during acute schistosomiasis. Mice deficient in Cx3cr1 were protected from granuloma formation and hepatic injury induced by Schistosoma japonicum eggs, as manifested by reduced body weight loss and attenuated hepatomegaly along with preserved liver function. Notably, S. japonicum infection induced high levels of hepatic Cx3cr1 expression, which was predominantly expressed by infiltrating macrophages. Loss of Cx3cr1 rendered macrophages preferentially towards M2 polarization, which then led to a characteristic switch of the host immune defense from a conventional Th1 to a typical Th2 response during acute schistosomiasis. This immune switch caused by Cx3cr1 deficiency was probably associated with enhanced STAT6/PPAR-γ signaling and increased expression of indoleamine 2,3-dioxygenase (IDO), an enzyme that promotes M2 polarization of macrophages. Taken together, our data provide evidence suggesting that CX3CR1 could be a viable therapeutic target for treatment of acute schistosomiasis. PMID:26035381

  16. Muscle glycogen and cell function--Location, location, location.

    PubMed

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. PMID:26589115

  17. Structural basis for the recruitment of glycogen synthase by glycogenin

    PubMed Central

    Zeqiraj, Elton; Tang, Xiaojing; Hunter, Roger W.; García-Rocha, Mar; Judd, Andrew; Deak, Maria; von Wilamowitz-Moellendorff, Alexander; Kurinov, Igor; Guinovart, Joan J.; Tyers, Mike; Sakamoto, Kei; Sicheri, Frank

    2014-01-01

    Glycogen is a primary form of energy storage in eukaryotes that is essential for glucose homeostasis. The glycogen polymer is synthesized from glucose through the cooperative action of glycogen synthase (GS), glycogenin (GN), and glycogen branching enzyme and forms particles that range in size from 10 to 290 nm. GS is regulated by allosteric activation upon glucose-6-phosphate binding and inactivation by phosphorylation on its N- and C-terminal regulatory tails. GS alone is incapable of starting synthesis of a glycogen particle de novo, but instead it extends preexisting chains initiated by glycogenin. The molecular determinants by which GS recognizes self-glucosylated GN, the first step in glycogenesis, are unknown. We describe the crystal structure of Caenorhabditis elegans GS in complex with a minimal GS targeting sequence in GN and show that a 34-residue region of GN binds to a conserved surface on GS that is distinct from previously characterized allosteric and binding surfaces on the enzyme. The interaction identified in the GS-GN costructure is required for GS–GN interaction and for glycogen synthesis in a cell-free system and in intact cells. The interaction of full-length GS-GN proteins is enhanced by an avidity effect imparted by a dimeric state of GN and a tetrameric state of GS. Finally, the structure of the N- and C-terminal regulatory tails of GS provide a basis for understanding phosphoregulation of glycogen synthesis. These results uncover a central molecular mechanism that governs glycogen metabolism. PMID:24982189

  18. Mechanism of glycogen supercompensation in rat skeletal muscle cultures.

    PubMed

    Mamedova, Liaman K; Shneyvays, Vladimir; Katz, Abram; Shainberg, Asher

    2003-08-01

    A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4-2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level. PMID:12962138

  19. Genetics Home Reference: glycogen storage disease type 0

    MedlinePlus

    ... the expand/collapse boxes. Download PDF Open All Close All Description Glycogen storage disease type 0 (also known as GSD 0) is a condition caused by the body's inability to form a complex sugar called glycogen , which is a major source of stored energy in the body. GSD 0 ...

  20. Ontogeny of the rat hepatic adrenoceptors

    SciTech Connect

    McMillian, M.K.

    1985-01-01

    Hepatic alpha-1, alpha-2, and beta-2 adrenoceptors were characterized during development of the rat through Scatchard analysis of (/sup 3/H)-prazosin, (/sup 3/H)-rauwolscine and (/sup 125/I)-pindolol binding to washed particle membrane preparations. Major changes in adrenoceptor number occur shortly before birth and at weaning. The fetal rat liver is characterized by a large number of alpha-2 adrenoceptors which falls 10-20 fold at birth. The number of hepatic beta adrenoceptors decreases 30-50% during the third week after birth increases slightly at weaning, then decreases gradually in the adult. Hepatic alpha-1 adrenoceptor number increases 3-5 fold at weaning to become the predominant adrenoceptor in the adult rat liver. The basis for the fall in alpha-2 number at birth remains unclear. The fall in beta receptor number at the end of the second week post-natally appears dependent on increased insulin and corticosterone secretion as well as increased NE release form nerve terminals. The basis for the increase in beta number at weaning and the sex-dependent loss of beta function but not receptor number in the adult rat remains unknown. The dramatic increases in alpha-1 number and function at weaning are dependent on increased adrenocortical secretion, adrenalectomy prevents the normal. This effect of adrenocorticoids might be mediated through glycogen, as glycogen depletion during fasting decreases alpha-1 receptor number and function at weaning are dependent on increased adrenocortical secretion, adrenalectomy prevents the normal. This effect of adrenocorticoids might be mediated through glycogen, as glycogen depletion during fasting decreases alpha-1 receptor number and function. These findings suggest that hepatic adrenoceptor number adapts from the low carbohydrate diet of the suckling rat to the high carbohydrate diet of the adult at weaning.

  1. Effect of exhaustive ultra-endurance exercise in muscular glycogen and both Alpha1 and Alpha2 Ampk protein expression in trained rats.

    PubMed

    Tarini, V A F; Carnevali, L C; Arida, R M; Cunha, C A; Alves, E S; Seeleander, M C L; Schmidt, B; Faloppa, F

    2013-09-01

    Glycogen is the main store of readily energy in skeletal muscle and plays a key role in muscle function, demonstrated by the inability to sustain prolonged high-intensity exercise upon depletion of these glycogen stores. With prolonged exercise, glycogen depletion occurs and 5'-AMP-activated protein kinase (AMPK), a potent regulator of muscle metabolism and gene expression, is activated promoting molecular signalling that increases glucose uptake by muscular skeletal cells. The aim of this study was primarily to determine the effect of ultra-endurance exercise on muscle glycogen reserves and secondly to verify the influence of this type of exercise on AMPK protein expression. Twenty-four male Wistar rats, 60 days old, were divided into four experimental groups: sedentary, sedentary exhausted (SE), endurance trained (T) and endurance trained exhausted (TE). The animals ran for 10 to 90 min/day, 5 days/week, for 12 weeks to attain trained status. Rats were killed immediately after the exhaustion protocol, which consisted of running on a treadmill (at approximately 60% Vmax until exhaustion). Optical density of periodic acid-Schiff was detected and glycogen depletion observed predominantly in type I muscle fibres of the TE group and in both type I and II muscle fibres in the SE group. Plasma glucose decreased only in the TE group. Hepatic glycogen was increased in T group and significantly depleted in TE group. AMPK protein expression was significantly elevated in TE and T groups. In conclusion, acute exhaustive ultra-endurance exercise promoted muscle glycogen depletion. It seems that total AMPK protein and gene expression is more influenced by status training. PMID:23184732

  2. The effect of pulp and seed extract of Citrullus Colocynthis, as an antidaibetic medicinal herb, on hepatocytes glycogen stores in diabetic rabbits

    PubMed Central

    Shafaei, Hajar; Rad, Jafar Soleimani; Delazar, Abbas; Behjati, Mohaddeseh

    2014-01-01

    Background: Medicinal herbs such as Citrullus Colocynthis (C.C) have been used traditionally in the treatment of diabetes mellitus. However therapeutic applications and adverse effects of C.C and its natural variants are not determined well. The current work investigates the effects of pulp and seed extract of C.C on hepatocyte's glycogen stores. Materials and Methods: Thirty six male rabbits were divided into six groups (control and diabetic) randomly. Alloxan was used in order to induce diabetes mellitus in animals. Among 5 diabetic groups, one remained as control and the rest received 100 and 200 mg/kg/day of either pulp or seed extract. One month later, animals were sacrificed and their liver specimen fixed in 10% Formalin was stained with periodic acid schiff (PAS) for light microscopic scanning. Results: PAS staining of hepatocytes revealed large amounts of glycogen stores in diabetic animals treated with pulp and seed extracts of C.C, contrary with non-treated diabetic rabbits. Sites of glycogen deposition were also different in animals treated with seed extract (P < 0.0001). No hepatic congestion was seen in treated animals. Dose escalation has no effect on the obtained results. Conclusions: The anti-diabetic effects of C.C can be explained by its effects on accumulation of glycogen stores in hepatocytes. The importance of varied sites of glycogen deposition by the application of C.C needs to be determined. PMID:25625097

  3. The design of potential antidiabetic drugs: experimental investigation of a number of beta-D-glucose analogue inhibitors of glycogen phosphorylase.

    PubMed

    Oikonomakos, N G; Kontou, M; Zographos, S E; Tsitoura, H S; Johnson, L N; Watson, K A; Mitchell, E P; Fleet, G W; Son, J C; Bichard, C J

    1994-01-01

    alpha-D-glucose is a weak inhibitor (Ki = 1.7 mM) of glycogen phosphorylase (GP) and acts as physiological regulator of hepatic glycogen metabolism; it binds to GP at the catalytic site and stabilizes the inactive T state of the enzyme promoting the action of protein phosphatase 1 and stimulating glycogen synthase. The three-dimensional structures of T state rabbit muscle GPb and the GPb-alpha-D-glucose complex have been exploited in the design of better regulators of GP that could shift the balance between glycogen synthesis and glycogen degradation in favour of the former. Close examination of the catalytic site with alpha-D-glucose bound shows that there is an empty pocket adjacent to the beta-1-C position. beta-D-glucose is a poorer inhibitor (Ki = 7.4 mM) than alpha-D-glucose, but mutarotation has prevented the binding of beta-D-glucose in T state GP crystals. A series of beta-D-glucose analogues has been designed and tested in kinetic and crystallographic experiments. Several compounds have been discovered that have an increased affinity for GP than the parent compound. PMID:7867660

  4. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    PubMed Central

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  5. Supercompensated glycogen loads persist 5 days in resting trained cyclists.

    PubMed

    Arnall, David A; Nelson, Arnold G; Quigley, Jack; Lex, Stephen; Dehart, Tom; Fortune, Peggy

    2007-02-01

    Research data indicates a persistence of elevated muscle glycogen concentration 3 days post-supercompensation in resting athletes. This study expands our earlier findings by determining whether muscle glycogen remains elevated 3, 5, or 7 days post-supercompensation. Seventeen trained male cyclists underwent one bout of exhaustive exercise to deplete muscle glycogen. This was followed by a 3-day consumption of a high carbohydrate/low protein/low fat diet (85:08:07%). Three post-loading phases followed with subjects randomly assigned to either a 3-day, 5-day, or 7-day post-loading maintenance diet of 60% carbohydrate and limited physical activity. Biopsies (50-150 mg) of the vastus lateralis were obtained pre-load (BASELINE), at peak-load (PEAK), and either at 3-day, 5-day, or 7-day post-load (POST). On average, PEAK to POST muscle glycogen concentrations decreased 34, 20 and 46% respectively for the 3-, 5-, and 7-day POST groups. Only the 7-day post-load group's PEAK to POST mean muscle glycogen concentration decreased significantly. In addition, multi-regression analysis indicated that the PEAK glycogen level was the main determinant of the number of days that glycogen levels remained significantly greater than BASELINE. Thus, trained athletes' supercompensated glycogen levels can remain higher than normal for up to 5 days post-loading. The amount of carbohydrate consumed, the level of physical activity, and the magnitude of the glycogen supercompensation determine the interval for which the glycogen levels are elevated. PMID:17120016

  6. The Phospholipid:Diacylglycerol Acyltransferase Lro1 Is Responsible for Hepatitis C Virus Core-Induced Lipid Droplet Formation in a Yeast Model System

    PubMed Central

    Wang, Chao-Wen; Cheng, Yun-Hsin; Irokawa, Hayato; Hwang, Gi-Wook; Naganuma, Akira; Kuge, Shusuke

    2016-01-01

    Chronic infection with the hepatitis C virus frequently induces steatosis, which is a significant risk factor for liver pathogenesis. Steatosis is characterized by the accumulation of lipid droplets in hepatocytes. The structural protein core of the virus induces lipid droplet formation and localizes on the surface of the lipid droplets. However, the precise molecular mechanisms for the core-induced formation of lipid droplets remain elusive. Recently, we showed that the expression of the core protein in yeast as a model system could induce lipid droplet formation. In this study, we probed the cellular factors responsible for the formation of core-induced lipid-droplets in yeast cells. We demonstrated that one of the enzymes responsible for triglyceride synthesis, a phospholipid:diacylglycerol acyltransferase (Lro1), is required for the core-induced lipid droplet formation. While core proteins inhibit Lro1 degradation and alter Lro1 localization, the characteristic localization of Lro1 adjacent to the lipid droplets appeared to be responsible for the core-induced lipid droplet formation. RNA virus genomes have evolved using high mutation rates to maintain their ability to replicate. Our observations suggest a functional relationship between the core protein with hepatocytes and yeast cells. The possible interactions between core proteins and the endoplasmic reticulum membrane affect the mobilization of specific proteins. PMID:27459103

  7. Methodological and physiological test-retest reliability of (13) C-MRS glycogen measurements in liver and in skeletal muscle of patients with type 1 diabetes and matched healthy controls.

    PubMed

    Buehler, Tania; Bally, Lia; Dokumaci, Ayse Sila; Stettler, Christoph; Boesch, Chris

    2016-06-01

    Glycogen is a major substrate in energy metabolism and particularly important to prevent hypoglycemia in pathologies of glucose homeostasis such as type 1 diabetes mellitus (T1DM). (13) C-MRS is increasingly used to determine glycogen in skeletal muscle and liver non-invasively; however, the low signal-to-noise ratio leads to long acquisition times, particularly when glycogen levels are determined before and after interventions. In order to ease the requirements for the subjects and to avoid systematic effects of the lengthy examination, we evaluated if a standardized preparation period would allow us to shift the baseline (pre-intervention) experiments to a preceding day. Based on natural abundance (13) C-MRS on a clinical 3 T MR system the present study investigated the test-retest reliability of glycogen measurements in patients with T1DM and matched controls (n = 10 each group) in quadriceps muscle and liver. Prior to the MR examination, participants followed a standardized diet and avoided strenuous exercise for two days. The average coefficient of variation (CV) of myocellular glycogen levels was 9.7% in patients with T1DM compared with 6.6% in controls after a 2 week period, while hepatic glycogen variability was 13.3% in patients with T1DM and 14.6% in controls. For comparison, a single-session test-retest variability in four healthy volunteers resulted in 9.5% for skeletal muscle and 14.3% for liver. Glycogen levels in muscle and liver were not statistically different between test and retest, except for hepatic glycogen, which decreased in T1DM patients in the retest examination, but without an increase of the group distribution. Since the CVs of glycogen levels determined in a "single session" versus "within weeks" are comparable, we conclude that the major source of uncertainty is the methodological error and that physiological variations can be minimized by a pre-study standardization. For hepatic glycogen examinations, familiarization sessions

  8. Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of beta 2 integrins and intercellular adhesion molecule-1.

    PubMed

    Jaeschke, H; Farhood, A; Fisher, M A; Smith, C W

    1996-11-01

    Antibodies against cellular adhesion molecules protect against neutrophil-induced hepatic injury during ischemia-reperfusion and endotoxemia. To test if beta 2 integrins on neutrophils and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells are involved in neutrophil sequestration in the hepatic vasculature, neutrophil accumulation in the liver was characterized during the early phase of endotoxemia. Intravenous injection of Salmonella enteritidis endotoxin induced a dose-dependent activation of complement, tumor necrosis factor-alpha (TNF-alpha) formation, and an increase of hepatic neutrophils with maximal numbers at 5 mg/kg (90 min: 339 +/- 14 cells/50 high power fields; controls: 18 +/- 2). Administration of 15 micrograms/kg TNF-alpha and intravascular complement activation with cobra venom factor (75 micrograms/kg) had additive effects on hepatic neutrophil accumulation compared with each mediator alone. Monoclonal antibodies (2 mg/kg) to ICAM-1 and the alpha-chain (CD11a, CD11b) or the beta-chain (CD18) of beta 2 integrins had no significant effect on hepatic neutrophil count after endotoxin. In contrast, these antibodies inhibited peritoneal neutrophil infiltration in response to glycogen administration by 28% (CD11b), 60% (CD11a, ICAM-1), and 92% (CD18). Our data suggest that TNF-alpha and complement factors contribute to hepatic neutrophil sequestration during the early phase of endotoxemia. Despite the fact that these inflammatory mediators can up-regulate integrins and ICAM-1, these adhesion molecules are not necessary for neutrophil accumulation in hepatic sinusoids. The protective effect of these antibodies against neutrophil-induced liver injury appears to be due to inhibition of transendothelial migration and adherence to parenchymal cells. PMID:8946651

  9. Mono-(2-ethylhexyl) phthalate targets glycogen debranching enzyme and affects glycogen metabolism in rat testis.

    PubMed

    Kuramori, Chikanori; Hase, Yasuyoshi; Hoshikawa, Koichi; Watanabe, Keiko; Nishi, Takeyuki; Hishiki, Takako; Soga, Tomoyoshi; Nashimoto, Akihiro; Kabe, Yasuaki; Yamaguchi, Yuki; Watanabe, Hajime; Kataoka, Kohsuke; Suematsu, Makoto; Handa, Hiroshi

    2009-05-01

    Phthalate esters are commonly used plasticizers; however, some are suspected to cause reproductive toxicity. Administration of high doses of di-(2-ethylhexyl) phthalate (DEHP) induces germ cell death in male rodents. Mono-(2-ethylhexyl) phthalate (MEHP), a hydrolyzed metabolite of DEHP, appears to be responsible for this testicular toxicity; however, the underlying mechanism of this chemical's action remains unknown. Here, using a one-step affinity purification procedure, we identified glycogen debranching enzyme (GDE) as a phthalate-binding protein. GDE has oligo-1,4-1,4-glucanotransferase and amylo-1,6-glucosidase activities, which are responsible for the complete degradation of glycogen to glucose. Our findings demonstrate that MEHP inhibits the activity of oligo-1,4-1,4-glucanotransferase, but not of amylo-1,6-glucosidase. Among various phthalate esters tested, MEHP specifically binds to and inhibits GDE. We also show that DEHP administration affects glycogen metabolism in rat testis. Thus, inhibition of GDE by MEHP may play a role in germ cell apoptosis in the testis. PMID:19240039

  10. Glycogen repletion following continuous and intermittent exercise to exhaustion.

    PubMed

    Gaesser, G A; Brooks, G A

    1980-10-01

    Patterns of postexercise glycogen repletion in heart, skeletal muscle, and liver in the absence of exogenously supplied substrates during the first 4 h of recovery were assessed. Female Wistar rats were run to exhaustion using continuous (1.0 mph, 15% grade) and intermittent (alternate 1-min intervals at 0.5 and 1.5 mph, 15% grade) exercise protocols. Rats at exhaustion were characterized by marked depletion of glycogen in heart (55%), skeletal muscle (94%), and liver (97%). Blood glucose levels at exhaustion (1.33 mumol/g) were only 37% of preexercise levels. There were no significant differences between continuous and intermittent exercise groups for any of the tissue glycogen or blood glucose values. Cardiac muscle was the only tissue capable of complete restoration of glycogen levels while relying exclusively upon endogenous substrates. Concentrations of endogenous substrates present at the end of exercise were insufficient to support restoration of blood glucose levels to preexercise values nor support glycogen repletion in skeletal muscle and liver during the initial 4-h food-restricted postexercise period. With subsequent feeding, skeletal muscle demonstrated a glycogen supercompensation effect at 24 h (181.1 and 191.8% of preexercise levels for continuous and intermittent exercise, respectively). Lactate concentration in all tissues at the point exhaustion (1.5--2.5 times resting levels) were only moderately elevated and returned to preexercise levels within 15 min. It was concluded that lactate removal after exercise contributed only minimally to the repletion of muscle glycogen. PMID:7440286

  11. The Transcriptional Profiling of Glycogenes Associated with Hepatocellular Carcinoma Metastasis

    PubMed Central

    Liu, Tianhua; Zhang, Shu; Chen, Jie; Jiang, Kai; Zhang, Qinle; Guo, Kun; Liu, Yinkun

    2014-01-01

    Background and objective Metastasis is one of the important reasons for the poor prognosis of hepatocellular carcinoma (HCC), abnormal glycosylation plays a pivotal role in HCC metastasis. The goal of this study was to screen and validate the transcriptional profiling of glycogenes associated with HCC metastasis. Methodology The differentially transcribed glycogenes were screened out by the Human Glycosylation RT2 Profiler PCR Array, and were identified by qRT-PCR in human HCC cell lines and their orthotopic xenograft tumors. Further analyses were performed with K-mean clustering, Gene Ontology (GO) and ingenuity pathways analysis (IPA). Four differentially transcribed glycogenes were validated in clinical cancer specimens by qRT-PCR. Results A total of thirty-three differentially transcribed glycogenes were obtained by comparison the transcription in the metastatic human HCC cell lines (MHCC97L, MHCC97H and HCCLM3) with the transcription in the non-metastatic HCC cell line Hep3B. Seven differentially transcribed glycogenes were selected to further identification in human HCC cell lines and their orthotopic xenograft tumors. According to their trends by K-mean clustering, all of the differentially transcribed glycogenes were classified in six clusters. GO analysis of the differentially transcribed glycogenes described them in biological process, subcellular location and molecular function. Furthermore, the partial regulatory network of the differentially transcribed glycogenes was acquired through the IPA. The transcription levels of galnt3, gcnt3, man1a1, mgat5b in non-metastatic and metastatic HCC clinical cancer specimens showed the same changing trends with the results in human HCC cell lines and their orthotopic xenograft tumors, and the divergent transcription levels of gcnt3 and mgat5b were statistically significant. Conclusions The transcriptional profiling of glycogenes associated with HCC metastasis was obtained and validated in this study and it might

  12. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation.

    PubMed

    Kessler, Sonja M; Laggai, Stephan; Van Wonterg, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K

    2016-01-01

    Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation. PMID:27199763

  13. Evolution of Hepatic Steatosis to Fibrosis and Adenoma Formation in Liver-Specific Growth Hormone Receptor Knockout Mice

    PubMed Central

    Fan, Yong; Fang, Xin; Tajima, Asako; Geng, Xuehui; Ranganathan, Sarangarajan; Dong, Henry; Trucco, Massimo; Sperling, Mark A.

    2014-01-01

    Background: Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver diseases closely associated with obesity and insulin resistance; deficient growth hormone (GH) action in liver has been implicated as a mechanism. Here, we investigated the evolution of NAFLD in aged mice with liver-specific GHR deletion. Methods: We examined glucose tolerance, insulin responsiveness, and lipid profiles in aged male mice (44–50 weeks) with GHRLD. We performed proteomics analysis, pathway-based Superarray assay, as well as quantitative RT-PCR to gain molecular insight into the mechanism(s) of GHR-deficiency-mediated NAFLD. In addition, we examined the pathological changes of livers of aged GHRLD male mice. Results: The biochemical profile was consistent with that of the metabolic syndrome: abnormal glucose tolerance, impaired insulin secretion, and hyperlipidemia. RT-qPCR analysis of key markers of inflammation revealed a three- to fivefold increase in TNFα and CCL3, confirming the presence of inflammation. Expression of fibrotic markers (e.g., Col1A2 and Col3A1) was significantly increased, together with a two- to threefold increase in TGFβ transcripts. Proteomics analyses showed a marked decrease of Mup1 and Selenbp2. In addition, pathway-analysis showed that the expression of cell cycle and growth relevant genes (i.e., Ccnd1, Socs2, Socs3, and Egfr) were markedly affected in GHRLD liver. Microscopic analyses (H&E) of GHRLD livers revealed the presence of hepatic adenomas of different stages of malignancy. Conclusion: Abrogation of GH signaling in male liver leads to metabolic syndrome, hepatic steatosis, increased inflammation and fibrosis, and development of hepatic tumor. Since obesity, a common precursor of NAFLD, is a state of deficient GH secretion and action, the GHRLD model could be used to unravel the contribution of compromised hepatic GH signaling in these pathological processes, and help to identify potential targets for

  14. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation

    PubMed Central

    Kessler, Sonja M.; Laggai, Stephan; Van Wonterghem, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E.; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K.

    2016-01-01

    Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation. PMID:27199763

  15. Glycogen Phosphorylase in Acanthamoeba spp.: Determining the Role of the Enzyme during the Encystment Process Using RNA Interference▿

    PubMed Central

    Lorenzo-Morales, Jacob; Kliescikova, Jarmila; Martinez-Carretero, Enrique; De Pablos, Luis Miguel; Profotova, Bronislava; Nohynkova, Eva; Osuna, Antonio; Valladares, Basilio

    2008-01-01

    Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer. PMID:18223117

  16. Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence.

    PubMed

    Gibbs, Marie E; Lloyd, Hilary G E; Santa, Thomas; Hertz, Leif

    2007-11-15

    Bead discrimination training in chicks sets in motion a tightly timed series of biochemical events, including glutamate release, increase in forebrain level of glutamate and utilization of glycogen and glucose. Inhibition of glycogen breakdown by the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) around the time of training abolishes the increase in glutamate 5 min posttraining in the left hemisphere, in spite of uninhibited glucose metabolism. It also reduces the contents of glutamate, glutamine, and aspartate in the right hemisphere. Behavioral evidence supports the conclusion that glucose breakdown serves to provide energy, whereas glycogen acts as a substrate for glutamate, glutamine, and aspartate formation, requiring both pyruvate dehydrogenation to acetyl coenzyme A and pyruvate carboxylation in astrocytes. Inhibition of memory consolidation caused by DAB or 2-deoxyglucose (2-DG), an inhibitor of glucose phosphorylation without effect on glycogen metabolism, was challenged by intracerebral administration of acetate, aspartate, glutamine, lactate or glucose. DAB-mediated memory inhibition was successfully challenged by administration at 0 or 20 min posttraining of acetate (an astrocyte-specific acetyl CoA precursor) together with aspartate, substituting for pyruvate carboxylation, or of glutamine at 0-2.5 or 30 min posttraining. 2-DG-mediated memory impairment was not challenged by acetate with or without aspartate at 0 time but was challenged by acetate without aspartate at 20 min. Lactate, a substrate for both dehydrogenation and pyruvate carboxylation challenged both DAB and 2-DG. Doses of DAB and 2-DG which, on their own were subeffective, were not additive, further supporting the existence of one pathway using glucose and another using glycogen. PMID:17455305

  17. Kinetic and crystallographic studies of glucopyranose spirohydantoin and glucopyranosylamine analogs inhibitors of glycogen phosphorylase.

    PubMed

    Watson, Kimberly A; Chrysina, Evangelia D; Tsitsanou, Katerina E; Zographos, Spyros E; Archontis, Georgios; Fleet, George W J; Oikonomakos, Nikos G

    2005-12-01

    Glycogen phosphorylase (GP) is currently exploited as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Spirohydantoin of glucopyranose and N-acetyl-beta-D-glucopyranosylamine have been identified as the most potent inhibitors of GP that bind at the catalytic site. Four spirohydantoin and three beta-D-glucopyranosylamine analogs have been designed, synthesized and tested for inhibition of GP in kinetic experiments. Depending on the functional group introduced, the K(i) values varied from 16.5 microM to 1200 microM. In order to rationalize the kinetic results, we determined the crystal structures of the analogs in complex with GP. All the inhibitors bound at the catalytic site of the enzyme, by making direct and water-mediated hydrogen bonds with the protein and by inducing minor movements of the side chains of Asp283 and Asn284, of the 280s loop that blocks access of the substrate glycogen to the catalytic site, and changes in the water structure in the vicinity of the site. The differences observed in the Ki values of the analogs can be interpreted in terms of variations in hydrogen bonding and van der Waals interactions, desolvation effects, ligand conformational entropy, and displacement of water molecules on ligand binding to the catalytic site. PMID:16222658

  18. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum.

    PubMed

    Qin, Jun; Wang, Guanghui; Jiang, Cong; Xu, Jin-Rong; Wang, Chenfang

    2015-01-01

    Wheat scab caused by Fusarium graminearum is an important disease. In a previous study, the FGK3 glycogen synthase kinase gene orthologous to mammalian GSK3 was identified as an important virulence factor. Although GSK3 orthologs are well-conserved, none of them have been functionally characterized in fungal pathogens. In this study, we further characterized the roles of FGK3 gene. The Δfgk3 mutant had pleiotropic defects in growth rate, conidium morphology, germination, and perithecium formation. It was non-pathogenic in infection assays and blocked in DON production. Glycogen accumulation was increased in the Δfgk3 mutant, confirming the inhibitory role of Fgk3 on glycogen synthase. In FGK3-GFP transformants, GFP signals mainly localized to the cytoplasm in conidia but to the cytoplasm and nucleus in hyphae. Moreover, the expression level of FGK3 increased in response to cold, H2O2, and SDS stresses. In the Δfgk3 mutant, cold, heat, and salt stresses failed to induce the expression of the stress response-related genes FgGRE2, FgGPD1, FgCTT1, and FgMSN2. In the presence of 80 mM LiCl, a GSK3 kinase inhibitor, the wild type displayed similar defects to the Δfgk3 mutant. Overall, our results indicate that FGK3 is important for growth, conidiogenesis, DON production, pathogenicity, and stress responses in F. graminearum. PMID:25703795

  19. Hepatitis virus panel

    MedlinePlus

    Hepatitis A antibody test; Hepatitis B antibody test; Hepatitis C antibody test; Hepatitis D antibody test ... or past infection, or immunity to hepatitis A Hepatitis B tests: Hepatitis B surface antigen (HBsAg), you have ...

  20. Hepatitis C and HIV

    MedlinePlus

    ... Problems : Hepatitis C Subscribe Translate Text Size Print Hepatitis C What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis B . Hepatitis C and HIV About 25% of people living ...

  1. Hepatitis B and HIV

    MedlinePlus

    ... Problems : Hepatitis B Subscribe Translate Text Size Print Hepatitis B What is Hepatitis? Hepatitis means inflammation of the liver. This condition ... our related pages, Hepatitis A and Hepatitis C . Hepatitis B and HIV About 10% of people living ...

  2. Chronic overeating impairs hepatic glucose uptake and disposition.

    PubMed

    Coate, Katie C; Kraft, Guillaume; Shiota, Masakazu; Smith, Marta S; Farmer, Ben; Neal, Doss W; Williams, Phil; Cherrington, Alan D; Moore, Mary Courtney

    2015-05-15

    Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.0 ± 0.3 and 1.5 ± 0.5 kg, respectively, P < 0.05). They then underwent clamp studies with infusions of somatostatin and intraportal insulin (4× basal) and glucagon (basal). The hepatic glucose load was doubled with peripheral (Pe) glucose infusion for 90 min (P1) and intraportal glucose at 4 mg·kg(-1)·min(-1) plus Pe glucose for the final 90 min (P2). NHGU was blunted (P < 0.05) in Hkcal during both periods (mg·kg(-1)·min(-1); P1: 1.7 ± 0.2 vs. 0.3 ± 0.4; P2: 3.6 ± 0.3 vs. 2.3 ± 0.4, CTR vs. Hkcal, respectively). Terminal hepatic glucokinase catalytic activity was reduced nearly 50% in Hkcal vs. CTR (P < 0.05), although glucokinase protein did not differ between groups. In Hkcal vs. CTR, liver glycogen was reduced 27% (P < 0.05), with a 91% increase in glycogen phosphorylase activity (P < 0.05) but no significant difference in glycogen synthase activity. Thus, Hkcal impaired NHGU and glycogen synthesis compared with CTR, indicating that excessive energy intake, even if the diet is balanced and nutritious, negatively impacts hepatic glucose metabolism. PMID:25783892

  3. Hepatitis Testing

    MedlinePlus

    ... caused by viruses. They include hepatitis A, hepatitis B, and hepatitis C. To diagnose hepatitis, your health care provider will ask you about your medical history and symptoms, do a physical exam, and order blood tests. There are blood tests for each type of ...

  4. Genetics Home Reference: glycogen storage disease type III

    MedlinePlus

    ... blood (hyperlipidemia), and elevated blood levels of liver enzymes. As they get older, children with this condition ... gene provides instructions for making the glycogen debranching enzyme. This enzyme is involved in the breakdown of ...

  5. Glucose uptake and glycogen synthesis in muscles from immobilized limbs

    NASA Technical Reports Server (NTRS)

    Nicholson, W. F.; Watson, P. A.; Booth, F. W.

    1984-01-01

    Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.

  6. Human Brain Glycogen Metabolism During and After Hypoglycemia

    PubMed Central

    Öz, Gülin; Kumar, Anjali; Rao, Jyothi P.; Kodl, Christopher T.; Chow, Lisa; Eberly, Lynn E.; Seaquist, Elizabeth R.

    2009-01-01

    OBJECTIVE We tested the hypotheses that human brain glycogen is mobilized during hypoglycemia and its content increases above normal levels (“supercompensates”) after hypoglycemia. RESEARCH DESIGN AND METHODS We utilized in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with intravenous infusions of [13C]glucose in healthy volunteers to measure brain glycogen metabolism during and after euglycemic and hypoglycemic clamps. RESULTS After an overnight intravenous infusion of 99% enriched [1-13C]glucose to prelabel glycogen, the rate of label wash-out from [1-13C]glycogen was higher (0.12 ± 0.05 vs. 0.03 ± 0.06 μmol · g−1 · h−1, means ± SD, P < 0.02, n = 5) during a 2-h hyperinsulinemic-hypoglycemic clamp (glucose concentration 57.2 ± 9.7 mg/dl) than during a hyperinsulinemic-euglycemic clamp (95.3 ± 3.3 mg/dl), indicating mobilization of glucose units from glycogen during moderate hypoglycemia. Five additional healthy volunteers received intravenous 25–50% enriched [1-13C]glucose over 22–54 h after undergoing hyperinsulinemic-euglycemic (glucose concentration 92.4 ± 2.3 mg/dl) and hyperinsulinemic-hypoglycemic (52.9 ± 4.8 mg/dl) clamps separated by at least 1 month. Levels of newly synthesized glycogen measured from 4 to 80 h were higher after hypoglycemia than after euglycemia (P ≤ 0.01 for each subject), indicating increased brain glycogen synthesis after moderate hypoglycemia. CONCLUSIONS These data indicate that brain glycogen supports energy metabolism when glucose supply from the blood is inadequate and that its levels rebound to levels higher than normal after a single episode of moderate hypoglycemia in humans. PMID:19502412

  7. Structure and solution properties of enzymatically synthesized glycogen.

    PubMed

    Kajiura, Hideki; Takata, Hiroki; Kuriki, Takashi; Kitamura, Shinichi

    2010-04-19

    Recently, a new enzymatic process for glycogen production was developed. In this process, short-chain amylose is used as a substrate for branching enzymes (BE, EC 2.4.1.18). The molecular weight of the enzymatically synthesized glycogen (ESG) depends on the size and concentration of the substrate. Structural and physicochemical properties of ESG were compared to those of natural source glycogen (NSG). The average chain length, interior chain length, and exterior chain length of ESG were 8.2-11.6, 2.0-3.3, and 4.2-7.6, respectively. These values were within the range of variation of NSG. The appearances of both ESG and NSG in solution were opalescent (milky white and slightly bluish). Furthermore, transmission electron microscopy and atomic force microscopy showed that ESG molecules formed spherical particles, and that there were no differences between ESG and NSG. Viscometric analyses also showed the spherical nature of both glycogens. When ESG and NSG were treated with pullulanase, a glucan-hydrolyzing enzyme known to degrade glycogen only on its surface portion, both glycogens were similarly degraded. These analyses revealed that ESG shares similar molecular shapes and surface properties with NSG. PMID:20153852

  8. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis

    PubMed Central

    Nagasawa, Kazumichi; Tanizaki, Yuta; Okui, Takehito; Watarai, Atsuko; Ueda, Shinobu; Kato, Takashi

    2013-01-01

    Summary The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control) and a low environmental temperature (5°C, cold exposure). Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism. PMID:24167716

  9. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia

    PubMed Central

    Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian

    2014-01-01

    Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; P<0.05). Glycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (P<0.01) in the ipsilateral hemisphere (24 hours post-stroke), which corresponded with a 48% reduction in cAMP-dependent protein kinase A (PKA) activity (P<0.01). In addition, glycogen debranching enzyme expression 24 hours post-stroke was 77% (P<0.01) and 72% lower (P<0.01) at the protein and mRNA level, respectively. In cultured rat primary cerebellar astrocytes, hypoxia and inhibition of PKA activity significantly reduced glycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has

  10. Potential Contribution of Cytochrome P450 2B6 to Hepatic 4-Hydroxycyclophosphamide Formation In Vitro and In VivoS⃞

    PubMed Central

    Raccor, Brianne S.; Claessens, Adam J.; Dinh, Jean C.; Park, Julie R.; Hawkins, Douglas S.; Thomas, Sushma S.; Makar, Karen W.; McCune, Jeannine S.

    2012-01-01

    Results from retrospective studies on the relationship between cytochrome P450 (P450) 2B6 (CYP2B6) genotype and cyclophosphamide (CY) efficacy and toxicity in adult cancer patients have been conflicting. We evaluated this relationship in children, who have faster CY clearance and receive different CY-based regimens than adults. These factors may influence the P450s metabolizing CY to 4-hydroxycyclophosphamide (4HCY), the principal precursor to CY's cytotoxic metabolite. Therefore, we sought to characterize the in vitro and in vivo roles of hepatic CYP2B6 and its main allelic variants in 4HCY formation. CYP2B6 is the major isozyme responsible for 4HCY formation in recombinant P450 Supersomes. In human liver microsomes (HLM), 4HCY formation correlated with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. However, in HLM, CYP3A4/5 also contributes to 4HCY formation at the CY concentrations similar to plasma concentrations achieved in children (0.1 mM). 4HCY formation was not associated with CYP2B6 genotype at low (0.1 mM) or high (1 mM) CY concentrations potentially because CYP3A4/5 and other isozymes also form 4HCY. To remove this confounder, 4HCY formation was evaluated in recombinant CYP2B6 enzymes, which demonstrated that 4HCY formation was lower for CYP2B6.4 and CYP2B6.5 compared with CYP2B6.1. In vivo, CYP2B6 genotype was not directly related to CY clearance or ratio of 4HCY/CY areas under the curve in 51 children receiving CY-based regimens. Concomitant chemotherapy agents did not influence 4HCY formation in vitro. We conclude that CYP2B6 genotype is not consistently related to 4HCY formation in vitro or in vivo. PMID:21976622

  11. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila

    PubMed Central

    Érdi, Balázs; Nagy, Péter; Zvara, Ágnes; Varga, Ágnes; Pircs, Karolina; Ménesi, Dalma; Puskás, László G.; Juhász, Gábor

    2012-01-01

    Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis. PMID:22562043

  12. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia

    PubMed Central

    Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J

    2014-01-01

    Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689

  13. Digestion of glycogen by a glucosidase released by Trichomonas vaginalis.

    PubMed

    Huffman, Ryan D; Nawrocki, Lauren D; Wilson, Wayne A; Brittingham, Andrew

    2015-12-01

    Trichomonas vaginalis is a protozoan parasite that is the causative agent of trichomoniasis, a widespread sexually transmitted disease. In vitro culture of T. vaginalis typically employs a medium supplemented with either maltose or glucose and carbohydrates are considered essential for growth. Although the nature of the carbohydrates utilized by T. vaginalis in vivo is undefined, the vaginal epithelium is rich in glycogen, which appears to provide a source of carbon for the vaginal microbiota. Here, we show that T. vaginalis grows equally well in growth media supplemented with simple sugars or with glycogen. Analysis of conditioned growth medium by thin layer chromatography indicates that growth on glycogen is accompanied by glycogen breakdown to a mixture of products including maltose, glucose, and oligosaccharides. Enzymatic assays with conditioned growth medium show that glycogen breakdown is accomplished via the release of a glucosidase activity having the properties of an α-amylase into the growth medium. Furthermore, we find that released glucosidase activity increases upon removal of carbohydrate from the growth medium, indicating regulation of synthesis and/or secretion in response to environmental cues. Lastly, we show that addition of T. vaginalis glucosidase activity to a growth medium containing glycogen generates sufficient simple sugar to support the growth of lactobacilli which, themselves, are unable to degrade glycogen. Thus, not only does the glucosidase activity likely play an important role in allowing T. vaginalis to secure simple sugars for its own use, it has the potential to impact the growth of other members of the vaginal microbiome. PMID:26420465

  14. Lithium Induces Glycogen Accumulation in Salivary Glands of the Rat.

    PubMed

    Souza, D N; Mendes, F M; Nogueira, F N; Simões, A; Nicolau, J

    2016-02-01

    Lithium is administered for the treatment of mood and bipolar disorder. The aim of this study was to verify whether treatment with different concentrations of lithium may affect the glycogen metabolism in the salivary glands of the rats when compared with the liver. Mobilization of glycogen in salivary glands is important for the process of secretion. Two sets of experiments were carried out, that is, in the first, the rats received drinking water supplemented with LiCl (38,25 and 12 mM of LiCl for 15 days) and the second experiment was carried out by intraperitoneal injection of LiCl solution (12 mg/kg and 45 mg LiCl/kg body weight) for 3 days. The active form of glycogen phosphorylase was not affected by treatment with LiCl considering the two experiments. The active form of glycogen synthase presented higher activity in the submandibular glands of rats treated with 25 and 38 mM LiCl and in the liver, with 25 mM LiCl. Glycogen level was higher than that of control in the submandibular glands of rats receiving 38 and 12 mM LiCl, in the parotid of rats receiving 25 and 38 mM, and in the liver of rats receiving 12 mM LiCl. The absolute value of glycogen for the submandibular treated with 25 mM LiCl, and the liver treated with 38 mM LiCl, was higher than the control value, although not statistically significant for these tissues. No statistically significant difference was found in the submandibular and parotid salivary glands for protein concentration when comparing experimental and control groups. We concluded that LiCl administered to rats influences the metabolism of glycogen in salivary glands. PMID:26155966

  15. In vitro differentiation of unrestricted somatic stem cells into functional hepatic-like cells displaying a hepatocyte-like glucose metabolism.

    PubMed

    Waclawczyk, Simon; Buchheiser, Anja; Flögel, Ulrich; Radke, Teja F; Kögler, Gesine

    2010-11-01

    The hepatic-like phenotype resulting from in vitro differentiation of unrestricted somatic stem cells (USSC) derived from human umbilical cord blood (CB) was analyzed with regard to functional and metabolic aspects. USSC can be differentiated into cells of all three germ layers in vitro and in vivo and, although they share many features with mesenchymal stroma cells (MSC), can be distinguished from these by their expression of DLK1 as well as a restricted adipogenic differentiation potential. For the differentiation procedure described herein, a novel three-stage differentiation protocol resembling embryonic developmental processes of hepatic endoderm was applied. Hepatic pre-induction was performed by activinA and FGF4 resulting in enhanced SOX17 and FOXA2 expression. Further differentiation was achieved sequentially by retinoic acid, FGF4, HGF, EGF, and OSM resulting in a hepatic endodermal identity, characterized by the expression of AFP and HNF1alpha. Thereafter, expression of G6PC, ARG1, FBP1, and HNF4alpha was observed, thus indicating progressive differentiation. Functional studies concerning albumin secretion, urea formation, and cytochrome-p450-3A4 (CYP3A4) enzyme activity confirmed the hepatic-like phenotype. In order to characterize the differentiated cells at a metabolic level, USSC were incubated with [1-(13)C]glucose. By tracing the fate of the molecule's label via isotopomer analysis using (13)C NMR spectroscopy, formation of both glycogen and some gluconeogenetic activity could be observed providing evidence of a hepatocyte-like glucose metabolism in differentiated USSC. In conclusion, the results of the present study indicate that USSC represent a stem cell source with a substantial hepatic differentiation capacity which hold the potential for clinical applications. PMID:20458755

  16. Hepatitis B and Hepatitis C in Pregnancy

    MedlinePlus

    ... infected with the hepatitis B virus, can I breastfeed? • If I am infected with the hepatitis B ... infected with the hepatitis C virus, can I breastfeed? • Glossary What are hepatitis B and hepatitis C ...

  17. Time-dependent effect of ethanol force-feeding on glycogen repletion: NMR evidence of a link with ATP turnover in rat liver.

    PubMed

    Beauvieux, Marie-Christine; Gin, Henri; Roumes, Hélène; Kassem, Cendrella; Couzigou, Patrice; Gallis, Jean-Louis

    2015-09-01

    The purpose was to study the hepatic effects of low-dose ethanol on the links between ATP and glycogen production. Fasted male Wistar rats received a single force-feeding of glucose plus ethanol or isocaloric glucose. At different times after force-feeding (0-10 h), glycogen repletion and ATP characteristics (content, apparent catalytic time constant, mitochondrial turnover) were monitored by (13)C- or (31)P-nuclear magnetic resonance (NMR) in perfused and isolated liver. In vivo glycogen repletion after force-feeding was slower after glucose plus ethanol vs. glucose (12.04 ± 0.68 and 8.50 ± 0.86 μmol/h/g liver wet weight [ww], respectively), reaching a maximum at the 6th hour. From the 3rd to the 8th hour, glycogen content was lower after glucose plus ethanol vs. glucose. After glucose plus ethanol, the correlation between glycogen and ATP contents presented two linear steps: before and after the 3rd hour (30 and 102 μmol glycogen/g ww per μmol ATP/g ww, respectively, the latter being near the single step measured in glucose). After glucose plus ethanol, ATP turnover remained stable for 2 h, was 3-fold higher from the 3rd hour to the 8th hour, and was higher than after glucose (2.59 ± 0.45 and 1.39 ± 0.19 μmol/min/g ww, respectively). In the 1st hour, glucose plus ethanol induced a transient acidosis and an increase in the phosphomonoesters signal. In conclusion, after ethanol consumption, a large part of the ATP production was diverted to redox re-equilibrium during the first 2 h, thereby reducing the glycogen synthesis. Thereafter, the maintenance of a large oxidative phosphorylation allowed the stimulation of glycogen synthesis requiring ATP. PMID:26254966

  18. X-ray microanalysis of aldehyde-fixed glycogen contrast-stained by OsVI . FeII and OsVI . RuIV complexes.

    PubMed

    de Bruijn, W C; van Buitenen, J M

    1980-11-01

    The composition of the contrast-donating complex of rat liver glycogen, nucleoplasm, erythrocytes, and mitochondria was established by X-ray microanalysis. In these compartments the presence of osmium and iron was shown qualitatively in tissue after glutaraldehyde fixation, treated with OsVIIIO4 plus K4FeII(CN)6 and in similar tissue treated with a combination of K2OsVIO4 plus K4FeII(CN)6. Osmium and ruthenium were detected in these compartments, in aldehyde-fixed tissue treated with mixtures containing K2RuIVL(CN)6 rather than K4FeII(CN)6. The iron detected in the glycogen, nucleoplasm, erythrocytes, and mitochondria of tissue treated with K2RuIV(CN)6 mixtures proved to derive from sources inside the electron microscope, and had to be considered an artifact. Quantitatively, the mean atomic ratios of osmium-to-iron and osmium-to-ruthenium were determined from spectra obtained by point analyses of the same compartments (glycogen, nucleoplasm, mitochondria, lipid droplets, and erythrocytes). After correction of the spectra for the instrumental iron contribution, the osmium-to-iron and osmium-to-ruthenium ratios in the glycogen were about 1:3 for tissue treated with those combinations including K2OsVIO4. In the other compartments, the osmium-to-iron and osmium-to-ruthenium ratios were virtually 1:0. For Os-VIIIO4 in combination with potassium ferrouscyanide however the osmium-to-iron ratio was 1:7 in the glycogen and 1:5 in all other compartments. OsVIIIO4 was combined with potassium ruthenium-cyanide, the osmium-to-ruthenium ratio was 1:2 in the glycogen and 2:1 in the other compartments. These results support our view that the selective glycogen contrast is obtained by complex formation. PMID:6159393

  19. Hepatitis virus panel

    MedlinePlus

    Hepatitis A antibody test; Hepatitis B antibody test; Hepatitis C antibody test; Hepatitis D antibody test ... There are different tests for hepatitis A and B. A positive test is ... may mean: You currently have a hepatitis infection. This may ...

  20. Hepatitis C and Incarceration

    MedlinePlus

    HEPATITIS C & INCARCERATION What is hepatitis? “Hepatitis” means inflammation or swelling of the liver. The liver is an important ... viral hepatitis: Hepatitis A, Hepatitis B, and Hepatitis C. They are all different from each other and ...

  1. Hepatitis C: Treatment

    MedlinePlus

    ... Public Home » Hepatitis C » Hepatitis C Treatment Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Enter ZIP code here Enter ZIP code here Hepatitis C Treatment for Veterans and the Public Treatment ...

  2. Hepatic ischemia

    MedlinePlus

    Hepatic ischemia is a condition in which the liver does not get enough blood or oxygen, causing injury to ... pressure from any condition can lead to hepatic ischemia. Such conditions may include: Abnormal heart rhythms Dehydration ...

  3. Hepatic Encephalopathy

    MedlinePlus Videos and Cool Tools

    ... is Hepatic Encephalopathy? Hepatic Encephalopathy, sometimes referred to as portosystemic encephalopathy or PSE, is a condition that ... medical care is an important factor in staying as healthy as possible. The American Liver Foundation is ...

  4. Hepatitis D

    MedlinePlus

    ... if the hepatitis B virus is also present. Transmission Hepatitis D can be found in the blood, ... other body fluids of people who are infected. Transmission happens when infected body fluid enters another person’s ...

  5. Autoimmune hepatitis

    MedlinePlus

    Lupoid hepatitis; Chronic acute liver disease ... This form of hepatitis is an autoimmune disease . The body's immune system cannot tell the difference between healthy body tissue and harmful, outside ...

  6. Hepatitis C

    MedlinePlus

    ... 2014 Select a Language: Fact Sheet 507 Hepatitis C WHAT IS HEPATITIS C? HOW IS IT DIAGNOSED? ... treatment may be less likely to work. Hep C treatment is less effective for coinfected people. Cure ...

  7. Hepatitis A

    MedlinePlus

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  8. Hepatitis B

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000279.htm Hepatitis B To use the sharing features on this page, please enable JavaScript. Hepatitis B is irritation and swelling (inflammation) of the ...

  9. A new non-degradative method to purify glycogen.

    PubMed

    Tan, Xinle; Sullivan, Mitchell A; Gao, Fei; Li, Shihan; Schulz, Benjamin L; Gilbert, Robert G

    2016-08-20

    Liver glycogen, a complex branched glucose polymer containing a small amount of protein, is important for maintaining glucose homeostasis (blood-sugar control) in humans. It has recently been found that glycogen molecular structure is impaired in diabetes. Isolating the carbohydrate polymer and any intrinsically-attached protein(s) is an essential prerequisite for studying this structural impairment. This requires an effective, non-degradative and efficient purification method to exclude the many other proteins present in liver. Proteins and glycogen have different ranges of molecular sizes. Despite the plethora of proteins that might still be present in significant abundance after other isolation techniques, SEC (size exclusion chromatography, also known as GPC), which separates by molecular size, should separate those extraneous to glycogen from glycogen with any intrinsically associated protein(s). A novel purification method is developed for this, based on preparative SEC following sucrose gradient centrifugation. Proteomics is used to show that the new method compares favourably with current methods in the literature. PMID:27178921

  10. Molecular dynamics simulation of paracetamol molecules ordering around glycogen

    NASA Astrophysics Data System (ADS)

    Lim, Wilber; Feng, Yuan Ping; Liu, X. Y.

    2005-05-01

    By the use of classical atomistic molecular dynamics simulations, we demonstrate that paracetamol molecules exist in a highly ordered phase in the presence of a glycogen substrate at 317K whereas the paracetamol fluid exists in an isotropic phase in the absence of the glycogen substrate at the same temperature. This result further validates the studies made on polysaccharide regarding its abilities to promote nucleation of paracetamol via liquid preordering. As little is known regarding liquid ordering induced by a polymeric substrate, we seek to explore the ordering mechanism from an energy perspective. This is accomplished using conformation mappings. Our analysis shows that the conformation space accessible to the paracetamol molecule at 317K in the vicinity of glycogen is smaller than the one in the absence of glycogen. An investigation on the orientation of the dipole moments of the glycogen monomers and paracetamol molecules were carried out as well. From the investigations, we show that dipolar interactions play an important role in the ordering process. These studies bear significance to the understanding of the ordering process as well as the promotion and effective control of the nucleation rate.

  11. Chronic central leptin infusion modulates the glycemia response to insulin administration in male rats through regulation of hepatic glucose metabolism.

    PubMed

    Burgos-Ramos, Emma; Canelles, Sandra; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Frago, Laura M; Chowen, Julie A; Frühbeck, Gema; Argente, Jesús; Barrios, Vicente

    2015-11-01

    Leptin and insulin use overlapping signaling mechanisms to modify hepatic glucose metabolism, which is critical in maintaining normal glycemia. We examined the effect of an increase in central leptin and insulin on hepatic glucose metabolism and its influence on serum glucose levels. Chronic leptin infusion increased serum leptin and reduced hepatic SH-phosphotyrosine phosphatase 1, the association of suppressor of cytokine signaling 3 to the insulin receptor in liver and the rise in glycemia induced by central insulin. Leptin also decreased hepatic phosphoenolpyruvate carboxykinase levels and increased insulin's ability to phosphorylate insulin receptor substrate-1, Akt and glycogen synthase kinase on Ser9 and to stimulate glucose transporter 2 and glycogen levels. Peripheral leptin treatment reproduced some of these changes, but to a lesser extent. Our data indicate that leptin increases the hepatic response to a rise in insulin, suggesting that pharmacological manipulation of leptin targets may be of interest for controlling glycemia. PMID:26296906

  12. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    PubMed Central

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  13. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-09-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  14. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing.

    PubMed

    Henriksen, E J; Kirby, C R; Tischler, M E

    1989-06-01

    The time course of glycogen changes in soleus muscle recovering from 3 days of nonweight bearing by hindlimb suspension was investigated. Within 15 min and up to 2 h, muscle glycogen decreased. Coincidentally, muscle glucose 6-phosphate and the fractional activity of glycogen phosphorylase, measured at the fresh muscle concentrations of AMP, increased. Increased fractional activity of glycogen synthase during this time was likely the result of greater glucose 6-phosphate and decreased glycogen. From 2 to 4 h, when the synthase activity remained elevated and the phosphorylase activity declined, glycogen levels increased (glycogen supercompensation). A further increase of glycogen up to 24 h did not correlate with the enzyme activities. Between 24 and 72 h, glycogen decreased to control values, possibly initiated by high phosphorylase activity at 24 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that reloading transiently uncoupled glycogen control of this enzyme. These data suggest that the activities of glycogen synthase and phosphorylase, when measured at physiological effector levels, likely provide the closest approximation to the actual enzyme activities in vivo. Measurements made in this way effectively explained the majority of the changes in the soleus glycogen content during recovery from nonweight bearing. PMID:2501291

  15. Hepatitis A

    MedlinePlus

    ... is an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... suggest medicines to help relieve your symptoms. The hepatitis A vaccine can prevent HAV. Good hygiene can also ...

  16. Hepatitis C

    MedlinePlus

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  17. Hepatitis A

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​​ Alternate Language URL Español Hepatitis A Page Content On this page: What is ... Nutrition Points to Remember Clinical Trials What is hepatitis A? Hepatitis * A is a virus , or infection, ...

  18. Autoimmune Hepatitis

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​​ Alternate Language URL Autoimmune Hepatitis Page Content On this page: What is autoimmune ... Points to Remember Clinical Trials What is autoimmune hepatitis? Autoimmune hepatitis is a chronic—or long lasting— ...

  19. Modified glycogen as construction material for functional biomimetic microfibers.

    PubMed

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-01

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. PMID:27516273

  20. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    DOE PAGESBeta

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; et al

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less

  1. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    PubMed Central

    Li, Xiaodan; Wang, Lili; Zhou, X Edward; Ke, Jiyuan; de Waal, Parker W; Gu, Xin; Tan, M H Eileen; Wang, Dongye; Wu, Donghai; Xu, H Eric; Melcher, Karsten

    2015-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Together, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions. PMID:25412657

  2. Structural basis of AMPK regulation by adenine nucleotides and glycogen

    SciTech Connect

    Li, Xiaodan; Wang, Lili; Zhou, X. Edward; Ke, Jiyuan; de Waal, Parker W.; Gu, Xin; Tan, M. H. Eileen; Wang, Dongye; Wu, Donghai; Xu, H. Eric; Melcher, Karsten

    2014-11-21

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allosteric AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.

  3. Role in Tumor Growth of a Glycogen Debranching Enzyme Lost in Glycogen Storage Disease

    PubMed Central

    Guin, Sunny; Pollard, Courtney; Ru, Yuanbin; Ritterson Lew, Carolyn; Duex, Jason E.; Dancik, Garrett; Owens, Charles; Spencer, Andrea; Knight, Scott; Holemon, Heather; Gupta, Sounak; Hansel, Donna; Hellerstein, Marc; Lorkiewicz, Pawel; Lane, Andrew N.; Fan, Teresa W.-M.

    2014-01-01

    Background Bladder cancer is the most common malignancy of the urinary system, yet our molecular understanding of this disease is incomplete, hampering therapeutic advances. Methods Here we used a genome-wide functional short-hairpin RNA (shRNA) screen to identify suppressors of in vivo bladder tumor xenograft growth (n = 50) using bladder cancer UMUC3 cells. Next-generation sequencing was used to identify the most frequently occurring shRNAs in tumors. Genes so identified were studied in 561 patients with bladder cancer for their association with stratification of clinical outcome by Kaplan-Meier analysis. The best prognostic marker was studied to determine its mechanism in tumor suppression using anchorage-dependent and -independent growth, xenograft (n = 20), and metabolomic assays. Statistical significance was determined using two-sided Student t test and repeated-measures statistical analysis. Results We identified the glycogen debranching enzyme AGL as a prognostic indicator of patient survival (P = .04) and as a novel regulator of bladder cancer anchorage-dependent (P < .001), anchorage-independent (mean ± standard deviation, 180 ± 23.1 colonies vs 20±9.5 in control, P < .001), and xenograft growth (P < .001). Rescue experiments using catalytically dead AGL variants revealed that this effect is independent of AGL enzymatic functions. We demonstrated that reduced AGL enhances tumor growth by increasing glycine synthesis through increased expression of serine hydroxymethyltransferase 2. Conclusions Using an in vivo RNA interference screen, we discovered that AGL, a glycogen debranching enzyme, has a biologically and statistically significant role in suppressing human cancer growth. PMID:24700805

  4. The influence of social status on hepatic glucose metabolism in rainbow trout Oncorhynchus mykiss.

    PubMed

    Gilmour, Kathleen M; Kirkpatrick, Sheryn; Massarsky, Andrey; Pearce, Brenda; Saliba, Sarah; Stephany, Céleste-Élise; Moon, Thomas W

    2012-01-01

    The effects of chronic social stress on hepatic glycogen metabolism were examined in rainbow trout Oncorhynchus mykiss by comparing hepatocyte glucose production, liver glycogen phosphorylase (GP) activity, and liver β-adrenergic receptors in dominant, subordinate, control, fasted, and cortisol-treated fish. Hepatocyte glucose production in subordinate fish was approximately half that of dominant fish, reflecting hepatocyte glycogen stores in subordinate trout that were just 16% of those in dominant fish. Fasting and/or chronic elevation of cortisol likely contributed to these differences based on similarities among subordinate, fasted, and cortisol-treated fish. However, calculation of the "glycogen gap"--the difference between glycogen stores used and glucose produced--suggested an enhanced gluconeogenic potential in subordinate fish that was not present in fasted or cortisol-treated trout. Subordinate, fasted, and cortisol-treated trout also exhibited similar GP activities (both total activity and that of the active or a form), and these activities were in all cases significantly lower than those in control trout, perhaps reflecting an attempt to protect liver glycogen stores or a modified capacity to activate GP. Dominant trout exhibited the lowest GP activities (20%-24% of the values in control trout). Low GP activities, presumably in conjunction with incoming energy from feeding, allowed dominant fish to achieve the highest liver glycogen concentrations (double the value in control trout). Liver membrane β-adrenoceptor numbers (assessed as the number of (3)H-CGP binding sites) were significantly lower in subordinate than in dominant trout, although this difference did not translate into attenuated adrenergic responsiveness in hepatocyte glucose production in vitro. Transcriptional regulation, likely as a result of fasting, was indicated by significantly lower β(2)-adrenoceptor relative mRNA levels in subordinate and fasted trout. Collectively, the data

  5. Enhanced Symbiotic Performance by Rhizobium tropici Glycogen Synthase Mutants

    PubMed Central

    Marroquí, Silvia; Zorreguieta, Angeles; Santamaría, Carmen; Temprano, Francisco; Soberón, Mario; Megías, Manuel; Downie, J. Allan

    2001-01-01

    We isolated a Tn5-induced Rhizobium tropici mutant that has enhanced capacity to oxidize N,N-dimethyl-p-phenylendiamine (DMPD) and therefore has enhanced respiration via cytochrome oxidase. The mutant had increased levels of the cytochromes c1 and CycM and a small increase in the amount of cytochrome aa3. In plant tests, the mutant increased the dry weight of Phaseolus vulgaris plants by 20 to 38% compared with the control strain, thus showing significantly enhanced symbiotic performance. The predicted product of the mutated gene is homologous to glycogen synthases from several bacteria, and the mutant lacked glycogen. The DNA sequence of the adjacent gene region revealed six genes predicted to encode products homologous to the following gene products from Escherichia coli: glycogen phosphorylase (glgP), glycogen branching enzyme (glgB), ADP glucose pyrophosphorylase (glgC), glycogen synthase (glgA), phosphoglucomutase (pgm), and glycogen debranching enzyme (glgX). All six genes are transcribed in the same direction, and analysis with lacZ gene fusions suggests that the first five genes are organized in one operon, although pgm appears to have an additional promoter; glgX is transcribed independently. Surprisingly, the glgA mutant had decreased levels of high-molecular-weight exopolysaccharide after growth on glucose, but levels were normal after growth on galactose. A deletion mutant was constructed in order to generate a nonpolar mutation in glgA. This mutant had a phenotype similar to that of the Tn5 mutant, indicating that the enhanced respiration and symbiotic nitrogen fixation and decreased exopolysaccharide were due to mutation of glgA and not to a polar effect on a downstream gene. PMID:11208782

  6. Structural Mechanism of Laforin Function in Glycogen Dephosphorylation and Lafora Disease

    PubMed Central

    Raththagala, Madushi; Brewer, M. Kathryn; Parker, Matthew W.; Sherwood, Amanda R.; Wong, Brian K.; Hsu, Simon; Bridges, Travis M.; Paasch, Bradley C.; Hellman, Lance M.; Husodo, Satrio; Meekins, David A.; Taylor, Adam O.; Turner, Benjamin D.; Auger, Kyle D.; Dukhande, Vikas V.; Chakravarthy, Srinivas; Sanz, Pascual; Woods, Virgil V.; Li, Sheng; Vander Kooi, Craig W.; Gentry, Matthew S.

    2015-01-01

    SUMMARY Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled, due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease. PMID:25544560

  7. Applications of mutant yeast strains with low glycogen storage capability

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Schubert, W. W.; Stokes, B. O.

    1981-01-01

    Several strains of Hansenula polymorpha were selected for possible low glycogen storage characteristics based on a selective I2 staining procedure. The levels of storage carbohydrates in the mutant strains were found to be 44-70% of the levels in the parent strain for cultures harvested in stationary phase. Similar differences generally were not found for cells harvested in exponential phase. Yeast strains deficient in glycogen storage capability are valuable in increasing the relative protein value of microbial biomass and also may provide significant cost savings in substrate utilization in fermentative processes.

  8. The molecular size and shape of liver glycogen.

    PubMed

    Geddes, R; Harvey, J D; Wills, P R

    1977-05-01

    The molecular-weight distribution of liver glycogen has been established from the analysis of sedimentation rates of fractions separated on sucrose density gradients and from the direct measurement of the diffusion coefficients of these fractions by laser-intensity-fluctuation spectroscopy. Hydrodynamic studies indicated that all fractions of glycogen of mol.wt.exceeding 25x10(6) had about 1.1 g of water per g of polysaccharide associated with them. The hydration and hydrodynamic behaviour of all fractions of mol.wt. exceeding 25x10(6) was similar, whereas smaller fractions behaved anomalously, indicating a substantially different overall structure. PMID:869923

  9. The molecular size and shape of liver glycogen.

    PubMed Central

    Geddes, R; Harvey, J D; Wills, P R

    1977-01-01

    The molecular-weight distribution of liver glycogen has been established from the analysis of sedimentation rates of fractions separated on sucrose density gradients and from the direct measurement of the diffusion coefficients of these fractions by laser-intensity-fluctuation spectroscopy. Hydrodynamic studies indicated that all fractions of glycogen of mol.wt.exceeding 25x10(6) had about 1.1 g of water per g of polysaccharide associated with them. The hydration and hydrodynamic behaviour of all fractions of mol.wt. exceeding 25x10(6) was similar, whereas smaller fractions behaved anomalously, indicating a substantially different overall structure. PMID:869923

  10. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    PubMed Central

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  11. The Extracellular Redox State Modulates Mitochondrial Function, Gluconeogenesis, and Glycogen Synthesis in Murine Hepatocytes

    PubMed Central

    Nocito, Laura; Kleckner, Amber S.; Yoo, Elsia J.; Jones IV, Albert R.; Liesa, Marc; Corkey, Barbara E.

    2015-01-01

    Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: β-hydroxybutyrate (βOHB)/acetoacetate (Acoc), reduced glutathione (GSH)/oxidized glutathione (GSSG), and cysteine/cystine. Exposure to a more oxidized ratio via extracellular βOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular βOHB/Acoc led to increased NAD(P)H and maximal mitochondrial respiratory capacity in hepatocytes. Greater βOHB/Acoc ratios were also associated with decreased β-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of βOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases. PMID:25816337

  12. Aroclor 1254 disrupts liver glycogen metabolism and enhances acute stressor-mediated glycogenolysis in rainbow trout.

    PubMed

    Wiseman, Steve; Vijayan, Mathilakath M

    2011-09-01

    The objective of this study was to investigate the impact of short-term exposure to polychlorinated biphenyls on the acute stress response in rainbow trout. Fish were exposed to dietary Aroclor1254 (10mg kg(-1) body mass/day) for 3 days and then subjected to a 3-min handling disturbance and sampled over a 24h recovery after the stressor exposure. In the pre-stress fish, PCB exposure significantly elevated aryl hydrocarbon receptor (AhR) and cytochrome P4501A1 (Cyp1A1) mRNA abundance and Cyp1A protein expression confirming AhR activation. There was no significant effect of PCB on plasma cortisol and glucose levels, while plasma lactate levels were significantly elevated compared to the sham group. PCB exposure significantly elevated liver glycogen content and hexokinase activity, whereas lactate dehydrogenase activity was depressed. Short-term PCB exposure did not modify the acute stressor-induced plasma cortisol, glucose and lactate responses. Liver glycogen content dropped significantly after stressor exposure in the PCB group but not in the sham group. This was matched by a significantly higher liver LDH activity and a lower HK activity during recovery in the PCB group suggesting enhanced glycolytic capacity to fuel hepatic metabolism. Liver AhR, but not Cyp1A1, transcript levels were significantly reduced during recovery from handling stressor in the Aroclor fed fish. Collectively, this study demonstrates that short-term PCB exposure may impair the liver metabolic performance that is critical to cope with the enhanced energy demand associated with additional stressor exposure in rainbow trout. PMID:21745595

  13. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D; Pinto, Carlos; Sun, Baodong; Li, Songtao; Kozink, Daniel M; Benjamin, Daniel K; Demaster, Amanda K; Kruse, Meghan A; Vaughn, Valerie; Hillman, Steven; Bird, Andrew; Jackson, Mark; Brown, Talmage; Kishnani, Priya S; Chen, Yuan-Tsong

    2008-04-01

    Glycogen storage disease type Ia (GSD-Ia) profoundly impairs glucose release by the liver due to glucose-6-phosphatase (G6Pase) deficiency. An adeno-associated virus (AAV) containing a small human G6Pase transgene was pseudotyped with AAV8 (AAV2/8) to optimize liver tropism. Survival was prolonged in 2-week-old G6Pase (-/-) mice by 600-fold fewer AAV2/8 vector particles (vp), in comparison to previous experiments involving this model (2 x 10(9) vp; 3 x 10(11) vp/kg). When the vector was pseudotyped with AAV1, survival was prolonged only at a higher dose (3 x 10(13) vp/kg). The AAV2/8 vector uniquely prevented hypoglycemia during fasting and fully corrected liver G6Pase deficiency in GSD-Ia mice and dogs. The AAV2/8 vector has prolonged survival in three GSD-Ia dogs to >11 months, which validated this strategy in the large animal model for GSD-Ia. Urinary biomarkers, including lactate and 3-hydroxybutyrate, were corrected by G6Pase expression solely in the liver. Glycogen accumulation in the liver was reduced almost to the normal level in vector-treated GSD-Ia mice and dogs, as was the hepatocyte growth factor (HGF) in GSD-Ia mice. These preclinical data demonstrated the efficacy of correcting hepatic G6Pase deficiency, and support the further preclinical development of AAV vector-mediated gene therapy for GSD-Ia. PMID:18362924

  14. Fasting-Induced Protein Phosphatase 1 Regulatory Subunit Contributes to Postprandial Blood Glucose Homeostasis via Regulation of Hepatic Glycogenesis

    PubMed Central

    Luo, Xiaolin; Zhang, Yongxian; Ruan, Xiangbo; Jiang, Xiaomeng; Zhu, Lu; Wang, Xiao; Ding, Qiurong; Liu, Weizhong; Pan, Yi; Wang, Zhenzhen; Chen, Yan

    2011-01-01

    OBJECTIVE Most animals experience fasting–feeding cycles throughout their lives. It is well known that the liver plays a central role in regulating glycogen metabolism. However, how hepatic glycogenesis is coordinated with the fasting–feeding cycle to control postprandial glucose homeostasis remains largely unknown. This study determines the molecular mechanism underlying the coupling of hepatic glycogenesis with the fasting–feeding cycle. RESEARCH DESIGN AND METHODS Through a series of molecular, cellular, and animal studies, we investigated how PPP1R3G, a glycogen-targeting regulatory subunit of protein phosphatase 1 (PP1), is implicated in regulating hepatic glycogenesis and glucose homeostasis in a manner tightly orchestrated with the fasting–feeding cycle. RESULTS PPP1R3G in the liver is upregulated during fasting and downregulated after feeding. PPP1R3G associates with glycogen pellet, interacts with the catalytic subunit of PP1, and regulates glycogen synthase (GS) activity. Fasting glucose level is reduced when PPP1R3G is overexpressed in the liver. Hepatic knockdown of PPP1R3G reduces postprandial elevation of GS activity, decreases postprandial accumulation of liver glycogen, and decelerates postprandial clearance of blood glucose. Other glycogen-targeting regulatory subunits of PP1, such as PPP1R3B, PPP1R3C, and PPP1R3D, are downregulated by fasting and increased by feeding in the liver. CONCLUSIONS We propose that the opposite expression pattern of PPP1R3G versus other PP1 regulatory subunits comprise an intricate regulatory machinery to control hepatic glycogenesis during the fasting–feeding cycle. Because of its unique expression pattern, PPP1R3G plays a major role to control postprandial glucose homeostasis during the fasting–feeding transition via its regulation on liver glycogenesis. PMID:21471512

  15. Hepatitis Vaccines

    PubMed Central

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  16. Hepatitis Vaccines.

    PubMed

    Ogholikhan, Sina; Schwarz, Kathleen B

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  17. Glycogen storage disease type Ia in two littermate Maltese puppies.

    PubMed

    Brix, A E; Howerth, E W; McConkie-Rosell, A; Peterson, D; Egnor, D; Wells, M R; Chen, Y T

    1995-09-01

    Glycogen storage disease type Ia (GSD-Ia) (von Gierke's disease) was identified in two 47-day-old littermate Maltese puppies. The puppies were presented for necropsy with a history of failure to thrive, mental depression, and poor body condition. Gross findings included small body size and emaciation (212 and 246 g versus 595 g for normal littermate), severely enlarged pale livers (48 and 61 g), and pale kidneys. Histologically, there was marked diffuse vacuolation of hepatocytes with large amounts of glycogen and small amounts of lipid. Renal tubular epithelium was mildly to moderately vacuolated. Soft tissue mineralization was present in renal tubules and pulmonary alveolar septa. Biochemical analysis showed that levels of glucose-6-phosphatase were markedly reduced in liver (0.3 and 0.4 microM/minute/g tissue versus 4.7 +/- 1.5 microM/minute/g tissue for controls) and kidney (0.45 and 0.4 microM/minute/g tissue versus 4.1 microM/minute/g tissue for controls) and that glycogen content was increased in liver (9.4% and 9.4% versus 1.3% +/- 1.4% for controls). This is the first confirmed report of animals with glycogen storage disease type Ia. PMID:8578635

  18. Muscle glycogen supercompensation: absence of a gender-related difference.

    PubMed

    James, A P; Lorraine, M; Cullen, D; Goodman, C; Dawson, B; Palmer, T N; Fournier, P A

    2001-10-01

    Recently it has been reported that women do not have the capacity to accumulate supranormal levels of muscle glycogen when subjected to a carbohydrate (CHO) loading regimen [Tarnopolsky et al. (1995) J Appl Physiol 78:1360-1368]. Since, in this study, CHO intake relative to body mass in the female subjects was much lower than that in males, our primary aim was to re-examine this issue using subjects fed comparable amounts of CHO. Endurance-trained female and male subjects ingested 12 g CHO x kg(-1) lean body mass day(-1) in conjunction with the cessation of their daily physical training. A 3-day exposure to this diet resulted in a marked rise in muscle glycogen levels from [mean (SD)] 108 (15) mmol x kg(-1) wet weight to 193 (14) mmol x kg(-1) wet weight and 111 (16) m mol x kg(-1) wet weight to 202 (20) mmol x kg(-1) wet weight in the female participants during the post-menstrual and pre-menstrual phases of their menstrual cycle, respectively, and from 109 (27) mmol x kg(-1) wet weight to 183 (25) mmol x kg(-1) wet weight in males. We conclude that (1) female athletes have the capacity to accumulate supranormal levels of muscle glycogen, and (2) when exercise-trained males and females are fed comparable amounts of CHO relative to lean body mass, there is no gender-related difference in their ability to accumulate supranormal levels of muscle glycogen. PMID:11718281

  19. The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise

    PubMed Central

    Jensen, Jørgen; Rustad, Per Inge; Kolnes, Anders Jensen; Lai, Yu-Chiang

    2011-01-01

    Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 70–90% of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen’s main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70% of maximal oxygen uptake (Vo2max⁡) and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favor glycogen repletion and preparation for new “fight or flight” events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type 2

  20. Substrate availability for long-chain base formation as a regulator of hepatic sphingolipid and cholesterol biosynthesis

    SciTech Connect

    Messmer, T.O.; Merrill, A.H. Jr.

    1986-03-05

    The de novo biosynthesis of the sphinganine and sphingosine backbones of sphingolipids was studied with isolated rat hepatocytes and established liver cell lines. The rate of incorporation of radiolabel from (/sup 14/C)-serine by intact cells was half maximal at 0.3 mM, which is similar to the K/sub m/ of the initial enzyme of this pathway and in vivo concentrations of this substrate. Long-chain base biosynthesis was stimulated by another precursor, palmitic acid, but other fatty acids were inhibitory. Hepatocytes isolated from fed and fasted rats had different rates of sphingolipid formation, which may also reflect the relative levels of palmitoyl-CoA. These results established that the availability of the precursors of long-chain base formation, serine and palmitic acid, is a major factor in the regulation of this pathway. Since sphingomyelin biosynthesis could be modified, its relationship to cholesterol metabolism was also examined. Both hepatocytes and cultured liver cells in high serine (0.6mM) had increased incorporation of (/sup 14/C)-acetate into cholesterol (13%, P < 0.05 and 50%, P < 0.01, respectively). These results indicate that sphingolipid and cholesterol biosynthesis are coordinately regulated, perhaps because these lipids are located in similar membranes and lipoproteins.

  1. Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism.

    PubMed

    Uruno, Akira; Yagishita, Yoko; Katsuoka, Fumiki; Kitajima, Yasuo; Nunomiya, Aki; Nagatomi, Ryoichi; Pi, Jingbo; Biswal, Shyam S; Yamamoto, Masayuki

    2016-06-01

    Nrf2 (NF-E2-related factor 2) contributes to the maintenance of glucose homeostasis in vivo Nrf2 suppresses blood glucose levels by protecting pancreatic β cells from oxidative stress and improving peripheral tissue glucose utilization. To elucidate the molecular mechanisms by which Nrf2 contributes to the maintenance of glucose homeostasis, we generated skeletal muscle (SkM)-specific Keap1 knockout (Keap1MuKO) mice that express abundant Nrf2 in their SkM and then examined Nrf2 target gene expression in that tissue. In Keap1MuKO mice, blood glucose levels were significantly downregulated and the levels of the glycogen branching enzyme (Gbe1) and muscle-type PhKα subunit (Phka1) mRNAs, along with those of the glycogen branching enzyme (GBE) and the phosphorylase b kinase α subunit (PhKα) protein, were significantly upregulated in mouse SkM. Consistent with this result, chemical Nrf2 inducers promoted Gbe1 and Phka1 mRNA expression in both mouse SkM and C2C12 myotubes. Chromatin immunoprecipitation analysis demonstrated that Nrf2 binds the Gbe1 and Phka1 upstream promoter regions. In Keap1MuKO mice, muscle glycogen content was strongly reduced and forced GBE expression in C2C12 myotubes promoted glucose uptake. Therefore, our results demonstrate that Nrf2 induction in SkM increases GBE and PhKα expression and reduces muscle glycogen content, resulting in improved glucose tolerance. Our results also indicate that Nrf2 differentially regulates glycogen metabolism in SkM and the liver. PMID:27044864

  2. Supercompensation of muscle glycogen in trained and untrained subjects.

    PubMed

    Roedde, S; MacDougall, J D; Sutton, J R; Green, H J

    1986-03-01

    The purpose of this study was to determine whether or not trained athletes have the same capacity for supercompensation of muscle glycogen as untrained subjects. Muscle glycogen was measured in 4 highly trained cyclists and 4 untrained controls over a 6 day period of exercise and dietary manipulation. During the week prior to the investigation the trained group tapered their training load but maintained a high carbohydrate intake as they would in preparation for a major competition. Needle biopsies were taken from the vastus lateralis before and after exhaustive cycle ergometry at 73% VO2 max followed by several sprint intervals, after 3 days on a carbohydrate-restricted diet and after 2 and 3 days on a high carbohydrate diet. All food intake was quantified and plasma insulin and glucose were monitored daily. The mean initial glycogen concentration for the trained group was 115 mmol X kg-1 wet muscle weight and 92 mmol X kg-1 for the untrained group. Both groups showed similar post exercise depletion and recovery patterns when expressed as a % of their initial values. Following 3 days of high carbohydrate diet, the glycogen concentration for the trained cyclists reached 174 mmol X kg-1 or 152% of its initial value while the untrained-group reached 143 mmol X kg-1 or 155% of its initial value. It was concluded that a regimen of exhaustive exercise, followed by a period of carbohydrate restriction and a period of high carbohydrate intake, results in substantially higher muscle glycogen storage than can be achieved by a reduction in training in combination with high carbohydrate intake.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3698159

  3. Hepatitis B Vaccine

    MedlinePlus

    ... as a combination product containing Hepatitis A Vaccine, Hepatitis B Vaccine) ... What is hepatitis B?Hepatitis B is a serious infection that affects the liver. It is caused by the hepatitis B virus. ...

  4. Hepatitis A Vaccine

    MedlinePlus

    Twinrix® (as a combination product containing Hepatitis A Vaccine, Hepatitis B Vaccine) ... What is hepatitis A?Hepatitis A is a serious liver disease caused by the hepatitis A virus (HAV). HAV is found in ...

  5. Hepatitis C: Clinical Trials

    MedlinePlus

    ... and Public Home » Hepatitis C » Treatment Decisions Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... can I find out about participating in a hepatitis C clinical trial? Many trials are being conducted ...

  6. Development and characterization of a new human hepatic cell line.

    PubMed

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  7. Development and characterization of a new human hepatic cell line

    PubMed Central

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  8. N-Acetyl-beta-D-glucopyranosylamine 6-phosphate is a specific inhibitor of glycogen-bound protein phosphatase 1.

    PubMed Central

    Board, M

    1997-01-01

    Previous work has shown that the C-1-substituted glucose-analogue N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc) is a competitive inhibitor of glycogen phosphorylase (GP) and stimulates the inactivation of this enzyme by GP phosphatase. In addition to its effects on GP, 1-GlcNAc also prevents the glucose-led activation of glycogen synthase (GS) in whole hepatocytes. Such an effect on GS was thought to be due to the formation of 1-GlcNAc-6-P by the action of glucokinase within the hepatocyte [Board, Bollen, Stalmans, Kim, Fleet and Johnson (1995) Biochem. J. 311, 845-852]. To investigate this possibility further, a pure preparation of 1-GlcNAc-6-P was synthesized. The effects of the phosphorylated glucose analogue on the activity of protein phosphatase 1 (PP1), the enzyme responsible for dephosphorylation and activation of GS, are reported. During the present study, 1-GlcNAc-6-P inhibited the activity of the glycogen-bound form of PP1, affecting both the GSb phosphatase and GPa phosphatase activities. A level of 50% inhibition of GSb phosphatase activity was achieved with 85 microM 1-GlcNAc-6-P in the absence of Glc-6-P and with 135 microM in the presence of 10 mM Glc-6-P. At either Glc-6-P concentration, 500 microM 1-GlcNAc-6-P completely inhibited activity. The Glc-6-P stimulation of the GPa phosphatase activity of PP1 was negated by 1-GlcNAc-6-P but there was no inhibition of the basal rate in the absence of Glc-6-P. 1-GlcNAc-6-P inhibition was specific for the glycogen-bound form of PP1 and did not inhibit the GSb phosphatase activity of the cytosolic form of the enzyme. The present work explains our previous observations on the inactivating effects on GS of incubating whole hepatocytes with 1-GlcNAc. These observations have their basis in the inhibition of glycogen-bound PP1 by 1-GlcNAc-6-P. A novel inhibitor of PP1, specific for the glycogen-bound form of the enzyme, is presented. PMID:9371733

  9. Autoimmune hepatitis

    MedlinePlus

    ... diseases. These include: Graves disease Inflammatory bowel disease Rheumatoid arthritis Scleroderma Sjogren syndrome Systemic lupus erythematosus Thyroiditis Type 1 diabetes Ulcerative colitis Autoimmune hepatitis may occur in family ...

  10. Hepatitis B

    MedlinePlus

    ... A Hepatitis B HPV (Human Papillomavirus) Influenza (Flu) Measles Meningococcal Disease Mumps Pertussis (Whooping Cough) Pneumococcal Disease Rubella (German Measles) Shingles (Herpes Zoster) Tetanus (Lockjaw) Professional Resources Adult ...

  11. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    PubMed

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. PMID:27353480

  12. Glycogen catabolism, but not its biosynthesis, affects virulence of Fusarium oxysporum on the plant host.

    PubMed

    Corral-Ramos, Cristina; Roncero, M Isabel G

    2015-04-01

    The role of glycogen metabolism was investigated in the fungal pathogen Fusarium oxysporum. Targeted inactivation was performed of genes responsible for glycogen biosynthesis: gnn1 encoding glycogenin, gls1 encoding glycogen synthase, and gbe1 encoding glycogen branching enzyme. Moreover genes involved in glycogen catabolism were deleted: gph1 encoding glycogen phosphorylase and gdb1 encoding glycogen de-branching enzyme. Glycogen reserves increased steadily during growth of the wild type strain in axenic cultures, to reach up to 1500μg glucose equivalents mg(-1) protein after 14 days. Glycogen accumulation was abolished in mutants lacking biosynthesis genes, whereas it increased by 20-40% or 80%, respectively, in the single and double mutants affected in catabolic genes. Transcript levels of glycogen metabolism genes during tomato plant infection peaked at four days post inoculation, similar to the results observed during axenic culture. Significant differences were observed between gdb mutants and the wild type strain for vegetative hyphal fusion ability. The single mutants defective in glycogen metabolism showed similar levels of virulence in the invertebrate animal model Galleria mellonella. Interestingly, the deletion of gdb1 reduced virulence on the plant host up to 40% compared to the wild type in single and in double mutant backgrounds, whereas the other mutants showed the virulence at the wild-type level. PMID:25865793

  13. Regulation of glycogen synthase and phosphorylase during recovery from high-intensity exercise in the rat.

    PubMed Central

    Bräu, L; Ferreira, L D; Nikolovski, S; Raja, G; Palmer, T N; Fournier, P A

    1997-01-01

    The aim of this study was to determine the role of the phosphorylation state of glycogen synthase and glycogen phosphorylase in the regulation of muscle glycogen repletion in fasted animals recovering from high-intensity exercise. Groups of rats were swum to exhaustion and allowed to recover for up to 120 min without access to food. Swimming to exhaustion caused substantial glycogen breakdown and lactate accumulation in the red, white and mixed gastrocnemius muscles, whereas the glycogen content in the soleus muscle remained stable. During the first 40 min of recovery, significant repletion of glycogen occurred in all muscles examined except the soleus muscle. At the onset of recovery, the activity ratios and fractional velocities of glycogen synthase in the red, white and mixed gastrocnemius muscles were higher than basal, but returned to pre-exercise levels within 20 min after exercise. In contrast, after exercise the activity ratios of glycogen phosphorylase in the same muscles were lower than basal, and increased to pre-exercise levels within 20 min. This pattern of changes in glycogen synthase and phosphorylase activities, never reported before, suggests that the integrated regulation of the phosphorylation state of both glycogen synthase and phosphorylase might be involved in the control of glycogen deposition after high-intensity exercise. PMID:9078277

  14. Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition.

    PubMed

    Goyard, David; Kónya, Bálint; Chajistamatiou, Aikaterini S; Chrysina, Evangelia D; Leroy, Jérémy; Balzarin, Sophie; Tournier, Michel; Tousch, Didier; Petit, Pierre; Duret, Cédric; Maurel, Patrick; Somsák, László; Docsa, Tibor; Gergely, Pál; Praly, Jean-Pierre; Azay-Milhau, Jacqueline; Vidal, Sébastien

    2016-01-27

    Glycogen phosphorylase (GP) is a target for the treatment of hyperglycaemia in the context of type 2 diabetes. This enzyme is responsible for the depolymerization of glycogen into glucose thereby affecting the levels of glucose in the blood stream. Twelve new d-glucopyranosylidene-spiro-isoxazolines have been prepared from O-peracylated exo-D-glucals by regio- and stereoselective 1,3-dipolar cycloaddition of nitrile oxides generated in situ by treatment of the corresponding oximes with bleach. This mild and direct procedure appeared to be applicable to a broad range of substrates. The corresponding O-unprotected spiro-isoxazolines were evaluated as glycogen phosphorylase (GP) inhibitors and exhibited IC50 values ranging from 1 to 800 μM. Selected inhibitors were further evaluated in vitro using rat and human hepatocytes and exhibited significant inhibitory properties in the primary cell culture. Interestingly, when tested with human hepatocytes, the tetra-O-acetylated spiro-isoxazoline bearing a 2-naphthyl residue showed a much lower IC50 value (2.5 μM), compared to that of the O-unprotected analog (19.95 μM). The most promising compounds were investigated in Zucker fa/fa rat model in acute and sub-chronic assays and decreased hepatic glucose production, which is known to be elevated in type 2 diabetes. This indicates that glucose-based spiro-isoxazolines can be considered as anti-hyperglycemic agents in the context of type 2 diabetes. PMID:26708111

  15. Glycogen in the Nervous System. I; Methods for Light and Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Estable, Rosita F. De; Estable-Puig, J. F.; Miquel, J.

    1964-01-01

    'l'he relative value of different methods for combined light and electron microscopical studies of glycogen in the nervous tissue was investigated. Picroalcoholic fixatives preserve glycogen in a considerable amount but give an inadequate morphological image of glycogen distribution and are unsuitable for ultrastructural studies. Fixation by perfusion, with Dalton's chromeosmic fluid seems adequate for ultrastructural cytochemistry of glycogen. Furthermore it permits routine paraffin embedding of brain slices adjacent to those used for electron microscopy. Dimedone blocking is a necessary step for a selective staining of glycogen with PAS after osmic fixation. Enzymatic removal of glycogen in osmic fixed nervous tissue can be done In paraffin-embedded tissue. It can also be performed in glycolmethacrylate-embedded tissue without removal of the embedding medium. Paraphenylenediamine stains glycogen following periodic acid oxidation.

  16. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp ( Carassius carassius L.)

    NASA Astrophysics Data System (ADS)

    Vornanen, Matti; Asikainen, Juha; Haverinen, Jaakko

    2011-03-01

    Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp ( Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish ( p < 0.05). In fin and skin, size dependence was evident in winter, but not in summer, while in other tissues (ventricle, atrium, intestine, liver, muscle, and spleen), no size dependence was found. The liver was much bigger in small than large fish ( p < 0.001), and there was a prominent enlargement of the liver in winter irrespective of fish size. As a consequence, the whole body glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.

  17. Exercise Training-Induced Adaptations Associated with Increases in Skeletal Muscle Glycogen Content

    PubMed Central

    Manabe, Yasuko; Gollisch, Katja S.C.; Holton, Laura; Kim, Young–Bum; Brandauer, Josef; Fujii, Nobuharu L.; Hirshman, Michael F.; Goodyear, Laurie J.

    2012-01-01

    Chronic exercise training results in numerous skeletal muscle adaptations, including increases in insulin sensitivity and glycogen content. To understand the mechanism for increased muscle glycogen, we studied the effects of exercise training on glycogen regulatory proteins in rat skeletal muscle. Female Sprague Dawley rats performed voluntary wheel running for 1, 4, or 7 weeks. After 7 weeks of training, insulin-stimulated glucose uptake was increased in epitrochlearis muscle. Compared to sedentary control rats, muscle glycogen did not change after 1 week of training, but increased significantly after 4 and 7 weeks. The increases in muscle glycogen were accompanied by elevated glycogen synthase activity and protein expression. To assess the regulation of glycogen synthase, we examined its major activator, protein phosphatase 1 (PP1), and its major deactivator, glycogen synthase kinase 3 (GSK3). Consistent with glycogen synthase activity, PP1 activity was unchanged after 1 week of training but significantly increased after 4 and 7 weeks of training. Protein expression of RGL(GM), another regulatory PP1 subunit, significantly decreased after 4 and 7 weeks of training. Unlike PP1, GSK3 phosphorylation did not follow the pattern of glycogen synthase activity. The ~40% decrease in GSK-3α phosphorylation after 1 week of exercise training persisted until 7 weeks and may function as a negative feedback to elevated glycogen. Our findings suggest that exercise training-induced increases in muscle glycogen content could be regulated by multiple mechanisms including enhanced insulin sensitivity, glycogen synthase expression, allosteric activation of glycogen synthase and PP1activity. PMID:23206309

  18. The glycogen synthase 2 gene (Gys2) displays parallel evolution between Old World and New World fruit bats.

    PubMed

    Qian, Yamin; Fang, Tao; Shen, Bin; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats rely largely on hepatic glycogenesis and glycogenolysis for postprandial blood glucose disposal and maintenance of glucose homeostasis during short time starvation, respectively. The glycogen synthase 2 encoded by the Gys2 gene plays a critical role in liver glycogen synthesis. To test whether the Gys2 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Gys2 gene in a number of bat species, including three Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our results showed that the Gys2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to OWFBs and NWFBs. Our explicit convergence test showed that posterior probabilities of convergence between several branches of OWFBs, and the NWFBs were markedly higher than that of divergence. Three parallel amino acid substitutions (Q72H, K371Q, and E666D) were detected among branches of OWFBs and NWFBs. Tests for parallel evolution showed that two parallel substitutions (Q72H and E666D) were driven by natural selection, while the K371Q was more likely to be fixed randomly. Thus, our results suggested that the Gys2 gene has undergone parallel evolution on amino acid level between OWFBs and NWFBs in relation to their carbohydrate metabolism. PMID:24258790

  19. Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1.

    PubMed Central

    Moon, Byoung; Duddy, Noreen; Ragolia, Louis; Begum, Najma

    2003-01-01

    Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1(G)) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1(G) in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1(G) or with PP-1(G) mutants in which site-1 (S1) Ser(48) and site-2 (S2) Ser(67) residues were substituted with Ala. Cells expressing wild-type and PP-1(G) mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60 min heat shock at 45 degrees C, followed by analysis of [(14)C]glucose incorporation into glycogen at 37 degrees C. PP-1(G) S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1(G) S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3 beta (GSK-3 beta) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3 beta phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1(G) S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1(G) S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3

  20. Exercise and the Regulation of Hepatic Metabolism

    PubMed Central

    Trefts, Elijah; Williams, Ashley S.; Wasserman, David H.

    2016-01-01

    The accelerated metabolic demands of the working muscle cannot be met without a robust response from the liver. If not for the hepatic response, sustained exercise would be impossible. The liver stores, releases, and recycles potential energy. Exercise would result in hypoglycemia if it were not for the accelerated release of energy as glucose. The energetic demands on the liver are largely met by increased oxidation of fatty acids mobilized from adipose tissue. Adaptations immediately following exercise facilitate the replenishment of glycogen stores. Pancreatic glucagon and insulin responses orchestrate the hepatic response during and immediately following exercise. Like skeletal muscle and other physiological systems, liver adapts to repeated demands of exercise by increasing its capacity to produce energy by oxidizing fat. The ability of regular physical activity to increase fat oxidation is protective and can reverse fatty liver disease. Engaging in regular physical exercise has broad ranging positive health implications including those that improve the metabolic health of the liver. PMID:26477916

  1. [Hepatic adenoma and hepatocellular carcinoma in 3 brothers with type I glycogenosis].

    PubMed

    Kharsa, G; Degott, C; Filoche, B; Hedde, J P; Potet, F; Benhamou, J P

    1990-01-01

    We report 2 cases of type I glycogen storage disease (Von Gierke's disease) discovered in 2 brothers at the age of 7 and 5 years, respectively. Both developed hepatic adenoma at the age of 19 and 17. Hepatocellular carcinoma occurred in the older brother the discovery of adenoma 4 years after. The frequency of these tumors in patients with type I glycogen storage disease raises problems concerning the treatment and modality of regular surveillance of the liver in these patients. The policy for the detection and treatment of these tumors, and particularly the indications for liver transplantation are discussed. PMID:2155841

  2. Thyroid tumor formation in the male mouse induced by fluopyram is mediated by activation of hepatic CAR/PXR nuclear receptors.

    PubMed

    Rouquié, D; Tinwell, H; Blanck, O; Schorsch, F; Geter, D; Wason, S; Bars, R

    2014-12-01

    Fluopyram, a broad spectrum fungicide, caused an increased incidence of thyroid follicular cell (TFC) adenomas in males at the highest dose evaluated (750ppm equating to 105mg/kg/day) in the mouse oncogenicity study. A series of short-term mechanistic studies were conducted in the male mouse to characterize the mode of action (MOA) for the thyroid tumor formation and to determine if No Observed Effect Levels (NOELs) exist for each key event identified. The proposed MOA consists of an initial effect on the liver by activating the constitutive androstane (Car) and pregnane X (Pxr) nuclear receptors causing increased elimination of thyroid hormones followed by an increased secretion of thyroid stimulating hormone (TSH). This change in TSH secretion results in an increase of TFC proliferation which leads to hyperplasia and eventually adenomas after chronic exposure. Car/Pxr nuclear receptors were shown to be activated as indicated by increased activity of specific Phase I enzymes (PROD and BROD, respectively). Furthermore, evidence of increased T4 metabolism was provided by the induction of phase II enzymes known to preferentially use T4 as a substrate. Additional support for the proposed MOA was provided by demonstrating increased Tsh β transcripts in the pituitary gland. Finally, increased TFC proliferation was observed after 28days of treatment. In these dose-response studies, clear NOELs were established for phase 2 liver enzyme activities, TSH changes and TFC proliferation. Furthermore, compelling evidence for Car/Pxr activation being the molecular initiating event for these thyroid tumors was provided by the absence of the sequential key events responsible for the TCF tumors in Car/Pxr KO mice when exposed to fluopyram. In conclusion, fluopyram thyroid toxicity is mediated by activation of hepatic Car/Pxr receptors and shows a threshold dependent MOA. PMID:25455223

  3. IN VITRO METABOLISM OF THE CHIRAL TRIAZOLE FUNGICIDE BROMUCONAZOLE 47 USING SUBSTRATE DEPLETION AND PRODUCT FORMATION KINETICS IN RAT HEPATIC MICROSOMES

    EPA Science Inventory

    Kinetic analysis of xenobiotic metabolism using in vitro hepatic microsomes are needed for predictive in vivo physiological modeling. Recently, much emphasis has been placed on the adverse effects of triazole fungicides in mammalian steroid metabolism. In vitro metabolism of the ...

  4. Impaired hepatic glycogenolysis related to hyperinsulinemia in newborns from hyperglycemic pregnant rats.

    PubMed

    Jame, P; Ktorza, A; Bihoreau, M T; Nurjhan, N; Ferré, P; Girard, J; Picon, L

    1990-12-01

    We have investigated the respective roles of insulin and glucagon in the initiation of hepatic glycogen degradation during the early postnatal period in rats, with special regard on the inhibitory effect of insulin on this process. Pregnant rats were rendered either slightly (8.5 mM) or highly hyperglycemic (22 mM) by infusing glucose during the last week of pregnancy. Fasted, newborn rats were studied from delivery to 16 h postpartum. At birth, newborns from slightly hyperglycemic rats showed higher glycemia and insulinemia and lower plasma glucagonemia compared with controls. Newborns from highly hyperglycemic rats were still more hyperglycemic and exhibited low plasma glucagon concentrations, but they were not hyperinsulinemic. In control newborns, hepatic glycogen breakdown was triggered by 2 h after delivery. By contrast, hyperglycemic-hyperinsulinemic newborns (newborns from slightly hyperglycemic rats) were unable to mobilize liver glycogen before 8-10 h after delivery. In hyperglycemic-normoinsulinemic newborns (newborns from highly hyperglycemic rats), hepatic glycogen concentration significantly started to decline 2 h after delivery and was no longer different from controls at 8 h. Anti-insulin serum injection at delivery promoted a prompt decrease in liver glycogen stores in controls as well as in newborns from slightly hyperglycemic rats. Phosphorylase a/synthase a ratio rose rapidly after delivery in controls and in newborns from highly hyperglycemic rats (maximum 4 h), whereas in newborns from slightly hyperglycemic rats, it rose much more slowly than in the two other groups (maximum 16 h). These data suggest that, in newborns from hyperglycemic mothers, hyperinsulinemia during late fetal and early neonatal life is the main factor preventing postnatal hepatic glycogenolysis. PMID:2284164

  5. Quantitative cytochemistry of glycogen in blood cells. Methods and clinical application.

    PubMed

    Gahrton, G; Yataganas, X

    1976-01-01

    Quantitative glycogen determinations can be made in single blood and bone marrow cells, using microspectrophotometry or microfluorometry after staining with variants of the periodic acid--Schiff (PAS) reaction. These PAS variant reactions generally do not indicate the presence of non-glycogen PAS-positive substances, known to be prevalent in various hematopoietic cells, possibly due to masking of reactive groups. The specificity of the reaction in blood cells was ascertained by alpha-amylase digestion, which removed more than 95% of the PAS-positive material. Calibration of the PAS reaction was undertaken with a microdroplet model of pure leukocyte glycogen. The glycogen amounts in the droplets were determined by microinterferometry, the droplets were stained with a variant PAS reaction, and the total extinction of the reaction product in the stained droplets was determined by microspectrophotometry. The extinction coefficient (k) was obtained from the equation k equals Etot divided by M where (Etot) is the total extinction as determined by microspectrophotometry and (M) the dry glycogen amount as determined by microinterferometry. The microinterferometric dry mass determinations were calibrated by X-ray absorption in order to obtain the absolute amounts of glycogen. For practical purposes a reference system was made of normal neutrophil leukocytes. The glycogen content in the reference neutrophils was first determined with the micromodel. These neutrophils, now with a known glycogen amount, were stained with the PAS reagents and measured microspectrophotometrically in parallel with cells containing an unknown glycogen amount. Alternatively, the staining was made with a fluorescent PAS reaction, and the glycogen content determined by microfluorometry. Both methods appeared suitable for determining the glycogen content of blood cells from patients with various diseases, though the microfluorometric method was preferable for measurements of small amounts of

  6. Glycogen storage disease types I and II: treatment updates.

    PubMed

    Koeberl, D D; Kishnani, P S; Chen, Y T

    2007-04-01

    Prior to 2006 therapy for glycogen storage diseases consisted primarily of dietary interventions, which in the case of glycogen storage disease (GSD) type II (GSD II; Pompe disease) remained essentially palliative. Despite improved survival and growth, long-term complications of GSD type I (GSD I) have not responded to dietary therapy with uncooked cornstarch or continuous gastric feeding. The recognized significant risk of renal disease and liver malignancy in GSD I has prompted efforts towards curative therapy, including organ transplantation, in those deemed at risk. Results of clinical trials in infantile Pompe disease with alglucosidase alfa (Myozyme) showed prolonged survival reversal of cardiomyopathy, and motor gains. This resulted in broad label approval of Myozyme for Pompe disease in 2006. Furthermore, the development of experimental therapies, such as adeno-associated virus (AAV) vector-mediated gene therapy, holds promise for the availability of curative therapy in GSD I and GSD II/Pompe disease in the future. PMID:17308886

  7. Glycogen storage disease types I and II: Treatment updates

    PubMed Central

    Kishnani, P. S.; Chen, Y. T.

    2009-01-01

    Summary Prior to 2006 therapy for glycogen storage diseases consisted primarily of dietary interventions, which in the case of glycogen storage disease (GSD) type II (GSD II; Pompe disease) remained essentially palliative. Despite improved survival and growth, long-term complications of GSD type I (GSD I) have not responded to dietary therapy with uncooked cornstarch or continuous gastric feeding. The recognized significant risk of renal disease and liver malignancy in GSD I has prompted efforts towards curative therapy, including organ transplantation, in those deemed at risk. Results of clinical trials in infantile Pompe disease with alglucosidase alfa (Myozyme) showed prolonged survival reversal of cardiomyopathy, and motor gains. This resulted in broad label approval of Myozyme for Pompe disease in 2006. Furthermore, the development of experimental therapies, such as adeno-associated virus (AAV) vector-mediated gene therapy, holds promise for the availability of curative therapy in GSD I and GSD II/Pompe disease in the future. PMID:17308886

  8. Glycogen Repletion in Brown Adipose Tissue upon Refeeding Is Primarily Driven by Phosphorylation-Independent Mechanisms

    PubMed Central

    Carmean, Christopher M.; Huang, Y. Hanna; Brady, Matthew J.

    2016-01-01

    Glycogen storage in brown adipose tissue (BAT) is generally thought to take place through passive, substrate-driven activation of glycogenesis rather than programmatic shifts favoring or opposing the storage and/or retention of glycogen. This perception exists despite a growing body of evidence suggesting that BAT glycogen storage is actively regulated by covalent modification of key glycogen-metabolic enzymes, protein turnover, and endocrine hormone signaling. Members of one such class of covalent-modification regulators, glycogen-binding Phosphoprotein Phosphatase-1 (PP1)-regulatory subunits (PPP1Rs), targeting PP1 to glycogen-metabolic enzymes, were dynamically regulated in response to 24 hr of starvation and/or 24 hr of starvation followed by ad libitum refeeding. Over-expression of the PPP1R Protein Targeting to Glycogen (PTG), under the control of the aP2 promoter in mice, inactivated glycogen phosphorylase (GP) and enhanced basal- and starvation-state glycogen storage. Total interscapular BAT glycogen synthase and the constitutive activity of GS were conditionally affected. During starvation, glucose-6-phosphate (G-6-P) levels and the relative phosphorylation of Akt (p-Ser-473-Akt) were both increased in PTG-overexpressing (Tg) mice, suggesting that elevated glycogen storage during starvation modifies broader cellular metabolic pathways. During refeeding, Tg and WT mice reaccumulated glycogen similarly despite altered GS and GP activities. All observations during refeeding suggest that the phosphorylation states of GS and GP are not physiologically rate-controlling, despite there being a clear balance of endogenous kinase- and phosphatase activities. The studies presented here reveal IBAT glycogen storage to be a tightly-regulated process at all levels, with potential effects on nutrient sensing in vivo. PMID:27213961

  9. Identification of mutations in Type IV glycogen storage disease

    SciTech Connect

    Bao, Y.; Kishnani, P.; Chen, Y.T.

    1994-09-01

    Type IV glycogen storage disease (GSD IV, Andersen disease) is caused by a deficiency of glycogen branching enzyme (GBE) activity, which results in the accumulation of glycogen with unbranched, long, outer chains in the tissues. The molecular basis of the disease is not known. We studied four patients with the disease; three with typical presentation of progressive liver cirrhosis and failure, and one with severe and fatal neonatal hypotonia and cardiomyopathy. Southern blot analysis with EcoRI or MspI did not detect gross DNA rearrangement, deletion or duplication in patients` glycogen branching enzyme genes. Northern analysis with total cellular RNAs isolated from skin fibroblast MI strains of three patients with typical clinical presentation showed a normal level and size (2.95 kb) of GBE mRNA hybridization band in two and absent mRNA hybridization band in the remaining one. The patient with atypical severe neonatal hypotonia demonstrated a less intense and smaller size (2.75 kb) of mRNA hybridization band. A 210 hp deletion from nucleotide sequence 873 to 1082 which causes 70 amino acids missing from amino acid sequence 262 to 331 was detected in all 17 clones sequenced from the fatal hypotonia patient. This deletion is located in the region which is highly conserved between prokaryotic, yeast and human GBE polypeptide sequences, and also includes the first of the four regions which constitute the catalytic active sites of most of amylolytic enzymes. A point mutation C-T (1633) which changes the amino acid from Arginine to Cystine was found in 19 of 20 cDNA clones from a patient with classical clinical presentation. This point mutation was unique to this patient and was not observed in three other patients or normal controls. This is the first report on the molecular basis of GSD IV and our data indicated the presence of extensive genetic heterogeneity in the disease.

  10. Hypertension in a child with type IA glycogen storage disease.

    PubMed

    Jonas, A J; Verani, R R; Howell, R R; Conley, S B

    1988-03-01

    Hypertension and proteinuria were observed in a 2-year-old child with type IA (von Gierke's) glycogen storage disease (GSD). She had evidence of hyperfiltration and had elevated selective renal vein renins. On renal biopsy, increased mesangial cell matrix and cellularity were observed with focal thickening and irregularity of the basement membrane. This case may be representative of the early renal findings in type IA GSD. PMID:3422787

  11. A glycogene mutation map for discovery of diseases of glycosylation

    PubMed Central

    Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J; Pedersen, Nis Borbye; Have, Christian Theil; Kong, Yun; Wang, Shengjun; Sparso, Thomas; Grarup, Niels; Vester-Christensen, Malene Bech; Schjoldager, Katrine; Freeze, Hudson H; Hansen, Torben; Pedersen, Oluf; Henrissat, Bernard; Mandel, Ulla; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P

    2015-01-01

    Glycosylation of proteins and lipids involves over 200 known glycosyltransferases (GTs), and deleterious defects in many of the genes encoding these enzymes cause disorders collectively classified as congenital disorders of glycosylation (CDGs). Most known CDGs are caused by defects in glycogenes that affect glycosylation globally. Many GTs are members of homologous isoenzyme families and deficiencies in individual isoenzymes may not affect glycosylation globally. In line with this, there appears to be an underrepresentation of disease-causing glycogenes among these larger isoenzyme homologous families. However, genome-wide association studies have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole-exome sequencing (WES) provides access to mutations in, for example, GT genes in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a functional mutational map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2000 Danes. We cataloged all missense mutations and used prediction algorithms, manual inspection and in case of carbohydrate-active enzymes family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP (http://glymap.glycomics.ku.dk) provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs. PMID:25267602

  12. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  13. New inhibitors of glycogen phosphorylase as potential antidiabetic agents.

    PubMed

    Somsák, L; Czifrák, K; Tóth, M; Bokor, E; Chrysina, E D; Alexacou, K-M; Hayes, J M; Tiraidis, C; Lazoura, E; Leonidas, D D; Zographos, S E; Oikonomakos, N G

    2008-01-01

    The protein glycogen phosphorylase has been linked to type 2 diabetes, indicating the importance of this target to human health. Hence, the search for potent and selective inhibitors of this enzyme, which may lead to antihyperglycaemic drugs, has received particular attention. Glycogen phosphorylase is a typical allosteric protein with five different ligand binding sites, thus offering multiple opportunities for modulation of enzyme activity. The present survey is focused on recent new molecules, potential inhibitors of the enzyme. The biological activity can be modified by these molecules through direct binding, allosteric effects or other structural changes. Progress in our understanding of the mechanism of action of these inhibitors has been made by the determination of high-resolution enzyme inhibitor structures (both muscle and liver). The knowledge of the three-dimensional structures of protein-ligand complexes allows analysis of how the ligands interact with the target and has the potential to facilitate structure-based drug design. In this review, the synthesis, structure determination and computational studies of the most recent inhibitors of glycogen phosphorylase at the different binding sites are presented and analyzed. PMID:19075645

  14. Misdiagnosis as steatohepatitis in a family with mild glycogen storage disease type 1a.

    PubMed

    Shieh, Jeng-Jer; Lu, Yung-Hsiu; Huang, Shi-Wei; Huang, Yu-Hsiu; Sun, Chih-Hao; Chiou, Hong-Jen; Liu, Chinsu; Lo, Ming-Yu; Lin, Ching-Yuang; Niu, Dau-Ming

    2012-11-01

    The manifestations of glycogen storage disease type 1a (GSD 1a) are usually so prominent in childhood that it is readily diagnosed by pediatricians. However, a mild form of the disease may only become apparent during adolescence or adulthood. We observed a brother and sister with subtle manifestations of the disease, which was discovered after the brother's son was diagnosed with typical GSD 1a. The adult siblings never suffered from hypoglycemia, had normal fasting blood glucose and liver transaminases at the time of diagnosis, and were taller than average for Chinese. Their only notable disease manifestations were recurrent gouty arthritis associated with hyperuricemia and hyperlipidemia during adolescence. When diagnosed, the brother had multiple benign and malignant hepatic tumors, and died of fulminant metastatic hepatocellular carcinoma 6 months after liver transplantation. p.M121V/p.R83H and p.M121V/p.M121V genotypic constellations of the G6PC gene were identified in this family. Both siblings were homozygous for the newly identified p.M121V mutation. The infant had compound heterozygous mutations, p.R83H and p.M121V. We recommend that mild GSD should be considered in the adolescents with unexplained hyperuricemia and hyperlipidemia, despite the presence of normal blood glucose levels. This report also reminds us that hepatocellular carcinoma could develop even in very mild GSD 1a patients. PMID:22909800

  15. Hepatic Encephalopathy

    PubMed Central

    Bleibel, Wissam; Al-Osaimi, Abdullah M. S.

    2012-01-01

    Chronic liver disease and cirrhosis affect hundreds of millions of patients all over the world. The majority of patients with cirrhosis will eventually develop complications related to portal hypertension. One of these recurrent and difficult to treat complications is hepatic encephalopathy. Studies have indicated that overt hepatic encephalopathy affects 30 to 45% of patients with cirrhosis and a higher percentage may be affected by minimal degree of encephalopathy. All of these factors add to the impact of hepatic encephalopathy on the healthcare system and presents a major challenge to the gastroenterologist, hospitalist and primary care physician. PMID:23006457

  16. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  17. Phylogenomic analysis of glycogen branching and debranching enzymatic duo

    PubMed Central

    2014-01-01

    Background Branched polymers of glucose are universally used for energy storage in cells, taking the form of glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in introducing and removing of the α(1–6) bonds in glucose polymers, bonds that provide the unique branching structure to glucose polymers. Results We performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400 completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a gene duplication and consequently paralogous. Conclusions Despite being usually associated with animal liver glycogen and plant starch, energy storage in the form of branched glucose polymers is clearly an ancient process and has probably been present in the last universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study of even seemingly “simple” metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch branching and debranching enzymes hint at

  18. Effects of genetic and environmental factors on muscle glycogen content in Japanese Black cattle

    PubMed Central

    Komatsu, Tomohiko; Shoji, Noriaki; Saito, Kunihiko; Suzuki, Keiichi

    2014-01-01

    Monosaccharides such as glucose contribute to the development of meat flavor upon heating via the Maillard reaction; therefore, monosaccharide content is related to beef palatability. Here, we analyzed the effects of genetic and environmental factors on the content of glycogen, one of the precursors of monosaccharides, in the muscles of 958 fattened Japanese Black cattle from Yamagata Prefecture. Analysis of variance showed that muscle glycogen content was affected by the farm and postmortem periods, but not by sex, slaughter age, slaughter month or number of days detained at the slaughter yard. Additionally, consumption of digestible brown rice feed elevated muscle glycogen levels. Glycogen heritability was estimated to be 0.34, and genetic correlations between glycogen and carcass weight (CW) or beef marbling standard (BMS) were weak. The predicted breeding values varied among paternal lines. These results demonstrated that genetic factors might improve muscle glycogen content and therefore beef palatability, but do not influence CW or BMS. PMID:24716455

  19. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations

    PubMed Central

    Zhai, Liting; Feng, Lingling; Xia, Lin; Yin, Huiyong; Xiang, Song

    2016-01-01

    Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII. PMID:27088557

  20. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations.

    PubMed

    Zhai, Liting; Feng, Lingling; Xia, Lin; Yin, Huiyong; Xiang, Song

    2016-01-01

    Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII. PMID:27088557

  1. Hepatitis B

    MedlinePlus

    ... and Change Plan Wallet card for patients to record their alcohol use over a 4-week period as a way to monitor and reduce their drinking behavior. Glossary Definitions of terms commonly used with viral hepatitis and ...

  2. Hepatitis B

    MedlinePlus

    ... U.S. Preventive Services Task Force recommendation statement. Ann Intern Med . 2014;161(1):58-66. PMID 24863637 ... Development Conference Statement: Management of hepatitis B. Ann Intern Med . 2009;150:104-10. PMID: 19124811 www. ...

  3. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  4. Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation of glycogen levels and reduction of inflammatory factors.

    PubMed

    Wang, Kaiping; Cao, Peng; Shui, Weizhi; Yang, Qiuxiang; Tang, Zhuohong; Zhang, Yu

    2015-03-01

    The present study was designed to evaluate the potential hypoglycemic and hypolipidemic effects of Angelica sinensis polysaccharide (ASP), purified from the fresh roots of Angelica sinensis (AS), in prediabetic and streptozotocin (STZ)-induced diabetic BALB/c mice. It was observed that fasting blood glucose (FBG) levels in both models were reduced after a 4-week oral administration of ASP or metformin, and abnormal fasting serum insulin (FINS) concentrations were ameliorated as well. Moreover, the homeostasis model assessment-insulin resistance (HOMA-IR) index was decreased strikingly and body weight (BW) was reduced significantly in prediabetic mice after treatment with ASP. In addition, ASP also contributed to improving the dyslipidemia conditions. Elevated serum total cholesterol (TC) or triglyceride (TG) concentrations were reduced after treatment with ASP in prediabetic mice or STZ-induced diabetic mice. Meanwhile, hepatic glycogen (HG) and muscle glycogen (MG) concentrations were increased while insulin resistance (IR)-related inflammatory factors IL-6 and TNF-α in serum were reduced in STZ-induced diabetic mice. Histopathological examination indicated that the impaired pancreatic/hepatic tissues or adipose tissues were effectively restored in STZ-induced diabetic mice or prediabetic mice after the ASP treatment. Taken together, these results revealed that ASP efficiently exerted hypoglycemic and hypolipidemic benefits, and its potential effect was associated with the amelioration of IR. ASP can be applied in the prevention and treatment of diabetes. PMID:25630053

  5. Hepatitis B Foundation

    MedlinePlus

    ... worldwide 2 Billion People have been infected with Hepatitis B Worldwide The Hepatitis B Foundation is working ... of people living with hepatitis B. Learn About Hepatitis B in 10 Other Languages . Resource Video See ...

  6. Hepatitis C - children

    MedlinePlus

    ... virus (HCV). Other common hepatitis virus infections include hepatitis A and hepatitis B . ... Elisofon SA, Jonas MMF. Viral hepatitis in children. In: Boyer TD, Manns MP, Sanyal AJ, eds. Zakim & Boyer's Hepatology: A Textbook of Liver Disease. 6th ed. ...

  7. Hepatitis A FAQs

    MedlinePlus

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home ... Outbreaks State and Local Partners & Grantees Resource Center Hepatitis A FAQs for the Public Recommend on Facebook ...

  8. Delta agent (Hepatitis D)

    MedlinePlus

    Hepatitis D virus ... Hepatitis D virus (HDV) is found only in people who carry the hepatitis B virus. HDV may make liver ... B virus but who never had symptoms. Hepatitis D infects about 15 million people worldwide. It occurs ...

  9. Hepatitis C FAQs

    MedlinePlus

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home ... Outbreaks State and Local Partners & Grantees Resource Center Hepatitis C FAQs for the Public Recommend on Facebook ...

  10. Hepatitis B FAQs

    MedlinePlus

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home ... Outbreaks State and Local Partners & Grantees Resource Center Hepatitis B FAQs for the Public Recommend on Facebook ...

  11. Hepatitis A Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Hepatitis A Testing Share this page: Was this page ... HAV-Ab total; Anti-HAV Formal name: Viral Hepatitis A Antibody Related tests: Hepatitis B Testing ; Hepatitis ...

  12. Effect of stress stimuli on glycogen level in the rat uterus.

    PubMed

    Górski, J; Stankiewicz-Chorószucha, B

    1978-11-30

    Effect of prolonged exercise, acute cold exposure, and 24-h fasting on the glycogen level in the uterus of rats spayed and than treated with peanut oil or estradiol was investigated. It has been found that exercise increases significantly though transitorily the glycogen level in the uterus of the oil-treated group. Cold exposure resulted in significant reduction of the uterine glycogen level only in the oil-treated group. Fasting did not change the glycogen level in the uterus in the both groups. Five hours of swimming and fasting decreased significantly the blood glucose level. PMID:736623

  13. Post-Exercise Muscle Glycogen Repletion in the Extreme: Effect of Food Absence and Active Recovery

    PubMed Central

    Fournier, Paul A.; Fairchild, Timothy J.; Ferreira, Luis D.; Bräu, Lambert

    2004-01-01

    Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one’s ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses. Key Points Even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. During active recovery from exercise, skeletal muscles rich in type II fibers replenish part of their glycogen stores even in the absence of food intake. Post-exercise muscle glycogen synthesis in the

  14. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  15. Are there errors in glycogen biosynthesis and is laforin a repair enzyme?

    PubMed Central

    Roach, Peter J.

    2016-01-01

    Glycogen, a branched polymer of glucose, is well known as a cellular reserve of metabolic energy and/or biosynthetic precursors. Besides glucose, however, glycogen contains small amounts of covalent phosphate, present as C2 and C3 phosphomonoesters. Current evidence suggests that the phosphate is introduced by the biosynthetic enzyme glycogen synthase as a rare alternative to its normal catalytic addition of glucose units. The phosphate can be removed by the laforin phosphatase, whose mutation causes a fatal myoclonus epilepsy called Lafora disease. The hypothesis is that glycogen phosphorylation can be considered a catalytic error and laforin a repair enzyme. PMID:21930129

  16. Differential response of rat cardiac and skeletal muscle glycogen to glucocorticoids.

    PubMed

    Poland, J L; Poland, J W; Honey, R N

    1982-05-01

    Though glucocorticoids were previously implicated in the support of myocardial glycogen supercompensation after exercise, it was unclear why skeletal muscle glycogen did not simultaneously supercompensate since it was also exposed to the exercise-induced glucocorticoid increases. The current study shows that glucocorticoids differentially affect cardiac and skeletal muscle glycogen. Following dexamethasone administration (400 micrograms i.p.) myocardial glycogen peaked at 6 h while glycogen in the soleus, red vastus lateralis, and white vastus lateralis increased more slowly and reached the highest values 17 h postinjection. Concurrently, blood glucose, insulin, and glucagon remained at control levels. Liver glycogen increased within 2 h and continued to rise with a peak value at 17 h. Plasma free fatty acid (FFA) levels increased and remained high throughout the 26-h experimental period. High FFA levels inhibit glycogenolysis and thus could be partially responsible for glucocorticoid-induced glycogen increases. It is postulated that glycogen supercompensation does not readily occur in skeletal muscles after exercise because of the brevity of the corticosterone and FFA increases and the slowness of the skeletal muscle glycogen response to glucocorticoids. PMID:7104851

  17. Transient down-regulation and restoration of glycogen synthase levels in axotomized rat facial motoneurons.

    PubMed

    Takezawa, Yosuke; Kohsaka, Shinichi; Nakajima, Kazuyuki

    2014-10-24

    In adult rats, transection of the facial nerve causes a functional down-regulation of motoneurons and glial activation/proliferation. It has not been clear how energy-supplying systems are regulated in an axotomized facial nucleus. Here we investigated the regulation of molecules involved in glycogen degradation/synthesis in axotomized facial nuclei in rats. Immunoblotting revealed that the amounts of glycogen phosphorylase in the contralateral and ipsilateral nuclei were unchanged for the first 14 days, whereas the amount of glycogen synthase in the axotomized facial nuclei was significantly decreased from days 7-14 post-insult. A quantitative analysis estimated that the glycogen synthase levels in the transected nucleus were reduced to approx. 50% at 14 days post-injury. An immunohistochemical study showed that the injured motoneurons had decreased expressions of glycogen synthase proteins. The glycogen synthase levels in the axotomized facial nucleus had returned to control levels by 5 weeks post-insult, as had the cholinergic markers. The immunohistochemical study also revealed the recovery of glycogen synthase levels at the later stage. The glycogen phosphorylase levels in the injured nucleus were not significantly changed during weeks 3-5 post-insult. Taken together, these results demonstrated that the injured facial motoneurons transiently reduced glycogen synthase levels at around 1-2 weeks post-insult, but restored the levels at 4-5 weeks post-insult. PMID:25152465

  18. Glycogen depletion and resynthesis during 14 days of chronic low-frequency stimulation of rabbit muscle.

    PubMed

    Prats, C; Bernal, C; Cadefau, J A; Frias, J; Tibolla, M; Cussó, R

    2002-10-10

    Electro-stimulation alters muscle metabolism and the extent of this change depends on application intensity and duration. The effect of 14 days of chronic electro-stimulation on glycogen turnover and on the regulation of glycogen synthase in fast-twitch muscle was studied. The results showed that macro- and proglycogen degrade simultaneously during the first hour of stimulation. After 3 h, the muscle showed net synthesis, with an increase in the proglycogen fraction. The glycogen content peaked after 4 days of stimulation, macroglycogen being the predominant fraction at that time. Glycogen synthase was determined during electro-stimulation. The activity of this enzyme was measured at low UDPG concentration with either high or low Glu-6-P content. Western blots were performed against glycogen synthase over a range of stimulation periods. Activation of this enzyme was maximum before the net synthesis of glycogen, partial during net synthesis, and low during late synthesis. These observations suggest that the more active, dephosphorylated and very low phosphorylated forms of glycogen synthase may participate in the first steps of glycogen resynthesis before net synthesis is observed, while partially phosphorylated forms are most active during glycogen elongation. PMID:12383944

  19. Feature Hepatitis: Hepatitis Symptoms, Diagnosis, Treatment & Prevention

    MedlinePlus

    ... Current Issue Past Issues Feature Hepatitis Hepatitis: Symptoms, Diagnosis, Treatment & Prevention Past Issues / Spring 2009 Table of ... Stomach ache Nausea Diarrhea No appetite Fever Headaches Diagnosis To check for hepatitis viruses, your doctor will ...

  20. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    PubMed

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  1. A liver HIF-2α/IRS2 pathway sensitizes hepatic insulin signaling and is modulated by VEGF inhibition

    PubMed Central

    Taniguchi, Cullen M.; Wiegand, Stanley J.; Anderson, Keith; Chan, Carol W-M.; Mulligan, Kimberly X.; Kuo, David; Yuan, Jenny; Vallon, Mario; Morton, Lori; Lefai, Etienne; Simon, M. Celeste; Maher, Jacquelyn J.; Mithieux, Gilles; Rajas, Fabienne; Annes, Justin; McGuinness, Owen P.; Thurston, Gavin; Giaccia, Amato J.; Kuo, Calvin J.

    2013-01-01

    Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis1,2. The liver possesses a rich sinusoidal capillary network with increased hypoxia and decreased gluconeogenesis in the perivenous zone3. Here, diverse vascular endothelial growth factor (VEGF) inhibitors improved glucose tolerance in normal or diabetic db/db mice, potentiating hepatic insulin signaling, decreasing gluconeogenic gene expression, increasing glycogen storage and suppressing hepatic glucose production (HGP). VEGF inhibition induced hepatic hypoxia via sinusoidal vascular regression and sensitized liver insulin signaling through hypoxia inducible factor-2α (HIF-2α) stabilization. Notably, liver-specific constitutive activation of HIF-2α, but not HIF-1α, was sufficient to augment hepatic insulin signaling via direct and indirect induction of insulin receptor substrate 2 (IRS2), an essential insulin receptor adaptor protein4–6. Further, liver IRS2 was both necessary and sufficient to mediate HIF-2α and VEGF inhibition effects on glucose tolerance and hepatic insulin signaling. These results demonstrate an unsuspected intersection between HIF-2α–mediated hypoxic signaling and hepatic insulin action via IRS2 induction, which can be co-opted by VEGF inhibitors to modulate glucose metabolism. These studies also indicate distinct roles in hepatic metabolism for HIF-1α, which promotes glycolysis7–9, versus HIF-2α, which suppresses gluconeogenesis, and suggest novel treatment approaches for type 2 diabetes mellitus. PMID:24037094

  2. CT scan diagnosis of hepatic adenoma in a case of von Gierke disease

    PubMed Central

    Daga, Bipin Valchandji; Shah, Vaibhav R; More, Rahul B

    2012-01-01

    Hepatic adenoma is a well-defined, benign, solitary tumor of the liver. In individuals with glycogen storage disease I, adenoma tends to occur at a relatively younger age and can be multiple (adenomatosis). Imaging plays a pivotal role in diagnosing hepatic adenoma and in differentiating adenoma from other focal hepatic lesions. Especially in patients with von Gierke disease, in addition to the associated hepatomegaly caused by steatohepatitis and the diffusely reduced attenuation of the liver parenchyma seen on CT, there may be more than one hepatic adenoma in up to 40% of patients. Malignant degeneration of hepatic adenoma into hepatocellular carcinoma can occur and hence imaging is important for prompt diagnosis of adenoma and its complications. In this case report, we present a case of liver adenoma diagnosed by CT scan in a patient with von Gierke disease. PMID:22623817

  3. Metformin improves hepatic IRS2/PI3K/Akt signaling in insulin-resistant rats of NASH and cirrhosis.

    PubMed

    Xu, Hong; Zhou, Yang; Liu, Yongxia; Ping, Jian; Shou, Qiyang; Chen, Fangming; Ruo, Ru

    2016-05-01

    Nonalcoholic fatty liver disease and cirrhosis are strongly associated with insulin resistance and glucose intolerance. To date, the influence of metformin on glycogen synthesis in the liver is controversial. Limited studies have evaluated the effect of metformin on hepatic insulin signaling pathway in vivo In this study, an insulin-resistant rat model of nonalcoholic steatohepatitis and cirrhosis was developed by high-fat and high-sucrose diet feeding in combination with subcutaneous injection of carbon tetrachloride. Liver tissues of the model rats were featured with severe steatosis and cirrhosis, accompanied by impaired liver function and antioxidant capacity. The glucose tolerance was impaired, and the index of insulin resistance was increased significantly compared with the control. The content of hepatic glycogen was dramatically decreased. The expression of insulin receptor β (IRβ); phosphorylations of IRβ, insulin receptor substrate 2 (IRS2), and Akt; and activities of phosphatidylinositol 3-kinase (PI3K) and glycogen synthase (GS) in the liver were significantly decreased, whereas the activities of glycogen synthase kinase 3α (GSK3α) and glycogen phosphorylase a (GPa) were increased. Metformin treatment remarkably improved liver function, alleviated lipid peroxidation and histological damages of the liver, and ameliorated glucose intolerance and insulin resistance. Metfromin also significantly upregulated the expression of IRβ; increased the phosphorylations of IRβ, IRS2, and Akt; increased the activities of PI3K and GS; and decreased GSK3α and GPa activities. In conclusion, our study suggests that metformin upregulates IRβ expression and the downstream IRS2/PI3K/Akt signaling transduction, therefore, to increase hepatic glycogen storage and improve insulin resistance. These actions may be attributed to the improved liver histological alterations by metformin. PMID:26941037

  4. Hepatitis C: Sex and Sexuality

    MedlinePlus

    ... with Hepatitis » Sex and Sexuality: Entire Lesson Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... hepatitis C virus through sex. Can you pass hepatitis C to a sex partner? Yes, but it ...

  5. Hepatitis C

    PubMed Central

    Mehta, Bharti; Kumar Dharma, Vijay; Chawla, Sumit; Jindal, Harashish; Bhatt, Bhumika

    2014-01-01

    Hepatitis C Virus (HCV) infection is a major cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Following acute infection, 20% of people eliminate the virus over weeks or months and are often asymptomatic. The remaining 80% of people will develop chronic disease, of which approximately 20% will eventually develop liver cirrhosis and 1–5% will develop liver cancer. About 150 million people are chronically infected with HCV, and more than 350 000 people die every year from hepatitis C related liver diseases. The economic cost of hepatitis C is significant both to the individual and to the society. In the United States the average lifetime cost of the disease was estimated at $33 407 USD with the cost of a liver transplant approximately $200 000 USD. PEG-IFN and ribavirin treatment is also expensive and, at an average cost of approximately GB £7000 in the UK for a treatment course, is unaffordable in developing countries. Hepatitis C, not only brings down the quality of the life of individuals but also affect progress of the nation by adding financial burden. If we prevent the disease from occurring or find a perfect cure of the disease, in form of a prophylactic or therapeutic vaccine, it will be a boon to not only to the individual but to the nation as a whole. PMID:24165512

  6. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle

    PubMed Central

    Ørtenblad, Niels; Nielsen, Joachim; Saltin, Bengt; Holmberg, Hans-Christer

    2011-01-01

    Little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. The aim of the present study was to examine the effect of glycogen on sarcoplasmic reticulum (SR) function in the arm and leg muscles of elite cross-country skiers (n= 10, 72 ± 2 ml kg−1 min−1) before, immediately after, and 4 h and 22 h after a fatiguing 1 h ski race. During the first 4 h recovery, skiers received either water or carbohydrate (CHO) and thereafter all received CHO-enriched food. Immediately after the race, arm glycogen was reduced to 31 ± 4% and SR Ca2+ release rate decreased to 85 ± 2% of initial levels. Glycogen noticeably recovered after 4 h recovery with CHO (59 ± 5% initial) and the SR Ca2+ release rate returned to pre-exercise levels. However, in the absence of CHO during the first 4 h recovery, glycogen and the SR Ca2+ release rate remained unchanged (29 ± 2% and 77 ± 8%, respectively), with both parameters becoming normal after the remaining 18 h recovery with CHO. Leg muscle glycogen decreased to a lesser extent (71 ± 10% initial), with no effects on the SR Ca2+ release rate. Interestingly, transmission electron microscopy (TEM) analysis revealed that the specific pool of intramyofibrillar glycogen, representing 10–15% of total glycogen, was highly significantly correlated with the SR Ca2+ release rate. These observations strongly indicate that low glycogen and especially intramyofibrillar glycogen, as suggested by TEM, modulate the SR Ca2+ release rate in highly trained subjects. Thus, low glycogen during exercise may contribute to fatigue by causing a decreased SR Ca2+ release rate. PMID:21135051

  7. Influence of circadian rhythms on rat muscle glycogen metabolism during and after exercise.

    PubMed

    Garetto, L P; Armstrong, R B

    1983-01-01

    Marked circadian fluctuations in skeletal muscle glycogen concentrations have previously been reported. The purpose of the present study was to estimate the influence of these rhythms on muscle glycogen metabolism during and after high-intensity treadmill exercise. Male Sprague-Dawley rats ran five 1-min sprints at 75 m min-1 interspersed by 1-3 min rest intervals either at 08.00 h (morning) or at 20.00 h (night). All muscles sampled lost significant amounts of glycogen during exercise at both time periods. There were no differences in rates of loss between morning and night, even though glycogen levels in several muscles (high-oxidative muscles) were significantly higher before exercise in the morning. Following exercise, glycogen restoration in muscle samples primarily composed of fast-twitch fibres was more rapid in the morning than at night. There was no difference in glycogen restoration rates between the two time periods in the muscle primarily composed of slow-twitch fibres. Although liver glycogen was lower after exercise at night than in the morning, there were no differences in post-exercise blood glucose levels between the two time periods. In conclusion, circadian rhythms do not appear to influence rates of glycogen loss during high-speed running. However, since glycogen loss is the same at all times of day, one would predict that circadian changes in pre-exercise muscle glycogen concentrations would affect muscular endurance. Muscle glycogen restoration after exercise does appear to be affected by circadian rhythms, although interpretation of these data is complicated by possible changes in patterns of muscle fibre contraction at different times of the day. These circadian influences should be considered in the design of exercise studies using laboratory rodents. PMID:6833943

  8. Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration.

    PubMed

    Herzog, Raimund I; Chan, Owen; Yu, Sunkyung; Dziura, James; McNay, Ewan C; Sherwin, Robert S

    2008-04-01

    Our objective was to evaluate whether excessive brain glycogen deposition might follow episodes of acute hypoglycemia (AH) and thus play a role in the hypoglycemia-associated autonomic failure seen in diabetic patients receiving intensive insulin treatment. We determined brain glucose and glycogen recovery kinetics after AH and recurrent hypoglycemia (RH), an established animal model of counterregulatory failure. A single bout of insulin-induced AH or RH for 3 consecutive days was used to deplete brain glucose and glycogen stores in rats. After microwave fixation and glycogen extraction, regional recovery kinetics in the brain was determined using a biochemical assay. Both AH and RH treatments reduced glycogen levels in the cerebellum, cortex, and hypothalamus from control levels of 7.78 +/- 0.55, 5.4 +/- 0.38, and 4.45 +/- 0.37 micromol/g, respectively, to approximately 50% corresponding to a net glycogen utilization rate between 0.6 and 1.2 micromol/g.h. After hypoglycemia, glycogen levels returned to baseline within 6 h in both the AH and the RH group. However, recovery of brain glycogen tended to be faster in rats exposed to RH. This effect followed more rapid recovery of brain glucose levels in the RH group, despite similar blood glucose levels in both groups. There was no statistically significant increase above baseline glycogen levels in either group. In particular, brain glycogen was not increased 24 h after the last of recurrent episodes of hypoglycemia, when a significant counterregulatory defect could be documented during a hyperinsulinemic hypoglycemic clamp study. We conclude that glycogen supercompensation is not a major contributory factor to the pathogenesis of hypoglycemia-associated autonomic failure. PMID:18187548

  9. Carbohydrate supplementation spares muscle glycogen during variable-intensity exercise.

    PubMed

    Yaspelkis, B B; Patterson, J G; Anderla, P A; Ding, Z; Ivy, J L

    1993-10-01

    Effects of carbohydrate (CHO) supplementation on muscle glycogen utilization and endurance were evaluated in seven well-trained male cyclists during continuous cycling exercise that varied between low [45% maximal O2 uptake (VO2 max)] and moderate intensity (75% VO2 max). During each exercise bout the subjects received either artificially flavored placebo (P), 10% liquid CHO supplement (L; 3 x 18 g CHO/h), or solid CHO supplement (S; 2 x 25 g CHO/h). Muscle biopsies were taken from vastus lateralis during P and L trials immediately before exercise and after first (124 min) and second set (190 min) of intervals. Subjects then rode to fatigue at 80% VO2 max. Plasma glucose and insulin responses during L treatment reached levels of 6.7 +/- 0.7 mM and 70.6 +/- 17.2 microU/ml, respectively, and were significantly greater than those of P treatment (4.4 +/- 0.1 mM and 17.7 +/- 1.6 microU/ml) throughout the exercise bout. Plasma glucose and insulin responses of S treatment were intermediate to those of L and P treatments. Times to fatigue for S (223.9 +/- 3.5 min) and L (233.4 +/- 7.5 min) treatments did not differ but were significantly greater than that of P treatment (202.4 +/- 9.8 min). After the first 190 min of exercise, muscle glycogen was significantly greater during L (79 +/- 3.5 mumol/g wet wt) than during P treatment (58.5 +/- 7.2 mumol/g wet wt). Furthermore, differences in muscle glycogen concentrations between L and P treatments after 190 min of exercise and in time to fatigue for these treatments were positively related (r = 0.76, P < 0.05). These results suggest that CHO supplementation can enhance prolonged continuous variable-intensity exercise by reducing dependency on muscle glycogen as a fuel source. PMID:8282593

  10. Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3β and NF-κB activation.

    PubMed

    Chen, Chia-Ling; Lin, Chiou-Feng; Wan, Shu-Wen; Wei, Li-Shiung; Chen, Mei-Chun; Yeh, Trai-Ming; Liu, Hsiao-Sheng; Anderson, Robert; Lin, Yee-Shin

    2013-08-15

    Immunopathogenetic mechanisms of dengue virus (DENV) infection are involved in hemorrhagic syndrome resulting from thrombocytopenia, coagulopathy, and vasculopathy. We have proposed a mechanism of molecular mimicry in which Abs against DENV nonstructural protein 1 (NS1) cross-react with human endothelial cells and cause NF-κB-regulated immune activation and NO-mediated apoptosis. However, the signaling pathway leading to NF-κB activation after the binding of anti-DENV NS1 Abs to endothelial cells is unresolved. In this study, we found that anti-DENV NS1 Abs caused the formation of lipid raftlike structures, and that disrupting lipid raft formation by methyl-β-cyclodextrin decreased NO production and apoptosis. Treatment with anti-DENV NS1 Abs elevated ceramide generation in lipid rafts. Pharmacological inhibition of acid sphingomyelinase (aSMase) decreased anti-DENV NS1 Ab-mediated ceramide and NO production, as well as apoptosis. Exogenous ceramide treatment induced biogenesis of inducible NO synthase (iNOS)/NO and apoptosis through an NF-κB-regulated manner. Furthermore, activation of glycogen synthase kinase-3β (GSK-3β) was required for ceramide-induced NF-κB activation and iNOS expression. Notably, anti-DENV NS1 Abs caused GSK-3β-mediated NF-κB activation and iNOS expression, which were regulated by aSMase. Moreover, pharmacological inhibition of GSK-3β reduced hepatic endothelial cell apoptosis in mice passively administered anti-DENV NS1 Abs. These results suggest that anti-DENV NS1 Abs bind to the endothelial cell membrane and cause NO production and apoptosis via a mechanism involving the aSMase/ceramide/GSK-3β/NF-κB/iNOS/NO signaling pathway. PMID:23851680

  11. Hepatic encephalopathy.

    PubMed

    Córdoba, Juan; Mínguez, Beatriz

    2008-02-01

    Hepatic encephalopathy is a severe complication of cirrhosis that is related to the effects of ammonia. Analysis of interorgan ammonia trafficking has identified an important role of skeletal muscle in ammonia removal and has highlighted the importance of the nutritional status. Ammonia causes neurotransmitter abnormalities and induces injury to astrocytes that is partially mediated by oxidative stress. These disturbances lead to astrocyte swelling and brain edema, which appear to be involved in the pathogenesis of neurological manifestations. Inflammatory mediators worsen brain disturbances. New methods for assessing hepatic encephalopathy include clinical scales, neuropsychological tests, imaging of portal-systemic circulation, and magnetic resonance of the brain. Reappraisal of current therapy indicates the need for performing placebo-controlled trials and the lack of evidence for administering diets with restricted protein content. Liver transplant should be considered in selected patients with hepatic encephalopathy. Future prospects include new drugs that decrease plasma ammonia, measures to reduce brain edema, and liver-support devices. PMID:18293278

  12. [Hepatic encephalopathy].

    PubMed

    Córdoba, Juan; Mur, Rafael Esteban

    2014-07-01

    Hepatic encephalopathy (EH) is a severe complication of hepatic cirrhosis that is characterized by multiple neuropsychiatric manifestations. EH is usually triggered by a precipitating factor and occurs in patients with severely impaired hepatic function. Minimal EH is characterized by minor cognitive impairments that are difficult to specify but represent a risk for the patients. The primary pathophysiological mechanism of EH is considered to be an increase in blood ammonia with an impairment in the patency of the blood-brainbarrier and its metabolism to glutamine in astrocytes. The diagnosis is clinical and neuroimaging techniques can be complementary. The diagnosis of minimal EH requires specific neurocognitive tests. The clinical evaluation should be directed towards identifying the trigger. Nonabsorbable disaccharides and rifaximin constitute the treatment of choice, along with prophylaxis for new episodes. PMID:25087716

  13. Checking for reversibility of aggregation of UV-irradiated glycogen phosphorylase b under crowding conditions.

    PubMed

    Eronina, Tatiana B; Mikhaylova, Valeriya V; Chebotareva, Natalia A; Makeeva, Valentina F; Kurganov, Boris I

    2016-05-01

    It is believed that the initial stages of protein aggregation are reversible and can be reversed by simple dilution, whereas prolonged exposure to factors responsible for denaturing proteins (for example, to elevated temperatures) results in the formation of irreversible aggregates. A new approach has been developed to discriminate the stage of the formation of reversible aggregates. Aggregation of UV-irradiated glycogen phosphorylase b (UV-Phb) was studied at 10, 25 and 37°C in the presence of crowders (polyethylene glycol and Ficoll-70) using dynamic light scattering and analytical ultracentrifugation (pH 6.8; 0.1M NaCl). The dilution of the protein solution in the course of aggregation at 10°C results in the breakdown of protein aggregates suggesting that the aggregation process is reversible. When aggregation of UV-Phb is studied at 37°C, reversibility is lacking. Chemical chaperones (arginine, proline) induce the breakdown of protein aggregates of UV-Phb formed at 10°C. In the experiments carried out at 37°C in the presence of crowder the addition of arginine results in disintegration of protein aggregates only at early stages of the aggregation process. It is assumed that general pathway of protein aggregation includes the formation of reversible, completely dissociable, partly dissociable and irreversible aggregates. PMID:26853826

  14. Glycogen storage disease type III: A novel Agl knockout mouse model.

    PubMed

    Pagliarani, Serena; Lucchiari, Sabrina; Ulzi, Gianna; Violano, Raffaella; Ripolone, Michela; Bordoni, Andreina; Nizzardo, Monica; Gatti, Stefano; Corti, Stefania; Moggio, Maurizio; Bresolin, Nereo; Comi, Giacomo P

    2014-11-01

    Glycogen storage disease type III is an autosomal recessive disease characterized by a deficiency in the glycogen debranching enzyme, encoded by AGL. Essential features of this disease are hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Progressive skeletal myopathy, neuropathy, and/or cardiomyopathy become prominent in adults. Currently, there is no available cure. We generated an Agl knockout mouse model by deletion of the carboxy terminus of the protein, including the carboxy end of the glucosidase domain and the glycogen-binding domain. Agl knockout mice presented serious hepatomegaly, but we did not observe signs of cirrhosis or adenomas. In affected tissues, glycogen storage was higher than in wild-type mice, even in the central nervous system which has never been tested in GSDIII patients. The biochemical findings were in accordance with histological data, which clearly documented tissue impairment due to glycogen accumulation. Indeed, electron microscopy revealed the disruption of contractile units due to glycogen infiltrations. Furthermore, adult Agl knockout animals appeared less prompt to move, and they exhibited kyphosis. Three-mo-old Agl knockout mice could not run, and adult mice showed exercise intolerance. In addition, older affected animals exhibited an accelerated respiratory rate even at basal conditions. This observation was correlated with severe glycogen accumulation in the diaphragm. Diffuse glycogen deposition was observed in the tongues of affected mice. Our results demonstrate that this Agl knockout mouse is a reliable model for human glycogenosis type III, as it recapitulates the essential phenotypic features of the disease. PMID:25092169

  15. Cinnamon increases liver glycogen in an animal model of insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamon, and aqueous polyphenol extracts of cinnamon, improve insulin sensitivity in vitro, and in animal and human studies. Given the relationship between the glucose/insulin system and glycogen metabolism, the objective of this study was to determine the effects of cinnamon on glycogen synthesis...

  16. Technical note: A method for isolating glycogen granules from ruminal protozoa for further characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of physical, compositional, and digestion characteristics of protozoal glycogen is best performed on a pure substrate in order to avoid interference from other cell components. A method for isolating protozoal glycogen without use of detergents was developed. Rumen inoculum was incubated ...

  17. Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia.

    PubMed

    Canada, Sarah E; Weaver, Staci A; Sharpe, Shannon N; Pederson, Bartholomew A

    2011-04-01

    Brain glycogen is proposed to function under both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed "supercompensation." We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/liter for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. After these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hr. After 6 hr, blood and brain glucose levels were restored but brain glycogen levels were elevated by 25% in mice that had been subjected to either acute or recurrent hypoglycemia compared with saline-treated controls. After a 27-hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice, but its functional significance remains to be established. PMID:21259334

  18. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness.

    PubMed

    Öz, Gülin; Tesfaye, Nolawit; Kumar, Anjali; Deelchand, Dinesh K; Eberly, Lynn E; Seaquist, Elizabeth R

    2012-02-01

    Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo (13)C nuclear magnetic resonance spectroscopy in conjunction with [1-(13)C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. (13)C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes. PMID:21971353

  19. Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness

    PubMed Central

    Öz, Gülin; Tesfaye, Nolawit; Kumar, Anjali; Deelchand, Dinesh K; Eberly, Lynn E; Seaquist, Elizabeth R

    2012-01-01

    Supercompensated brain glycogen may contribute to the development of hypoglycemia unawareness in patients with type 1 diabetes by providing energy for the brain during periods of hypoglycemia. Our goal was to determine if brain glycogen content is elevated in patients with type 1 diabetes and hypoglycemia unawareness. We used in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with [1-13C]glucose administration in five patients with type 1 diabetes and hypoglycemia unawareness and five age-, gender-, and body mass index-matched healthy volunteers to measure brain glycogen content and metabolism. Glucose and insulin were administered intravenously over ∼51 hours at a rate titrated to maintain a blood glucose concentration of 7 mmol/L. 13C-glycogen levels in the occipital lobe were measured at ∼5, 8, 13, 23, 32, 37, and 50 hours, during label wash-in and wash-out. Newly synthesized glycogen levels were higher in controls than in patients (P<0.0001) for matched average blood glucose and insulin levels, which may be due to higher brain glycogen content or faster turnover in controls. Metabolic modeling indicated lower brain glycogen content in patients than in controls (P=0.07), implying that glycogen supercompensation does not contribute to the development of hypoglycemia unawareness in humans with type 1 diabetes. PMID:21971353

  20. BRAIN GLYCOGEN SUPERCOMPENSATION IN THE MOUSE AFTER RECOVERY FROM INSULIN-INDUCED HYPOGLYCEMIA

    PubMed Central

    Canada, Sarah E.; Weaver, Staci A.; Sharpe, Shannon N.; Pederson, Bartholomew A.

    2010-01-01

    Brain glycogen is proposed to function in both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed “supercompensation”. We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/L for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. Following these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hrs. After 6 hrs, blood and brain glucose levels were restored while brain glycogen levels were elevated 25% in mice that were previously subjected to either acute or recurrent hypoglycemia as compared with saline-treated controls. Following a 27 hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice but its functional significance remains to be established. PMID:21259334

  1. Effect of endurance exercise training on muscle glycogen supercompensation in rats.

    PubMed

    Nakatani, A; Han, D H; Hansen, P A; Nolte, L A; Host, H H; Hickner, R C; Holloszy, J O

    1997-02-01

    The purpose of this study was to test the hypothesis that the rate and extent of glycogen supercompensation in skeletal muscle are increased by endurance exercise training. Rats were trained by using a 5-wk-long swimming program in which the duration of swimming was gradually increased to 6 h/day over 3 wk and then maintained at 6 h/day for an additional 2 wk. Glycogen repletion was measured in trained and untrained rats after a glycogen-depleting bout of exercise. The rats were given a rodent chow diet plus 5% sucrose in their drinking water and libitum during the recovery period. There were remarkable differences in both the rates of glycogen accumulation and the glycogen concentrations attained in the two groups. The concentration of glycogen in epitrochlearis muscle averaged 13.1 +/- 0.9 mg/g wet wt in the untrained group and 31.7 +/- 2.7 mg/g in the trained group (P < 0.001) 24 h after the exercise. This difference could not be explained by a training effect on glycogen synthase. The training induced approximately 50% increases in muscle GLUT-4 glucose transporter protein and in hexokinase activity in epitrochlearis muscles. We conclude that endurance exercise training results in increases in both the rate and magnitude of muscle glycogen supercompensation in rats. PMID:9049757

  2. Adenovirus-mediated delivery into myocytes of muscle glycogen phosphorylase, the enzyme deficient in patients with glycogen-storage disease type V.

    PubMed Central

    Baqué, S; Newgard, C B; Gerard, R D; Guinovart, J J; Gómez-Foix, A M

    1994-01-01

    The feasibility of using adenovirus as a vector for the introduction of glycogen phosphorylase activity into myocytes has been examined. We used the C2C12 myoblast cell line to assay the impact of phosphorylase gene transfer on myocyte glycogen metabolism and to reproduce in vitro the two strategies proposed for the treatment of muscle genetic diseases, myoblast transplantation and direct DNA delivery. In this study, a recombinant adenovirus containing the muscle glycogen phosphorylase cDNA transcribed from the cytomegalovirus promoter (AdCMV-MGP) was used to transduce both differentiating myoblasts and nondividing mature myotube cells. Muscle glycogen phosphorylase mRNA levels and total phosphorylase activity were increased in both cell types after viral treatment although more efficiently in the differentiated myotubes. The increase in phosphorylase activity was transient (15 days) in myoblasts whereas in myotubes higher levels of phosphorylase gene expression and activity were reached, which remained above control levels for the duration of the study (20 days). The introduction of muscle phosphorylase into myotubes enhanced their glycogenolytic capacity. AdCMV MGP-transduced myotubes had lower glycogen levels under basal conditions. In addition, these engineered cells showed more extensive glycogenolysis in response to both adrenaline, which stimulates glycogen phosphorylase phosphorylation, and carbonyl cyanide m-chlorophenylhydrazone, a metabolic uncoupler. In conclusion, transfer of the muscle glycogen phosphorylase cDNA into myotubes confers an enhanced and regulatable glycogenolytic capacity. Thus this system might be useful for delivery of muscle glycogen phosphorylase and restoration of glycogenolysis in muscle cells from patients with muscle phosphorylase deficiency (McArdle's disease). Images Figure 1 Figure 2 Figure 5 PMID:7818463

  3. Glycogen: A must have storage to survive stressful emergencies.

    PubMed

    Possik, Elite; Pause, Arnim

    2016-01-01

    Mechanisms of adaptation to acute changes in osmolarity are fundamental for life. When exposed to hyperosmotic stress, cells and organisms utilize conserved strategies to prevent water loss and maintain cellular integrity and viability. The production of glycerol is a common strategy utilized by the nematode Caenorhabditis elegans (C. elegans) and many other organisms to survive hyperosmotic stress. Specifically, the transcriptional upregulation of glycerol-3-phosphate dehydrogenase, a rate-limiting enzyme in the production of glycerol, has been previously implicated in many model organisms. However, what fuels this massive and rapid production of glycerol upon hyperosmotic stress has not been clearly elucidated. We have recently discovered an AMPK-dependent pathway that mediates hyperosmotic stress resistance in C. elegans. Specifically, we demonstrated that the chronic activation of AMPK leads to glycogen accumulation, which under hyperosmotic stress exposure, is rapidly degraded to mediate glycerol production. Importantly, we demonstrate that this strategy is utilized by flcn-1 mutant C. elegans nematodes in an AMPK-dependent manner. FLCN-1 is the worm homolog of the human renal tumor suppressor Folliculin (FLCN) responsible for the Birt-Hogg-Dubé neoplastic syndrome. Here, we comment on the dual role for glycogen in stress resistance: it serves as an energy store and a fuel for osmolyte production. We further discuss the potential utilization of this mechanism by organisms in general and by human cancer cells in order to survive harsh environmental conditions and notably hyperosmotic stress. PMID:27383221

  4. Glycogen synthase kinase 3 in Wnt signaling pathway and cancer.

    PubMed

    Tejeda-Muñoz, Nydia; Robles-Flores, Martha

    2015-12-01

    Glycogen synthase kinase 3 (GSK-3) was first discovered in 1980 as one of the key enzymes of glycogen metabolism. Since then, GSK-3 has been revealed as one of the master regulators of a diverse range of signaling pathways, including those activated by Wnts, participating in the regulation of numerous cellular functions, suggesting that its activity is tightly regulated. Numerous studies have pointed to an association of GSK-3 dysregulation with the onset and progression of human diseases, including diabetes mellitus, obesity, inflammation, neurological illnesses, and cancer. Therefore, GSK-3 is recognized as an attractive therapeutic target in multiple disorders. However, the great number of substrates that are phosphorylated by GSK-3 has raised the question of whether this limits its feasibility as a therapeutic target because of the potential disruption of many cellular processes and also by the fear that inhibition of GSK-3 may stimulate or aid in malignant transformation, as GSK-3 can phosphorylate pro-oncogenic factors. This mini review focuses on the role played by GSK-3 in Wnt signaling pathway and cancer using as model colon cancer. PMID:26600003

  5. Calcium kinetics in glycogen storage disease type 1a.

    PubMed

    Goans, R E; Weiss, G H; Vieira, N E; Sidbury, J B; Abrams, S A; Yergey, A L

    1996-12-01

    Glycogen storage disease type 1a (Von Gierke's disease) is one of the more common glycogen storage diseases (GSD). GSD 1a patients can have severe idiopathic osteopenia, often beginning at a young age. Since calcium tracer studies offer a sensitive probe of the bone microenvironment and of calcium deposition, kinetics might be disturbed in patients with GSD 1a. Plasma dilution kinetics obtained using the stable isotope 42Ca are shown in this paper to be quite different between GSD 1a patients and age-matched controls. Comparison of kinetic parameters in these two populations is made using a new binding site model for describing calcium dynamics at the plasma-bone interface. This model describes reversible binding of calcium ions to postulated short-term and long-term sites by a retention probability density function psi (t). Using this analysis, adult GSD subjects exhibited a significant decrease (P = 0.023) in the apparent half-life of a calcium ion on the longer-term site compared with controls. The general theory of calcium tracer dilution kinetics is then discussed in terms of a new model of short-term calcium homeostasis recently proposed by Bronner and Stein [5]. PMID:8939770

  6. Hepatic ERK activity plays a role in energy metabolism.

    PubMed

    Jiao, Ping; Feng, Bin; Li, Yujie; He, Qin; Xu, Haiyan

    2013-08-15

    Mitogen activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK) and P38, have been reported to play important roles in energy homeostasis. In this study, we show that the activity of extracellular signal-regulated kinase (ERK) is increased in the livers of diet induced and genetically obese mice. Activation of ERK in the livers of lean mice by over-expressing the constitutively active MAPK kinase 1 (MEK CA) results in decreased energy expenditure, lowered expression of genes involved in fatty acid oxidation, increases fasting hyperglycemia and causes systemic insulin resistance. Interestingly, hepatic glycogen content is markedly increased and expression of G6Pase gene is decreased in mice over-expressing MEK CA compared to control mice expressing green fluorescent protein (GFP), therefore hepatic glucose output is not likely the major contributor of hyperglycemia. One potential mechanism of decreased expression of G6Pase gene by MEK CA is likely due to ERK mediated phosphorylation and cytosolic retention of FOXO1. Adipocytes isolated from MEK CA mice display increased lipolysis. Circulating levels of free fatty acids (FFAs) in these mice are also increased, which possibly contribute to systemic insulin resistance and subsequent hyperglycemia. Consistent with these results, knocking down ERK expression in the liver of diet induced obese (DIO) mice improves systemic insulin and glucose tolerance. These results indicate that increased hepatic ERK activity in DIO mice may contribute to increased liver glycogen content and decreased energy expenditure in obesity. PMID:23732116

  7. Vescalagin from Pink Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Alleviates Hepatic Insulin Resistance and Ameliorates Glycemic Metabolism Abnormality in Rats Fed a High-Fructose Diet.

    PubMed

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-10

    This study investigates the ameliorative effect of vescalagin (VES) isolated from Pink wax apple fruit on hepatic insulin resistance and abnormal carbohydrate metabolism in high-fructose diet (HFD)-induced hyperglycemic rats. The results show that in HFD rats, VES significantly reduced the values of the area under the curve for glucose in an oral glucose tolerance test and the homeostasis model assessment of insulin resistance index. VES significantly enhanced the activity of hepatic antioxidant enzymes while reducing thiobarbituric acid-reactive substances in HFD rats. Western blot assay revealed that VES reduced hepatic protein expression involved in inflammation pathways while up-regulating expression of hepatic insulin signaling-related proteins. Moreover, VES up-regulated the expression of hepatic glycogen synthase and hepatic glycolysis-related proteins while down-regulating hepatic gluconeogenesis-related proteins in HFD rats. This study suggests some therapeutic potential of VES in preventing the progression of diabetes mellitus. PMID:26800576

  8. Metabolic responses to adrenaline and muscle glycogen content in dogs treated with thyroxine.

    PubMed

    Brzezińska, Z; Kaciuba-Uściłko, H

    1978-01-01

    Lipolytic, hyperglycaemic and lactacidaemic responses to 1h adrenaline infusion (0.1 microgram/kg/min) were compared in resting dogs before (control) and after prolonged thyroxine (T4) treatment. Besides, the effect of 2-week thyroxine administration on muscle glycogen content, and its changes following adrenaline infusion were examined. Prolonged T4-treatment of dogs resulted in considerable alterations of the metabolic actions of adrenaline. A marked difference between the control and T4-treated dogs was also found in the muscle glycogen content, which was significantly lower in the latter. Both in the control and T4-injected dogs adrenaline infusion caused similar depletion of the muscle glycogen store. However, in all the control animals examined supercompensation of muscle glycogen was noted 1 h following termination of adrenaline infusion, whereas T4-treated dogs were unable of incurring any significant muscle glycogen deposition. PMID:742367

  9. [Role of glucocorticoids in the regulation of postexercise glycogen replenishment, and the mechanism of their action].

    PubMed

    Kyrge, P K; Eller, A K; Timpmann, S K; Séppet, E K

    1982-10-01

    Repeated determination of post--exercise glycogen repletion in liver, heart, white and red skeletal muscles of intact and adrenalectomized rats with or without the administration of dexamethasone and sucrose revealed that a glycogen supercompensation effect depends on the availability of glucocorticoids. Other factors which considerably modify the effect of glucocorticoids on glycogen synthesis, are the molecular properties of the mechanism through which the hormone actualizes its biological effect. The stimulating effect of dexamethasone on glycogen synthesis in the liver and heart muscle of adrenalectomized rats is blocked by cycloheximide. This suggests that the role of glucocorticoids in the regulation of post--exercise glycogen synthesis depends upon cycloheximide--sensitive protein synthesis. PMID:7173428

  10. Hepatitis A

    MedlinePlus

    ... Low-grade fever Nausea and vomiting Pale or clay-colored stools Yellow skin (jaundice) ... The virus does not remain in the body after the infection is gone. Most people with hepatitis A recover within 3 months. Nearly all people get better within 6 months. There ...

  11. Autoimmune Hepatitis

    MedlinePlus

    ... provider will closely monitor and manage any side effects that may occur, as high doses of prednisone are often prescribed to treat autoimmune hepatitis. Immune system suppressors. Medications that suppress the immune system prevent the body from making autoantibodies and block the immune reaction ...

  12. Hepatitis A

    MedlinePlus

    ... Advisory Board Sponsors Sponsorship Opporunities Spread the Word Shop AAP Find a Pediatrician ... Body Hepatitis means “inflammation of the liver.” This inflammation can be caused by a wide variety of toxins, drugs, and metabolic diseases, as well as infection. There ...

  13. 1-Deoxynojirimycin Alleviates Liver Injury and Improves Hepatic Glucose Metabolism in db/db Mice.

    PubMed

    Liu, Qingpu; Li, Xuan; Li, Cunyu; Zheng, Yunfeng; Wang, Fang; Li, Hongyang; Peng, Guoping

    2016-01-01

    The present study investigated the effect of 1-Deoxynojirimycin (DNJ) on liver injury and hepatic glucose metabolism in db/db mice. Mice were divided into five groups: normal control, db/db control, DNJ-20 (DNJ 20 mg·kg(-1)·day(-1)), DNJ-40 (DNJ 40 mg·kg(-1)·day(-1)) and DNJ-80 (DNJ 80 mg·kg(-1)·day(-1)). All doses were treated intravenously by tail vein for four weeks. DNJ was observed to significantly reduce the levels of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and liver TG, as well as activities of serum alanine aminotransferase (ALT), and aspartate transaminase (AST); DNJ also alleviated macrovesicular steatosis and decreased tumor necrosis factor α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) levels in liver tissue. Furthermore, DNJ treatment significantly increased hepatic glycogen content, the activities of hexokinase (HK), pyruvate kinase (PK) in liver tissue, and decreased the activities of glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GP), and phosphoenolpyruvate carboxykinase (PEPCK). Moreover, DNJ increased the phosphorylation of phosphatidylinositol 3 kinase (PI3K) on p85, protein kinase B (PKB) on Ser473, glycogen synthase kinase 3β (GSK-3β) on Ser9, and inhibited phosphorylation of glycogen synthase (GS) on Ser645 in liver tissue of db/db mice. These results demonstrate that DNJ can increase hepatic insulin sensitivity via strengthening of the insulin-stimulated PKB/GSK-3β signal pathway and by modulating glucose metabolic enzymes in db/db mice. Moreover, DNJ also can improve lipid homeostasis and attenuate hepatic steatosis in db/db mice. PMID:26927057

  14. Effects of depletion exercise and light training on muscle glycogen supercompensation in men

    PubMed Central

    Goforth, Harold W.; Laurent, Didier; Prusaczyk, William K.; Schneider, Kevin E.; Petersen, Kitt Falk; Shulman, Gerald I.

    2010-01-01

    Supercompensated muscle glycogen can be achieved by using several carbohydrate (CHO)-loading protocols. This study compared the effectiveness of two “modified” CHO-loading protocols. Additionally, we determined the effect of light cycle training on muscle glycogen. Subjects completed a depletion (D, n = 15) or nondepletion (ND, n = 10) CHO-loading protocol. After a 2-day adaptation period in a metabolic ward, the D group performed a 120-min cycle exercise at 65% peak oxygen uptake (V̇O2 peak) followed by 1-min sprints at 120% V̇O2 peak to exhaustion. The ND group performed only 20-min cycle exercise at 65% V̇O2 peak. For the next 6 days, both groups ate the same high-CHO diets and performed 20-min daily cycle exercise at 65% V̇O2 peak followed by a CHO beverage (105 g of CHO). Muscle glycogen concentrations of the vastus lateralis were measured daily with 13C magnetic resonance spectroscopy. On the morning of day 5, muscle glycogen concentrations had increased 1.45 (D) and 1.24 (ND) times baseline (P < 0.001) but did not differ significantly between groups. However, on day 7, muscle glycogen of the D group was significantly greater (p < 0.01) than that of the ND group (130 ± 7 vs. 104 ± 5 mmol/l). Daily cycle exercise decreased muscle glycogen by 10 ± 2 (D) and 14 ± 5 mmol/l (ND), but muscle glycogen was equal to or greater than preexercise values 24 h later. In conclusion, a CHO-loading protocol that begins with a glycogen-depleting exercise results in significantly greater muscle glycogen that persists longer than a CHO-loading protocol using only an exercise taper. Daily exercise at 65% V̇O2 peak for 20 min can be performed throughout the CHO-loading protocol without negatively affecting muscle glycogen supercompensation. PMID:12902321

  15. Uterine glycogen metabolism in mink during estrus, embryonic diapause and pregnancy.

    PubMed

    Dean, Matthew; Hunt, Jason; McDougall, Lisa; Rose, Jack

    2014-01-01

    We have determined uterine glycogen content, metabolizing enzyme expression and activity in the mink, a species that exhibits obligatory embryonic diapause, resulting in delayed implantation. Gross uterine glycogen concentrations were highest in estrus, decreased 50% by diapause and 90% in pregnancy (P ≤ 0.05). Endometrial glycogen deposits, which localized primarily to glandular and luminal epithelia, decreased 99% between estrus and diapause (P ≤ 0.05) and were nearly undetectable in pregnancy. Glycogen synthase and phosphorylase proteins were most abundant in the glandular epithelia. Glycogen phosphorylase activity (total) in uterine homogenates was higher during estrus and diapause, than pregnancy. While glycogen phosphorylase protein was detected during estrus and diapause, glycogen synthase was almost undetectable after estrus, which probably contributed to a higher glycogenolysis/glycogenesis ratio during diapause. Uterine glucose-6-phosphatase 3 gene expression was greater during diapause, when compared to estrus (P ≤ 0.05) and supports the hypothesis that glucose-6-phosphate resulting from phosphorylase activity was dephosphorylated in preparation for export into the uterine lumen. The relatively high amount of hexokinase-1 protein detected in the luminal epithelia during estrus and diapause may have contributed to glucose trapping after endometrial glycogen reserves were depleted. Collectively, our findings suggest to us that endometrial glycogen reserves may be an important source of energy, supporting uterine and conceptus metabolism up to the diapausing blastocyst stage. As a result, the size of uterine glycogen reserves accumulated prior to mating may in part, determine the number of embryos that survive to the blastocyst stage, and ultimately litter size. PMID:25225159

  16. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    PubMed Central

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels; Westerblad, Håkan

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator of sarcoplasmic reticulum Ca2+ release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca2+ ([Ca2+]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz, 350 ms tetani given at 2 s (high-intensity fatigue, HIF) or 10 s (low-intensity fatigue, LIF) intervals, while force and [Ca2+]i were measured. Stimulation continued until force decreased to 30% of its initial value. Fibres were then prepared for analyses of subcellular glycogen distribution by transmission electron microscopy. At fatigue, tetanic [Ca2+]i was reduced to 70 ± 4% and 54 ± 4% of the initial in HIF (P < 0.01, n = 9) and LIF (P < 0.01, n = 5) fibres, respectively. At fatigue, the mean inter- and intramyofibrillar glycogen content was 60–75% lower than in rested control fibres (P < 0.05), whereas subsarcolemmal glycogen was similar to control. Individual fibres showed a good correlation between the fatigue-induced decrease in tetanic [Ca2+]i and the reduction in intermyofibrillar (P = 0.051) and intramyofibrillar (P = 0.0008) glycogen. In conclusion, the fatigue-induced decrease in tetanic [Ca2+]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca2+]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca2+ release critically depends on energy supply from the intramyofibrillar glycogen pool. PMID:24591577

  17. Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents.

    PubMed

    Walls, A B; Heimbürger, C M; Bouman, S D; Schousboe, A; Waagepetersen, H S

    2009-01-12

    The significance and functional roles of glycogen shunt activity in the brain are largely unknown. It represents the fraction of metabolized glucose that passes through glycogen molecules prior to entering the glycolytic pathway. The present study was aimed at elucidating this pathway in cultured astrocytes from mouse exposed to agents such as a high [K+], D-aspartate and norepinephrine (NE) known to affect energy metabolism in response to neurotransmission. Glycogen shunt activity was assessed employing [1,6-13C]glucose, and the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) to block glycogen degradation. The label intensity in lactate, reflecting glycolytic activity, was determined by mass spectrometry. In the presence of NE a substantial glycogen shunt activity was observed, accounting for almost 40% of overall glucose metabolism. Moreover, when no metabolic stimulant was applied, a compensatory increase in glycolytic activity was seen when the shunt was inhibited by DAB. Actually the labeling in lactate exceeded that obtained when glycolysis and glycogen shunt both were operational, i.e. supercompensation. A similar phenomenon was seen when astrocytes were exposed to D-aspartate. In addition to glycolysis, tricarboxylic acid (TCA) cycle activity was monitored, analyzing labeling by mass spectrometry in glutamate which equilibrates with alpha-ketoglutarate. Both an elevated [K+] and D-aspartate induced an increased TCA cycle activity, which was altered when glycogen degradation was inhibited. Thus, the present study provides evidence that manipulation of glycogen metabolism affects both glycolysis and TCA cycle metabolism. Altogether, the results reveal a highly complex interaction between glycogenolysis and glycolysis, with the glycogen shunt playing a significant role in astrocytic energy metabolism. PMID:19000744

  18. Effects of depletion exercise and light training on muscle glycogen supercompensation in men.

    PubMed

    Goforth, Harold W; Laurent, Didier; Prusaczyk, William K; Schneider, Kevin E; Petersen, Kitt Falk; Shulman, Gerald I

    2003-12-01

    Supercompensated muscle glycogen can be achieved by using several carbohydrate (CHO)-loading protocols. This study compared the effectiveness of two "modified" CHO-loading protocols. Additionally, we determined the effect of light cycle training on muscle glycogen. Subjects completed a depletion (D, n = 15) or nondepletion (ND, n = 10) CHO-loading protocol. After a 2-day adaptation period in a metabolic ward, the D group performed a 120-min cycle exercise at 65% peak oxygen uptake (VO2 peak) followed by 1-min sprints at 120% VO2 peak to exhaustion. The ND group performed only 20-min cycle exercise at 65% VO2 peak. For the next 6 days, both groups ate the same high-CHO diets and performed 20-min daily cycle exercise at 65% VO2 peak followed by a CHO beverage (105 g of CHO). Muscle glycogen concentrations of the vastus lateralis were measured daily with 13C magnetic resonance spectroscopy. On the morning of day 5, muscle glycogen concentrations had increased 1.45 (D) and 1.24 (ND) times baseline (P < 0.001) but did not differ significantly between groups. However, on day 7, muscle glycogen of the D group was significantly greater (p < 0.01) than that of the ND group (130 +/- 7 vs. 104 +/- 5 mmol/l). Daily cycle exercise decreased muscle glycogen by 10 +/- 2 (D) and 14 +/- 5 mmol/l (ND), but muscle glycogen was equal to or greater than preexercise values 24 h later. In conclusion, a CHO-loading protocol that begins with a glycogen-depleting exercise results in significantly greater muscle glycogen that persists longer than a CHO-loading protocol using only an exercise taper. Daily exercise at 65% VO2 peak for 20 min can be performed throughout the CHO-loading protocol without negatively affecting muscle glycogen supercompensation. PMID:12902321

  19. Postexercise muscle glycogen resynthesis in obese insulin-resistant Zucker rats.

    PubMed

    Bruce, C R; Lee, J S; Hawley, J A

    2001-10-01

    We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance. PMID:11568131

  20. Insulin-independent glycogen supercompensation in isolated mouse skeletal muscle: role of phosphorylase inactivation.

    PubMed

    Sandström, Marie E; Abbate, Fabio; Andersson, Daniel C; Zhang, Shi-Jin; Westerblad, Håkan; Katz, Abram

    2004-08-01

    Glycogen supercompensation (increase in muscle glycogen content above basal) is an established phenomenon induced by unknown mechanisms. It consists of both insulin-dependent and -independent components. Here, we investigate insulin-independent glycogen supercompensation in isolated, intact extensor digitorum longus muscles from mice. Muscles were stimulated electrically, incubated in vitro with 5.5 mM glucose for up to 16 h and then analysed for glycogen, glucose uptake and enzyme activities. Basal glycogen was 84+/-6 micro mol glucosyl units/g dry muscle and was depleted by 80% after 10 min contraction. Glycogen increased after contraction, reaching a peak value of 113+/-9 micro mol glucosyl units/g dry muscle ( P<0.05 vs. basal) by 6 h, and returned to basal values by 16 h (84+/-8). Maximal activities of glycogen synthase, phosphorylase and alpha-glucosidase were not significantly altered by contraction or during the 6-h recovery period. Glycogen synthase fractional activity (0.17/7.2 mM glucose-6-P; inversely related to phosphorylation state of the enzyme) was increased about twofold early after contraction but then decreased and was slightly lower than baseline during the period of supercompensation (4-6 h). Phosphorylase fractional activity (+/-adenosine monophosphate; directly related to phosphorylation state of the enzyme) decreased to 60% of basal after contraction and decreased further during the initial 4 h of recovery to 40% of basal ( P<0.01 vs. basal). After 4 h recovery, glucose uptake was slightly (50%) higher in the stimulated than in the non-stimulated muscle ( P<0.01). Thus, insulin-independent glycogen supercompensation involves inactivation of phosphorylase and hence an inhibition of glycogen breakdown. PMID:15085341

  1. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise.

    PubMed

    Garcia-Roves, Pablo M; Han, Dong-Ho; Song, Zheng; Jones, Terry E; Hucker, Kathleen A; Holloszy, John O

    2003-10-01

    Exercise induces an increase in GLUT4 in skeletal muscle with a proportional increase in glucose transport capacity. This adaptation results in enhanced glycogen accumulation, i.e., "supercompensation," in response to carbohydrate feeding after glycogen-depleting exercise. The increase in GLUT4 reverses within 40 h after exercise in carbohydrate-fed rats. The purpose of this study was to determine whether prevention of skeletal muscle glycogen supercompensation after exercise results in maintenance of the increases in GLUT4 and the capacity for glycogen supercompensation. Rats were exercised by means of three daily bouts of swimming. GLUT4 mRNA was increased approximately 3-fold and GLUT4 protein was increased approximately 2-fold 18 h in epitrochlearis muscle after exercise. These increases in GLUT4 mRNA and protein reversed completely within 42 h after exercise in rats fed a high-carbohydrate diet. In contrast, the increases in GLUT4 protein, insulin-stimulated glucose transport, and increased capacity for glycogen supercompensation persisted unchanged for 66 h in rats fed a carbohydrate-free diet that prevented glycogen supercompensation after exercise. GLUT4 mRNA was still elevated at 42 h but had returned to baseline by 66 h after exercise in rats fed the carbohydrate-free diet. Glycogen-depleted rats fed carbohydrate 66 h after exercise underwent muscle glycogen supercompensation with concomitant reversal of the increase in GLUT4. These findings provide evidence that prevention of glycogen supercompensation after exercise results in persistence of exercise-induced increases in GLUT4 protein and enhanced capacity for glycogen supercompensation. PMID:12799316

  2. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.

    PubMed

    Santiago-Martínez, Michel Geovanni; Encalada, Rusely; Lira-Silva, Elizabeth; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Reyes-García, Marco Antonio; Saavedra, Emma; Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Jasso-Chávez, Ricardo

    2016-05-01

    Gluconeogenesis is an essential pathway in methanogens because they are unable to use exogenous hexoses as carbon source for cell growth. With the aim of understanding the regulatory mechanisms of central carbon metabolism in Methanosarcina acetivorans, the present study investigated gene expression, the activities and metabolic regulation of key enzymes, metabolite contents and fluxes of gluconeogenesis, as well as glycolysis and glycogen synthesis/degradation pathways. Cells were grown with methanol as a carbon source. Key enzymes were kinetically characterized at physiological pH/temperature. Active consumption of methanol during exponential cell growth correlated with significant methanogenesis, gluconeogenic flux and steady glycogen synthesis. After methanol exhaustion, cells reached the stationary growth phase, which correlated with the rise in glycogen consumption and glycolytic flux, decreased methanogenesis, negligible acetate production and an absence of gluconeogenesis. Elevated activities of carbon monoxide dehydrogenase/acetyl-CoA synthetase complex and pyruvate: ferredoxin oxidoreductase suggested the generation of acetyl-CoA and pyruvate for glycogen synthesis. In the early stationary growth phase, the transcript contents and activities of pyruvate phosphate dikinase, fructose 1,6-bisphosphatase and glycogen synthase decreased, whereas those of glycogen phosphorylase, ADP-phosphofructokinase and pyruvate kinase increased. Therefore, glycogen and gluconeogenic metabolites were synthesized when an external carbon source was provided. Once such a carbon source became depleted, glycolysis and methanogenesis fed by glycogen degradation provided the ATP supply. Weak inhibition of key enzymes by metabolites suggested that the pathways evaluated were mainly transcriptionally regulated. Because glycogen metabolism and glycolysis/gluconeogenesis are not present in all methanogens, the overall data suggest that glycogen storage might represent an environmental

  3. Efficacy of helper-dependent adenovirus vector-mediated gene therapy in murine glycogen storage disease type Ia.

    PubMed

    Koeberl, Dwight D; Sun, B; Bird, A; Chen, Y T; Oka, K; Chan, L

    2007-07-01

    Genetic deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, also known as von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia and growth retardation. We tested whether helper-dependent adenovirus (HDAd)-mediated hepatic delivery of G6Pase would lead to prolonged survival and sustained correction of the metabolic abnormalities in G6Pase knockout (KO) mice, a model for a severe form of GSD-Ia. An HDAd vector encoding G6Pase was administered intravenously (2 or 5 x 10(12)vector particles/kg) to 2-week-old (w.o.) G6Pase-KO mice. Following HDAd vector administration survival was prolonged to a median of 7 months, in contrast to untreated affected mice that did not survive past 3 weeks of age. G6Pase levels increased more than tenfold between 3 days and 28 weeks after HDAd injection (P < 0.03). The weights of untreated 2 w.o. G6Pase-KO mice were approximately half those of their unaffected littermates, and treatment stimulated their growth to the size of wild-type mice. Severe hypoglycemia and hypercholesterolemia, which are hallmarks of GSD-Ia both in humans and in mice, were also restored to normalcy by the treatment. Glycogen accumulation in the liver was markedly reduced. The efficacy of HDAd-G6Pase treatment in reversing the physiological and biochemical abnormalities associated with GSD-Ia in affected G6Pase-KO mice justifies further preclinical evaluation in murine and canine models of GSD-Ia. PMID:17505475

  4. Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia.

    PubMed

    Brooks, Elizabeth Drake; Little, Dianne; Arumugam, Ramamani; Sun, Baodong; Curtis, Sarah; Demaster, Amanda; Maranzano, Michael; Jackson, Mark W; Kishnani, Priya; Freemark, Michael S; Koeberl, Dwight D

    2013-06-01

    Glycogen Storage Disease type Ia (GSD-Ia) in humans frequently causes delayed bone maturation, decrease in final adult height, and decreased growth velocity. This study evaluates the pathogenesis of growth failure and the effect of gene therapy on growth in GSD-Ia affected dogs and mice. Here we found that homozygous G6pase (-/-) mice with GSD-Ia have normal growth hormone (GH) levels in response to hypoglycemia, decreased insulin-like growth factor (IGF) 1 levels, and attenuated weight gain following administration of GH. Expression of hepatic GH receptor and IGF 1 mRNAs and hepatic STAT5 (phospho Y694) protein levels are reduced prior to and after GH administration, indicating GH resistance. However, restoration of G6Pase expression in the liver by treatment with adeno-associated virus 8 pseudotyped vector expressing G6Pase (AAV2/8-G6Pase) corrected body weight, but failed to normalize plasma IGF 1 in G6pase (-/-) mice. Untreated G6pase (-/-) mice also demonstrated severe delay of growth plate ossification at 12 days of age; those treated with AAV2/8-G6Pase at 14 days of age demonstrated skeletal dysplasia and limb shortening when analyzed radiographically at 6 months of age, in spite of apparent metabolic correction. Moreover, gene therapy with AAV2/9-G6Pase only partially corrected growth in GSD-Ia affected dogs as detected by weight and bone measurements and serum IGF 1 concentrations were persistently low in treated dogs. We also found that heterozygous GSD-Ia carrier dogs had decreased serum IGF 1, adult body weights and bone dimensions compared to wild-type littermates. In sum, these findings suggest that growth failure in GSD-Ia results, at least in part, from hepatic GH resistance. In addition, gene therapy improved growth in addition to promoting long-term survival in dogs and mice with GSD-Ia. PMID:23623482

  5. Properties of a glycogen like polysaccharide produced by a mutant of Escherichia coli lacking glycogen synthase and maltodextrin phosphorylase.

    PubMed

    Kwak, Ji-Yun; Kim, Min-Gyu; Kim, Young-Wan; Ban, Hyun-Seung; Won, Mi-Sun; Park, Jong-Tae; Park, Kwan-Hwa

    2016-01-20

    Escherichia coli mutant TBP38 lacks glycogen synthase (GlgA) and maltodextrin phosphorylase (MalP). When grown on maltose in fed-batch fermentation TBP38 accumulated more than 50-fold higher glycogen-type polysaccharide than its parental strain. The polysaccharides were extracted at different growth stages and migrated as one peak in size-exclusion chromatography. TBP38 produced polysaccharides ranging 2.6 × 10(6)-4.6 × 10(6)Da. A ratio of short side-chains (DP ≦ 12) in the polysaccharides was greater than 50%, and number-average degree of polymerization varied from 9.8 to 8.4. The polysaccharides showed 70-290 times greater water-solubility than amylopectin. Km values using porcine and human pancreatic α-amylases with polysaccharides were 2- to 4-fold larger than that of amylopectin. kcat values were similar for both α-amylases. The TBP38 polysaccharides had 40-60% lower digestibility to amyloglucosidase than amylopectin. Intriguingly, the polysaccharides showed strong immunostimulating effects on mouse macrophage cell comparable to lipopolysaccharides. The lipopolysaccharide contamination levels were too low to account for this effect. PMID:26572397

  6. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases bilirubin formation but hampers quantitative hepatic conversion of biliverdin to bilirubin in rats with wild-type AH receptor.

    PubMed

    Niittynen, Marjo; Simanainen, Ulla; Pohjanvirta, Raimo; Sankari, Satu; Tuomisto, Jouni T

    2014-06-01

    In haem degradation, haem oxygenase-1 (HO-1) first cleaves haem to biliverdin, which is reduced to bilirubin by biliverdin IXα reductase (BVR-A). The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes hepatic accumulation of biliverdin in moderately TCDD-resistant line B (Kuopio) rats. Using line B and two TCDD-sensitive rat strains, the present study set out to probe the dose-response and biochemical mechanisms of this accumulation. At 28 days after exposure to 3-300 μg/kg TCDD in line B rats, already the lowest dose of TCDD tested, 3 μg/kg, affected serum bilirubin conjugates, and after doses ≥100 μg/kg, the liver content of bilirubin, biliverdin and their conjugates (collectively 'bile pigments') as well as HO-1 was elevated. BVR-A activity and serum bile acids were increased only by the doses of 100 and 300 μg/kg TCDD, respectively. Biliverdin conjugates correlated best with biliverdin suggesting it to be their immediate precursor. TCDD (100 μg/kg, 10 days) increased hepatic bilirubin and biliverdin levels also in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. Hepatic bilirubin and bile acids, but not biliverdin, were increased in feed-restricted L-E control rats. In TCDD-sensitive line C (Kuopio) rats, 10 μg/kg of TCDD increased the body-weight-normalized biliary excretion of bilirubin. Altogether, the results suggest that at acutely toxic doses, TCDD induces the formation of bilirubin in rats. However, concurrently, TCDD seems to hamper the quantitative conversion of biliverdin to bilirubin in line B and L-E rats' liver. Biliverdin conjugates are most likely formed as secondary products of biliverdin. PMID:24418412

  7. Role of glycogen synthase kinase-3β inhibitor AZD1080 in ovarian cancer

    PubMed Central

    Chen, Shuo; Sun, Kai-Xuan; Feng, Miao-Xiao; Sang, Xiu-Bo; Liu, Bo-Liang; Zhao, Yang

    2016-01-01

    Background Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays an important role in cancer tumorigenesis and progression. We investigated the role of the GSK-3β inhibitor AZD1080 in ovarian cancer cell lines. Methods A2780 and OVCAR3 ovarian cancer cell lines were exposed to AZD1080, after which cell proliferation, cell cycle, invasion, and migration assays were performed. Phalloidin staining was used to observe lamellipodia formation. Reverse transcription polymerase chain reaction and Western blot were used to assess the respective mRNA and protein expression levels of GSK-3β, CDK2, CDK1, cyclin D1, matrix metalloproteinase-9 (MMP9), and Bcl-xL. Results AZD1080 exposure suppressed ovarian cancer cell proliferation, invasion, migration, and lamellipodia formation, and induced G1 arrest, which was concentration dependent. AZD1080 also significantly downregulated GSK-3β, CDK2, CDK1, cyclin D1, MMP9, and Bcl-xL expression at both mRNA and protein levels. Conclusion Taken together, our results demonstrate that the GSK-3β inhibitor AZD1080 suppresses ovarian cancer development and therefore may indicate a new direction for ovarian cancer treatment. PMID:27051274

  8. Aquaporins-2 and -4 regulate glycogen metabolism and survival during hyposmotic-anoxic stress in Caenorhabditis elegans.

    PubMed

    LaMacchia, John C; Roth, Mark B

    2015-07-15

    Periods of oxygen deprivation can lead to ion and water imbalances in affected tissues that manifest as swelling (edema). Although oxygen deprivation-induced edema is a major contributor to injury in clinical ischemic diseases such as heart attack and stroke, the pathophysiology of this process is incompletely understood. In the present study we investigate the impact of aquaporin-mediated water transport on survival in a Caenorhabditis elegans model of edema formation during complete oxygen deprivation (anoxia). We find that nematodes lacking aquaporin water channels in tissues that interface with the surrounding environment display decreased edema formation and improved survival rates in anoxia. We also find that these animals have significantly reduced demand for glycogen as an energetic substrate during anoxia. Together, our data suggest that reductions in membrane water permeability may be sufficient to induce a hypometabolic state during oxygen deprivation that reduces injury and extends survival limits. PMID:26017147

  9. Aquaporins-2 and -4 regulate glycogen metabolism and survival during hyposmotic-anoxic stress in Caenorhabditis elegans

    PubMed Central

    LaMacchia, John C.

    2015-01-01

    Periods of oxygen deprivation can lead to ion and water imbalances in affected tissues that manifest as swelling (edema). Although oxygen deprivation-induced edema is a major contributor to injury in clinical ischemic diseases such as heart attack and stroke, the pathophysiology of this process is incompletely understood. In the present study we investigate the impact of aquaporin-mediated water transport on survival in a Caenorhabditis elegans model of edema formation during complete oxygen deprivation (anoxia). We find that nematodes lacking aquaporin water channels in tissues that interface with the surrounding environment display decreased edema formation and improved survival rates in anoxia. We also find that these animals have significantly reduced demand for glycogen as an energetic substrate during anoxia. Together, our data suggest that reductions in membrane water permeability may be sufficient to induce a hypometabolic state during oxygen deprivation that reduces injury and extends survival limits. PMID:26017147

  10. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging.

    PubMed

    Pandey, Mukesh K; DeGrado, Timothy R

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  11. Large Animal Models and New Therapies for Glycogen Storage Disease

    PubMed Central

    Brooks, Elizabeth D.

    2015-01-01

    Glycogen storage diseases (GSD), a unique category of inherited metabolic disorders, were first described early in the 20th century. Since then, the biochemical and genetic bases of these disorders have been determined, and an increasing number of animal models for GSD have become available. At least 7 large mammalian models have been developed for laboratory research on GSDs. These models have facilitated the development of new therapies, including gene therapy, which are undergoing clinical translation. For example, gene therapy prolonged survival and prevented hypoglycemia during fasting for greater than one year in dogs with GSD type Ia, and the need for periodic re-administration to maintain efficacy was demonstrated in that dog model. The further development of gene therapy could provide curative therapy for patients with GSD and other inherited metabolic disorders. PMID:25224826

  12. Large animal models and new therapies for glycogen storage disease.

    PubMed

    Brooks, Elizabeth D; Koeberl, Dwight D

    2015-05-01

    Glycogen storage diseases (GSD), a unique category of inherited metabolic disorders, were first described early in the twentieth century. Since then, the biochemical and genetic bases of these disorders have been determined, and an increasing number of animal models for GSD have become available. At least seven large mammalian models have been developed for laboratory research on GSDs. These models have facilitated the development of new therapies, including gene therapy, which are undergoing clinical translation. For example, gene therapy prolonged survival and prevented hypoglycemia during fasting for greater than one year in dogs with GSD type Ia, and the need for periodic re-administration to maintain efficacy was demonstrated in that dog model. The further development of gene therapy could provide curative therapy for patients with GSD and other inherited metabolic disorders. PMID:25224826

  13. Emerging therapies for glycogen storage disease type I.

    PubMed

    Koeberl, D D; Kishnani, P S; Bali, D; Chen, Y-T

    2009-07-01

    Glycogen storage disease type I (GSD I) is caused by deficiency of the glucose-6-phosphatase catalytic subunit in type Ia or of glucose-6-phosphate transporter in type Ib. The cellular bases for disruptions of homeostasis have been increasingly understood in GSD I, including those for anemia, renal failure and neutropenia. Advances in the understanding of cellular abnormalities in GSD I have provided rationales for new therapy, and recent developments in gene therapy have led to potential curative treatments for GSD I. These advances will benefit patients with GSD I in the future, improving both quality of life and survival, as well as illuminating the molecular effects of altered metabolism upon multiple organ systems. PMID:19541498

  14. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging

    PubMed Central

    Pandey, Mukesh K.; DeGrado, Timothy R.

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  15. Hepatic mTORC1 Opposes Impaired Insulin Action to Control Mitochondrial Metabolism in Obesity.

    PubMed

    Kucejova, Blanka; Duarte, Joao; Satapati, Santhosh; Fu, Xiaorong; Ilkayeva, Olga; Newgard, Christopher B; Brugarolas, James; Burgess, Shawn C

    2016-07-12

    Dysregulated mitochondrial metabolism during hepatic insulin resistance may contribute to pathophysiologies ranging from elevated glucose production to hepatocellular oxidative stress and inflammation. Given that obesity impairs insulin action but paradoxically activates mTORC1, we tested whether insulin action and mammalian target of rapamycin complex 1 (mTORC1) contribute to altered in vivo hepatic mitochondrial metabolism. Loss of hepatic insulin action for 2 weeks caused increased gluconeogenesis, mitochondrial anaplerosis, tricarboxylic acid (TCA) cycle oxidation, and ketogenesis. However, activation of mTORC1, induced by the loss of hepatic Tsc1, suppressed these fluxes. Only glycogen synthesis was impaired by both loss of insulin receptor and mTORC1 activation. Mice with a double knockout of the insulin receptor and Tsc1 had larger livers, hyperglycemia, severely impaired glycogen storage, and suppressed ketogenesis, as compared to those with loss of the liver insulin receptor alone. Thus, activation of hepatic mTORC1 opposes the catabolic effects of impaired insulin action under some nutritional states. PMID:27346353

  16. Effect of oxygen pressure on glycogen synthesis by rat-liver slices

    PubMed Central

    Figueroa, Enrique; Vallejos, Rodolfo; Pfeifer, Ariana; Kahler, Cecilia

    1966-01-01

    1. Glycogen synthesized by rat-liver slices 0·5mm. thick incubated at 1atm. oxygen pressure in Hastings medium with glucose was localized in the cells of the periphery of the slice. Cells of the interior of this slice do not synthesize glycogen. 2. Inner cells of thin slices (about 0·3mm. thick) can synthesize glycogen when such slices are incubated under the same conditions, but oxygen pressures higher than 1atm. are required if inner cells of slices 0·5mm. or more thick are to be able to synthesize glycogen. 3. Localization of newly synthesized glycogen in rat-liver slices incubated in Hastings medium with glucose does not depend on glucose concentration. 4. Calculation of the minimum oxygen pressure required to synthesize glycogen gives values between 0·09 and 0·17atm. 5. The advantages of high oxygen pressures for the study of the synthesis of glycogen and other compounds that require ATP are discussed. ImagesFig. 2.Fig. 5. PMID:5938650

  17. Technical note: A method for isolating glycogen granules from ruminal protozoa for further characterization.

    PubMed

    Hall, Mary Beth

    2016-03-01

    Evaluation of physical, chemical, and enzymatic hydrolysis characteristics of protozoal glycogen is best performed on a pure substrate to avoid interference from other cell components. A method for isolating protozoal glycogen granules without use of detergents or other potentially contaminating chemicals was developed. Rumen inoculum was incubated anerobically in vitro with glucose. Glycogen-laden protozoa produced in the fermentation, primarily isotrichids, were allowed to sediment in a separatory funnel and were dispensed. The protozoa were processed through repeated centrifugations and sonication to isolate glycogen granules largely free of feed and cellular debris. The final water-insoluble lyophilized product analyzed as 98.3% α-glucan with very rare starch granules and 1.9% protein. Observed losses of glycogen granules during the clean-up process indicate that this procedure should not be used for quantitative assessment of protozoal glycogen from fermentations. Further optimization of this procedure to enhance the amount of glycogen obtained per fermentation may be possible. PMID:26805977

  18. Dysfunctional Glycogen Storage in a Mouse Model of α1-Antitrypsin Deficiency

    PubMed Central

    Hubner, Ralf H.; Leopold, Philip L.; Kiuru, Maija; De, Bishnu P.; Krause, Anja; Crystal, Ronald G.

    2009-01-01

    Autophagy is an intracellular pathway that contributes to the degradation and recycling of unfolded proteins. Based on the knowledge that autophagy affects glycogen metabolism and that α1-antitrypsin (AAT) deficiency is associated with an autophagic response in the liver, we hypothesized that the conformational abnormalities of the Z-AAT protein interfere with hepatocyte glycogen storage and/or metabolism. Compared with wild-type mice (WT), the Z-AAT mice had lower liver glycogen stores (P < 0.001) and abnormal activities of glycogen-related enzymes, including acid α-glucosidase (P < 0.05) and the total glycogen synthase (P < 0.05). As metabolic consequences, PiZ mice demonstrated lower blood glucose levels (P < 0.05), lower body weights (P < 0.001), and lower fat pad weights (P < 0.001) compared with WT. After the stress of fasting or partial hepatectomy, PiZ mice had further reduced liver glycogen and lower blood glucose levels (both P < 0.05 compared WT). Finally, PiZ mice exhibited decreased survival after partial hepatectomy (P < 0.01 compared with WT), but this was normalized with postoperative dextrose supplementation. In conclusion, these observations are consistent with the general concept that abnormal protein conformation and degradation affects other cellular functions, suggesting that diseases in the liver might benefit from metabolic compensation if glycogen metabolism is affected. PMID:18688041

  19. Preconditioning ischemia time determines the degree of glycogen depletion and infarct size reduction in rat hearts.

    PubMed

    Barbosa, V; Sievers, R E; Zaugg, C E; Wolfe, C L

    1996-02-01

    The cardioprotective effect of preconditioning is associated with glycogen depletion and attenuation of intracellular acidosis during subsequent prolonged ischemia. This study determined the effects of increasing preconditioning ischemia time on myocardial glycogen depletion and on infarct size reduction. In addition, this study determined whether infarct size reduction by preconditioning correlates with glycogen depletion before prolonged ischemia. Anesthetized rats underwent a single episode of preconditioning lasting 1.25, 2.5, 5, or 10 minutes or multiple episodes cumulating in 10 (2 x 5 min) or 20 minutes (4 x 5 or 2 x 10 min) of preconditioning ischemia time, each followed by 5 minutes of reperfusion. Then both preconditioned and control rats underwent 45 minutes of ischemia induced by left coronary artery (LCA) occlusion and 120 minutes of reperfusion. After prolonged ischemia, infarct size was determined by dual staining with triphenyltetrazolium chloride and phthalocyanine blue dye. Glycogen levels were determined by an enzymatic assay in selected rats from each group before prolonged ischemia. We found that increasing preconditioning ischemia time resulted in glycogen depletion and infarct size reduction that could both be described by exponential functions. Furthermore, infarct size reduction correlated with glycogen depletion before prolonged ischemia (r = 0.98; p < 0.01). These findings suggest a role for glycogen depletion in reducing ischemic injury in the preconditioned heart. PMID:8579012

  20. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans

    PubMed Central

    Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R.; Öz, Gülin

    2015-01-01

    Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of 13C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the 13C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness. PMID:24676563

  1. Diverse effects of two allosteric inhibitors on the phosphorylation state of glycogen phosphorylase in hepatocytes.

    PubMed Central

    Latsis, Theodore; Andersen, Birgitte; Agius, Loranne

    2002-01-01

    Two distinct allosteric inhibitors of glycogen phosphorylase, 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and CP-91149 (an indole-2-carboxamide), were investigated for their effects on the phosphorylation state of the enzyme in hepatocytes in vitro. CP-91149 induced inactivation (dephosphorylation) of phosphorylase in the absence of hormones and partially counteracted the phosphorylation caused by glucagon. Inhibition of glycogenolysis by CP-91149 can be explained by dephosphorylation of phosphorylase a. This was associated with activation of glycogen synthase and stimulation of glycogen synthesis. DAB, in contrast, induced a small degree of phosphorylation of phosphorylase. This was associated with inactivation of glycogen synthase and inhibition of glycogen synthesis. Despite causing phosphorylation (activation) of phosphorylase, DAB is a very potent inhibitor of glycogenolysis in both the absence and presence of glucagon. This is explained by allosteric inhibition of phosphorylase a, which overrides the increase in activation state. In conclusion, two potent phosphorylase inhibitors exert different effects on glycogen metabolism in intact hepatocytes as a result of opposite effects on the phosphorylation state of both phosphorylase and glycogen synthase. PMID:12186629

  2. [Hepatic encephalopathy].

    PubMed

    Jacques, Jérémie; Carrier, Paul; Debette-Gratien, Marilyne; Sobesky, Rodolphe; Loustaud-Ratti, Véronique

    2016-01-01

    Hepatic encephalopathy is a severe complication of liver cirrhosis and is an important therapeutic challenge, with a social and economic issue. If, now, the pathophysiology is not totally understood (main role of ammonia, but a better understanding of cerebral mechanisms), the clinical presentation is well-known. Some treatments are useful (disaccharides, treatment of the trigger) but their efficiency is limited. Nevertheless, the emergence of new treatments, such as non-absorbable antibiotics (rifaximin essentially), is an interesting therapeutic tool. PMID:26597584

  3. Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site.

    PubMed

    Oikonomakos, N G; Schnier, J B; Zographos, S E; Skamnaki, V T; Tsitsanou, K E; Johnson, L N

    2000-11-01

    Flavopiridol (L86-8275) ((-)-cis-5, 7-dihydroxy-2-(2-chlorophenyl)-8-[4-(3-hydroxy-1-methyl)-piperidinyl] -4H-benzopyran-4-one), a potential antitumor drug, currently in phase II trials, has been shown to be an inhibitor of muscle glycogen phosphorylase (GP) and to cause glycogen accumulation in A549 non-small cell lung carcinoma cells (Kaiser, A., Nishi, K., Gorin, F.A., Walsh, D.A., Bradbury, E. M., and Schnier, J. B., unpublished data). Kinetic experiments reported here show that flavopiridol inhibits GPb with an IC(50) = 15.5 microm. The inhibition is synergistic with glucose resulting in a reduction of IC(50) for flavopiridol to 2.3 microm and mimics the inhibition of caffeine. In order to elucidate the structural basis of inhibition, we determined the structures of GPb complexed with flavopiridol, GPb complexed with caffeine, and GPa complexed with both glucose and flavopiridol at 1.76-, 2.30-, and 2.23-A resolution, and refined to crystallographic R values of 0.216 (R(free) = 0.247), 0.189 (R(free) = 0.219), and 0.195 (R(free) = 0.252), respectively. The structures provide a rational for flavopiridol potency and synergism with glucose inhibitory action. Flavopiridol binds at the allosteric inhibitor site, situated at the entrance to the catalytic site, the site where caffeine binds. Flavopiridol intercalates between the two aromatic rings of Phe(285) and Tyr(613). Both flavopiridol and glucose promote the less active T-state through localization of the closed position of the 280s loop which blocks access to the catalytic site, thereby explaining their synergistic inhibition. The mode of interactions of flavopiridol with GP is different from that of des-chloro-flavopiridol with CDK2, illustrating how different functional parts of the inhibitor can be used to provide specific and potent binding to two different enzymes. PMID:10924512

  4. Drug-induced hepatitis

    MedlinePlus

    Toxic hepatitis ... to get liver damage. Some drugs can cause hepatitis with small doses, even if the liver breakdown ... liver. Many different drugs can cause drug-induced hepatitis. Painkillers and fever reducers that contain acetaminophen are ...

  5. Hepatitis A - children

    MedlinePlus

    ... have the virus and do not practice good hygiene. Other common hepatitis virus infections include hepatitis B ... where diapers are changed to ensure that proper hygiene is followed. If your child gets hepatitis A, ...

  6. Hepatitis B virus (image)

    MedlinePlus

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  7. Preventing hepatitis A

    MedlinePlus

    Hepatitis A is inflammation (irritation and swelling) of the liver caused by the hepatitis A virus. You can take several steps to ... reduce your risk of spreading or catching the hepatitis A virus: Always wash your hands thoroughly after ...

  8. What Is Hepatitis?

    MedlinePlus

    ... Twitter Facebook Google + iTunes Play Store What is hepatitis? Online Q&A Reviewed July 2016 Q: What ... Question and answer archives Submit a question World Hepatitis Day Know hepatitis - Act now Event notice Key ...

  9. Liver glycogen metabolism during and after prolonged endurance-type exercise.

    PubMed

    Gonzalez, Javier T; Fuchs, Cas J; Betts, James A; van Loon, Luc J C

    2016-09-01

    Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily in liver and muscle) are relatively small, endurance-type exercise performance/capacity is often limited by endogenous carbohydrate availability. Much exercise metabolism research to date has focused on muscle glycogen utilization, with little attention paid to the contribution of liver glycogen. (13)C magnetic resonance spectroscopy permits direct, noninvasive measurements of liver glycogen content and has increased understanding of the relevance of liver glycogen during exercise. In contrast to muscle, endurance-trained athletes do not exhibit elevated basal liver glycogen concentrations. However, there is evidence that liver glycogenolysis may be lower in endurance-trained athletes compared with untrained controls during moderate- to high-intensity exercise. Therefore, liver glycogen sparing in an endurance-trained state may account partly for training-induced performance/capacity adaptations during prolonged (>90 min) exercise. Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent liver glycogen depletion during moderate-intensity exercise independent of the type of carbohydrate (e.g., glucose vs. sucrose) ingested. To minimize gastrointestinal discomfort, it is recommended to ingest specific combinations or types of carbohydrates (glucose plus fructose and/or sucrose). By coingesting glucose with either galactose or fructose, postexercise liver glycogen repletion rates can be doubled. There are currently no guidelines for carbohydrate ingestion to maximize liver glycogen repletion. PMID:27436612

  10. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.

    PubMed

    Ryder, J W; Kawano, Y; Galuska, D; Fahlman, R; Wallberg-Henriksson, H; Charron, M J; Zierath, J R

    1999-12-01

    To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. PMID:10593872

  11. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes.

    PubMed

    Madsen, K; Pedersen, P K; Rose, P; Richter, E A

    1990-01-01

    Three female and three male highly trained endurance runners with mean maximal oxygen uptake (VO2max) values of 60.5 and 71.5 ml.kg-1.min-1, respectively, ran to exhaustion at 75%-80% of VO2max on two occasions after an overnight fast. One experiment was performed after a normal diet and training regimen (Norm), the other after a diet and training programme intended to increase muscle glycogen levels (Carb). Muscle glycogen concentration in the gastrocnemius muscle increased by 25% (P less than 0.05) from 581 mmol.kg-1 dry weight, SEM 50 to 722 mmol.kg-1 dry weight, SEM 34 after Carb. Running time to exhaustion, however, was not significantly different in Carb and Norm, 77 min, SEM 13 vs 70 min, SEM 8, respectively. The average glycogen concentration following exhaustive running was 553 mmol.kg-1 dry weight, SEM 70 in Carb and 434 mmol.kg-1 dry weight, SEM 57 in Norm, indicating that in both tests muscle glycogen stores were decreased by about 25%. Periodic acid-Schiff staining for semi-quantitative glycogen determination in individual fibres confirmed that none of the fibres appeared to be glycogen-empty after exhaustive running. The steady-state respiratory exchange ratio was higher in Carb than in Norm (0.92, SEM 0.01 vs 0.89, SEM 0.01; P less than 0.05). Since muscle glycogen utilization was identical in the two tests, the indication of higher utilization of total carbohydrate appears to be related to a higher utilization of liver glycogen. We have concluded that glycogen depletion of the gastrocnemius muscle is unlikely to be the cause of fatigue during exhaustive running at 75%-80% of VO2max in highly trained endurance runners. Furthermore, diet- and training-induced carbohydrate super-compensation does not appear to improve endurance capacity in such individuals. PMID:2079068

  12. Protection against cardiac anoxia--role and limitations of increased glycogen reserves in the isolated rat right ventricular strip.

    PubMed

    Towart, R; Schlossmann, K; Kazda, S

    1981-01-01

    The effects of drugs on rat cardiac glycogen reserves in vivo, and on the subsequent in vitro sensitivity of the right ventricular strip preparation to anoxia have been investigated. Isoproterenol (0.2 mg/kg i.p.) causes immediate cardiac stimulation and reduction of glycogen reserves, coupled with an increased susceptibility to anoxia. Several hours after administration, glycogen levels are found to be greatly (100-200%) increased, by a "supercompensation" mechanism, and a marked tolerance to anoxia can be simultaneously demonstrated. In contrast, large doses of corticosteroids (dexamethasone, 8 mg/kg i.m.) increase glycogen levels without initial stimulation and glycogen depletion; increased myocardial tolerance to anoxia parallels the increase in glycogen reserves in vivo. We conclude that the myocardial tolerance to anoxia in this model is related to increased glycogen reserves, which increase the rate and/or duration of anaerobic glycolysis during anoxia. PMID:7332516

  13. [Nervous regulation of glycogen concentration and the lactate dehydrogenase isoenzyme spectrum in the diaphragm of rats].

    PubMed

    Iakovlev, V F

    1981-01-01

    Content of glycogen, activity of lactate dehydrogenase (LDH) and its isoenzyme spectrum were studied in two cases of partial diaphragm denervation as well as in electro-stimulation of separate phrenic nerve branches. Dissimilar postdenervational alterations were observed in the content of glycogen and in the isozyme spectrum of LDH, which depended on the type of partial denervation. Stimulation of individual branches of the phrenic nerve showed that they separately affected the synthesis and consumption of glycogen. The data obtained suggest the nervous regulation of glycogensynthetic processes in muscle tissue. PMID:7467206

  14. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    PubMed Central

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  15. Evaluation of the influence of housefly maggot meal (magmeal) diets on catalase, glutathione S-transferase and glycogen concentration in the liver of Oreochromis niloticus fingerling.

    PubMed

    Ogunji, Johnny O; Nimptsch, Jorge; Wiegand, Claudia; Schulz, Carsten

    2007-08-01

    Influence of housefly maggot meal (magmeal) diets on the activities of catalase (CAT), glutathione S-transferase (GST) and glycogen concentration in liver of Tilapia Oreochromis niloticus fingerling was evaluated. Triplicate groups of fifteen fish (initial average weight 2.0+/-0.1 g) were fed eight weeks with seven test diets (in average 36% crude protein, dry matter) formulated by replacing fish meal with magmeal. Percentage body weight gain (591-724.46%), food conversion ratio (1.05-1.22) and standard growth rate (3.45-3.76) in all feeding groups were not significantly different (P<0.05). No significant difference (P<0.05) was observed in liver glycogen reserve (175.27-236.88 micromol g(-1)) among the fish groups. Hepatic catalase activity also did not differ significantly. However, elevated glutathione S-transferases activities were observed when fish received higher dietary magmeal concentration. This might have been temporary with no real physiological implication when appraised by the growth responses. These results indicate that magmeal was well utilized by the fish and its incorporation into tilapia diets seems to have no oxidative stress generating effect on fish metabolism and may not be containing any compound that stimulates the generation of reactive oxygen species. Magmeal can effectively be used as an alternative protein source in tilapia fingerling production. PMID:17400494

  16. Rescue administration of a helper-dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia.

    PubMed

    Crane, B; Luo, X; Demaster, A; Williams, K D; Kozink, D M; Zhang, P; Brown, T T; Pinto, C R; Oka, K; Sun, F; Jackson, M W; Chan, L; Koeberl, D D

    2012-04-01

    Glycogen storage disease type Ia (GSD-Ia) stems from glucose-6-phosphatase (G6Pase) deficiency and causes hypoglycemia, hepatomegaly, hypercholesterolemia and lactic acidemia. Three dogs with GSD-Ia were initially treated with a helper-dependent adenovirus encoding a human G6Pase transgene (HDAd-cG6Pase serotype 5) on postnatal day 3. Unlike untreated dogs with GSD-Ia, all three dogs initially maintained normal blood glucose levels. After 6-22 months, vector-treated dogs developed hypoglycemia, anorexia and lethargy, suggesting that the HDAd-cG6Pase serotype 5 vector had lost efficacy. Liver biopsies collected at this time revealed significantly elevated hepatic G6Pase activity and reduced glycogen content, when compared with affected dogs treated only by frequent feeding. Subsequently, the HDAd-cG6Pase serotype 2 vector was administered to two dogs, and hypoglycemia was reversed; however, renal dysfunction and recurrent hypoglycemia complicated their management. Administration of a serotype 2 HDAd vector prolonged survival in one GSD-Ia dog to 12 months of age and 36 months of age in the other, but the persistence of long-term complications limited HDAd vectors in the canine model for GSD-Ia. PMID:21654821

  17. Feature Hepatitis: Hepatitis Symptoms, Diagnosis, Treatment & Prevention

    MedlinePlus

    ... of chronic liver disease, cirrhosis, viral hepatitis, and liver cancer make liver disease one of the 10 leading ... disease are decreasing, those for viral hepatitis and liver cancer are on the rise, both in the U.S. ...

  18. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    SciTech Connect

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  19. Nature and localization of avian lens glycogen by electron microscopy and Raman spectroscopy.

    PubMed Central

    Castillo, C G; Lo, W K; Kuck, J F; Yu, N T

    1992-01-01

    Electron microscopy confirms the presence of a high concentration of glycogen particles in the lens nuclear region of birds of flying habit such as the ring-neck dove and pigeon. This observation is consistent with Raman spectroscopy. The glycogen particles in the dove lens, which are approximately 35 nm in diameter, are classified as beta type particles. Although this type has been previously characterized by high rates of glycogen turnover in other tissues, its localization in the lens nucleus indicates that it may serve a structural function rather than as a storage depot of carbohydrate in the lens. In a comparative electron microscopy study, glycogen particles were not observed in the chicken lens. Images FIGURE 3 FIGURE 4 FIGURE 5 PMID:1581498

  20. Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors.

    PubMed

    van Bueren, Alicia Lammerts; Higgins, Melanie; Wang, Diana; Burke, Robert D; Boraston, Alisdair B

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal alpha-glucan-metabolizing machinery as virulence factors. PMID:17187076

  1. Hepatic metabolism in patients with alcoholic cirrhosis.

    PubMed

    Reichle, F A; Owen, O E; Golsorkhi, M; Kreulen, T

    1978-07-01

    Fuel homeostasis was studied in 15 patients with hepatic cirrhosis who previously had sustained upper gastrointestinal hemorrhage secondary to portal hypertension. By combining substrate arteriovenous concentration differences with measured hepatic blood flow rates, the exchange rates of metabolites across the liver was calculated. Hepatic extraction of acetoacetate, beta-hydroxybutyrate, lactate, pyruvate, analine, and glycerol was studied. After an overnight fast, splanchnic glucose production in 15 cirrhotic patients was diminished markedly. Despite reduced total glucose production, there was no decrease in hepatic gluconeogenesis; instead, there was increased glucose formation from amino acids, glycerol, lactate, and pyruvate. In patients with hepatic cirrhosis, the liver does not produce as much glucose as does a normal liver; the failing cirrhotic liver is capable of maintaining fuel homeostasis by increased ketone-body production. PMID:663824

  2. Polyhydroxyalkanoate form and polyphosphate regulation: keys to biological phosphorus and glycogen transformations?

    PubMed

    Randall, A A; Chen, Y; Liu, Y H; McCue, T

    2003-01-01

    Experimental studies with both synthetic and real domestic wastewater showed that poly-3-hydroxy-butyrate (3HB) and poly-3-hydroxy-valerate (3HV) formed in direct proportion to the acetate/propionate (Ace/Pro) ratio of the influent wastewater during Enhanced Biological Phosphorus Removal (EBPR). Acetic acid resulted in higher anaerobic phosphorus (P) release, polyhydroxyalkanoate (PHA) yield, 3HB content, and glycogen (CH) degradation. Linear regression showed that anaerobic P release (Prel) and CH degradation (CHdeg) were both a function of Ace-->3HB, but not of Pro-->3HV. Aerobic P uptake (Pup) correlated best with preceding Prel, rather than PHA (but note Prel correlated with Ace-->3HB). Aerobic CH formation (CHform) correlated best with CHdeg and 3HB. The results imply the acetate/propionate content of influent has a major influence on PHA, CH, and P transformations. Short-term increases in acetic or propionic acid increased Prel, but were always offset by corresponding changes in Pup to yield the same net P removal as the control reactor. Thus net P removal, and EBPR process performance, was probably a function of the population selected (i.e. XPAO fraction) during long-term cultivation. PMID:12906294

  3. Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity

    PubMed Central

    Lee, Eunju; Ryu, Hye Guk; Kim, Sangjune; Lee, Dohyun; Jeong, Young-Hun; Kim, Kyong-Tai

    2016-01-01

    Huntington’s disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD. PMID:27377031

  4. Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity.

    PubMed

    Lee, Eunju; Ryu, Hye Guk; Kim, Sangjune; Lee, Dohyun; Jeong, Young-Hun; Kim, Kyong-Tai

    2016-01-01

    Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD. PMID:27377031

  5. An exploratory comparison of vaginal glycogen and Lactobacillus levels in pre- and post-menopausal women

    PubMed Central

    Mirmonsef, Paria; Modur, Sharada; Burgad, Derick; Gilbert, Douglas; Golub, Elizabeth T.; French, Audrey L.; McCotter, Kerrie; Landay, Alan L.; Spear, Greg T.

    2014-01-01

    Objective Previous studies have suggested that glycogen expression in vaginal epithelium decreases at menopause, resulting in reduced levels of lactobacilli. However, free glycogen in genital fluids and its relationship to Lactobacillus levels has not been compared in pre- and post-menopausal women. Methods 82 cervico-vaginal lavage samples were collected at different phases of the menstrual cycle from 11 pre-menopausal (4 HIV-uninfected and 7 HIV-infected) and 12 post-menopausal (7 HIV-uninfected and 5 HIV-infected) women over a 1–3 month period. Free glycogen was quantified in genital fluid. Lactobacillus levels were quantified by real time PCR. Estrogen and progesterone levels in blood were determined by ELISA. Results Free glycogen was detected in both pre- and post-menopausal women. Across all samples, those from post-menopausal women had significantly lower levels of free glycogen than those from pre-menopausal women (median 0.002 vs. 0.065 µg/µl, respectively; p = 0.03). Lactobacillus levels correlated positively with free glycogen in both pre- (Spearman r=0.68, p <0.0001) and post-menopausal women (r=0.60, p <0.002). Samples from pre-menopausal women had higher Lactobacillus levels and a lower vaginal pH (median log=8.1; median pH= 4) than those from post-menopausal women (median log=7.1; median pH=4.6) although these differences were not significant. HIV status had no significant effect on these relationships. Conclusion Free glycogen was detected in both pre- and post-menopausal women and correlated with Lactobacillus in both groups. These results point to the complexity of the relationship between menopause and vaginal microbiota and indicate that more careful studies of the role played by glycogen are warranted. PMID:25535963

  6. Effect of pH on Cleavage of Glycogen by Vaginal Enzymes

    PubMed Central

    Spear, Greg T.; McKenna, Mary; Landay, Alan L.; Makinde, Hadijat; Hamaker, Bruce; French, Audrey L.; Lee, Byung-Hoo

    2015-01-01

    Glycogen expressed by the lower genital tract epithelium is believed to support Lactobacillus growth in vivo, although most genital isolates of Lactobacillus are not able to use glycogen as an energy source in vitro. We recently reported that α-amylase is present in the genital fluid of women and that it breaks down glycogen into small carbohydrates that support growth of lactobacilli. Since the pH of the lower genital tract can be very low, we determined how low pH affects glycogen processing by α-amylase. α-amylase in saliva degraded glycogen similarly at pH 6 and 7, but activity was reduced by 52% at pH 4. The glycogen degrading activity in nine genital samples from seven women showed a similar profile with an average reduction of more than 50% at pH 4. However, two samples collected from one woman at different times had a strikingly different pH profile with increased glycogen degradation at pH 4, 5 and 6 compared to pH 7. This second pH profile did not correlate with levels of human α-acid glucosidase or human intestinal maltase glucoamylase. High-performance anion-exchange chromatography showed that mostly maltose was produced from glycogen by samples with the second pH profile in contrast to genital α-amylase that yielded maltose, maltotriose and maltotetraose. These studies show that at low pH, α-amylase activity is reduced to low but detectable levels, which we speculate helps maintain Lactobacillus growth at a limited but sustained rate. Additionally, some women have a genital enzyme distinct from α-amylase with higher activity at low pH. Further studies are needed to determine the identity and distribution of this second enzyme, and whether its presence influences the makeup of genital microbiota. PMID:26171967

  7. Effect of pH on Cleavage of Glycogen by Vaginal Enzymes.

    PubMed

    Spear, Greg T; McKenna, Mary; Landay, Alan L; Makinde, Hadijat; Hamaker, Bruce; French, Audrey L; Lee, Byung-Hoo

    2015-01-01

    Glycogen expressed by the lower genital tract epithelium is believed to support Lactobacillus growth in vivo, although most genital isolates of Lactobacillus are not able to use glycogen as an energy source in vitro. We recently reported that α-amylase is present in the genital fluid of women and that it breaks down glycogen into small carbohydrates that support growth of lactobacilli. Since the pH of the lower genital tract can be very low, we determined how low pH affects glycogen processing by α-amylase. α-amylase in saliva degraded glycogen similarly at pH 6 and 7, but activity was reduced by 52% at pH 4. The glycogen degrading activity in nine genital samples from seven women showed a similar profile with an average reduction of more than 50% at pH 4. However, two samples collected from one woman at different times had a strikingly different pH profile with increased glycogen degradation at pH 4, 5 and 6 compared to pH 7. This second pH profile did not correlate with levels of human α-acid glucosidase or human intestinal maltase glucoamylase. High-performance anion-exchange chromatography showed that mostly maltose was produced from glycogen by samples with the second pH profile in contrast to genital α-amylase that yielded maltose, maltotriose and maltotetraose. These studies show that at low pH, α-amylase activity is reduced to low but detectable levels, which we speculate helps maintain Lactobacillus growth at a limited but sustained rate. Additionally, some women have a genital enzyme distinct from α-amylase with higher activity at low pH. Further studies are needed to determine the identity and distribution of this second enzyme, and whether its presence influences the makeup of genital microbiota. PMID:26171967

  8. Glycogen contents in the rat uterus: response to Hibiscus rosa-sinensis Linn. extracts.

    PubMed

    Prakash, A O

    1979-08-15

    Ethanolic extracts (50%), as well the benzene extracts, of H. rosa-sinensis Linn. have reduced significantly the glycogen contents in the uterus of adult rat. Both the extracts exhibit a clear-cut dose-response relation. The inhibition in glycogen contents increases as the dose is increased. Of the 2, benzene extract seems to be more potent. The results are due to antiestrogenic nature of the extracts. PMID:477902

  9. Glycogen overload by postexercise insulin administration abolished the exercise-induced increase in GLUT4 protein.

    PubMed

    Chou, Chia-Hau; Tsai, Yin-Lan; Hou, Chien-Wen; Lee, Hsing-Hao; Chang, Wei-Hsiang; Lin, Tzi-Wen; Hsu, Tung-Hsiung; Huang, Yi-Jen; Kuo, Chia-Hua

    2005-12-01

    To elucidate the role of muscle glycogen storage on regulation of GLUT4 protein expression and whole-body glucose tolerance, muscle glycogen level was manipulated by exercise and insulin administration. Sixty Sprague-Dawley rats were evenly separated into three groups: control (CON), immediately after exercise (EX0), and 16 h after exercise (EX16). Rats from each group were further divided into two groups: saline- and insulin-injected. The 2-day exercise protocol consisted of 2 bouts of 3-h swimming with 45-min rest for each day, which effectively depleted glycogen in both red gastrocnemius (RG) and plantaris muscles. EX0 rats were sacrificed immediately after the last bout of exercise on second day. CON and EX16 rats were intubated with 1 g/kg glucose solution following exercise and recovery for 16 h before muscle tissue collection. Insulin (0.5 microU/kg) or saline was injected daily at the time when glucose was intubated. Insulin injection elevated muscle glycogen levels substantially in both muscles above saline-injected group at CON and EX16. With previous day insulin injection, EX0 preserved greater amount of postexercise glycogen above their saline-injected control. In the saline-injected rats, EX16 significantly increased GLUT4 protein level above CON, concurrent with muscle glycogen supercompensation. Insulin injection for EX16 rats significantly enhanced muscle glycogen level above their saline-injected control, but the increases in muscle GLUT4 protein and whole-body glucose tolerance were attenuated. In conclusion, the new finding of the study was that glycogen overload by postexercise insulin administration significantly abolished the exercise-induced increases in GLUT4 protein and glucose tolerance. PMID:16319996

  10. The upstream enhancer elements of the G6PC promoter are critical for optimal G6PC expression in murine glycogen storage disease type Ia.

    PubMed

    Lee, Young Mok; Pan, Chi-Jiunn; Koeberl, Dwight D; Mansfield, Brian C; Chou, Janice Y

    2013-11-01

    Glycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia. PMID:23856420

  11. The Upstream enhancer elements of the G6PC promoter are critical for optimal G6PC expression in murine glycogen storage disease type Ia

    PubMed Central

    Lee, Young Mok; Pan, Chi-Jiunn; Koeberl, Dwight D.; Mansfield, Brian C.; Chou, Janice Y.

    2013-01-01

    Glycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia. PMID:23856420

  12. Contribution of glycogen in supporting axon conduction in the peripheral and central nervous systems: the role of lactate

    PubMed Central

    Chambers, Tom W.; Daly, Timothy P.; Hockley, Adam; Brown, Angus M.

    2014-01-01

    The role of glycogen in the central nervous system is intimately linked with the glycolytic pathway. Glycogen is synthesized from glucose, the primary substrate for glycolysis, and degraded to glucose-6-phosphate. The metabolic cost of shunting glucose via glycogen exceeds that of simple phosphorylation of glucose to glucose-6-phosphate by hexokinase; thus, there must be a metabolic advantage in utilizing this shunt pathway. The dogmatic view of glycogen as a storage depot persists, based on initial descriptions of glycogen supporting neural function in the face of aglycemia. The variable latency to conduction failure, dependent upon tissue glycogen levels, provided convincing evidence of the role played by glycogen in supporting neural function. Glycogen is located predominantly in astrocytes in the central nervous system, thus for glycogen to benefit neural elements, intercellular metabolic communication must exist in the form of astrocyte to neuron substrate transfer. Experimental evidence supports a model where glycogen is metabolized to lactate in astrocytes, with cellular expression of monocarboxylate transporters and enzymes appropriately located for lactate shuttling between astrocytes and neural elements, where lactate acts as a substrate for oxidative metabolism. Biosensor recordings have demonstrated a significant steady concentration of lactate present on the periphery of both central white matter and peripheral nerve under unstimulated baseline conditions, indicating continuous cellular efflux of lactate to the interstitium. The existence of this lactate pool argues we must reexamine the “on demand” shuttling of lactate between cellular elements, and suggests continuous lactate efflux surplus to immediate neural requirements. PMID:25505379

  13. Glycogen Levels in Undiluted Genital Fluid and Their Relationship to Vaginal pH, Estrogen, and Progesterone

    PubMed Central

    Mirmonsef, Paria; Hotton, Anna L.; Gilbert, Douglas; Gioia, Casey J.; Maric, Danijela; Hope, Thomas J.; Landay, Alan L.; Spear, Gregory T.

    2016-01-01

    Background Colonization of the female lower genital tract with Lactobacillus provides protection against STIs and adverse pregnancy outcomes. Growth of genital Lactobacillus is postulated to depend on epithelial cell-produced glycogen. However, the amount of cell-free glycogen in genital fluid available for utilization by Lactobacillus is not known. Methods Eighty-five genital fluid samples from 7 pre-menopausal women taken over 4–6 weeks were obtained using the Instead SoftCup® (EvoFem, Inc., San Diego, CA, USA) by consented donors. Cell-free glycogen and glucose in genital fluids and estrogen and progesterone in blood were quantified. Findings Glycogen ranged from 0.1–32 μg/μl. There were significant differences between women in glycogen over the observation period. There was a strong negative correlation between glycogen and vaginal pH (r = -0.542, p<0.0001). In multivariable analysis, free glycogen levels were significantly negatively associated with both vaginal pH and progesterone (p < 0.001 and p = 0.004, respectively). Estrogen, glucose, age, sexual intercourse 24 hours prior to visit, and days after the initial visit were not significantly associated with free glycogen levels. Conclusion Cell-free glycogen concentrations can be very high, up to 3% of genital fluid, and are strongly associated with acidic vaginal pH. However, the fluctuations in glycogen levels in individuals and differences between individuals do not appear to be associated with estrogen. PMID:27093050

  14. Brain glycogen supercompensation after different conditions of induced hypoglycemia and sustained swimming in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Blanco, A M; Gómez-Boronat, M; Pérez-Maceira, J; Mancebo, M J; Aldegunde, M

    2015-09-01

    Brain glycogen is depleted when used as an emergency energy substrate. In mammals, brain glycogen levels rebound to higher than normal levels after a hypoglycemic episode and a few hours after refeeding or administration of glucose. This phenomenon is called glycogen supercompensation. However, this mechanism has not been investigated in lower vertebrates. The aim of this study was therefore to determine whether brain glycogen supercompensation occurs in the rainbow trout brain. For this purpose, short-term brain glucose and glycogen contents were determined in rainbow trout after being subjected to the following experimental conditions: i) a 5-day or 10-day fasting period and refeeding; ii) a single injection of insulin (4 mg kg(-1)) and refeeding; and iii) sustained swimming and injection of glucose (500 mg kg(-1)). Food deprivation during the fasting periods and insulin administration both induced a decrease in glucose and glycogen levels in the brain. However, only refeeding after 10 days of fasting significantly increased the brain glycogen content above control levels, in a clear short-term supercompensation response. Unlike in mammals, prolonged exercise did not alter brain glucose or glycogen levels. Furthermore, brain glycogen supercompensation was not observed after glucose administration in fish undergoing sustained swimming. To our knowledge, this is the first study providing direct experimental evidence for the existence of a short-term glycogen supercompensation response in a teleost brain, although the response was only detectable after prolonged fasting. PMID:25956213

  15. Ambient pH Controls Glycogen Levels by Regulating Glycogen Synthase Gene Expression in Neurospora crassa. New Insights into the pH Signaling Pathway

    PubMed Central

    Cupertino, Fernanda Barbosa; Freitas, Fernanda Zanolli; de Paula, Renato Magalhães; Bertolini, Maria Célia

    2012-01-01

    Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacCKO strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa. PMID:22952943

  16. Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy

    PubMed Central

    López-Ramos, Juan C.; Duran, Jordi; Gruart, Agnès; Guinovart, Joan J.; Delgado-García, José M.

    2015-01-01

    Although glycogen is the only carbohydrate reserve of the brain, its overall contribution to brain functions remains unclear. It has been proposed that glycogen participates in the preservation of such functions during hypoxia. Several reports also describe a relationship between brain glycogen and susceptibility to epilepsy. To address these issues, we used our brain-specific Glycogen Synthase knockout (GYS1Nestin-KO) mouse to study the functional consequences of glycogen depletion in the brain under hypoxic conditions and susceptibility to epilepsy. GYS1Nestin-KO mice presented significantly different power spectra of hippocampal local field potentials (LFPs) than controls under hypoxic conditions. In addition, they showed greater excitability than controls for paired-pulse facilitation evoked at the hippocampal CA3–CA1 synapse during experimentally induced hypoxia, thereby suggesting a compensatory switch to presynaptic mechanisms. Furthermore, GYS1Nestin-KO mice showed greater susceptibility to hippocampal seizures and myoclonus following the administration of kainate and/or a brief train stimulation of Schaffer collaterals. We conclude that brain glycogen could play a protective role both in hypoxic situations and in the prevention of brain seizures. PMID:26578889

  17. Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy.

    PubMed

    López-Ramos, Juan C; Duran, Jordi; Gruart, Agnès; Guinovart, Joan J; Delgado-García, José M

    2015-01-01

    Although glycogen is the only carbohydrate reserve of the brain, its overall contribution to brain functions remains unclear. It has been proposed that glycogen participates in the preservation of such functions during hypoxia. Several reports also describe a relationship between brain glycogen and susceptibility to epilepsy. To address these issues, we used our brain-specific Glycogen Synthase knockout (GYS1(Nestin-KO)) mouse to study the functional consequences of glycogen depletion in the brain under hypoxic conditions and susceptibility to epilepsy. GYS1(Nestin-KO) mice presented significantly different power spectra of hippocampal local field potentials (LFPs) than controls under hypoxic conditions. In addition, they showed greater excitability than controls for paired-pulse facilitation evoked at the hippocampal CA3-CA1 synapse during experimentally induced hypoxia, thereby suggesting a compensatory switch to presynaptic mechanisms. Furthermore, GYS1(Nestin-KO) mice showed greater susceptibility to hippocampal seizures and myoclonus following the administration of kainate and/or a brief train stimulation of Schaffer collaterals. We conclude that brain glycogen could play a protective role both in hypoxic situations and in the prevention of brain seizures. PMID:26578889

  18. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  19. Antitumor glycogen from scallops and the interrelationship of structure and antitumor activity.

    PubMed

    Takaya; Uchisawa; Ichinohe; Sasaki; Ishida; Matsue

    1998-12-01

    Hot water extract of scallop was treated with actinase E and fractionated by Sephadex G-25 gel-filtration and DEAE Sephadex A-25 ion-exchange chromatography. The antitumor activity of these fractions against Meth-A fibrosarcoma was examined. The nonadsorbed fraction (SCA25A) and weakly adsorbed fraction (SCA25B) obtained on DEAE Sephadex A-25 anion-exchange gel showed strong antitumor activity. Chemical analyses and NMR spectra identified SCA25A and SCA25B as glycogen. However, glycogen extracted from the scallop with trichloroacetic acid and from abalone showed no antitumor activity. This difference was thought to be due to variations in the fine structure of the glycogen molecule. The fine structure of glycogen was investigated by a sequential enzyme digestion method using beta-amylase and pullulanase, while the unit chain was analyzed by high performance anion exchange chromatography. The results showed that the antitumor active glycogen was highly branched with a shorter chain than glycogens without antitumor activity. PMID:9852612

  20. Persistence of supercompensated muscle glycogen in trained subjects after carbohydrate loading.

    PubMed

    Goforth, H W; Arnall, D A; Bennett, B L; Law, P G

    1997-01-01

    Several carbohydrate (CHO)-loading protocols have been used to achieve muscle glycogen supercompensation and prolong endurance performance. This study assessed the persistence of muscle glycogen supercompensation over the 3 days after the supercompensation protocol. Trained male athletes completed a 6-day CHO-loading protocol that included cycle ergometer exercise and dietary manipulations. The 3-day depletion phase began with 115 min of cycling at 75% peak oxygen uptake followed by 3 x 60-s sprints and included the subjects consuming a low-CHO/high-protein/high-fat (10:41:49%) diet. Subjects cycled 40 min at the same intensity for the next 2 days. During the 3-day repletion phase, subjects rested and consumed a high-CHO/low-protein/low-fat (85:08:07%) diet, including a glucose-polymer beverage. A 3-day postloading phase followed, which involved a moderately high CHO diet (60%) and no exercise. Glycogen values for vastus lateralis biopsies at baseline and postloading days 1-3 were 408 +/- 168 (SD), 729 +/- 222, 648 +/- 186, and 714 +/- 196 mmol/kg dry wt, respectively. The CHO-loading protocol increased muscle glycogen by 1.79 times baseline, and muscle glycogen remained near this level during the 3-day postloading period. Results indicate that supercompensated muscle glycogen levels can be maintained for at least 3 days in a resting athlete when a moderate-CHO diet is consumed. PMID:9029236

  1. Creatine supplementation spares muscle glycogen during high intensity intermittent exercise in rats

    PubMed Central

    2010-01-01

    Background The effects of creatine (CR) supplementation on glycogen content are still debatable. Thus, due to the current lack of clarity, we investigated the effects of CR supplementation on muscle glycogen content after high intensity intermittent exercise in rats. Methods First, the animals were submitted to a high intensity intermittent maximal swimming exercise protocol to ensure that CR-supplementation was able to delay fatigue (experiment 1). Then, the CR-mediated glycogen sparing effect was examined using a high intensity intermittent sub-maximal exercise test (fixed number of bouts; six bouts of 30-second duration interspersed by two-minute rest interval) (experiment 2). For both experiments, male Wistar rats were given either CR supplementation or placebo (Pl) for 5 days. Results As expected, CR-supplemented animals were able to exercise for a significant higher number of bouts than Pl. Experiment 2 revealed a higher gastrocnemius glycogen content for the CR vs. the Pl group (33.59%). Additionally, CR animals presented lower blood lactate concentrations throughout the intermittent exercise bouts compared to Pl. No difference was found between groups in soleus glycogen content. Conclusion The major finding of this study is that CR supplementation was able to spare muscle glycogen during a high intensity intermittent exercise in rats. PMID:20205834

  2. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

    PubMed Central

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

    2013-01-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

  3. Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion.

    PubMed

    Hasunuma, Tomohisa; Kikuyama, Fumi; Matsuda, Mami; Aikawa, Shimpei; Izumi, Yoshihiro; Kondo, Akihiko

    2013-07-01

    Cyanobacteria represent a globally important biomass because they are responsible for a substantial proportion of primary production in the hydrosphere. Arthrospira platensis is a fast-growing halophilic cyanobacterium capable of accumulating glycogen and has the potential to serve as a feedstock in the fermentative production of third-generation biofuels. Accordingly, enhancing cyanobacterial glycogen production is a promising biofuel production strategy. However, the regulatory mechanism of glycogen metabolism in cyanobacteria is poorly understood. The aim of the present study was to determine the metabolic flux of glycogen biosynthesis using a dynamic metabolomic approach. Time-course profiling of widely targeted cyanobacterial metabolic intermediates demonstrated a global metabolic reprogramming that involves transient increases in the levels of some amino acids during the glycogen production phase induced by nitrate depletion. Also, in vivo labelling with NaH(13)CO3 enabled direct measurement of metabolic intermediate turnover in A. platensis, revealing that under conditions of nitrate depletion glycogen is biosynthesized with carbon derived from amino acids released from proteins via gluconeogenesis. This dynamic metabolic profiling approach provided conclusive evidence of temporal alterations in the metabolic profile in cyanobacterial cells. PMID:23658429

  4. Protect Yourself from Hepatitis

    MedlinePlus

    ... develop yellowish eyes and skin. All the hepatitis viruses can cause acute, or short-term, hepatitis. Some can also cause chronic hepatitis, in which the infection lasts a long time, sometimes for your whole life. Chronic hepatitis can eventually lead to scarring of ...

  5. Regulation of Hepatic Glucose Uptake and Storage In Vivo12

    PubMed Central

    Moore, Mary Courtney; Coate, Katie C.; Winnick, Jason J.; An, Zhibo

    2012-01-01

    In the postprandial state, the liver takes up and stores glucose to minimize the fluctuation of glycemia. Elevated insulin concentrations, an increase in the load of glucose reaching the liver, and the oral/enteral/portal vein route of glucose delivery (compared with the peripheral intravenous route) are factors that increase the rate of net hepatic glucose uptake (NHGU). The entry of glucose into the portal vein stimulates a portal glucose signal that not only enhances NHGU but concomitantly reduces muscle glucose uptake to ensure appropriate partitioning of a glucose load. This coordinated regulation of glucose uptake is likely neurally mediated, at least in part, because it is not observed after total hepatic denervation. Moreover, there is evidence that both the sympathetic and the nitrergic innervation of the liver exert a tonic repression of NHGU that is relieved under feeding conditions. Further, the energy sensor 5′AMP-activated protein kinase appears to be involved in regulation of NHGU and glycogen storage. Consumption of a high-fat and high-fructose diet impairs NHGU and glycogen storage in association with a reduction in glucokinase protein and activity. An understanding of the impact of nutrients themselves and the route of nutrient delivery on liver carbohydrate metabolism is fundamental to the development of therapies for impaired postprandial glucoregulation. PMID:22585902

  6. Hepatic osteodystrophy.

    PubMed

    Gatta, Angelo; Verardo, Alberto; Di Pascoli, Marco; Giannini, Sandro; Bolognesi, Massimo

    2014-09-01

    Metabolic disturbances of bone are frequent in patients with chronic liver disease. The prevalence of osteoporosis among patients with advanced chronic liver disease is reported between 12% and 55%; it is higher in primary biliary cirrhosis. All patients with advanced liver disease should be screened for osteoporosis with a densitometry, especially if the etiology is cholestatic and in the presence of other risk factors. Clinical relevance of hepatic osteodystrophy increases after liver transplantation. After liver transplant, a rapid loss of bone mineral density can be detected in the first 6 months, followed by stabilization and slight improvement of the values. At the time of transplantation, bone density values are very important prognostic factors. Therapy of hepatic osteodystrophy is based primarily on the control of risk factors: cessation of tobacco and alcohol assumption, reduction of caffeine ingestion, exercise, supplementation of calcium and vitamin D, limitation of drugs such as loop diuretics, corticosteroids, cholestyramine. Bisphosphonates have been proposed for the therapy of osteoporosis in patients with liver disease, particularly after liver transplantation. The possible side effects of oral administration of bisphosphonates, such as the occurrence of esophageal ulcerations, are of particular concern in patients with liver cirrhosis and portal hypertension, due to the risk of gastrointestinal hemorrhage from ruptured esophageal varices, although this risk is probably overestimated. PMID:25568651

  7. [Hepatic encephalopathy].

    PubMed

    Festi, Davide; Marasco, Giovanni; Ravaioli, Federico; Colecchia, Antonio

    2016-07-01

    Hepatic encephalopathy (HE) is a common complication of liver cirrhosis and it can manifest with a broad spectrum of neuropsychiatric abnormalities of varying severity, acuity and time course with important clinical implications. According to recent guidelines, HE has been classified into different types, depending on the severity of hepatic dysfunction, the presence of porto-systemic shunts and the number of previous episodes or persistent manifestations. From a clinical point of view, HE can be recognized as unimpaired, covert (that deals with minimal and grade 1 according to the grading of mental state), and overt (that is categorized from grade 2 to grade 4). Different and only partially known pathogenic mechanisms have been identified, comprising ammonia, inflammatory cytokines, benzodiazepine-like compounds and manganese deposition. Different therapeutic strategies are available for treating HE, in particular the overt HE, since covert HE needs to be managed case by case. Recognition and treatment of precipitating factors represent fundamental part of the management. The more effective treatments, which can be performed separately or combined, are represented by non-absorbable disaccharides (lactulose and lactitol) and the topic antibiotic rifaximin; other possible therapies, mainly used in patients non responders to previous treatments, are represented by branched chain amino acids and metabolic ammonia scavengers. PMID:27571468

  8. Liver transplantation in glycogen storage disease type I.

    PubMed

    Boers, Susanna J B; Visser, Gepke; Smit, Peter G P A; Fuchs, Sabine A

    2014-01-01

    Glycogen storage disease type I (GSDI), an inborn error of carbohydrate metabolism, is caused by defects in the glucose-6-transporter/glucose-6-phosphatase complex, which is essential in glucose homeostasis. Two types exist, GSDIa and GSDIb, each caused by different defects in the complex. GSDIa is characterized by fasting intolerance and subsequent metabolic derangements. In addition to these clinical manifestations, patients with GSDIb suffer from neutropenia with neutrophil dysfunction and inflammatory bowel disease.With the feasibility of novel cell-based therapies, including hepatocyte transplantations and liver stem cell transplantations, it is essential to consider long term outcomes of liver replacement therapy. We reviewed all GSDI patients with liver transplantation identified in literature and through personal communication with treating physicians. Our review shows that all 80 GSDI patients showed improved metabolic control and normal fasting tolerance after liver transplantation. Although some complications might be caused by disease progression, most complications seemed related to the liver transplantation procedure and subsequent immune suppression. These results highlight the potential of other therapeutic strategies, like cell-based therapies for liver replacement, which are expected to normalize liver function with a lower risk of complications of the procedure and immune suppression. PMID:24716823

  9. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases

    PubMed Central

    Beurel, Eleonore; Grieco, Steven F.; Jope, Richard S.

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders. PMID:25435019

  10. Preclinical Development of New Therapy for Glycogen Storage Diseases

    PubMed Central

    Sun, Baodong; Brooks, Elizabeth D.; Koeberl, Dwight D.

    2015-01-01

    Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available. PMID:26122079

  11. Preclinical Development of New Therapy for Glycogen Storage Diseases.

    PubMed

    Sun, Baodong; Brooks, Elizabeth D; Koeberl, Dwight D

    2015-01-01

    Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available. PMID:26122079

  12. Structural Basis of Glycogen Biosynthesis Regulation in Bacteria.

    PubMed

    Cifuente, Javier O; Comino, Natalia; Madariaga-Marcos, Julene; López-Fernández, Sonia; García-Alija, Mikel; Agirre, Jon; Albesa-Jové, David; Guerin, Marcelo E

    2016-09-01

    ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step of bacterial glycogen and plant starch biosynthesis, the most common carbon storage polysaccharides in nature. A major challenge is to understand how AGPase activity is regulated by metabolites in the energetic flux within the cell. Here we report crystal structures of the homotetrameric AGPase from Escherichia coli in complex with its physiological positive and negative allosteric regulators, fructose-1,6-bisphosphate (FBP) and AMP, and sucrose in the active site. FBP and AMP bind to partially overlapping sites located in a deep cleft between glycosyltransferase A-like and left-handed β helix domains of neighboring protomers, accounting for the fact that sensitivity to inhibition by AMP is modulated by the concentration of the activator FBP. We propose a model in which the energy reporters regulate EcAGPase catalytic activity by intra-protomer interactions and inter-protomer crosstalk, with a sensory motif and two regulatory loops playing a prominent role. PMID:27545622

  13. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments

    PubMed Central

    King, Margaret K.; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S.; Beurel, Eléonore

    2013-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  14. Dietary management of Type I glycogen storage disease.

    PubMed

    Folk, C C; Greene, H L

    1984-03-01

    The most commonly recognized type of glycogen storage disease (von Gierke's disease) results from deficient glucose-6-phosphatase activity. This enzyme is the last step in the release of free glucose from the liver into the circulation. Thus, the most prominent and life-threatening complication in the illness is severe and often prolonged hypoglycemia, which occurs after the dietary glucose is normally removed from the circulation. With an optimal dietary intake spaced at 2 1/2- to 3 1/2-hour intervals, the blood glucose can be maintained in the normal range during the daytime, but hypoglycemia may occur during overnight fasting. Recent advances in the understanding of the pathophysiology of the illness have led to the use of frequent high-starch feedings during the day and nocturnal intragastric infusions of liquid formulas containing glucose polymers. The liquid formula is infused through either a nasogastric or a gastrostomy tube continuously at night while the patient sleeps. The success of this treatment not only has improved the survival rate but also has corrected the abnormal blood chemistries and generated a more normal rate of growth and development. Because patients with this disease are reaching adulthood in greater numbers, it is necessary for dietitians caring for adults as well as for children to become familiar with the prescribed methods of treatment. PMID:6583274

  15. Liver transplantation in glycogen storage disease type I

    PubMed Central

    2014-01-01

    Glycogen storage disease type I (GSDI), an inborn error of carbohydrate metabolism, is caused by defects in the glucose-6-transporter/glucose-6-phosphatase complex, which is essential in glucose homeostasis. Two types exist, GSDIa and GSDIb, each caused by different defects in the complex. GSDIa is characterized by fasting intolerance and subsequent metabolic derangements. In addition to these clinical manifestations, patients with GSDIb suffer from neutropenia with neutrophil dysfunction and inflammatory bowel disease. With the feasibility of novel cell-based therapies, including hepatocyte transplantations and liver stem cell transplantations, it is essential to consider long term outcomes of liver replacement therapy. We reviewed all GSDI patients with liver transplantation identified in literature and through personal communication with treating physicians. Our review shows that all 80 GSDI patients showed improved metabolic control and normal fasting tolerance after liver transplantation. Although some complications might be caused by disease progression, most complications seemed related to the liver transplantation procedure and subsequent immune suppression. These results highlight the potential of other therapeutic strategies, like cell-based therapies for liver replacement, which are expected to normalize liver function with a lower risk of complications of the procedure and immune suppression. PMID:24716823

  16. Methodologies of tissue preservation and analysis of the glycogen content of the broiler chick liver.

    PubMed

    Bennett, L W; Keirs, R W; Peebles, E D; Gerard, P D

    2007-12-01

    The current study was performed to develop convenient, rapid, reliable, and pragmatic methodologies by which to harvest and preserve liver tissue glycogen and to analyze its levels within reasonable limits of quantification and with extended chromophore stability. Absorbance values decreased by 2 h and again by 24 h after preparation of the iodine-potassium iodide chromophore, whereas absorbance values of the phenol-sulfuric acid chromophore remained constant over the same time period. These absorbance trends for each chromophore followed full color development within 5 min after combining the analyte with the respective chromophore reagent. Use of the phenol-sulfuric acid reagent allowed for a 10-fold reduction in assay limits of detection and quantification when compared with the iodine-potassium iodide reagent. Furthermore, glycogen concentration-absorbance relationships were affected by the source (i.e., rabbit liver vs. bovine liver) of glycogen standards when the iodine-potassium iodide chromophore was used, but the source of the standards had no influence when the phenol-sulfuric acid chromophore was used. The indifference of the phenol-sulfuric acid method to the glycogen source, as exhibited by similar linear regressions of absorbance, may be attributed to actual determination of glucose subunit concentrations after complete glycogen hydrolysis by sulfuric acid. This is in contrast to the actual measurement of whole glycogen, which may exhibit source- or time-related molecular structural differences. The iodine-potassium iodide methodology is a test of whole glycogen concentrations; therefore, it may be influenced by glycogen structural differences. Liver tissue sample weight (between 0.16 and 0.36 g) and processing, which included mincing, immediate freezing, or refrigeration in 10% perchloric acid for 1 wk prior to tissue grinding, had no effect on glycogen concentrations that were analyzed by using the phenol-sulfuric acid reagent. These results

  17. N-Alkylprotoporphyrin Formation and Hepatic Porphyria in Dogs After Administration of a New Antiepileptic Drug Candidate: Mechanism and Species Specificity

    PubMed Central

    Nicolas, Jean-Marie; Chanteux, Hugues; Mancel, Valérie; Dubin, Guy-Marie; Gerin, Brigitte; Staelens, Ludovicus; Depelchin, Olympe; Kervyn, Sophie

    2014-01-01

    A new antiepileptic synaptic vesicle 2a (SV2a) ligand drug candidate was tested in 4-week oral toxicity studies in rat and dog. Brown pigment inclusions were found in the liver of high-dose dogs. The morphology of the deposits and the accompanying liver changes (increased plasma liver enzymes, increased total hepatic porphyrin level, decreased liver ferrochelatase activity, combined induction, and inactivation of cytochrome P-450 CYP2B11) suggested disruption of the heme biosynthetic cascade. None of these changes was seen in rat although this species was exposed to higher parent drug levels. Toxicokinetic analysis and in vitro metabolism assays in hepatocytes showed that dog is more prone to oxidize the drug candidate than rat. Mass spectrometry analysis of liver samples from treated dogs revealed an N-alkylprotoporphyrin adduct. The elucidation of its chemical structure suggested that the drug transforms into a reactive metabolite which is structurally related to a known reference porphyrogenic agent allylisopropylacetamide. That particular metabolite, primarily produced in dog but neither in rat nor in human, has the potential to alkylate the prosthetic heme of CYP. Overall, the data suggested that the drug candidate should not be porphyrogenic in human. This case study further exemplifies the species variability in the susceptibility to drug-induced porphyria. PMID:24973095

  18. Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection.

    PubMed

    Watson, K A; Mitchell, E P; Johnson, L N; Cruciani, G; Son, J C; Bichard, C J; Fleet, G W; Oikonomakos, N G; Kontou, M; Zographos, S E

    1995-07-01

    Several inhibitors of the large regulatory enzyme glycogen phosphorylase (GP) have been studied in crystallographic and kinetic experiments. GP catalyses the first step in the phosphorylysis of glycogen to glucose-l-phosphate, which is utilized via glycolysis to provide energy to sustain muscle contraction and in the liver is converted to glucose. alpha-D-Glucose is a weak inhibitor of glycogen phosphorylase form b (GPb, K(i) = 1.7 mM) and acts as a physiological regulator of hepatic glycogen metabolism. Glucose binds to phosphorylase at the catalytic site and results in a conformational change that stabilizes the inactive T state of the enzyme, promoting the action of protein phosphatase 1 and stimulating glycogen synthase. It has been suggested that in the liver, glucose analogues with greater affinity for glycogen phosphorylase may result in a more effective regulatory agent. Several N-acetyl glucopyranosylamine derivatives have been synthesized and tested in a series of crystallographic and kinetic binding studies with GPb. The structural results of the bound enzyme-ligand complexes have been analysed together with the resulting affinities in an effort to understand and exploit the molecular interactions that might give rise to a better inhibitor. Comparison of the N-methylacetyl glucopyranosylamine (N-methylamide, K(i) = 0.032 mM) with the analogous beta-methylamide derivative (C-methylamide, K(i) = 0.16 mM) illustrate the importance of forming good hydrogen bonds and obtaining complementarity of van der Waals interactions. These studies also have shown that the binding modes can be unpredictable but may be rationalized with the benefit of structural data and that a buried and mixed polar/non-polar catalytic site poses problems for the systematic addition of functional groups. Together with previous studies of glucose analogue inhibitors of GPb, this work forms the basis of a training set suitable for three-dimensional quantitative structure

  19. Pharmaceutical inhibition of glycogen synthetase kinase 3 beta suppresses wear debris-induced osteolysis.

    PubMed

    Geng, Dechun; Wu, Jian; Shao, Hongguo; Zhu, Shijun; Wang, Yijun; Zhang, Wen; Ping, Zichuan; Hu, Xuanyang; Zhu, Xuesong; Xu, Yaozeng; Yang, Huilin

    2015-11-01

    Aseptic loosening is associated with the development of wear debris-induced peri-implant osteolytic bone disease caused by an increased osteoclastic bone resorption and decreased osteoblastic bone formation. However, no effective measures for the prevention and treatment of peri-implant osteolysis currently exist. The aim of this study was to determine whether lithium chloride (LiCl), a selective inhibitor of glycogen synthetase kinase 3 beta (GSK-3β), mitigates wear debris-induced osteolysis in a murine calvarial model of osteolysis. GSK-3β is activated by titanium (Ti) particles, and implantation of Ti particles on the calvarial surface in C57BL/6 mice resulted in osteolysis caused by an increase in the number of osteoclasts and a decrease in the number of osteoblasts. Mice implanted with Ti particles were gavage-fed LiCl (50 or 200 mg kg(-1)d(-1)), 6 days per week for 2 weeks. The LiCl treatment significantly inhibited GSK-3β activity and increased β-catenin and axin-2 expression in a dose-dependent manner, dramatically mitigating the Ti particle-induced suppression of osteoblast numbers and the expression of bone formation markers. Finally, we demonstrated that inhibition of GSK-3β suppresses osteoclast differentiation and reduces the severity of Ti particle-induced osteolysis. The results of this study indicate that Ti particle-induced osteolysis is partly dependent on GSK-3β and, therefore, the canonical Wnt signaling pathway. This suggests that selective inhibitors of GSK-3β such as LiCl may help prevent and treat wear debris-induced osteolysis. PMID:26275858

  20. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects

    PubMed Central

    Blomstrand, Eva; Saltin, Bengt

    1999-01-01

    Eight subjects performed two-legged exercise, one leg with low and the other with normal muscle glycogen content. The purpose was to study the effect of low initial muscle glycogen content on the metabolic response during 1 h of exercise and 2 h of recovery. This model allows direct comparison of net fluxes of substrates and metabolites over the exercising legs receiving the same arterial inflow.Muscle glycogen breakdown during exercise was 60% lower in the leg with a reduced pre-exercise glycogen concentration and the rate of glucose uptake during exercise was 30% higher.The amount of pyruvate that was oxidized during exercise was calculated to be approximately 450 mmol in the low-glycogen leg and 750 mmol in the normal-glycogen leg, which suggests more fat and amino acid oxidation in the low-glycogen leg.During exercise, there was a significant release of amino acids not metabolized in the muscle, e.g. tyrosine and phenylalanine, only from the low-glycogen leg, suggesting an increased rate of net protein degradation in this leg.The release of tyrosine and phenylalanine from the low-glycogen leg during the exercise period and the change in their muscle concentrations yield a net tyrosine and phenylalanine production rate of 1.4 and 1.5 mmol h−1, respectively. The net rate of protein degradation was then calculated to be 7–12 g h−1.The results suggest that the observed differences in metabolism between the low-glycogen and the normal-glycogen leg are induced by the glycogen level per se, since the legs received the same arterial supply of hormones and substrates. PMID:9831734

  1. A protein kinase screen of Neurospora crassa mutant strains reveals that the SNF1 protein kinase promotes glycogen synthase phosphorylation.

    PubMed

    Candido, Thiago De Souza; Gonçalves, Rodrigo Duarte; Felício, Ana Paula; Freitas, Fernanda Zanolli; Cupertino, Fernanda Barbosa; De Carvalho, Ana Carolina Gomes Vieira; Bertolini, Maria Célia

    2014-12-15

    Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development. PMID:25253091

  2. Incorporation of 3-deoxy-3-fluoro-D-glucose into glycogen and trehalose in fat body and flight muscle in Locusta migratoria.

    PubMed

    Agbanyo, M; Taylor, N F

    1986-03-01

    Flight muscle and fat body extracts from Locusta migratoria were incubated with D-[U-14C]-glucose or D-[3-3H]-3-deoxy-3-fluoroglucose and the products were analyzed. In the case of the latter compound, radio-chromatographic analysis yielded glycogen and trehalose fractions that were shown by 19F nuclear magnetic resonance to contain fluorine. Acid hydrolysis of these fractions liberated tritium labelled 3-deoxy-3-fluoro-D-glucose. In addition to the formation of "fluoroglycogen" and "fluorotrehalose" in these tissue extracts, there was an accumulation of tritium labelled fructose. PMID:3524699

  3. Characterization of a canine model of glycogen storage disease type IIIa

    PubMed Central

    Yi, Haiqing; Thurberg, Beth L.; Curtis, Sarah; Austin, Stephanie; Fyfe, John; Koeberl, Dwight D.; Kishnani, Priya S.; Sun, Baodong

    2012-01-01

    SUMMARY Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE) in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR). The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities; serum creatine phosphokinase (CPK) activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions. PMID:22736456

  4. Characterization of a canine model of glycogen storage disease type IIIa.

    PubMed

    Yi, Haiqing; Thurberg, Beth L; Curtis, Sarah; Austin, Stephanie; Fyfe, John; Koeberl, Dwight D; Kishnani, Priya S; Sun, Baodong

    2012-11-01

    Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE) in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR). The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities; serum creatine phosphokinase (CPK) activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions. PMID:22736456

  5. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    PubMed Central

    Dong, Xue-Jun; Zhang, Guo-Rong; Zhou, Qing-Jun; Pan, Ruo-Lang; Chen, Ye; Xiang, Li-Xin; Shao, Jian-Zhong

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  6. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering

    PubMed Central

    Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W.; Lee, Oscar K.

    2015-01-01

    Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs. PMID:24462361

  7. Viral hepatitis: Indian scenario.

    PubMed

    Satsangi, Sandeep; Chawla, Yogesh K

    2016-07-01

    Viral hepatitis is a cause for major health care burden in India and is now equated as a threat comparable to the "big three" communicable diseases - HIV/AIDS, malaria and tuberculosis. Hepatitis A virus and Hepatitis E virus are predominantly enterically transmitted pathogens and are responsible to cause both sporadic infections and epidemics of acute viral hepatitis. Hepatitis B virus and Hepatitis C virus are predominantly spread via parenteral route and are notorious to cause chronic hepatitis which can lead to grave complications including cirrhosis of liver and hepatocellular carcinoma. Around 400 million people all over the world suffer from chronic hepatitis and the Asia-Pacific region constitutes the epicentre of this epidemic. The present article would aim to cover the basic virologic aspects of these viruses and highlight the present scenario of viral hepatitis in India. PMID:27546957

  8. Regulators of Autophagosome Formation in Drosophila Muscles

    PubMed Central

    Zirin, Jonathan; Nieuwenhuis, Joppe; Samsonova, Anastasia; Tao, Rong; Perrimon, Norbert

    2015-01-01

    Given the diversity of autophagy targets and regulation, it is important to characterize autophagy in various cell types and conditions. We used a primary myocyte cell culture system to assay the role of putative autophagy regulators in the specific context of skeletal muscle. By treating the cultures with rapamycin (Rap) and chloroquine (CQ) we induced an autophagic response, fully suppressible by knockdown of core ATG genes. We screened D. melanogaster orthologs of a previously reported mammalian autophagy protein-protein interaction network, identifying several proteins required for autophagosome formation in muscle cells, including orthologs of the Rab regulators RabGap1 and Rab3Gap1. The screen also highlighted the critical roles of the proteasome and glycogen metabolism in regulating autophagy. Specifically, sustained proteasome inhibition inhibited autophagosome formation both in primary culture and larval skeletal muscle, even though autophagy normally acts to suppress ubiquitin aggregate formation in these tissues. In addition, analyses of glycogen metabolic genes in both primary cultured and larval muscles indicated that glycogen storage enhances the autophagic response to starvation, an important insight given the link between glycogen storage disorders, autophagy, and muscle function. PMID:25692684

  9. Donor substrate specificity of 4-alpha-glucanotransferase of porcine liver glycogen debranching enzyme and complementary action to glycogen phosphorylase on debranching.

    PubMed

    Watanabe, Yumiko; Makino, Yasushi; Omichi, Kaoru

    2008-03-01

    Glycogen debranching enzyme (GDE) has both 4-alpha-glucanotransferase and amylo-alpha-1,6-glucosidase activities. Here, we examined 4-alpha-glucanotransferase action of porcine liver GDE on four 6(4)-O-alpha-maltooligosyl-pyridylamino(PA)-maltooctaoses, in the presence or absence of an acceptor, maltohexaose. HPLC analysis of digested fluorogenic branched dextrins revealed that in the presence or absence of acceptor, 6(4)-O-alpha-glucosyl-PA-maltooctaose (B4/81) was liberated from 6(4)-O-alpha-maltopentaosyl-PA-maltooctaose (B4/85), 6(4)-O-alpha-maltotetraosyl-PA-maltooctaose (B4/84) and 6(4)-O-alpha-maltotriosyl-PA-maltooctaose (B4/83), whereas 6(4)-O-alpha-maltosyl-PA-maltooctaose (B4/82) was resistant to the enzyme. The fluorogenic product was further hydrolyzed by amylo-alpha-1,6-glucosidase to PA-maltooctaose (G8PA) and glucose. The ratio of the rates of 4-alpha-glucanotransferase actions on B4/85, B4/84 and B4/83 in the absence of the acceptor was 0.15, 0.42 and 1.00, respectively. The rates increased with increasing amounts of acceptor, changing the ratio of the rates to 0.09, 1.00 and 0.60 (with 0.5 mM maltohexaose) and 0.10, 1.00 and 0.58 (with 1.0 mM maltohexaose), respectively. Donor substrate specificity of GDE 4-alpha-glucanotransferase suggests complementary action of GDE and glycogen phosphorylase on glycogen degradation in the porcine liver. Glycogen phosphorylase degrades the maltooligosaccharide branches of glycogen by phosphorolysis to form maltotetraosyl branches, and phosphorolysis does not proceed further. GDE 4-alpha-glucanotransferase removes a maltotriosyl residue from the maltotetraosyl branch such that the alpha-1,6-linked glucosyl residue is retained. PMID:18174188

  10. Diabetes and Hepatitis B Vaccination

    MedlinePlus

    Diabetes and Hepatitis B Vaccination Information for Diabetes Educators What is hepatitis B? Hepatitis B is a contagious liver disease that results from infection with the hepatitis B virus. When first infected, a person can develop ...

  11. Hepatitis B Blood Tests: FAQ

    MedlinePlus

    ... 2 Billion People have been infected with Hepatitis B Worldwide The Hepatitis B Foundation is working on ... people living with hepatitis B. Learn About Hepatitis B in 10 Other Languages . Resource Video See More ...

  12. Hepatitis Information for the Public

    MedlinePlus

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home ... Outbreaks State and Local Partners & Grantees Resource Center Hepatitis Information for the Public Recommend on Facebook Tweet ...

  13. Effects of a glucokinase activator on hepatic intermediary metabolism: study with 13C-isotopomer-based metabolomics

    PubMed Central

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Wehrli, Suzanne L.; Yudkoff, Marc; Matschinsky, Franz M.

    2013-01-01

    GKAs (glucokinase activators) are promising agents for the therapy of Type 2 diabetes, but little is known about their effects on hepatic intermediary metabolism. We monitored the fate of 13C-labelled glucose in both a liver perfusion system and isolated hepatocytes. MS and NMR spectroscopy were deployed to measure isotopic enrichment. The results demonstrate that the stimulation of glycolysis by GKA led to numerous changes in hepatic metabolism: (i) augmented flux through the TCA (tricarboxylic acid) cycle, as evidenced by greater incorporation of 13C into the cycle (anaplerosis) and increased generation of 13C isotopomers of citrate, glutamate and aspartate (cataplerosis); (ii) lowering of hepatic [Pi] and elevated [ATP], denoting greater phosphorylation potential and energy state; (iii) stimulation of glycogen synthesis from glucose, but inhibition of glycogen synthesis from 3-carbon precursors; (iv) increased synthesis of N-acetylglutamate and consequently augmented ureagenesis; (v) increased synthesis of glutamine, alanine, serine and glycine; and (vi) increased production and outflow of lactate. The present study provides a deeper insight into the hepatic actions of GKAs and uncovers the potential benefits and risks of GKA for treatment of diabetes. GKA improved hepatic bioenergetics, ureagenesis and glycogenesis, but decreased gluconeogenesis with a potential risk of lactic acidosis and fatty liver. PMID:22448977

  14. Gene Therapy for Type I Glycogen Storage Diseases

    PubMed Central

    Chou, Janice Y.; Mansfield, Brian C.

    2008-01-01

    The type I glycogen storage diseases (GSD-I) are a group of related diseases caused by a deficiency in the glucose-6-phosphatase-α (G6Pase-α) system, a key enzyme complex that is essential for the maintenance of blood glucose homeostasis between meals. The complex consists of a glucose-6-phosphate transporter (G6PT) that translocates glucose-6-phosphate from the cytoplasm into the lumen of the endoplasmic reticulum, and a G6Pase-α catalytic unit that hydrolyses the glucose-6-phosphate into glucose and phosphate. A deficiency in G6Pase-α causes GSD type Ia (GSD-Ia) and a deficiency in G6PT causes GSD type Ib (GSD-Ib). Both GSD-Ia and GSD-Ib patients manifest a disturbed glucose homeostasis, while GSD-Ib patients also suffer symptoms of neutropenia and myeloid dysfunctions. G6Pase-α and G6PT are both hydrophobic endoplasmic reticulum-associated transmembrane proteins that can not expressed in soluble active forms. Therefore protein replacement therapy of GSD-I is not an option. Animal models of GSD-Ia and GSD-Ib that mimic the human disorders are available. Both adenovirus- and adeno-associated virus (AAV)-mediated gene therapies have been evaluated for GSD-Ia in these model systems. While adenoviral therapy produces only short term corrections and only impacts liver expression of the gene, AAV-mediated therapy delivers the transgene to both the liver and kidney, achieving longer term correction of the GSD-Ia disorder, although there are substantial differences in efficacy depending on the AAV serotype used. Gene therapy for GSD-Ib in the animal model is still in its infancy, although an adenoviral construct has improved the metabolic profile and myeloid function. Taken together further refinements in gene therapy may hold long term benefits for the treatment of type I GSD disorders. PMID:17430128

  15. Pathogenesis of growth failure and partial reversal with gene therapy in murine and canine Glycogen Storage Disease type Ia

    PubMed Central

    Brooks, Elizabeth Drake; Little, Dianne; Arumugam, Ramamani; Sun, Baodong; Curtis, Sarah; DeMaster, Amanda; Maranzano, Michael; Jackson, Mark W.; Kishnani, Priya; Freemark, Michael S.; Koeberl, Dwight D.

    2013-01-01

    Glycogen Storage Disease type Ia (GSD-Ia) in humans frequently causes delayed bone maturation, decrease in final adult height, and decreased growth velocity. This study evaluates the pathogenesis of growth failure and the effect of gene therapy on growth in GSD-Ia affected dogs and mice. Here we found that homozygous G6pase (−/−) mice with GSD-Ia have normal growth hormone (GH) levels in response to hypoglycemia, decreased insulin-like growth factor (IGF) 1 levels, and attenuated weight gain following administration of GH. Expression of hepatic GH receptor and IGF 1 mRNAs and hepatic STAT5 (phospho Y694) protein levels are reduced prior to and after GH administration, indicating GH resistance. However, restoration of G6Pase expression in the liver by treatment with adeno-associated virus 8 pseudotyped vector expressing G6Pase (AAV2/8-G6Pase) corrected body weight, but failed to normalize plasma IGF 1 in G6pase (−/−) mice. Untreated G6pase (−/−) mice also demonstrated severe delay of growth plate ossification at 12 days of age; those treated with AAV2/8-G6Pase at 14 days of age demonstrated skeletal dysplasia and limb shortening when analyzed radiographically at 6 months of age, in spite of apparent metabolic correction. Moreover, gene therapy with AAV2/9-G6Pase only partially corrected growth in GSD-Ia affected dogs as detected by weight and bone measurements and serum IGF 1 concentrations were persistently low in treated dogs. We also found that heterozygous GSD-Ia carrier dogs had decreased serum IGF 1, adult body weights and bone dimensions compared to wild-type littermates. In sum, these findings suggest that growth failure in GSD-Ia results, at least in part, from hepatic GH resistance. In addition, gene therapy improved growth in addition to promoting long-term survival in dogs and mice with GSD-Ia. PMID:23623482

  16. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis

    PubMed Central

    McCue, Molly E; Valberg, Stephanie J; Miller, Michael B; Wade, Claire; DiMauro, Salvatore; Akman, Hasan O; Mickelson, James R

    2008-01-01

    Summary We describe a gain of function mutation in the skeletal muscle glycogen synthase gene that is responsible for a novel myopathy, and is highly prevalent in multiple breeds of horses because it arose before the founding of many modern breeds. Polysaccharide Storage Myopathy (PSSM) is a novel glycogenosis in horses characterized by abnormal glycogen accumulation in skeletal muscle and muscle damage with exertion. It is unlike glycogen storage diseases resulting from known defects in glycogenolysis, glycolysis and glycogen synthesis that have been described in humans and domestic animals. A genome wide association identified GYS1, encoding skeletal muscle glycogen synthase (GS), as a candidate gene for PSSM. DNA sequence analysis revealed a mutation resulting in an arginine to histidine substitution in a highly conserved region of GS. Functional analysis demonstrated an elevated GS activity in PSSM horses and haplotype analysis and allele age estimation demonstrated that this mutation is identical by descent among horse breeds. This is the first report of a gain of function mutation in GYS1 resulting in a glycogenosis. PMID:18358695

  17. A novel GBE1 gene variant in a child with glycogen storage disease type IV.

    PubMed

    Said, Samar M; Murphree, Marine I; Mounajjed, Taofic; El-Youssef, Mounif; Zhang, Lizhi

    2016-08-01

    Glycogen storage disease type IV is an autosomal recessive disorder of carbohydrates caused by deficiency of amylo-1-4-glycanoglycosyltransferase, which leads to accumulation of amylopectin-like polysaccharides in tissues including liver, heart and neuromuscular system. More than 40 different mutations in the glycogen branching enzyme gene (GBE1) have been described. In this study, we report a 2-year-old boy who presented with developmental delay and muscle weakness. He subsequently was diagnosed with glycogen storage disease type IV based on a liver biopsy histology and electron microscopy. Glycogen branching enzyme activity was in the low range. Genetic analysis demonstrated a novel heterozygous variant (c.760A>G; p.Thr254Ala) in exon 6 of the GBE1 gene, which is believed to be pathogenic. This variant was inherited from the patient's mother who was asymptomatic with normal glycogen branching enzyme activity. Whole-exome sequencing failed to reveal additional variations in the GBE1 gene. PMID:27107456

  18. Effect of acute cold exposure on the mobilization of intramuscular glycogen and triglycerides in the rat.

    PubMed

    Górski, J; Kuryliszyn, A; Wereszczyńska, U

    1981-01-01

    Male Wistar rats, 300-360 g of body weight, were exposed to cold (1 degree) for 3 and 24 h. The levels of glycogen and triglycerides (TG) were estimated in "white" and "red" portions of the quadriceps muscle (FG and POG muscles respectively) in the soleus muscle (SO muscle), and in the heart muscle. It was found that 3 h cold exposure decreased significantly the glycogen level only in the heart muscle and had no effect in the other muscles examined. Exposure to cold for 24 h reduced the glycogen level in FG and FOG muscles, and lowered further the heart glycogen level. No change of glycogen level during cold exposure was observed in SO muscle. The level of TG in each examined muscle was significantly reduced already after 3 h of cold exposure. After 24 h it remained further unchanged in FG and FOG muscles whereas in SO and heart muscles a partial recovery of TG occurred. It is concluded that in warm-acclimatized rats the intramuscular TG play an important role as a local source of free fatty acids during the first period of acute exposure to cold. PMID:7348527

  19. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    SciTech Connect

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-05-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio ((activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)). Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of /sup 125/I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms.

  20. The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae

    PubMed Central

    Abbott, D. Wade; Higgins, Melanie A.; Hyrnuik, Susanne; Pluvinage, Benjamin; van Bueren, Alicia Lammerts; Boraston, Alisdair B.

    2010-01-01

    SUMMARY The genome of Streptococcus pneumoniae strains, as typified by the TIGR4 strain, contains several genes encoding proteins putatively involved in α-glucan degradation, modification and synthesis. The extracellular components comprise an ABC-transporter with its solute-binding protein, MalX, and the hydrolytic enzyme SpuA. We show that of the commonly occurring exogenous α-glucans, S. pneumoniae TIGR4 is only able to grow on glycogen in a MalX and SpuA-dependent manner. SpuA is able to degrade glycogen into a ladder of α-1,4-glucooligosaccharides while the high affinity interaction (Ka ~ 106 M−1) of MalX with maltooligosaccharides plays a key role in promoting the selective uptake of the glycogen degradation products that are produced by SpuA. The X-ray crystallographic analyses of apo- and complexed MalX illuminate the protein’s specificity for the degradation products of glycogen and its striking ability to recognize the helical structure of the ligand. Overall, the results of this work provide new structural and functional insight into streptococcal α-glucan metabolism while supplying biochemical support for the hypothesis that the substrate of the S. pneumoniae α-glucan metabolizing machinery is glycogen, which in a human host is abundant lung epithelial cells, a common target for invasive S. pneumoniae. PMID:20497336

  1. Homeostasis and the glycogen shunt explains aerobic ethanol production in yeast.

    PubMed

    Shulman, Robert G; Rothman, Douglas L

    2015-09-01

    Aerobic glycolysis in yeast and cancer cells produces pyruvate beyond oxidative needs, a paradox noted by Warburg almost a century ago. To address this question, we reanalyzed extensive measurements from (13)C magnetic resonance spectroscopy of yeast glycolysis and the coupled pathways of futile cycling and glycogen and trehalose synthesis (which we refer to as the glycogen shunt). When yeast are given a large glucose load under aerobic conditions, the fluxes of these pathways adapt to maintain homeostasis of glycolytic intermediates and ATP. The glycogen shunt uses glycolytic ATP to store glycolytic intermediates as glycogen and trehalose, generating pyruvate and ethanol as byproducts. This conclusion is supported by studies of yeast with a partial block in the glycogen shunt due to the cif mutation, which found that when challenged with glucose, the yeast cells accumulate glycolytic intermediates and ATP, which ultimately leads to cell death. The control of the relative fluxes, which is critical to maintain homeostasis, is most likely exerted by the enzymes pyruvate kinase and fructose bisphosphatase. The kinetic properties of yeast PK and mammalian PKM2, the isoform found in cancer, are similar, suggesting that the same mechanism may exist in cancer cells, which, under these conditions, could explain their excess lactate generation. The general principle that homeostasis of metabolite and ATP concentrations is a critical requirement for metabolic function suggests that enzymes and pathways that perform this critical role could be effective drug targets in cancer and other diseases. PMID:26283370

  2. The post-exercise glycogen recovery in tissues of trained rats.

    PubMed

    Górski, J; Palka, P; Puch, U; Kiczka, K

    1976-01-01

    The post-exercise glycogen recovery in myocardium, liver, diaphragm muscle and musculus biceps femoris was compared in untrained and trained rats. The glycogen level in myocardium of the trained rats was significantly higher than that in the untrained ones only immediately after the exercise-test and on the second day after the exercise. The liver glycogen levels on each of the examined post-exercise days were similar in both groups and did not differ from the control values. The post-exercise glycogen recovery in the diapraghm muscle of the untrained rats was also similar to that in the trained animals. In musculus bicpes femoris similar post-exercise supercompensation was found in both groups except on the second day when the glycogen level in the trained animals was significantly higher than that in the untrained ones. The results suggest that it is necessary to separate the effects of training from those of the last bout of exercise in the training program when the effect of training is examined. PMID:1274602

  3. Nonlethal evaluation of the physiological health of unionid mussels: Method for biopsy and glycogen analysis

    USGS Publications Warehouse

    Naimo, T.J.; Damschen, E.D.; Rada, R.G.; Monroe, E.M.

    1998-01-01

    In long-lived unionid mussels, many short-term measures of growth are of limited value. Changes in physiological condition may be an early indication of stress, because the increased energy demand associated with stress often results in a depletion of glycogen reserves, the principal storage form of carbohydrates in unionid mussels. Our goal was to nonlethally extract tissue from freshwater mussels and then to develop a rapid and dependable method for the analysis of glycogen in the tissue extracts. A biopsy technique was developed to remove between 5 and 10 mg of food tissue in Amblema plicata plicata. The survival rate did not differ between biopsied and non-biopsied mussels during a 581-d observation period, demonstrating that the biopsy technique will allow nonlethal evaluation of the physiological condition of individual mussels through measurement of changes in contaminant, genetic, and biochemical indicators in tissue. We also modified the standard alkaline digestion and phenol-sulfuric acid analysis of glycogen for use on the small samples of biopsied tissue and to reduce analysis time and cost. We present quality control data, including method detection limits and estimates of precision and bias. The modified analytical method is rapid and accurate and has a method detection limit of 0.014 mg glycogen. Glycogen content in the biopsied samples was well above the method detection limit; it ranged from 0.09 to 0.36 mg, indicating that the method should be applicable to native mussels.

  4. [Viral hepatitis in travellers].

    PubMed

    Abreu, Cândida

    2007-01-01

    Considering the geographical asymmetric distribution of viral hepatitis A, B and E, having a much higher prevalence in the less developed world, travellers from developed countries are exposed to a considerable and often underestimated risk of hepatitis infection. In fact a significant percentage of viral hepatitis occurring in developed countries is travel related. This results from globalization and increased mobility from tourism, international work, humanitarian and religious missions or other travel related activities. Several studies published in Europe and North America shown that more than 50% of reported cases of hepatitis A are travel related. On the other hand frequent outbreaks of hepatitis A and E in specific geographic areas raise the risk of infection in these restricted zones and that should be clearly identified. Selected aspects related with the distribution of hepatitis A, B and E are reviewed, particularly the situation in Portugal according to the published studies, as well as relevant clinical manifestations and differential diagnosis of viral hepatitis. Basic prevention rules considering enteric transmitted hepatitis (hepatitis A and hepatitis E) and parenteral transmitted (hepatitis B) are reviewed as well as hepatitis A and B immunoprophylaxis. Common clinical situations and daily practice "pre travel" advice issues are discussed according to WHO/CDC recommendations and the Portuguese National Vaccination Program. Implications from near future availability of a hepatitis E vaccine, a currently in phase 2 trial, are highlighted. Potential indications for travellers to endemic countries like India, Nepal and some regions of China, where up to 30% of sporadic cases of acute viral hepatitis are caused by hepatitis E virus, are considered. Continued epidemiological surveillance for viral hepatitis is essential to recognize and control possible outbreaks, but also to identify new viral hepatitis agents that may emerge as important global health

  5. B CELLS PROMOTE HEPATIC INFLAMMATION, BILIARY CYST FORMATION, AND SALIVARY GLAND INFLAMMATION IN THE NOD.C3C4 MODEL OF AUTOIMMUNE CHOLANGITIS

    PubMed Central

    Moritoki, Yuki; Tsuda, Masanobu; Tsuneyama, Koichi; Zhang, Weici; Yoshida, Katsunori; Lian, Zhe-Xiong; Yang, Guo-Xiang; Ridgway, William M.; Wicker, Linda S.; Ansari, Aftab A.; Gershwin, M. Eric

    2011-01-01

    There are now several murine models of autoimmune cholangitis that have features both similar and distinct from human PBC. One such model, the NOD.c3c4 mouse, manifests portal cell infiltrates, anti-mitochondrial antibodies but also biliary cysts. The biliary cysts are not a component of PBC and not found in the other murine models. To address the immunopathology in these mice, we generated genetically B cell deficient Igμ−/− NOD.c3c4 mice and compared the immunopathology of these animals to control B cell sufficient NOD.c3c4 mice. B cell deficient mice demonstrated decreased number of non-B cells in the liver accompanied by reduced numbers of activated natural killer cells. The degree of granuloma formation and bile duct damage were comparable to NOD.c3c4 mice. In contrast, liver inflammation, biliary cyst formation and salivary gland inflammation was significantly attenuated in these B cell deficient mice. In conclusion, B cells play a critical role in promoting liver inflammation and also contribute to cyst formation as well as salivary gland pathology in autoimmune NOD.c3c4 mice, illustrating a critical role of B cells in modulating specific organ pathology and, in particular, in exacerbating both the biliary disease and the sialadenitis. PMID:21349500

  6. Hepatic abscesses

    PubMed Central

    Rajagopalan, S.; Langer, V.

    2012-01-01

    Hepatic abscesses are potentially lethal diseases if early diagnosis and treatment are not instituted. They are prevalent all over the globe and pyogenic abscesses are predominant over amoebic. With better control of intra abdominal and systemic infections by a spectrum of antibiotics, aetiology of pyogenic abscesses are secondary to interventions and diseases in the biliary tree to a large extent today. The common organisms isolated are the Gram negative group. Amoebic abscesses continue to plague some regions of the world where hygiene and sanitation are questionable. Over the years, diagnosis, treatment and prognosis have evolved remarkably. Imaging modalities like ultrasonography and CT scan have become the cornerstone of diagnosis. The absence of ionizing radiation makes MRI an attractive alternative in patients who require multiple follow up scans. Serological testing in amoebic abscesses has become more reliable. Though antibiotics have remained the principal modality of management, percutaneous drainage of abscesses have vastly improved the chances of cure and bring down the morbidity drastically in pyogenic abscesses. Amoebic abscesses respond well to medical treatment with nitroimidazoles, and minimally invasive surgical drainage is an option in cases where open surgery is indicated. PMID:24532886

  7. Identification of glycogen synthase as a new substrate for stress-activated protein kinase 2b/p38beta.

    PubMed

    Kuma, Yvonne; Campbell, David G; Cuenda, Ana

    2004-04-01

    The endogenous glycogen synthase in extracts from mouse skeletal muscle, liver and brain bound specifically to SAPK2b (stress-activated protein kinase 2b)/p38b, but not to other members of the group of SAPK/p38 kinases. Glycogen synthase was phosphorylated in vitro more efficiently by SAPK2b/p38b than by SAPK2a/p38a, SAPK3/p38g or SAPK4/p38d. SAPK2b/p38b phosphorylated glycogen synthase in vitro at residues Ser644, Ser652, Thr718 and Ser724, two of which (Ser644 and Ser652) are also phosphorylated by glycogen synthase kinase 3. Thr718 and Ser724 are novel sites not known to be phosphorylated by other protein kinases. Glycogen synthase becomes phosphorylated at Ser644 in response to osmotic shock; this phosphorylation is prevented by pretreatment of the cells with SB 203580, which inhibits SAPK2a/p38a and SAPK2b/p38b activity. In vitro, phosphorylation of glycogen synthase by SAPK2b/p38b alone had no significant effect on its activity, indicating that phosphorylation at residue Ser644 itself is insufficient to decrease glycogen synthase activity. However, after phosphorylation by SAPK2b/p38b, subsequent phosphorylation at Ser640 by glycogen synthase kinase 3 decreased the activity of glycogen synthase. This decrease was not observed when SAPK2b/p38b activity was blocked with SB 203580. These results suggest that SAPK2b/p38b may be a priming kinase that allows glycogen synthase kinase 3 to phosphorylate Ser640 and thereby inhibit glycogen synthase activity. PMID:14680475

  8. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions.

    PubMed

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber's oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  9. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    PubMed Central

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  10. Hepatitis B Test

    MedlinePlus

    ... IgM; anti-HBe; Hepatitis B e Antibody; HBV DNA Formal name: Hepatitis B Virus Testing Related tests: ... produced by the virus, and others detect viral DNA . The main uses for HBV tests include: To ...

  11. Hepatitis Foundation International

    MedlinePlus

    ... partner – it's your best friend. Welcome. The Hepatitis Foundation International (HFI) is a 501 (c) 3 non- ... and cures is your participation in the Hepatitis Foundation International Registry. Whether you are affected, a caregiver, ...

  12. Hepatitis A - children

    MedlinePlus

    ... hepatitis A. Children can get hepatitis A at day care center from other children or from child care ... treatment with immunoglobulin therapy. If your child attends day care: Make sure the children and staff at the ...

  13. Hepatitis C (image)

    MedlinePlus

    Hepatitis C is a virus-caused liver inflammation which may cause jaundice, fever and cirrhosis. Persons who are most at risk for contracting and spreading hepatitis C are those who share needles for injecting drugs ...

  14. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.

    PubMed

    Guan, Lili; Feng, Haiyan; Gong, Dezheng; Zhao, Xu; Cai, Li; Wu, Qiong; Yuan, Bo; Yang, Mei; Zhao, Jie; Zou, Yuan

    2013-12-01

    Insulin resistance (IR) increases with age and plays a key role in the pathogenesis of type 2 diabetes mellitus. Oxidative stress and mitochondrial dysfunction are supposed to be major factors leading to age-related IR. Genipin, an extract from Gardenia jasminoides Ellis fruit, has been reported to stimulate insulin secretion in pancreatic islet cells by regulating mitochondrial function. In this study, we first investigated the effects of genipin on insulin sensitivity and the potential mitochondrial mechanisms in the liver of aging rats. The rats were randomly assigned to receive intraperitoneal injections of either 25mg/kg genipin or vehicle once daily for 12days. The aging rats showed hyperinsulinemia and hyperlipidemia, and insulin resistance as examined by the decreased glucose decay constant rate during insulin tolerance test (kITT). The hepatic tissues showed steatosis and reduced glycogen content. Hepatic malondialdehyde level and mitochondrial reactive oxygen species (ROS) were higher, and levels of mitochondrial membrane potential (MMP) and ATP were lower as compared with the normal control rats. Administration of genipin ameliorated systemic and hepatic insulin resistance, alleviated hyperinsulinemia, hyperglyceridemia and hepatic steatosis, relieved hepatic oxidative stress and mitochondrial dysfunction in aging rats. Furthermore, genipin not only improved insulin sensitivity by promoting insulin-stimulated glucose consumption and glycogen synthesis, inhibited cellular ROS overproduction and alleviated the reduction of levels of MMP and ATP, but also reversed oxidative stress-associated JNK hyperactivation and reduced Akt phosphorylation in palmitate-treated L02 hepatocytes. In conclusion, genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. PMID:24041487

  15. Benzo(a)pyrene (B(a)P) metabolism and in vitro formation of B(a)P-DNA adducts by hepatic microsomes from rats fed diets containing corn and menhaden oils

    SciTech Connect

    Dharwadkar, S.; Bellow, J.; Ramanathan, R.; Wade, A.

    1986-03-01

    Dietary unsaturated fat is required for maximum induction of hepatic mixed function oxidases responsible for activating carcinogens which may bind covalently to DNA. The aim of this study was to assess the influence of dietary fat type on in vitro B(a)P metabolism and B(a)P-DNA adduct formation. Male rats were starved 2 days and refed diet devoid of fat, or containing 20% corn oil (CO) or 20% menhaden oil (MO) for 4 days. Both dietary fats increased Vmax for B(a)P hydroxylation without affecting Km. Phenobarbital (PB) administration increased Vmax in all animals but Km was increased only in rats fed the fat diets. PB resulted in decreased B(a)P metabolism when conducted at 15 =M only in rats fed the two fat diets even in the presence of increased cytochrome P-450 (P-450). This effect was due to a decrease in B(a)P metabolism at low substrate concentrations in PB treated fat-fed animals. Binding of B(a)P to calf-thymus DNA was increased in animals fed both fats which was enhanced further by PB only in rats fed the CO and MO diets. When the data are calculated as B(a)P metabolized per unit of P-450, PB seems to induce a P-450 in fat-fed animals having lower affinity and capacity for B(a)P metabolism and activation.

  16. Acute and chronic drug-induced hepatitis.

    PubMed

    Pessayre, D; Larrey, D

    1988-04-01

    Adverse drug reactions may mimic almost any kind of liver disease. Acute hepatitis is often due to the formation of reactive metabolites in the liver. Despite several protective mechanisms (epoxide hydrolases, conjugation with glutathione), this formation may lead to predictable toxic hepatitis after hugh overdoses (e.g. paracetamol), or to idiosyncratic toxic hepatitis after therapeutic doses (e.g. isoniazid). Both genetic factors (e.g. constitutive levels of cytochrome P-450 isoenzymes, or defects in protective mechanisms) and acquired factors (e.g. malnutrition, or chronic intake of alcohol or other microsomal enzyme inducers) may explain the unique susceptibility of some patients. Formation of chemically reactive metabolites may also lead to allergic hepatitis, probably through immunization against plasma membrane protein epitopes modified by the covalent binding of the reactive metabolites. This may be the mechanism for acute hepatitis produced by many drugs (e.g. amineptine, erythromycin derivatives, halothane, imipramine, isaxonine, alpha-methyldopa, tienilic acid, etc.). Genetic defects in several protective mechanisms (e.g. epoxide hydrolase, acetylation) may explain the unique susceptibility of some patients, possibly by increasing exposure to allergenic, metabolite-altered plasma membrane protein epitopes. Like toxic idiosyncratic hepatitis, allergic hepatitis occurs in a few patients only. Unlike toxic hepatitis, allergic hepatitis is frequently associated with fever, rash or other hypersensitivity manifestations; it may be hepatocellular, mixed or cholestatic; it promptly recurs after inadvertent drug rechallenge. Lysosomal phospholipidosis occurs frequently with three antianginal drugs (diethylaminoethoxyhexestrol, amiodarone and perhexiline). These cationic, amphiphilic drugs may form phospholipid-drug complexes within lysosomes. Such complexes resist phospholipases and accumulate within enlarged lysosomes, forming myeloid figures. This

  17. Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in Arctic polar bear, beluga whale, and ringed seal.

    PubMed

    Letcher, Robert J; Chu, Shaogang; McKinney, Melissa A; Tomy, Gregg T; Sonne, Christian; Dietz, Rune

    2014-10-01

    Perfluorooctane sulfonate (PFOS) has been reported to be among the most concentrated persistent organic pollutants in Arctic marine wildlife. The present study examined the in vitro depletion of major PFOS precursors, N-ethyl-perfluorooctane sulfonamide (N-EtFOSA) and perfluorooctane sulfonamide (FOSA), as well as metabolite formation using an assay based on enzymatically viable liver microsomes for three top Arctic marine mammalian predators, polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat (Rattus rattus) serving as a general mammalian model and positive control. Rat assays showed that N-EtFOSA (38 nM or 150 ng mL(-1)) to FOSA metabolism was >90% complete after 10 min, and at a rate of 23 pmol min(-1) mg(-1) protein. Examining all species in a full 90 min incubation assay, there was >95% N-EtFOSA depletion for the rat active control and polar bear microsomes, ∼65% for ringed seals, and negligible depletion of N-EtFOSA for beluga whale. Concomitantly, the corresponding in vitro formation of FOSA from N-EtFOSA was also quantitatively rat≈polar bear>ringed seal>beluga whale. A lack of enzymatic ability and/or a rate too slow to be detected likely explains the lack of N-EtFOSA to FOSA transformation for beluga whale. In the same assays, the depletion of the FOSA metabolite was insignificant (p>0.01) and with no concomitant formation of PFOS metabolite. This suggests that, in part, a source of FOSA is the biotransformation of accumulated N-EtFOSA in free-ranging Arctic ringed seal and polar bear. PMID:25048910

  18. Identification and regulation of glycogen synthase kinase-3 during bovine embryo development.

    PubMed

    Aparicio, I M; Garcia-Herreros, M; Fair, T; Lonergan, P

    2010-07-01

    The aim of this study was to examine the presence and regulation of glycogen synthase kinase-3alpha (GSK3A) and GSK-3beta (GSK3B) in bovine embryos and their possible roles in embryo development. Our results show that GSK3A and GSK3B are present in bovine embryos at the two-cell stage to the hatched blastocyst stage. Bovine embryo development was associated with an increase in the phosphorylation of both isoforms, being statistically significant at blastocyst and hatched blastocyst stages, compared with earlier stages. Inhibition of GSK3 with CT99021 (3 microM) resulted in a significant increase in the percentage and quality of blastocysts, while inhibition of GSK3 with lithium chloride (LiCl; 20 mM) significantly reduced at the proportion of eight-cell embryos on day 3 and inhibited blastocyst formation. The use of LY294002 (10 microM), a specific inhibitor of phosphatidylinositol-3 kinase, also produced a significant decrease in embryo development. In addition, treatment with LiCl and LY294002 produced a significant decrease in the serine phosphorylation of both isoforms of GSK3. Finally, CT99021 and LiCl reduced the phosphorylation of beta-catenin on Ser45 in two-cell embryos, while LY294002 increased it. Despite the fact that LiCl inhibited GSK3 activity, as demonstrated by beta-catenin phosphorylation, its effects on the bovine embryo could be mediated through other signaling pathways leading finally to a decrease in the phosphorylation of GSK3 and a reduction in embryo development. Therefore, in conclusion, GSK3A/B serine phosphorylation was positively correlated with embryo development, indicating the importance of an accurate regulation of GSK3 activity during developmental stages to achieve normal bovine embryo development. PMID:20427566

  19. Metabolism of bupropion by baboon hepatic and placental microsomes

    PubMed Central

    Wang, Xiaoming; Abdelrahman, Doaa R.; Fokina, Valentina M.; Hankins, Gary D.V.; Ahmed, Mahmoud S.; Nanovskaya, Tatiana N.

    2011-01-01

    The aim of this investigation was to determine the biotransformation of bupropion by baboon hepatic and placental microsomes, identify the enzyme(s) catalyzing the reaction(s) and determine its kinetics. Bupropion was metabolized by baboon hepatic and placental microsomes to hydroxybupropion (OH-BUP), threo- (TB) and erythrohydrobupropion (EB). OH-bupropion was the major metabolite formed by hepatic microsomes (Km 36 ± 6 µM, Vmax 258 ± 32 pmol mg protein−1 min−1), however the formation of OH-BUP by placental microsomes was below the limit of quantification. The apparent Km values of bupropion for the formation of TB and EB by hepatic and placental microsomes were similar. The selective inhibitors of CYP2B6 (ticlopidine and phencyclidine) and monoclonal antibodies raised against human CYP2B6 isozyme caused 80% inhibition of OH-BUP formation by baboon hepatic microsomes. The chemical inhibitors of aldo-keto reductases (flufenamic acid), carbonyl reductases (menadione), and 11β-hydroxysteroid dehydrogenases (18β-glycyrrhetinic acid) significantly decreased the formation of TB and EB by hepatic and placental microsomes. Data indicate that CYP2B of baboon hepatic microsomes is responsible for biotransformation of bupropion to OH-BUP, while hepatic and placental short chain dehydrogenases/reductases and to a lesser extent aldo-keto reductases are responsible for the reduction of bupropion to TB and EB. PMID:21570381

  20. Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil.

    PubMed

    Holmstrup, Martin; Sørensen, Jesper G; Overgaard, Johannes; Bayley, Mark; Bindesbøl, Anne-Mette; Slotsbo, Stine; Fisker, Karina V; Maraldo, Kristine; Waagner, Dorthe; Labouriau, Rodrigo; Asmund, Gert

    2011-01-01

    Stress originating from toxicants such as heavy metals can induce compensatory changes in the energy metabolism of organisms due to increased energy expenses associated with detoxification and excretion processes. These energy expenses may be reflected in the available energy reserves such as glycogen. In a field study the earthworm, Dendrobaena octaedra, was collected from polluted areas, and from unpolluted reference areas. If present in the environment, cadmium, lead and copper accumulated to high concentrations in D. octaedra. In contrast, other toxic metals such as aluminium, nickel and zinc appeared to be regulated and kept at low internal concentrations compared to soil concentrations. Lead, cadmium and copper accumulation did not correlate with glycogen reserves of individual worms. In contrast, aluminium, nickel and zinc were negatively correlated with glycogen reserves. These results suggest that coping with different metals in earthworms is associated with differential energy demands depending on the associated detoxification strategy. PMID:20870326

  1. [Glycogen storage disease by amylo 1,6-glucosidase deficiency (author's transl)].

    PubMed

    Méndez Aparicio, F M

    1980-10-01

    A case of liver glycogen storage disease with amylo 1,6-glucosidase deficiency is reported. Enlarged liver was found at birth, and it is now accompanied by splenomegaly, low fasting blood glucose with ketonuria, elevation of transaminase values and glycogen accumulation with connective periportal tissue in liver histological study. In this glucogenosis results of functional tests on carbohidrate metabolism and glycogen enzymatic assay showed a direct relationship between functional and biochemical behaviour of liver cells. Amylo 1,6-glucosidase deficiency is accompanied by absence of glucogenolysis when glucagon is administrated after a long fast, and an increase of blood glucose when glucagon is administrated after food ingestion. Glycolisis tests show blood lactate elevation when some hexose or alanine are administrated; glyconeogenesis tests show blood glucose elevation when hexose, alanine or glycerol are administrated. PMID:6937153

  2. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy?

    PubMed

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2015-02-01

    Epilepsy is a family of brain disorders with a largely unknown etiology and high percentage of pharmacoresistance. The clinical manifestations of epilepsy are seizures, which originate from aberrant neuronal synchronization and hyperexcitability. Reactive astrocytosis, a hallmark of the epileptic tissue, develops into loss-of-function of glutamine synthetase, impairment of glutamate-glutamine cycle and increase in extracellular and astrocytic glutamate concentration. Here, we argue that chronically elevated intracellular glutamate level in astrocytes is instrumental to alterations in the metabolism of glycogen and leads to the synthesis of polyglucosans. Unaccessibility of glycogen-degrading enzymes to these insoluble molecules compromises the glycogenolysis-dependent reuptake of extracellular K(+) by astrocytes, thereby leading to increased extracellular K(+) and associated membrane depolarization. Based on current knowledge, we propose that the deterioration in structural homogeneity of glycogen particles is relevant to disruption of brain K(+) homeostasis and increased susceptibility to seizures in epilepsy. PMID:24643875

  3. Hepatitis E Pathogenesis.

    PubMed

    Lhomme, Sébastien; Marion, Olivier; Abravanel, Florence; Chapuy-Regaud, Sabine; Kamar, Nassim; Izopet, Jacques

    2016-01-01

    Although most hepatitis E virus (HEV) infections are asymptomatic, some can be severe, causing fulminant hepatitis and extra-hepatic manifestations, including neurological and kidney injuries. Chronic HEV infections may also occur in immunocompromised patients. This review describes how our understanding of the pathogenesis of HEV infection has progressed in recent years. PMID:27527210

  4. Treating hepatitis C.

    PubMed

    Hanson, Karmen

    2014-10-01

    (1) New treatments for hepatitis C are curing more people than before. (2) Baby boomers make up an estimated 75 percent of all cases of hepatitis C. (3) Medicare and some insurance plans cover screening for hepatitis C as a preventive service without a copayment. PMID:25514812

  5. Hepatitis E Pathogenesis

    PubMed Central

    Lhomme, Sébastien; Marion, Olivier; Abravanel, Florence; Chapuy-Regaud, Sabine; Kamar, Nassim; Izopet, Jacques

    2016-01-01

    Although most hepatitis E virus (HEV) infections are asymptomatic, some can be severe, causing fulminant hepatitis and extra-hepatic manifestations, including neurological and kidney injuries. Chronic HEV infections may also occur in immunocompromised patients. This review describes how our understanding of the pathogenesis of HEV infection has progressed in recent years. PMID:27527210

  6. Hepatitis B (HBV)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Hepatitis B (HBV) KidsHealth > For Teens > Hepatitis B (HBV) Print A A A Text Size ... Prevented? How Is It Treated? What Is It? Hepatitis (pronounced: hep-uh-TIE-tiss) is a disease ...

  7. Glycogen repletion and exercise endurance in rats adapted to a high fat diet.

    PubMed

    Conlee, R K; Hammer, R L; Winder, W W; Bracken, M L; Nelson, A G; Barnett, D W

    1990-03-01

    It is well accepted that exercise endurance is directly related to the amount of carbohydrate stored in muscle and that a low carbohydrate diet reduces glycogen storage and exercise performance. However, more recent evidence has shown that when the organism adapts to a high fat diet endurance is not hindered. The present study was designed to test that claim and to further determine if animals adapted to a high fat diet could recover from exhausting exercise and exercise again in spite of carbohydrate deprivation. Fat-adapted (3 to 4 weeks, 78% fat, 1% carbohydrates) rats (FAT) ran (28 m/min, 10% grade) as long as carbohydrate-fed (69% carbohydrates) animals (CHO) (115 v 109 minutes, respectively) in spite of lower pre-exercise glycogen levels in red vastus muscle (36 v 54 mumols/g) and liver (164 v 313 mumols/g) in the FAT group. Following 72 hours of recovery on the FAT diet, glycogen in muscle had replenished to 42 mumols/g (v 52 for CHO) and liver glycogen to 238 mumols/g (v 335 for CHO). The animals were run to exhaustion a second time and run times were again similar (122 v 132 minutes FAT v CHO). When diets were switched after run 1, FAT-adapted animals, which received carbohydrates for 72 hours, restored muscle and liver glycogen (48 and 343 mumols/g, respectively) and then ran longer (144 minutes) than CHO-adapted animals (104 minutes) that ate fat for 72 hours and that had reduced glycogen repletion. We conclude that, in contrast to the classic CHO loading studies in humans that involved acute (72 hours) fat feedings and subsequently reduced endurance, rats adapted to a high fat diet do not have a decrease in endurance capacity even after recovery from previous exhausting work bouts. Part of this adaptation may involve the increased storage and utilization of intramuscular triglycerides (TG) as observed in the present experiment. PMID:2308519

  8. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use

    PubMed Central

    Boon, Hanneke; Gijsen, Annemie P.; Stegen, Jos H. C. H.; Kuipers, Harm; van Loon, Luc J. C.

    2007-01-01

    Using contemporary stable-isotope methodology and fluorescence microscopy, we assessed the impact of carbohydrate supplementation on whole-body and fiber-type-specific intramyocellular triacylglycerol (IMTG) and glycogen use during prolonged endurance exercise. Ten endurance-trained male subjects were studied twice during 3 h of cycling at 63 ± 4% of maximal O2 uptake with either glucose ingestion (CHO trial; 0.7 g CHO kg−1 h−1) or without (CON placebo trial; water only). Continuous infusions with [U-13C] palmitate and [6,6-2H2] glucose were applied to quantify plasma free fatty acids (FFA) and glucose oxidation rates and to estimate intramyocellular lipid and glycogen use. Before and after exercise, muscle biopsy samples were taken to quantify fiber-type-specific IMTG and glycogen content. Plasma glucose rate of appearance (Ra) and carbohydrate oxidation rates were substantially greater in the CHO vs CON trial. Carbohydrate supplementation resulted in a lower muscle glycogen use during the first hour of exercise in the CHO vs CON trial, resulting in a 38 ± 19 and 57 ± 22% decreased utilization in type I and II muscle-fiber glycogen content, respectively. In the CHO trial, both plasma FFA Ra and subsequent plasma FFA concentrations were lower, resulting in a 34 ± 12% reduction in plasma FFA oxidation rates during exercise (P < 0.05). Carbohydrate intake did not augment IMTG utilization, as fluorescence microscopy revealed a 76 ± 21 and 78 ± 22% reduction in type I muscle-fiber lipid content in the CHO and CON trial, respectively. We conclude that carbohydrate supplementation during prolonged cycling exercise does not modulate IMTG use but spares muscle glycogen use during the initial stages of exercise in endurance-trained men. PMID:17333244

  9. Postexercise Glycogen Recovery and Exercise Performance is Not Significantly Different Between Fast Food and Sport Supplements.

    PubMed

    Cramer, Michael J; Dumke, Charles L; Hailes, Walter S; Cuddy, John S; Ruby, Brent C

    2015-10-01

    A variety of dietary choices are marketed to enhance glycogen recovery after physical activity. Past research informs recommendations regarding the timing, dose, and nutrient compositions to facilitate glycogen recovery. This study examined the effects of isoenergetic sport supplements (SS) vs. fast food (FF) on glycogen recovery and exercise performance. Eleven males completed two experimental trials in a randomized, counterbalanced order. Each trial included a 90-min glycogen depletion ride followed by a 4-hr recovery period. Absolute amounts of macronutrients (1.54 ± 0.27 g·kg-1 carbohydrate, 0.24 ± 0.04 g·kg fat-1, and 0.18 ±0.03g·kg protein-1) as either SS or FF were provided at 0 and 2 hr. Muscle biopsies were collected from the vastus lateralis at 0 and 4 hr post exercise. Blood samples were analyzed at 0, 30, 60, 120, 150, 180, and 240 min post exercise for insulin and glucose, with blood lipids analyzed at 0 and 240 min. A 20k time-trial (TT) was completed following the final muscle biopsy. There were no differences in the blood glucose and insulin responses. Similarly, rates of glycogen recovery were not different across the diets (6.9 ± 1.7 and 7.9 ± 2.4 mmol·kg wet weight- 1·hr-1 for SS and FF, respectively). There was also no difference across the diets for TT performance (34.1 ± 1.8 and 34.3 ± 1.7 min for SS and FF, respectively. These data indicate that short-term food options to initiate glycogen resynthesis can include dietary options not typically marketed as sports nutrition products such as fast food menu items. PMID:25811308

  10. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance.

    PubMed

    Sherman, W M; Costill, D L; Fink, W J; Miller, J M

    1981-05-01

    This study examined the effect of three exercise-diet regimens on muscle glycogen supercompensation and subsequent performance during a 20.9-km run. A diet containing 15% carbohydrate (CHO,L), 50% CHO (M), or 70% (CHO (H) was arranged in three trials as follows: trial A = 3 days L, 3 days H; trial B = 3 days M, 3 days H; trial C = 6 days M. For each trial a 5-day depletion-taper exercise sequence was conducted on the treadmill at 73% VO2 max. The runs were 90, 40, 40, 20, and 20 min, respectively. A day of rest preceded the 20.9-km performance run. Muscle biopsies were obtained from the gastrocnemius on days 4 and 7 (both prior to and after the performance run). Trials A, B, and C elevated muscle glycogen to 207, 203, and 159 mmol glucosyl units/kg wet tissue (mmG), respectively. The performance run in both trials A and B utilized significantly more glycogen than in trial C: 5.0 and 5.1 mmG/km vs. 3.1 mmG/km. There were, however, no differences in either performance run times or post-performance run glycogen levels between the trials. These data demonstrate that (1) muscle glycogen can be elevated to high levels with a moderate exercise-diet regimen; (2) initial muscle glycogen levels influence the amount subsequently utilized during exercise; (3) carbohydrate loading is of no benefit to performance for trained runners during a 20.9-km run. PMID:7333741

  11. Role of glucose transport in glycogen supercompensation in reweighted rat skeletal muscle.

    PubMed

    Henriksen, E J; Stump, C S; Trinh, T H; Beaty, S D

    1996-05-01

    Hindlimb weight bearing after a 3-day period of hindlimb suspension (reweighting) of juvenile rats results in a marked transient elevation in soleus glycogen concentration that cannot be explained on the basis of the activities of glycogen synthase and phosphorylase. We have hypothesized that enhanced glucose transport activity could underlie this response. We directly tested this hypothesis by assessing the response of insulin-dependent and insulin-independent glucose transport activity (in vitro 2-[1,2-3H]deoxy-D-glucose uptake) as well as glucose transporter (GLUT-4) protein levels during a 48-h reweighting period. After a net glycogen loss (from 29 +/- 2 to 16 +/- 1 nmol/mg muscle; P < 0.05) during the first 2 h of reweighting, glycogen accumulated at an average rate of 1.4 nmol.mg-1.h-1 up to 18 h, reaching an apex of 38 +/- 1 nmol/mg. During this same reweighting period, insulin-independent, but not insulin-dependent, glucose transport activity was significantly enhanced (P < 0.05 vs. weight-bearing control values) and was associated with an elevated level of GLUT-4 protein and the specific activity of total hexokinase. The specific activity of citrate synthase was also increased. By 24 h of reweighting, although insulin-independent glucose transport activity and GLUT-4 protein remained elevated, glycogen accumulation had ceased, likely due to enhanced phosphorylase activity at this time point. These results are consistent with the interpretation that the glycogen supercompensation seen during reweighting of the rat soleus may be regulated in part by an enhanced glucose flux arising from an increase in insulin-independent glucose transport activity and hexokinase activity. PMID:8727537

  12. CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells.

    PubMed

    Wang, Shu-Ching Mary; Dowhan, Dennis H; Eriksson, Natalie A; Muscat, George E O

    2012-06-01

    CARM1 (co-activator-associated arginine methyltransferase 1)/PRMT4 (protein arginine methyltransferase 4), functions as a co-activator for transcription factors that are regulators of muscle fibre type and oxidative metabolism, including PGC (peroxisome-proliferator-activated receptor γ co-activator)-1α and MEF2 (myocyte enhancer factor 2). We observed significantly higher Prmt4 mRNA expression in comparison with Prmt1-Prmt6 mRNA expression in mouse muscle (in vitro and in vivo). Transfection of Prmt4 siRNA (small interfering RNA) into mouse skeletal muscle C2C12 cells attenuated PRMT4 mRNA and protein expression. We subsequently performed additional qPCR (quantitative PCR) analysis (in the context of metabolism) to examine the effect of Prmt4 siRNA expression on >200 critical genes that control (and are involved in) lipid, glucose and energy homoeostasis, and circadian rhythm. This analysis revealed a strikingly specific metabolic expression footprint, and revealed that PRMT4 is necessary for the expression of genes involved in glycogen metabolism in skeletal muscle cells. Prmt4 siRNA expression selectively suppressed the mRNAs encoding Gys1 (glycogen synthase 1), Pgam2 (muscle phosphoglycerate mutase 2) and Pygm (muscle glycogen phosphorylase). Significantly, PGAM, PYGM and GYS1 deficiency in humans causes glycogen storage diseases type X, type V/McArdle's disease and type 0 respectively. Attenuation of PRMT4 was also associated with decreased expression of the mRNAs encoding AMPK (AMP-activated protein kinase) α2/γ3 (Prkaa2 and Prkag3) and p38 MAPK (mitogen-activated protein kinase), previously implicated in Wolff-Parkinson-White syndrome and Pompe Disease (glycogen storage disease type II). Furthermore, stable transfection of two PRMT4-site-specific (methyltransferase deficient) mutants (CARM1/PRMT4 VLD and CARM1E267Q) significantly repressed the expression of Gys1, Pgam2 and AMPKγ3. Finally, in concordance, we observed increased and decreased glycogen

  13. Hepatitis B vaccine education programs: what really works?

    PubMed

    Handelman, E Y

    1992-06-01

    1. Health care workers need to know that hepatitis B vaccine provides a safe, effective protection for them against a significant occupational hazard. 2. Several theoretical models can be used to design hepatitis B education programs, including motivational theories, the Health Belief Model, and andragogy. Specific recommendations can be made about the plan, format, content, and evaluation of adult education programs about hepatitis B. Federal agencies, including the Department of Health and Human Services and the Department of Labor, have established criteria for hepatitis B education programs. PMID:1388368

  14. Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans.

    PubMed

    Boyer, Laura; Roussel, Xavier; Courseaux, Adeline; Ndjindji, Ofilia M; Lancelon-Pin, Christine; Putaux, Jean-Luc; Tetlow, Ian J; Emes, Michael J; Pontoire, Bruno; D' Hulst, Christophe; Wattebled, Fabrice

    2016-07-01

    Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan. PMID:26715025

  15. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    PubMed

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  16. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism

    PubMed Central

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-01-01

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968

  17. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy.

    PubMed

    Zois, Christos E; Harris, Adrian L

    2016-02-01

    Metabolic reprogramming is a hallmark of cancer cells and contributes to their adaption within the tumour microenvironment and resistance to anticancer therapies. Recently, glycogen metabolism has become a recognised feature of cancer cells since it is upregulated in many tumour types, suggesting that it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells under stress conditions such as hypoxia, glucose deprivation and anticancer treatment. The various methods to detect glycogen in tumours in vivo as well as pharmacological modulators of glycogen metabolism are also reviewed. Finally, we discuss the therapeutic value of targeting glycogen metabolism as a strategy for combinational approaches in cancer treatment. PMID:26882899

  18. Pathogenesis of Hepatic Encephalopathy

    PubMed Central

    Ciećko-Michalska, Irena; Szczepanek, Małgorzata; Słowik, Agnieszka; Mach, Tomasz

    2012-01-01

    Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO) on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy. PMID:23316223

  19. Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids?

    PubMed

    Fainberg, Hernan P; Bodley, Katherine; Bacardit, Jaume; Li, Dongfang; Wessely, Frank; Mongan, Nigel P; Symonds, Michael E; Clarke, Lynne; Mostyn, Alison

    2012-01-01

    The Meishan pig breed exhibits increased prolificacy and reduced neonatal mortality compared to commercial breeds, such as the Large White, prompting breeders to introduce the Meishan genotype into commercial herds. Commercial piglets are highly susceptible to hypoglycemia, hypothermia, and death, potentially due to limited lipid stores and/or delayed hepatic metabolic ability. We therefore hypothesized that variation in hepatic development and lipid metabolism could contribute to the differences in neonatal mortality between breeds. Liver samples were obtained from piglets of each breed on days 0, 7, and 21 of postnatal age and subjected to molecular and biochemical analysis. At birth, both breeds exhibited similar hepatic glycogen contents, despite Meishan piglets having significantly lower body weight. The livers from newborn Meishan piglets exhibited increased C18∶1n9C and C20∶1n9 but lower C18∶0, C20∶4n6, and C22∶6n3 fatty acid content. Furthermore, by using an unsupervised machine learning approach, we detected an interaction between C18∶1n9C and glycogen content in newborn Meishan piglets. Bioinformatic analysis could identify unique age-based clusters from the lipid profiles in Meishan piglets that were not apparent in the commercial offspring. Examination of the fatty acid signature during the neonatal period provides novel insights into the body composition of Meishan piglets that may facilitate liver responses that prevent hypoglycaemia and reduce offspring mortality. PMID:23155453

  20. Starch Binding Domain-containing Protein 1 Plays a Dominant Role in Glycogen Transport to Lysosomes in Liver.

    PubMed

    Sun, Tao; Yi, Haiqing; Yang, Chunyu; Kishnani, Priya S; Sun, Baodong

    2016-08-01

    A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function. PMID:27358407

  1. Hepatitis: protecting BMETs & CEs.

    PubMed

    Baker, S A

    1994-01-01

    Hepatitis is the primary occupational hazard for healthcare workers. Not until the 1970s were hepatitis viruses isolated and identified as types A and B. In the late 1970s, hepatitis D was discovered as a major cause of fulminant hepatitis. Soon, it was evident that another type was also at work. Because testing was only available for types A and B, the new category was referred to as non-A, non-B. In the 1980s, scientists identified two more viruses from this non-A, non-B group, namely hepatitis E and hepatitis C. These five types of hepatitis have different modes of transmission. The fecal-to-oral route is the mode of transmission for hepatitis types A and E. But, types B and D are bloodborne pathogens. With the advent of a safe vaccine for hepatitis B, this category is declining. To date, hepatitis C appears to have multiple routes of transmission, with half the cases being posttransfusion. In the United States, 85,000 people per year develop chronic hepatitis C, which ultimately leads to severe liver damage. This paper addresses each of the five viruses that have been grouped by routes of transmission, prevention techniques for BMETs and CEs, and statistics of reported cases to the Centers for Disease Control and Prevention (CDCP) over the last 20 years. PMID:10139739

  2. Silencing Glycogen Synthase Kinase-3β Inhibits Acetaminophen Hepatotoxicity and Attenuates JNK Activation and Loss of Glutamate Cysteine Ligase and Myeloid Cell Leukemia Sequence 1*

    PubMed Central

    Shinohara, Mie; Ybanez, Maria D.; Win, Sanda; Than, Tin Aung; Jain, Shilpa; Gaarde, William A.; Han, Derick; Kaplowitz, Neil

    2010-01-01

    Previously we demonstrated that c-Jun N-terminal kinase (JNK) plays a central role in acetaminophen (APAP)-induced liver injury. In the current work, we examined other possible signaling pathways that may also contribute to APAP hepatotoxicity. APAP treatment to mice caused glycogen synthase kinase-3β (GSK-3β) activation and translocation to mitochondria during the initial phase of APAP-induced liver injury (∼1 h). The silencing of GSK-3β, but not Akt-2 (protein kinase B) or glycogen synthase kinase-3α (GSK-3α), using antisense significantly protected mice from APAP-induced liver injury. The silencing of GSK-3β affected several key pathways important in conferring protection against APAP-induced liver injury. APAP treatment was observed to promote the loss of glutamate cysteine ligase (GCL, rate-limiting enzyme in GSH synthesis) in liver. The silencing of GSK-3β decreased the loss of hepatic GCL, and promoted greater GSH recovery in liver following APAP treatment. Silencing JNK1 and -2 also prevented the loss of GCL. APAP treatment also resulted in GSK-3β translocation to mitochondria and the degradation of myeloid cell leukemia sequence 1 (Mcl-1) in mitochondrial membranes in liver. The silencing of GSK-3β reduced Mcl-1 degradation caused by APAP treatment. The silencing of GSK-3β also resulted in an inhibition of the early phase (0–2 h), and blunted the late phase (after 4 h) of JNK activation and translocation to mitochondria in liver following APAP treatment. Taken together our results suggest that activation of GSK-3β is a key mediator of the initial phase of APAP-induced liver injury through modulating GCL and Mcl-1 degradation, as well as JNK activation in liver. PMID:20061376

  3. Halogen-substituted (C-β-D-glucopyranosyl)-hydroquinone regioisomers: synthesis, enzymatic evaluation and their binding to glycogen phosphorylase.

    PubMed

    Alexacou, Kyra-Melinda; Zhang, Yun Zhi; Praly, Jean-Pierre; Zographos, Spyros E; Chrysina, Evangelia D; Oikonomakos, Nikos G; Leonidas, Demetres D

    2011-09-01

    Electrophilic halogenation of C-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl) 1,4-dimethoxybenzene (1) afforded regioselectively products halogenated at the para position to the D-glucosyl moiety (8, 9) that were deacetylated to 3 (chloride) and 16 (bromide). For preparing meta regioisomers, 1 was efficiently oxidized with CAN to afford C-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl) 1,4-benzoquinone 2 which, in either MeOH or H(2)O-THF containing few equivalents of AcCl, added hydrochloric acid to produce predominantly meta (with respect to the sugar moiety) chlorinated hydroquinone derivatives 5 and 18, this latter being deacetylated to 4. The deacetylated meta (4, 5) or para (3, 16) halohydroquinones were evaluated as inhibitors of glycogen phosphorylase (GP, a molecular target for inhibition of hepatic glycogenolysis under high glucose concentrations) by kinetics and X-ray crystallography. These compounds are competitive inhibitors of GPb with respect to α-D-glucose-1-phosphate. The measured IC(50) values (μM) [169.9±10.0 (3), 95 (4), 39.8±0.3 (5) 136.4±4.9 (16)] showed that the meta halogenated inhibitors (4, 5) are more potent than their para analogs (3, 16). The crystal structures of GPb in complex with these compounds at high resolution (1.97-2.05 Å) revealed that the inhibitors are accommodated at the catalytic site and stabilize the T conformation of the enzyme. The differences in their inhibitory potency can be interpreted in terms of variations in the interactions with protein residues of the different substituents on the aromatic part of the inhibitors. PMID:21821421

  4. Developmental changes in hepatic glucose metabolism in a newborn piglet model: A comparative analysis for suckling period and early weaning period.

    PubMed

    Xie, Chunyan; Wang, Qinhua; Wang, Jing; Tan, Bie; Fan, Zhiyong; Deng, Ze-yuan; Wu, Xin; Yin, Yulong

    2016-02-19

    The liver glucose metabolism, supplying sufficient energy for glucose-dependent tissues, is important in suckling or weaned animals, although there are few studies with piglet model. To better understand the development of glucose metabolism in the piglets during suckling period and early weaning period, we determined the hepatic glycogen content, and investigated the relative protein expression of key enzymes of glucogenesis (GNG) and mRNA levels of some glucose metabolism-related genes. During suckling period, the protein level of G6Pase in the liver of suckling piglets progressively declined with day of age compared with that of newborn piglets (at 1 day of age), whereas the PEPCK level stabilized until day 21 of age, indicating that hepatic GNG capacity gradually weakened in suckling piglets. The synthesis of hepatic glycogen, which was consistent with the fluctuation of glycolytic key genes PFKL and PKLR that gradually decreased after birth and was more or less steady during latter suckling period, although both the mRNA levels of GCK and key glucose transporter GLUT2 presented uptrend in suckling piglets. However, early weaning significantly suppressed the hepatic GNG in the weaned piglets, especially at d 3-5 of weaning period, then gradually recovered at d 7 of weaning period. Meanwhile, PFKL, PKLR and GLUT2 showed the similar trend during weaning period. On the contrast, the hepatic glycogen reached the maximum value when the G6Pase and PEPCK protein expression were at the lowest level, although the GCK level maintained increasing through 7 days of weaning period. Altogether, our study provides evidence that hepatic GNG and glycolysis in newborn piglets were more active than other days during suckling period, and early weaning could significantly suppressed glucose metabolism in liver, but this inhibition would progressively recover at day 7 after weaning. PMID:26802463

  5. Alcoholic hepatitis.

    PubMed

    Damgaard Sandahl, Thomas

    2014-10-01

    Alcoholic hepatitis (AH) is an acute inflammatory syndrome causing significant morbidity and mortality. The prognosis is strongly dependent on disease severity, as assessed by clinical scoring systems. Reliable epidemiological data as well as knowledge of the clinical course of AH are essential for planning and resource allocation within the health care system. Likewise, individual evaluation of risk is desirable in the clinical handling of patients with AH as it can guide treatment, improve patient information, and serve as strata in clinical trials. The present PhD thesis is based on three studies using a cohort of nearly 2000 patients diagnosed with AH in Denmark from 1999 to 2008 as a cohort, in a population-based study design. The aims of this thesis were as follows. (1) To describe the incidence and short- and long-term mortality, of AH in Denmark (Study I). (2) To validate and compare the ability of the currently available prognostic scores to predict mortality in AH (Study II). (3) To investigate the short- and long-term causes of death of patients with AH (Study III). During the study decade, the annual incidence rate in the Danish population rose from 37 to 46 per 106 for men and from 24 to 34 per 106 for women. Both short- and long-term mortality rose for men and women, and the increase in short-term mortality was attributable to increasing patient age and prevalence of cirrhosis. Our evaluation of the most commonly used prognostic scores for predicting the mortality of patients with AH showed that all scores performed similarly, with Area under the Receiver Operator Characteristics curves giving values between 0.74 and 0.78 for 28-day mortality assessed on admission. Our study on causes of death showed that in the short-term (< 84 days after diagnosis), patients with AH were likely to die from liver-related events and infections. In the long-term (≥ 84 days after diagnosis), those who developed cirrhosis mainly died from liver-related causes, and

  6. Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Halseth, Amy E.

    1994-01-01

    Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.

  7. Toxic effects of cadmium on the developing rat lung. II. Glycogen and phospholipid metabolism

    SciTech Connect

    Daston, G.P.

    1982-01-01

    Maternal exposure to Cd reduces lung weight and alters pulmonary surfactant accumulation in the fetus. This may lead to respiratory distress and death postnatally. In this study, the effects of maternal Cd administration on additional biochemical parameters of the fetal lung were investigated. Pregnant rats were given sc injections of 8 mg/kg CdCl/sub 2/ on d 12-15 of gestation and sacrificed throughout late gestation. Fetal lungs were examined for protein, DNA, and glycogen. Incorporation of choline into total and disaturated phosphatidylcholine and sphingomyelin were measured in fetal lung slices. The DNA content of the treated lungs was reduced, but the protein/DNA ratio was not altered. Thus the reduced lung weight was due to hypoplasia, not hypotrophy. Incorporation of choline into pulmonary sphingomyelin was not altered by the treatment. Choline incorporation into both total and disaturated phosphatidylcholine, the most important surfactant component, was reduced on the final days of gestation. Glycogen was reduced in both absolute quantity and cellular concentration in lungs of treated fetuses. Glucose derived from glycogen is a major metabolic substrate in the fetal lung and probably contributes greatly to phospholipid synthesis. The reduction in glucose concentration in lungs of treated fetuses may be a factor in the diminished synthesis of pulmonary surfactant phosphatidylcholine before birth. Prenatal Cd exposure causes pulmonary hypoplasia; reduces the amount of glycogen present in the fetal lung; and diminishes the rate of synthesis of pulmonary surfactant phosphatidylcholine.

  8. Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater.

    PubMed

    Bengtsson, Simon; Werker, Alan; Welander, Thomas

    2008-01-01

    A process for production of polyhydroxyalkanoates (PHA) by activated sludge treating a paper mill wastewater was investigated. The applied strategy was to select for glycogen accumulating organisms (GAOs) by alternating anaerobic/aerobic conditions. Acidogenic fermentation was used as pretreatment to convert various organic compounds to volatile fatty acids which are preferable substrates for PHA production. Enrichment resulted in a culture dominated by GAOs related to Defluviicoccus vanus (56%) and Candidatus Competibacter phosphatis (22%). Optimization of PHA accumulation by the enriched GAO culture was performed through batch experiments. Accumulation of PHA under anaerobic conditions was limited by the intracellular glycogen stored. Under aerobic conditions significant glycogen production (to 25% of sludge dry weight) was observed alongside PHA accumulation (to 22% of sludge dry weight). By applying a subsequent anaerobic period after an initial aerobic, the produced glycogen could be utilized for further PHA accumulation and by this strategy PHA content was increased to 42% of sludge dry weight. The PHA yield over the entire process was 0.10 kg per kg of influent COD treated which is similar to what has been achieved with a process applying feast/famine enrichment strategy with the same wastewater. PMID:18701781

  9. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man.

    PubMed Central

    Tsintzas, O K; Williams, C; Boobis, L; Greenhaff, P

    1995-01-01

    1. The effect of carbohydrate (CHO) ingestion on muscle glycogen utilization during exercise was examined on seven male subjects completing two 60 min treadmill runs at 70% maximum oxygen uptake (VO2,max), 1 week apart. On each occasion the subjects consumed either water or a 5.5% CHO-electrolyte solution immediately before and during exercise. Muscle samples were obtained from the vastus lateralis by needle biopsy before and immediately after exercise. Venous blood samples were also collected from an ante-cubital vein at rest and at 10, 20, 40 and 60 min into the run. 2. Higher blood glucose concentrations (P < 0.01) were observed throughout the run during the CHO trial compared with the water trial. Serum insulin concentration was only higher after 20 min of exercise (P < 0.01). 3. A 28% reduction in mixed glycogen utilization was observed as a result of CHO ingestion when compared with water ingestion (108.7 +/- 16.3 vs. 150.9 +/- 19.9 mmol (kg dry matter)-1, respectively; P < 0.01). 4. The ingestion of the CHO solution resulted in sparing of glycogen in type I (slow twitch) fibres only (38 +/- 7% degradation of glycogen as opposed to 66 +/- 3% during the water trial; P = 0.01). PMID:8583408

  10. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae.

    PubMed

    Deng, Yi Zhen; Ramos-Pamplona, Marilou; Naqvi, Naweed I

    2009-01-01

    Autophagy, a conserved pathway for bulk cellular degradation and recycling in eukaryotes, regulates proper turnover of organelles, membranes and certain proteins. Such regulated degradation is important for cell growth and development particularly during environmental stress conditions, which act as key inducers of autophagy. We found that autophagy and MoATG8 were significantly induced during asexual development in Magnaporthe oryzae. An RFP-tagged MoAtg8 showed specific localization and enrichment in aerial hyphae, conidiophores and conidia. We confirmed that loss of MoATG8 results in dramatically reduced ability to form conidia, the asexual spores that propagate rice-blast disease. Exogenous supply of glucose or sucrose significantly suppressed the conidiation defects in a MoATG8-deletion mutant. Comparative proteomics based identification and characterization of Gph1, a glycogen phosphorylase that catalyzes glycogen breakdown, indicated that autophagy-assisted glycogen homeostasis is likely important for proper aerial growth and conidiation in Magnaporthe. Loss of Gph1, or addition of G6P significantly restored conidiation in the Moatg8Delta mutant. Overproduction of Gph1 led to reduced conidiation in wild-type Magnaporthe strain. We propose that glycogen autophagy actively responds to and regulates carbon utilization required for cell growth and differentiation during asexual development in Magnaporthe. PMID:19115483

  11. Comparison of methods for glycogen analysis of in vitro fermentation pellets produced with strained ruminal inoculum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycogen measurement is used to account for fates of carbohydrate substrates. It is commonly applied to washed cells or pure cultures which can be accurately subsampled, and it uses smaller sample sizes. However, the nonhomogenous fermentation pellets produced with strained rumen inoculum ...

  12. Glycogen Fuels Survival During Hyposmotic-Anoxic Stress in Caenorhabditis elegans

    PubMed Central

    LaMacchia, John C.; Frazier, Harold N.; Roth, Mark B.

    2015-01-01

    Oxygen is an absolute requirement for multicellular life. Animals that are deprived of oxygen for sufficient periods of time eventually become injured and die. This is largely due to the fact that, without oxygen, animals are unable to generate sufficient quantities of energy. In human diseases triggered by oxygen deprivation, such as heart attack and stroke, hyposmotic stress and cell swelling (edema) arise in affected tissues as a direct result of energetic failure. Edema independently enhances tissue injury in these diseases by incompletely understood mechanisms, resulting in poor clinical outcomes. Here, we present investigations into the effects of osmotic stress during complete oxygen deprivation (anoxia) in the genetically tractable nematode Caenorhabditis elegans. Our findings demonstrate that nematode survival of a hyposmotic environment during anoxia (hyposmotic anoxia) depends on the nematode’s ability to engage in glycogen metabolism. We also present results of a genome-wide screen for genes affecting glycogen content and localization in the nematode, showing that nematode survival of hyposmotic anoxia depends on a large number of these genes. Finally, we show that an inability to engage in glycogen synthesis results in suppression of the enhanced survival phenotype observed in daf-2 insulin-like pathway mutants, suggesting that alterations in glycogen metabolism may serve as a basis for these mutants’ resistance to hyposmotic anoxia. PMID:26116152

  13. Glycogen supercompensation masks the effect of a traininginduced increase in GLUT-4 on muscle glucose transport.

    PubMed

    Host, H H; Hansen, P A; Nolte, L A; Chen, M M; Holloszy, J O

    1998-07-01

    Endurance exercise training induces a rapid increase in the GLUT-4 isoform of the glucose transporter in muscle. In fasted rats, insulin-stimulated muscle glucose transport is increased in proportion to the increase in GLUT-4. There is evidence that high muscle glycogen may decrease insulin-stimulated glucose transport. This study was undertaken to determine whether glycogen supercompensation interferes with the increase in glucose transport associated with an exercise-induced increase in GLUT-4. Rats were trained by means of swimming for 6 h/day for 2 days. Rats fasted overnight after the last exercise bout had an approximately twofold increase in epitrochlearis muscle GLUT-4 and an associated approximately twofold increase in maximally insulin-stimulated glucose transport activity. Epitrochlearis muscles of rats fed rodent chow after exercise were glycogen supercompensated (86.4 +/- 4.8 micromol/g wet wt) and showed no significant increase in maximally insulin-stimulated glucose transport above the sedentary control value despite an approximately twofold increase in GLUT-4. Fasting resulted in higher basal muscle glucose transport rates in both sedentary and trained rats but did not significantly increase maximally insulin-stimulated transport in the sedentary group. We conclude that carbohydrate feeding that results in muscle glycogen supercompensation prevents the increase in maximally insulin-stimulated glucose transport associated with an exercise training-induced increase in muscle GLUT-4. PMID:9655766

  14. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle.

    PubMed

    Robinson, T M; Sewell, D A; Hultman, E; Greenhaff, P L

    1999-08-01

    We examined the effect of glycogen-depleting exercise on subsequent muscle total creatine (TCr) accumulation and glycogen resynthesis during postexercise periods when the diet was supplemented with carbohydrate (CHO) or creatine (Cr) + CHO. Fourteen subjects performed one-legged cycling exercise to exhaustion. Muscle biopsies were taken from the exhausted (Ex) and nonexhausted (Nex) limbs after exercise and after 6 h and 5 days of recovery, during which CHO (CHO group, n = 7) or Cr + CHO (Cr+CHO group, n = 7) supplements were ingested. Muscle TCr concentration ([TCr]) was unchanged in both groups 6 h after supplementation commenced but had increased in the Ex (P < 0.001) and Nex limbs (P < 0.05) of the Cr+CHO group after 5 days. Greater TCr accumulation was achieved in the Ex limbs (P < 0.01) of this group. Glycogen was increased above nonexercised concentrations in the Ex limbs of both groups after 5 days, with the concentration being greater in the Cr+CHO group (P = 0.06). Thus a single bout of exercise enhanced muscle Cr accumulation, and this effect was restricted to the exercised muscle. However, exercise also diminished CHO-mediated insulin release, which may have attenuated insulin-mediated muscle Cr accumulation. Ingesting Cr with CHO also augmented glycogen supercompensation in the exercised muscle. PMID:10444618

  15. The Action of Antidiabetic Plants of the Canadian James Bay Cree Traditional Pharmacopeia on Key Enzymes of Hepatic Glucose Homeostasis

    PubMed Central

    Nachar, Abir; Vallerand, Diane; Musallam, Lina; Lavoie, Louis; Arnason, John; Haddad, Pierre S.

    2013-01-01

    We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada) to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase) and glycogen synthase (GS) activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK), Akt, and Glycogen synthase kinase-3 (GSK-3) were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines. PMID:23864882

  16. Integrated imaging of hepatic tumors in childhood. Part II. Benign lesions (congenital, reparative, and inflammatory)

    SciTech Connect

    Miller, J.H.; Greenspan, B.S.

    1985-01-01

    The authors have encountered benign liver masses as frequently as malignant lesions in children with hepatomegaly. Lesions studied included abscesses, cavernous hemangioma/hemangioendothelioma, adenoma of glycogen storage disease, choledochal cysts, focal nodular hyperplasia, cystic hepatoblastoma, and hamartoma. An intergrated imaging protocol involving ultrasoun