Science.gov

Sample records for hepatic p450 isoforms

  1. Contribution of human hepatic cytochrome p450 isoforms to the metabolism of psychotropic drugs.

    PubMed

    Niwa, Toshiro; Shiraga, Toshifumi; Ishii, Ikuko; Kagayama, Akira; Takagi, Akira

    2005-09-01

    The metabolic activities of six psychotropic drugs, diazepam, clotiazepam, tofisopam, etizolam, tandospirone, and imipramine, were determined for 14 isoforms of recombinant human hepatic cytochrome P450s (CYPs) and human liver microsomes by measuring the disappearance rate of parent compounds. In vitro kinetic studies revealed that Vmax/Km values in human liver microsomes were the highest for tofisopam, followed by tandospirone>clotiazepam>imipramine, diazepam, and etizolam. Among the recombinant CYPs, CYP3A4 exhibited the highest metabolic activities of all compounds except for clotiazepam and imipramine. The metabolism of clotiazepam was catalyzed by CYP2B6, CYP3A4, CYP2C18, and CYP2C19, and imipramine was metabolized by CYP2D6 most efficiently. In addition, the metabolic activities of diazepam, clotiazepam, and etizolam in human liver microsomes were inhibited by 2.5 microM ketoconazole, a CYP3A4 inhibitor, by 97.5%, 65.1%, and 83.5%, respectively, and the imipramine metabolism was not detected after the addition of 1 or 10 microM quinidine, a CYP2D6 inhibitor. These results suggest that the psychotropic drugs investigated are metabolized predominantly by CYP3A4, except that CYP2D6 catalyzes the metabolism of imipramine. In addition, this approach based on the disappearance rate appears to be useful for the identification of the responsible CYP isoform(s) of older drugs, for which metabolic profiles have not been reported. PMID:16141545

  2. Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene.

    PubMed

    Fontaine, S M; Hoyer, P B; Halpert, J R; Sipes, I G

    2001-09-01

    4-Vinyl-1-cyclohexene (VCH) is ovotoxic in B6C3F(1) mice but not in Fischer-344 rats, which can be partially attributed to greater formation of toxic epoxides from VCH in mice compared with rats. Since repeated exposure to VCH is necessary to cause ovotoxicity in mice, it is important to determine whether repeated exposure results in induction of cytochrome P450 (CYP) enzymes involved in its bioactivation. Hepatic microsomes prepared from mice or rats treated repeatedly with VCH demonstrated significantly increased VCH bioactivation in vitro, as assessed by VCH-1,2-epoxide, VCH-7,8-epoxide, or vinylcyclohexene diepoxide (VCD) formation. Mice and rats were then dosed with VCH, VCH-1,2-epoxide, or VCD for 10 days and measured for increases in hepatic microsomal CYP levels or activities. Total hepatic CYP levels were elevated only in microsomes from mice pretreated with VCH or VCH-1,2-epoxide. Immunoblotting analysis of microsomes from VCH-treated rodents revealed elevated levels of CYP2A and CYP2B in mice but not rats. VCH-1,2-epoxide pretreatment also increased CYP2B levels in the mouse. Activities toward specific substrates for CYP2A and CYP2B (coumarin and pentoxyresorufin, respectively) confirmed that VCH and VCH-1,2-epoxide pretreatments resulted in increased catalytic activities of CYP2A and CYP2B in the mouse but not the rat. Pretreatment with phenobarbital, a known inducer of CYP2A and CYP2B, increased VCH bioactivation in both species. Interestingly, metabolism studies with human CYP "Supersomes" reveal that, of eight isoforms tested, only human CYP2E1 and CYP2B6 were capable of significantly catalyzing VCH epoxidation, whereas CYP2B6, CYP2A6, CYP2E1, and CYP3A4 were capable of catalyzing the epoxidation of the monoepoxides. PMID:11502734

  3. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion

    SciTech Connect

    Leoni, Claudia; Buratti, Franca M. Testai, Emanuela

    2008-12-01

    Although fenthion (FEN) is widely used as a broad spectrum insecticide on various crops in many countries, very scant data are available on its biotransformation in humans. In this study the in vitro human hepatic FEN biotransformation was characterized, identifying the relative contributions of cytochrome P450 (CYPs) and/or flavin-containing monooxygenase (FMOs) by using single c-DNA expressed human enzymes, human liver microsomes and cytosol and CYP/FMO-specific inhibitors. Two major metabolites, FEN-sulfoxide and FEN-oxon (FOX), are formed by some CYPs although at very different levels, depending on the relative CYP hepatic content. Formation of further oxidation products and the reduction of FEN-sulfoxide back to FEN by the cytosolic aldehyde oxidase enzyme were ruled out. Comparing intrinsic clearance values, FOX formation seemed to be favored and at low FEN concentrations CYP2B6 and 1A2 are mainly involved in its formation. At higher levels, a more widespread CYP involvement was evident, as in the case of FEN-sulfoxide, although a higher efficiency of CYP2C family was suggested. Hepatic FMOs were able to catalyze only sulfoxide formation, but at low FEN concentrations hepatic FEN sulfoxidation is predominantly P450-driven. Indeed, the contribution of the hepatic isoforms FMO{sub 3} and FMO{sub 5} was generally negligible, although at high FEN concentrations FMO's showed activities comparable to the active CYPs, accounting for up to 30% of total sulfoxidation. Recombinant FMO{sub 1} showed the highest efficiency with respect to CYPs and the other FMOs, but it is not expressed in the adult human liver. This suggests that FMO{sub 1}-catalysed sulfoxidation may represent the major extra-hepatic pathway of FEN biotransformation.

  4. Increased oxidative DNA damage and hepatocyte overexpression of specific cytochrome P450 isoforms in hepatitis of mice infected with Helicobacter hepaticus.

    PubMed Central

    Sipowicz, M. A.; Chomarat, P.; Diwan, B. A.; Anver, M. A.; Awasthi, Y. C.; Ward, J. M.; Rice, J. M.; Kasprzak, K. S.; Wild, C. P.; Anderson, L. M.

    1997-01-01

    A recently discovered bacterium, Helicobacter hepaticus, infects the intrahepatic bile canaliculi of mice, causing a severe chronic hepatitis culminating in liver cancer. Thus, it affords an animal model for study of bacteria-associated tumorigenesis including H. pylori-related gastric cancer. Reactive oxygen species are often postulated to contribute to this process. We now report that hepatitis of male mice infected with H. hepaticus show significant increases in the oxidatively damaged DNA deoxynucleoside 8-hydroxydeoxyguanosine, with the degree of damage increasing with progression of the disease. Perfusion of infected livers with nitro blue tetrazolium revealed that superoxide was produced in the cytoplasm of hepatocytes, especially in association with plasmacytic infiltrates near portal triads. Contrary to expectations, Kupffer cells, macrophages, and neutrophils were rarely involved. However, levels of cytochrome P450 (CYP) isoforms 1A2 and 2A5 in hepatocytes appeared to be greatly increased, as indicated by the number of cells positive in immunohistochemistry and the intensity of staining in many cells, concomitant with severe hepatitis. The CYP2A5 immunohistochemical staining co-localized with formazan deposits resulting from nitro blue tetrazolium reduction and occurred in nuclei as well as cytoplasm. These findings suggest that CYP2A5 contributes to the superoxide production and 8-hydroxydeoxyguanosine formation, although reactive oxygen species from an unknown source in the hepatocytes leading to CYP2A5 induction or coincidental occurrence of these events are also possibilities. Three glutathione S-transferase isoforms, mGSTP1-1 (pi), mGSTA1-1 (YaYa), and mGSTA4-4, also showed striking increases evidencing major oxidative stress in these livers. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9327726

  5. In vitro metabolic clearance of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms

    EPA Science Inventory

    Species differences in the intrinsic clearance (CLint) and the enzymes involved in the metabolism of pyrethroid pesticides were examined in rat and human hepatic microsomes. The pyrethroids bifenthrin, S-bioallethrin, bioresmethrin, β-cyfluthrin, cypermethrin, cis-per...

  6. Effect of SPG/indomethacin treatment on sepsis, interleukin-6 production, and expression of hepatic cytochrome P450 isoforms in differing strains of mice.

    PubMed

    Saito, Maki; Nameda, Sachiko; Miura, Noriko N; Adachi, Yoshiyuki; Ohno, Naohito

    2009-03-01

    We previously reported that a combination of beta-glucan and indomethacin (IND), a non-steroidal anti-inflammatory drug, was lethal to mice. This lethality was strongly related to translocation of enterobacterial flora to various organs and the development of a systemic inflammation. In this study, we examined expression of microsomal cytochrome P450 (CYP), a drug-metabolizing enzyme mostly found in the liver. Normal ICR mice and endotoxin-low responder C3H/HeJ mice were employed to assess effects of endotoxin on impairment of CYP. In the ICR mice, CYP3A11 expression was decreased by beta-glucan or IND. In the early stage of beta-glucan + IND-treatment, 3A11 expression decreased more significantly; when shock was induced, CYP was dramatically decreased. 3A11 expression was also decreased in C3H/HeJ mice, but the effect was milder. In contrast, in both strains, CYP2E1 expression did not vary due to beta-glucan or IND, but decreased during sepsis. To clarify the molecular mechanisms of induced sepsis in C3H/HeJ mice, the reactivity of other pathogen-associated molecular patterns (PAMPs) was assessed. Those studies showed cooperative effects between Pam(3)CSK(4) (Pam(3)) and CpG ODN (CpG-oligodeoxynucleotide) on the induction of IL-6 synthesis by C3H/HeJ spleen cells. The findings here suggest that the beta-glucan + IND combination influenced hepatic cytochrome P450 expression, particularly in the late stage of sepsis. The results also indicate that this change may be associated with not only endotoxin but other PAMPs as well, and could be affected by the integrity of a host's drug metabolism function. PMID:19519162

  7. Physiological Content and Intrinsic Activities of 10 Cytochrome P450 Isoforms in Human Normal Liver Microsomes.

    PubMed

    Zhang, Hai-Feng; Wang, Huan-Huan; Gao, Na; Wei, Jun-Ying; Tian, Xin; Zhao, Yan; Fang, Yan; Zhou, Jun; Wen, Qiang; Gao, Jie; Zhang, Yang-Jun; Qian, Xiao-Hong; Qiao, Hai-Ling

    2016-07-01

    Due to a lack of physiologic cytochrome P450 (P450) isoform content, P450 activity is typically only determined at the microsomal level (per milligram of microsomal protein) and not at the isoform level (per picomole of P450 isoform), which could result in the misunderstanding of variations in P450 activity between individuals and further hinder development of personalized medicine. We found that there were large variations in protein content, mRNA levels, and intrinsic activities of the 10 P450s in 100 human liver samples, in which CYP2E1 and CYP2C9 showed the highest expression levels. P450 gene polymorphisms had different effects on activity at two levels: CYP3A5*3 and CYP2A6*9 alleles conferred increased activity at the isoform level but decreased activity at the microsomal level; CYP2C9*3 had no effect at the isoform level but decreased activity at the microsomal level. The different effects at each level stem from the different effects of each polymorphism on the resulting P450 protein. Individuals with CYP2A6*1/*4, CYP2A6*1/*9, CYP2C9*1/*3, CYP2D6 100C>T TT, CYP2E1 7632T>A AA, CYP3A5*1*3, and CYP3A5*3*3 genotypes had significantly lower protein content, whereas CYP2D6 1661G>C mutants had a higher protein content. In conclusion, we first offered the physiologic data of 10 P450 isoform contents and found that some single nucleotide polymorphisms had obvious effects on P450 expression in human normal livers. The effects of gene polymorphisms on intrinsic P450 activity at the isoform level were quite different from those at the microsomal level, which might be due to changes in P450 protein content. PMID:27189963

  8. Correlation of Cytochrome P450 Oxidoreductase Expression with the Expression of 10 Isoforms of Cytochrome P450 in Human Liver

    PubMed Central

    Zhang, Hai-Feng; Li, Zhi-Hui; Liu, Jia-Yu; Liu, Ting-Ting; Wang, Ping; Fang, Yan; Zhou, Jun; Cui, Ming-Zhu; Gao, Na; Tian, Xin; Gao, Jie; Wen, Qiang; Jia, Lin-Jing

    2016-01-01

    Human cytochrome P450 oxidoreductase (POR) provides electrons for all microsomal cytochromes P450 (P450s) and plays an indispensable role in drug metabolism catalyzed by this family of enzymes. We evaluated 100 human liver samples and found that POR protein content varied 12.8-fold, from 12.59 to 160.97 pmol/mg, with a median value of 67.99 pmol/mg; POR mRNA expression varied by 26.4-fold. POR activity was less variable with a median value of 56.05 nmol/min per milligram. Cigarette smoking and alcohol consumption clearly influenced POR activity. Liver samples with a 2286822 TT genotype had significantly higher POR mRNA expression than samples with CT genotype. Homozygous carriers of POR2286822C>T, 2286823G>A, and 3823884A>C had significantly lower POR protein levels compared with the corresponding heterozygous carriers. Liver samples from individuals homozygous at 286823G>A, 1135612A>G, and 10954732G>A generally had lower POR activity levels than those from heterozygous or wild-type samples, whereas the common variant POR*28 significantly increased POR activity. There was a strong association between POR and the expression of P450 isoforms at the mRNA and protein level, whereas the relationship at the activity level, as well as the effect of POR protein content on P450 activity, was less pronounced. POR transcription was strongly correlated with both hepatocyte nuclear factor 4 alpha and pregnane X receptor mRNA levels. In conclusion, we have elucidated some potentially important correlations between POR single-nucleotide polymorphisms and POR expression in the Chinese population and have developed a database that correlates POR expression with the expression and activity of 10 P450s important in drug metabolism. PMID:27271371

  9. Correlation of Cytochrome P450 Oxidoreductase Expression with the Expression of 10 Isoforms of Cytochrome P450 in Human Liver.

    PubMed

    Zhang, Hai-Feng; Li, Zhi-Hui; Liu, Jia-Yu; Liu, Ting-Ting; Wang, Ping; Fang, Yan; Zhou, Jun; Cui, Ming-Zhu; Gao, Na; Tian, Xin; Gao, Jie; Wen, Qiang; Jia, Lin-Jing; Qiao, Hai-Ling

    2016-08-01

    Human cytochrome P450 oxidoreductase (POR) provides electrons for all microsomal cytochromes P450 (P450s) and plays an indispensable role in drug metabolism catalyzed by this family of enzymes. We evaluated 100 human liver samples and found that POR protein content varied 12.8-fold, from 12.59 to 160.97 pmol/mg, with a median value of 67.99 pmol/mg; POR mRNA expression varied by 26.4-fold. POR activity was less variable with a median value of 56.05 nmol/min per milligram. Cigarette smoking and alcohol consumption clearly influenced POR activity. Liver samples with a 2286822 TT genotype had significantly higher POR mRNA expression than samples with CT genotype. Homozygous carriers of POR2286822C>T, 2286823G>A, and 3823884A>C had significantly lower POR protein levels compared with the corresponding heterozygous carriers. Liver samples from individuals homozygous at 286823G>A, 1135612A>G, and 10954732G>A generally had lower POR activity levels than those from heterozygous or wild-type samples, whereas the common variant POR*28 significantly increased POR activity. There was a strong association between POR and the expression of P450 isoforms at the mRNA and protein level, whereas the relationship at the activity level, as well as the effect of POR protein content on P450 activity, was less pronounced. POR transcription was strongly correlated with both hepatocyte nuclear factor 4 alpha and pregnane X receptor mRNA levels. In conclusion, we have elucidated some potentially important correlations between POR single-nucleotide polymorphisms and POR expression in the Chinese population and have developed a database that correlates POR expression with the expression and activity of 10 P450s important in drug metabolism. PMID:27271371

  10. Effects of bromocriptine on hepatic cytochrome P-450 monooxygenase system.

    PubMed

    Moochhala, S M; Lee, E J; Hu, G T; Koh, O S; Becket, G

    1989-02-01

    We have evaluated the in vitro effects of bromocriptine (Br), on the hepatic cytochrome P-450 monooxygenase system of rats pretreated with saline phenobarbitone (PB) and beta-naphthoflavone (BNF). Br inhibited ethoxyresorufin O-dealkylase (EROD) activity in liver microsomes of rats pretreated with saline and PB but not in BNF pretreated animals. Maximum inhibition of EROD activity by Br in the microsomes of saline and PB pretreated rats were 50%-60% of the control. In contrast, a dual effect was observed on aminopyrine N-demethylase activity (APD) by Br in microsomes of saline, PB and BNF pretreated rats. At a low concentration (25 microM), Br inhibited the activity of APD to a similar extent in all pretreatment groups; however, with higher concentrations of Br (50 microM to 300 microM), enhancement of APD activity was observed. Br (300 microM) increased the APD activity to 2-3 times the control level in microsomes of rats pretreated with saline, PB or BNF. Spectral studies revealed a Type II binding of Br to cytochrome P-450 from microsomes of saline and PB pretreated rats. A reverse type I binding was observed for BNF induced microsomes. In addition, Br also enhanced NADPH cytochrome c (P-450) reductase activity to a similar extent in all pretreatment groups. These results suggest that the inhibition of EROD activity may be due to direct binding by Br to certain isozymes of cytochrome P-450 and that the enhancing effect of Br on APD activity may be in part due to the activation of the NADPH cytochrome c reductase component of the cytochrome P-450 monooxygenase system. PMID:2499727

  11. In vitro inhibition of multiple cytochrome P450 isoforms by xanthone derivatives from mangosteen extract.

    PubMed

    Foti, Robert S; Pearson, Josh T; Rock, Dan A; Wahlstrom, Jan L; Wienkers, Larry C

    2009-09-01

    Mangosteen is a xanthone-containing fruit found in Southeast Asia for which health claims include maintaining healthy immune and gastrointestinal systems to slowing the progression of tumor growth and neurodegenerative diseases. Previous studies have identified multiple xanthones in the pericarp of the mangosteen fruit. The aim of the current study was to assess the drug inhibition potential of mangosteen in vitro as well as the cytochrome P450 (P450) enzymes responsible for the metabolism of its individual components. The various xanthone derivatives were found to be both substrates and inhibitors for multiple P450 isoforms. Aqueous extracts of the mangosteen pericarp were analyzed for xanthone content as well as inhibition potency. Finally, in vivo plasma concentrations of alpha-mangostin, the most abundant xanthone derivative found in mangosteen, were predicted using Simcyp and found to be well above their respective in vitro K(i) values for CYP2C8 and CYP2C9. PMID:19541824

  12. Cytochrome P450 isoforms in the Metabolism of Decursin and Decursinol Angelate from Korean Angelica

    PubMed Central

    ZHANG, Jinhui; LI, Li; TANG, Suni; HALE, Thomas W.; XING, Chengguo; JIANG, Cheng; LÜ, Junxuan

    2016-01-01

    We have shown that the in vitro hepatic microsomal metabolism of pyranocoumarin compound decursinol angelate (DA) to decursinol (DOH) exclusively requires cytochrome P450 enzymes (CYP) whereas the conversion of its isomer decursin (D) to DOH can be mediated by CYP and esterase(s). To provide insight into specific isoforms involved, here we show with recombinant human CYP that 2C19 was the most active at metabolizing D and DA in vitro followed by 3A4. With carboxylesterases (CES), D was hydrolyzed by CES2 but not CES1, and DA was resistant to both CES1 and CES2. In human liver microsomal preparation, general CYP inhibitor 1-aminobenzotriazole (ABT) and respective competitive inhibitors for 2C19 and 3A4, (+)-N-3-benzylnirvanol and ketoconazole, substantially retarded the metabolism of DA and, to a lesser extent, of D. In healthy human subjects from a single-dose pharmacokinetic study, 2C19 extensive metabolizer genotype (2C19*17 allele) tended to have less plasma DA AUC0–48h and poor metabolizer genotype (2C19*2 allele) tended to have greater DA AUC0–48h. In mice given a single dose of D/DA, pretreatment with ABT boosted the plasma and prostate levels of D and DA by more than an order of magnitude. Taken together, our findings suggest that CYP isoforms 2C19 and 3A4 may play a crucial role in the first pass liver metabolism of DA and, to a lesser extent, that of D in humans. Pharmacogenetics with respect to CYP genotypes and interactions among CYP inhibitor drugs and D/DA should therefore be considered in designing future translation studies of DA and/or D. PMID:26394652

  13. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    EPA Science Inventory

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  14. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  15. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development.

    PubMed

    Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N; Smith, Jordan N; Corley, Richard A; Wright, Aaron T

    2016-07-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  16. Hepatic metabolism of cyclodiene insecticides by constitutive forms of cytochrome P-450 from lower vertebrates.

    PubMed

    Ronis, M J; Walker, C H; Peakall, D

    1987-01-01

    1. Multiple forms of cytochrome P-450 were separated from the hepatic microsomes of untreated male rats, pigeons (Columbia livia), razorbills (Alca torda), puffins (Fratercula arctica), and rainbow trout (Salmo gairdnerii), using anion exchange chromatography and DEAE-cellulose. 2. In some cases cytochrome P-450 forms were further purified on hydroxylapatite and carboxymethyl-sephadex columns. 3. Considerable differences in the distribution of forms between these five species were evident from elution profiles on DEAE cellulose, and on analysis of the cytochrome P-450 containing pools by SDS-PAGE. 4. The metabolism of two organochlorine compounds, aldrin and the dieldrin analogue HCE, were studied in (a) intact microsomes and (b) reconstituted systems containing cytochrome P-450, from each of the five species. 5. In spite of their close structural similarity, significant differences were found between the two substrates in the distribution of catalytic activity between the cytochrome P-450 isozymes of each species. PMID:2888582

  17. Evaluation of the assumptions of an ontogeny model of rat hepatic cytochrome P450 activity.

    PubMed

    Alcorn, Jane; Elbarbry, Fawzy A; Allouh, Mohammed Z; McNamara, Patrick J

    2007-12-01

    We previously reported an ontogeny model of hepatic cytochrome P450 (P450) activity that predicts in vivo P450 elimination from in vitro intrinsic clearance. The purpose of this study was to conduct investigations into key assumptions of the P450 ontogeny model using the developing rat model system. We used two developmentally dissimilar enzymes, CYP2E1 and CYP1A2, and male rats (n = 4) at age groups representing critical developmental stages. Total body and liver weights and hepatic microsomal protein contents were measured. Following high-performance liquid chromatography analysis, apparent K(M) and V(max) estimates were calculated using nonlinear regression analysis for CYP2E1- and CYP1A2-mediated chlorzoxazone 6-hydroxylation and methoxyresorufin O-dealkylation, and V(max) estimates for p-nitrophenol and phenacetin hydroxylations, respectively. Hepatic scaling factors and V(max) values provided estimates for infant scaling factors (ISF). The data show microsomal protein contents increased with postnatal age and reached adult values after postnatal day (PD) 7. Apparent K(M) values were similar at all developmental stages except at < or =PD7. Developmental increases in probe substrate V(max) values did not correlate with the biphasic increase in immunoquantifiable P450. The activity of two different probe substrates for each P450 covaried as a function of age. A plot of observed ISF values as a function of age reflected the developmental pattern of rat hepatic P450. In summation, these observations diverge from several of the model's assumptions. Further investigations are required to explain these inconsistencies and to investigate whether the developing rat may provide a predictive paradigm for pediatric risk assessment for P450-mediated elimination processes. PMID:17881659

  18. Enantiomers of Naringenin as Pleiotropic, Stereoselective Inhibitors of Cytochrome P450 Isoforms

    PubMed Central

    Lu, Wenjie Jessie; Ferlito, Valentina; Xu, Cong; Flockhart, David A; Caccamese, Salvatore

    2011-01-01

    Interactions between naringenin and the cytochrome P450 (CYP) system have been of interest since the first demonstration that grapefruit juice reduced CYP3A activity. The effects of naringenin on other CYP isoforms have been less investigated. In addition, it is well known that interactions with enzymes are often stereospecific, but due to the lack of readily available, chirally pure naringenin enantiomers, the enantioselectivity of its effects has not been characterized. We isolated pure naringenin enantiomers by chiral HPLC and tested the ability of (R)-, (S)-and rac-naringenin to inhibit several important drug-metabolizing CYP isoforms using recombinant enzymes and pooled human liver microsomes. Naringenin was able to inhibit CYP19, CYP2C9 and CYP2C19 with IC50 values below 5 μM. No appreciable inhibition of CYP2B6 or CYP2D6 was observed at concentrations up to 10 μM. While (S)-naringenin was 2-fold more potent as an inhibitor of CYP19 and CYP2C19 than (R)-naringenin, (R)-naringenin was 2-fold more potent for CYP2C9 and CYP3A. Chiral flavanones like naringenin are difficult to separate into their enantiomeric forms, but enantioselective effects may be observed that ultimately impact clinical effects. Inhibition of specific drug metabolizing enzymes by naringenin observed in vitro may be exploited to understand pharmacokinetic changes seen in vivo. PMID:21953762

  19. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: Studies with the hepatic NADPH:Cytochrome P450 reductase null mouse

    SciTech Connect

    Stiborova, Marie Arlt, Volker M.; Henderson, Colin J.; Wolf, C. Roland; Kotrbova, Vera; Moserova, Michaela; Hudecek, Jiri; Phillips, David H.; Frei, Eva

    2008-02-01

    Ellipticine is an antineoplastic agent, which forms covalent DNA adducts mediated by cytochromes P450 (CYP) and peroxidases. We evaluated the role of hepatic versus extra-hepatic metabolism of ellipticine, using the HRN (Hepatic Cytochrome P450 Reductase Null) mouse model, in which cytochrome P450 oxidoreductase (POR) is deleted in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated i.p. with 1 and 10 mg/kg body weight of ellipticine. Multiple ellipticine-DNA adducts detected by {sup 32}P-postlabelling were observed in organs from both mouse strains. Highest total DNA binding levels were found in liver, followed by lung, kidney, urinary bladder, colon and spleen. Ellipticine-DNA adduct levels in the liver of HRN mice were up to 65% lower relative to WT mice, confirming the importance of CYP enzymes for the activation of ellipticine in livers, recently shown in vitro with human and rat hepatic microsomes. When hepatic microsomes of both mouse strains were incubated with ellipticine, ellipticine-DNA adduct levels with WT microsomes were up to 2.9-fold higher than with those from HRN mice. The ratios of ellipticine-DNA adducts in extra-hepatic organs between HRN and WT mice of up to 4.7 suggest that these organs can activate ellipticine and that more ellipticine is available in the circulation. These results and the DNA adduct patterns found in vitro and in vivo demonstrate that both CYP1A or 3A and peroxidases participate in activation of ellipticine to reactive species forming DNA adducts in the mouse model used in this study.

  20. Decrease in hepatic cytochrome P-450 by cobalt. Evidence for a role of cobalt protoporphyrin.

    PubMed Central

    Sinclair, J F; Sinclair, P R; Healey, J F; Smith, E L; Bonkowsky, H L

    1982-01-01

    Exposure of cultured chick-embryo hepatocytes to increasing concentrations of CoCl2 in the presence of allylisopropylacetamide results in formation of cobalt protoporphyrin, with a reciprocal decrease in haem and cytochrome P-450. Treatment of rats with CoCl2 (84 mumol/kg) and 5-aminolaevulinate (0.2 mmol/kg) also results in formation of cobalt protoporphyrin and a decrease in cytochrome P-450 in the liver. Hepatic microsomal fractions from rats treated with phenobarbital, CoCl2 and 5-aminolaevulinate were analysed by polyacrylamide gel electrophoresis. Cobalt protoporphyrin was associated mainly with proteins of 50000-53000 mol.wt. The results suggest that the formation of cobalt protoporphyrin occurred at the expense of the synthesis of haem, leading to a decrease in cytochrome P-450. Furthermore, the cobalt protoporphyrin that was formed may itself have been incorporated into apocytochrome P-450. Images Fig. 2. PMID:7115319

  1. Incorporation of haemoglobin haem into the rat hepatic haemoproteins tryptophan pyrrolase and cytochrome P-450

    SciTech Connect

    Wyman, J.F.; Gollan, J.L.; Settle, W.; Farrell, G.C.; Correia, M.A.

    1986-01-01

    After its administration to intact rats, haemoglobin haem was incorporated into hepatic tryptophan pyrrolase as shown by the marked increase in functional constitution of this enzyme. Incorporation of haemoglobin haem into cytochrome P-450 was demonstrated in intact rats and in the isolated rat liver perfused with haemoglogin-free medium. In both systems, haemoglobin haem restored cytochrome P-450 content and its dependent mixed-function-oxidase activity after substrate-induced destruction of the cytochrome P-450 haem moiety. Further confirmation that heamoglobin haem could be incorporated prosthetically into cytochrome P-450 was achieved by administration of (tritium) haemoglobin to rats and subsequent isolation and characterization of radiolabelled substrate-alkylated products of cytochrome P-450 haem. Findings indicate that, although hepatic uptake of parenteral haemoglobin is slower than that of haem, it appears to serve as an effective haem donor to the intrahepatic free haem pool. Thus parenteral haemoglobin may warrant consideration as a therapeutic alternative to haem in the acute hepatic porphyrias.

  2. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J. |

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  3. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  4. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    SciTech Connect

    Marinello, A.J.; Bansal, S.K.; Paul, B.; Koser, P.L.; Love, J.; Struck, R.F.; Gurtoo, H.L.

    1984-10-01

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of (chloroethyl-3H)cyclophosphamide (( chloroethyl-3H)CP) and (4-14C)cyclophosphamide (( 4-14C)CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of (14C)acrolein, a metabolite of (4-14C)CP, were also investigated. The metabolism of (chloroethyl-3H)CP and (4-14C)CP to polar metabolites was found to depend on the presence of NADPH and showed concentration dependence with respect to cytochrome P-450 and NADPH:cytochrome P-450 reductase. Km and Vmax values were essentially similar. The patterns of inhibition by microsomal mixed-function oxidase inhibitors, anti-cytochrome P-450 antibody, and heat denaturation of the cytochrome P-450 were essentially similar, with subtle differences between (4-14C)CP and (chloroethyl-3H)CP metabolism. The in vitro metabolic activation of CP in the reconstituted system demonstrated predominant binding of (chloroethyl-3H)CP to nucleic acids and almost exclusive binding of (4-14C)CP to proteins. Gel electrophoresis-fluorography of the proteins in the reconstituted system treated with (4-14C)CP demonstrated localization of the 14C label in the cytochrome P-450 region. To examine this association further, hepatic microsomes were modified with (14C)acrolein in the presence and the absence of NADPH. The results confirmed covalent association between (14C)acrolein and cytochrome P-450 in the microsomes and also demonstrated further metabolism of (14C)acrolein, apparently to an epoxide, which is capable of binding covalently to proteins. The results of these investigations not only confirm the significance of primary metabolism but also emphasize the potential role of the secondary metabolism of cyclophosphamide in some of its toxic manifestations.

  5. Responsiveness of cerebral and hepatic cytochrome P450s in rat offspring prenatally exposed to lindane

    SciTech Connect

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2008-08-15

    ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD{sub 50}; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increase in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics.

  6. Hepatic microsomal cytochromes P450 in mink fed Saginaw Bay carp (SBC)

    USGS Publications Warehouse

    Melancon, M.J.; LeCaptain, L.; Rattner, B.A.; Heaton, S.; Aulerich, R.; Tillitt, D.; Stegeman, John J.; Woodin, B.

    1992-01-01

    Livers from mink fed diets containing 0% (n = 12), 10% (n = 11), 20% (n = 12) and 40% (n = 10) SBC for 6 months contained 0.1, 2.2, 3.6, and 6.3 ug/g total PCBs, respectively. Hepatic microsomes were prepared and assayed for protein, arylhydrocarbon hydroxylase (AHH), benzyloxyresorufin-O-dealkylase (BROD), ethoxy-ROD (ER0D), pentoxy-ROD (PROD), and ethoxycoumarin-OD (ECOD). Mink fed SBC had increased AHH, EROD, and ECOD (group means 2.2-3.4 X control means), decreased BROD and unchanged PROD (the latter 2 assays indicators for phenobarbital-type induction in mammals). Three samples from each group were examined by western blot using a polyclonal anti-P450llB antibody and a monoclonal anti-P450lA antibody (MAb 1-12-3). Mink fed SBC showed induction of a protein recognized by anti-P450lA (8 X control), but had little protein recognized by anti-P450IlB. The monooxygenase activities and western blot data give a consistent picture of MC-type but not PB-type induction in mink fed SBC.

  7. Studies on the in vivo contribution of human cytochrome P450s to the hepatic metabolism of glaucine, a new drug of abuse.

    PubMed

    Meyer, Golo M J; Meyer, Markus R; Wink, Carina S D; Zapp, Josef; Maurer, Hans H

    2013-11-15

    Glaucine ((S)-5,6,6a,7-tetrahydro-1,2,9,10-tetramethoxy-6-methyl-4H-dibenzo [de,g]quinoline), main isoquinoline alkaloid of Glaucium flavum (Papaveraceae), is used as antitussive, but also as recreational drug of abuse. Glaucine was mainly metabolized by O- and N-demethylation to four isomers in rats. So far, only scarce pharmacokinetic data were available. Therefore, the aim of the presented study was to assess the involvement of the ten most important cytochrome P450 (P450) isoforms in the main metabolic steps and determination of their kinetic parameters using the metabolite formation approach. Reference standards of investigated metabolites were synthesized for quantification. In addition, the impact of isomeric standards was tested for calibration and the use of simple peak area ratios on the kinetic constants and resulting contribution of P450 isoforms on estimated hepatic clearance. Kinetic profiles of all metabolite formations followed classic Michaelis-Menten behavior. Km values were between 25 and 140μM, Vmax between 0.10 and 1.92pmol/min/pmol. Using the relative activity factor approach, the hepatic clearance was calculated to be 27 and 73% for 2-O-demethylation by CYP1A2 and CYP3A4, 82, 3, and 15% for 9-O-demethylation by CYP1A2, CYP2C19, and CYP2D6, and finally <1 and 99% for N-demethylation by CYP2D6 and CYP3A4. These data were confirmed by inhibition tests. The calibration mode for determination of the metabolite concentrations had no relevant impact on the estimation of in vivo hepatic clearance of glaucine. As glaucine was metabolized via three initial steps and different P450 isoforms were involved in the hepatic clearance of glaucine, a clinically relevant interaction with single inhibitors should not be expected. PMID:23988488

  8. Strain differences in hepatic cytochrome P450 1A and 3A expression between Sprague-Dawley and Wistar rats.

    PubMed

    Kishida, Tomoyuki; Muto, Shin-ichi; Hayashi, Morimichi; Tsutsui, Masaru; Tanaka, Satoru; Murakami, Makoto; Kuroda, Junji

    2008-10-01

    Expression of hepatic cytochrome P450 (CYP) isoforms was compared in Sprague-Dawley (SD) and Wistar (WI) rats, which are commonly used strains in preclinical studies. Basal CYP1A1, CYP1A2, and CYP3A2 mRNA levels were higher in WI rats than in SD rats (by 8-, 3- and 2-fold, respectively). Treatment with phenobarbital, a potent CYP inducer, increased the predominance of expression of these three mRNAs in WI rats (by 26-, 4-, and 2-fold, respectively) along with the predominance of increased microsomal total P450 contents and smooth-surface endoplasmic reticulum in the centrilobular hepatocytes. CYP1A enzymatic activity was also higher in WI rats than in SD rats. No strain differences were observed in phenobarbital induction of CYP2B1/2, CYP2C6, or CYP3A1. CYP3A2 mRNA was more strongly induced by dexamethasone, a typical inducer of CYP3A, together with CYP3A1 mRNA, in WI rats than in SD rats (by 2-fold), whereas the CYP1A1 and CYP1A2 mRNA expression induced by beta-naphtoflavone, a typical inducer of CYP1A, did not differ between the two strains. Furthermore, WI rats exhibited predominantly arylhydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor mRNAs, responsible for CYP1A or CYP3A induction, with phenobarbital or dexamethasone induction. In conclusion, significant, predominant expression of hepatic CYP1A and CYP3A mRNAs in WI rats was observed, possibly related to nuclear receptor-mediated induction. Considering the pharmacokinetic and toxicological importance of CYP1A and CYP3A, different outcomes might arise depending on the rat strains used in preclinical studies of drugs metabolized typically or mainly by both isoforms. PMID:18827444

  9. Two cytochrome P-450 isoforms catalysing O-de-ethylation of ethoxycoumarin and ethoxyresorufin in higher plants.

    PubMed Central

    Werck-Reichhart, D; Gabriac, B; Teutsch, H; Durst, F

    1990-01-01

    The O-dealkylating activities of 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) have been fluorimetrically detected in microsomes prepared from manganese-induced Jerusalem artichoke tubers. Cytochrome P-450 dependence of the reactions was demonstrated by light-reversed CO inhibition, NADPH-dependence, NADH-NADPH synergism and by use of specific inhibitors: antibodies to NADPH-cytochrome P-450 reductase, mechanism-based inactivators and tetcyclasis. Apparent Km values of 161 microM for 7-ethoxycoumarin and 0.4 microM for 7-ethoxyresorufin were determined. O-De-ethylase activity was also detected in microsomes prepared from several other plant species, including wheat, maize, tulip, avocado and Vicia. ECOD and EROD were low or undetectable in uninduced plant tissues, and both activities were stimulated by wounding or by chemical inducers. Two distinct cytochrome P-450 isoforms are involved in ECOD and EROD activities since (1) they showed different distributions among plant species; (2) they showed contrasting inhibition and induction patterns; and (3) ECOD but not EROD activity was supported by cumene hydroperoxide. PMID:2241905

  10. TLR4-Dependent and -Independent Regulation of Hepatic Cytochrome P450 in Mice with Chemically-Induced Inflammatory Bowel Disease

    PubMed Central

    Chaluvadi, Madhusudana R.; Nyagode, Beatrice A.; Kinloch, Ryan D.; Morgan, Edward T.

    2010-01-01

    The transcription and protein expression of many cytochrome P450 (P450) genes are down-regulated in animal models of inflammation and infection. We determined previously that hepatic P450 mRNAs are selectively regulated in a mouse model of enteropathogenic bacterial infection, and that this regulation was not dependent on the lipopolysaccharide (LPS) receptor protein toll-like receptor 4 (TLR4). In the dextran sulfate sodium (DSS) model of chemically-induced inflammatory bowel disease (IBD), the reduction in activities of several hepatic P450 enzymes were concluded to be partially dependent on LPS from commensal bacteria (Masubuchi Y and Horie T (2004) Drug Metab. Dispos. 32: 437–441). In the present study, we sought to determine whether colitis induced by LPS regulates hepatic P450 mRNA and protein expression similarly to infectious colitis, and to determine the role of TLR4 in the response to DSS colitis. The role of LPS in the response to DSS was further examined by comparison with the effects of injected LPS. We demonstrate that administration of DSS results in the down-regulation of multiple P450 enzymes in mouse liver. However, there are discernable differences in the pattern of P450 expression in the two models. Some effects of DSS-induced colitis are TLR4-dependent, and others are not. In contrast, the effects of injected LPS on hepatic P450 mRNA expression are entirely TLR4-dependent. Thus, our results indicate that the pattern of hepatic P450 expression, and the mechanism of regulation, during inflammation of the bowel depend on the etiology of the disease. PMID:19027721

  11. Effect of ergot alkaloids associated with fescue toxicosis on hepatic cytochrome P450 and antioxidant proteins

    SciTech Connect

    Settivari, Raja S.; Evans, Tim J.; Rucker, Ed; Rottinghaus, George E.; Spiers, Donald E.

    2008-03-15

    Intake of ergot alkaloids found in endophyte-infected tall fescue grass is associated with decreased feed intake and reduction in body weight gain. The liver is one of the target organs of fescue toxicosis with upregulation of genes involved in xenobiotic metabolism and downregulation of genes associated with antioxidant pathways. It was hypothesized that short-term exposure of rats to ergot alkaloids would change hepatic cytochrome P450 (CYP) and antioxidant expression, as well as reduce antioxidant enzyme activity and hepatocellular proliferation rates. Hepatic gene expression of various CYPs, selected nuclear receptors associated with the CYP induction, and antioxidant enzymes were measured using real-time PCR. Hepatic expression of CYP, antioxidant and proliferating cell nuclear antigen (PCNA) proteins were measured using Western blots. The CYP3A1 protein expression was evaluated using primary rat hepatocellular cultures treated with ergovaline, one of the major ergot alkaloids produced by fescue endophyte, in order to assess the direct role of ergot alkaloids in CYP induction. The enzyme activities of selected antioxidants were assayed spectrophotometrically. While hepatic CYP and nuclear receptor expression were increased in ergot alkaloid-exposed rats, the expression and activity of antioxidant enzymes were reduced. This could potentially lead to increased oxidative stress, which might be responsible for the decrease in hepatocellular proliferation after ergot alkaloid exposure. This study demonstrated that even short-term exposure to ergot alkaloids can potentially induce hepatic oxidative stress which can contribute to the pathogenesis of fescue toxicosis.

  12. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethan...

  13. Interactions of the hepatitis C virus protease inhibitor faldaprevir with cytochrome P450 enzymes: in vitro and in vivo correlation.

    PubMed

    Sabo, John P; Kort, Jens; Ballow, Charles; Kashuba, Angela D M; Haschke, Manuel; Battegay, Manuel; Girlich, Birgit; Ting, Naitee; Lang, Benjamin; Zhang, Wei; Cooper, Curtis; O'Brien, Drané; Seibert, Eleanore; Chan, Tom S; Tweedie, Donald; Li, Yongmei

    2015-04-01

    The potential inhibition of the major human cytochrome P450 (CYP) enzymes by faldaprevir was evaluated both in vitro and in clinical studies (healthy volunteers and hepatitis C virus [HCV] genotype 1-infected patients). In vitro studies indicated that faldaprevir inhibited CYP2B6, CYP2C9, and CYP3A, and was a weak-to-moderate inactivator of CYP3A4. Faldaprevir 240 mg twice daily in healthy volunteers demonstrated moderate inhibition of hepatic and intestinal CYP3A (oral midazolam: 2.96-fold increase in AUC(0-24 h)), weak inhibition of hepatic CYP3A (intravenous midazolam: 1.56-fold increase in AUC(0-24 h)), weak inhibition of CYP2C9 ([S]-warfarin: 1.29-fold increase in AUC(0-120 h)), and had no relevant effects on CYP1A2, CYP2B6, or CYP2D6. Faldaprevir 120 mg once daily in HCV-infected patients demonstrated weak inhibition of hepatic and intestinal CYP3A (oral midazolam: 1.52-fold increase in AUC(0-∞)), and had no relevant effects on CYP2C9 or CYP1A2. In vitro drug-drug interaction predictions based on inhibitor concentration ([I])/inhibition constant (Ki) ratios tended to overestimate clinical effects and a net-effect model provided a more accurate approach. These studies suggest that faldaprevir shows a dose-dependent inhibition of CYP3A and CYP2C9, and does not induce CYP isoforms. PMID:25449227

  14. Downregulation of Mouse Hepatic CYP3A Protein by 3-Methylcholanthrene Does Not Require Cytochrome P450-Dependent Metabolism

    PubMed Central

    Lee, Chunja; Ding, Xinxin

    2013-01-01

    The aryl hydrocarbon receptor (AHR)–dependent induction of cytochromes P450 (P450) such as CYP1A1 by 3-methylcholanthrene (MC) and related polycyclic aromatic hydrocarbons is well characterized. We reported previously that MC treatment triggers a pronounced downregulation, particularly at the protein level, of mouse hepatic Cyp3a11, a counterpart of the key human drug-metabolizing enzyme CYP3A4. To determine whether this effect of MC requires hepatic microsomal P450 activity, we studied liver Cpr-null (LCN) mice with hepatocyte-specific conditional deletion of the NADPH-cytochrome P450 oxidoreductase gene. In vehicle-treated animals, basal levels of CYP3A11 mRNA and CYP3A protein immunoreactivity were elevated by approximately 9-fold in LCN mice compared with wild-type (WT) mice, whereas CYP3A catalytic activity was profoundly compromised in LCN mice. MC treatment caused suppression of CYP3A11 mRNA, CYP3A protein immunoreactivity, and CYP3A catalytic activity in WT mice, and the MC effects at the mRNA and protein levels were maintained in LCN mice. Flavin-containing monooxygenase-3 (Fmo3) induction by MC was suggested previously to occur via an AHR-dependent mechanism requiring conversion of the parent compound to DNA-damaging reactive metabolites; however, hepatic FMO3 mRNA levels were dramatically increased by MC in both WT and LCN mice. MC did not function as a mechanism-based inactivator of CYP3A enzymes in hepatic microsomes prepared from untreated WT mice, under conditions in which 1-aminobenzotriazole caused marked NADPH-dependent loss of total P450 content and CYP3A catalytic activity. These results indicate that MC downregulates mouse hepatic CYP3A protein via a pretranslational mechanism that does not require hepatic microsomal P450-dependent activity. PMID:23846873

  15. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B sub 1

    SciTech Connect

    Aoyama, Toshifumi; Yamano, Shigeru; Gelboin, H.V.; Gonzalez, F.J. ); Guzelian, P.S. )

    1990-06-01

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B{sub 1} to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B{sub 1} to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B{sub 1} to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cells expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B{sub 1} as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B{sub 1} activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B{sub 1} in human liver involves the contribution of multiple forms of P450.

  16. Inhibition of Recombinant Cytochrome P450 Isoforms 2D6 and 2C9 by Diverse Drug-like Molecules

    PubMed Central

    McMasters, Daniel R.; Torres, Rhonda A.; Crathern, Susan J.; Dooney, Deborah L.; Nachbar, Robert B.; Sheridan, Robert P.; Korzekwa, Kenneth R.

    2008-01-01

    The affinities of a diverse set of 500 drug-like molecules to cytochrome P450 isoforms 2C9 and 2D6 were measured using recombinant expressed enzyme. The dose–response curve of each compound was fitted with a series of equations representing typical or various types of atypical kinetics. Atypical kinetics was identified where the Akaike Information Criterion, plus other criteria, suggested the kinetics was more complex than expected for a Michaelis–Menten model. Approximately 20% of the compounds were excluded due to poor solubility, and approximately 15% were excluded due to fluorescence interference. Of the remaining compounds, roughly half were observed to bind with an affinity of 200 μM or lower for each of the two isoforms. Atypical kinetics were observed in 18 percent of the compounds that bind to cytochrome 2C9 but less than 2 percent for 2D6. The resulting collection of competitive inhibitors and inactive compounds was analyzed for trends in binding affinity. For CYP2D6, a clear relationship between polar surface area and charge was observed, with the most potent inhibitors having a formal positive charge and a low percent polar surface area. For CYP2C9, no clear trend between activity and physicochemical properties could be seen for the group as a whole; however, certain classes of compounds have altered frequencies of activity and atypical kinetics. PMID:17559204

  17. Evidence for concerted kinetic oxidation of progesterone by purified rat hepatic cytochrome P-450g

    SciTech Connect

    Swinney, D.C.; Ryan, D.E.; Thomas, P.E.; Levin, W.

    1988-07-26

    Purified cytochrome P-450g, a male-specific rat hepatic isozyme, was observed to metabolize progesterone to two primary metabolites (6..beta..-hydroxyprogesterone and 16..cap alpha..-hydroxyprogesterone), two secondary metabolites (6..beta..,16..cap alpha..-dihydroxyprogesterone and 6-ketoprogesterone), and one tertiary metabolite (6-keto-16..cap alpha..-hydroxyprogesterone). The K/sub m,app/ for the formation of these products from progesterone was determined to be approximately 0.5 ..mu..M, while the K/sub m,app/ for metabolism of 6..beta..- and 16..cap alpha..-hydroxyprogesterone was found to be 5-10 ..mu..M. The ratio of primary to secondary metabolites did not change significantly at progesterone concentrations from 6 to 150 ..mu..M, and a lag in formation of secondary metabolites was not observed in 1-min incubations. Concerted oxidation of progesterone to secondary products without the intermediate products leaving the active site was suggested by these results and confirmed by isotopic dilution experiments in which little or no dilution of metabolically formed 6..beta..,16..cap alpha..-dihydroxyprogesterone and 6-keto-16..cap alpha..-hydroxyprogesterone was observed in incubations containing a mixture of radiolabeled progesterone and unlabeled 6..beta..-hydroxyprogesterone or 16..cap alpha..-hydroxyprogesterone. Incubation of 6..beta..-hydroxyprogesterone with a reconstituted system in an atmosphere of /sup 18/I/sub 2/ resulted in > 90% incorporation of /sup 18/O in the 16..cap alpha..-position of 6..beta..,16..cap alpha..-dihydroxyprogesterone but no incorporation of /sup 18/O into 6-ketoprogesterone, even though the reaction was dependent upon enzyme and O/sub 2/, and not inhibited by mannitol, catalase, or superoxide dismutase. Factors which characterize the metabolism of progesterone by cytochrome P-450g in terms of active-site constraints and the catalytic competence of the enzyme in microsomes were also explored.

  18. Fasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR

    PubMed Central

    de Vries, E. M.; Lammers, L. A.; Achterbergh, R.; Klümpen, H-J; Mathot, R. A. A.; Boelen, A.; Romijn, J. A.

    2016-01-01

    Introduction Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR). Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance are mediated by CAR. Methods To investigate this we used a drug cocktail validated in humans consisting of five widely prescribed drugs as probes for specific P450 enzymes: caffeine (CYP1A2), metoprolol (CYP2D6), omeprazole (CYP2C19), midazolam (CYP3A4) and s-warfarin (CYP2C9). This cocktail was administered to wild type (WT, C57Bl/6) mice or mice deficient for CAR (CAR-/-) that were either fed ad libitum or fasted for 24 hours. Blood was sampled at predefined intervals and drug concentrations were measured as well as hepatic mRNA expression of homologous/orthologous P450 enzymes (Cyp1a2, Cyp2d22, Cyp3a11, Cyp2c37, Cyp2c38 and Cyp2c65). Results Fasting decreased Cyp1a2 and Cyp2d22 expression and increased Cyp3a11 and Cyp2c38 expression in both WT and CAR-/- mice. The decrease in Cyp1a2 was diminished in CAR-/- in comparison with WT mice. Basal Cyp2c37 expression was lower in CAR-/- compared to WT mice. Fasting decreased the clearance of all drugs tested in both WT and CAR-/- mice. The absence of CAR was associated with an decrease in the clearance of omeprazole, metoprolol and midazolam in fed mice. The fasting-induced reduction in clearance of s-warfarin was greater in WT than in CAR-/-. The changes in drug clearance correlated with the expression pattern of the specific P450 enzymes in case of Cyp1a2-caffeine and Cyp2c37-omeprazole. Conclusion We conclude that CAR is important for hepatic clearance of several widely prescribed drugs metabolized by P450 enzymes. However the fasting-induced alterations in P450 mediated drug clearance are largely independent of CAR. PMID

  19. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    PubMed Central

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia

    2014-01-01

    Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint. PMID:25408844

  20. Dynamic and Static Simulations of Fluvoxamine-Perpetrated Drug-Drug Interactions Using Multiple Cytochrome P450 Inhibition Modeling, and Determination of Perpetrator-Specific CYP Isoform Inhibition Constants and Fractional CYP Isoform Contributions to Victim Clearance.

    PubMed

    Iga, Katsumi

    2016-03-01

    Fluvoxamine-perpetrated drug-drug interactions (DDIs) of victims metabolized by multiple cytochrome P450 isoforms (CYP1A2, CYP2C19, and CYP3A4) were simulated using 2 compartment-based tube modeling, assuming a multiple inhibition-constant (Ki) model, as well as a previously reported single Ki model. Good fittings were obtained for all DDIs using consistent perpetrator-specific CYP isoform Kis and fractional CYP isoform contributions to victim clearance in concordance with literature information. Through these simulations, the following rules to predict DDI were derived. Overall enzymatic inhibitory activity calculated from static DDI data determines entirely dynamic DDIs. DDI-relevant time-dependent hepatic blood unbound perpetrator levels can be approximated to mean hepatic blood unbound perpetrator levels in any victim DDIs when a perpetrator is supplied consistently. Static and dynamic multiple CYP model-based simulations agree with one another. Fluvoxamine-perpetrated DDIs can be bridged to other perpetrator DDIs. The derived rules will allow simpler prediction of DDIs from in vivo DDI databases. Tens or hundreds of Ki gaps between in vitro and in vivo data could be reduced to within severalfold using the liver-microsome contamination model, thus suggesting that microsomes qualified with contamination would greatly improve prediction of DDIs from in vitro data. PMID:26886336

  1. Advantages of human hepatocyte-derived transformants expressing a series of human cytochrome p450 isoforms for genotoxicity examination.

    PubMed

    Hashizume, Tsuneo; Yoshitomi, Sumie; Asahi, Satoru; Uematsu, Rieko; Matsumura, Shigeo; Chatani, Fumio; Oda, Hiroaki

    2010-08-01

    Metabolites of chemicals can often be ultimate genotoxic species; thus, in vitro routine testing requires the use of rat liver S9. However, there is a question as to whether this represents an appropriate surrogate for human metabolism. We have previously demonstrated the usefulness of HepG2 transformants expressing major human cytochrome P450 (CYP) isoforms to assess the genotoxicity of metabolites. We further assessed the advantages of these transformants from the following three aspects. First, the sensitivity of these transformants was confirmed with micronucleus (MN) induction by 7,12-dimethylbenz[a]anthracene or ifosfamide in transformants expressing the corresponding CYP1A1 or CYP2B6 and CYP2C9, respectively. Second, by using these transformants, beta-endosulfan, a chemical for which the CYP isoforms contributing to its genotoxicity are unknown, was found to induce MN through the CYP3A4-mediated pathway. This result was confirmed by the facts that the decreased CYP3A4 activity using a inhibitor or short interfering RNA (siRNA) repressed MN induction by beta-endosulfan and that endosulfan sulfate, one of the metabolites produced by CYP3A4, induced MN in the transformants harboring an empty vector. Third, the interaction between phase I and II drug-metabolizing enzymes was demonstrated by MN induction with inhibitors of uridine diphosphate (UDP)-glucuronosyltransferases in tamoxifen-treated transformants harboring the corresponding CYP3A4 or with inhibitors of glutathione S-transferase in safrole-treated transformants harboring the corresponding CYP2D6, whereas neither tamoxifen nor safrole alone induced MN in any transformant. These advantages provide the benefits of newly established transformants for in vitro genotoxicity testing that reflects comprehensive metabolic pathways including not only human CYP isoforms but also the phase II enzymes. PMID:20507880

  2. In vitro evaluation of potential in vivo probes for human flavin-containing monooxygenase (FMO): metabolism of benzydamine and caffeine by FMO and P450 isoforms

    PubMed Central

    Lang, Dieter H; Rettie, Allan E

    2000-01-01

    Aims To determine the FMO and P450 isoform selectivity for metabolism of benzydamine and caffeine, two potential in vivo probes for human FMO. Methods Metabolic incubations were conducted at physiological pH using substrate concentrations of 0.01–10 mm with either recombinant human FMOs, P450s or human liver microsomes serving as the enzyme source. Products of caffeine and benzydamine metabolism were analysed by reversed-phase h.p.l.c. with u.v. and fluorescence detection. Results CYP1A2, but none of the human FMOs, catalysed metabolism of caffeine. In contrast, benzydamine was a substrate for human FMO1, FMO3, FMO4 and FMO5. Apparent Km values for benzydamine N-oxygenation were 60 ± 8 µm, 80 ± 8 µm, > 3 mm and > 2 mm, for FMO1, FMO3, FMO4 and FMO5, respectively. The corresponding Vmax values were 46 ± 2 min−1, 36 ± 2 min−1, < 75 min−1 and < 1 min−1. Small quantities of benzydamine N-oxide were also formed by CYPs 1A1, 1A2, 2C19, 2D6 and 3A4. Conclusions FMO1 and FMO3 catalyse benzydamine N-oxygenation with the highest efficiency. However, it is likely that the metabolic capacity of hepatic FMO3 is a much greater contributor to plasma levels of the N-oxide metabolite in vivo than is extrahepatic FMO1. Therefore, benzydamine, but not caffeine, is a potential in vivo probe for human FMO3. PMID:11012553

  3. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: Evaluation of hepatic cytochrome p450 induction

    USGS Publications Warehouse

    Russell, J.S.; Halbrook, R.S.; Woolf, A.; French, J.B., Jr.; Melancon, M.J.

    2004-01-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with $-naphthoflavone ($NF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received $NF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  4. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: evaluation of hepatic cytochrome P450 induction.

    PubMed

    Russell, Julie S; Halbrook, Richard S; Woolf, Alan; French, John B; Melancon, Mark J

    2004-08-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with beta-naphthoflavone (betaNF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received betaNF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal. PMID:15352474

  5. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines.

    PubMed Central

    Butler, M A; Iwasaki, M; Guengerich, F P; Kadlubar, F F

    1989-01-01

    Aromatic amines are well known as occupational carcinogens and are found in cooked foods, tobacco smoke, synthetic fuels, and agricultural chemicals. For the primary arylamines, metabolic N-oxidation by hepatic cytochromes P-450 is generally regarded as an initial activation step leading to carcinogenesis. The metabolic activation of 4-aminobiphenyl, 2-naphthylamine, and several heterocyclic amines has been shown recently to be catalyzed by rat cytochrome P-450ISF-G and by its human ortholog, cytochrome P-450PA. We now report that human hepatic microsomal caffeine 3-demethylation, the initial major step in caffeine biotransformation in humans, is selectively catalyzed by cytochrome P-450PA. Caffeine 3-demethylation was highly correlated with 4-aminobiphenyl N-oxidation (r = 0.99; P less than 0.0005) in hepatic microsomal preparations obtained from 22 human organ donors, and both activities were similarly decreased by the selective inhibitor, 7,8-benzoflavone. The rates of microsomal caffeine 3-demethylation, 4-aminobiphenyl N-oxidation, and phenacetin O-deethylation were also significantly correlated with each other and with the levels of immunoreactive human cytochrome P-450PA. Moreover, a rabbit polyclonal antibody raised to human cytochrome P-450PA was shown to inhibit strongly all three of these activities and to inhibit the N-oxidation of the carcinogen 2-naphthylamine and the heterocyclic amines, 2-amino-6-methyldipyrido-[1,2-a:3',2'-d]imidazole and 2-amino-3-methylimidazo[4,5-f]-quinoline. Human liver cytochrome P-450PA was also shown to catalyze caffeine 3-demethylation, 4-aminobiphenyl N-oxidation, and phenacetin O-deethylation. Thus, estimation of caffeine 3-demethylation activity in humans may be useful in the characterization of arylamine N-oxidation phenotypes and in the assessment of whether or not the hepatic levels of cytochrome P-450PA, as affected by environmental or genetic factors, contribute to interindividual differences in susceptibility to

  6. Application of Osmotic Pumps for Sustained Release of 1-Aminobenzotriazole and Inhibition of Cytochrome P450 Enzymes in Mice: Model Comparison with the Hepatic P450 Reductase Null Mouse.

    PubMed

    Stringer, Rowan A; Ferreira, Suzie; Rose, Jonathan; Ronseaux, Sebastien

    2016-08-01

    The effectiveness of controlled release 1-aminobenzotriazole (ABT) administration to inhibit cytochrome P450 (P450) enzymes has been evaluated in mice. To maximize the duration of P450 inhibition in vivo, ABT was administered via an osmotic pump. The degree of P450 inhibition was compared with that achieved with a single bolus dose of ABT. Two-hour prior subcutaneous treatment of mice with ABT (50 mg/kg) inhibited antipyrine clearance by 88%. A less pronounced inhibitory effect (29% reduction in clearance) was observed when ABT was administered 24-hours before antipyrine administration, indicating partial restoration of P450 activity during this longer pretreatment time. The duration of ABT in mice was very short (mean residence time = 1.7 hours) after subcutaneous bolus administration. When the inhibitor was delivered by an osmotic pump, maximum blood concentrations of the inhibitor were observed 24 hours after device implantation and were maintained at steady state for 6 days. Inhibition of P450 activity, as measured by antipyrine clearance, was confirmed at 24 hours and 120 hours after pump implantation, highlighting the utility of this method as a longer-term model for P450 inhibition in mice. The magnitude of P450 inhibition in ABT-treated mice was compared with that in hepatic P450 reductase null mice and both models were comparable. In vivo ABT administration by an osmotic pump offers an effective approach for longer-term P450 inhibition in mice and avoids the necessity for multiple dosing of the inhibitor. PMID:27271368

  7. Comparative evaluation of 12 immature citrus fruit extracts for the inhibition of cytochrome P450 isoform activities.

    PubMed

    Fujita, Tadashi; Kawase, Atsushi; Niwa, Toshiro; Tomohiro, Norimichi; Masuda, Megumi; Matsuda, Hideaki; Iwaki, Masahiro

    2008-05-01

    In a previous study we found that 50% ethanol extracts of immature fruits of Citrus unshiu (satsuma mandarin) have anti-allergic effects against the Type I, II and IV allergic reactions. However, many adverse interactions between citrus fruit, especially grapefruit juice, and drugs have been reported due to the inhibition of cytochrome P450 (CYP) activities. The purpose of this study was to examine the competitive inhibitory effects of extracts from immature citrus fruit on CYP activity. Extracts were prepared from 12 citrus species or cultivars, and were tested against three kinds of major CYPs, CYP2C9, CYP2D6 and CYP3A4, in human liver microsomes. We also estimated the amounts of flavonoids (narirutin, hesperidin, naringin and neohesperidin) and furanocoumarins (bergapten, 6',7'-dihydroxybergamottin and bergamottin) in each extract using HPLC. Citrus paradisi (grapefruit) showed the greatest inhibition of CYP activities, while Citrus unshiu which has an antiallergic effect, showed relatively weak inhibitory effects. Extracts having relatively strong inhibitory effects for CYP3A4 tended to contain higher amounts of naringin, bergamottin and 6',7'-dihydroxybergamottin. These results, providing comparative information on the inhibitory effects of citrus extracts on CYP isoforms, suggest that citrus extracts containing high levels of narirutin and hesperidin and lower levels of furanocoumarins such as C. unshiu are favorable as antiallergic functional ingredients. PMID:18451520

  8. Investigating the in vitro stereoselective metabolism of m-nisoldipine enantiomers: characterization of metabolites and cytochrome P450 isoforms involved.

    PubMed

    Sun, Yupeng; Jia, Peipei; Yuan, Lin; Liu, Yanyan; Zhang, Zhiyong; Du, Yumin; Zhang, Lantong

    2015-12-01

    m-Nisoldipine, as a novel 1,4-dihydropyridine calcium ion antagonist, was presented as a couple of enantiomers [(-), (+)-m-nisoldipine]. In this report, the in vitro metabolism of m-nisoldipine enantiomers was investigated in rat liver microsomes (RLM) by the combination of two liquid chromatography mass spectrometric techniques for the first time. The metabolites were separated and assayed by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry and further identified by comparison of their mass and chromatographic behaviors with reference substances. A total of 18 metabolites of (-)-m-nisoldipine and 16 metabolites of (+)-m-nisoldipine were detected, respectively, which demonstrated that (+)-m-nisoldipine is more metabolically stable than (-)-m-nisoldipine. In addition, the identified metabolic pathways of m-nisoldipine enantiomers were involved in dehydrogenation, oxidation and ester hydrolysis. Afterwards, based on high-performance liquid chromatography coupled to triple quadrupole linear ion trap mass spectrometry, various selective cytochrome P450 (CYP) enzyme inhibitors were employed to evaluate CYP isoforms. The results indicated that the inhibitors of CYP1A1/2, CYP2B1/2, 2D and 2C11 had no obvious inhibitory effects, yet the inhibitor of CYP 3A had a significant inhibitory effect on metabolism of m-nisoldipine enantiomers. This showed that CYP 3A might primarily metabolize m-nisoldipine in RLM. PMID:25994315

  9. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    SciTech Connect

    Fang Cheng; Behr, Melissa; Xie Fang; Lu Shijun; Doret, Meghan; Luo Hongxiu; Yang Weizhu; Aldous, Kenneth; Ding Xinxin; Gu Jun

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dose of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.

  10. Simultaneous absolute quantification of 11 cytochrome P450 isoforms in human liver microsomes by liquid chromatography tandem mass spectrometry with in silico target peptide selection.

    PubMed

    Kawakami, Hirotaka; Ohtsuki, Sumio; Kamiie, Junichi; Suzuki, Takashi; Abe, Takaaki; Terasaki, Tetsuya

    2011-01-01

    Cytochrome P450 (CYP) proteins are involved in the biological oxidation and reduction of xenobiotics, affecting the pharmacological efficiency of drugs. This study aimed to establish a method to simultaneously quantify 11 CYP isoforms by multiplexed-multiple reaction monitoring analysis with liquid chromatography tandem mass spectrometry and in silico peptide selection to clarify CYP isoform expression profiles in human liver tissue. CYP1A2, 2A6, and 2D6 target peptides were identified by shot-gun proteomic analysis, and those of other isoforms were selected by in silico peptide selection criteria. The established quantification method detected target peptides at 10  fmol, and the dynamic range of calibration curves was at least 500-fold. The quantification value of CYP1A2 in Supersomes was not significantly different between the established method and quantitative immunoblot analysis. The absolute protein expression levels of 11 CYP isoforms were determined from one pooled and 10 individual human liver microsomes. In the individual microsomes, CYP2C9 showed the highest protein expression level, and CYP1A2, 2A6, 2C19, and 3A4 protein expression exhibited more than a 20-fold difference among individuals. This highly sensitive and selective quantification method is a useful tool for the analysis of highly homologous CYP isoforms and the contribution made by each CYP isoform to drug metabolism. PMID:20564338

  11. Cytochrome P450-mediated hepatic metabolism of new fluorescent substrates in cats and dogs.

    PubMed

    van Beusekom, C D; Schipper, L; Fink-Gremmels, J

    2010-12-01

    This study aimed to investigate the biotransformation of cat liver microsomes in comparison to dogs and humans using a high throughput method with fluorescent substrates and classical inhibitors specific for certain isozymes of the human cytochrome P450 (CYP) enzyme family. The metabolic activities associated with CYP1A, CYP2B, CYP2C, CYP2D, CYP2E and CYP3A were measured. Cat liver microsomes metabolized all substrates selected for the assessment of cytochrome P450 activity. The activities associated with CYP3A and CYP2B were higher than the activities of the other measured CYPs. Substrate selectivity could be demonstrated by inhibition studies with α-naphthoflavone (CYP1A), tranylcypromine/quercetine (CYP2C), quinidine (CYP2D), diethyldithiocarbamic acid (CYP2E) and ketoconazole (CYP3A) respectively. Other prototypical inhibitors used for characterization of human CYP activities such as furafylline (CYP1A), tranylcypromine (CYP2B) and sulfaphenazole (CYP2C) did not show significant effects in cat and dog liver microsomes. Moreover, IC50-values of cat CYPs differed from dog and human CYPs underlining the interspecies differences. Gender differences were observed in the oxidation of 7-ethoxy-4-trifluoromethylcoumarin (CYP2B) and 3-[2-(N, N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin (CYP2D), which were significantly higher in male cats than in females. Conversely, oxidation of the substrates dibenzylfluorescein (CYP2C) and 7-methoxy-4-trifluoromethylcoumarin (CYP2E) showed significant higher activities in females than in male cats. Overall CYP-activities in cat liver microsomes were lower than in those from dogs or humans, except for CYP2B. The presented difference between feline and canine CYP-activities are useful to establish dose corrections for feline patients of intensively metabolized drugs licensed for dogs or humans. PMID:21062303

  12. In vitro identification of human cytochrome P450 isoforms involved in the metabolism of Geissoschizine methyl ether, an active component of the traditional Japanese medicine Yokukansan.

    PubMed

    Matsumoto, Takashi; Kushida, Hirotaka; Maruyama, Takeshi; Nishimura, Hiroaki; Watanabe, Junko; Maemura, Kazuya; Kase, Yoshio

    2016-01-01

    1. Yokukansan (YKS) is a traditional Japanese medicine also called kampo, which has been used to treat neurosis, insomnia, and night crying and peevishness in children. Geissoschizine methyl ether (GM), a major indole alkaloid found in Uncaria hook, has been identified as a major active component of YKS with psychotropic effects. Recently, GM was reported to have a partial agonistic effect on serotonin 5-HT1A receptors. However, there is little published information on GM metabolism in humans, although several studies reported the blood kinetics of GM in rats and humans. In this study, we investigated the GM metabolic pathways and metabolizing enzymes in humans. 2. Using recombinant human cytochrome P450 (CYP) isoforms and polyclonal antibodies to CYP isoforms, we found that GM was metabolized into hydroxylated, dehydrogenated, hydroxylated+dehydrogenated, demethylated and water adduct forms by some CYP isoforms. 3. The relative activity factors in human liver microsomes were calculated to determine the relative contributions of individual CYP isoforms to GM metabolism in human liver microsomes (HLMs). We identified CYP3A4 as the CYP isoform primarily responsible for GM metabolism in human liver microsomes. 4. These findings provide an important basis for understanding the pharmacokinetics and pharmacodynamics of GM and YKS. PMID:26337900

  13. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats

    PubMed Central

    Ye, Qinyuan; Lian, Fuzhi; Chavez, Pollyanna R.G.; Chung, Jayong; Ling, Wenhua; Qin, Hua; Seitz, Helmut K.

    2012-01-01

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethanol liquid diet or a non-ethanol liquid diet, with or without CMZ for one and ten months. A single intraperitoneal injection of diethylnitrosamine (DEN, 20 mg/kg) was given to initiate hepatic carcinogenesis. CYP2E1 expression, inflammatory proteins, cell proliferation, protein-bound 4-HNE, etheno-DNA adducts, 8-hydroxy-2'-deoxyguanosine (8-OHdG), retinoid concentrations, and hepatic carcinogenesis were examined. Ethanol feeding for 1 month with DEN resulted in significantly increased hepatic CYP2E1 levels and increased nuclear accumulation of NF-κB protein and TNF-α expression, which were associated with increased cyclin D1 expression and p-GST positive altered hepatic foci. All of these changes induced by ethanol feeding were significantly inhibited by the one month CMZ treatment. At 10-months of treatment, hepatocellular adenomas were detected in ethanol-fed rats only, but neither in control rats nor in animals receiving ethanol and CMZ. The 8-OHdG formation was found to be significantly increased in ethanol fed animals and normalized with CMZ treatment. In addition, alcohol-reduced hepatic retinol and retinoic acid concentrations were restored by CMZ treatment to normal levels in the rats at 10 months of treatment. These data demonstrate that the inhibition of ethanol-induced CYP2E1 as a key pathogenic factor can counteract the tumor-promoting action of ethanol by decreasing TNF-α expression, NF-κB activation, and oxidative DNA damage as well as restoring normal hepatic levels of retinoic acid in DEN-treated rats. PMID:23543859

  14. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats.

    PubMed

    Ye, Qinyuan; Lian, Fuzhi; Chavez, Pollyanna R G; Chung, Jayong; Ling, Wenhua; Qin, Hua; Seitz, Helmut K; Wang, Xiang-Dong

    2012-12-01

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethanol liquid diet or a non-ethanol liquid diet, with or without CMZ for one and ten months. A single intraperitoneal injection of diethylnitrosamine (DEN, 20 mg/kg) was given to initiate hepatic carcinogenesis. CYP2E1 expression, inflammatory proteins, cell proliferation, protein-bound 4-HNE, etheno-DNA adducts, 8-hydroxy-2'-deoxyguanosine (8-OHdG), retinoid concentrations, and hepatic carcinogenesis were examined. Ethanol feeding for 1 month with DEN resulted in significantly increased hepatic CYP2E1 levels and increased nuclear accumulation of NF-κB protein and TNF-α expression, which were associated with increased cyclin D1 expression and p-GST positive altered hepatic foci. All of these changes induced by ethanol feeding were significantly inhibited by the one month CMZ treatment. At 10-months of treatment, hepatocellular adenomas were detected in ethanol-fed rats only, but neither in control rats nor in animals receiving ethanol and CMZ. The 8-OHdG formation was found to be significantly increased in ethanol fed animals and normalized with CMZ treatment. In addition, alcohol-reduced hepatic retinol and retinoic acid concentrations were restored by CMZ treatment to normal levels in the rats at 10 months of treatment. These data demonstrate that the inhibition of ethanol-induced CYP2E1 as a key pathogenic factor can counteract the tumor-promoting action of ethanol by decreasing TNF-α expression, NF-κB activation, and oxidative DNA damage as well as restoring normal hepatic levels of retinoic acid in DEN-treated rats. PMID:23543859

  15. Contaminants in eggs of colonial waterbirds and hepatic cytochrome P450 enzyme levels in pipped tern embryos, Washington State

    USGS Publications Warehouse

    Blus, L.J.; Melancon, M.J.; Hoffman, D.J.; Henny, C.J.

    1998-01-01

    Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryos (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994

  16. Contaminants in eggs of colonial waterbirds and hepatic cytochrome P450 enzyme levels in pipped tern embryos, Washington State.

    PubMed

    Blus, L J; Melancon, M J; Hoffman, D J; Henny, C J

    1998-10-01

    Eggs of Forster's terns (Sterna forsteri) collected in 1991 from nesting colonies on Crescent Island (Columbia River) and the Potholes Reservoir in south central Washington generally contained low residues of organochlorine pesticides and metabolites, 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and polychlorinated biphenyls (PCBs). Hepatic cytochrome P450 enzyme activity in pipped embryos of Forster's terns from the two colonies seemed unaffected by contaminants. At Crescent Island, examination of 23 Forster's tern eggs with large embryos (19 viable [10 pipped] and four dead [two pipped]) revealed developmental abnormalities in two viable pipped embryos (missing maxilla and deformed pelvic girdle) and a viable prepipping embryo (shortened beak). Our limited sample sizes and number of compounds analyzed preclude us from determining whether or not the abnormalities are related to contaminants. No abnormalities were noted in 10 pipped eggs (nine viable and one dead at collection) of Forster's terns collected from the Potholes Reservoir colony. Eggs of Caspian terns (Sterna caspia) collected from Crescent Island in 1991 also contained generally low residues of contaminants, only one developmental abnormality was noted, and limited data indicated that cytochrome P450 enzyme activity apparently was unaffected by contaminants. Organochlorine contaminants were generally low in addled eggs of American white pelicans (Pelecanus erythrorhynchos) collected from Crescent Island in 1994. PMID:9732482

  17. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response

    PubMed Central

    Rivory, L P; Slaviero, K A; Clarke, S J

    2002-01-01

    Inflammatory disease states (infection, arthritis) are associated with reduced drug oxidation by the cytochrome P450 3A system. Many chemotherapy agents are metabolised through this pathway, and disease may therefore influence inter-individual differences in drug pharmacokinetics. The purpose of this study was to assess cytochrome P450 3A function in patients with advanced cancer, and its relation to the acute-phase response. We evaluated hepatic cytochrome P450 3A function in 40 patients with advanced cancer using the erythromycin breath test. Both the traditional C20min measure and the recently proposed 1/TMAX values were estimated. The marker of acute-phase response, C-reactive protein and the pro-inflammatory cytokines IL-6, IL-1β, TNFα and IL-8 were measured in serum or plasma at baseline. Cancer patients with an acute phase response (C-reactive protein >10 mg l−1, n=26) had reduced metabolism as measured with the erythromycin breath test 1/TMAX (Kruskal–Wallis Anova, P=0.0062) as compared to controls (C-reactive protein ⩽10 mg l−1, n=14). Indeed, metabolism was significantly associated with C-reactive protein over the whole concentration range of this acute-phase marker (r=−0.64, Spearman Rank Correlation, P<0.00001). C-reactive protein serum levels were significantly correlated with those of IL-6 (Spearman coefficient=0.58, P<0.0003). The reduction in cytochrome P450 3A function with acute-phase reaction was independent of the tumour type and C-reactive protein elevation was associated with poor performance status. This indicates that the sub-group of cancer patients with significant acute-phase response have compromised drug metabolism, which may have implications for the safety of chemotherapy in this population. British Journal of Cancer (2002) 87, 277–280. doi:10.1038/sj.bjc.6600448 www.bjcancer.com © 2002 Cancer Research UK PMID:12177794

  18. Hepatic effects of repeated oral administration of diclofenac to hepatic cytochrome P450 reductase null (HRN™) and wild-type mice.

    PubMed

    Akingbasote, James A; Foster, Alison J; Wilson, Ian; Sarda, Sunil; Jones, Huw B; Kenna, J Gerry

    2016-04-01

    Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN™) mice exhibit normal hepatic and extrahepatic biotransformation enzyme activities when compared to wild-type (WT) mice, but express no functional hepatic cytochrome P450 activities. When incubated in vitro with [(14)C]-diclofenac, liver microsomes from WT mice exhibited extensive biotransformation to oxidative and glucuronide metabolites and covalent binding to proteins was also observed. In contrast, whereas glucuronide conjugates and a quinone-imine metabolite were formed when [(14)C]-diclofenac was incubated with HRN™ mouse liver, only small quantities of P450-derived oxidative metabolites were produced in these samples and covalent binding to proteins was not observed. Livers from vehicle-treated HRN™ mice exhibited enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration and necrosis and inflammatory cell infiltration, which were not present in livers from WT mice. Elevated liver-derived alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities were also observed in plasma from HRN™ mice. When treated orally with diclofenac for 7 days, at 30 mg/kg/day, the severities of the abnormal liver histopathology and plasma liver enzyme findings in HRN™ mice were reduced markedly. Oral diclofenac administration did not alter the liver histopathology or elevate plasma enzyme activities of WT mice. These findings indicate that HRN™ mice are valuable for exploration of the role played by hepatic P450s in drug biotransformation, but poorly suited to investigations of drug-induced liver toxicity. Nevertheless, studies in HRN™ mice could provide novel insights into the role played by inflammation in liver injury and may aid the evaluation of new strategies for its treatment. PMID:25820915

  19. Effects of several pyrethroids on hepatic cytochrome P450 activities in rats.

    PubMed

    Abdou, Rania; Sasaki, Kazuaki; Khalil, Waleed; Shah, Syed; Murasawa, Youhei; Shimoda, Minoru

    2010-04-01

    Four commonly used pyrethroids (permethrin, bifenthrin, ethofenprox, and fenpropathrin) were orally administered to Sprague-Dawley rats for 5 days to study their effects on the liver cytochrome P450 (CYP) activities. Also Michaelis-Menten kinetics of the metabolic reactions catalyzed by liver CYPs were examined after adding these pyrethroids to the assay system to investigate their possible inhibitory effects on liver CYPs activities. These reactions included ethoxyresorufin O-deethylation, tolbutamide hydroxylation, bufuralol 1'-hydroxylation, and midazolam 4-hydroxylation, for CYP1A, 2C, 2D, and 3A activities, respectively. Results showed that oral administration of bifenthrin and ethofenprox highly induced CYP1A. The most potent inhibitors for CYP1A were fenpropathrin and cis-permethrin with K(i) values of 3.71 & 3.87 microM, respectively. CYP2D was slightly inhibited by both of fenpropathrin and cis-permethrin (K(i) values were 307.32 & 632.23 microM, respectively). On the other hand, none of CYP2C or 3A was inhibited by the tested pyrethroids. Since CYP1A may relate to biotransformation of many chemicals to reactive metabolites, bifenthrin and ethofenprox may potentiate mutagenicity of the chemicals through their inducing effects on CYP 1A. As permethrin and fenpropathrin were potent inhibitor for CYP1A, they may result in substantial accumulation of some chemicals. The resultant accumulation may lead to fatal toxicities in some case. PMID:20009351

  20. Comparative hepatic cytochrome P450 activities and contaminant concentrations in caged carp and juvenile ducks

    SciTech Connect

    O`Keefe, P.; Gierthy, J.; Connor, S.; Bush, B.; Hong, C.S.; Wood, L.; Clayton, W.; Storm, R.

    1995-12-31

    Juvenile carp (Cyprinius carpio) weighing approx. 60 g were placed in cages located on the surface of sediments near an aluminum plant and an automobile parts plant in the Massena area of the St. Lawrence River. Fish were removed at weekly intervals over a 35 day exposure period and composited samples of liver tissue, cranial lipid, and fillet tissue were prepared for analysis of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). Liver tissue was also stored at {minus}80 C for determination of microsomal Cytochrome P450 activity using the aryl hydrocarbon hydroxylase (AHH) assay. A control exposure was carried out upstream at an uncontaminated site. Juvenile pre-flight ducks (mallards, gadwalls, wood ducks and common mergansers) were collected in the contaminated areas on the St. Lawrence and on the Hudson River two to three months after hatching. Control pre-flight mallards, wood ducks and common mergansers were collected from remote lakes in the Addirondack State Park. Samples of subcutaneous fat and liver tissue were removed for analysis as described above for the carp. There was a three fold increase in AHH activity in the carp liver tissue at the end of the 35 day exposure period and there was a similar increase it activity for the mallards, common mergansers and wood ducks compared to controls. For each species the enzyme activity increases will be compared to the contaminant concentrations.

  1. Avian Cytochrome P450 (CYP) 1-3 Family Genes: Isoforms, Evolutionary Relationships, and mRNA Expression in Chicken Liver

    PubMed Central

    Ikenaka, Yoshinori; Kawata, Minami; Ikushiro, Shin-Ichi; Sakaki, Toshiyuki; Ishizuka, Mayumi

    2013-01-01

    Cytochrome P450 (CYP) of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR) activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene. PMID:24098714

  2. Cytochrome P450-2E1 promotes aging-related hepatic steatosis, apoptosis and fibrosis through increased nitroxidative stress.

    PubMed

    Abdelmegeed, Mohamed A; Choi, Youngshim; Ha, Seung-Kwon; Song, Byoung-Joon

    2016-02-01

    The role of ethanol-inducible cytochrome P450-2E1 (CYP2E1) in promoting aging-dependent hepatic disease is unknown and thus was investigated in this study. Young (7 weeks) and aged female (16 months old) wild-type (WT) and Cyp2e1-null mice were used in this study to evaluate age-dependent changes in liver histology, steatosis, apoptosis, fibrosis and many nitroxidative stress parameters. Liver histology showed that aged WT mice exhibited markedly elevated hepatocyte vacuolation, ballooning degeneration, and inflammatory cell infiltration compared to all other groups. These changes were accompanied with significantly higher hepatic triglyceride and serum cholesterol in aged WT mice although serum ALT and insulin resistance were not significantly altered. Aged WT mice showed the highest rates of hepatocyte apoptosis and hepatic fibrosis. Further, the highest levels of hepatic hydrogen peroxide, lipid peroxidation, protein carbonylation, nitration, and oxidative DNA damage were observed in aged WT mice. These increases in the aged WT mice were accompanied by increased levels of mitochondrial nitroxidative stress and alteration of mitochondrial complex III and IV proteins in aged WT mice, although hepatic ATP levels seems to be unchanged. In contrast, the aging-related nitroxidative changes were very low in aged Cyp2e1-null mice. These results suggest that CYP2E1 is important in causing aging-dependent hepatic steatosis, apoptosis and fibrosis possibly through increasing nitroxidative stress and that CYP2E1 could be a potential target for translational research in preventing aging-related liver disease. PMID:26703967

  3. The reverse role of the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei in the central serotonergic regulation of the liver cytochrome P450 isoform CYP2C11.

    PubMed

    Rysz, Marta; Bromek, Ewa; Haduch, Anna; Liskova, Barbora; Wójcikowski, Jacek; Daniel, Władysława A

    2016-07-15

    Our recent work showed that the brain serotonergic system negatively regulated liver cytochrome P450. The aim of our present research was to study the effect of damage to the serotonergic innervation of the paraventricular (PVN) or arcuate nuclei (ARC) of the hypothalamus on the neuroendocrine regulation of cytochrome P450 (CYP). Male rats received bilateral injections of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the PVN or ARC. One week after the injection brain neurotransmitters, serum hormones (growth hormone, testosterone, corticosterone, thyroid hormones), pituitary somatostatin and liver cytochrome P450 expression and activity were measured. Lesion of the serotonergic innervation of the PVN decreased serotonin level in the hypothalamic area containing the PVN, causing an increase in growth hormone and testosterone concentrations in the blood and, subsequently, an increase in the expression (mRNA and protein level) and activity of isoform CYP2C11 in the liver. In contrast, damage to the serotonergic innervation of the ARC, which caused a decrease in serotonin level in the hypothalamic area containing the ARC, reduced the concentration of growth hormone and the expression and activity of CYP2C11. In conclusion, the obtained results show a reverse effect of the serotonergic innervation of the hypothalamic paraventricular (a negative effect) and arcuate nuclei (a positive effect) on growth hormone secretion and growth hormone-dependent CYP2C11 expression. They also suggest that CYP2C11 expression may be changed by drugs acting via the serotonergic system, their effect depending on their mechanism of action, route of administration (intracerebral, peripheral) and distribution pattern within the hypothalamus. PMID:27137992

  4. Hepatic and Renal Cytochrome P450 Gene Regulation During Citrobacter rodentium Infection in Wildtype and Toll-like Receptor 4 Mutant Mice

    PubMed Central

    Richardson, Terrilyn A.; Sherman, Melanie; Antonovic, Leposava; Kardar, Sean S.; Strobel, Henry W.; Kalman, Daniel; Morgan, Edward T.

    2005-01-01

    C. rodentium is the rodent equivalent of human enteropathogenic E. coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice (which lack functional toll-like receptor 4 [TLR4]) were infected with C. rodentium by oral gavage, and sacrificed 6 days later. Hepatic CYP4A10 and 4A14 mRNAs were decreased in HeOu mice (<4% of control). CYP3A11, 2C29, 4F14, and 4F15 mRNAs were reduced to 16–55% of control levels, whereas CYP2A5, 4F16, and 4F18 mRNAs were induced (180, 190, and 600% of control, respectively). The pattern of P450 regulation in HeJ mice was similar to that in HeOu mice for most P450s, with the exception of the TLR4-dependence of CYP4F15. Hepatic CYP2C, 3A, and 4A proteins in both groups were decreased, whereas CYP2E protein was not. Renal CYP4A10 and 4A14 mRNAs were significantly down-regulated in HeOu mice, whereas other P450s were unaffected. Most renal P450 mRNAs in infected HeJ mice were increased, notably CYP4A10, 4A14, 4F18, 2A5 and 3A13. Hepatic levels of IL-1β, IL-6, and TNFα mRNAs were significantly increased in infected HeOu mice, whereas only TNFα mRNA was significantly increased in HeJ mice. Hepatic α1-acid glycoprotein was induced in both groups, whereas α-fibrinogen and angiotensinogen were unchanged. These data indicate that hepatic inflammation induced by C. rodentium infection is mainly TLR4-independent, and suggest that hepatic P450 down-regulation in this model may be cytokine-mediated. PMID:16339354

  5. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish.

    PubMed

    Lin, Chun-Hung; Chou, Pei-Hsin; Chen, Pei-Jen

    2014-07-30

    Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish populations in the aquatic environment. PMID:24962053

  6. Modulation of Hepatic and Renal Metabolism and Toxicity of Trichloroethylene and Perchloroethylene by Alterations in Status of Cytochrome P450 and Glutathione

    PubMed Central

    Lash, Lawrence H.; Putt, David A.; Huang, Paul; Hueni, Sarah E.; Parker, Jean C.

    2007-01-01

    The relative importance of metabolism of trichloroethylene (Tri) and perchloroethylene (Perc) by the cytochrome P450 (P450) and glutathione (GSH) conjugation pathways in their acute renal and hepatic toxicity was studied in isolated cells and microsomes from rat kidney and liver after various treatments to modulate P450 activity/expression or GSH status. Inhibitors of P450 stimulated GSH conjugation of Tri and, to a lesser extent, Perc, in both kidney cells and hepatocytes. Perc was a more potent, acute cytotoxic agent in isolated kidney cells than Tri but Perc-induced toxicity was less responsive than Tri-induced toxicity to modulation of P450 status. These observations are consistent with P450-dependent bioactivation being more important for Tri than for Perc. Incubation of isolated rat hepatocytes with Tri produced no acute cytotoxicity in isolated hepatocytes while Perc produced comparable cytotoxicity as in kidney cells. Modulation of P450 status in hepatocytes produced larger changes in Tri- and Perc-induced cytotoxicity than in kidney cells, with non-selective P450 inhibitors increasing toxicity. Induction of CYP2E1 with pyridine also markedly increased sensitivity of hepatocytes to Tri but had little effect on Perc-induced cytotoxicity. Increases in cellular GSH concentrations increased Tri- and Perc-induced cytotoxicity in kidney cells but not in hepatocytes, consistent with the role of GSH conjugation in Tri- and Perc-induced nephrotoxicity. In contrast, depletion of cellular GSH concentrations moderately decreased Tri- and Perc-induced cytotoxicity in kidney cells but increased cytotoxicity in hepatocytes, again pointing to the importance of different bioactivation pathways and modes of action in kidney and liver. PMID:17433522

  7. Partial inhibition of hepatic microsomal aminopyrine N-demethylase by caffeine in partially purified cytochrome P450.

    PubMed

    Govindwar, S P; Kachole, M S; Pawar, S S

    1983-03-31

    Cytochrome P-450 substrate interactions were studied with cytochrome P-450 partially purified from livers of untreated, phenobarbital-treated, benzo[a]pyrene-treated and caffeine-treated rats. Partial inhibition of aminopyrine N-demethylase in presence of in vitro caffeine observed with intact microsomes was further investigated in a reconstituted system composed of partially purified cytochrome P-450 and cytochrome c reductase. Caffeine addition (in vitro) to partially purified cytochrome P-450 altered the hexobarbital, aniline and ethylisocyanide induced spectral change, and decreased NADPH oxidation in presence of substrates aminopyrine and acetanilide. NADPH oxidation was found to be increased in presence of aminopyrine and unaltered in presence of acetanilide in reconstituted system having partially purified cytochrome P-450 from caffeine-treated rats. Our studies suggest that caffeine acts as a true modifier of cytochrome P-450 and is possibly responsible for the formation of abortive complexes with aminopyrine. PMID:6830852

  8. Induction of hepatic cytochrome P-450 activity in wild cotton rats (Sigmodon hispidus) by phenobarbital and 3-methylcholanthrene

    SciTech Connect

    Elangbam, C.S.; Qualls, C.W.,Jr.; Bauduy, M. )

    1989-05-01

    Wild cotton rats (Sigmodon hispidus) are ubiquitous throughout the Southeast quadrant of the United States, easy to capture, have a generation interval of less than one year and a limited range of movement (less than one hectare). This species may prove to be an excellent model for monitoring environmental contamination. Traditionally, cytochrome P-450 inducing agents are grouped into two classes. One, represented by phenobarbital, induces P-450b and P-450e; the other, represented by 3-methylcholanthrene, induces P-450c and P-450d isoenzymes. The types and amounts of cytochrome P-450 vary among species, organs, health status, sex, and stress of the animal. If the levels of cytochrome P-450 of wild cotton rats are to be used in monitoring environmental pollution, it is necessary to characterize the inducibility and concentration of cytochrome P-450 in this species. This study was designed to determine the concentration and inducibility of cytochrome P-450 in the livers of cotton rats after intraperitoneal (ip) administration of phenobarbital and 3-methylcholanthrene.

  9. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens.

    PubMed

    Mátis, G; Kulcsár, A; Petrilla, J; Hermándy-Berencz, K; Neogrády, Zs

    2016-08-01

    The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition. PMID:26614344

  10. Stereochemical aspects of vinylcyclohexene bioactivation in rodent hepatic microsomes and purified human cytochrome P450 enzyme systems.

    PubMed

    Fontaine, S M; Mash, E A; Hoyer, P B; Sipes, I G

    2001-02-01

    The racemic mixture of 4-vinylcyclohexene (VCH) forms ovotoxic epoxides [VCH-1,2-epoxide, VCH-7,8-epoxide, and vinylcyclohexene diepoxide (VCD)] by cytochrome P450 (CYP) in B6C3F(1) female mice. These epoxides deplete primordial and primary follicles. The current studies compared in vitro epoxidation of (R)-VCH with that of (S)-VCH in hepatic microsomes prepared from adult female B6C3F(1) mice and Fischer 344 rats. Bioactivation of VCH in the rat was significantly less compared with that in the mouse. (R)-VCH formed significantly more VCH-1,2-epoxide as compared with (S)-VCH in both species, and less VCH-7,8-epoxide in the mouse. Neither of the enantiomers formed detectable amounts of VCD in the mouse or rat. Hepatic microsomes prepared from mice and rats pretreated with CYP-inducing agents (phenobarbital and acetone) were also incubated with (R)-VCH or (S)-VCH. Although monoepoxide formation was not increased enantioselectively in the mouse, VCD was formed preferentially from (R)-VCH as compared with (S)-VCH. Pretreatment with VCH resulted in nonstereoselective increases in both monoepoxide and diepoxide formation. In the rat, these pretreatments resulted in nonstereoselective increases in monoepoxide formation, but VCD formation was not detectable. Incubations with human CYP2E1 enzyme revealed that (R)-VCH formed significantly more VCH-1,2-epoxide and less VCH-7,8-epoxide than (S)-VCH. Human CYP2A6 was limited in its ability to form epoxides from either enantiomer of VCH. Human CYP2B6 preferentially formed VCH-7,8-epoxide compared with VCH-1,2-epoxide, and to a greater extent from (R)-VCH than from (S)-VCH. These results demonstrate regioselectivity and enantioselectivity in the bioactivation of VCH in rodent hepatic microsomes as well as in expressed human CYP enzymes. PMID:11159809

  11. Implication of cytochrome P-450 1A isoforms and the AH receptor in the genotoxicity of coal-tar fume condensate and bitumen fume condensates.

    PubMed

    Genevois, C; Pfohl-Leszkowicz, A; Boillot, K; Brandt, H; Castegnaro, M

    1998-06-01

    During the hot application of bitumen- or coal-tar-containing materials, fumes are emitted that contain polycyclic aromatic compounds. Although workers' exposure to these fumes is low, it might lead to health problems. No study has reported the metabolic pathways involved in the genotoxicity of coal tar or bitumen fume condensates (CTFC, BFCs). We have therefore studied the DNA adducts formed by incubation of CTFC or BFCs with liver microsomes from several type of mice and with yeast microsomes expressing individual human CYP enzymes. Our results demonstrates that: (1) the aryl hydrocarbon receptor (AHR) plays an important role in the biotransformation of BFCs and to a lesser extent of CTFC; (2) for CTFC, both cytochrome P450 (CYP) 1A isoforms are involved in the formation of genotoxic compounds, and the reactive metabolites formed via CYP 1A1, are substrates for epoxide hydrolase (mEH); (3) for BFCs, the genotoxicity is partially dependent upon CYP 1A1 and the reactive metabolites are not substrates for mEH; (4) CYP 1A isoforms are not exclusively responsible for the genotoxicity of the CTFC and BFCs as other CYPs and also enzymes of the [AH] gene battery, may play an important role. PMID:21781875

  12. High-throughput screening of inhibitory effects of Bo-yang-hwan-o-tang on human cytochrome P450 isoforms in vitro using UPLC/MS/MS.

    PubMed

    Lee, Miran; Park, Jeonghyeon; Lim, Mi-sun; Seong, Sook Jin; Lee, Joomi; Seo, Jeong Ju; Park, Yong-Ki; Lee, Hae Won; Yoon, Young-Ran

    2012-01-01

    Bo-yang-hwan-o-tang (BHT) is an oriental herbal medicine for treating brain disorders such as cerebral ischemia. The objective of this study was to develop an economically feasible and time-saving high-throughput screening method to monitor the potential inhibitory effects of BHT on human cytochrome P450 (CYP) enzymes in vitro. Two cocktail sets were used for incubation of human liver microsomes: Cocktail A: 6 probe substrates for CYP1A2, CYP2A6, CYP2C8, CYP2C19, CYP2D6, CYP3A4; Cocktail B: 3 for CYP2B6, CYP2C9, CYP2E1. The concentrations of the substrate metabolites were simultaneously analyzed using UPLC/MS/MS. The BHT extract had almost negligible inhibitory effects on the nine human CYP isoforms tested, with the half-maximal inhibitory concentration value ranged from 3624.99 to 45412.44 μg/ml. The results suggest that BHT extract has no inhibitory effects on CYP isoforms within the clinically recommended dosage range. We conclude that BHT might be free of drug-herb interactions when co-administered with other medicines. However, more in vivo human studies are needed to confirm these results. The high-throughput screening method can be a useful tool for drug discovery and for understanding drug interactions. PMID:23232241

  13. Imprinting of cerebral and hepatic cytochrome p450s in rat offsprings exposed prenatally to low doses of cypermethrin.

    PubMed

    Singh, Anshuman; Yadav, Sanjay; Srivastava, Vikas; Kumar, Rakesh; Singh, Dhirendra; Sethumadhavan, Rao; Parmar, Devendra

    2013-08-01

    Oral administration of low doses (1.25 or 2.5 or 5 mg/kg) corresponding to 1/200th or 1/100th or 1/50th of LD50 of cypermethrin, a synthetic type II pyrethroid, to pregnant Wistar rats from gestation day 5 to 21 produced a dose-dependent increase in the expression of xenobiotic metabolizing cytochrome P450 (CYP) 1A-, 2B- and 2E1 in the brain and liver of offsprings postnatally at 3 weeks that persisted up to 12 weeks. This persistent increase in CYPs was associated with alterations in circulating concentrations of testosterone, luteinizing hormone and follicle stimulating hormone, spontaneous locomotor activity and accumulation of cypermethrin in the brain of exposed offsprings. Rechallenge of exposed offsprings at adulthood (12 weeks old) with cypermethrin (p.o., 10 mg/kg × 6 days) led to a much higher increase in the expression of CYPs in the exposed offsprings when compared to the control offsprings treated with cypermethrin. Further, bioinformatic analysis demonstrating absence of specific short interspersed elements in CYPs suggests that persistence in the increase in CYPs in exposed offsprings could be attributed to the imprinting of the cerebral and hepatic CYPs following prenatal exposure to low doses of cypermethrin. This imprinting could be of toxicological relevance as it may modify the response of drugs or environmental exposures in exposed offsprings particularly for those chemicals which require CYP-mediated metabolism to produce their beneficial or toxic effects. PMID:23447098

  14. Effect of erythropoietin on hepatic cytochrome P450 expression and function in an adenine-fed rat model of chronic kidney disease

    PubMed Central

    Feere, D A; Velenosi, T J; Urquhart, B L

    2015-01-01

    BACKGROUND AND PURPOSE Erythropoietin (EPO) is used to treat anaemia associated with chronic kidney disease (CKD). Hypoxia is associated with anaemia and is known to cause a decrease in cytochrome P450 (P450) expression. As EPO production is regulated by hypoxia, we investigated the role of EPO on P450 expression and function. EXPERIMENTAL APPROACH Male Wistar rats were subjected to a 0.7% adenine diet for 4 weeks to induce CKD. The diet continued for an additional 2 weeks while rats received EPO by i.p. injection every other day. Following euthanasia, hepatic P450 mRNA and protein expression were determined. Hepatic enzyme activity of selected P450s was determined and chromatin immunoprecipitation was used to characterize binding of nuclear receptors involved in the transcriptional regulation of CYP2C and CYP3A. KEY RESULTS EPO administration decreased hepatic mRNA and protein expression of CYP3A2 (P < 0.05), but not CYP2C11. Similarly, EPO administration decreased CYP3A2 protein expression by 81% (P < 0.001). A 32% decrease (P < 0.05) in hepatic CYP3A enzymatic activity (Vmax) was observed for the formation of 6βOH-testosterone in the EPO-treated group. Decreases in RNA pol II recruitment (P < 0.01), hepatocyte nuclear factor 4α binding (P < 0.05) and pregnane X receptor binding (P < 0.01) to the promoter region of CYP3A were also observed in EPO-treated rats. CONCLUSIONS AND IMPLICATIONS Our data show that EPO decreases the expression and function of CYP3A, but not CYP2C in rat liver. PMID:25219905

  15. Immobilized Cytochrome P450 for Monitoring of P450-P450 Interactions and Metabolism.

    PubMed

    Bostick, Chris D; Hickey, Katherine M; Wollenberg, Lance A; Flora, Darcy R; Tracy, Timothy S; Gannett, Peter M

    2016-05-01

    Cytochrome P450 (P450) protein-protein interactions have been shown to alter their catalytic activity. Furthermore, these interactions are isoform specific and can elicit activation, inhibition, or no effect on enzymatic activity. Studies show that these effects are also dependent on the protein partner cytochrome P450 reductase (CPR) and the order of protein addition to purified reconstituted enzyme systems. In this study, we use controlled immobilization of P450s to a gold surface to gain a better understanding of P450-P450 interactions between three key drug-metabolizing isoforms (CYP2C9, CYP3A4, and CYP2D6). Molecular modeling was used to assess the favorability of homomeric/heteromeric P450 complex formation. P450 complex formation in vitro was analyzed in real time utilizing surface plasmon resonance. Finally, the effects of P450 complex formation were investigated utilizing our immobilized platform and reconstituted enzyme systems. Molecular modeling shows favorable binding of CYP2C9-CPR, CYP2C9-CYP2D6, CYP2C9-CYP2C9, and CYP2C9-CYP3A4, in rank order.KDvalues obtained via surface plasmon resonance show strong binding, in the nanomolar range, for the above pairs, with CYP2C9-CYP2D6 yielding the lowestKD, followed by CYP2C9-CYP2C9, CYP2C9-CPR, and CYP2C9-CYP3A4. Metabolic incubations show that immobilized CYP2C9 metabolism was activated by homomeric complex formation. CYP2C9 metabolism was not affected by the presence of CYP3A4 with saturating CPR concentrations. CYP2C9 metabolism was activated by CYP2D6 at saturating CPR concentrations in solution but was inhibited when CYP2C9 was immobilized. The order of addition of proteins (CYP2C9, CYP2D6, CYP3A4, and CPR) influenced the magnitude of inhibition for CYP3A4 and CYP2D6. These results indicate isoform-specific P450 interactions and effects on P450-mediated metabolism. PMID:26961240

  16. Oxidative metabolism of spironolactone: Evidence for the involvement of electrophilic thiosteroid species in drug-mediated destruction of rat hepatic cytochrome P450

    SciTech Connect

    Decker, C.J.; Rashed, M.S.; Baillie, T.A.; Maltby, D.; Correia, M.A. )

    1989-06-13

    In a preliminary paper, the authors have shown that the antimineralocorticoid spironolactone (SPL) preferentially inactivates dexamethasone (DEX) inducible rat hepatic cytochrome P450p isozymes in a suicidal manner. These findings are now confirmed, and the kinetic characteristics of such a process are detailed. In an effort to elucidate the mechanism of SPL-mediated inactivation of cytochrome P450, they have examined the metabolism of SPL in vitro. Incubation of ({sup 14}C)SPL and NADPH with liver microsomes prepared from DEX-pretreated rats results in the formation of several polar metabolites separable by HPLC with UV detection. This process is found to be dependent on NADPH, O{sub 2}, SPL, and enzyme concentration, as well as temperature. Furthermore, metabolite formation was significantly attenuated by P450 inhibitors CO and n-octylamine. Mass metabolites indicated that these compounds had molecular weights that corresponded to the sulfinic and sulfonic acid derivatives of deacetyl-SPL (SPL-SH). These finding document the formation of previously unreported polar metabolites of SPL by rat liver microsomes enriched in cytochrome P450p and implicate a role for this isozyme in the oxidation of the thiol moiety of deacetyl-SPL. The detection of such metabolites also implicates a catalytic trajectory that includes the thiyl radical and/or sulfenic acid species as a plausible protagonist in drug-mediated inactivation of cytochrome P450p.

  17. Inhibition of hepatic cytochrome P450 enzymes and sodium/bile acid cotransporter exacerbates leflunomide-induced hepatotoxicity

    PubMed Central

    Ma, Lei-lei; Wu, Zhi-tao; Wang, Le; Zhang, Xue-feng; Wang, Jing; Chen, Chen; Ni, Xuan; Lin, Yun-fei; Cao, Yi-yi; Luan, Yang; Pan, Guo-yu

    2016-01-01

    Aim: Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. Methods: The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg·kg−1·d−1, ig) for 4 weeks, their blood samples were analyzed. Results: A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 μmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 μmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg−1·d−1) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg−1·d−1, all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. Conclusion: Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major

  18. Cytochrome P450 mRNA Expression in the Rodent Brain: Species-, Sex-, and Region-Dependent Differences

    PubMed Central

    Stamou, Marianna; Wu, Xianai; Kania-Korwel, Izabela; Lehmler, Hans-Joachim

    2014-01-01

    Cytochrome P450 (P450) enzymes play a critical role in the activation and detoxication of many neurotoxic chemicals. Although research has largely focused on P450-mediated metabolism in the liver, emerging evidence suggests that brain P450s influence neurotoxicity by modulating local metabolite levels. As a first step toward better understanding the relative role of brain P450s in determining neurotoxic outcome, we characterized mRNA expression of specific P450 isoforms in the rodent brain. Adult mice (male and female) and rats (male) were treated with vehicle, phenobarbital, or dexamethasone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan CYP4X1 and CYP2S1 were quantified in the liver, hippocampus, cortex, and cerebellum by quantitative (real-time) polymerase chain reaction. These P450s were all detected in the liver with the exception of CYP4X1, which was detected in rat but not mouse liver. P450 expression profiles in the brain varied regionally. With the exception of the hippocampus, there were no sex differences in regional brain P450 expression profiles in mice; however, there were marked species differences. In the liver, phenobarbital induced CYP2B expression in both species. Dexamethasone induced hepatic CYP2B and CYP3A in mice but not rats. In contrast, brain P450s did not respond to these classic hepatic P450 inducers. Our findings demonstrate that P450 mRNA expression in the brain varies by region, regional brain P450 profiles vary between species, and their induction varies from that of hepatic P450s. These novel data will be useful for designing mechanistic studies to examine the relative role of P450-mediated brain metabolism in neurotoxicity. PMID:24255117

  19. Cytochrome p450 mRNA expression in the rodent brain: species-, sex-, and region-dependent differences.

    PubMed

    Stamou, Marianna; Wu, Xianai; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Lein, Pamela J

    2014-02-01

    Cytochrome P450 (P450) enzymes play a critical role in the activation and detoxication of many neurotoxic chemicals. Although research has largely focused on P450-mediated metabolism in the liver, emerging evidence suggests that brain P450s influence neurotoxicity by modulating local metabolite levels. As a first step toward better understanding the relative role of brain P450s in determining neurotoxic outcome, we characterized mRNA expression of specific P450 isoforms in the rodent brain. Adult mice (male and female) and rats (male) were treated with vehicle, phenobarbital, or dexamethasone. Transcripts for CYP2B, CYP3A, CYP1A2, and the orphan CYP4X1 and CYP2S1 were quantified in the liver, hippocampus, cortex, and cerebellum by quantitative (real-time) polymerase chain reaction. These P450s were all detected in the liver with the exception of CYP4X1, which was detected in rat but not mouse liver. P450 expression profiles in the brain varied regionally. With the exception of the hippocampus, there were no sex differences in regional brain P450 expression profiles in mice; however, there were marked species differences. In the liver, phenobarbital induced CYP2B expression in both species. Dexamethasone induced hepatic CYP2B and CYP3A in mice but not rats. In contrast, brain P450s did not respond to these classic hepatic P450 inducers. Our findings demonstrate that P450 mRNA expression in the brain varies by region, regional brain P450 profiles vary between species, and their induction varies from that of hepatic P450s. These novel data will be useful for designing mechanistic studies to examine the relative role of P450-mediated brain metabolism in neurotoxicity. PMID:24255117

  20. Effect of four environmental toxicants on plasma Ca and estradiol 17[beta] and hepatic P450 in laying hens

    SciTech Connect

    Chen, S.W.; Dziuk, P.J.; Francis, B.M. . Dept. of Animal Sciences)

    1994-05-01

    In a previous study, the authors found that administration of phenobarbital to laying hens was associated with an increase in content of liver cytochrome P450 and a reduction of estradiol (E2) in serum. Thus, the authors hypothesized that other xenobiotics such as environmental toxicants that affect P450 might also affect E2 in laying hens. In experiment 1, the authors examined the effect of four environmental pollutants, three of which induced different isoenzymes of P450 and one inhibitor, on circulating E2 and related reproductive functions. Aroclor 1254 (PCB), 20 mg/d; dichlorodiphenyltrichloroethane (DDT), 40 mg/d; or benzo[a]pyrene (BZ), 5 mg/d, was administered for 5 d. An inhibitor, lead acetate, was injected for 2 d. Controls received corn oil or sodium acetate. No significant difference was observed due to administration of lead. Treatment with PCB or DDT decreased the concentration of E2 and increased P450. Only PCB significantly decreased plasma total calcium and egg lay. Therefore in experiment 2, the authors determined the dose-response effect of PCB. The PCB was given orally at doses of 0, 5, 10, and 25 mg in corn oil for 5 d. The depression of concentrations of E2 was associated with the induction of P450 in a dose-dependent manner. Egg production and plasma total calcium were reduced by the two highest doses, but eggshell thickness was not different from control in all regimens. Plasma E2 and plasma total calcium were negatively correlated with induction of P450. BZ is not a strong inducer of P450 and had no effect on E2 or reproduction, whereas DDT and PCB had a profound effect on P450 with consequent depression of circulating E2. These data indicate that the effects of environmental pollutants on reproduction in birds can be mediated through increased P450, thereby increasing the metabolism of steroid hormones and depressing concentration in circulation.

  1. Acute and subacute effects of miconazole nitrate on hepatic styrene oxide hydrolase and cytochrome P-450-dependent monooxygenase activities in male and female AKR/J mice.

    PubMed

    James, M O

    1988-08-01

    The imidazole-containing anti-fungal drug, miconazole nitrate, was shown to enhance hepatic microsomal styrene oxide hydrolase and inhibit several cytochrome P-450-dependent monooxygenase activities in the AKR/J mouse. Miconazole was a more potent inhibitor of cytochrome P-450-dependent monooxygenase activities in microsomes from male than female mice, and inhibitory potency also varied with substrate. When administered in vivo miconazole nitrate stimulated epoxide hydrolase activity, but had a substrate-dependent biphasic effect on cytochrome P-450-dependent monooxygenase activities. Monooxygenase activities with benzo[a]pyrene and benzphetamine were inhibited to varying degrees in liver homogenate and hepatic microsomes from mice sacrificed 45 min after miconazole administration. After repeated administration of miconazole, liver weight, microsomal protein yield and cytochrome P-450 were increased, as were specific monooxygenase activities with ethoxycoumarin and ethoxyresorufin, but benzphetamine N-demethylase activity was decreased. These results suggested that a metabolite of miconazole was responsible for the inhibition of benzphetamine N-demethylase. It was of special interest that ethoxyresorufin O-deethylase activity was induced in the AKR/J mouse by miconazole, since the AKR/J mouse is not responsive to induction by aromatic hydrocarbons. PMID:3394155

  2. Expression and immunohistochemical localization of the cytochrome P450 isoform 356A1 (CYP356A1) in oyster Crassostrea gigas.

    PubMed

    Rodrigues-Silva, Christielly; Flores-Nunes, Fabrício; Vernal, Javier I; Cargnin-Ferreira, Eduardo; Bainy, Afonso C D

    2015-02-01

    Cytochrome P450 family (CYP) is a group of proteins virtually found in all living organisms. The main role of most CYPs is to metabolize endo and xenobiotics. Most of the studies on CYP have been carried out in mammals and other vertebrates, however recently a growing interest has been devoted to the identification of CYP isoforms in invertebrates. A gene belonging to the CYP sub-family, CYP356A1, was identified in sanitary sewage-exposed Pacific oysters, Crassostrea gigas. Through heterologous expression, we produced CYP356A1 purified protein and raised a mouse polyclonal antibody. Dot blot tests showed that oysters exposed in situ for 14 days to untreated urban effluent discharges had significantly higher levels of CYP356A1 in digestive gland. Using immunohistochemical techniques we observed that the lining epithelial cells of mantle, stomach and intestine showed a strong CYP356A1 staining, but the mucus and secretory cells were negative. Digestive diverticulum parenchyma and gills lining cells showed strong CYP356A1 reaction, while the filamentary rod (connective tissue) was negative. Free cells, as hemocytes and brown cells also showed CYP356A1 immunoreactions indicating the presence of biotransformation activity in these cells. Male germ cells at early stages expressed CYP356A1 but not sperm mature cells, suggesting that this protein could be involved in the male gonadal development. This study shows the use of a specific antibody to a mollusk CYP isoform and that this protein is inducible in oysters environmentally exposed to urban sewage effluents. PMID:25569847

  3. Cytochrome P450 CYP6DA2 regulated by cap 'n'collar isoform C (CncC) is associated with gossypol tolerance in Aphis gossypii Glover.

    PubMed

    Peng, T; Pan, Y; Gao, X; Xi, J; Zhang, L; Yang, C; Bi, R; Yang, S; Xin, X; Shang, Q

    2016-08-01

    Cotton plants accumulate phytotoxins, such as gossypol and related sesquiterpene aldehydes, to resist insect herbivores. The survival of insects exposed to toxic secondary metabolites depends on the detoxification metabolism mediated by limited groups of cytochrome P450. Gossypol has an antibiotic effect on Aphis gossypii, and as the concentrations of gossypol were increased in the present study, the mortality of cotton aphids increased from 4 to 28%. The fecundity of the cotton aphids exposed to gossypol was also significantly reduced compared with the control. The transcriptional levels of CYP6DA2 in cotton aphids were significantly induced when exposed to gossypol, and knockdown of the CYP6DA2 transcripts by RNA interference (RNAi) significantly increased the toxicity of gossypol to cotton aphids. To further understand the gossypol regulatory cascade, the 5'-flanking promoter sequences of CYP6DA2 were isolated with a genome walker, and the promoter was very active and was inducible by gossypol. Co-transfection of the cap 'n' collar isoform C (CncC) and CYP6DA2 promoters dramatically increased the expression of CYP6DA2, and suppression of the CncC transcripts by RNAi significantly decreased the expression levels of CYP6DA2, and significantly increased the toxicity of gossypol to cotton aphids. Thus, the transcriptional regulation of CYP6DA2 involved the transcriptional factor CncC. PMID:27005728

  4. Biotransformation of N,N',N''-triethylenethiophosphoramide: oxidative desulfuration to yield N,N',N''-triethylenephosphoramide associated with suicide inactivation of a phenobarbital-inducible hepatic P-450 monooxygenase.

    PubMed

    Ng, S F; Waxman, D J

    1990-02-01

    Oxidative metabolism of the polyfunctional alkylating agent N,N',N''-triethylenethiophosphoramide (thio-TEPA) was studied in isolated rat liver microsomes and purified, reconstituted cytochrome P-450 (P-450) enzyme systems in order to elucidate the pathways of drug oxidation and to identify the possible contributions of individual P-450 enzymes to the bioactivation of this chemotherapeutic agent. Rat liver microsomes were found to catalyze conversion of thio-TEPA to its oxo metabolite, N,N',N''-triethylenephosphoramide (TEPA), in a P-450-dependent reaction that was markedly stimulated by prior in vivo treatment with drug inducers of hepatic P-450 subfamily IIB (phenobarbital), but not by pretreatment with inducers of P-450 subfamilies IA (beta-naphthoflavone) or IIE (isoniazid). Thio-TEPA depletion and TEPA formation catalyzed by phenobarbital-induced liver microsomes were both inhibited by greater than 90% by antibodies selectively reactive with P-450 PB-4 (gene product IIB1), the major phenobarbital-inducible rat liver microsomal P-450 form, but not by antibodies inhibitory toward 7 other rat hepatic P-450s. Oxidation of thio-TEPA to TEPA was also catalyzed by purified P-450 PB-4 (Km (app) 19 microM; Vmax (app) = 11 mol thio-TEPA metabolized/min/mol P-450 PB-4) following reconstitution of the cytochrome with NADPH P-450 reductase in a lipid environment. Metabolism of thio-TEPA by P-450 PB-4 was associated with a suicide inactivation of the cytochrome characterized by kinactivation = 0.096 min-1, KI = 24 microM, and a partition ratio of 136 +/- 28 (SD) mol thio-TEPA metabolized/mol P-450 inactivated. The thio-TEPA metabolite TEPA, however, did not inactivate the cytochrome, nor was it subject to further detectable metabolism. In microsomal incubations, metabolism of thio-TEPA led to the inactivation of P-450 PB-4 (steroid 16 beta-hydroxylase) as well as P-450 IIIA-related enzymes (steroid 6 beta-hydroxylase) and the P-450-independent enzyme steroid 17 beta

  5. The immature rat as a potential model for chemical risks to children: Ontogeny of selected hepatic P450s.

    PubMed

    McPhail, Brooks T; White, Catherine A; Cummings, Brian S; Muralidhara, Srinivasa; Wilson, Jewell T; Bruckner, James V

    2016-08-25

    Concern about potential susceptibilities of infants and children to chemicals has led to the consideration of immature rodents as potential test surrogates. Maturation of some hepatic microsomal cytochrome P450s (CYPs), that participate in metabolic activation of organic solvents and polycyclic aromatic hydrocarbons (PAHs), may differ significantly between humans and rodents. The present investigation was undertaken to delineate the ontogeny of selected hepatic CYPs in male and female Sprague-Dawley (S-D) rats, and to contrast them with developmental profiles in humans. Microsomes were prepared from the liver of sexed and unsexed postnatal day (PND) 1-90 rats, and total CYP450 levels, as well as CYP1A1/2, CYP2E1 and CYP2B1/2 activities and protein, were quantified. CYP1A1/2 and CYP2E1 activity and expression rose rapidly after birth, peaked from PND 21-40/50, and declined substantially to adult values by PND 90. The same ontogenic profiles were manifested when the enzyme activities were expressed per entire liver or liver normalized to body weight. CYP1A1/2 and CYP2E1 activity and protein expression were well correlated. CYP2B1/2 activity peaked abruptly on PND 21 and declined irregularly to adult values. These patterns are in contrast to human CYP1A2 and CYP2E1, which are reported to progressively increase in liver during the first few months to years of life. The three CYP protein developmental profiles were largely gender independent in rats. The immature rat does not appear to be a suitable model for assessing risks posed to infants and children by chemicals metabolically activated by CYP2E1, based on the findings of greater carbon tetrachloride hepatotoxicity in preweanlings and weanlings than in adult animals. Additional studies are required to determine whether immature S-D rats may be used as an animal model for substrates of other CYPs, as total CYP450 levels in the liver progressively rose during maturation, similarly to humans. PMID:27387539

  6. Catalytic and immunochemical detection of hepatic and extrahepatic microsomal cytochrome P450 1A1 (CYP1A1) in white-sided dolphin (Lagenorhynchus acutus).

    PubMed

    Wilson, Joanna Y; Moore, Michael J; Stegeman, John J

    2010-02-18

    We have characterized microsomal systems and measured the levels of microsomal cytochrome P450 1A1 (CYP1A1) and ethoxyresorufin-O-deethylase (EROD) activity in multiple internal organs of male and female white-sided dolphin (Lagenorhynchus acutus) from the northwest Atlantic Ocean. Internal organs were sampled within 24h of death, sometimes in a period of hours, collection times which are significantly less than usually seen for marine mammals. Tissue autolysis, as assessed by histological analysis of liver, was minimal to none in all individuals. Total P420 did not correlate with time from death to sampling, suggesting that it is a poor indicator of P450 degradation in cetacean tissues where perfusion is not practical. The total hepatic microsomal P450 content, cytochrome b5 content, and NADPH-cytochrome c (P450) reductase (CPR) activity averaged 0.29nmolmg(-1), 0.12nmolmg(-1), and 238nmolmg(-1)min(-1), respectively. Microsomal CPR activity in liver was higher than that in lung and kidney, and was higher than that reported in liver of most other cetacean species. Immunodetected CYP1A1 content was low in all organs, less than 3pmolesCYP1A equivalentsmg(-1). EROD activity ranged from 9 to 376pmolesmg(-1)min(-1) and was greater in liver than in other tissues. Hepatic microsomal EROD activity and CYP1A1 content did not correlate. However, hepatic EROD activity, but not CYP1A1 protein content, was well correlated with both total PCB and Sigmamono-ortho PCB concentrations in blubber. Length, as a proxy for age, did not correlate with hepatic EROD activity or CYP1A1 protein levels, and sex did not influence the relationship between EROD and contaminant concentrations. We cannot easily control for the extent of tissue degradation in cetacean studies nor do we have a complete history of these animals. Therefore, other factors such as degradation or hormonal state may have a role in the observed relationships. Yet, as in other mammals, hepatic tissues appear to be a major

  7. Catalytic and Immunochemical Detection of Hepatic and Extrahepatic Microsomal Cytochrome P450 1A1 (CYP1A1) in White-sided Dolphin (Lagenorhynchus acutus)

    PubMed Central

    Wilson, Joanna Y.; Moore, Michael J.; Stegeman, John J.

    2009-01-01

    We have characterized microsomal systems and measured the levels of microsomal cytochrome P450 1A1 (CYP1A1) and ethoxyresorufin-O-deethylase activity in multiple internal organs of male and female white-sided dolphin (Lagenorhynchus acutus) from the northwest Atlantic Ocean. Internal organs were sampled within 24 hours of death, sometimes in a period of hours, collection times which are significantly less than usually seen for marine mammals. Tissue autolysis, as assessed by histological analysis of liver, was minimal to none in all individuals. Total P420 did not correlate with time from death to sampling, suggesting that it is a poor indicator of P450 degradation in cetacean tissues where perfusion isn’t practical. The total hepatic microsomal P450 content, cytochrome b5 content, and NADPH-cytochrome c (P450) reductase (CPR) activity averaged 0.29 nmol mg−1, 0.12 nmol mg−1, and 238 nmol mg−1 min−1, respectively. Microsomal CPR activity in liver was higher than that in lung and kidney, and was higher than that reported in liver of most other cetacean species. Immunodetected CYP1A1 content was low in all organs, less than 3 pmoles CYP1A equivalents mg−1. EROD activity ranged from 9 – 376 pmoles mg−1 min−1 and was greater in liver than in other tissues. Hepatic microsomal EROD activity and CYP1A1 content did not correlate. However, hepatic EROD activity, but not CYP1A1 protein content, was well correlated with both total PCB and Σmono-ortho PCB concentrations in blubber. Length, as a proxy for age, did not correlate with hepatic EROD activity or CYP1A1 protein levels, and sex did not influence the relationship between EROD and contaminant concentrations. We cannot easily control for the extent of tissue degradation in cetacean studies nor do we have a complete history of these animals. Therefore, other factors such as degradation or hormonal state may have a role in the observed relationships. Yet, as in other mammals, hepatic tissues appear to be

  8. Porcine Hypothalamic Aromatase Cytochrome P450: Isoform Characterization, Sex-Dependent Activity, Regional Expression, and Regulation by Enzyme Inhibition in Neonatal Boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic pigs have three CYP19 genes encoding functional paralogues of the enzyme aromatase cytochrome P450 (P450arom) that are expressed in the gonads, placenta and pre-implantation blastocyst. All catalyze estrogen synthesis, but the “gonadal” type enzyme is unique in also synthesizing a nonaromat...

  9. Impaired in vitro metabolism of the flukicidal agent nitroxynil by hepatic microsomal cytochrome P-450 in bovine fascioliasis.

    PubMed

    Maffei Facino, R; Carini, M; Genchi, C

    1984-03-01

    In vitro metabolism by liver tissue of the flukicidal agent nitroxynil has been studied in cattle naturally infected with Fasciola hepatica. A dramatic impairment of the cytochrome P-450-dependent nitroxynil metabolism both in the acute and in the milder stage of the disease has been observed and this is due to a loss in the integrity and functionality of the cytochrome P-450 enzyme system. These results suggest that in bovine fascioliasis the in vivo metabolism of nitroxynil will be decreased with consequent increase of nitroxynil retention in the animal's body. PMID:6701909

  10. Characterization of inhibitory effects of perfluorooctane sulfonate on human hepatic cytochrome P450 isoenzymes: focusing on CYP2A6.

    PubMed

    Narimatsu, Shizuo; Nakanishi, Ryoko; Hanioka, Nobumitsu; Saito, Keita; Kataoka, Hiroyuki

    2011-11-15

    Perfluorooctane sulfonate (PFOS) is a chemically stable compound extensively used as oil and water repellent, surface active agents in our daily life. Accumulative research evidence gradually appears the toxicity of PFOS against mammals, but the whole figure remains to be elucidated. The present study was conducted to know the effects of PFOS on human hepatic drug metabolizing-type cytochrome P450 (CYP) isoenzymes such as CYP1A2 (7-ethoxyresorufin as a substrate), CYP2A6 (coumarin), CYP2B6 (7-ethoxy-4-trifluoromethylcoumarin), CYP2C8 (paclitaxel), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP2E1 (chlorzoxazone) and CYP3A4 (testosterone) in human livers employing their typical substrates. Although all of the oxidation reactions tested were more or less inhibited by PFOS, diclofenac 4'-hydroxylation mediated mainly by CYP2C9 was most strongly inhibited (K(i) value of 40 nM), followed by paclitaxel 6α-hydroxylation mediated mainly by CYP2C8 (K(i) value of 4 μM). The substrate oxidation reactions catalyzed by CYP2A6, CYP2B6, CYP2C19 and CYP3A4 were moderately (K(i) values of 35 to 45 μM), and those by CYP1A2, CYP2D6 and CYP2E1 were weakly inhibited by PFOS (K(i) values of 190-300 μM). The inhibition by PFOS for coumarin 7-hydroxylation mainly catalyzed by human liver microsomal CYP2A6 as well as by the recombinant enzyme was found to be enhanced by the preincubation of PFOS with human liver microsomes and NADPH as compared to the case without preincubation. The inhibition of the human liver microsomal cumarin 7-hydroxylation was PFOS concentration-dependent, and exhibited pseudo-first-order kinetics with respect to preincubation time, yielding K(inact) and K(I) values of 0.06 min(-1) and 23 μM, respectively. These results suggest that the metabolism of medicines which are substrates for CYP2C9 may be altered by PFOS in human bodies, and that PFOS is a mechanism-based inhibitor of CYP2A6. PMID:21964418

  11. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    SciTech Connect

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2007-12-15

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD{sub 50}) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver of offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring.

  12. Cytochrome P450 CYP3A in marsupials: cloning and characterisation of the second identified CYP3A subfamily member, isoform 3A78 from koala (Phascolarctos cinereus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Crittenden, Tamara A; Marchant, Ceilidh L; Stupans, Ieva; McKinnon, Ross A

    2011-11-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. Previously, we cloned and characterised the CYP2C, CYP4A, and CYP4B gene subfamilies from marsupials and demonstrated important species-differences in both activity and tissue expression of these CYP enzymes. Recently, we isolated the Eastern grey kangaroo CYP3A70. Here we have cloned and characterised the second identified member of marsupial CYP3A gene subfamily, CYP3A78 from the koala (Phascolarctos cinereus). In addition, we have examined the gender-differences in microsomal erythromycin N-demethylation activity (a CYP3A marker) and CYP3A protein expression across test marsupial species. Significant differences in hepatic erythromycin N-demethylation activity were observed between male and female koalas, with the activity detected in female koalas being 2.5-fold higher compared to that in male koalas (p<0.01). No gender-differences were observed in tammar wallaby or Eastern grey kangaroo. Immunoblot analysis utilising anti-human CYP3A4 antibody detected immunoreactive proteins in liver microsomes from all test male and female marsupials including the koala, tammar wallaby, and Eastern grey kangaroo, with no gender-differences detected across test marsupials. A 1610 bp koala hepatic CYP3A complete cDNA, designated CYP3A78, was cloned by reverse transcription-polymerase chain reaction approaches. It displays 64% nucleotide and 57% amino acid sequence identity to the Eastern grey kangaroo CYP3A70. The CYP3A78 cDNA encodes a protein of 515 amino acids, shares approximately 68% nucleotide and 56% amino acid sequence identity to human CYP3A4, and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Collectively, this study provides primary molecular data regarding koala hepatic CYP3A78 gene and enables further functional analyses of CYP

  13. Adaptive hepatic and intestinal alterations in mice after deletion of NADPH-cytochrome P450 Oxidoreductase (Cpr) in hepatocytes.

    PubMed

    Cheng, Xingguo; Gu, Jun; Klaassen, Curtis D

    2014-11-01

    Cytochrome P450 enzymes (P450) play an important role in first-pass metabolism in both the intestine and liver. NADPH-cytochrome P450 oxidoreductase (Cpr) is an essential electron transfer protein required for microsomal P450 activity. Mice with conditional knockout of Cpr in hepatocytes develop normally and survive even with complete loss of liver microsomal P450 activity. Our current studies were performed to determine whether alternative drug-metabolizing pathways increase in an attempt to maintain whole-body homeostasis. In addition to the liver, Cpr is mainly expressed in tissues such as lung, kidney, and gastrointestinal tract. In livers of H-Cpr-null mice, there is a marked increase in mRNA expression of phase I enzymes (Aldh1a1, 1a7, 3a2; Ces1b2, 2a6, and 2a12), antioxidant enzymes (Ho-1, Nqo1, and epoxide hydrolase), phase II enzymes (Ugt1a9; Gsta1/2, m3, m4, m6, t1, and t3; and Sult1a1 and 1d1), and drug transporters (Oatp1a4, Oct3, Mate1, Mdr1a, and Mrp3 and 4). In addition, glucuronide-conjugated bilirubin concentrations are doubled in serum of H-Cpr-null mice. Both constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein in nuclei are higher in the livers of H-Cpr-null mice, indicating that CAR and Nrf2 are activated. In the small intestine of H-Cpr-null mice, mRNA expression of Cyp3a11 and Mdr1a, two genes critical for intestinal first-pass metabolism, are markedly up-regulated. In addition, nutrient (Pept1) and cholesterol (Npc1l1) transporters are induced in the small intestine of H-Cpr-null mice. In conclusion, in H-Cpr-null mice, adaptive regulation of alternative detoxification genes in liver and small intestine appear to partially compensate for the loss of microsomal P450 function in liver. PMID:25147274

  14. In vitro characterization of the cytochrome P450 isoforms involved in the metabolism of 6-methoxy-2-napthylacetic acid, an active metabolite of the prodrug nabumetone.

    PubMed

    Matsumoto, Kaori; Nemoto, Eiichi; Hasegawa, Tetsuya; Akimoto, Masayuki; Sugibayashi, Kenji

    2011-01-01

    The cytochrome P450 (CYP) isoforms that catalyze the oxidation metabolism of 6-methoxy-2-napthylacetic acid (6-MNA), an active metabolite of nabumetone, were studied in rats and humans. Using an extractive reversed-phase HPLC assay with fluorescence detection, monophasic Michaelis-Menten kinetics was obtained for the formation of 6-hydroxy-2-naphthylacetic acid (6-HNA) in liver microsomes of rats and humans, and kinetic analysis showed that the K(m) and V(max) values for the formation of 6-HNA in humans and rats were 640.0 ± 30.9 and 722.9 ± 111.7 µM, and 1167.5 ± 33.0 and 1312.7 ± 73.8 pmol min⁻¹ mg protein⁻¹, respectively. The CYPs responsible for metabolism of 6-MNA in liver microsomes of rats and humans were identified using correlation study, recombinant CYP supersomes, and specific CYP inhibitors and antibodies. Recombinant human CYP2C9 exhibited appreciable catalytic activity with respect to 6-HNA formation from 6-MNA. Among 14 recombinant rat CYPs examined, CYP2C6, CYP2C11 and CYP1A2 were involved in the metabolism of 6-MNA. Sulfaphenazole (a selective inhibitor of CYP2C9) inhibited the formation of 6-HNA in pooled human microsomes by 89%, but failed to inhibit this reaction in rat liver microsomes. The treatment of pooled human liver microsomes with an antibody against CYP2C9 inhibited the formation of 6-HNA by about 80%. The antibody against CYP2C11 suppressed the activity by 20 to 30% in rat microsomes, whereas that of CYP1A2 microsomes did not show drastic inhibition. These findings suggest that CYP2C9 has the highest catalytic activity of 6-MNA metabolism in humans. In contrast, metabolism of 6-MNA is suggested to be mediated mainly by CYP2C6 and CYP2C11 in rats. PMID:21532165

  15. Identification of hepatic mitogenic and cytochrome P-450-inducing fractions of unleaded gasoline in B6C3F1 mice

    SciTech Connect

    Standeven, A.M.; Goldsworthy, T.L.

    1994-12-31

    Unleaded gasoline (UG), a complex mixture of over 300 hydrocarbons, induced liver tumors selectively in female mice and exhibited liver tumor promoting activity. UG also induced cell proliferation and cytochrome P-450-related enzyme activities in mouse liver, properties commonly associated with liver tumor promoters. To determine if the mitogenic and/or cytochrome P-450-inducing properties of UG reside in individual fractions of UG, UG was separated into four fractions on the basis of boiling point (BP): fraction1, BP <66{degrees}C; fraction 2, 66{degrees}C < BP < 100{degrees}C; fraction 3, 100{degrees}C < BP < 132{degrees}C; fraction 4, BP > 132{degrees}C. Fractions 1 and 2 were combined to form {open_quotes}light UG{close_quotes}, and fractions 3 and 4 were combined to form {open_quotes}heavy UG{close_quotes}. Female 86C3F1 mice were implanted with osmotic pumps containing 5-bromo-2{prime}-deoxyuridine (BrdU) on d 1, treated by intragastric intubation with corn oil or 3000 mg/kg/d of light, heavy, or whole UG on d 2-4, and euthanized on d 5. Pentoxyresorufin O-dealkylase (PROD) and ethoxyresorufin O-deethylase (EROD) activities were assayed in hepatic microsomes, and hepatocyte BrdU labeling index (LI) was determined in liver sections. Whole UG and heavy UG caused comparable increased in hepatic PROD and EROD activities and the hepatocyte LI. Light UG caused relatively small increased in hepatic PROD and EROD activities and did not increase the hepatocyte LI. When fractions 3 and 4 were tested separately in the above treatment protocol, both fractions strongly induced hepatic PROD and weakly induced hepatic EROD activities. However, only fraction 3 increased the hepatocyte LI. To isolate mitogenic components in fraction 3, equimolar doses of individual chemicals in fraction 3 were tested in the above treatment protocol. 28 refs., 4 tabs.

  16. Expression of hepatic cytochrome P450s and UDP-glucuronosyltransferases in PXR and CAR double humanized mice treated with rifampicin.

    PubMed

    Lee, Sang Yoon; Lee, Ji-Yoon; Kim, Young-Mi; Kim, Sang Kyum; Oh, Soo Jin

    2015-06-01

    Nuclear receptor humanized mice models have been developed to predict regulation of drug metabolizing enzyme by xenobiotics. However, limited information is available concerning xenobiotic-induced regulation of drug metabolizing enzymes in multiple nuclear receptor humanized mice. The present study investigated the hepatic regulation of cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) in the pregnane X receptor (PXR) and the constitutive androstane receptor double humanized mice treated with rifampicin (RIF; 10mg/kg) for 4 days. RIF increased hepatic microsomal protein and total CYP contents, and CYP reductase activity in the humanized mice, but not in normal mice. Moreover, hepatic induction of Cyp2b10, Cyp2c, and Cyp3a11 were observed only in the RIF-treated humanized mice, suggesting that the humanized mice are sensitive to RIF with respect to the regulation of the hepatic CYP system. Hepatic UGT activities using estradiol, serotonin, and mefenamic acid, but not chenodeoxycholic acid as substrates, increased in the RIF-treated humanized mice, and the glucuronidation activities of estradiol and chenodeoxycholic acid increased in RIF-treated normal mice. These results raise the possibility that a PXR-independent mechanism may be involved in hepatic regulation of UGTs by RIF. PMID:25835148

  17. Cytochromes P450

    PubMed Central

    Werck-Reichhart, Danièle; Bak, Søren; Paquette, Suzanne

    2002-01-01

    There are 272 cytochrome P450 genes (including 26 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest families of proteins in higher plants. This explosion of the P450 family is thought to have occurred via gene duplication and conversion, and to result from the need of sessile plants to adapt to a harsh environment and to protect themselves from pathogens and predators. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions. Their biological functions range from the synthesis of structural macromolecules such as lignin, cutin or suberin, to the synthesis or catabolism of all types of hormone or signaling molecules, the synthesis of pigments and defense compounds, and to the metabolism of xenobiotics. In despite of a huge acceleration in our understanding of plant P450 functions in the recent years, the vast majority of these functions remain completely unknown. PMID:22303202

  18. Cytochromes p450.

    PubMed

    Werck-Reichhart, Danièle; Bak, Søren; Paquette, Suzanne

    2002-01-01

    There are 272 cytochrome P450 genes (including 26 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest families of proteins in higher plants. This explosion of the P450 family is thought to have occurred via gene duplication and conversion, and to result from the need of sessile plants to adapt to a harsh environment and to protect themselves from pathogens and predators. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions. Their biological functions range from the synthesis of structural macromolecules such as lignin, cutin or suberin, to the synthesis or catabolism of all types of hormone or signaling molecules, the synthesis of pigments and defense compounds, and to the metabolism of xenobiotics. In despite of a huge acceleration in our understanding of plant P450 functions in the recent years, the vast majority of these functions remain completely unknown. PMID:22303202

  19. Hepatic cytochrome P450s play a major role in monocrotaline-induced renal toxicity in mice

    PubMed Central

    Yao, Jun; Li, Cheng-gang; Gong, Li-kun; Feng, Chen-chen; Li, Chun-zhu; Gao, Man; Luan, Yang; Qi, Xin-ming; Ren, Jin

    2014-01-01

    Aim: Monocrotaline (MCT) in plants of the genus Crotalaria induces significant toxicity in multiple organs including the liver, lung and kidney. Metabolic activation of MCT is required for MCT-induced toxicity. In this study, we attempted to determine whether the toxicity of MCT in kidney was a consequence of the metabolic activation of MCT in the liver. Methods: Liver-specific cytochrome P450 reductase-null (Null) mice, wild-type (WT) mice and CYP3A inhibitor ketoconazole-pretreated WT (KET-WT) mice were examined. The mice were injected with MCT (300, 400, or 500 mg/kg, ip), and hepatotoxicity and nephrotoxicity were examined 24 h after MCT treatment. The levels of MCT and its metabolites in the blood, liver, lung, kidney and bile were determined using LC-MS analysis. Results: Treatment of WT mice with MCT increased the serum levels of alanine aminotransferase, hyaluronic acid, urea nitrogen and creatinine in a dose-dependent manner. Histological examination revealed that MCT (500 mg/kg) caused severe liver injury and moderate kidney injury. In contrast, these pathological abnormalities were absent in Null and KET-WT mice. After injection of MCT (400 and 500 mg/kg), the plasma, liver, kidney and lung of WT mice had significantly lower MCT levels and much higher N-oxide metabolites contents in compared with those of Null and KET-WT mice. Furthermore, WT mice had considerably higher levels of tissue-bound pyrroles and bile GSH-conjugated MCT metabolites compared with Null and KET-WT mice. Conclusion: Cytochrome P450s in mouse liver play a major role in the metabolic activation of MCT and thus contribute to MCT-induced renal toxicity. PMID:24362331

  20. Subacute nicotine co-exposure has no effect on 2,2',3,5',6- pentachlorobiphenyl disposition but alters hepatic cytochrome P450 expression in the male rat.

    PubMed

    Stamou, Marianna; Uwimana, Eric; Flannery, Brenna M; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Lein, Pamela J

    2015-12-01

    Polychlorinated biphenyls (PCBs) are metabolized by cytochrome P450 2B enzymes (CYP2B) and nicotine is reported to alter CYP2B activity in the brain and liver. To test the hypothesis that nicotine influences PCB disposition, 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and its metabolites were quantified in tissues of adult male Wistar rats exposed to PCB 95 (6mg/kg/d, p.o.) in the absence or presence of nicotine (1.0mg/kg/d of the tartrate salt, s.c.) for 7 consecutive days. PCB 95 was enantioselectively metabolized to hydroxylated (OH-) PCB metabolites, resulting in a pronounced enrichment of E1-PCB 95 in all tissues investigated. OH-PCBs were detected in blood and liver tissue, but were below the detection limit in adipose, brain and muscle tissues. Co-exposure to nicotine did not change PCB 95 disposition. CYP2B1 mRNA and CYP2B protein were not detected in brain tissues but were detected in liver. Co-exposure to nicotine and PCB 95 increased hepatic CYP2B1 mRNA but did not change CYP2B protein levels relative to vehicle control animals. However, hepatic CYP2B protein in animals co-exposed to PCB 95 and nicotine were reduced compared to animals that received only nicotine. Quantification of CYP2B3, CYP3A2 and CYP1A2 mRNA identified significant effects of nicotine and PCB 95 co-exposure on hepatic CYP3A2 and hippocampal CYP1A2 transcripts. Our findings suggest that nicotine co-exposure does not significantly influence PCB 95 disposition in the rat. However, these studies suggest a novel influence of PCB 95 and nicotine co-exposure on hepatic cytochrome P450 (P450) expression that may warrant further attention due to the increasing use of e-cigarettes and related products. PMID:26463278

  1. Hepatic catecholestrogen synthases: differential effect of sex, inducers of cytochromes P-450 and of antibody to the glucocorticoid inducible cytochrome P-450 on NADPH-dependent estrogen-2-hydroxylase and on organic hydroperoxide-dependent estrogen-2/4-hydroxylase activity of rat hepatic microsomes.

    PubMed

    Bui, Q D; Weisz, J; Wrighton, S A

    1990-10-01

    Formation of catecholestrogens (CE) by rat hepatic microsomes was re-examined because as recently shown; (1) CE formation can be catalyzed by an NADPH-dependent estrogen-4-hydroxylase (E-4-H(NADPH)) and by a peroxidatic, organic hydroperoxide-dependent estrogen-2/4-hydroxylase (E-2/4-H(OHP)), in addition to the established NADPH-dependent estrogen 2-hydroxylase (E-2-H(NADPH)); and (2) the indirect radiometric and the COMT-coupled radioenzymatic assays, used in many previous studies, may fail to provide an accurate measure, in particular, of 4-OH-CE. Using a direct product isolation assay, hepatic microsomes of both male and female rats were shown to express E-2/4-H(OHP) activity with properties similar to those of peroxidatic activity in other tissues. The activities of E-2/4-H(OHP) and E-2-H(NADPH) were affected differently by 5 out of 7 inducers of cytochromes P-450 administered in vivo. Phenobarbital and dexamethasone caused a 4- and 2-3-fold increase in E-2-H(NADPH) activity, respectively, but only a 38 and 20% increase in E-2/4-H(OHP) activity. Ketoconazol and beta-naphtoflavone caused a modest increase in E-2-H(NADPH) activity but a decrease in OHP-dependent activity. Clofibrate decreased peroxidatic activity by 50% and NADPH-dependent activity by approximately 20%. Both activities were increased by ethanol but decreased by isoniazide, an agent which induces the same form of cytochromes P-450 as ethanol. Polyclonal antibody against P-450p, a form of P-450 induced by glucocorticoids, inhibited E-2-H(NADPH) but not E-2/4-H(OHP) activity of untreated and of dexamethasone- and phenobarbital-treated rats. This study establishes that CE formation may occur in liver via the peroxidatic pathway and indicates that this pathway depends on forms of P-450 different from those mediating E-2-H(NADPH) activity. It also confirms and extends previous observations of the involvement of multiple, constitutive and induced forms of cytochrome P-450 in NADPH-dependent 2

  2. Potential Contribution of Cytochrome P450 2B6 to Hepatic 4-Hydroxycyclophosphamide Formation In Vitro and In VivoS⃞

    PubMed Central

    Raccor, Brianne S.; Claessens, Adam J.; Dinh, Jean C.; Park, Julie R.; Hawkins, Douglas S.; Thomas, Sushma S.; Makar, Karen W.; McCune, Jeannine S.

    2012-01-01

    Results from retrospective studies on the relationship between cytochrome P450 (P450) 2B6 (CYP2B6) genotype and cyclophosphamide (CY) efficacy and toxicity in adult cancer patients have been conflicting. We evaluated this relationship in children, who have faster CY clearance and receive different CY-based regimens than adults. These factors may influence the P450s metabolizing CY to 4-hydroxycyclophosphamide (4HCY), the principal precursor to CY's cytotoxic metabolite. Therefore, we sought to characterize the in vitro and in vivo roles of hepatic CYP2B6 and its main allelic variants in 4HCY formation. CYP2B6 is the major isozyme responsible for 4HCY formation in recombinant P450 Supersomes. In human liver microsomes (HLM), 4HCY formation correlated with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. However, in HLM, CYP3A4/5 also contributes to 4HCY formation at the CY concentrations similar to plasma concentrations achieved in children (0.1 mM). 4HCY formation was not associated with CYP2B6 genotype at low (0.1 mM) or high (1 mM) CY concentrations potentially because CYP3A4/5 and other isozymes also form 4HCY. To remove this confounder, 4HCY formation was evaluated in recombinant CYP2B6 enzymes, which demonstrated that 4HCY formation was lower for CYP2B6.4 and CYP2B6.5 compared with CYP2B6.1. In vivo, CYP2B6 genotype was not directly related to CY clearance or ratio of 4HCY/CY areas under the curve in 51 children receiving CY-based regimens. Concomitant chemotherapy agents did not influence 4HCY formation in vitro. We conclude that CYP2B6 genotype is not consistently related to 4HCY formation in vitro or in vivo. PMID:21976622

  3. Hepatic calcium efflux during cytochrome P-450-dependent drug oxidations at the endoplasmic reticulum in intact liver.

    PubMed

    Sies, H; Graf, P; Estrela, J M

    1981-06-01

    During metabolism of (type I) drugs by cytochrome P-450-dependent monooxygenase of the endoplasmic reticulum, the NADPH/NADP+ ratio in rat liver selectively decreases to approximately one-half of the control values, whereas the NADH/NAD+ ratio remains practically unaffected [Sies, H. & Brauser, B. (1970) Eur. J. Biochem. 15, 521-540]. In view of the observations with isolated mitochondria [Lehninger, A. L., Vercesi, A. & Bababunmi, E. A. (1978) Proc. Natl. Acad. Sci. USA 75, 1690-1694] of stimulated Ca2+ efflux upon nicotinamide nucleotide oxidation, the selective oxidation of NADPH in cytosol and mitochondria during drug oxidations was considered a useful experimental tool for the determination of whether the oxidation of NADPH or of NADH is responsible for Ca2+ efflux. With perfused livers from phenobarbital-treated rats, Ca2+ efflux was demonstrated, amounting to 8 nmol/min per gram of liver (wet weight), with aminopyrine, ethylmorphine, or hexobarbital as drug substrates. Drug-associated Ca2+ release was diminished when the inhibitor metyrapone was also present, or when drug oxidation was suppressed during N2 anoxia or in the presence of antimycin A in livers from fasted rats. Ca2+ efflux was elicited also by infusion of the thiol oxidant diamide, and by t-butyl hydroperoxide. However whereas Ca2+ efflux elicited by these compounds was restricted upon addition of the thiol dithioerythritol, there was little, if any, sensitivity of the drug-associated Ca2+ efflux to the thiol. Further mitochondrial oxidation of NADPH by addition of ammonium chloride had no effect on drug-associated Ca2+ efflux. Prior addition of the alpha-agonist phenylephrine suppressed the Ca2+ release by drug addition. While the molecular mechanism involved in Ca2+ efflux from liver mitochondria and from hepatocytes as well as the regulatory significance are not yet known, it is concluded from the present experiments that in case of nicotinamide nucleotide-linked Ca2+ efflux the oxidation of

  4. In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin.

    PubMed

    Ghose, Romi; Mallick, Pankajini; Taneja, Guncha; Chu, Chun; Moorthy, Bhagavatula

    2016-01-01

    Cancer is the second leading cause of mortality worldwide; however the response rate to chemotherapy treatment remains slow, mainly due to narrow therapeutic index and multidrug resistance. Paclitaxel (taxol) has a superior outcome in terms of response rates and progression-free survival. However, numerous cancer patients are resistant to this drug. In this investigation, we tested the hypothesis that induction of cytochrome P450 (Cyp)3a11 gene by paclitaxel is downregulated by the inflammatory mediator, lipopolysaccharide (LPS), and that the pro-inflammatory cytokine, tumor necrosis factor (TNF)-α, attenuates human CYP3A4 gene induction by rifampicin. Primary mouse hepatocytes were pretreated with LPS (1 μg/ml) for 10 min, followed by paclitaxel (20 μM) or vehicle for 24 h. RNA was extracted from the cells by trizol method followed by cDNA synthesis and analysis by real-time PCR. Paclitaxel significantly induced gene expression of Cyp3a11 (~30-fold) and this induction was attenuated in LPS-treated samples. Induction and subsequent downregulation of CYP3A enzyme can impact paclitaxel treatment in cancer patients where inflammatory mediators are activated. It has been shown that the nuclear receptor, pregnane X receptor (PXR), plays a role in the induction of CYP enzymes. In order to understand the mechanisms of regulation of human CYP3A4 gene, we co-transfected HepG2 cells (human liver cell line) with CYP3A4-luciferase construct and a PXR expression plasmid. The cells were then treated with the pro-inflammatory cytokine, TNFα, followed by the prototype CYP3A inducer rifampicin. It is well established that rifampicin activates PXR, leading to CYP3A4 induction. We found that induction of CYP3A4-luciferase activity by rifampicin was significantly attenuated by TNFα. In conclusion, we describe herein several in vitro approaches entailing primary and cultured hepatocytes, real-time PCR, and transcriptional activation (transfection) assays to investigate the

  5. Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats.

    PubMed

    Kawase, Atsushi; Ito, Ayami; Yamada, Ayano; Iwaki, Masahiro

    2015-06-01

    Hepatic transporters and metabolic enzymes affect drug pharmacokinetics. Limited information exists on the alteration in mRNA levels of hepatic transporters and metabolic enzymes with aging. We examined the effects of aging on the mRNA levels of representative hepatic drug transporters and metabolic enzymes by analyzing their levels in 10-, 30- and 50-week-old male and female rats. Levels of mRNA of drug transporters including multidrug resistance protein (Mdr)1a, multidrug resistance-associated protein (Mrp)2, breast cancer resistance protein (Bcrp) and organic anion-transporting polypeptide (Oatp)1a1, and the metabolic enzymes cytochrome P450 (CYP)3A1, CYP3A2 and UDP-glucuronosyltransferase (UGT)1A1 were analyzed using real-time reverse transcriptase polymerase chain reaction. The mRNA levels of transporters in male rats did not decrease with age, while the mRNA levels of Bcrp and Oatp1a1 in female rats decreased with age. The mRNA levels of CYP3A1 and CYP3A2 in male rats were higher than those in female rats. The mRNA levels of metabolic enzymes decreased with age in female but not male rats. In particular, the mRNA levels of UGT1A1 in 10-week-old female rats were higher than those in male rats. mRNA expression of hepatic transporters and metabolic enzymes are more susceptible to aging in female than male rats. The age-related decreases in the mRNA levels of Bcrp, Oatp1a1, CYP3A1 and CYP3A2 in female rats may affect the metabolism and transport of substrates. This study showed that aging affected the mRNA expression of hepatic transporters and metabolic enzymes in rats. PMID:24899460

  6. Cytochromes p450.

    PubMed

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  7. Cytochrome P450 database.

    PubMed

    Lisitsa, A V; Gusev, S A; Karuzina, I I; Archakov, A I; Koymans, L

    2001-01-01

    This paper describes a specialized database dedicated exclusively to the cytochrome P450 superfamily. The system provides the impression of superfamily's nomenclature and describes structure and function of different P450 enzymes. Information on P450-catalyzed reactions, substrate preferences, peculiarities of induction and inhibition is available through the database management system. Also the source genes and appropriate translated proteins can be retrieved together with corresponding literature references. Developed programming solution provides the flexible interface for browsing, searching, grouping and reporting the information. Local version of database manager and required data files are distributed on a compact disk. Besides, there is a network version of the software available on Internet. The network version implies the original mechanism, which is useful for the permanent online extension of the data scope. PMID:11769119

  8. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  9. Comparison of mercury sulfides with mercury chloride and methylmercury on hepatic P450, phase-2 and transporter gene expression in mice.

    PubMed

    Xu, S F; Wu, Q; Zhang, B B; Li, H; Xu, Y S; Du, Y Z; Wei, L X; Liu, J

    2016-09-01

    Zuotai (mainly β-HgS) and Zhusha (also called as cinnabar, mainly α-HgS) are used in traditional medicines in combination with herbs or even drugs in the treatment of various disorders, while mercury chloride (HgCl2) and methylmercury (MeHg) do not have known medical values but are highly toxic. This study aimed to compare the effects of mercury sulfides with HgCl2 and MeHg on hepatic drug processing gene expression. Mice were orally administrated with Zuotai (β-HgS, 30mg/kg), α-HgS (HgS, 30mg/kg), HgCl2 (33.6mg/kg), or MeHg (3.1mg/kg) for 7days, and the expression of genes related to phase-1 drug metabolism (P450), phase-2 conjugation, and phase-3 (transporters) genes were examined. The mercurials at the dose and duration used in the study did not have significant effects on the expression of cytochrome P450 1-4 family genes and the corresponding nuclear receptors, except for a slight increase in PPARα and Cyp4a10 by HgCl2. The expressions of UDP-glucuronosyltransferase and sulfotransferase were increased by HgCl2 and MeHg, but not by Zuotai and HgS. HgCl2 decreased the expression of organic anion transporter (Oatp1a1), but increased Oatp1a4. Both HgCl2 and MeHg increased the expression of multidrug resistance-associated protein genes (Mrp1, Mrp2, Mrp3, and Mrp4). Zuotai and HgS had little effects on these transporter genes. In conclusion, Zuotai and HgS are different from HgCl2 and MeHg in hepatic drug processing gene expression; suggesting that chemical forms of mercury not only affect their disposition and toxicity, but also affect their effects on the expression of hepatic drug processing genes. PMID:27473830

  10. Hepatitis C Virus NS5A Protein Triggers Oxidative Stress by Inducing NADPH Oxidases 1 and 4 and Cytochrome P450 2E1

    PubMed Central

    Smirnova, Olga A.; Ivanova, Olga N.; Bartosch, Birke; Valuev-Elliston, Vladimir T.; Mukhtarov, Furkat; Kochetkov, Sergey N.; Ivanov, Alexander V.

    2016-01-01

    Replication of hepatitis C virus (HCV) is associated with the induction of oxidative stress, which is thought to play a major role in various liver pathologies associated with chronic hepatitis C. NS5A protein of the virus is one of the two key viral proteins that are known to trigger production of reactive oxygen species (ROS). To date it has been considered that NS5A induces oxidative stress by altering calcium homeostasis. Herein we show that NS5A-induced oxidative stress was only moderately inhibited by the intracellular calcium chelator BAPTA-AM and not at all inhibited by the drug that blocks the Ca2+ flux from ER to mitochondria. Furthermore, ROS production was not accompanied by induction of ER oxidoreductins (Ero1), H2O2-producing enzymes that are implicated in the regulation of calcium fluxes. Instead, we found that NS5A contributes to ROS production by activating expression of NADPH oxidases 1 and 4 as well as cytochrome P450 2E1. These effects were mediated by domain I of NS5A protein. NOX1 and NOX4 induction was mediated by enhanced production of transforming growth factor β1 (TGFβ1). Thus, our data show that NS5A protein induces oxidative stress by several multistep mechanisms. PMID:27200149

  11. Dietary tomato powder inhibits alcohol-induced hepatic injury by suppressing cytochrome p450 2E1 induction in rodent models.

    PubMed

    Stice, Camilla P; Liu, Chun; Aizawa, Koichi; Greenberg, Andrew S; Ausman, Lynne M; Wang, Xiang-Dong

    2015-04-15

    Chronic and excessive alcohol consumption leads to the development of alcoholic liver disease (ALD) and greatly increases the risk of liver cancer. Induction of the cytochrome p450 2E1 (CYP2E1) enzyme by chronic and excessive alcohol intake is known to play a role in the pathogenesis of ALD. High intake of tomatoes, rich in the carotenoid lycopene, is associated with a decreased risk of chronic disease. We investigated the effects of whole tomato (tomato powder, TP), partial tomato (tomato extract, TE), and purified lycopene (LYC) against ALD development in rats. Of the three supplements, only TP reduced the severity of alcohol-induced steatosis, hepatic inflammatory foci, and CYP2E1 protein levels. TE had no effect on these outcomes and LYC greatly increased inflammatory foci in alcohol-fed rats. To further support the protective effect of TP against ALD, TP was supplemented in a carcinogen (diethylnitrosamine, DEN)-initiated alcohol-promoted mouse model. In addition to reduced steatosis and inflammatory foci, TP abolished the presence of preneoplastic foci of altered hepatocytes in DEN-injected mice fed alcohol. These reductions were associated with decreased hepatic CYP2E1 protein levels, restored levels of peroxisome proliferator-activated receptor-α and downstream gene expression, decreased inflammatory gene expression, and reduced endoplasmic reticulum stress markers. These data provide strong evidence for TP as an effective whole food prevention strategy against ALD. PMID:25592162

  12. Hepatic cytochrome P450 activity and pollutant concentrations in paradise shelducks and southern black-backed gulls in the South Island of New Zealand.

    PubMed

    Numata, Mihoko; Fawcett, J Paul; Saville, Dorothy J; Rosengren, Rhonda J

    2008-11-01

    Cytochrome P450 (CYP) enzymes catalyse the oxidative metabolism of various xenobiotics including environmental pollutants. We investigated liver microsomal CYP marker activities in 60 paradise shelducks (Tadorna variegata; herbivore) and 77 southern black-backed gulls (Larus dominicanus; omnivore) collected at three sites with putatively different levels of pollution in the South Island of New Zealand. Ethoxyresorufin O-deethylase (EROD) activity was high in birds at an urban landfill site compared to those at a relatively pristine and an agricultural site. Analysis of p-nitrophenol hydroxylase and erythromycin demethylase activities indicated the presence of two additional CYP isoforms in shelducks but no additional form in gulls. Total polychlorinated biphenyl (PCB) concentrations (ranges: shelducks, 0.073-6.2; gulls, 8.2-330 ng/g wet weight) were high in landfill samples suggesting a link to EROD induction and, in landfill shelducks, EROD was independently associated with Hg and Pb concentration. PCB congener-specific assessments indicated the metabolism of at least two congeners (#28 and #74) is induced in shelducks. DDE concentrations (ranges: shelducks, 0.85-320; gulls, 44-4800 ng/g) were high in birds at the landfill and agricultural sites. Body weight tended to be lower in landfill birds, but whether this reflects the greater energetic demands of pollutant detoxification remains to be investigated. PMID:18473165

  13. Enhanced expression and glucocorticoid-inducibility of hepatic cytochrome P450 3A involve recruitment of the pregnane-x-receptor to promoter elements in rats fed soy protein isolate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies and Expt. 1 of the current study demonstrate that diets made with soy protein isolate (SPI) enhance the glucocorticoid-inducibility of hepatic cytochrome P450 (CYP)3A-dependent monooxygenase activities (P < 0.05) compared with diets made with casein (CAS). To determine the underlyin...

  14. Formation of P450P450 Complexes and Their Effect on P450 Function

    PubMed Central

    Reed, James R.; Backes, Wayne L.

    2011-01-01

    Cytochromes P450 (P450) are membrane-bound enzymes that catalyze the monooxygenation of a diverse array of xenobiotic and endogenous compounds. The P450s responsible for foreign compound metabolism generally are localized in the endoplasmic reticulum of the liver, lung and small intestine. P450 enzymes do not act alone but require an interaction with other electron transfer proteins such as NADPH-cytochrome P450 reductase (CPR) and cytochrome b5. Because P450s are localized in the endoplasmic reticulum with these and other ER-resident proteins, there is a potential for protein-protein interactions to influence P450 function. There has been increasing evidence that P450 enzymes form complexes in the ER, with compelling support that formation of P450P450 complexes can significantly influence their function. Our goal is to review the research supporting the formation of P450P450 complexes, their specificity, and how drug metabolism may be affected. This review describes the potential mechanisms by which P450s may interact, and provides evidence to support each of the possible mechanisms. Additionally, evidence for the formation of both heteromeric and homomeric P450 complexes are reviewed. Finally, direct physical evidence for P450 complex formation in solution and in membranes is summarized, and questions directing the future research of functional P450 interactions are discussed with respect to their potential impact on drug metabolism. PMID:22155419

  15. Characterization of cytochrome P450 isoforms involved in sequential two-step bioactivation of diclofenac to reactive p-benzoquinone imines.

    PubMed

    den Braver, Michiel W; den Braver-Sewradj, Shalenie P; Vermeulen, Nico P E; Commandeur, Jan N M

    2016-06-24

    Idiosyncratic drug-induced lever injury (IDILI) is a rare but severe side effect of diclofenac (DF). Several mechanisms have been proposed as cause of DF-induced toxicity including the formation of protein-reactive diclofenac-1',4'-quinone imine (DF-1',4'-QI) and diclofenac-2,5-quinone imine (DF-2,5-QI). Formation of these p-benzoquinone imines result from two-step oxidative metabolism involving aromatic hydroxylation to 4'-hydroxydiclofenac and 5-hydroxydiclofenac followed by dehydrogenation to DF-1',4'-QI and DF-2,5-QI, respectively. Although the contribution of individual cytochrome P450s (CYPs) in aromatic hydroxylation of DF is well studied, the enzymes involved in the dehydrogenation reactions have been poorly characterized. The results of the present study show that both formation of 4'-hydroxydiclofenac and it subsequent bioactivation to DF-1',4'-QI is selectively catalyzed by CYP2C9. However, the two-step bioactivation to DF-2,5-QI appears to be catalyzed with highest activity by two different CYPs: 5-hydroxylation of DF is predominantly catalyzed by CYP3A4, whereas its subsequent bioactivation to DF-2,5-QI is catalyzed with 14-fold higher intrinsic clearance by CYP2C9. The fact that both CYPs involved in two-step bioactivation of DF show large interindividual variability may play a role in different susceptibility of patients to DF-induced IDILI. Furthermore, expression levels of these enzymes and protective enzymes might be important factors determining sensitivity of in vitro models for hepatotoxicity. PMID:27130197

  16. PYRETHROID INSECTICIDES: ISOFORM-DEPENDENT HYDROLYSIS, INDUCTION OF CYTOCHROME P450 3A4 AND EVIDENCE ON THE INVOLVEMENT OF THE PREGNANE X RECEPTOR

    PubMed Central

    Yang, Dongfang; Wang, Xiliang; Chen, Yi-tzai; Deng, Ruitang; Yan, Bingfang

    2009-01-01

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity. PMID:19249324

  17. Pyrethroid insecticides: Isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor

    SciTech Connect

    Yang Dongfang; Wang Xiliang; Chen Yitzai; Deng Ruitang; Yan Bingfang

    2009-05-15

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  18. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling.

    PubMed

    Upreti, Vijay V; Wahlstrom, Jan L

    2016-03-01

    The accurate prediction of pharmacokinetics (PK) is fundamental to underwriting safety and efficacy in pediatric clinical trials; age-dependent PK may be observed with pediatrics because of the growth and maturation processes that occur during development. Understanding the ontogeny of drug-metabolizing enzymes is a critical enabler for pediatric PK prediction, as enzyme expression or activity may change with age. Although ontogeny functions for the cytochrome P450s (CYPs) have been developed, disconnects between ontogeny functions for the same CYP may exist, depending on whether the functions were derived from in vitro or in vivo data. This report describes the development of ontogeny functions for all the major hepatic CYPs based on in vitro or in vivo data; these ontogeny functions were subsequently incorporated into a physiologically based pharmacokinetic model and evaluated. Pediatric PK predictions based on in vivo-derived ontogeny functions performed markedly better than those developed from in vitro data for intravenous (100% versus 51% within 2-fold, respectively) and oral (98% versus 67%, respectively) dosing. The verified models were then applied to complex pediatric scenarios involving active metabolites, CYP polymorphisms and physiological changes because of critical illness; the models reasonably explained the observed age-dependent changes in pediatric PK. PMID:26139104

  19. Purification of a soluble cytochrome P450 from Trichosporon montevideense.

    PubMed

    Stündl, U M; Patzak, D; Schauer, F

    2000-01-01

    The yeast Trichosporon montevideense CBS 6721 expressed large amounts of cytochrome P450 after cultivation in a glucose-peptone medium. The P450, which could be detected in the cytosolic fraction after cell breakage and ultracentrifugation, was purified to electrophoretic homogeneity and migrated in SDS-PAGE with a M(r) of 43,000. As indicated by IEF, the preparation consisted of two different P450 isoforms with pI-values of 5.9 and 6.2, which were named P450MS1 and P450MS2 respectively. Both isoforms had a characteristic maximum at 446 nm in the reduced carbon monoxide difference spectra. Partial N-terminal sequencing of P450MS1 and P450MS2 demonstrated a high degree of sequence homology between the soluble P450 enzymes of T. montevideense CBS 6721 and their close relationship to the soluble P450 forms of Trichosporon spec. SBUG 752, T. cutaneum ATCC 58094 and to the P450s of the CYP55 family of Fusarium oxysporum and Cylindrocarpon tonkinense. PMID:10986675

  20. Organohalogens and their hydroxylated metabolites in the blood of pigs from an open waste dumping site in south India: association with hepatic cytochrome P450.

    PubMed

    Mizukawa, Hazuki; Nomiyama, Kei; Kunisue, Tatsuya; Watanabe, Michio X; Subramanian, Annamalai; Iwata, Hisato; Ishizuka, Mayumi; Tanabe, Shinsuke

    2015-04-01

    The concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and their hydroxylated metabolites (OH-PCBs and OH-PBDEs) were measured in the blood of Eurasian wild pigs (Sus scrofa) from a municipal waste open dumping site (DS) and a reference site (RS) in South India. We showed that contamination with OH-PCBs was higher in female pigs from the DS than in all other adult pigs. The highest OH-PCB concentrations were found in piglets from the DS. Moreover, the hepatic expression levels of CYP1A and CYP2B were higher in piglets than in their dam, implying metabolism of PCBs by cytochrome P450 (CYP) enzymes. The OH-PCB congener profiles differed according to sex and collection sites, possibly because of variations in the expression levels of phase I and phase II enzymes among individual pigs, differences in the exposure sources, and maternal transfer of parent PCBs. The hepatic CYP1A expression levels were positively correlated with the blood concentrations of 4OH-CB107, 4OH-CB162, and 4OH-CB187, implying CYP1A-dependent formation of these OH-PCBs in the pig liver. We found no significant correlations between the blood concentrations of OH-PCBs and thyroid hormones (THs); however, the thyroxin (T4) levels were lower in pigs from the DS than in pigs from the RS. Our limited dataset suggest that induced CYP enzymes accelerate the metabolism of xenobiotics and endogenous molecules in pigs. Thus, besides parental compounds, the risk of hydroxylated metabolites entering wildlife and humans living in and around municipal open waste dumping sites should be considered. PMID:25743931

  1. The Mycobacterium tuberculosis Cytochrome P450 System

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2009-01-01

    Tuberculosis remains a leading cause of human mortality. The emergence of strains of Mycobacterium tuberculosis, the causative agent, that are resistant to the major frontline antitubercular drugs increases the urgency for the development of new therapeutic agents. Sequencing of the M. tuberculosis genome revealed the existence of twenty cytochrome P450 enzymes, some of which are potential candidates for drug targeting. The recent burst of studies reporting microarray-based gene essentiality and transcriptome analyses under in vitro, ex vivo and in vivo conditions highlight the importance of selected P450 isoforms for M. tuberculosis viability and pathogenicity. Current knowledge of the structural and biochemical properties of the M. tuberculosis P450 enzymes and their putative redox partners is reviewed, with an emphasis on findings related to their physiological function(s) as well as their potential as drug targets. PMID:19635450

  2. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver

    PubMed Central

    Moskaleva, Natalia; Moysa, Alexander; Novikova, Svetlana; Tikhonova, Olga; Zgoda, Victor; Archakov, Alexander

    2015-01-01

    Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP) superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM). Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine. PMID:26561010

  3. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes.

    PubMed

    Stiborová, Marie; Černá, Věra; Moserová, Michaela; Mrízová, Iveta; Arlt, Volker M; Frei, Eva

    2015-01-01

    Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models. PMID:25547492

  4. Effects of Hypoxia Exposure on Hepatic Cytochrome P450 1A (CYP1A) Expression in Atlantic Croaker: Molecular Mechanisms of CYP1A Down-Regulation

    PubMed Central

    Rahman, Md. Saydur; Thomas, Peter

    2012-01-01

    Hypoxia-inducible factor-α (HIF-α) and cytochrome P450 1A (CYP1A) are biomarkers of environmental exposure to hypoxia and organic xenobiotic chemicals that act through the aryl hydrocarbon receptor, respectively. Many aquatic environments heavily contaminated with organic chemicals, such as harbors, are also hypoxic. Recently, we and other scientists reported HIF-α genes are upregulated by hypoxia exposure in aquatic organisms, but the molecular mechanisms of hypoxia regulation of CYP1A expression have not been investigated in teleost fishes. As a first step in understanding the molecular mechanisms of hypoxia modulation of CYP1A expression in fish, we characterized CYP1A cDNA from croaker liver. Hypoxia exposure (dissolved oxygen, DO: 1.7 mg/L for 2 to 4 weeks) caused significant decreases in hepatic CYP1A mRNA and protein levels compared to CYP1A levels in fish held in normoxic conditions. In vivo studies showed that the nitric oxide (NO)-donor, S-nitroso-N-acetyl-DL-penicillamine, significantly decreased CYP1A expression in croaker livers, whereas the competitive inhibitor of NO synthase (NOS), Nω-nitro-L-arginine methyl ester, restored CYP1A mRNA and protein levels in hypoxia-exposed (1.7 mg DO/L for 4 weeks) fish. In vivo hypoxia exposure also markedly increased interleukin-1β (IL-1β, a cytokine), HIF-2α mRNA and endothelial NOS (eNOS) protein levels in croaker livers. Pharmacological treatment with vitamin E, an antioxidant, lowered the IL-1β, HIF-2α mRNA and eNOS protein levels in hypoxia-exposed fish and completely reversed the down-regulation of hepatic CYP1A mRNA and protein levels in response to hypoxia exposure. These results suggest that hypoxia-induced down-regulation of CYP1A is due to alterations of NO and oxidant status, and cellular IL-1β and HIF-α levels. Moreover, the present study provides the first evidence of a role for antioxidants in hepatic eNOS and IL-1β regulation in aquatic vertebrates during hypoxic stress. PMID:22815834

  5. INTERINDIVIDUAL VARIANCE OF CYTOCHROME P450 FORMS IN HUMAN HEPATIC MICROSOMES: CORRELATION OF INDIVIDUAL FORMS WITH XENOBIOTIC METABOLISM AND IMPLICATIONS IN RISK ASSESSMENT

    EPA Science Inventory

    Differences in biotransformation activities may alter the bioavailability or efficacy of drugs, provide protection from certain xenobiotic and environmental agents, or increase toxicity of others. Cytochrome P450 (CYP450) enzymes are responsible for the majority of oxidation reac...

  6. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  7. The inhibition of major human hepatic cytochrome P450 enzymes by 18 pesticides: comparison of the N-in-one and single substrate approaches.

    PubMed

    Abass, Khaled; Pelkonen, Olavi

    2013-08-01

    In the present study on human hepatic microsomes, the N-in-one assay with ten probe substrates for nine cytochrome-P450 enzymes (CYPs) was compared with the single substrate assays to investigate pesticides-CYP interactions. CYP inhibition was measured by liquid chromatography-tandem mass spectrometry (LC/MS-MS). As illustrated by the initial screening at 100 μM concentration of 18 pesticides, CYPs are more sensitive to organophosphates (OPs) than to other pesticide groups. Chlorpyrifos and fenitrothion were most effective in inhibiting CYP1A1/2, and CYP2B6. Profenofos was also inhibitory towards multiple CYPs. Pyrethroids, e.g. deltamethrin, fenvalerate and lambda-cyhalothrin, potently inhibited CYP2D6. CYP3A4 activity was moderately inhibited by fenvalerate and potently by alpha-cypermethrin. The correlations between IC50 values obtained from the N-in-one and single substrate approaches were highly significant for CYP2Cs (r(2)=0.94), CYP3A4, omeprazole-sulfoxidation, (r(2)=0.89), followed by CYP1A2 and CYP2B6 (r(2)=0.82), and CYP2D6 (r(2)=0.80). In contrast no correlation was observed with CYP2E1 and CYP3A4 (midazolam-1'-hydroxylation). The N-in-one screening assay seems useful and reliable for most CYP activities when a comprehensive and quick evaluation of potential interactions with CYPs is needed. However, at the present moment, it does not enable discrimination on the basis of mechanism of inhibition. A strict comparison between single and N-in-one assays is a prerequisite for more extensive routine use. PMID:22634058

  8. Cytochrome P450-based cancer gene therapy: current status.

    PubMed

    Kan, On; Kingsman, Susan; Naylor, Stuart

    2002-12-01

    Results from a number of preclinical studies have demonstrated that a P450-based gene-directed enzyme prodrug therapy (GDEPT) strategy for the treatment of cancer is both safe and efficacious. This strategy has now moved forward into the clinic. At least two different approaches using different delivery methods (retroviral vector MetXia [Oxford BioMedica] and encapsulated P450 expressing cells), different cytochrome P450 isoforms (human CYP2B6 versus rat CYP2B1) and different prodrugs (cyclophosphamide [CPA] versus ifosfamide [IFA]) have concluded Phase I/II clinical trial with encouraging results. In the future, P450-based GDEPT can potentially be further enhanced by improved vectors for P450 gene delivery and disease-targeted promoters for focused gene expression at the target site. In addition, there is scope for developing synthetic P450s and their respective prodrugs to improve both enzyme kinetics and the profile of the active moiety. PMID:12517265

  9. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    NASA Astrophysics Data System (ADS)

    Ye, Meiling; Tang, Ling; Luo, Mengjun; Zhou, Jing; Guo, Bin; Liu, Yangyuan; Chen, Bo

    2014-11-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV-vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  10. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    PubMed Central

    2014-01-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV–vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  11. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    SciTech Connect

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  12. TERATOGEN METABOLISM: THALIDOMIDE ACTIVATION IS MEDIATED BY CYTOCHROME P-450

    EPA Science Inventory

    A metabolite of thalidomide generated by hepatic microsomes inhibited the attachment of tumor cells to concanavalin A-coated polyethylene. Evidence that metabolite formation is mediated by microsomal cytochrome P-450 is presented. Microsomes incubated with thalidomide underwent a...

  13. Human cytochrome p450 inhibition and metabolic-intermediate complex formation by goldenseal extract and its methylenedioxyphenyl components.

    PubMed

    Chatterjee, Parnali; Franklin, Michael R

    2003-11-01

    The concurrent use of herbal medicinals with prescription and over-the-counter drugs carries a risk for unanticipated adverse drug-botanical pharmacokinetic interactions, particularly as a result of cytochrome P450 (P450) inhibition. Extracts of goldenseal (Hydrastis canadensis) containing approximately equal concentrations ( approximately 17 mM) of two methylenedioxyphenyl alkaloids, berberine and hydrastine, inhibited with increasing potency (CYP2C9) diclofenac 4'-hydroxylation, (CYP2D6) bufuralol 1'-hydroxylation, and (CYP3A4) testosterone 6beta-hydroxylation activities in human hepatic microsomes. The inhibition of testosterone 6beta-hydroxylation activity was noncompetitive with an apparent Ki of 0.11% extract. Of the methylenedioxyphenyl alkaloids, berberine (IC50 = 45 microM) was the more inhibitory toward bufuralol 1'-hydroxylation and hydrastine (IC50 approximately 350 microM for both isomers), toward diclofenac 4'-hydroxylation. For testosterone 6beta-hydroxylation, berberine was the least inhibitory component (IC50 approximately 400 microM). Hydrastine inhibited testosterone 6beta-hydroxylation with IC50 values for the (+)- and (-)-isomers of 25 and 30 microM, respectively. For (-)-hydrastine, an apparent Ki value of 18 microM without preincubation and an NADPH-dependent mechanism-based inhibition with a kinactivation of 0.23 min(-1) and a KI of approximately 110 microM were determined. Cytochrome P450 metabolic-intermediate (MI) complex formation could be demonstrated for both hydrastine isomers. With expressed P450 isoforms, hydrastine formed a P450 MI complex with CYP2C9, CYP2D6, and CYP3A4. Coexpression of cytochrome b5 with the P450 isoforms enhanced the rate but not the extent of P450 MI complex formation. PMID:14570772

  14. Novel extrahepatic cytochrome P450s

    SciTech Connect

    Karlgren, Maria . E-mail: Maria.Karlgren@imm.ki.se; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-09-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis.

  15. Artificial neural network cascade identifies multi-P450 inhibitors in natural compounds

    PubMed Central

    Li, Zhangming; Li, Yan; Sun, Lu; Tang, Yun; Liu, Lanru

    2015-01-01

    Substantial evidence has shown that most exogenous substances are metabolized by multiple cytochrome P450 (P450) enzymes instead of by merely one P450 isoform. Thus, multi-P450 inhibition leads to greater drug-drug interaction risk than specific P450 inhibition. Herein, we innovatively established an artificial neural network cascade (NNC) model composed of 23 cascaded networks in a ladder-like framework to identify potential multi-P450 inhibitors among natural compounds by integrating 12 molecular descriptors into a P450 inhibition score (PIS). Experimental data reporting in vitro inhibition of five P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) were obtained for 8,148 compounds from the Cytochrome P450 Inhibitors Database (CPID). The results indicate significant positive correlation between the PIS values and the number of inhibited P450 isoforms (Spearman’s ρ = 0.684, p < 0.0001). Thus, a higher PIS indicates a greater possibility for a chemical to inhibit the enzyme activity of at least three P450 isoforms. Ten-fold cross-validation of the NNC model suggested an accuracy of 78.7% for identifying whether a compound is a multi-P450 inhibitor or not. Using our NNC model, 22.2% of the approximately 160,000 natural compounds in TCM Database@Taiwan were identified as potential multi-P450 inhibitors. Furthermore, chemical similarity calculations suggested that the prevailing parent structures of natural multi-P450 inhibitors were alkaloids. Our findings show that dissection of chemical structure contributes to confident identification of natural multi-P450 inhibitors and provides a feasible method for virtually evaluating multi-P450 inhibition risk for a known structure. PMID:26719820

  16. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans. PMID:25795462

  17. Regulation of rat liver cytochrome P450j, a high affinity N-nitrosodimethylamine demethylase (NDMAD)

    SciTech Connect

    Thomas, P.E.; Bandiera, S.; Maines, S.L.; Ryan, D.E.; Levin, W.

    1987-05-01

    Purified IgG from sera of rabbits immunized with homogeneous P450j was absorbed to produce monospecific anti-P450j. Results using anti-P450j in ELISA show that rat liver microsomal P450j content decreases between 3 and 6 wks of age in both sexes. Several xenobiotics (Aroclor 1254, mirex and 3-methylcholanthrene) repressed P450j levels when administered to male rats. In contrast, hepatic levels of P450j were induced by isoniazid, dimethylsulfoxide, pyrazole, 4-methylpyrazole, ethanol and chemically-induced diabetes. P450j levels were measurable in kidney, whereas this isozyme was barely detectable in lung, ovaries and testes; however, extra-hepatic P450j was inducible by isoniazid. Between 80-90% of microsomal NDMAD was inhibited by anti-P450j whether the microsomes were isolated from untreated rats or animals administered inducers or repressors of P450j. Results obtained with the reconstituted system suggest that the remaining microsomal NDMAD resistant to antibody inhibition is the result of the inaccessibility of a certain proportion of P450j due to interference by NADPH-P450 reductase. P450j content and NDMAD activity correlated well in microsomes from rats of all treatment groups. The evidence indicates that P450j is the primary, and possibly only, microsomal catalyst of NDMAD at substrate concentrations relevant to hepatocarcinogenesis induced by NDMA.

  18. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. PMID:22759518

  19. Building Structure Feature-based Models for Predicting Isoform-specific Human Cytochrome P-450 (hCYP 3A4, 2D6 and 2C9) Inhibition Assay Results in ToxCast

    EPA Science Inventory

    EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...

  20. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    SciTech Connect

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.; Baldwin, William S. . E-mail: wbaldwin@utep.edu

    2006-10-15

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16{alpha}-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females.

  1. Cytochromes P450 in Nanodiscs

    PubMed Central

    Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Nanodiscs have proven to be a versatile tool for the study all types of membrane proteins, including receptors, transporters, enzymes and viral antigens. The self-assembled Nanodisc system provides a robust and common means for rendering these targets soluble in aqueous media while providing a native like bilayer environment that maintains functional activity. This system has thus provided a means for studying the extensive collection of membrane bound cytochromes P450 with the same biochemical and biophysical tools that have been previously limited to use with the soluble P450s. These include a plethora of spectroscopic, kinetic and surface based methods. Significant improvements in homogeneity and stability of these preparations open new possibilities for detailed analysis of equilibrium and steady-state kinetic characteristics of catalytic mechanisms of human cytochromes P450 involved in xenobiotic metabolism and in steroid biosynthesis. The experimental methods developed for physico-chemical and functional studies of membrane cytochromes P450 incorporated in Nanodiscs allow for more detailed understanding of the scientific questions along the lines pioneered by Professor Klaus Ruckpaul and his array of colleagues and collaborators. PMID:20685623

  2. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  3. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    PubMed

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver. PMID:25036135

  4. Polymorphism of human cytochrome P-450.

    PubMed

    Guengerich, F P; Umbenhauer, D R; Churchill, P F; Beaune, P H; Böcker, R; Knodell, R G; Martin, M V; Lloyd, R S

    1987-03-01

    The cytochrome P-450 forms involved in debrisoquine 4-hydroxylation (P-450DB), phenacetin O-deethylation (P-450PA), S-mephenytoin 4-hydroxylation (P-450MP), and nifedipine 1,4-oxidation (P-450NF) have been purified to electrophoretic homogeneity from human liver microsomes. All of these reactions show in vivo polymorphism in humans. Evidence for the roles of the purified proteins in these processes comes from in vitro reconstitution and immunoinhibition studies. The rat orthologs of these enzymes are as follows--P-450DB: P-450UT-H; P-450PA: P-450ISF-G; P-450MP: P-450UT-I; P-450NF: P-450PCN-E. Only in the case of P-450UT-H is the primary rat ortholog the same cytochrome P-450 which catalyses the catalytic reaction under consideration. Reconstitution and immunochemical studies establish that the following reactions are catalysed by the individual P-450s--P-450DB: debrisoquine 4-hydroxylation, sparteine delta 5-oxidation, bufuralol 1'-hydroxylation, encainide O-demethylation, and propanolol 4-hydroxylation; P-450PA: phenacetin O-deethylation; P-450MP: S-mephenytoin 4-hydroxylation and tolbutamide methyl hydroxylation; P-450NF: oxidation of nifedipine and 16 other substituted dihydropyridines, estradiol 2- and 4-hydroxylation, aldrin epoxidation, benzphetamine N-demethylation and 6 beta-hydroxylation of testosterone, androstenedione and cortisol. A cDNA clone has been isolated that corresponds to rat P-450UT-H, as shown by a number of criteria. Studies with this probe establish that the sex and strain variation in debrisoquine 4-hydroxylase and related activities is related to differences in the levels of a 2.0 kb length mRNA present.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3577206

  5. Propiconazole increases reactive oxygen species levels in mouse hepatic cells in culture and in mouse liver by a cytochrome P450 enzyme mediated process

    EPA Science Inventory

    Propiconazole induces hepatocarcinomas and hepatoadenomas in mice and is a rat liver tumor promoter. Transcriptional, proteomic, metabolomic and biochemical studies of hepatic tissues from mice treated with propiconazole under the conditions of the chronic bioassay indicate that ...

  6. Kupffer cell inactivation by carbon monoxide bound to red blood cells preserves hepatic cytochrome P450 via anti-oxidant and anti-inflammatory effects exerted through the HMGB1/TLR-4 pathway during resuscitation from hemorrhagic shock.

    PubMed

    Ogaki, Shigeru; Taguchi, Kazuaki; Maeda, Hitoshi; Watanabe, Hiroshi; Ishima, Yu; Otagiri, Masaki; Maruyama, Toru

    2015-10-01

    Red blood cell (RBC) transfusions for controlling hemorrhaging induce systemic ischemia reperfusion, resulting in a decrease in hepatic cytochrome P450 (CYP) levels. Carbon monoxide (CO), when bound to red blood cells (CO-RBC) has the potential to protect the hepatic CYP protein to produce a resuscitative effect in a hemorrhagic shock rat model. The aim of this study was to investigate the mechanism by which CO-RBC resuscitation from a massive hemorrhage protects against a decrease in hepatic CYP. In the early phase (∼1h) after a hemorrhage and RBC resuscitation, hepatic CYP protein levels were significantly decreased with increasing hepatic free heme levels, but were maintained by a pre-treatment of gadolinium chloride (GdCl3), a Kupffer cell inhibitor, and Trolox, an anti-oxidant agent, as well as CO-RBC resuscitation. Under these conditions, the production of reactive oxygen species (ROS) derived from activated Kupffer cells was increased, but this increase was suppressed by CO-RBC resuscitation. At a late phase (6∼24h), CYP mRNA levels decreased after hemorrhage and RBC resuscitation, but not in the case of CO-RBC resuscitation. The increases in plasma IL-6 and TNF-α levels were decreased by CO-RBC resuscitation via the suppression of the toll-like receptor-4 (TLR-4) and the expression of the high mobility group box-1 (HMGB-1). Hepatic CYP protection after a hemorrhage and CO-RBC resuscitation can be attributed to the inactivation of Kupffer cells, resulting in the suppression of ROS production in the early phase and the suppression of inflammatory cytokine production via the TLR-4/HMGB-1signal pathway in the late phase. PMID:26232728

  7. Induction of hepatic cytochrome P450 isozymes, benzo(a)pyrene metabolism and DNA binding following exposure to polycyclic aromatic hydrocarbon residues generated during repeated fish fried oil in rats

    SciTech Connect

    Pandey, Manoj K.; Yadav, Sanjay; Parmar, Devendra; Das, Mukul . E-mail: mditrc@rediffmail.com

    2006-06-01

    In the present study the effect of repeated fish fried oil (RFFO) and its extract (RFFE) on hepatic cytochrome P450 (CYP) isozymes, benzo(a)pyrene (BP) metabolism and DNA adduct formation was undertaken. HPLC analysis of RFFO showed the presence of several polycyclic aromatic hydrocarbons. CYP in microsomes from control and RFFO-treated animals showed a peak at 450 nm; however, a shift of 2 nm in the SORET region along with significant induction was observed in microsomes prepared from 3-methylcholanthrene (MC)- and RFFE-treated animals. Activities of hepatic ethoxyresorufin-O-deethylase, methoxyresorufin-O-deethylase, aryl hydrocarbon hydroxylase and erythromycin-N-demethylase were found to be significantly (P < 0.05) induced following exposure of RFFE, whereas none of these enzymes were altered in RFFO-treated group. Immunoblot analysis revealed that RFFE and MC were potent inducers of CYP1A1, 1A1/2 and 3A1 isozymes, where as RFFO showed no change in these protein levels. RT-PCR analysis showed induction of cDNA of CYP1A1 and CYP3A1 by RFFE treatment. Hepatic microsomes prepared from RFFE exposed animals enhanced BP metabolism with a concomitant increase in the relative proportion of BP 7,8-diol. Hepatic microsomes prepared from animals pretreated with RFFE and MC significantly enhanced the binding of [{sup 3}H]-BP to calf thymus DNA. The overall results suggest that exposure to RFFE may induce hepatic CYP isozymes thereby producing enhanced reactive metabolites with a potential to bind with DNA that may result in cancer.

  8. Regioselective hydroxylation of steroid hormones by human cytochromes P450.

    PubMed

    Niwa, Toshiro; Murayama, Norie; Imagawa, Yurie; Yamazaki, Hiroshi

    2015-05-01

    This article reviews in vitro metabolic activities [including Michaelis constants (Km), maximal velocities (Vmax) and Vmax/Km] and drug-steroid interactions [such as induction and cooperativity (activation)] of cytochromes P450 (P450 or CYP) in human tissues, including liver and adrenal gland, for 14 kinds of endogenous steroid compounds, including allopregnanolone, cholesterol, cortisol, cortisone, dehydroepiandrosterone, estradiol, estrone, pregnenolone, progesterone, testosterone and bile acids (cholic acid). First, we considered the drug-metabolizing P450s. 6β-Hydroxylation of many steroids, including cortisol, cortisone, progesterone and testosterone, was catalyzed primarily by CYP3A4. CYP1A2 and CYP3A4, respectively, are likely the major hepatic enzymes responsible for 2-/4-hydroxylation and 16α-hydroxylation of estradiol and estrone, steroids that can contribute to breast cancer risk. In contrast, CYP1A1 and CYP1B1 predominantly metabolized estrone and estradiol to 2- and 4-catechol estrogens, which are endogenous ultimate carcinogens if formed in the breast. Some metabolic activities of CYP3A4, including dehydroepiandrosterone 7β-/16α-hydroxylation, estrone 2-hydroxylation and testosterone 6β-hydroxylation, were higher than those for polymorphically expressed CYP3A5. Next, we considered typical steroidogenic P450s. CYP17A1, CYP19A1 and CYP27A1 catalyzed steroid synthesis, including hydroxylation at 17α, 19 and 27 positions, respectively. However, it was difficult to predict which hepatic drug-metabolizing P450 or steroidogenic P450 will be mainly responsible for metabolizing each steroid hormone in vivo based on these results. Further research is required on the metabolism of steroid hormones by various P450s and on prediction of their relative contributions to in vivo metabolism. The findings collected here provide fundamental and useful information on the metabolism of steroid compounds. PMID:25678418

  9. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  10. Cytochromes P450: Roles in Diseases*

    PubMed Central

    Pikuleva, Irina A.; Waterman, Michael R.

    2013-01-01

    The cytochrome P450 superfamily consists of a large number of heme-containing monooxygenases. Many human P450s metabolize drugs used to treat human diseases. Others are necessary for synthesis of endogenous compounds essential for human physiology. In some instances, alterations in specific P450s affect the biological processes that they mediate and lead to a disease. In this minireview, we describe medically significant human P450s (from families 2, 4, 7, 11, 17, 19, 21, 24, 27, 46, and 51) and the diseases associated with these P450s. PMID:23632021

  11. Reactive Intermediates in Cytochrome P450 Catalysis*

    PubMed Central

    Krest, Courtney M.; Onderko, Elizabeth L.; Yosca, Timothy H.; Calixto, Julio C.; Karp, Richard F.; Livada, Jovan; Rittle, Jonathan; Green, Michael T.

    2013-01-01

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis. PMID:23632017

  12. Effects of cytochrome P450 (CYP) inducers and inhibitors on ondansetron pharmacokinetics in rats: involvement of hepatic CYP2D subfamily and 3A1/2 in ondansetron metabolism.

    PubMed

    Yang, Si H; Lee, Myung G

    2008-07-01

    The types of hepatic microsomal cytochrome P450 (CYP) isozymes responsible for the in-vivo metabolism of ondansetron in rats have not been reported. In this study, ondansetron at a dose of 8 mg kg(-1) was administered intravenously to rats pretreated with various inducers of CYP isozymes, such as 3-methylcholanthrene, orphenadrine citrate, isoniazid and dexamethasone phosphate (the main inducers of CYP1A1/2, 2B1/2, 2E1 and 3A1/2 in rats, respectively), and inhibitors, such as SKF-525A (a non-specific inhibitor of CYP isozymes), sulfaphenazole, quinine hydrochloride and troleandomycin (the main inhibitors of CYP2C6, 2D subfamily and 3A1/2 in rats, respectively). In rats pretreated with quinine hydrochloride and troleandomycin, the time-averaged non-renal clearance of ondansetron was significantly slower (48.9 and 13.2% decrease, respectively) than that in control rats. In rats pretreated with dexamethasone phosphate, the time-averaged non-renal clearance was significantly faster (18.2% increase) than that in control rats. The results suggest that ondansetron is primarily metabolized via the CYP2D subfamily and 3A1/2 in rats. PMID:18549671

  13. Genotyping for cytochrome P450 polymorphisms.

    PubMed

    Daly, Ann K; King, Barry P; Leathart, Julian B S

    2006-01-01

    Protocols for the extraction of DNA from human blood and for genotyping for a number of common cytochrome P450 polymorphisms using either polymerase chain reaction (PCR)-restriction fragment length polymorphism or PCR-single-strand conformational polymorphism (SSCP) analysis are described. Rapid high-throughput techniques are also available for analyses of this type, but they require access to specialized equipment and are not considered here. General guidelines for performing amplification using PCR are described together with electrophoresis protocols for analysis of restriction digests of PCR products with agarose and polyacrylamide gels including the use of polyacrylamide-based gels for SSCP analysis. Protocols for the following specific isoforms and alleles are also provided: CYP1A1 (*2B and *4 alleles), CYP2C8 (*3 and *4 alleles), CYP2C9 (*2, *3, and *11 alleles), CYP2C19 (*2 and *3 alleles), CYP2D6 (*3, *4, *5, and *6 alleles), CYP2E1 (*5A, *5B, and *6 alleles), and CYP3A5 (*3 allele). PMID:16719392

  14. Unusual Cytochrome P450 Enzymes and Reactions*

    PubMed Central

    Guengerich, F. Peter; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 enzymes primarily catalyze mixed-function oxidation reactions, plus some reductions and rearrangements of oxygenated species, e.g. prostaglandins. Most of these reactions can be rationalized in a paradigm involving Compound I, a high-valent iron-oxygen complex (FeO3+), to explain seemingly unusual reactions, including ring couplings, ring expansion and contraction, and fusion of substrates. Most P450s interact with flavoenzymes or iron-sulfur proteins to receive electrons from NAD(P)H. In some cases, P450s are fused to protein partners. Other P450s catalyze non-redox isomerization reactions. A number of permutations on the P450 theme reveal the diversity of cytochrome P450 form and function. PMID:23632016

  15. Purification of cytochrome P-450 enzymes.

    PubMed

    Bell-Parikh, L C; Hosea, N A; Martin, M V; Guengerich, F P

    2002-01-01

    Among the liver P-450 xenobiotic-metabolizing enzymes, P450-2E1 is of interest because of its activation of potent carcinogens, and P-450 1A2 is of interest because of its role in oxidation of drugs and carcinogens. This unit describes column chromatography protocols for purification of recombinant forms of these enzymes expressed in a bacterial expression system. PMID:23045082

  16. Role of Cytochrome P450s in Inflammation.

    PubMed

    Christmas, Peter

    2015-01-01

    Cytochrome P450 epoxygenases and hydroxylases play a regulatory role in the activation and suppression of inflammation by generating or metabolizing bioactive mediators. CYP2C and CYP2J epoxygenases convert arachidonic acid to anti-inflammatory epoxyeicosatrienoic acids, which have protective effects in a variety of disorders including cardiovascular disease and metabolic syndrome. CYP4A and CYP4F hydroxylases have the ability to metabolize multiple substrates related to the regulation of inflammation and lipid homeostasis, and it is a challenge to determine which substrates are physiologically relevant for each enzyme; the best-characterized activities include generation of 20-hydroxyeicosatetraenoic acid and inactivation of leukotriene B4. The expression of hepatic drug-metabolizing cytochrome P450s is modulated by cytokines during inflammation, resulting in changes to the pharmacokinetics of prescribed medications. Cytochrome P450s are therefore the focus of intersecting challenges in the pharmacology of inflammation: not only do they represent targets for development of new anti-inflammatory drugs but they also contribute to variability in drug efficacy or toxicity in inflammatory disease. Animal models and primary hepatocytes have been used extensively to study the effects of cytokines on cytochrome P450 expression and activity. However, it is difficult to predict changes in drug exposure in patients because the response to inflammation varies depending on the disease state, its time course, and the cytochrome P450 involved. In these circumstances, the development of endogenous markers of cytochrome P450 metabolism might provide a useful tool to reevaluate drug dosage and choice of therapy. PMID:26233907

  17. Role of cytochrome P450 in drug interactions

    PubMed Central

    Bibi, Zakia

    2008-01-01

    Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP) enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events. PMID:18928560

  18. Immunochemical characterization of multiple forms of cytochrome P-450 in rabbit nasal microsomes and evidence for tissue-specific expression of P-450s NMa and NMb.

    PubMed

    Ding, X X; Coon, M J

    1990-04-01

    Two unique forms of cytochrome P-450 (P-450), designated NMa and NMb, were recently isolated in this laboratory from nasal microsomes of rabbits. In the present study, polyclonal antibodies to the purified nasal cytochromes were prepared. Immunochemical analysis with specific rabbit anti-NMa and sheep anti-NMb antibodies indicated that P-450 isozymes identical to or having a high structural homology with NMa are present in both olfactory and respiratory mucosa, as well as in liver, but NMb was detected only in the olfactory mucosa. Neither form was detected in other tissues examined, including brain, esophageal mucosa, heart, intestinal mucosa, kidney, and lung. The specific occurrence of NMb in the olfactory mucosa was further substantiated by the detection and specific inhibition by anti-NMb of the formation of unique NMb-dependent metabolites of testosterone in olfactory microsomes but not in microsomes from liver or respiratory mucosa. Similar experiments with antibodies to previously purified rabbit hepatic P-450 isozymes indicated that not all of the hepatic cytochromes are expressed in the nasal tissues. Thus, P-450 isozymes structurally homologous to hepatic forms 2, 3a, and 4, but not 3b and 6, were found in the olfactory mucosa. On the other hand, only form 2 was detected in the respiratory mucosa. Immunoquantitation experiments revealed that NMa and NMb are the major P-450 forms in olfactory microsomes, whereas NMa and P-450 form 2 (or its homolog) constitute the major portion of the respiratory nasal microsomal P-450. The level of NMa in the liver is relatively low, accounting for less than 3% of total microsomal P-450 in this tissue. In addition, evidence is provided that NMa is the major catalyst in the dealkylation of two nasal carcinogens, hexamethylphosphoramide and phenacetin, in both olfactory and respiratory nasal microsomes. PMID:2109181

  19. Pomegranate juice effects on cytochrome P450S expression: in vivo studies.

    PubMed

    Faria, Ana; Monteiro, Rosário; Azevedo, Isabel; Calhau, Conceição

    2007-12-01

    Beneficial health effects have recently been claimed for pomegranate juice. In vitro and in vivo studies have demonstrated its anti-atherosclerotic capacity, chemoprevention and chemotherapy of prostate cancer, and antiproliferative, apoptotic, and antioxidant activity, among others. On the other hand, there is a complex interplay between tumor initiation, promotion, and progression and xenobiotic biotranformation. This led us to investigate the effect of pomegranate juice consumption on cytochrome P450 (CYP) activity and expression. For this purpose, male mice consumed this fruit juice for 4 weeks, and pentobarbital-induced sleeping time and total hepatic CYP content, activity, and expression were evaluated. Moreover, the activity of CYP isoform 2E1 and expression of the main CYP isoforms, namely, CYP1A1/2, CYP2E1, and CYP3A, were also assessed. It was found that pomegranate juice consumption decreased total hepatic CYP content as well as the expression of CYP1A2 and CYP3A. Prevention of procarcinogen activation through CYP activity/expression inhibition may be involved in pomegranate juice's effect on tumor initiation, promotion, and progression. PMID:18158835

  20. Spectroelectrochemistry of cytochrome P450cam.

    PubMed

    Bistolas, Nikitas; Christenson, Andreas; Ruzgas, Tautgirdas; Jung, Christiane; Scheller, Frieder W; Wollenberger, Ulla

    2004-02-13

    The spectroelectrochemistry of camphor-bound cytochrome P450cam (P450cam) using gold electrodes is described. The electrodes were modified with either 4,4(')-dithiodipyridin or sodium dithionite. Electrolysis of P450cam was carried out when the enzyme was in solution, while at the same time UV-visible absorption spectra were recorded. Reversible oxidation and reduction could be observed with both 4,4(')-dithiodipyridin and dithionite modified electrodes. A formal potential (E(0')) of -373mV vs Ag/AgCl 1M KCl was determined. The spectra of P450cam complexed with either carbon monoxide or metyrapone, both being inhibitors of P450 catalysis, clearly indicated that the protein retained its native state in the electrochemical cell during electrolysis. PMID:14741708

  1. Type II ligands as chemical auxiliaries to favor enzymatic transformations by P450 2E1.

    PubMed

    Ménard, Amélie; Fabra, Camilo; Huang, Yue; Auclair, Karine

    2012-11-26

    The remarkable ability of P450 enzymes to oxidize inactivated C-H bonds and the high substrate promiscuity of many P450 isoforms have inspired us and others to investigate their use as biocatalysts. Our lab has pioneered a chemical-auxiliary approach to control the promiscuity of P450 3A4 and provide product predictability. The recent realization that type II ligands are sometimes also P450 substrates has prompted the design of a new generation of chemical auxiliaries with type II binding properties. This approach takes advantage of the high affinity of type II ligands for the active site of these enzymes. Although type II ligands typically block P450 activity, we report here that type II ligation can be harnessed to achieve just the opposite, that is, to favor biocatalysis and afford predictable oxidation of small hydrocarbon substrates with P450 2E1. Moreover, the observed predictability was rationalized by molecular docking. We hope that this approach might find future use with other P450 isoforms and yield complimentary products. PMID:23129539

  2. Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics.

    PubMed

    Lewis, D F; Watson, E; Lake, B G

    1998-06-01

    The evolution of the cytochrome P450 (CYP) superfamily is described, with particular reference to major events in the development of biological forms during geological time. It is noted that the currently accepted timescale for the elaboration of the P450 phylogenetic tree exhibits close parallels with the evolution of terrestrial biota. Indeed, the present human P450 complement of xenobiotic-metabolizing enzymes may have originated from coevolutionary 'warfare' between plants and animals during the Devonian period about 400 million years ago. A number of key correspondences between the evolution of P450 system and the course of biological development over time, point to a mechanistic molecular biology of evolution which is consistent with a steady increase in atmospheric oxygenation beginning over 2000 million years ago, whereas dietary changes during more recent geological time may provide one possible explanation for certain species differences in metabolism. Alignment between P450 protein sequences within the same family or subfamily, together with across-family comparisons, aid the rationalization of drug metabolism specificities for different P450 isoforms, and can assist in an understanding of genetic polymorphisms in P450-mediated oxidations at the molecular level. Moreover, the variation in P450 regulatory mechanisms and inducibilities between different mammalian species are likely to have important implications for current procedures of chemical safety evaluation, which rely on pure genetic strains of laboratory bred rodents for the testing of compounds destined for human exposure. PMID:9630657

  3. Effect of cytochrome P450 inducers on cocaine-mediated hepatotoxicity.

    PubMed

    Bornheim, L M

    1998-05-01

    The effect of several cytochrome P450 (P450) inducers on cocaine metabolism were examined in order to characterize the metabolic events contributing to cocaine-induced hepatotoxicity. Phenobarbital (PB)-pretreatment of mice induced P450s 3A and 2B and markedly increased serum alanine aminotransferase (ALT) activity after cocaine or norcocaine administration. Although dexamethasone (Dex) induced P450s 3A and 2B at least to the same extent as PB, no increase in serum ALT activity was observed after cocaine or norcocaine administration. Phencyclidine (PCP) pretreatment did not increase either P450s 3A or 2B, yet it markedly enhanced cocaine- or norcocaine-induced serum ALT activity. In contrast to the marked induction of P450s 3A and 2B, P450 2C was increased only 2.5-fold by PB and to an even lesser extent by Dex or PCP. Cannabidiol (CBD), which inactivates P450s 3A and 2C in mice, completely protected mice against cocaine- or norcocaine-induced hepatotoxicity irrespective of whether they were induced or not with PB or PCP. Both PB and Dex pretreatment increased the in vitro hepatic microsomal formation of the first two sequential oxidative metabolites of cocaine (norcocaine and N-hydroxynorcocaine), whereas PCP pretreatment did not. Hepatic esterase activity was also determined after pretreatment with P450 inducers, since this is the major detoxification pathway in cocaine metabolism. Dex pretreatment markedly increased (> 11-fold) total hepatic esterase activity, whereas PB pretreatment increased it more modestly (less than fourfold) and PCP pretreatment had little effect. This marked effect of Dex pretreatment may decrease liver cocaine concentrations and thus protect mice against cocaine-induced hepatotoxicity, despite their increased P450 2B and 3A contents. PMID:9630465

  4. NADPH-cytochrome P-450 reductase, cytochrome P-450 2C11 and P-450 1A1, and the aryl hydrocarbon receptor in livers of rats fed methyl-folate-deficient diets.

    PubMed

    Zhang, J; Henning, S M; Heber, D; Choi, J; Wang, Y; Swendseid, M E; Go, V L

    1997-01-01

    We investigated three hepatic cytochrome P-450 isozymes and the aryl hydrocarbon (Ah) receptor in rats fed one of the following three diets for 15 months: a diet containing the AIN vitamin mixture (control), the control diet devoid of choline and folate (CFD), or the CFD diet devoid of niacin (CFND). Hepatic tumors developed in all CFD- and CFND-fed rats. Western blot analyses of nontumor hepatic tissue showed that NADPH-cytochrome P-450 reductase (P-450 reductase) increased significantly in the CFD and CFND groups compared with the control group. Hepatic cytochrome P-450 2C11 (CYP2C11) was not detectable in the CFD and CFND groups compared with the control group. Ah receptor and cytochrome P-450 1A1 (CYP1A1) were detected in higher amounts in livers of both deficient groups. CYP1A1 is an enzyme associated with bioactivation of exogenous genotoxins. To our knowledge, this is the first time it has been shown that CYP1A1 and the Ah receptor are induced by dietary deficiencies. PMID:9290122

  5. Biological activity of phenolic compounds. Hepatic cytochrome P-450, cytochrome b/sub 5/ and NADPH cytochrome c reductase in chicks and rats fed phenolic monomers, polymers, and glycosides

    SciTech Connect

    Klasing, S.A.; Mora, M.I.; Wilson, W.C.; Fahey, G.C. Jr.; Garst, J.E.

    1985-09-01

    Experiments were conducted to determine effects of a phenolic polymer (Kraft wood lignin, Indulin), phenolic glycosides (cane molasses and wood molasses), and phenolic monomers (vanillin, vanillic acid, ferulic acid, and p-coumaric acid) on liver cytochromes P-450, cytochrome b/sub 5/, and NADPH cytochrome c reductase in chicks and rats. Chicks fed 6.0% lignin had a higher cytochromes P-450 content than did chicks fed 0% fiber, 6.0% wood cellulose, or 6.0% arenaceous flour. Chicks fed 12.0% wood molasses had a higher cytochromes P-450 level than did chicks fed 0% fiber or 6.0% wood molasses. Cane molasses incorporated at both 6.0 and 12.0% of the diet induced cytochromes P-450 content over those of control-fed birds. Chicks fed 6.0% lignin, with or without antibiotic, had a higher cytochromes P-450 level than did chicks fed control diets, with or without antibiotic. Additionally, chicks fed 6.0% lignin had lower intestinal diaminopimelic acid (DAP) levels than did chicks fed 0% fiber. Rats fed 0% fiber, 6.0% wood cellulose, 6.0% arenaceous flour, or 6.0% lignin exhibited no difference in cytochrome level or activity among treatments. Chicks fed 0.5% vanillin, 0.5% vanillic acid, 0.5% ferulic acid, or 0.5% p-coumaric acid had comparable cytochromes level and activity compared with chicks fed no phenolics. Chicks fed 0.5% p-coumaric acid had lower rates of gain than did chicks fed control or other phenolic-containing diets. Rats fed these phenolics had similar cytochromes P-450 content among treatments.

  6. A world of cytochrome P450s

    PubMed Central

    Nelson, David R.

    2013-01-01

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450. PMID:23297353

  7. Evaluation of hydroxyimine as cytochrome P450-selective prodrug structure.

    PubMed

    Kumpulainen, Hanna; Mähönen, Niina; Laitinen, Marja-Leena; Jaurakkajärvi, Marja; Raunio, Hannu; Juvonen, Risto O; Vepsäläinen, Jouko; Järvinen, Tomi; Rautio, Jarkko

    2006-02-01

    Hydroxyimine derivatives of ketoprofen (1) and nabumetone (2) were synthesized and evaluated in vitro and in vivo as cytochrome P450-selective intermediate prodrug structures of ketones. 2 released nabumetone in vitro in the presence of isolated rat and human liver microsomes and in different recombinant human CYP isoforms. Bioconversion of 2 to both nabumetone and its active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA), was further confirmed in rats in vivo. Results indicate that hydroxyimine is a useful intermediate prodrug structure for ketone drugs. PMID:16451086

  8. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  9. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes

    PubMed Central

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members’ duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes. PMID:26129850

  10. Purification and characterization of an anticonvulsant-induced human cytochrome P-450 catalysing cyclosporin metabolism.

    PubMed Central

    Shaw, P M; Barnes, T S; Cameron, D; Engeset, J; Melvin, W T; Omar, G; Petrie, J C; Rush, W R; Snyder, C P; Whiting, P H

    1989-01-01

    A form of human hepatic microsomal cytochrome P-450 (P450hA7) with subunit Mr 50,400 has been purified from an epileptic who had been receiving long-term treatment with anticonvulsant drugs. P450hA7 metabolized the immunosuppressant drug cyclosporin A and the dihydropyridine calcium channel antagonist nifedipine, but did not metabolize a similar dihydropyridine drug, nicardipine, nor a series of alkoxyresorufin model substrates. The hepatic microsomal concentration of P450hA7 was higher in five individuals who had been receiving long-term anticonvulsant treatment than in any of 21 individuals who had not been similarly treated. The mean P450hA7 concentration in the treated individuals was 5-fold higher than the mean concentration in the untreated individuals. It is concluded that P450hA7 is a member of the cytochrome P450III family which is induced by anticonvulsant drugs in man. Images Fig. 1. Fig. 4. Fig. 5. Fig. 6. PMID:2688634

  11. Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen.

    PubMed Central

    Lewis, D F; Ioannides, C; Parke, D V

    1998-01-01

    The importance of cytochrome P450 isoforms to species differences in the metabolism of foreign compounds and activation of procarcinogens has been identified. The possible range of P450 isozymes in significant variations in toxicity exhibited by experimental rodent species may have a relevance to chemical risk assessment, especially as human P450s are likely to show changes in the way they metabolize xenobiotics. Consequently, in the safety evaluation of chemicals, we should be cautious in extrapolating results from experimental animal models to humans. This paper focuses on examples in which species differences in P450s lead to significant alterations in carcinogenic response, and includes a discussion of the current procedures for toxicity screening, with an emphasis on short-term tests. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9755138

  12. Cooperative properties of cytochromes P450

    PubMed Central

    Denisov, Ilia G.; Frank, Daniel J.; Sligar, Stephen G.

    2009-01-01

    Cytochromes P450 form a large and important class of heme monooxygenases with a broad spectrum of substrates and corresponding functions, from steroid hormone biosynthesis to the metabolism of xenobiotics. Despite decades of study, the molecular mechanisms responsible for the complex non-Michaelis behavior observed with many members of this super-family during metabolism, often termed ‘cooperativity,’ remain to be fully elucidated. Although there is evidence that oligomerization may play an important role in defining the observed cooperativity, some monomeric cytochromes P450, particularly those involved in xenobiotic metabolism, also display this behavior due to their ability to simultaneously bind several substrate molecules. As a result, formation of distinct enzyme-substrate complexes with different stoichiometry and functional properties can give rise to homotropic and heterotropic cooperative behavior. This review aims to summarize the current understanding of cooperativity in cytochromes P450, with a focus on the nature of cooperative effects in monomeric enzymes. PMID:19555717

  13. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3.

    PubMed

    Sowden, Rebecca J; Yasmin, Samina; Rees, Nicholas H; Bell, Stephen G; Wong, Luet-Lok

    2005-01-01

    The sesquiterpenoids are a large class of naturally occurring compounds with biological functions and desirable properties. Oxidation of the sesquiterpene (+)-valencene by wild type and mutants of P450cam from Pseudomonas putida, and of P450BM-3 from Bacillus megaterium, have been investigated as a potential route to (+)-nootkatone, a fine fragrance. Wild type P450cam did not oxidise (+)-valencene but the mutants showed activities up to 9.8 nmol (nmol P450)(-1) min(-1), with (+)-trans-nootkatol and (+)-nootkatone constituting >85% of the products. Wild type P450BM-3 and mutants had higher activities (up to 43 min(-1)) than P450cam but were much less selective. Of the many products, cis- and trans-(+)-nootkatol, (+)-nootkatone, cis-(+)-valencene-1,10-epoxide, trans-(+)-nootkaton-9-ol, and (+)-nootkatone-13S,14-epoxide were isolated from whole-cell reactions and characterised. The selectivity patterns suggest that (+)-valencene has one binding orientation in P450cam but multiple orientations in P450BM-3. PMID:15602599

  14. The P450 gene superfamily: recommended nomenclature.

    PubMed

    Nebert, D W; Adesnik, M; Coon, M J; Estabrook, R W; Gonzalez, F J; Guengerich, F P; Gunsalus, I C; Johnson, E F; Kemper, B; Levin, W

    1987-02-01

    A nomenclature for the P450 gene superfamily is proposed based on evolution. Recommendations include Roman numerals for distinct gene families, capital letters for subfamilies, and Arabic numerals for individual genes. An updating of this list, which presently includes 65 entries, will be required every 1-2 years. Assignment of orthologous genes is presently uncertain in some cases--between widely diverged species and especially in the P450II family due to the large number of genes. As more is known, it might become necessary to change some gene assignments that are based on our present knowledge. PMID:3829886

  15. Role of cytochrome P450 genotype in the steps toward personalized drug therapy

    PubMed Central

    Cavallari, Larisa H; Jeong, Hyunyoung; Bress, Adam

    2011-01-01

    Genetic polymorphism for cytochrome 450 (P450) enzymes leads to interindividual variability in the plasma concentrations of many drugs. In some cases, P450 genotype results in decreased enzyme activity and an increased risk for adverse drug effects. For example, individuals with the CYP2D6 loss-of-function genotype are at increased risk for ventricular arrhythmia if treated with usual does of thioridazine. In other cases, P450 genotype may influence the dose of a drug required to achieve a desired effect. This is the case with warfarin, with lower doses often necessary in carriers of a variant CYP2C9*2 or *3 allele to avoid supratherapeutic anticoagulation. When a prodrug, such as clopidogrel or codeine, must undergo hepatic biotransformation to its active form, a loss-of-function P450 genotype leads to reduced concentrations of the active drug and decreased drug efficacy. In contrast, patients with multiple CYP2D6 gene copies are at risk for opioid-related toxicity if treated with usual doses of codeine-containing analgesics. At least 25 drugs contain information in their US Food and Drug Administration-approved labeling regarding P450 genotype. The CYP2C9, CYP2C19, and CYP2D6 genes are the P450 genes most often cited. To date, integration of P450 genetic information into clinical decision making is limited. However, some institutions are beginning to embrace routine P450 genotyping to assist in the treatment of their patients. Genotyping for P450 variants may carry less risk for discrimination compared with genotyping for disease-associated variants. As such, P450 genotyping is likely to lead the way in the clinical implementation of pharmacogenomics. This review discusses variability in the CYP2C9, CYP2C19, and CYP2D6 genes and the implications of this for drug efficacy and safety. PMID:23226058

  16. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes.

    PubMed Central

    Kolars, J C; Schmiedlin-Ren, P; Schuetz, J D; Fang, C; Watkins, P B

    1992-01-01

    Enzymes within the P450IIIA (CYP3A) subfamily appear to account for significant "first pass" metabolism of some drugs in the intestine. To identify which of the known P450IIIA genes are expressed in intestine, enterocyte RNA was hybridized on Northern blots with synthetic oligonucleotides complementary to hypervariable regions of hepatic P450IIIA4, P450IIIA5, and P450IIIA7 cDNAs. Hybridization was detected only with the P450IIIA4-specific oligonucleotide. The identity of the hybridizing mRNA was confirmed to be P450IIIA4 by direct sequencing of a DNA fragment amplified from enterocyte cDNA by the polymerase chain reaction. To determine if enterocyte P450IIIA4 is inducible, biopsies of small bowel mucosa were obtained from five volunteers before and after they received 7d of treatment with rifampin, a known inducer of P450IIIA4 in liver. Rifampin treatment resulted in a five- or eightfold mean increase (P < 0.05) in the biopsy concentration of P450IIIA4 mRNA when normalized for content of sucrase isomaltase or intestinal fatty acid binding protein mRNAs, respectively. Rifampin also induced P450IIIA immunoreactive protein in enterocytes in each of the subjects, as judged by immunohistochemistry, and resulted in a 10-fold increase in P450IIIA4-specific catalytic activity (erythromycin N-demethylation) in the one patient studied. Our identification of inducible P450IIIA4 in enterocytes may in part account for drug interactions characteristic of P450IIIA4 substrates and suggests a strategy for controlling entry into the body of a major class of xenobiotics. Images PMID:1430211

  17. THE DIFFERENTIAL HEPATOTOXICITY AND CYTOCHROME P450 RESPONSE OF F344 RATS TO THE THREE ISOMERS OF DICHLOROBENZENE

    EPA Science Inventory

    The acute hepatotoxicity and response of hepatic cytochrome P450 to treatment with the three isomers of dichlorobenzene (DCB) have been investigated. The objectives were to estimate toxic thresholds and to further e1ucidate the role of cytochrome P450 in the metabolism and toxici...

  18. Intronic polymorphisms of cytochromes P450

    PubMed Central

    2010-01-01

    The cytochrome P450 enzymes active in drug metabolism are highly polymorphic. Most allelic variants have been described for enzymes encoded by the cytochrome P450 family 2 (CYP2) gene family, which has 252 different alleles. The intronic polymorphisms in the cytochrome P450 genes account for only a small number of the important variant alleles; however, the most important ones are CYP2D6*4 and CYP2D6*41, which cause abolished and reduced CYP2D6 activity, respectively, and CYP3A5*3 and CYP3A5*5, common in Caucasian populations, which cause almost null activity. Their discoveries have been based on phenotypic alterations within individuals in a population, and their identification has, in several cases, been difficult and taken a long time. In light of the next-generation sequencing projects, it is anticipated that further alleles with intronic mutations will be identified that can explain the hitherto unidentified genetic basis of inter-individual differences in cytochrome P450-mediated drug and steroid metabolism. PMID:20846929

  19. P450 AND METABOLISM IN TOXICOLOGY

    EPA Science Inventory

    The cytochromes P450 catalyze the initial phase of detoxification of many environmental chemicals, xenobiotic, drugs and the secondary metabolic product of plants. Plant secondary chemicals can be highly toxic, and they evolved in a coevolving plant - animal warfare - the plants ...

  20. Effects of 2-acetylaminofluorene, dietary fats and antioxidants on nuclear envelope cytochrome P-450

    SciTech Connect

    Carubelli, R.; Graham, S.A.; Griffin, M.J.; McCay, P.B.

    1986-05-01

    The authors reported a marked loss of cytochrome P-450 in hepatic nuclear envelope (NE) but not in microsomes of male Sprague-Dawley rats fed a semipurified diet containing 0.05% w/w 2-acetylaminofluorene (AAF) for 3 weeks. This may reflect loss of NE capacity to detoxify AAF metabolites generated by microsomal P-450. They are now investigating if dietary effects such as progressive decrease in the incidence of AAF-induced tumors in rats fed high polyunsaturated fat diet (HPUF) vs. high saturated fat diet (HSF) vs. low fat diet (LF), and the anticarcinogenic activity of butylated hydroxytoluene (BHT; 0.3% w/w) correlate with preservation of NE P-450. Rats fed AAF HSF (25.6% w/w corn oil) showed marked loss of NE P-450 after 3 weeks; BHT protected against this loss. Rats fed AAF in HSF (25.6% w/w; 18 parts beef tallow + 2 parts corn oil), on the other hand, experienced a marked drop in NE P-450 after 9 weeks; BHT protected against this loss. Comparison of NE P-450 levels in control rats fed HPUF or HSF for 3 weeks with those of rats fed a semipurified diet with 10% fat or Purina chow (ca. 5% fat), support the prediction of an inverse correlation between the levels of dietary fat and the NE P-450 content. Studies on AAF and BHT effects using LF (2% w/w corn oil) are in progress.

  1. Interactions of phospholipase D and cytochrome P450 protein stability

    SciTech Connect

    Zangar, Richard C.; Fan, Yang-Yi; Chapkin, Robert S.

    2004-08-01

    Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.

  2. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function.

    PubMed

    Scott, Emily E; Wolf, C Roland; Otyepka, Michal; Humphreys, Sara C; Reed, James R; Henderson, Colin J; McLaughlin, Lesley A; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P; Barnaba, Carlo; Brozik, James A; Jones, Jeffrey P; Estrada, D Fernando; Laurence, Jennifer S; Park, Ji Won; Backes, Wayne L

    2016-04-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  3. A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes.

    PubMed

    Miyakawa, Kazuhisa; Albee, Ryan; Letzig, Lynda G; Lehner, Andreas F; Scott, Michael A; Buchweitz, John P; James, Laura P; Ganey, Patricia E; Roth, Robert A

    2015-08-01

    Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0-14 mM), but eliminated cytotoxicity only at small concentrations (≦5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ≦ 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies. PMID:26065700

  4. Cytochrome P-450 epitope typing in animals and humans with monoclonal antibodies to ethanol induced rat liver microsomal cytochrome P-450 (P-450et)

    SciTech Connect

    Park, S.S.; Ko, I.Y.; Yang, C.; Guengerich, F.G.; Schenkman, J.B.; Coon, M.J.; Gelboin, H.V.

    1986-05-01

    Hybridomas were prepared from mouse myeloma cells and spleen cells derived from BALB/c female mice that had been immunized with P-450et. The monoclonal antibody (MAb)-producing hybridomas were screened by RIA. Thirty one independent hybrid clones were isolated with each producing an MAb of a single immunoglobulin subclass. All of these MAbs had high affinities for P-450et but only one MAb had a strong inhibitory effect on aniline rho-hydroxylase and N-nitrosodimethylamine demethylase. Western blots and RIAs based on ten MAbs (C1-C10) were used to determine the epitope homology of purified cytochromes P-450 from rats, rabbits, and humans. All ten MAbs had high affinity for both P-450et and a rat P-450 which is induced by acetone (P-450ac). Classes of these MAbs were identified which crossreacted toward different forms of rat P-450. In addition, several MAbs (C3, C6, C9) recognized a P-450 form of human liver, while other MAbs (C7, C9) recognized P-450/sub LM2/ of rabbits. Three MAbs (C4, C5, C8) were specific for only P-450et and P-450ac. These results demonstrate the different degrees of epitope relatedness among the multiple forms of cytochrome P-450.

  5. In vitro characterization of 4'-(p-toluenesulfonylamide)-4-hydroxychalcone using human liver microsomes and recombinant cytochrome P450s.

    PubMed

    Lee, Boram; Wu, Zhexue; Lee, Taeho; Tan, Xue Fei; Park, Ki Hun; Liu, Kwang-Hyeon

    2016-01-01

    1. 4'-(p-Toluenesulfonylamide)-4-hydroxychalcone (TSAHC) is a synthetic sulfonylamino chalcone compound possessing anti-cancer properties. The aim of this study was to elucidate the metabolism of TSAHC in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of TSAHC. 2. TSAHC was incubated with HLMs or recombinant P450 isoforms (rP450) in the presence of an nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-regenerating system. The metabolites were identified and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). P450 isoforms, responsible for TSAHC metabolite formation, were characterized by chemical inhibition and correlation studies in HLMs and enzyme kinetic studies with a panel of rP450 isoforms. 3. Two hydroxyl metabolites, that is M1 and M2, were produced from the human liver microsomal incubations (K(m) and V(max) values were 2.46 µM and 85.1 pmol/min/mg protein for M1 and 9.98 µM and 32.1 pmol/min/mg protein for M2, respectively). The specific P450 isoforms responsible for two hydroxy-TSAHC formations were identified using a combination of chemical inhibition, correlation analysis and metabolism by expressed recombinant P450 isoforms. The known P450 enzyme activities and the rate of TSAHC metabolite formation in the 15 HLMs showed that TSAHC metabolism is correlated with CYP2C and CYP3A activity. The P450 isoform-selective inhibition study in HLMs and the incubation study of cDNA-expressed enzymes also showed that two hydroxyl metabolites M1 and M2 biotransformed from TSAHC are mainly mediated by CYP2C and CYP3A, respectively. These findings suggest that CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 isoforms are major enzymes contributing to TSAHC metabolism. PMID:26330107

  6. Pharmacophore modeling of cytochromes P450.

    PubMed

    de Groot, Marcel J; Ekins, Sean

    2002-03-31

    Understanding the binding of ligands in the active site of a membrane-bound protein is difficult in the absence of a crystal structure. When these proteins are the enzymes involved in drug metabolism, it leaves little option but to use site-directed mutagenesis and in vitro studies to provide critical information relating to determinants of binding affinity. Pharmacophore models and three-dimensional quantitative structure-activity relationships have been used either alone or in combination with protein homology models to provide this information for cytochrome P450s. At present, their application has been directed to the major enzymes but this may escalate in future as more in vitro data are generated for other P450s. The following review outlines the methodologies and models as well as future prospects for applying these technologies to P450s in the hope that future drugs will be selected with increased metabolic stability and fewer incidences of undesirable drug-drug interactions. PMID:11922953

  7. Differential hepatotoxicity and cytochrome P450 responses of Fischer-344 rats to the three isomers of dichlorobenzene

    SciTech Connect

    Allis, J.W.; Simmons, J.E.; House, D.E.; Robinson, B.L.; Berman, E.

    1992-01-01

    The acute hepatotoxicity and response of hepatic cytochrome P450 to treatment with the three isomers of dichlorobenzene (DCB) have been investigated. The objectives were to estimate the onset of toxicity and to further elucidate the role of cytochrome P450 in the metabolism and toxicity of these compounds. In a study design employing one animal per dose level, Fischer-344 rats were gavaged with up to 25 different dosages, then evaluated 24 h later. Hepatic necrosis, serum alanine aminotransferase, and serum aspartate aminotransferase exhibited similar patterns demonstrating that ortho-DCB (o-DCB) was the most toxic in terms of both earliest onset and degree of response at higher dosages. For these three endpoints, meta-DCB (m-DCB) exhibited a lesser toxicity. Para-DCB (p-DCB) did not cause changes in these three endpoints, but hepatic degenerative changes were found. Total hepatic cytochrome P450 responses were also different after treatment with each isomer. The o-DCB produced a dose-dependent decrease in P450 beginning at dosages lower than the onset of necrosis and appeared to be a suicide substrate for P450. The m-DCB treatment increased P450 at dosages below the onset of necrosis and decreased P450 at higher dosages, with the decline preceding the onset of hepatocyte death.

  8. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s.

    PubMed

    Parvez, Mohammad; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Kgosiemang, Ipeleng Kopano Rosinah; Bamal, Hans Denis; Pagadala, Nataraj Sekhar; Xie, Ting; Yang, Haoran; Chen, Hengye; Theron, Chrispian William; Monyaki, Richie; Raselemane, Seiso Caiphus; Salewe, Vuyani; Mongale, Bogadi Lorato; Matowane, Retshedisitswe Godfrey; Abdalla, Sara Mohamed Hasaan; Booi, Wool Isaac; van Wyk, Mari; Olivier, Dedré; Boucher, Charlotte E; Nelson, David R; Tuszynski, Jack A; Blackburn, Jonathan Michael; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Chen, Wanping; Syed, Khajamohiddin

    2016-01-01

    Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria -42; fungi -19; plant -28; animal -22; plant and animal -1 and common P450 family -1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study's results offer new understanding of the dynamic structural nature of P450s. PMID:27616185

  9. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    SciTech Connect

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W. . Patuxent Wildlife Research Center); Woodin, B.R.; Stegeman, J.J. )

    1993-09-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene or phenobarbital. Compared to controls, 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p[prime]-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP1B) were significantly associated with total PCB burdens.

  10. UNDERSTANDING THE MECHANISM OF CYTOCHROME P450 3A4: RECENT ADVANCES AND REMAINING PROBLEMS

    PubMed Central

    Sevrioukova, Irina F.; Poulos, Thomas L.

    2013-01-01

    Cytochromes P450 (CYPs) represent a diverse group of heme-thiolate proteins found in almost all organisms. CYPs share a common protein fold but differ in substrate selectivity and catalyze a wide variety of monooxygenation reactions via activation of molecular oxygen. Among 57 human P450s, the 3A4 isoform (CYP3A4) is the most abundant and the most important because it metabolizes the majority of the administered drugs. A remarkable feature of CYP3A4 is its extreme promiscuity in substrate specificity and cooperative substrate binding, which often leads to undesirable drug-drug interactions and toxic side effects. Owing to its importance in drug development and therapy, CYP3A4 has been the most extensively studied mammalian P450. In this review we provide an overview on recent progress and remaining problems in the CYP3A4 research. PMID:23018626

  11. P450monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium

    PubMed Central

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-01-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system (LDS), mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosporium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed. PMID:22624627

  12. Aldehyde Reduction by Cytochrome P450

    PubMed Central

    Amunom, Immaculate; Srivastava, Sanjay; Prough, Russell A.

    2011-01-01

    This protocol describes the procedure for measuring the relative rates of metabolism of the α,β-unsaturated aldehydes, 9-anthracene aldehyde (9-AA) and 4-hydroxy-trans-2-nonenal (4-HNE); specifically the aldehyde reduction reactions of cytochrome P450s (CYPs). These assays can be performed using either liver microsomal or other tissue fractions, spherosome preparations of recombinant CYPs, or recombinant CYPs from other sources. The method used here to study the reduction of a model α,β-unsaturated aldehyde, 9-AA, by CYPs was adapted from the assay used to investigate 9-anthracene oxidation as reported by Marini et al. (Marini et al., 2003). For experiments measuring reduction of the endogenous aldehyde, 4-HNE, the substrate was incubated with CYP in the presence of oxygen and NADPH and the metabolites were separated by High Pressure Liquid Chromatograpy (HPLC), using an adaptation of the method of Srivastava et al. (Srivastava et al., 2010). For study of 9-AA and 4-HNE reduction, the first step involves incubation of the substrate with the CYP in appropriate media, followed by quantification of metabolites through either spectrofluorimetry or analysis by HPLC coupled with a radiometric assay, respectively. Metabolite identification can be achieved by HPLC GC-mass spectrometric analysis. Inhibitors of cytochrome P450 function can be utilized to show the role of the hemoprotein or other enzymes in these reduction reactions. The reduction reactions for CYP’s were not inhibited by either anaerobiosis or inclusion of CO in the gaseous phase of the reaction mixture. These character of these reactions are similar to those reported for some cytochrome P450-catalyzed azo reduction reactions. PMID:21553396

  13. Soft-hydrothermal processing of red cedar bedding reduces its induction of cytochrome P450 in mouse liver.

    PubMed

    Li, Z; Okano, S; Yoshinari, K; Miyamoto, T; Yamazoe, Y; Shinya, K; Ioku, K; Kasai, N

    2009-04-01

    Red cedar-derived bedding materials cause changes in cytochrome P450-dependent microsomal enzyme systems in laboratory animals. We examined the effect of essential oil of red cedar (EORC), as well as the effect of bedding from which it had been removed, on the hepatic expression cytochrome P450s in mice. EORC was obtained from liquid extracts of red cedar bedding by a soft-hydrothermal process and was administered orally to mice. Between days 1 and 2 after administration, hepatic P450s were significantly induced as follows: CYP3As, 7.1x; CYP1As, 1.6x; CYP2E1, 1.5x; CYP2Cs, 1.6x. A housing study of mice indicated that red cedar bedding increased the levels of these P450s in mouse liver, whereas mice housed in cedar bedding from which EORC had been removed (ST-cedar bedding) showed significantly lower levels of P450s, especially CYP3As, CYP1As and CYP2E1. Soft-hydrothermal processing partially removed many components of EORC. In particular, several volatile sesquiterpenes, naphthalene-derived aromatics and 4,4-dimethyl-13alpha-androst-5-ene were decreased in the ST-cedar bedding, suggesting that these may be responsible for P450 induction. This study demonstrated that the removal of these volatile compounds by soft-hydrothermal processing can decrease the hepatic P450-inducing effect of red cedar bedding. PMID:19116287

  14. Identification of the main human cytochrome P450 enzymes involved in safrole 1'-hydroxylation.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw; Chi, Chin-Wen; Ho, Li-Kang

    2004-08-01

    Safrole is a natural plant constituent, found in sassafras oil and certain other essential oils. The carcinogenicity of safrole is mediated through 1'-hydroxysafrole formation, followed by sulfonation to an unstable sulfate that reacts to form DNA adducts. To identify the main cytochrome P450 (P450) involved in human hepatic safrole 1'-hydroxylation (SOH), we determined the SOH activities of human liver microsomes and Escherichia coli membranes expressing bicistronic human P450s. Human liver (n = 18) microsomal SOH activities were in the range of 3.5-16.9 nmol/min/mg protein with a mean value of 8.7 +/- 0.7 nmol/min/mg protein. In human liver (n = 3) microsomes, the mean K(m) and V(max) values of SOH were 5.7 +/- 1.2 mM and 0.14 +/- 0.03 micromol/min/nmol P450, respectively. The mean intrinsic clearance (V(max)/K(m)) was 25.3 +/- 2.3 microL/min/nmol P450. SOH was sensitive to the inhibition by a CYP2C9 inhibitor, sulfaphenazole, and CYP2E1 inhibitors, 4-methylpyrazole and diethyldithiocarbamate. The liver microsomal SOH activity showed significant correlations with tolbutamide hydroxylation (r = 0.569) and chlorzoxazone hydroxylation (r = 0.770) activities, which were the model reactions catalyzed by CYP2C9 and CYP2E1, respectively. Human CYP2C9 and CYP2E1 showed SOH activities at least 2-fold higher than the other P450s. CYP2E1 showed an intrinsic clearance 3-fold greater than CYP2C9. These results demonstrated that CYP2C9 and CYP2E1 were the main P450s involved in human hepatic SOH. PMID:15310247

  15. Genetics Home Reference: cytochrome P450 oxidoreductase deficiency

    MedlinePlus

    ... P450 oxidoreductase deficiency is a disorder of hormone production. This condition specifically affects steroid hormones, which are ... activity of cytochrome P450 oxidoreductase, which disrupts the production of steroid hormones. Changes in sex hormones such ...

  16. Recent Structural Insights into Cytochrome P450 Function.

    PubMed

    Guengerich, F Peter; Waterman, Michael R; Egli, Martin

    2016-08-01

    Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past 2 years (2014-2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about 'drug-metabolizing' P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction. PMID:27267697

  17. Novel Cytochrome P450 Reaction Phenotyping for Low-Clearance Compounds Using the Hepatocyte Relay Method.

    PubMed

    Yang, Xin; Atkinson, Karen; Di, Li

    2016-03-01

    A novel cytochrome P450 (P450) reaction phenotyping method for low-clearance compounds has been developed for eight P450 enzymes (CYP1A2, 2B6, 2D6, 2C8, 2C9, 2C19, 3A, and 3A4) and pan-cytochrome using the hepatocyte relay approach. Selective mechanism-based inhibitors were used to inactivate the individual P450 enzymes during preincubation, and inactivators were removed from the incubation before adding substrates to minimize reversible inhibition and maximize inhibitor specificity. The inhibitors were quite selective for specific P450 isoforms using the following inhibitor concentrations and preincubation times: furafylline (1 µM, 15 minutes) for CYP1A2, phencyclidine (20 µM, 15 minutes) for 2B6, paroxetine (1.8 µM, 15 minutes) for CYP2D6, gemfibrozil glucuronide (100 µM, 30 minutes) for 2C8, tienilic acid (15 µM, 30 minutes) for 2C9, esomeprazole (8 µM, 15 minutes) for 2C19, troleandomycin (25 µM, 15 minutes) for 3A4/5, CYP3cide (2 µM, 15 minutes) for 3A4, and 1-aminobenzotriazole (1 mM, 30 minutes) supplemented with tienilic acid (15 µM, 30 minutes) for pan-cytochrome. The inhibitors were successfully applied to the hepatocyte relay method in a 48-well format for P450 reaction phenotyping of low-clearance compounds. This novel method provides a new approach for determining the fraction metabolized of low-turnover compounds that are otherwise challenging with the traditional methods, such as chemical inhibitors with human liver microsomes and hepatocytes or human recombinant P450 enzymes. PMID:26700955

  18. QUANTITATIVE EVALUATION OF BROMODICHLOROMETHANE METABOLISM BY RECOMBINANT RAT AND HUMAN CYTOCHROME P450S

    EPA Science Inventory

    ABSTRACT
    We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. BDCM is a drinking water disinfectant byproduct that has been implicated in liver, kidn...

  19. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  20. Structural Diversity of Eukaryotic Membrane Cytochrome P450s*

    PubMed Central

    Johnson, Eric F.; Stout, C. David

    2013-01-01

    X-ray crystal structures are available for 29 eukaryotic microsomal, chloroplast, or mitochondrial cytochrome P450s, including two non-monooxygenase P450s. These structures provide a basis for understanding structure-function relations that underlie their distinct catalytic activities. Moreover, structural plasticity has been characterized for individual P450s that aids in understanding substrate binding in P450s that mediate drug clearance. PMID:23632020

  1. CYTOCHROME P450 REGULATION: THE INTERPLAY BETWEEN ITS HEME AND APOPROTEIN MOIETIES IN SYNTHESIS, ASSEMBLY, REPAIR AND DISPOSAL123

    PubMed Central

    Correia, Maria Almira; Sinclair, Peter R.; De Matteis, Francesco

    2011-01-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair and disposal. These less well-appreciated aspects are reviewed herein. PMID:20860521

  2. Cytochrome P450 expression in oesophageal cancer.

    PubMed Central

    Murray, G I; Shaw, D; Weaver, R J; McKay, J A; Ewen, S W; Melvin, W T; Burke, M D

    1994-01-01

    The cytochrome P450 superfamily of enzymes play a central part in the metabolism of carcinogens and anti-cancer drugs. The expression, cellular localisation, and distribution of different forms of P450 and the functionally associated enzymes epoxide hydrolase and glutathione S-transferases have been investigated in oesophageal cancer and non-neoplastic oesophageal tissue using immunohistochemistry. Expression of the different enzymes was confined to epithelial cells in both non-neoplastic samples and tumour samples except the CYP3A was also identified in mast cells and glutathione S-transferase pi was present in chronic inflammatory cells. CYP1A was present in a small percentage of non-neoplastic samples but both CYP2C and CYP3A were absent. Epoxide hydrolase was present in half of the non-neoplastic samples and the different classes of glutathione S-transferase were present in a low number of samples. In carcinomas CYP1A, CYP3A, epoxide hydrolase, and glutathione S-transferase pi were expressed in at least 60% of samples. The expression of glutathione S-transferases alpha and mu were significantly less in adenocarcinoma compared with squamous carcinoma. Images Figure 1 Figure 2 Figure 3 PMID:8200549

  3. SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism

    PubMed Central

    2010-01-01

    SMARTCyp is an in silico method that predicts the sites of cytochrome P450-mediated metabolism of druglike molecules. The method is foremost a reactivity model, and as such, it shows a preference for predicting sites that are metabolized by the cytochrome P450 3A4 isoform. SMARTCyp predicts the site of metabolism directly from the 2D structure of a molecule, without requiring calculation of electronic properties or generation of 3D structures. This is a major advantage, because it makes SMARTCyp very fast. Other advantages are that experimental data are not a prerequisite to create the model, and it can easily be integrated with other methods to create models for other cytochrome P450 isoforms. Benchmarking tests on a database of 394 3A4 substrates show that SMARTCyp successfully identifies at least one metabolic site in the top two ranked positions 76% of the time. SMARTCyp is available for download at http://www.farma.ku.dk/p450. PMID:24936230

  4. Potential impact of cytochrome P450 3A5 in human liver on drug interactions with triazoles.

    PubMed

    Yamazaki, Hiroshi; Nakamoto, Minako; Shimizu, Makiko; Murayama, Norie; Niwa, Toshiro

    2010-06-01

    Cytochrome P450 3A is the main enzyme subfamily involved in the metabolism of a variety of marketed medicines. It is generally believed that the substrate specificity of polymorphic P450 3A5 is similar to that of the predominant P450 3A4 isoform, although some differences in catalytic properties have been found. It has been hypothesized that individuals with CYP3A5 1 (P450 3A5 expresser) might clear the HIV protease inhibitor saquinavir, administered by mouth, more rapidly than subjects lacking functional CYP3A5 alleles. Enhanced midazolam hydroxylation and cyclosporin metabolism occur in an in vitro P450 3A5 system and in liver microsomes expressing P450 3A5 in the presence of thalidomide. However, inhibition constants (K(i)) of three triazole anti-fungal drugs (itraconazole, fluconazole, and voriconazole) for liver microsomal P450 3A5 are higher than for liver microsomal P450 3A4. To predict drug interactions in vivo, we estimated increases of areas under the curves (AUC) dependent on polymorphic P450 3A5 expression, using both 1 +[Inhibitor] / K(i) (recommended in US FDA guidance), and 1 +[Inhibitor](unbound) / K(i) (as recommended by Japanese MHLW Notice). Voriconazole would be expected to cause approximately a three-fold higher increase in AUC in subjects with CYP3A5 3/3 than in those with CYP3A5 1/3, especially when estimated using the FDA guidance. We conclude that drug interactions between marketed drugs may differ substantially between individuals with genetically distinct P450 3A5 catalytic functions. PMID:20565450

  5. Functional Coupling of ATP-binding Cassette Transporter Abcb6 to Cytochrome P450 Expression and Activity in Liver*

    PubMed Central

    Chavan, Hemantkumar; Li, Feng; Tessman, Robert; Mickey, Kristen; Dorko, Kenneth; Schmitt, Timothy; Kumer, Sean; Gunewardena, Sumedha; Gaikwad, Nilesh; Krishnamurthy, Partha

    2015-01-01

    Although endogenous mechanisms that negatively regulate cytochrome P450 (P450) monooxygenases in response to physiological and pathophysiological signals are not well understood, they are thought to result from alterations in the level of endogenous metabolites, involved in maintaining homeostasis. Here we show that homeostatic changes in hepatic metabolite profile in Abcb6 (mitochondrial ATP-binding cassette transporter B6) deficiency results in suppression of a specific subset of hepatic P450 activity. Abcb6 null mice are more susceptible to pentobarbital-induced sleep and zoxazolamine-induced paralysis, secondary to decreased expression and activity of Cyp3a11 and Cyp2b10. The knock-out mice also show decrease in both basal and xeno-inducible expression and activity of a subset of hepatic P450s that appear to be related to changes in hepatic metabolite profile. These data, together with the observation that liver extracts from Abcb6-deficient mice suppress P450 expression in human primary hepatocytes, suggest that this mouse model may provide an opportunity to understand the physiological signals and the mechanisms involved in negative regulation of P450s. PMID:25623066

  6. Functional coupling of ATP-binding cassette transporter Abcb6 to cytochrome P450 expression and activity in liver.

    PubMed

    Chavan, Hemantkumar; Li, Feng; Tessman, Robert; Mickey, Kristen; Dorko, Kenneth; Schmitt, Timothy; Kumer, Sean; Gunewardena, Sumedha; Gaikwad, Nilesh; Krishnamurthy, Partha

    2015-03-20

    Although endogenous mechanisms that negatively regulate cytochrome P450 (P450) monooxygenases in response to physiological and pathophysiological signals are not well understood, they are thought to result from alterations in the level of endogenous metabolites, involved in maintaining homeostasis. Here we show that homeostatic changes in hepatic metabolite profile in Abcb6 (mitochondrial ATP-binding cassette transporter B6) deficiency results in suppression of a specific subset of hepatic P450 activity. Abcb6 null mice are more susceptible to pentobarbital-induced sleep and zoxazolamine-induced paralysis, secondary to decreased expression and activity of Cyp3a11 and Cyp2b10. The knock-out mice also show decrease in both basal and xeno-inducible expression and activity of a subset of hepatic P450s that appear to be related to changes in hepatic metabolite profile. These data, together with the observation that liver extracts from Abcb6-deficient mice suppress P450 expression in human primary hepatocytes, suggest that this mouse model may provide an opportunity to understand the physiological signals and the mechanisms involved in negative regulation of P450s. PMID:25623066

  7. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of soybean genome sequence allows us to ident...

  8. Flower colour and cytochromes P450

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  9. Model complexes of key intermediates in fungal cytochrome P450 nitric oxide reductase (P450nor).

    PubMed

    McQuarters, Ashley B; Wirgau, Nathaniel E; Lehnert, Nicolai

    2014-04-01

    Denitrifying bacteria and fungi efficiently detoxify the toxic metabolite nitric oxide (NO) through reduction to nitrous oxide (N2O) using nitric oxide reductase (NOR) enzymes. In fungi, for example Fusarium oxysporum, NO is reduced by a Cytochrome P450 NOR (P450nor). This enzyme contains a heme b center coordinated to a proximal cysteinate ligand in the active site. In the proposed mechanism of P450nor, the ferric heme binds NO first to form a ferric heme-nitrosyl complex, which is subsequently reduced by NAD(P)H to generate a ferrous HNO species as the next key intermediate. Recently, key progress has been made in our understanding of the electronic structures and fundamental reactivity of these important intermediates, using suitable model complexes. In this review, model complexes of ferric heme-nitrosyls with varied axial anionic ligands (such as N-donors, O-donors, and S-donors) are discussed first. Then, the generation and reactivity of ferrous heme-HNO complexes is summarized and related back to the mechanism of P450nor. PMID:24658055

  10. Rational Development of Novel Activity Probes for the Analysis of Human Cytochromes P450.

    PubMed

    Sellars, Jonathan D; Skipsey, Mark; Sadr-Ul-Shaheed; Gravell, Sebastian; Abumansour, Hamza; Kashtl, Ghasaq; Irfan, Jawaria; Khot, Mohamed; Pors, Klaus; Patterson, Laurence H; Sutton, Chris W

    2016-06-01

    The identification and quantification of functional cytochromes P450 (CYPs) in biological samples is proving important for robust analyses of drug efficacy and metabolic disposition. In this study, a novel CYP activity-based probe was rationally designed and synthesised, demonstrating selective binding of CYP isoforms. The dependence of probe binding upon the presence of NADPH permits the selective detection of functionally active CYP. This allows the detection and analysis of these enzymes using biochemical and proteomic methodologies and approaches. PMID:27154431

  11. Evolution of NADPH-cytochrome P450 oxidoreductases (POR) in Apiales - POR 1 is missing.

    PubMed

    Andersen, Trine Bundgaard; Hansen, Niels Bjørn; Laursen, Tomas; Weitzel, Corinna; Simonsen, Henrik Toft

    2016-05-01

    The NADPH-dependent cytochrome P450 oxidoreductase (POR) is the obligate electron donor to eukaryotic microsomal cytochromes P450 enzymes. The number of PORs within plant species is limited to one to four isoforms, with the most common being two PORs per plant. These enzymes provide electrons to a huge number of different cytochromes P450s (from 50 to several hundred within one plant). Within the eudicotyledons, PORs can be divided into two major clades, POR 1 and POR 2. Based on our own sequencing analysis and publicly available data, we have identified 45 PORs from the angiosperm order Apiales. These were subjected to a phylogenetic analysis along with 237 other publicly available (NCBI and oneKP) POR sequences found within the clade Asterids. Here, we show that the order Apiales only harbor members of the POR 2 clade, which are further divided into two distinct subclades. This is in contrast to most other eudicotyledon orders that have both POR 1 and POR 2. This suggests that through gene duplications and one gene deletion, Apiales only contain members of the POR 2 clade. Three POR 2 isoforms from Thapsia garganica L., Apiaceae, were all full-length in an Illumina root transcriptome dataset (available from the SRA at NCBI). All three genes were shown to be functional upon reconstitution into nanodiscs, confirming that none of the isoforms are pseudogenes. PMID:26854662

  12. Pulmonary oxygen toxicity in rats treated with cytochrome P-450 inducers

    SciTech Connect

    Ebel, R.E.; Barlow, R.L.; Gregory, E.M.

    1987-05-01

    Pulmonary oxygen toxicity is assumed to result from damage caused by superoxide (O/sub 2//sup -/) hydrogen peroxide (H/sub 2/O/sub 2/) and/or hydroxyl radical (OH) produced by the partial reduction of molecular oxygen (O/sub 2/). The microsomal cytochrome P-450 (P-450) monooxygenase system is known to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/. They have studied the influence of monooxygenase induction using phenobarbital (PB) and ..beta..-naphthoflavone (..beta..-NF) on O/sub 2/ toxicity in the rat. PB- or ..beta..-NF induce hepatic P-450 but only ..beta..-NF induces pulmonary P-450. Pulmonary microsomes produced O/sub 2//sup -/ and H/sub 2/O/sub 2/ at rates (expressed per mg microsomal protein) which did not vary as a function of pretreatment. Rats were exposed to 100% O/sub 2/ for up to 3 days. After 3 days of O/sub 2/, lung weights were about 50% above controls regardless of pretreatment. The microsomal monooxygenase enzymes (P-450, b/sub 5/ and NADPH P-450 reductase) were quantified in liver and lung. Lung microsomal P-450 was reduced after 3 days of O/sub 2/ exposure regardless of pretreatment. The protective enzymes (catalase, superoxide dismutase (SOD) and glutathione (GSH) peroxidase) and non-protein sulfhydryl groups (NPSH) were also quantified in lung and liver samples. Lung NPSH and GSH peroxidase were increased after 3 days of O/sub 2/ exposure regardless of pretreatment while SOD was increased in controls and PB- but not ..beta..-NF-treated rats. Three of 14 ..beta..-NF-treated rats died during O/sub 2/ exposure while no animals in the control or PB-treated groups died.

  13. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  14. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O- dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black- crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross- reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p'-DDE were detected in embryos from Cat Island. Cytochrome P450- associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  15. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  16. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 GENE FAMILY

    EPA Science Inventory

    The P450ALK gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. tructural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures a...

  17. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  18. Novel approaches to the use of cytochrome P450 activities in wildlife toxicity studies

    SciTech Connect

    VandenBerg, M.; Bosveld, A.T.C.

    1995-12-31

    Many wildlife toxicity studies, e.g. with avian species, use cytochrome P450 activities as markers for biological activities of environmental contaminants. It has been established that induction of CYP1A1 correlates with Ah-receptor mediated toxicity of dioxin-like compounds in many species. In addition, CYP1A1 plays a significant role in bioactivation of polycyclic aromatics. So far very few studies focused on the natural function of P450 isoenzymes in wildlife species. Besides classical hepatic CYP1A(1) associated activities, like EROD and AHH, several new techniques are available to study the activities of various CYP isoenzymes. Caffeine N-demethylation, testosterone and 17ss-estradiol hydroxylation patterns can provide new insights in the physiological function of P450 isoenzymes and the induction of the basal activities by chemicals. So far little interest was given to processes which occur after the DNA-receptor binding, e.g. changes in steroid hormone metabolism and pathways in environmental toxicology. This in spite of the fact that very subtle changes in steroid hormone levels may have significant physiological implications. This presentation will focus on some P450 activities, besides CYP1A(1), which might be important for development and reproduction. Some experimental approaches, limitations and techniques will be discussed which could lead to elucidation of the possible endocrine function of P450s.

  19. Lateral diffusion of cytochrome P-450 in phospholipid bilayers.

    PubMed

    Wu, E S; Yang, C S

    1984-01-01

    The lateral diffusion coefficient (D) of cytochrome P-450 (P-450) has been measured in lipid multibilayers with the method of fluorescence recovery after photobleaching. In the liquid-crystal phase of egg phosphatidylcholine (EPC) and dimyristoylphosphatidylcholine (DMPC), the diffusion of P-450 is fast with D about 2 X 10(-8) cm2/s. In DMPC multibilayers, P-450 diffusion dropped by a factor of 20 near the liquid crystal to gel phase transition region, and D is about 5 X 10(-10) cm2/s in the gel phase. A value of 50 mol % of cholesterol reduced the diffusion of P-450 in the liquid-crystal phase only slightly but enhanced the diffusion of P-450 in the gel phase significantly. In EPC membranes, P-450 diffusion underwent a stepwise drop as the cholesterol contents increased from 20 to 30 mol %. With the assumption of a lateral diffusion mediated electron transfer between P-450 and NADPH-P-450 reductase and with D = 2.5 X 10(-8) cm2/s for both enzymes, the reduction rate for P-450 in liposomes was calculated and compared with the reported experimental value. PMID:6691964

  20. Engineering Cytochrome P450 Biocatalysts for Biotechnology, Medicine, and Bioremediation

    PubMed Central

    Kumar, Santosh

    2009-01-01

    Importance of the field: Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: 1) synthesis of novel drugs and drug metabolites, 2) targeted cancer gene therapy, 3) biosensor design, and 4) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. Areas covered in this review: In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency, and utilization of alternate oxidants. What the reader will gain: The review will provide a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine, and bioremediation. Take home message: Because of its wide applications, academic and pharmaceutical researchers, environmental scientists, and health care providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts. PMID:20064075

  1. [Cytochrome P450 enzymes and microbial drug development - A review].

    PubMed

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-01

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes. PMID:27382792

  2. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation.

    PubMed

    Park, Sun-Ha; Kim, Dong-Hyun; Kim, Dooil; Kim, Dae-Hwan; Jung, Heung-Chae; Pan, Jae-Gu; Ahn, Taeho; Kim, Donghak; Yun, Chul-Ho

    2010-05-01

    Human cytochrome P450 (P450) enzymes metabolize a variety of endogenous and xenobiotic compounds, including steroids, drugs, and environmental chemicals. In this study, we examine the possibility that bacterial P450 BM3 (CYP102A1) mutants with indole oxidation activity have the catalytic activities of human P450 enzymes. Error-prone polymerase chain reaction was carried out on the heme domain-coding region of the wild-type gene to generate a CYP102A1 DNA library. The library was transformed into Escherichia coli for expression of the P450 mutants. A colorimetric colony-based method was adopted for primary screening of the mutants. When the P450 activities were measured at the whole-cell level, some of the blue colonies, but not the white colonies, possessed apparent oxidation activity toward coumarin and 7-ethoxycoumarin, which are typical human P450 substrates that produce fluorescent products. Coumarin is oxidized by the CYP102A1 mutants to produce two metabolites, 7-hydroxycoumarin and 3-hydroxycoumarin. In addition, 7-ethoxycoumarin is simultaneously oxidized to 7-hydroxycoumarin by O-deethylation reaction and to 3-hydroxy,7-ethoxycoumarin by 3-hydroxylation reactions. Highly active mutants are also able to metabolize several other human P450 substrates, including phenacetin, ethoxyresorufin, and chlorzoxazone. These results indicate that indigo formation provides a simple assay for identifying CYP102A1 mutants with a greater potential for human P450 activity. Furthermore, our computational findings suggest a correlation between the stabilization of the binding site and the catalytic efficiency of CYP102A1 mutants toward coumarin: the more stable the structure in the binding site, the lower the energy barrier and the higher the catalytic efficiency. PMID:20100815

  3. Monoclonal antibody-directed radioimmunoassay of specific cytochromes P-450

    SciTech Connect

    Song, B.J.; Fujino, T.; Park, S.S.; Friedman, F.K.; Gelboin, H.V.

    1984-02-10

    A rapid solid phase radioimmunoassay (RIA) for cytochromes P-450 has been developed utilizing specific monoclonal antibodies to major forms of rat liver cytochrome P-450 that are induced by 3-methylcholanthrene (MC-P-450) and phenobarbital (PB-P-450). Monoclonal antibodies (MAbs) that were endogenously labeled with (/sup 35/S)methionine were used to detect MAb-specific cytochromes P-450 in liver microsomes from untreated rats and rats pretreated with 3-methylcholanthrene (MC) or phenobarbital. The competitive binding assays are rapid and can detect cytochrome P-450 in less than 100 ng of microsomal protein. Tthe RIA was used to examine the distribution of MAb-specific cytochromes P-450 in extrahepatic tissues of MC-treated rats; an approximately 30- to 50-fold greater amount of MC-P-450 in liver relative to lung and kidney was observed, which corresponds well with aryl hydrocarbon hydroxylase activity in these tissues. The inducibility of MAb-specific cytochromes P-450 were observed in MC-treated rats, guinea pigs, and C57BL/6 mice, all highly inducible for aryl hydrocarbon hydroxylase; little increase was observed for the relatively noninducible DBA/2 mouse strain.

  4. Cytochrome P450 responses and PCB congeners in pipping heron embryos from Virginia, the Great Lakes and San Francisco Bay

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.; Woodin, Bruce R.; Stegeman, John J.

    1992-01-01

    Pipping black-crowned night-heron (Nvcticorax nvcticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge VA; CNWR) and industrialized (Cat Island, Green Bay WI and San Francisco Bay, CA; SFB) locations. Hepatic monooxygenases (AHH, EROD, BROD, ECOD) were induced up to 100-fold, and were correlated (r=0.50 to 0.72) with total PCB burdens (N =61 embryos). A subset of 30 embryos have now been analyzed by GC/MS for 12 AHH-active PCB congeners and by Western blot for cytochromes P450lA and P450llB. At Cat Island, concentrations of 8 congeners were greater (P <0.05) than at CNWR. P450lA and P450llB were detected in 44% and 100% of the Cat Island embryos compared to 8% and 33% of the CNWR + SFB embryos. Cytochrome P450 parameters were correlated with the total PCBs (r =0.44 to 0.67) and with at least 9 PCB congeners (r =0.39 to 0.77). Since P450 responses might be affected by other contaminants, sample extract potency in the H411E rat hepatoma bioassay is being determined to study relationships among dioxin equivalents and cytochrome P450 parameters.

  5. Canine cytochrome P450 (CYP) pharmacogenetics

    PubMed Central

    Court, Michael H.

    2013-01-01

    Synopsis The cytochrome P450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences. Canine CYP1A2, which metabolizes phenacetin, caffeine, and theophylline, is the most widely studied polymorphic canine CYP. A single nucleotide polymorphism resulting in a CYP1A2 premature stop codon (c.1117C>T; R383X) with a complete lack of enzyme is highly prevalent in certain dog breeds including Beagle and Irish wolfhound. This polymorphism was shown to substantially affect the pharmacokinetics of several experimental compounds in Beagles during preclinical drug development. However, the impact on the pharmacokinetics of phenacetin (a substrate specific for human CYP1A2) was quite modest probably because other canine CYPs are capable of metabolizing phenacetin. Other canine CYPs with known genetic polymorphisms include CYP2C41 (gene deletion), as well as CYP2D15, CYP2E1, and CYP3A12 (coding SNPs). However the impact of these variants on drug metabolism in vitro or on drug pharmacokinetics is unknown. Future systematic investigations are needed to comprehensively identify CYP genetic polymorphisms that are predictive of drug effects in canine patients. PMID:23890236

  6. Hepatic expression patterns of aryl hydrocarbon receptor, pregnane X receptor, two cytochrome P450s and five phase II metabolism genes responsive to 17alpha-methyltestosterone in rare minnow Gobiocypris rarus.

    PubMed

    Gao, Jiancao; Liu, Shaozhen; Zhang, Yingying; Yuan, Cong; Yang, Yanping; Wang, Zaizhao

    2014-05-01

    17Alpha-methyltestosterone (MT), a synthetic androgen, is widely used in aquaculture. Aquatic organisms can receive continuous exposure to residual MT throughout their lives. Aiming to evaluate the effects of MT on genes involved in biotransformation pathway, meanwhile attempting to unravel the MT metabolic pathway at the transcriptional level in fish, here we isolated the cDNAs of previously unreported AHR2, Sult1 st1, Ugt2a1 and Ugt2b6 in rare minnow, and predominantly investigated the hepatic transcriptional patterns of AHR2, PXR and five biotransformation genes after MT exposure in both genders adult rare minnow Gobiocypris rarus. The present findings suggest that AHR2 and PXR should play important roles in regulating biotransformation enzymes related to MT catabolism, moreover, CYP1A, CYP3A, SULT1 ST4, SULT1 ST6 and UGT2A1 may play certain roles in catabolism of MT in adult G. rarus. Additionally, UGT2A1 may make greater contribution than SULT1 ST4 and SULT1 ST6 in MT catabolism in males. PMID:24814259

  7. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex. PMID:17014964

  8. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium.

    PubMed

    Kasai, Noriyuki; Ikushiro, Shinichi; Hirosue, Shinji; Arisawa, Akira; Ichinose, Hirofumi; Uchida, Yujirou; Wariishi, Hiroyuki; Ohta, Miho; Sakaki, Toshiyuki

    2010-01-01

    We cloned full-length cDNAs of 130 cytochrome P450s (P450s) derived from Phanerochaete chrysosporium and successfully expressed 70 isoforms in Saccharomyces cerevisiae. To elucidate substrate specificity of P. chrysosporium P450s, we examined various substrates including steroid hormones, several drugs, flavonoids and polycyclic aromatic hydrocarbons using the recombinant S. cerevisiae cells. Of these P450s, two CYPs designated as PcCYP50c and PcCYP142c with 14% identity in their amino acid sequences catalyse 3'-hydroxylation of flavone and O-deethylation of 7-ethoxycoumarin. Kinetic data of both enzymes on both reactions fitted not to the Michaelis-Menten equation but to Hill's equation with a coefficient of 2, suggesting that two substrates bind to the active site. Molecular modelling of PcCYP50c and a docking study of flavone to its active site supported this hypothesis. The enzymatic properties of PcCYP50c and PcCYP142c resemble mammalian drug-metabolizing P450s, suggesting that their physiological roles are metabolism of xenobiotics. It is noted that these unique P. chrysosporium P450s have a potential for the production of useful flavonoids. PMID:19819902

  9. A Cytochrome P450–Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes

    PubMed Central

    Miyakawa, Kazuhisa; Albee, Ryan; Letzig, Lynda G.; Lehner, Andreas F.; Scott, Michael A.; Buchweitz, John P.; James, Laura P.; Ganey, Patricia E.

    2015-01-01

    Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0–14 mM), but eliminated cytotoxicity only at small concentrations (≦5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ≦ 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies. PMID:26065700

  10. Epoxidation Activities of Human Cytochromes P450c17 and P450c21

    PubMed Central

    2015-01-01

    Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon–carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis. We reasoned that human P450c17 (steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates progesterone, might catalyze the formation of the 16α,17-epoxide from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1 catalyzed the novel 16α,17-epoxidation and the ordinarily minor 21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1 mutation A105L, which has reduced progesterone 16α-hydroxylase activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted 16,17-dehydroprogesterone to the 21-hydroxylated product and only a trace of epoxide. CYP21A2 mutation V359A, which has significant 16α-hydroxylase activity, likewise afforded the 21-hydroxylated product and slightly more epoxide. CYP17A1 wild-type and mutation A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes 21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone (pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively. Catalase and superoxide dismutase did not prevent epoxide formation. The progesterone epoxide was not a time-dependent, irreversible CYP17A1 inhibitor. Our substrate modification studies have revealed occult epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction of epoxide formed correlated with the 16α-hydroxylase activity of the enzymes. PMID:25386927

  11. Oxidation of nonionic detergents by cytochrome P450 enzymes.

    PubMed

    Hosea, N A; Guengerich, F P

    1998-05-15

    Nonionic phenolic detergents are commonly used in the purification of membrane-associated proteins. Triton N-101 was shown to be oxidized by NADPH-fortified human liver microsomes and recombinant human cytochromes P450 (P450). Oxidation was monitored using HPLC and the fluorescence properties of Triton N-101 and other alkylphenol ethoxylate detergents, which are similar to those of anisole. Human liver microsomes and recombinantly expressed reconstituted P450 3A4-oxidized Triton N-101 in a concentration-dependent manner which could be inhibited by ketoconazole, a P450 3A4-selective inhibitor. Triton N-101 inhibition of testosterone oxidation by human liver microsomes was of a mixed nature but mainly non-competitive. Electrospray ionization mass spectrometry and tandem mass spectrometry indicated that the major product formed was hydroxylated on the alkyl moiety. Human liver microsomes also oxidized other Tritons (X-100 and X-114), Emulgens 911 and 913, and Tergitol NP-10 to a similar extent. P450s 1A1, 1A2, and 2C9 also oxidized Triton N-101 but to a lesser extent than P450 3A4. We conclude that Triton N-101 and similar nonionic detergents are oxidized by P450 3A4 and some other P450s. PMID:9606971

  12. Compound I reactivity defines alkene oxidation selectivity in cytochrome P450cam.

    PubMed

    Lonsdale, Richard; Harvey, Jeremy N; Mulholland, Adrian J

    2010-01-21

    Prediction of the chemoselectivity of drug oxidation by the human cytochrome P450 enzymes will aid in the avoidance of adverse drug reactions. The chemoselectivity of alkene oxidation is an important problem to address, as it can result in the formation of epoxides, which can have toxic effects. In this paper the epoxidation and hydroxylation of cyclohexene and propene by the bacterial P450(cam) isoform are modeled with hybrid quantum mechanical/molecular mechanical (QM/MM) methods. Snapshots for QM/MM modeling are chosen from molecular dynamics trajectories, to sample the different conformations of the enzyme-substrate complex. The energy barriers obtained for these processes are in qualitative agreement with experimental work, supporting the use of QM/MM methods in the study of selectivity for this class of enzyme. This work highlights the complexity involved in modeling these systems with QM/MM and the importance in the selection of starting geometries. PMID:20014756

  13. Rearrangement Reactions Catalyzed by Cytochrome P450s

    PubMed Central

    Ortiz de Montellano, Paul R.; Nelson, Sidney D.

    2010-01-01

    Cytochrome P450s promote a variety of rearrangement reactions both as a consequence of the nature of the radical and other intermediates generated during catalysis, and of the neighboring structures in the substrate that can interact either with the initial radical intermediates or with further downstream products of the reactions. This article will review several kinds of previously published cytochrome P450-catalyzed rearrangement reactions, including changes in stereochemistry, radical clock reactions, allylic rearrangements, “NIH” and related shifts, ring contractions and expansions, and cyclizations that result from neighboring group interactions. Although most of these reactions can be carried out by many members of the cytochrome P450 superfamily, some have only been observed with select P450s, including some reactions that are catalyzed by specific endoperoxidases and cytochrome P450s found in plants. PMID:20971058

  14. Participation of P450-dependent oxidation of isoniazid in isonicotinic acid formation in rat liver.

    PubMed

    Ono, Y; Wu, X; Noda, A; Noda, H; Yoshitani, T

    1998-04-01

    By determining the formation amount of isonicotinic acid (INA) from isonicotinic acid hydrazide (isoniazid:INH) in isolated rat hepatocytes, we were able to identify the involvement of the oxidative cleavage of the acid hydrazide. INA formation from INH increased significantly using the isolated hepatocytes prepared from rats pretreated with phenobarbital (PB), 3-methylcholanthrene (3MC), dexamethazone (DEX) and rifampicin (RIF), respectively, in comparison to the control group. On the other hand, a remarkable decrease in INA formation from INH was observed by the addition of such P450 inhibitor as metyrapone or cimetidine as well as an amidase inhibitor bis(p-nitrophenyl)phosphate (BNPP) to the isolated hepatocytes prepared from PB-pretreated rats. By further experiments using rat hepatic microsomes, the oxidative pathway of INA formation in INH metabolism was determined to be P450-dependent, since NADPH and oxygen were both essential for the oxidative pathway of INH to INA and the amount of INA formation was also significantly increased by P450 inducers. Regarding acetylisoniazid (AcINH) and isonicotinic acid amide (INAA), however, INA formation by P450 was little observed in the microsomal experiments. PMID:9586587

  15. ISOLATION OF THE ALKANE INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a gtll library. solation of the gene has been identified on the basis of its inducibility and partial DNA sequence. ranscripts of this gene were indu...

  16. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  17. Regulation of cytochrome P-450 monooxygenases in the mouse

    SciTech Connect

    Kelley, M.F.

    1986-01-01

    Recently, the compound 1,4-bis(2-(3,4-dichloropyridyloxy)) benzene (TCPOBOP) has been identified as a highly potent phenobabital-like agonist in mice. This finding has led to the suggestion that a receptor-mediated process may govern the induction of cytochrome P-450 monooxygenases by phenobarbital and phenobarbital-like agonists. This dissertation examines: (1) the effects of structural alterations of the TCPOBOP molecule on enzyme induction activity, (2) the induction response to phenobarbital and TCPOBOP among inbred mouse strains, (3) the spectrum of monooxygenase activities induced by phenobarbital and TCPOBOP compared to 3-methylcholanthrene, isosafrole and pregnenolone 16..cap alpha..-carbonitrile (PCN) and (4) the binding of (/sup 3/H) TCPOBOP in hepatic cytosol. Changes in the structure of the pyridyloxy or benzene rings markedly affect enzyme induction activity and provide additional indirect evidence for a receptor-mediated response. An evaluation of monooxygenase induction by TCPOBOP for 27 inbred mouse strains and by phenobarbital for 15 inbred mouse strains failed to identify a strain which was completely nonresponsive to these compounds, although several strains exhibited decreased responsiveness for select monooxygenase reactions. TCPOBOP, PCN and phenobarbital were all found to significantly increase the rate of hydroxylation of testosterone at the 2..cap alpha..-, 6..beta..- and 15..beta..- positions but only TCPOBOP and phenobarbital dramatically increased the rate of pentoxyresorufin O-dealkylation. The results demonstrates that TCPOBOP most closely resembles phenobarbital in its mode of monooxygenase induction in mice. Sucrose density gradient analysis of (/sup 3/H) TCPOBOP-hepatic cytosol incubations failed to identify specific, saturable binding of (/sup 3/H) TCPOBOP to cytosolic marcomolecular elements.

  18. Characterization of human cytochrome P450s involved in the bioactivation of tri-ortho-cresyl phosphate (ToCP).

    PubMed

    Reinen, Jelle; Nematollahi, Leyla; Fidder, Alex; Vermeulen, Nico P E; Noort, Daan; Commandeur, Jan N M

    2015-04-20

    Tri-ortho-cresyl phosphate (ToCP) is a multipurpose organophosphorus compound that is neurotoxic and suspected to be involved in aerotoxic syndrome in humans. It has been reported that not ToCP itself but a metabolite of ToCP, namely, 2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one (CBDP), may be responsible for this effect as it can irreversibly bind to human butyrylcholinesterase (BuChE) and human acetylcholinesterase (AChE). The bioactivation of ToCP into CBDP involves Cytochrome P450s (P450s). However, the individual human P450s responsible for this bioactivation have not been identified yet. In the present study, we aimed to investigate the metabolism of ToCP by different P450s and to determine the inhibitory effect of the in vitro generated ToCP-metabolites on human BuChE and AChE. Human liver microsomes, rat liver microsomes, and recombinant human P450s were used for that purpose. The recombinant P450s 2B6, 2C18, 2D6, 3A4 and 3A5 showed highest activity of ToCP-bioactivation to BuChE-inhibitory metabolites. Inhibition experiments using pooled human liver microsomes indicated that P450 3A4 and 3A5 were mainly involved in human hepatic bioactivation of ToCP. In addition, these experiments indicated a minor role for P450 1A2. Formation of CBDP by in-house expressed recombinant human P450s 1A2 and 3A4 was proven by both LC-MS and GC-MS analysis. When ToCP was incubated with P450 1A2 and 3A4 in the presence of human BuChE, CBDP-BuChE-adducts were detected by LC-MS/MS which were not present in the corresponding control incubations. These results confirmed the role of human P450s 1A2 and 3A4 in ToCP metabolism and demonstrated that CBDP is the metabolite responsible for the BuChE inactivation. Interindividual differences at the level of P450 1A2 and 3A4 might play an important role in the susceptibility of humans in developing neurotoxic effects, such as aerotoxic syndrome, after exposure to ToCP. PMID:25706813

  19. Cytochrome P450 and Non-Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics.

    PubMed

    Foti, Robert S; Dalvie, Deepak K

    2016-08-01

    The drug-metabolizing enzymes that contribute to the metabolism or bioactivation of a drug play a crucial role in defining the absorption, distribution, metabolism, and excretion properties of that drug. Although the overall effect of the cytochrome P450 (P450) family of drug-metabolizing enzymes in this capacity cannot be understated, advancements in the field of non-P450-mediated metabolism have garnered increasing attention in recent years. This is perhaps a direct result of our ability to systematically avoid P450 liabilities by introducing chemical moieties that are not susceptible to P450 metabolism but, as a result, may introduce key pharmacophores for other drug-metabolizing enzymes. Furthermore, the effects of both P450 and non-P450 metabolism at a drug's site of therapeutic action have also been subject to increased scrutiny. To this end, this Special Section on Emerging Novel Enzyme Pathways in Drug Metabolism will highlight a number of advancements that have recently been reported. The included articles support the important role of non-P450 enzymes in the clearance pathways of U.S. Food and Drug Administration-approved drugs over the past 10 years. Specific examples will detail recent reports of aldehyde oxidase, flavin-containing monooxygenase, and other non-P450 pathways that contribute to the metabolic, pharmacokinetic, or pharmacodynamic properties of xenobiotic compounds. Collectively, this series of articles provides additional support for the role of non-P450-mediated metabolic pathways that contribute to the absorption, distribution, metabolism, and excretion properties of current xenobiotics. PMID:27298339

  20. Metabolism of bilirubin by human cytochrome P450 2A6

    SciTech Connect

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2

  1. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    SciTech Connect

    Abdulla, Dalya; Goralski, Kerry B.; Renton, Kenneth W. . E-mail: Ken.Renton@dal.ca

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo, an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.

  2. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450.

    PubMed

    Zong, Cai; Garner, C Edwin; Huang, Chinyen; Zhang, Xiao; Zhang, Lingyi; Chang, Jie; Toyokuni, Shinya; Ito, Hidenori; Kato, Masashi; Sakurai, Toshihiro; Ichihara, Sahoko; Ichihara, Gaku

    2016-09-01

    Neurotoxicity of 1-bromopropane (1-BP) has been reported in both human cases and animal studies. To date, neurotoxicity of 1-BP has been induced in rats but not in mice due to the lethal hepatotoxicity of 1-BP. Oxidization by cytochromes P450 and conjugation with glutathione (GSH) are two critical metabolism pathways of 1-BP and play important roles in toxicity of 1-BP. The aim of the present study was to establish a murine model of 1-BP neurotoxicity, by reducing the hepatotoxicity of 1-BP with 1-aminobenzotriazole (1-ABT); a commonly used nonspecific P450s inhibitor. The results showed that subcutaneous or intraperitoneal injection of 1-ABT at 50mg/kg body weight BID (100mg/kg BW/day) for 3days, inhibited about 92-96% of hepatic microsomal CYP2E1 activity, but only inhibited about 62-64% of CYP2E1 activity in brain microsomes. Mice treated with 1-ABT survived even after exposure to 1200ppm 1-BP for 4 weeks and histopathological studies showed that treatment with 1-ABT protected mice from 1-BP-induced hepatic necrosis, hepatocyte degeneration, and hemorrhage. After 4-week exposure to 1-BP, the brain weight of 1-ABT(+)/1200ppm 1-BP group was decreased significantly. In 1-ABT-treated groups, expression of hippocampal Ran protein and cerebral cortical GRP78 was dose-dependently increased by exposure to 1-BP. We conclude that the control of hepatic P450 activity allows the observation of effects of 1-BP on the murine brain at a higher concentration by reduction of hepatotoxicity. The study suggests that further experiments with liver-specific control of P450 activity using gene technology might provide better murine models for 1-bromopropane-induced neurotoxicity. PMID:27421776

  3. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    SciTech Connect

    Zangar, R.C. Pacific Northwest Laboratories, Richland, WA ); Springer, D.L. ); Buhler, D.R. )

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  4. Terpene hydroxylation with microbial cytochrome P450 monooxygenases.

    PubMed

    Janocha, Simon; Schmitz, Daniela; Bernhardt, Rita

    2015-01-01

    Terpenoids comprise a highly diverse group of natural products. In addition to their basic carbon skeleton, they differ from one another in their functional groups. Functional groups attached to the carbon skeleton are the basis of the terpenoids' diverse properties. Further modifications of terpene olefins include the introduction of acyl-, aryl-, or sugar moieties and usually start with oxidations catalyzed by cytochrome P450 monooxygenases (P450s, CYPs). P450s are ubiquitously distributed throughout nature, involved in essential biological pathways such as terpenoid biosynthesis as well as the tailoring of terpenoids and other natural products. Their ability to introduce oxygen into nonactivated C-H bonds is unique and makes P450s very attractive for applications in biotechnology. Especially in the field of terpene oxidation, biotransformation methods emerge as an attractive alternative to classical chemical synthesis. For this reason, microbial P450s depict a highly interesting target for protein engineering approaches in order to increase selectivity and activity, respectively. Microbial P450s have been described to convert industrial and pharmaceutically interesting terpenoids such as ionones, limone, valencene, resin acids, and triterpenes (including steroids) as well as vitamin D3. Highly selective and active mutants have been evolved by applying classical site-directed mutagenesis as well as directed evolution of proteins. As P450s usually depend on electron transfer proteins, mutagenesis has also been applied to improve the interactions between P450s and their respective redox partners. This chapter provides an overview of terpenoid hydroxylation reactions catalyzed by bacterial P450s and highlights the achievements made by protein engineering to establish productive hydroxylation processes. PMID:25682070

  5. Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations.

    PubMed

    Yang, Yi; Li, Zhi

    2015-01-01

    P450pyr monooxygenase from Sphingomonas sp. HXN-200 catalysed the regio- and stereoselective hydroxylation at a non-activated carbon atom, a useful but challenging reaction in classic chemistry, with unique substrate specificity for a number of alicyclic compounds. New P450pyr mutants were developed by directed evolution with improved catalytic performance, thus significantly extending the application of the P450pyr monooxygenase family in biohydroxylation to prepare useful and valuable chiral alcohols. Directed evolution of P450pyr created new enzymes with improved S-enantioselectivity or R-enantioselectivity for the hydroxylation of N-benzyl pyrrolidine, enhanced regioselectivity for the hydroxylation of N-benzyl pyrrolidinone, and increased enantioselectivity for the hydroxylation of N-benzyl piperidinone, respectively. Directed evolution of P450pyr generated also mutants with fully altered regioselectivity (from terminal to subterminal) and newly created excellent S-enantioselectivity for the biohydroxylation of n-octane and propylbenzene, respectively, providing new opportunities for the regio- and enantioselective alkane functionalization. New P450pyr mutants were engineered as the first catalyst for highly selective terminal hydroxylation of n-butanol to 1,4-butanediol. Several novel, accurate, sensitive, simple, and HTS assays based on colorimetric or MS detection for measuring the enantio- and/or regioselectivity of hydroxylation were developed and proven to be practical in directed evolution. The P450pyr X-ray structure was obtained and used to guide the evolution. In silico modelling and substrate docking provided some insight into the influence of several important amino acid mutations of the engineered P450pyr mutants on the altered or enhanced regio- and enantioselectivity as well as new substrate acceptance. The obtained information and knowledge is useful for further engineering of P450pyr for other hydroxylations and oxidations. PMID:26507217

  6. Cytochrome P450: taming a wild type enzyme

    PubMed Central

    Jung, Sang Taek; Lauchli, Ryan; Arnold, Frances H

    2011-01-01

    Protein engineering of cytochrome P450 monooxygenases (P450s) has been very successful in generating valuable non-natural activities and properties, allowing these powerful catalysts to be used for the synthesis of drug metabolites and in biosynthetic pathways for the production of precursors of artemisinin and paclitaxel. Collected experience indicates that the P450s are highly 'evolvable'--they are particularly robust to mutation in their active sites and readily accept new substrates and exhibit new selectivities. Their ability to adapt to new challenges upon mutation may reflect the nonpolar nature of their active sites as well as their high degree of conformational variability. PMID:21411308

  7. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s

    PubMed Central

    Nelson, David R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution. PMID:23297357

  8. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus

    PubMed Central

    Dostalek, Miroslav; Court, Michael H; Yan, Bingfang; Akhlaghi, Fatemeh

    2011-01-01

    BACKGROUND AND PURPOSE Patients with diabetes mellitus require pharmacotherapy with numerous medications. However, the effect of diabetes on drug biotransformation is not well understood. Our goal was to investigate the effect of diabetes on liver cytochrome P450 3As, the most abundant phase I drug-metabolizing enzymes in humans. EXPERIMENTAL APPROACH Human liver microsomal fractions (HLMs) were prepared from diabetic (n = 12) and demographically matched nondiabetic (n = 12) donors, genotyped for CYP3A4*1B and CYP3A5*3 polymorphisms. Cytochrome P450 3A4, 3A5 and 2E1 mRNA expression, protein level and enzymatic activity were compared between the two groups. KEY RESULTS Midazolam 1′- or 4-hydroxylation and testosterone 6β-hydroxylation, catalyzed by P450 3A, were markedly reduced in diabetic HLMs, irrespective of genotype. Significantly lower P450 3A4 protein and comparable mRNA levels were observed in diabetic HLMs. In contrast, neither P450 3A5 protein level nor mRNA expression differed significantly between the two groups. Concurrently, we have observed increased P450 2E1 protein level and higher chlorzoxazone 6-hydroxylation activity in diabetic HLMs. CONCLUSIONS AND IMPLICATIONS These studies indicate that diabetes is associated with a significant decrease in hepatic P450 3A4 enzymatic activity and protein level. This finding could be clinically relevant for diabetic patients who have additional comorbidities and are receiving multiple medications. To further characterize the effect of diabetes on P450 3A4 activity, a well-controlled clinical study in diabetic patients is warranted. PMID:21323901

  9. Immunochemical evidence for an ethanol-inducible form of liver microsomal cytochrome P-450 in rodents and primates

    SciTech Connect

    Lasker, J.M.; Ardies, C.M.; Bloswick, B.P.; Lieber, C.S.

    1986-05-01

    Polyclonal antibodies against cytochrome P-450-4, a major liver microsomal P-450 isozyme purified from ethanol (E)-treated hamsters, were used to probe for immunochemically-related hemeproteins in other species. Liver microsomes (LM) were obtained from naive and E-treated rats, deermice, hamsters, and baboons. Baboon liver 9000 x g supernatant (S-9) was prepared from needle biopsy samples. LM and S-9 proteins were resolved by SDS-PAGE, then transferred to nylon membranes. Immunodetection was performed on the Western blots using rabbit anti P-450-4 IgG, anti-rabbit IgG-alk. phos., and an appropriate chromagen. Control LM from all species contained a cross-reacting protein of mol. wt. similar to P-450-4 (54k). The amount of this cross-reacting protein as reflected by staining intensity, was much higher in LM from E-treated animals. This protein was also detected in S-9 from E-treated baboons. In contrast, no increase in phenobarbital-inducible P-450-2 related LM protein (assessed using anti P-450-2) was observed after E treatment. Increased P-450-4 related protein in LM from E-treated animals was associated with enhanced oxidation of ethanol and aniline by these LM when compared to controls. In conclusion, LM from rats, deermice, and baboons contain a protein immunochemically homologous to hamster liver P-450-4. As observed in hamsters, the amount of this hepatic protein increases in these other species after E treatment.

  10. Induction of cytochrome P450 1A1 and monooxygenase activity in Tilapia by sediment extract

    SciTech Connect

    Ueng, Y.F.; Ueng, T.H.; Liu, T.Y.

    1995-01-01

    Cytochrome P450 (P450)-dependent monooxygenases of fishes are inducible by a variety of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Induction of fish monoxygenases may serve as a biological monitor for PAH- and PCB-types of environmental chemicals. Many studies have demonstrated environmental induction of fish monooxygenases using various experimental approaches. However, relatively few studies have been conducted using fish treated with contaminated river sediment extracts. Damsui River is the largest river in the north of Taiwan. The lower section of the river in the Taipei Metropolitan area is heavily polluted by industrial and municipal wastes. Tilapia (Oreochromis mossambicus) is one of the few species of fish that occur in the polluted river. Previous field studies showed that the levels of P450 1A1, benzo(a)pyrene hydroxylase and 7-ethoxyresorufin O-deethylase activities in tilapia collected at Fu-Ho Bridge, a polluted section of Damsui River, were higher than respective levels in fish collected from an unpolluted section. These results suggested that tilapia caught at the polluted site were exposed to substances similar in action to PAHs and PCBs, because these chemical pollutants are potent inducers of P450 1A1. PAHs and PCBs are persistent compounds that can accumulate in sediment. Tilapia are occasionally associated with the bottom and could ingest chemically contaminated sediment. In the present study, we determined the induction properties of monooxygenases using tilapia treated with extract of sediment collected from a polluted section of Damsui River. The present study demonstrates that Damsui River sediment extract has the ability to induce hepatic P450 1A1 and dependent monooxygenase activities in tilapia. 17 refs., 2 figs., 2 tabs.

  11. Cytochrome P-450 from the Mesocarp of Avocado (Persea americana)

    PubMed Central

    O'Keefe, Daniel P.; Leto, Kenneth J.

    1989-01-01

    The microsomal fraction from the mesocarp of avocado (Persea americana) is one of few identified rich sources of plant cytochrome P-450. Cytochrome P-450 from this tissue has been solubilized and purified. Enzymatic assays (p-chloro-N-methylaniline demethylase) and spectroscopic observations of substrate binding suggest a low spin form of the cytochrome, resembling that in the microsomal membrane, can be recovered. However, this preparation of native protein is a mixture of nearly equal proportions of two cytochrome P-450 polypeptides that have been resolved only under denaturing conditions. Overall similarities between these polypeptides include indistinguishable amino acid compositions, similar trypsin digest patterns, and cross reactivity with the same antibody. The amino terminal sequences of both polypeptides are identical, with the exception that one of them lacks a methionine residue at the amino terminus. This sequence exhibits some similarities with the membrane targeting signal found at the amino terminus of most mammalian cytochromes P-450. Images Figure 3 PMID:16666677

  12. Interactions of Avocado (Persea americana) Cytochrome P-450 with Monoterpenoids

    PubMed Central

    Hallahan, David L.; Nugent, Jonathan H. A.; Hallahan, Beverly J.; Dawson, Glenn W.; Smiley, Diane W.; West, Jevon M.; Wallsgrove, Roger M.

    1992-01-01

    The microsomal fraction of avocado (Persea americana) mesocarp is a rich source of cytochrome P-450 active in the demethylation of xenobiotics. Cytochrome P-450 from this tissue has been purified and well characterized at the molecular level (DP O'Keefe, KJ Leto [1989] Plant Physiol 89: 1141-1149; KR Bozak, H Yu, R Sirevag, RE Christoffersen [1990] Proc Natl Acad Sci USA 87: 3904-3908). Despite this extensive characterization, the role of the enzyme in vivo was not established. Optical and electron paramagnetic resonance binding studies described here suggest that the monoterpenoids, nerol and geraniol, are substrates of avocado cytochrome P-450 (spectral dissociation constant of 7.2 and 35 micromolar, respectively). Avocado microsomes have been shown to catalyze the hydroxylation of these monoterpenoids, and both nerol and geraniol have been shown to inhibit the activity of avocado cytochrome P-450 toward the artificial substrate 7-ethoxycoumarin, with nerol a competitive inhibitor of this activity. PMID:16668790

  13. Interactions among Cytochromes P450 in Microsomal Membranes

    PubMed Central

    Davydov, Dmitri R.; Davydova, Nadezhda Y.; Sineva, Elena V.; Halpert, James R.

    2015-01-01

    The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219–230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species. PMID:25533469

  14. Anthocyanins and their metabolites are weak inhibitors of cytochrome P450 3A4.

    PubMed

    Dreiseitel, Andrea; Schreier, Peter; Oehme, Anett; Locher, Sanja; Hajak, Goeran; Sand, Philipp G

    2008-12-01

    The cytochrome P450 enzyme cytochrome P450 3A4 (CYP3A4) controls the metabolism of about 60% of all drugs, and its inhibition may dramatically affect drug safety. Modulation of cytochrome P450 activity has been observed by constituents of fruit extracts including several flavonoids. The present investigation addresses CYP3A4 inhibition by anthocyanins, their aglycons, proanthocyanidins, and phenolic metabolites using a chemiluminescent assay. Test compounds inhibited CYP3A4 activity in a concentration-dependent manner featuring IC(50) values from 12.2 up to 7,842 microM. In the order of decreasing effect size, anthocyanidins were followed by anthocyanins, proanthocyanidins, and phenolic acids. When compared to earlier data on furanocoumarins from grapefruit extract, the inhibitory activity of tested anthocyanins, and anthocyanidins was shown to be about 10,000-fold weaker, and was negligible for phenolic acids (>100 000-fold weaker). Future studies are invited to address effects of the above flavonoids on other CYP isoforms for more detailed toxicity profiles. PMID:18727015

  15. Unusual properties of the cytochrome P450 superfamily

    PubMed Central

    Lamb, David C.; Waterman, Michael R.

    2013-01-01

    During the early years of cytochrome P450 research, a picture of conserved properties arose from studies of mammalian forms of these monooxygenases. They included the protohaem prosthetic group, the cysteine residue that coordinates to the haem iron and the reduced CO difference spectrum. Alternatively, the most variable feature of P450s was the enzymatic activities, which led to the conclusion that there are a large number of these enzymes, most of which have yet to be discovered. More recently, studies of these enzymes in other eukaryotes and in prokaryotes have led to the discovery of unexpected P450 properties. Many are variations of the original properties, whereas others are difficult to explain because of their unique nature relative to the rest of the known members of the superfamily. These novel properties expand our appreciation of the broad view of P450 structure and function, and generate curiosity concerning the evolution of P450s. In some cases, structural properties, previously not found in P450s, can lead to enzymatic activities impacting the biological function of organisms containing these enzymes; whereas, in other cases, the biological reason for the variations are not easily understood. Herein, we present particularly interesting examples in detail rather than cataloguing them all. PMID:23297356

  16. Enhanced expression of cytochrome P450 in stomach cancer.

    PubMed Central

    Murray, G. I.; Taylor, M. C.; Burke, M. D.; Melvin, W. T.

    1998-01-01

    The cytochromes P450 have a central role in the oxidative activation and detoxification of a wide range of xenobiotics, including many carcinogens and several anti-cancer drugs. Thus the cytochrome P450 enzyme system has important roles in both tumour development and influencing the response of tumours to chemotherapy. Stomach cancer is one of the commonest tumours of the alimentary tract and environmental factors, including dietary factors, have been implicated in the development of this tumour. This type of tumour has a poor prognosis and responds poorly to current therapies. In this study, the presence and cellular localization of several major forms of P450, CYP1A, CYP2E1 and CYP3A have been investigated in stomach cancer and compared with their expression in normal stomach. There was enhanced expression of CYP1A and CYP3A in stomach cancer with CYP1A present in 51% and CYP3A present in 28% of cases. In contrast, no P450 was identified in normal stomach. The presence of CYP1A and CYP3A in stomach cancer provides further evidence for the enhanced expression of specific forms of cytochrome P450 in tumours and may be important therapeutically for the development of anti-cancer drugs that are activated by these forms of P450. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9569036

  17. Interindividual Variability in Cytochrome P450-Mediated Drug Metabolism.

    PubMed

    Tracy, Timothy S; Chaudhry, Amarjit S; Prasad, Bhagwat; Thummel, Kenneth E; Schuetz, Erin G; Zhong, Xiao-Bo; Tien, Yun-Chen; Jeong, Hyunyoung; Pan, Xian; Shireman, Laura M; Tay-Sontheimer, Jessica; Lin, Yvonne S

    2016-03-01

    The cytochrome P450 (P450) enzymes are the predominant enzyme system involved in human drug metabolism. Alterations in the expression and/or activity of these enzymes result in changes in pharmacokinetics (and consequently the pharmacodynamics) of drugs that are metabolized by this set of enzymes. Apart from changes in activity as a result of drug-drug interactions (by P450 induction or inhibition), the P450 enzymes can exhibit substantial interindividual variation in basal expression and/or activity, leading to differences in the rates of drug elimination and response. This interindividual variation can result from a myriad of factors, including genetic variation in the promoter or coding regions, variation in transcriptional regulators, alterations in microRNA that affect P450 expression, and ontogenic changes due to exposure to xenobiotics during the developmental and early postnatal periods. Other than administering a probe drug or cocktail of drugs to obtain the phenotype or conducting a genetic analysis to determine genotype, methods to determine interindividual variation are limited. Phenotyping via a probe drug requires exposure to a xenobiotic, and genotyping is not always well correlated with phenotype, making both methodologies less than ideal. This article describes recent work evaluating the effect of some of these factors on interindividual variation in human P450-mediated metabolism and the potential utility of endogenous probe compounds to assess rates of drug metabolism among individuals. PMID:26681736

  18. Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

    PubMed Central

    Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-01-01

    Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported. PMID:23443101

  19. Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity.

    PubMed

    Gambaro, Sabrina E; Robert, Maria C; Tiribelli, Claudio; Gazzin, Silvia

    2016-02-01

    In the Crigler-Najjar type I syndrome, the genetic absence of efficient hepatic glucuronidation of unconjugated bilirubin (UCB) by the uridine 5'-diphospho-glucuronosyltransferase1A1 (UGT1A1) enzyme produces the rise of UCB level in blood. Its entry to central nervous system could generate toxicity and neurological damage, and even death. In the past years, a compensatory mechanism to liver glucuronidation has been indicated in the hepatic cytochromes P450 enzymes (Cyps) which are able to oxidize bilirubin. Cyps are expressed also in the central nervous system, the target of bilirubin toxicity, thus making them theoretically important to confer a protective activity toward bilirubin accumulation and neurotoxicity. We therefore investigated the functional induction (mRNA, EROD/MROD) and the ability to oxidize bilirubin of Cyp1A1, 1A2, and 2A3 in primary astrocytes cultures obtained from two rat brain region (cortex: Cx and cerebellum: Cll). We observed that Cyp1A1 was the Cyp isoform more easily induced by beta-naphtoflavone (βNF) in both Cx and Cll astrocytes, but oxidized bilirubin only after uncoupling by 3, 4,3',4'-tetrachlorobiphenyl (TCB). On the contrary, Cyp1A2 was the most active Cyp in bilirubin clearance without uncoupling, but its induction was confined only in Cx cells. Brain Cyp2A3 was not inducible. In conclusion, the exposure of astrocytes to βNF plus TCB significantly enhanced Cyp1A1 mediating bilirubin clearance, improving cell viability in both regions. These results may be a relevant groundwork for the manipulation of brain Cyps as a therapeutic approach in reducing bilirubin-induced neurological damage. PMID:25370011

  20. Para-nitrophenol hydroxylation by fish liver microsomes: kinetics and effect of selective cytochrome P450 inhibitors.

    PubMed

    Zamaratskaia, Galia; Zlabek, Vladimir

    2011-12-01

    The study investigated the kinetics of p-nitrophenol hydroxylase (PNPH) in hepatic microsomes obtained from Atlantic salmon (Salmo salar). The selective inhibitors for some major mammalian cytochrome P450 (CYP450) were used to investigate the potential inhibitory effect on enzymes involved in p-nitrophenol hydroxylation. The following inhibitors were used: α-naphtoflavone (CYP1A), ellipticine (CYP1A1), furafylline (CYP1A2), 8-methoxypsoralen (8MOP, CYP2A6), 4-methylpyrazole (4MP, CYP2A6/2E1), diallyl sulfide (DAS, CYP2E1), and ketoconazole (CYP3A4). Additionally, the natural steroids 17-beta-oestraiol (E2) and testosterone were investigated as potential inhibitors of PNPH activity. It was found that formation of 4-nitrocatechol from p-nitrophenol followed monophasic kinetics with K(m) = 0.17 ± 0.03 mM and V(max) = 21.8 ± 1.05 pmol/min/mg. PNPH activity was competitively inhibited by diallyle sulfide with the K(i) value of 285.1 ± 94.2 μM μM and uncompetitively by ellipticine with K(i) value of 65.7 ± 7.8 μM. Moreover, E2 showed an ability to reduce PNPH activity through the mechanism-based inhibition mode. Our results suggest that hepatic microsomes from Atlantic salmon possess CYP2E1-like activity. However, specific isoform-mediated PNPH activity should be identified. PMID:21559798

  1. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    PubMed Central

    2010-01-01

    Background Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is

  2. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice

    SciTech Connect

    Park, Young Joo; Lee, Eun Kyung; Lee, Yoon Kwang; Park, Do Joon; Jang, Hak Chul; Moore, David D.

    2012-09-01

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR{sup −/−} mice, but not in hypothyroid PXR{sup −/−} mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR{sup −/−} hypothyroid mice, and this induction was abolished in CAR{sup −/−} mice and in and CAR{sup −/−} PXR{sup −/−} double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR{sup −/−} mice and lowest in WT and PXR{sup −/−} mice. Hypothyroid WT or PXR{sup −/−} mice survived chronic CBZ treatment, but all hypothyroid CAR{sup −/−} and CAR{sup −/−} PXR{sup −/−} mice died, with CAR{sup −/−}PXR{sup −/−} mice surviving longer than CAR{sup −/−} mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. -- Highlights: ► Hypothyroid status activates CAR in mice and induces Cyp2b10 expression. ► Hypothyroid status suppresses PXR activity in mice and represses Cyp3a11 expression. ► These responses balance each other out in normal mice.

  3. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2015-12-09

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  4. Homotropic cooperativity of monomeric cytochrome P450 3A4

    SciTech Connect

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G.

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  5. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application.

    PubMed

    Cook, D J; Finnigan, J D; Cook, K; Black, G W; Charnock, S J

    2016-01-01

    Cytochromes P450, a family of heme-containing monooxygenases that catalyze a diverse range of oxidative reactions, are so-called due to their maximum absorbance at 450nm, ie, "Pigment-450nm," when bound to carbon monoxide. They have appeal both academically and commercially due to their high degree of regio- and stereoselectivity, for example, in the area of active pharmaceutical ingredient synthesis. Despite this potential, they often exhibit poor stability, low turnover numbers and typically require electron transport protein(s) for catalysis. P450 systems exist in a variety of functional domain architectures, organized into 10 classes. P450s are also divided into families, each of which is based solely on amino acid sequence homology. Their catalytic mechanism employs a very complex, multistep catalytic cycle involving a range of transient intermediates. Mutagenesis is a powerful tool for the development of improved biocatalysts and has been used extensively with the archetypal Class VIII P450, BM3, from Bacillus megaterium, but with the increasing scale of genomic sequencing, a huge resource is now available for the discovery of novel P450s. PMID:27567486

  6. Ontogeny of the chicken cytochrome P-450 enzyme system. Expression and development of responsiveness to phenobarbital induction.

    PubMed

    Lorr, N A; Bloom, S E

    1987-09-15

    The sensitivity of the developing embryo to toxins and drugs is highly dependent on the state of development of the cytochrome P-450 system. Previous work in this laboratory has demonstrated the genotoxicity of aflatoxin B1 (AFB1) to the chicken embryo at 3 days of incubation (DI) and induction of AFB1 genotoxicity by phenobarbital at 7 DI. In this study, the basal and 24-hr phenobarbital (PB) induced levels of aminopyrine-N-demethylase (AMPD) and cytochrome P-450 were assayed in hepatic microsomes from 7 DI to 36 days posthatching (PH) and in microsomes from whole embryos at 5 DI. A dose-response for induction by PB was observed in embryonic hepatic microsomes as early as 7 DI, whereas a low level of cytochrome P-450 was detected in control 7 DI microsomes using the reduced CO vs oxidized CO difference spectrum. Basal levels of AMPD and cytochrome P-450 in hepatic microsomes increased steadily throughout development as did the responsiveness of the embryonic liver to induction with PB. Hepatic microsomes from control and PB-induced chickens had the highest AMPD activities posthatching particularly from 1 to 3 days PH. Maximal induced levels, which were 2- to 3-fold over control throughout development, ranged from 1.22 at 7 DI to 12.72 nmol HCHO/mg protein/min at 2 days PH. The potency of PB as an inducer increased about 1000-fold between 7 DI and hatching. PB induction did not increase the specific activity of AMPD at any period of development. The specific activity of AMPD posthatching increased about 3-fold above embryonic levels, indicating the development of a cytochrome P-450 complex more active toward aminopyrine in the neonatal period. PMID:3632724

  7. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  8. Reactive intermediates produced from the metabolism of the vanilloid ring of capsaicinoids by p450 enzymes.

    PubMed

    Reilly, Christopher A; Henion, Fred; Bugni, Tim S; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C; Srivastava, Sanjay K; Yost, Garold S

    2013-01-18

    This study characterized electrophilic and radical products derived from the metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from the trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5'-Dicapsaicin, presumably arising from the bimolecular coupling of free radical intermediates was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated quinone methide and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  9. Reactive Intermediates Produced from Metabolism of the Vanilloid Ring of Capsaicinoids by P450 Enzymes

    PubMed Central

    Reilly, Christopher A.; Henion, Fred; Bugni, Tim S.; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C.; Srivastava, Sanjay K.; Yost, Garold S.

    2012-01-01

    This study characterized electrophilic and radical products derived from metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin, were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5’-Dicapsaicin, presumably arising from bi-molecular coupling of free radical intermediates, was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated, quinone methide, and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  10. Clofibrate-induced cytochrome P450-lauric acid omega hydroxylase(P450LA omega):purification, cDNA cloning, sequence and regulation

    SciTech Connect

    Hardwick, J.P.; Song, B.J.; Gonzalez, F.J.

    1986-05-01

    A cytochrome P450 that hydroxylates lauric acid at the 12 position (P450LA omega) was isolated from liver microsomes of clofibrate treated rats. P450LA omega was immunologically distinct from P450s a,b,c,d,e,f,g,h,j,PB1, and PCN1. Polyclonal antibody against P450LA omega was utilized to screen a gt11 cDNA library. A clone (pP450LA omega), was isolated and its sequence determined. The P450LA omega mRNA is a minimum 2387 nts in length and codes for a P450 of Mr.58,222 daltons. This protein shares less than 35% amino acid similarity with P450s b,c,d,e,f,PB1, and PCN1; however, it does contain a hydrophobic amino terminal peptide and a conserved sequence surrounding the Cys residue at position 456, which is similar to other microsomal P450s. P450LA omega is present at high levels in untreated rat kidney and is induced by clofibrate in both kidney and liver. This induction is the result of an accumulation of mRNA through a rapid transcriptional activation of the P450LA gene. Southern blotting data suggest the presence of 2 or 3 genes in the P450LA omega family. This P450 gene family may be associated with arachidonic acid and prostraglandin metabolism in kidney and other tissues.

  11. Virtual Experiments Enable Exploring and Challenging Explanatory Mechanisms of Immune-Mediated P450 Down-Regulation

    PubMed Central

    Petersen, Brenden K.; Ropella, Glen E. P.; Hunt, C. Anthony

    2016-01-01

    Hepatic cytochrome P450 levels are down-regulated during inflammatory disease states, which can cause changes in downstream drug metabolism and hepatotoxicity. Long-term, we seek sufficient new insight into P450-regulating mechanisms to correctly anticipate how an individual’s P450 expressions will respond when health and/or therapeutic interventions change. To date, improving explanatory mechanistic insight relies on knowledge gleaned from in vitro, in vivo, and clinical experiments augmented by case reports. We are working to improve that reality by developing means to undertake scientifically useful virtual experiments. So doing requires translating an accepted theory of immune system influence on P450 regulation into a computational model, and then challenging the model via in silico experiments. We build upon two existing agent-based models—an in silico hepatocyte culture and an in silico liver—capable of exploring and challenging concrete mechanistic hypotheses. We instantiate an in silico version of this hypothesis: in response to lipopolysaccharide, Kupffer cells down-regulate hepatic P450 levels via inflammatory cytokines, thus leading to a reduction in metabolic capacity. We achieve multiple in vitro and in vivo validation targets gathered from five wet-lab experiments, including a lipopolysaccharide-cytokine dose-response curve, time-course P450 down-regulation, and changes in several different measures of drug clearance spanning three drugs: acetaminophen, antipyrine, and chlorzoxazone. Along the way to achieving validation targets, various aspects of each model are falsified and subsequently refined. This iterative process of falsification-refinement-validation leads to biomimetic yet parsimonious mechanisms, which can provide explanatory insight into how, where, and when various features are generated. We argue that as models such as these are incrementally improved through multiple rounds of mechanistic falsification and validation, we will

  12. Virtual Experiments Enable Exploring and Challenging Explanatory Mechanisms of Immune-Mediated P450 Down-Regulation.

    PubMed

    Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony

    2016-01-01

    Hepatic cytochrome P450 levels are down-regulated during inflammatory disease states, which can cause changes in downstream drug metabolism and hepatotoxicity. Long-term, we seek sufficient new insight into P450-regulating mechanisms to correctly anticipate how an individual's P450 expressions will respond when health and/or therapeutic interventions change. To date, improving explanatory mechanistic insight relies on knowledge gleaned from in vitro, in vivo, and clinical experiments augmented by case reports. We are working to improve that reality by developing means to undertake scientifically useful virtual experiments. So doing requires translating an accepted theory of immune system influence on P450 regulation into a computational model, and then challenging the model via in silico experiments. We build upon two existing agent-based models-an in silico hepatocyte culture and an in silico liver-capable of exploring and challenging concrete mechanistic hypotheses. We instantiate an in silico version of this hypothesis: in response to lipopolysaccharide, Kupffer cells down-regulate hepatic P450 levels via inflammatory cytokines, thus leading to a reduction in metabolic capacity. We achieve multiple in vitro and in vivo validation targets gathered from five wet-lab experiments, including a lipopolysaccharide-cytokine dose-response curve, time-course P450 down-regulation, and changes in several different measures of drug clearance spanning three drugs: acetaminophen, antipyrine, and chlorzoxazone. Along the way to achieving validation targets, various aspects of each model are falsified and subsequently refined. This iterative process of falsification-refinement-validation leads to biomimetic yet parsimonious mechanisms, which can provide explanatory insight into how, where, and when various features are generated. We argue that as models such as these are incrementally improved through multiple rounds of mechanistic falsification and validation, we will generate

  13. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    PubMed Central

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  14. Homology modeling of mosquito cytochrome P450 enzymes involved in pyrethroid metabolism: insights into differences in substrate selectivity

    PubMed Central

    2011-01-01

    Background Cytochrome P450 enzymes (P450s) have been implicated in insecticide resistance. Anopheles minumus mosquito P450 isoforms CYP6AA3 and CYP6P7 are capable of metabolizing pyrethroid insecticides, however CYP6P8 lacks activity against this class of compounds. Findings Homology models of the three An. minimus P450 enzymes were constructed using the multiple template alignment method. The predicted enzyme model structures were compared and used for molecular docking with insecticides and compared with results of in vitro enzymatic assays. The three model structures comprise common P450 folds but differences in geometry of their active-site cavities and substrate access channels are prominent. The CYP6AA3 model has a large active site allowing it to accommodate multiple conformations of pyrethroids. The predicted CYP6P7 active site is more constrained and less accessible to binding of pyrethroids. Moreover the predicted hydrophobic interface in the active-site cavities of CYP6AA3 and CYP6P7 may contribute to their substrate selectivity. The absence of CYP6P8 activity toward pyrethroids appears to be due to its small substrate access channel and the presence of R114 and R216 that may prevent access of pyrethroids to the enzyme heme center. Conclusions Differences in active site topologies among CYPAA3, CYP6P7, and CYP6P8 enzymes may impact substrate binding and selectivity. Information obtained using homology models has the potential to enhance the understanding of pyrethroid metabolism and detoxification mediated by P450 enzymes. PMID:21892968

  15. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora.

    PubMed

    Syed, Khajamohiddin; Nelson, David R; Riley, Robert; Yadav, Jagjit S

    2013-01-01

    Genomewide annotation of cytochrome P450 monooxygenases (P450s) in three white-rot species of the fungal order Polyporales, namely Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora, revealed a large contingent of P450 genes (P450ome) in their genomes. A total of 199 P450 genes in B. adusta and 209 P450 genes each in Ganoderma sp. and P. brevispora were identified. These P450omes were classified into families and subfamilies as follows: B. adusta (39 families, 86 subfamilies), Ganoderma sp. (41 families, 105 subfamilies) and P. brevispora (42 families, 111 subfamilies). Of note, the B. adusta genome lacked the CYP505 family (P450foxy), a group of P450-CPR fusion proteins. The three polypore species revealed differential enrichment of individual P450 families in their genomes. The largest CYP families in the three genomes were CYP5144 (67 P450s), CYP5359 (46 P450s) and CYP5344 (43 P450s) in B. adusta, Ganoderma sp. and P. brevispora, respectively. Our analyses showed that tandem gene duplications led to expansions in certain P450 families. An estimated 33% (72 P450s), 28% (55 P450s) and 23% (49 P450s) of P450ome genes were duplicated in P. brevispora, B. adusta and Ganoderma sp., respectively. Family-wise comparative analysis revealed that 22 CYP families are common across the three Polypore species. Comparative P450ome analysis with Ganoderma lucidum revealed the presence of 143 orthologs and 56 paralogs in Ganoderma sp. Multiple P450s were found near the characteristic biosynthetic genes for secondary metabolites, namely polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), terpene cyclase and terpene synthase in the three genomes, suggesting a likely role of these P450s in secondary metabolism in these Polyporales. Overall, the three species had a richer P450 diversity both in terms of the P450 genes and P450 subfamilies as compared to the model white-rot and brown-rot polypore species Phanerochaete chrysosporium and Postia placenta. PMID

  16. Phosphorylation of Human Cytochrome P450c17 by p38α Selectively Increases 17,20 Lyase Activity and Androgen Biosynthesis*

    PubMed Central

    Tee, Meng Kian; Miller, Walter L.

    2013-01-01

    Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event. PMID:23836902

  17. The role of cytochrome P450s in polycyclic aromatic hydrocarbon carcinogenesis

    SciTech Connect

    Polzer, R.J.

    1993-01-01

    Metabolic activation of polycyclic aromatic hydrocarbons (PAH) to carcinogenic diol epoxides has been determined to be a critical step in tumor initiation by PAH. The key enzyme(s) involved in the metabolic activation are members of the cytochrome P450 superfamily. Two distinct isoforms of cytochrome P450 have been determined to be induced upon treatment of cells in culture with benzo(a)pyrene (B(a)P) by use of Immobilized Artificial Membrane Column High Performance Liquid Chromatography, Western blotting, Northern blotting, and in vitro metabolism studies. Cytochrome P4501A is involved in the metabolism of PAH in the human hepatoma cell line, HepG2; the human mammary carcinoma cell line, MCF-7; and the mouse hepatoma cell line; Hepa-1; whereas cytochrome P450EF is involved in this metabolism in both secondary hamster and mouse embryo cell cultures. Induction of cytochrome P450s by B(a)P generally leads to an increased metabolism of tritiated B(a)P, DMBA, and DB(a,1)P to water-soluble metabolities and to the formation of PAH-DNA adducts, suggesting that induction by B(a)P alters the metabolism of PAH to metabolic activation. DMBA induction of cytochrome P450s leads to various changes in metabolism and PAH-DNA binding and these changes were both cell and PAH specific. These results suggest that DMBA can shift metabolism of certain PAH towards metabolic activation in some cells, while in other cells DMBA or one of its metabolities can compete with other PAH for metabolic activation. UDP-glucuronosyl-transferase and epoxide hydrase do not have significant roles in detoxifying proximate or ultimate carcinogenic PAH metabolites, however, sulfotransferase and glutathione-S-transferase do detoxify proximate and ultimate carcinogenic metabolities in the HepG2 cell line. Finally, attempts to inhibit B(a)P metabolism and DNA-binding in intact cells in culture through conjugation of inhibitory cytochrome P4501A1 antibodies to insulin or folic acid were examined.

  18. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Okamoto, Eriko; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-01

    1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans. PMID:26899760

  19. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    PubMed Central

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen L.; Møller, Birger Lindberg; Della Pia, Eduardo Antonio

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, “nanodiscs”, and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and −300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constant was calculated to be ~1.5 s−1. POR was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions. It is also a prelude for driving plant P450 systems electronically for simplified and cost-effective screening of potential substrates/inhibitors and fabrication of nano-bioreactors for synthesis of high value natural products. PMID:27386958

  20. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase.

    PubMed

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen L; Møller, Birger Lindberg; Della Pia, Eduardo Antonio

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, "nanodiscs", and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and -300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constant was calculated to be ~1.5 s(-1). POR was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions. It is also a prelude for driving plant P450 systems electronically for simplified and cost-effective screening of potential substrates/inhibitors and fabrication of nano-bioreactors for synthesis of high value natural products. PMID:27386958

  1. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    SciTech Connect

    Ornstein, R.; Paulsen, M.; Bass, M.; Arnold, G.

    1991-03-01

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs.

  2. Spectroscopic features of cytochrome P450 reaction intermediates

    PubMed Central

    Luthra, Abhinav; Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Preface Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2-3]. Historically these enzymes received their name from ‘pigment 450’ due to the unusual position of the Soret band in UV-Vis absorption spectra of the reduced CO-saturated state [4-5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other ‘P450-like heme enzymes’ such as nitric oxide synthase and chloroperoxidase, the phenomenological term ‘cytochrome P450’ is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420 nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle. PMID:21167809

  3. Highly reactive electrophilic oxidants in cytochrome P450 catalysis

    SciTech Connect

    Newcomb, Martin . E-mail: men@uic.edu; Chandrasena, R. Esala P.

    2005-12-09

    The cytochrome P450 enzymes effect a wide range of oxidations in nature including difficult hydroxylation reactions of unactivated C-H. Most of the high energy reactions of these catalysts appear to involve highly electrophilic active species. Attempts to detect the reactive transients in the enzymes have met with limited success, but evidence has accumulated that two distinct electrophilic oxidants are produced in the P450 enzymes. The consensus electrophilic oxidant termed 'iron-oxo' is usually thought to be an analogue of Compound I, an iron(IV)-oxo porphyrin radical cation species, but it is possible that a higher energy electronic isomer of Compound I is required to account for the facility of the C-H oxidation reactions. The second electrophilic oxidant of P450 is speculative; circumstantial evidence suggests that this species is iron-complexed hydrogen peroxide, but this oxidant might be a second spin state of iron-oxo. This overview discusses recent studies directed at detection of the electrophilic oxidants in P450 enzymes and the accumulated evidence for two distinct species.

  4. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  5. Distinct CD55 Isoform Synthesis and Inhibition of Complement-Dependent Cytolysis by Hepatitis C Virus.

    PubMed

    Kwon, Young-Chan; Kim, Hangeun; Meyer, Keith; Di Bisceglie, Adrian M; Ray, Ranjit

    2016-08-15

    CD55/DAF, one of the regulators of complement activation, is known to limit excess complement activation on the host cell surface by accelerating the decay of C3 convertase. We reported previously that hepatitis C virus (HCV) infection or virus core protein expression upregulates CD55 expression. CD55 associates with HCV particles, potentially protecting HCV from lysis in circulation. An increase in CD55 on the surface of HCV-infected cells may inhibit complement-mediated cell killing. In this study, we show that Abs against cancer cell surface proteins induce complement-dependent cytolysis or Ab-dependent cell-mediated cytotoxicity of immortalized human hepatocytes in the presence of CD55-blocking Ab. CD55 has a secreted isoform (sCD55) that is generated by alternative splicing. We observed that sCD55 is induced in HCV-infected or HCV replicon-harboring cells, as well as in liver biopsy samples from chronically HCV-infected patients. Conditioned medium from HCV-infected hepatoma cells (Huh7.5 cells) or immortalized human hepatocytes inhibited C3 convertase activity and complement-dependent cytolysis of sheep blood erythrocytes. Chronically HCV-infected patient sera inhibited C3 convertase activity, further implicating HCV-specific impairment of complement function in infected humans. CD55-blocking Ab inhibited erythrocyte lysis by conditioned medium, suggesting that CD55/sCD55 impairs convertase activity. Together, our data show that HCV infection induces sCD55 expression in HCV-infected cell culture-conditioned medium and inhibits C3 convertase activity. This may have implications for modulating complement-mediated immune function in the microenvironment and on HCV-harboring cells. PMID:27357152

  6. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4

    PubMed Central

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-01-01

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver–Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4. PMID:26712778

  7. Expression and activity of cytochromes P450 2E1, 2A, and 2B in the mouse ovary: the effect of 4-vinylcyclohexene and its diepoxide metabolite.

    PubMed

    Cannady, Ellen A; Dyer, Cheryl A; Christian, Patricia J; Sipes, I Glenn; Hoyer, Patricia B

    2003-06-01

    4-Vinylcyclohexene (VCH), an occupational chemical, causes destruction of small preantral follicles (F1) in mice. Previous studies suggested that VCH is bioactivated via cytochromes P450 (CYP450) to the ovotoxic, diepoxide metabolite, VCD. Whereas hepatic CYP450 isoforms 2E1, 2A, and 2B can metabolize VCH, the role of ovarian metabolism is unknown. This study investigated expression of these isoforms in isolated ovarian fractions (F1, 25-100 microm; F2, 100-250 microm; F3, >250 microm; interstitial cells, Int) from B6C3F1 mice dosed daily (15 days; ip) with vehicle, VCH (7.4 mmol/kg/day) or VCD (0.57 mmol/kg/day). Ovaries were removed and either isolated into specific ovarian compartments for mRNA analysis, fixed for immunohistochemistry, or prepared for enzymatic assays. mRNA and protein for all isoforms were expressed/distributed in all ovarian fractions from vehicle-treated mice. In the targeted F1 follicles, VCH or VCD dosing increased (p < 0.05) mRNA encoding CYP2E1 (645 +/- 14% VCH; 582 +/- 16% VCD), CYP2A (689 +/- 8% VCH; 730 +/- 22% VCD), and CYP2B (246 +/- 7% VCH) above control. VCH dosing altered (p < 0.05) mRNA encoding CYP2E1 in nontargeted F3 follicles (168 +/- 7%) and CYP2A in Int (207 +/- 19%) above control. Immunohistochemical analysis revealed the greatest staining intensity for all CYP isoforms in the Int. VCH dosing altered (p < 0.05) staining intensity in Int for CYP2E1 (19 +/- 2.4% below control) and CYP2A (39 +/- 5% above control). Staining intensity for CYP2B was increased (p < 0.05) above control in granulosa cells of small preantral (187 +/- 42%) and antral (63 +/- 8%) follicles. Catalytic assays in ovarian homogenates revealed that CYP2E1 and CYP2B were functional. Only CYP2E1 activity was increased (149 +/- 12% above control; p < 0.05) by VCH dosing. The results demonstrate that mRNA and protein for CYP isoforms known to bioactivate VCH are expressed in the mouse ovary and are modulated by in vivo exposure to VCH and VCD. Interestingly

  8. Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings

    SciTech Connect

    Johri, Ashu; Dhawan, Alok; Lakhan Singh, Ram; Parmar, Devendra . E-mail: parmar_devendra@hotmail.com

    2006-08-01

    Prenatal exposure to low doses (0.25 or 0.5 or 1.0 mg/kg, p.o.) of deltamethrin, a type II pyrethroid insecticide, to pregnant dams from gestation days 5 to 21 (GD5-21) produced dose-dependent alterations in the ontogeny of xenobiotic metabolizing cytochrome P450 (CYP) isoforms in brain and liver of the offsprings. RT-PCR analysis revealed dose-dependent increase in the mRNA expression of cerebral and hepatic CYP1A1, 1A2, 2B1, 2B2, and 2E1 isoenzymes in the offsprings exposed prenatally to deltamethrin. Similar increase in the activity of the marker enzymes of these CYP isoforms has indicated that placental transfer of the pyrethroid, a mixed type of CYP inducer, even at these low doses may be sufficient to induce the CYPs in brain and liver of the offsprings. Our data have further revealed persistence in the increase in expression of xenobiotics metabolizing CYPs up to adulthood in brain and liver of the exposed offsprings, suggesting the potential of deltamethrin to imprint the expression of CYPs in brain and liver of the offsprings following its in utero exposure. Furthermore, though the levels of CYPs were several fold lower in brain, almost equal magnitude of induction in cerebral and hepatic CYPs has further suggested that brain CYPs are responsive to the induction by environmental chemicals. The present data indicating alterations in the expression of xenobiotic metabolizing CYPs during development following prenatal exposure to deltamethrin may be of significance as these CYP enzymes are not only involved in the neurobehavioral toxicity of deltamethrin but have a role in regulating the levels of ligands that modulate growth, differentiation, and neuroendocrine functions.

  9. In vitro evaluation of hepatotoxic drugs in human hepatocytes from multiple donors: Identification of P450 activity as a potential risk factor for drug-induced liver injuries.

    PubMed

    Utkarsh, Doshi; Loretz, Carol; Li, Albert P

    2016-08-01

    A possible risk factor for drug-induced hepatotoxicity is drug metabolizing enzyme activity, which is known to vary among individuals due to genetic (genetic polymorphism) and environmental factors (environmental pollutants, foods, and medications that are inhibitors or inducers of drug metabolizing enzymes). We hypothesize that hepatic cytochrome P450-dependent monooxygenase (CYP) activity is one of the key risk factors for drug induced liver injuries (DILI) in the human population, especially for drugs that are metabolically activated to cytotoxic/reactive metabolites. Human hepatocytes from 19 donors were evaluated for the activities of 8 major P450 isoforms: CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Extensive individual variations were observed, consistent with what is known to be in the human population. As CYP3A4 is known to be one of the most important P450 isoforms for drug metabolism, studies were performed to evaluate the relationship between the in vitro cytotoxicity of hepatotoxic drugs and CYP3A4 activity. In a proof of concept study, hepatocytes from six donors (lots) representing the observed range of CYP3A4 activities were chosen for the evaluation of in vitro hepatotoxicity of four drugs known to be associated with acute liver failure: acetaminophen, cyclophosphamide, ketoconazole, and tamoxifen. The hepatocytes were cultured in collagen-coated plates and treated with the hepatotoxicants for approximately 24 h, followed by viability determination based on cellular adenosine triphosphate (ATP) contents. HH1023, the lot of hepatocytes with the highest CYP3A4 activity, was found to be the most sensitive to the cytotoxicity of all 4 hepatotoxic drugs, thereby suggesting that high CYP3A4 activity may be a risk factor. To further validate the relationship, a second study was performed with hepatocytes from 16 donors. In this study, the hepatocytes were quantified for CYP3A4 activity at the time of treatment. Results of the

  10. Purification, cDNA cloning and functional expression of NADPH-cytochrome P450 reductase from Centaurium erythraea cell cultures.

    PubMed

    Schwarz, H; Liu, B; Peters, S; Barillas, W; Beerhues, L

    2009-05-01

    Solubilised NADPH-cytochrome P450 reductase (CPR) was purified from the microsomal fraction of centaury (Centaurium erythraea) cell cultures by Q-anion exchange chromatography and affinity chromatography on adenosine 2',5'-diphosphate agarose. SDS-PAGE demonstrated the presence of three CPR isoforms with molecular masses of 77, 79 and 81 kDa. The 79- and 81-kDa isoforms were identified as glycoproteins when blotted following SDS-PAGE and subjected to a sugar detection procedure. A homology-based approach led to the isolation of a CPR cDNA encoding the 77-kDa isoform. The enzyme was a class I CPR, possessing a short N-terminus upstream of the membrane anchor. The amino acid sequence contained a putative N-glycosylation site, indicating that the two major isoforms of 77 and 79 kDa are related through attachment of an oligosaccharide chain. This glycosylation process was also found upon heterologous expression in yeast. When co-expressed in yeast together with centaury coniferyl alcohol 5-hydroxylase, CPR efficiently supported the activity of the P450 enzyme. The genome of C. erythraea was found to contain a second CPR gene. RT-PCR experiments using gene-specific primers revealed differential regulation of the two CPR genes. While CPR 2 mRNA was strongly induced by the addition of methyl jasmonate to the cell cultures, the CPR 1 expression level did not change after this elicitation. PMID:19470102

  11. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle

    PubMed Central

    Shahrokh, Kumars; Orendt, Anita; Yost, Garold; Cheatham, Tom

    2011-01-01

    Molecular mechanics (MM) methods are computationally affordable tools for screening chemical libraries of novel compounds for sites of P450 metabolism. One challenge for MM methods has been the absence of a consistent and transferable set of parameters for the heme within the P450 active-site. Experimental data indicates that mammalian P450 enzymes vary greatly in the size, architecture, and plasticity of their active sites. Thus, obtaining x-ray based geometries for the development of accurate MM parameters for the major classes of hepatic P450 remains a daunting task. Our previous work with preliminary gas-phase quantum mechanics (QM) derived atomic partial charges, greatly improved the accuracy of docking studies of raloxifene to CYP3A4. We have therefore developed and tested a consistent set of transferable MM parameters based on gas-phase QM calculations of two model systems of the heme—a truncated (T-HM) and a full (F-HM) for four states of the P450 catalytic cycle. Our results indicate that the use of the atomic partial charges from the F-HM model further improves the accuracy of docked predictions for raloxifene to CYP3A4. Different patterns for substrate docking are also observed depending on the choice of heme model and state. Newly parameterized heme models are tested in implicit and explicitly solvated MD simulations in the absence and presence of enzyme structures, for CYP3A4, and appear to be stable on the nanosecond simulation timescale. The new force field for the various heme states may aid the community for simulations of P450 enzymes and other heme containing enzymes. PMID:21997754

  12. Immobilized Cytochrome P450 2C9 (CYP2C9): Applications for Metabolite Generation, Monitoring Protein-Protein Interactions, and Improving In-vivo Predictions Using Enhanced In-vitro Models

    NASA Astrophysics Data System (ADS)

    Wollenberg, Lance A.

    Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover

  13. Development of cytochromes P450 in avian species as a biomarker for environmental contaminant exposure and effect: Procedures and baseline values

    USGS Publications Warehouse

    Melancon, M.J.

    1996-01-01

    As in mammals and fish, birds respond to many environmental contaminants with induction of hepatic cytochromes P450. In order to monitor cytchromes P450 in specific avian species, for assessing the status of that species or the habitat it utilizes, it is necessary to have background information on the appropriate assay conditions and the responsiveness of cytochrome P450 induction in that species. Assay of four monooxygenases which give resorufin as product using a fluorescence microwell plate scanner has proven to be an effective approach. Information is provided on the incubation conditions and baseline activity for twenty avian species at ages ranging from pipping embryo to adult. Induction responsiveness is presented for sixteen of them. This information can serve as a guide for those who wish to utilize cytochrome P450 as a biomarker for contaminant exposure and effect to aid in selection of appropriate species, age, and monooxygenase assay(s).

  14. Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp. NCIMB 9784.

    PubMed

    Nodate, Miho; Kubota, Mitsutoshi; Misawa, Norihiko

    2006-07-01

    Cytochrome P450RhF from Rhodococcus sp. NCIMB 9784 is a self-sufficient P450 monooxygenase. We report here a simple system for the functional expression of various P450 genes using the reductase domain of this P450RhF, which comprises flavin mononucleotide- and nicotinamide adenine dinucleotide phosphate binding motifs and a [2Fe2S] ferredoxin-like center. Vector pRED was constructed, which carried the T7 promoter, cloning sites for a P450, a linker sequence, and the P450RhF reductase domain, in this order. The known P450 genes, encoding P450cam from Pseudomonas putida (CYP101A) and P450bzo from an environmental metagenome library (CYP203A), were expressed on vector pRED as soluble fusion enzymes with their natural spectral features in Escherichia coli. These E. coli cells expressing the P450cam and P450bzo genes could convert (+)-camphor and 4-hydroxybenzoate into 5-exo-hydroxycamphor and protocatechuate (3,4-dihydroxybenzoate), respectively (the expected products). Using this system, we also succeeded in directly identifying the function of P450 CYP153A as alkane 1-monooxygenase for the first time, i.e., E. coli cells expressing a P450 CYP153A gene named P450balk, which was isolated form Alcanivorax borkumensis SK2, converted octane into 1-octanol with high efficiency (800 mg/l). The system presented here may be applicable to the functional identification of a wide variety of bacterial cytochromes P450. PMID:16195793

  15. Relation among cytochrome P450, Ah-active PCB congeners and dioxin equivalents in pipping black- crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P450-associated monooxygenases and cytochrome P450 proteins, induced up to 85- fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r super(2) often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah- active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  16. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  17. Quantum Chemical Studies of Methane Monooxygenase: Comparison with P450

    SciTech Connect

    Guallar, Victor; Gherman, Benjamin F.; Lippard, Stephen J.; Friesner, Richard A.

    2002-04-01

    The catalytic pathways of soluble methane monooxygenase (sMMO) and cytochrome P450CAM, iron-containing enzymes, are described and compared. Recent extensive density functional ab initio electronic structure calculations have revealed many similarities in a number of the key catalytic steps, as well as some important differences. A particularly interesting and significant contrast is the role played by the protein in each system. For sMMO, the protein stabilizes various species in the catalytic cycle through a series of carboxylate shifts. This process is adequately described by a relatively compact model of the active site (similar to100 atoms), providing a reasonable description of the energetics of hydrogen atom abstraction. For P450CAM, in contrast, the inclusion of the full protein is necessary for an accurate description of the hydrogen atom abstraction.

  18. Integrated in vitro analysis for the in vivo prediction of cytochrome P450-mediated drug-drug interactions.

    PubMed

    McGinnity, Dermot F; Waters, Nigel J; Tucker, James; Riley, Robert J

    2008-06-01

    Unbound IC(50) (IC(50,u)) values of 15 drugs were determined in eight recombinantly expressed human cytochromes P450 (P450s) and human hepatocytes, and the data were used to simulate clinical area under the plasma concentration-time curve changes (deltaAUC) on coadministration with prototypic CYP2D6 substrates. Significant differences in IC(50,u) values between enzyme sources were observed for quinidine (0.02 microM in recombinant CYP2D6 versus 0.5 microM in hepatocytes) and propafenone (0.02 versus 4.1 microM). The relative contribution of individual P450s toward the oxidative metabolism of clinical probes desipramine, imipramine, tolterodine, propranolol, and metoprolol was estimated via determinations of intrinsic clearance using recombinant P450s (rP450s). Simulated deltaAUC were compared with those observed in vivo via the ratios of unbound inhibitor concentration at the entrance to the liver to inhibition constants determined against rP450s ([I](in,u)/K(i)) and incorporating parallel substrate elimination pathways. For this dataset, there were 20% false negatives (observed deltaAUC >or= 2, predicted deltaAUC < 2), 77% correct predictions, and 3% false positives. Thus, the [I](in,u)/K(i) approach appears relatively successful at estimating the degree of clinical interactions and can be incorporated into drug discovery strategies. Using a Simcyp ADME (absorption, metabolism, distribution, elimination) simulator (Simcyp Ltd., Sheffield, UK), there were 3% false negatives, 94% correct simulations, and 3% false positives. False-negative predictions were rationalized as a result of mechanism-based inhibition, production of inhibitory metabolites, and/or hepatic uptake. Integrating inhibition and reaction phenotyping data from automated rP450 screens have shown applicability to predict the occurrence and degree of in vivo drug-drug interactions, and such data may identify the clinical consequences for candidate drugs as both "perpetrators" and "victims" of P450

  19. Valence tautomerism in synthetic models of cytochrome P450.

    PubMed

    Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B; Lehnert, Nicolai; Dey, Abhishek

    2016-06-14

    CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948

  20. Regulation of cytochrome P450 expression in Drosophila: Genomic insights.

    PubMed

    Giraudo, Maeva; Unnithan, G Chandran; Le Goff, Gaëlle; Feyereisen, René

    2010-06-01

    Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the "phenobarbital-type" induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from "detox" microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers / induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action. PMID:20582327

  1. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  2. P450 enzymes from the bacterium Novosphingobium aromaticivorans.

    PubMed

    Bell, Stephen G; Wong, Luet-Lok

    2007-08-31

    Twelve of the fifteen potential P450 enzymes from the bacterium Novosphingobium aromaticivorans, which is known to degrade a wide range of aromatic hydrocarbons, have been produced via heterologous expression in Escherichia coli. The enzymes were tested for their ability to bind a range of substrates including polyaromatic hydrocarbons. While two of the enzymes were found to bind aromatic compounds (CYP108D1 and CYP203A2), the others show binding with a variety of compounds including linear alkanes (CYP153C1) and mono- and sesqui-terpenoid compounds (CYP101B1, CYP101C1, CYP101D1, CYP101D2, CYP111A1, and CYP219A1). A 2Fe-2S ferredoxin (Arx-A), which is associated with CYP101D2, was also produced. The activity of five of the P450 enzymes (CYP101B1, CYP101C1, CYP101D1, CYP101D2, and CYP111A2) was reconstituted with Arx-A and putidaredoxin reductase (of the P450cam system from Pseudomonas putida) in a Class I type electron transfer system. Preliminary characterisation of the majority of the substrate oxidation products is reported. PMID:17618912

  3. P450 enzymes from the bacterium Novosphingobium aromaticivorans

    SciTech Connect

    Bell, Stephen G. . E-mail: stephen.bell@chem.ox.ac.uk; Wong, Luet-Lok

    2007-08-31

    Twelve of the fifteen potential P450 enzymes from the bacterium Novosphingobium aromaticivorans, which is known to degrade a wide range of aromatic hydrocarbons, have been produced via heterologous expression in Escherichia coli. The enzymes were tested for their ability to bind a range of substrates including polyaromatic hydrocarbons. While two of the enzymes were found to bind aromatic compounds (CYP108D1 and CYP203A2), the others show binding with a variety of compounds including linear alkanes (CYP153C1) and mono- and sesqui-terpenoid compounds (CYP101B1, CYP101C1, CYP101D1, CYP101D2, CYP111A1, and CYP219A1). A 2Fe-2S ferredoxin (Arx-A), which is associated with CYP101D2, was also produced. The activity of five of the P450 enzymes (CYP101B1, CYP101C1, CYP101D1, CYP101D2, and CYP111A2) was reconstituted with Arx-A and putidaredoxin reductase (of the P450cam system from Pseudomonas putida) in a Class I type electron transfer system. Preliminary characterisation of the majority of the substrate oxidation products is reported.

  4. Demethylation of Veratrole by Cytochrome P-450 in Streptomyces setonii

    PubMed Central

    Sutherland, John B.

    1986-01-01

    The actinomycete Streptomyces setonii 75Vi2 demethylates vanillic acid and guaiacol to protocatechuic acid and catechol, respectively, and then metabolizes the products by the β-ketoadipate pathway. UV spectroscopy showed that this strain could also metabolize veratrole (1,2-dimethoxybenzene). When grown in veratrole-containing media supplemented with 2,2′-dipyridyl to inhibit cleavage of the aromatic ring, S. setonii accumulated catechol, which was detected by both liquid chromatography and gas chromatography. Reduced cell extracts from veratrole-grown cultures, but not sodium succinate-grown cultures, produced a carbon monoxide difference spectrum with a peak at 450 nm that indicated the presence of soluble cytochrome P-450. Addition of veratrole or guaiacol to oxidized cell extracts from veratrole-grown cultures produced difference spectra that indicated that these compounds were substrates for cytochrome P-450. My results suggest that S. setonii produces a cytochrome P-450 that is involved in the demethylation of veratrole and guaiacol to catechol, which is then catabolized by the β-ketoadipate pathway. PMID:16347120

  5. Regulation of cytochrome P450 expression in Drosophila: Genomic insights

    PubMed Central

    Giraudo, Maeva; Unnithan, G. Chandran; Le Goff, Gaëlle; Feyereisen, René

    2009-01-01

    Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the “phenobarbital-type” induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from “detox” microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers / induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action. PMID:20582327

  6. Human cytochromes P450 in health and disease

    PubMed Central

    Nebert, Daniel W.; Wikvall, Kjell; Miller, Walter L.

    2013-01-01

    There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development. PMID:23297354

  7. Reconstitution premixes for assays using purified recombinant human cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b5.

    PubMed

    Shaw, P M; Hosea, N A; Thompson, D V; Lenius, J M; Guengerich, F P

    1997-12-01

    The development of enzyme and buffer premixes for in vitro biotransformation assays is described. The protein premixes contain a mixture of three recombinant human proteins, cytochrome P450 (P450) 3A4, NADPH-P450 reductase, cytochrome b5, and liposomes. The buffer premix contains reagents which, when diluted, provide for optimal metabolic activity with selected P450 3A4 substrates. P450 3A4 premixes were competent in the oxidation of known substrates including testosterone, midazolam, nifedipine, erythromycin, benzphetamine, and amitriptyline. Premixes stored at -80 degrees C for 2 months and those that underwent an additional five freeze/thaw cycles were able to hydroxylate testosterone at turnover rates similar to freshly prepared reconstitution mixes. In addition, premixes stored unfrozen at 4 degrees C for 2 weeks showed no significant loss in the rate of testosterone 6 beta-hydroxylation by P450 3A4. Premixes prepared with and without reduced glutathione, a component which had previously been found to be important for P450 3A4 reactions, were equally efficient at carrying out testosterone hydroxylation under these conditions. Kinetic parameters determined for the metabolism of testosterone, amitriptyline, nifedipine, and benzphetamine using P450 3A4 premixes were compared with human pooled microsomes and insect microsomes prepared from cells infected with a baculovirus containing two cDNA inserts coding for P450 3A4 and NADPH-P450 reductase. Each format gave different Vmax and K(m) values indicating different catalytic efficiencies. Analysis of P450 1A2 premixes which contained different lipid concentrations indicated that Vmax and K(m) could be altered. The availability of human P450 recombinant enzymes and the development of the P450 premixes that remain active after being stored frozen should allow for rapid identification of novel P450 substrates and inhibitors and the development of large-scale screening assays. PMID:9390180

  8. Cytochrome P450 induction in mallard duck (MD), black-crowned night heron (BCNH) and Fisher-344 rat

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Stegeman, John J.

    1991-01-01

    P450 induction was studied in adult and pipping MDs, pipping BCNHs, and rats. Adult MDs and rats received i.p. injection of corn oil, 3-methylcholanthrene (MC) in corn oil (20 mg/kg), saline or phenobarbital (PB) in saline (80 mg/kg) for 3 days. MD and BCNH embryos received MC and PB by injection into the aircell approximately 2 days before pipping and were sacrificed at pipping. Hepatic microsomes were assayed for protein, arylhydrocarbon hydroxylase (AHH), benzphetamine-N-demethylase (BEND), ethoxy-resorufin-O-dealkylase (EROD), pentoxyresorufin-O-dealkylase (PROD), benzyloxyresorufin-O-dealkylase (BROD), ethoxycoumarin-O-dealkylase (ECOD), and by SDS-PAGE with western blot using a polyclonal anti-P4S0IIB antibody and a monoclonal anti-P450IA antibody (MAb 1-12-3). Although species and age caused substantial differences in responses, all treated groups showed an increase in one or more monooxygenase assays. All animals treated with MC showed a strong induction of a protein recognized by anti-P450IA, and all those treated with PB showed strong induction of a band recognized by anti-P450IIB.

  9. Chemical proteomic probes for profiling cytochrome P450 activities and drug interactions in vivo

    PubMed Central

    Wright, Aaron T.; Cravatt, Benjamin F.

    2007-01-01

    The cytochrome P450 (P450) superfamily metabolizes many endogenous signaling molecules and drugs. P450 enzymes are regulated by post-translational mechanisms in vivo, which hinders their functional characterization by conventional genomic or proteomic methods. Here, we describe a chemical proteomic strategy to profile P450 activities directly in living systems. Derivatization of a mechanism-based inhibitor with a “clickable” handle provided an activity-based probe that labels multiple P450s both in proteomic extracts and in vivo. This probe was used to record alterations in liver P450 activities triggered by chemical agents, including inducers of P450 expression and direct P450 inhibitors. The chemical proteomic strategy described herein thus offers a versatile method to monitor P450 activities and small molecule interactions in any biological system and, through doing so, should facilitate the functional characterization of this large and diverse enzyme class. PMID:17884636

  10. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology.

    PubMed

    Girvan, Hazel M; Munro, Andrew W

    2016-04-01

    Cytochrome P450 enzymes (P450s) are a superfamily of monooxygenase enzymes with enormous potential for synthetic biology applications. Across Nature, their substrate range is vast and exceeds that of other enzymes. The range of different chemical transformations performed by P450s is also substantial, and continues to expand through interrogation of the properties of novel P450s and by protein engineering studies. The ability of P450s to introduce oxygen atoms at specific positions on complex molecules makes these enzymes particularly valuable for applications in synthetic biology. This review focuses on the enzymatic properties and reaction mechanisms of P450 enzymes, and on recent studies that highlight their broad applications in the production of oxychemicals. For selected soluble bacterial P450s (notably the high-activity P450-cytochrome P450 reductase enzyme P450 BM3), variants with a multitude of diverse substrate selectivities have been generated both rationally and by random mutagenesis/directed evolution approaches. This highlights the robustness and malleability of the P450 fold, and the capacity of these biocatalysts to oxidise a wide range of chemical scaffolds. This article reviews recent research on the application of wild-type and engineered P450s in the production of important chemicals, including pharmaceuticals and drug metabolites, steroids and antibiotics. In addition, the properties of unusual members of the P450 superfamily that do not follow the canonical P450 catalytic pathway are described. PMID:27015292

  11. Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response.

    PubMed Central

    Waxman, D J; Morrissey, J J; Naik, S; Jauregui, H O

    1990-01-01

    The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove

  12. Enantioselective Benzylic Hydroxylation Catalysed by P450 Monooxygenases: Characterisation of a P450cam Mutant Library and Molecular Modelling.

    PubMed

    Eichler, Anja; Gricman, Łukasz; Herter, Susanne; Kelly, Paul P; Turner, Nicholas J; Pleiss, Jürgen; Flitsch, Sabine L

    2016-03-01

    Cytochrome P450 monooxygenases can catalyse the stereoselective C-H activation of a very broad range of substrates. Prediction and control of enantioselectivity of this enzyme class is of great interest for the synthesis of high-value chiral molecules. Here we have used a combination of molecular dynamics simulations and experimental screening to study the enantioselectivity of a library of active-site mutants of chimeric P450cam-RhFRed towards the benzylic hydroxylation of structurally related regioisomers of ethylmethylbenzene. Small variations either in substrate structure or in enzyme active site architecture were shown to lead to dramatic changes in enantioselectivity; this was broadly in agreement with computational predictions. In addition to validating computational approaches, these studies have provided us with a deeper understanding of effects that might control stereoselectivity in these biooxidation reactions. PMID:26698167

  13. The Effects of Milk Thistle (Silybum marianum) on Human Cytochrome P450 Activity

    PubMed Central

    Kawaguchi-Suzuki, Marina; Frye, Reginald F.; Zhu, Hao-Jie; Brinda, Bryan J.; Chavin, Kenneth D.; Bernstein, Hilary J.

    2014-01-01

    Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities. PMID:25028567

  14. Transcriptional Regulation of the Human P450 Oxidoreductase Gene: Hormonal Regulation and Influence of Promoter Polymorphisms

    PubMed Central

    Tee, Meng Kian; Huang, Ningwu; Damm, Izabella

    2011-01-01

    P450 oxidoreductase (POR) is the flavoprotein that acts as the obligatory electron donor to all microsomal P450 enzymes, including those involved in hepatic drug metabolism as well as three steroidogenic P450 enzymes. The untranslated first exon of human POR was located recently, permitting analysis of human POR transcription. Expression of deletional mutants containing up to 3193 bp of the human POR promoter in human adrenal NCI-H295A and liver Hep-G2 cells located the proximal promoter at −325/−1 bp from the untranslated exon. Common human POR polymorphisms at −208 and −173 had little influence on transcription, but the polymorphism at −152 reduced transcription significantly in both cell lines. EMSA and supershift assays identified binding of Smad3/Smad4 between −249 and −261 and binding of thyroid hormone receptor-β (TRβ) at −240/−245. Chromatin immunoprecipitation showed that Smad3, Smad4, TRα, TRβ, and estrogen receptor-α were bound between −374 and −149. Cotransfection of vectors for these transcription factors and POR promoter-reporter constructs into both cell types followed by hormonal treatment showed that T3 exerts major tropic effects via TRβ, with TRα, estrogen receptor-α, Smad3, and Smad4 exerting lesser, modulatory effects. T3 also increased POR mRNA in both cell lines. Thyroid hormone also is essential for rat liver POR expression but acts via different transcription factor complexes. These are the first data on human POR gene transcription, establishing roles for TRβ and Smad3/4 in its expression and indicating that the common polymorphism at −152 may play a role in genetic variation in steroid biosynthesis and drug metabolism. PMID:21393444

  15. Purified form of cytochrome P-450 from rainbow trout with high activity toward conversion of aflatoxin B1 to aflatoxin B1-2,3-epoxide.

    PubMed

    Williams, D E; Buhler, D R

    1983-10-01

    Aflatoxin B1, the most potent hepatic chemical carcinogen known, is activated to the putative product aflatoxin B1-2,3-epoxide via a cytochrome P-450-dependent reaction. Mt. Shasta rainbow trout is the most sensitive species known to the hepatocarcinogenic effects of aflatoxin B1. We have previously isolated and purified a minor form of cytochrome P-450 from this strain of rainbow trout, with a lambda max in the carbon monoxide-reduced difference spectrum of 449.5 nm and a molecular weight of 54,000. In this study, we have compared in a reconstituted system this trout P-450 to trout cytochrome P-448 and rat cytochrome P-450 and P-448 for metabolism and activation of aflatoxin B1. Trout cytochrome P-450 had much higher activity towards aflatoxin B1 and a greater degree of regioselectivity in the formation of aflatoxin B1-2,3-dihydroxy-2,3-dihydrodiol and was much more efficient in producing aflatoxin B1 covalent adducts with DNA. The existence of such a form of cytochrome P-450 in Mt. Shasta rainbow trout may be responsible for the acute sensitivity of this strain to the carcinogenic effects of aflatoxin B1. PMID:6411332

  16. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats

    SciTech Connect

    Das, M.; Dixit, R.; Mukhtar, H.; Bickers, D.R.

    1985-02-01

    The cytochrome P-450 in hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative was shown to be rapidly destroyed in the presence of long-wave ultraviolet light. The photocatalytic destruction of the heme-protein was dependent on both the dose of ultraviolet light and of hematoporphyrin derivative administered to the animals. The destructive reaction was accompanied by increased formation of cytochrome P-420, loss of microsomal heme content, and diminished catalytic activity of cytochrome P-450-dependent monooxygenases such as aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The specificity of the effect on cytochrome P-450 was confirmed by the observation that other heme-containing moieties such as myoglobin and cytochrome c were not susceptible to photocatalytic destruction. The destruction of cytochrome P-450 was a photodynamic process requiring oxygen since quenchers of singlet oxygen, including 2,5-dimethylfuran, histidine, and beta-carotene, each substantially diminished the reaction. Scavengers of superoxide anion such as superoxide dismutase and of H/sub 2/O/sub 2/ such as catalase did not protect against photodestruction of cytochrome P-450, whereas inhibitors of the hydroxyl radical, including benzoate, mannitol, and ethyl alcohol, did afford protection. These results indicate that lipid-rich microsomal membranes and the heme-protein cytochrome P-450 embedded therein are potential targets of injury in cells exposed to hematoporphyrin derivative photosensitization.

  17. Inter-relation of cytochrome P450 and contaminants burdens in sibling heron embryos and nestlings

    USGS Publications Warehouse

    Rattner, B.; Melancon, M.; Custer, T.; Hothem, R.

    1995-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-day-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to the Chincoteague National Wildlife Refuge, Virginia) and three polluted sites (Cat Island, Green Bay, Lake Michigan, Wisconsin; Bair Island, San Francisco Bay, California; West Marin Island, San Francisco Bay, California). Activities of arylhydrocarbon hydroxylase (AHH) and benzyl-oxyresorufin-O-dealkylase (BROD) weremodestly elevated (P450-associated monooxygenase activity of heron nestlings may have only limited value as a biomarker of exposure at this rapid-growth life stage.

  18. Inter-relation of cytochrome P450 and contaminants burdens in sibling heron embryos and nestlings

    SciTech Connect

    Rattner, B.; Melancon, M.; Custer, T.; Hothem, R. ||

    1995-12-31

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-day-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to the Chincoteague National Wildlife Refuge, Virginia) and three polluted sites (Cat Island, Green Bay, Lake Michigan, Wisconsin; Bair Island, San Francisco Bay, California; West Marin Island, San Francisco Bay, California). Activities of aryl hydrocarbon hydroxylase (AHH) and benzyl-oxyresorufin-O-dealkylase (BROD) were modestly elevated ({<=} three-fold) in nestlings from polluted sites. Concentrations of p,p{prime}DDE, other organochlorine pesticides and total PCBs in nestlings were greatest at contaminated sites, although much lower than found in concurrently collected eggs and pipping embryos, At these low pollutant concentrations there was little correlation between monooxygenase activity and contaminant levels in nestlings. These observations markedly contrast the pronounced monooxygenase induction (up to 85-fold) and its significant correlation with total PCBS, aryl hydrocarbon receptor-active PCB congeners and toxic equivalents in concurrently collected night-heron embryos that were often siblings of the nestlings. The present findings suggest that cytochrome P450-associated monooxygenase activity of heron nestlings may have only limited value as a biomarker of exposure at this rapid-growth life stage.

  19. [Effect of three herbal extracts on cytochrome P450 and possibility of interaction with drugs].

    PubMed

    Yokotani, Kaori; Chiba, Tsuyoshi; Sato, Yoko; Nakanishi, Tomoko; Murata, Masatsune; Umegaki, Keizo

    2013-01-01

    Herb-drug interactions are mainly mediated by hepatic cytochrome P450 (CYP) enzymes. Here, we examined the effect of three herbs (valerian, salacia and black cohosh) on CYP activity in vivo in mice and in liver microsomes in vitro. Extracts which showed activity in the preliminary tests were then fed to mice at various doses (0, 0.5, 1.5 and 4.5%). Valerian did not show any effect on hepatic CYPs. Black cohosh increased the liver weight, total CYP content and CYP activities (2B and 3A) in a dose-dependent manner (up to 4.5%). Salacia inhibited CYP1A2 activity in liver microsomes in vitro. Also, salacia at the dietary dose of 4.5% suppressed body weight gain, decreased hepatic total CYP content and increased CYP activities (1A1, 2B and 2C). These findings suggest that black cohosh and salacia at high dose affect the activity of hepatic CYPs, and therefore may interact with drugs that are metabolized by CYP. PMID:23470874

  20. Relationships among cytochromes P450 and dioxin equivalents in pipping heron embryos from Virginia, the Great Lakes and San Francisco Bay

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.

    1993-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge, VA) and industrialized (Cat Island, Green Bay, WI; San Francisco Bay, CA) locations. Hepatic P450 associated monooxygenases (AHH, EROD, BROD, ECOD) and P450 proteins (CYP1A, CYP2B) were induced up to 85-fold, and were associated with burdens of total PCBs and 11 AHH-active PCB congeners. Dioxin equivalents (TCDD-EQs) of sample extracts, derived by bioassay (H4I1E rat hepatoma cell) and mathematically (product of PCB congener concentration and relative TCDD potency), revealed greatest TCDD-EQs in Cat Island samples. TCDD-EQs were associated with P450s, especially BROD, EROD and CYP1A (r2 = 0.35 to 0.66). TCDD-EQs derived by bioassay were highly correlated with TCDD-EQs derived mathematically (r2 = 0.58 to 0.67) . Multiple regressions were also performed to investigate relationships among P450s and PCB congeners. In summary, these data demonstrate that hepatic P450s of heron embryos are biomarkers of exposure to dioxin-like compounds and provide further evidence that this species has considerable value for assessing wetland and estuarine contamination.

  1. The reductive metabolism of the nitroaromatic flukicidal agent nitroxinil by liver microsomal cytochrome P-450.

    PubMed

    Maffei Facino, R; Pitrè, D; Carini, M

    1982-07-01

    Hepatic biotransformation of the flukicidal agent nitroxynil (3-iodo-4-hydroxy-5-nitrobenzonitrile) (I) has been studied with rat liver subcellular fractions as the source of enzymes: two metabolites, 3-iodo-4--hydroxy-5-aminobenzonitrile (II) and 3-iodo-4-hydroxy-5-nitrobenzamide (III) have been identified by standard analytical techniques (TLC, GLC and MS). The nitroaromatic reduction product (II) is formed in the hepatocyte in a process in which cytosol and endoplasmic reticulum enzymes cooperate. This formation is maximal in anaerobic conditions, but takes also place aerobically and in the absence of electrogenic cofactors. Cytochrome P-450 plays a major role in the denitrification process, and consequently could be the cellular site most exposed to damage by the intermediate arylhydroxylamine formed by reduction. PMID:7128805

  2. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    PubMed Central

    Elenewski, Justin E.; Hackett, John C

    2015-01-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis. PMID:25681906

  3. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin E.; Hackett, John C.

    2015-02-01

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  4. Nanoscale electron transport measurements of immobilized cytochrome P450 proteins

    NASA Astrophysics Data System (ADS)

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-04-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport (ETp) depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of ETp processes in the enzyme, in addition to occupying the active site.

  5. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  6. Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins

    PubMed Central

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-01-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257

  7. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice. PMID:25034404

  8. P450-dependent enzymes as targets for prostate cancer therapy.

    PubMed

    De Coster, R; Wouters, W; Bruynseels, J

    1996-01-01

    Metastatic prostate adenocarcinoma is a leading cause of cancer-related deaths among men. First line treatment is primarily aimed at blocking the synthesis and action of androgens. As primary endocrine treatment, androgen deprivation is usually achieved by orchidectomy or LHRH analogues, frequently combined with androgen receptor antagonists in order to block the residual adrenal androgens. However, nearly all the patients will eventually relapse. Available or potential second line therapies include, among others, alternative endocrine manipulations and chemotherapy. Cytochrome P450-dependent enzymes are involved in the synthesis and/or degradation of many endogenous compounds, such as steroids and retinoic acid. Some of these enzymes represent suitable targets for the treatment of prostate cancer. In first line therapy, inhibitors of the P450-dependent 17,20-lyase may achieve a maximal androgen ablation with a single drug treatment. Ketoconazole at high dose blocks both testicular and adrenal androgen biosynthesis but its side-effects, mainly gastric discomfort, limit its widespread use. A series of newly synthesized, more selective, steroidal 17,20-lyase inhibitors related to 17-(3-pyridyl)androsta-5,16-dien-3beta-ol, may open new perspectives in this field. In prostate cancer patients who relapse after surgical or medical castration, therapies aiming at suppressing the remaining adrenal androgen biosynthesis (ketoconazole) or producing a medical adrenalectomy (aminoglutethimide+hydrocortisone) have been used, but are becoming obsolete with the generalization of maximal androgen blockade in first line treatment. The role of inhibition of aromatase in prostate cancer therapy, which was postulated for aminoglutethimide, could not be confirmed by the use of more selective aromatase inhibitors, such as formestane. An alternative approach is represented by liarozole fumarate (LIA), a compound that blocks the P450-dependent catabolism of retinoic acid (RA). In vitro

  9. Ethynyl and Propynylpyrene Inhibitors of Cytochrome P450.

    PubMed

    Zhu, Naijue; Lightsey, Danielle; Liu, Jiawang; Foroozesh, Maryam; Morgan, Kathleen M; Stevens, Edwin D; Klein Stevens, Cheryl L

    2010-04-01

    The single-crystal X-ray structures and in vivo activities of three aryl acetylenic inhibitors of cytochromes P450 1A1, 1A2, 2A6, and 2B1 have been determined and are reported herein. These are 1-ethynylpyrene, 1-propy-nylpyrene, and 4-propynylpyrene. To investigate electronic influences on the mechanism of enzyme inhibition, the experimental electron density distribution of 1-ethynylpy-rene has been determined using low-temperature X-ray diffraction measurements, and the resulting net atomic charges compared with various theoretical calculations. A total of 82,390 reflections were measured with Mo Kα radiation to a (sinθ/λ)(max) = 0.985 Å(-1). Averaging symmetry equivalent reflections yielded 8,889 unique reflections. A least squares refinement procedure was used in which multipole parameters were added to describe the distortions of the atomic electron distributions from spherical symmetry. A map of the model electron density distribution of 1-ethynylpyrene was obtained. Net atomic charges calculated from refined monopole population parameters yielded charges that showed that the terminal acetylenic carbon atom (C18) is more negative than the internal carbon (C17). Net atomic charges calculated by ab initio, density functional theory, and semi-empirical methods are consistent with this trend suggesting that the terminal acetylenic carbon atom is more likely to be the site of oxidation. This is consistent with the inhibition mechanism pathway that results in the formation of a reactive ketene intermediate. This is also consistent with assay results that determined that 1-ethynylpyrene acts as a mechanism-based inhibitor of P450s 1A1 and 1A2 and as a reversible inhibitor of P450 2B1. Crystallographic data: 1-ethynylpyrene, C(18)H(10), P2(1)/c, a = 14.571(2) Å, b = 3.9094(5) Å, c = 20.242(3) Å, β = 105.042(2)°, V = 1,113.5(2) Å(3); 1-propynylpyrene, C(19)H(12), P2(1)/n, a = 8.970(2) Å, b = 10.136(1) Å, c = 14.080(3) Å, β = 99.77(2)°, V = 1,261.5(4)

  10. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9

    PubMed Central

    Nembri, Serena; Grisoni, Francesca; Consonni, Viviana; Todeschini, Roberto

    2016-01-01

    Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of the most important CYP isoforms, namely 2C9 and 3A4. The presented models are calibrated on 9122 drug-like compounds, using three different modelling approaches and two types of molecular description (classical molecular descriptors and binary fingerprints). For each isoform, three classification models are presented, based on a different approach and with different advantages: (1) a very simple and interpretable classification tree; (2) a local (k-Nearest Neighbor) model based classical descriptors and; (3) a model based on a recently proposed local classifier (N-Nearest Neighbor) on binary fingerprints. The salient features of the work are (1) the thorough model validation and the applicability domain assessment; (2) the descriptor interpretation, which highlighted the crucial aspects of P450-drug interaction; and (3) the consensus aggregation of models, which largely increased the prediction accuracy. PMID:27294921

  11. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9.

    PubMed

    Nembri, Serena; Grisoni, Francesca; Consonni, Viviana; Todeschini, Roberto

    2016-01-01

    Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of the most important CYP isoforms, namely 2C9 and 3A4. The presented models are calibrated on 9122 drug-like compounds, using three different modelling approaches and two types of molecular description (classical molecular descriptors and binary fingerprints). For each isoform, three classification models are presented, based on a different approach and with different advantages: (1) a very simple and interpretable classification tree; (2) a local (k-Nearest Neighbor) model based classical descriptors and; (3) a model based on a recently proposed local classifier (N-Nearest Neighbor) on binary fingerprints. The salient features of the work are (1) the thorough model validation and the applicability domain assessment; (2) the descriptor interpretation, which highlighted the crucial aspects of P450-drug interaction; and (3) the consensus aggregation of models, which largely increased the prediction accuracy. PMID:27294921

  12. Twenty years of biochemistry of human P450s: purification, expression, mechanism, and relevance to drugs.

    PubMed

    Guengerich, F P; Hosea, N A; Parikh, A; Bell-Parikh, L C; Johnson, W W; Gillam, E M; Shimada, T

    1998-12-01

    Today cytochrome P450 (P450) research is accepted as an integral part of drug development and discovery. Work leading to this point included biochemical studies on P450 in experimental animal models and application to human systems. The development of recombinant expression systems has been an important part of the progress, and in this article we describe some recently developed bacterial systems that can be used for the production of metabolites, genotoxicity testing, and screening in random mutagenesis work. Rate-limiting aspects of P450 reactions vary with particular systems, and further investigations are in order. Non-ionic detergents have been utilized widely in P450 purification work; these compounds are now shown to be substrates for P450s. These oxidations are not only of fundamental interest in expanding the repertoire of P450 substrates but have significance in light of human exposure to these compounds. PMID:9860923

  13. Mechanisms that Regulate Production of Reactive Oxygen Species by Cytochrome P450

    SciTech Connect

    Zangar, Richard C.; Davydov, Dmitri R.; Verma, Seema

    2004-09-15

    Mammalian cytochromes P450 (P450) are a family of heme-thiolate enzymes involved in the oxidative metabolism of a variety of endogenous and exogenous lipophilic compounds. Poor coupling of the P450 catalytic cycle results in continuous production of reactive oxygen species (ROS), which affect signaling pathways and other cellular functions. P450 generation of ROS is tightly controlled by regulation of gene transcription, as well as by modulation of interactions between protein constituents of the monooxygenase that affects its activity, coupling and stability. Malfunction of these mechanisms may result in a burst of ROS production, which can cause lipid peroxidation and oxidative stress. In turn, oxidative stress downregulates P450 levels by a variety of feedback mechanisms. This review provides an overview of recent advances in our understanding of these feedback mechanisms that serve to limit P450 production of ROS. Some of the more likely physiological and cellular effects of P450 generation of ROS are also discussed.

  14. New platform for cytochrome p450 reaction combining in situ immobilization on biopolymer.

    PubMed

    Lee, Jae Hyung; Nam, Dong Heon; Lee, Sahng Ha; Park, Jong Hyun; Park, Si Jae; Lee, Seung Hwan; Park, Chan Beum; Jeong, Ki Jun

    2014-12-17

    We describe an efficienct chemical conversion platform with in situ immobilization of P450-BM3 on poly(3-hydroxybutyrate) granules. Through fusion with phasin, P450-BM3 is easily immobilized on poly(3-hydroxybutyrate) granules in Escherichia coli. In our work, the immobilized P450 exhibited higher stability and catalytic activity compared to free P450 against changes of pH, temperature, and concentrations of urea and ions. Through quick recovery of immobilized enzyme, the P450-P(3HB) complex successfully catalyzed an O-dealkylation reaction several times with maintained activity. Using the robust P450-P(3HB) complex, we performed a P450-catalyzed reaction on a preparative reactor scale (100 mL) and high-level production (12.3 μM) of 7-hydroxycoumarine from 7-ethoxycoumarin could be achieved. PMID:25322062

  15. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering

    PubMed Central

    Pikuleva, Irina A.

    2010-01-01

    Cardiovascular disease (CVD) continues to be a leading cause of death worldwide. Elevated serum cholesterol is one of the classical risk factors for CVD which also include age, hypertension, smoking, diabetes mellitus, obesity and family history. A number of therapeutic drug classes have been developed to treat hypercholesterolemia, yet, an important percentage of patients do not reach their treatment goals. Therefore, new cholesterol-lowering medications, having a site of action different from that of currently available drugs need to be developed. This review summarizes new information about cytochrome P450 enzymes 7A1, 27A1, and 46A1, that play key roles in cholesterol elimination and that have potential to serve as targets for cholesterol-lowering. PMID:18950282

  16. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2014-01-01

    Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. PMID:25093613

  17. Personalized Cancer Therapy Considering Cytochrome P450 Variability.

    PubMed

    Preissner, Saskia; Simmaco, Maurizio; Gentile, Giovanna; Preissner, Robert

    2015-01-01

    The individual variability of pharmacokinetics is underestimated and few systematic studies exist in this field. In most cases, this leads to unwanted side effects or toxicity. In polychemotherapy, prodrugs (like ifosfamide), which have to be activated by cytochrome P450 enzymes (CYPs), play an important role. If patients are poor metabolizers for these drugs, the therapy will be ineffective. Furthermore, CYPs and transporters can be (over)expressed in target tissues, which is also not examined and considered in clinical routine. Here, we present a body map showing relevant enzymes in some organs and tissues. Finally, a typical case of a Caucasian chemotherapy patient with breast cancer is presented and discussed regarding a personalized cancer therapy considering the single nucleotide polymorphisms found via genotyping. PMID:26233905

  18. Novel Bioactivation Pathway of Benzbromarone Mediated by Cytochrome P450.

    PubMed

    Kitagawara, Yumina; Ohe, Tomoyuki; Tachibana, Kumiko; Takahashi, Kyoko; Nakamura, Shigeo; Mashino, Tadahiko

    2015-09-01

    Benzbromarone (BBR) is a hepatotoxic drug, but the detailed mechanism of its toxicity remains unknown. We identified 2,6-dibromohydroquinone (DBH) and mono-debrominated catechol (2-ethyl-3-(3-bromo-4,5-dihydroxybenzoyl)benzofuran; CAT) as novel metabolites of BBR in rat and human liver microsomal systems by comparison with chemically synthesized authentic compounds, and we also elucidated that DBH is formed by cytochrome P450 2C9 and that CAT is formed mainly by CYP1A1, 2D6, 2E1, and 3A4. Furthermore, CAT, DBH, and the oxidized form of DBH are highly cytotoxic in HepG2 compared with BBR. Taken together, our data demonstrate that DBH, a novel reactive metabolite, may be relevant to BBR-induced hepatotoxicity. PMID:26106235

  19. Bacterial Cytochrome P450 System Catabolizing the Fusarium Toxin Deoxynivalenol

    PubMed Central

    Ito, Michihiro; Sato, Ikuo; Ishizaka, Masumi; Yoshida, Shin-ichiro; Koitabashi, Motoo; Yoshida, Shigenobu

    2013-01-01

    Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (kcat/Km) of 6.4 mM−1 s−1. The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat. PMID:23275503

  20. Ipriflavone as an inhibitor of human cytochrome P450 enzymes

    PubMed Central

    Monostory, Katalin; Vereczkey, László; Lévai, Ferenc; Szatmári, István

    1998-01-01

    Reduction of theophylline metabolism and elimination were observed in a theophylline-treated patient during ipriflavone administration. After withdrawal of ipriflavone, the serum theophylline level decreased to an extent similar to that found before administration of ipriflavone. The effects of ipriflavone and its major metabolites 7-hydroxy-isoflavone and 7-(1-carboxy-ethoxy)-isoflavone on cytochrome P450 activities were studied in vitro in human liver microsomes from three donors. Ipriflavone and 7-hydroxy-isoflavone competitively inhibited phenacetin O-deethylase and tolbutamide hydroxylase activity. The parent compound and its dealkylated metabolite were strong inhibitors exhibiting Ki values around 10–20 μM, while 7-(1-carboxy-ethoxy)-isoflavone had no effect on the cytochrome P450 activities investigated. 7-Hydroxy-isoflavone is the only one that influenced nifedipine oxidase activity. It competitively inhibited this activity with a Ki value of 129.5 μM. The steady state concentrations of ipriflavone and 7-hydroxy-isoflavone in plasma of patients receiving 3×200 mg daily doses of ipriflavone for 48 weeks were found to be 0.33±0.32 μM and 1.44±0.77 μM, respectively. The results indicate that the decrease in theophylline metabolism observed in a patient treated with ipriflavone may be due to a competitive interaction of ipriflavone or its metabolite, 7-hydroxy-isoflavone with CYP1A2. On the other hand, our in vitro findings predict some more interaction with CYP2C9. PMID:9517377

  1. Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s.

    PubMed

    Chaudhry, Amarjit S; Thirumaran, Ranjit K; Yasuda, Kazuto; Yang, Xia; Fan, Yiping; Strom, Stephen C; Schuetz, Erin G

    2013-08-01

    Human liver gene regulatory (Bayesian) network analysis was previously used to identify a cytochrome P450 (P450) gene subnetwork with Aldo-keto reductase 1D1 (AKR1D1) as a key regulatory driver of this subnetwork. This study assessed the biologic importance of AKR1D1 [a key enzyme in the synthesis of bile acids, ligand activators of farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), known transcriptional regulators of P450s] to hepatic P450 expression. Overexpression of AKR1D1 in primary human hepatocytes led to increased expression of CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6. Conversely, AKR1D1 knockdown decreased expression of these P450s. We resequenced AKR1D1 from 98 donor livers and identified a 3'-untranslated region (UTR) (rs1872930) single nucleotide polymorphism (SNP) significantly associated with higher AKR1D1 mRNA expression. AKR1D1 3'-UTR-luciferase reporter studies showed that the variant allele resulted in higher luciferase activity, suggesting that the SNP increases AKR1D1 mRNA stability and/or translation efficiency. Consistent with AKR1D1's putative role as a driver of the P450 subnetwork, the AKR1D1 3'-UTR SNP was significantly associated with increased hepatic mRNA expression of multiple P450s (CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6) and CYP3A4, CYP2C8, CYP2C19, and CYP2B6 activities. After adjusting for multiple testing, the association remained significant for AKR1D1, CYP2C9, and CYP2C8 mRNA expression and CYP2C8 activity. These results provide new insights into the variation in expression and activity of P450s that can account for interindividual differences in drug metabolism/efficacy and adverse drug events. In conclusion, we provide the first experimental evidence supporting a role for AKR1D1 as a key genetic regulator of the P450 network. PMID:23704699

  2. N-methylcarbazole metabolism by a purified isozyme of rat liver microsomal cytochrome P-450: membrane effects and autocatalytic inactivation

    SciTech Connect

    Gurka, D.P.

    1985-01-01

    The catalytic properties of purified cytochrome P-450b, the major isozyme found in hepatic microsomes from phenobarbital-pretreated rats, for the metabolism of N-methylcarbazole (NMC) were analyzed in two membranous systems in order to investigate membrane bilayer-dependent parameters. Incorporation of the enzymes of the monoxygenase system into bilayer liposomal vesicles composed of total microsomal lipid had no effect on the rates or regioselectivity of the mono-hydroxylation of the substrate when compared to the same enzymes reconstituted in a soluble system with small amounts of dilauroylphosphatidylcholine (DLPC). The membranous system exhibited K/sub m/ values of NMC which were 4-5 times higher than the non-vesicular system. The rapid decline in the rates of NMC metabolism by cytochrome P-450b during catalysis suggested enzyme inactivation during substrate processing. Radiolabel from (methyl-/sup 14/C)NMC was incorporated into the P-450b apoprotein as a result of enzyme turnover co-incident with the loss of enzyme activity. NMC-stimulated NADPH oxidation by the reconstituted enzyme system containing DLPC was biophasic, with a slow rate preceding a two-fold higher rate. Carbazole and some N-substituted derivatives were unique in stimulating this unusual oxidation.

  3. An Enlarged, Adaptable Active Site in CYP164 Family P450 Enzymes, the Sole P450 in Mycobacterium leprae

    PubMed Central

    Agnew, Christopher R. J.; Warrilow, Andrew G. S.; Burton, Nicholas M.; Lamb, David C.; Kelly, Steven L.

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin “open” conformation of the enzyme (Kd [dissociation constant] of 0.1 μM), with binding to the low-spin “closed” form being significantly hindered (Kd of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy. PMID:22037849

  4. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  5. Factors affecting the clinical development of cytochrome p450 3A substrates.

    PubMed

    Gibbs, Megan A; Hosea, Natilie A

    2003-01-01

    The objective of this review is to evaluate the risks associated with the discovery and development of cytochrome p450 (CYP) 3A substrates. CYP3A is the most abundant p450 enzyme in human liver and is highly expressed in the intestinal tract. The enzyme contributes substantially to metabolism of approximately 50% of currently marketed drugs that undergo oxidative metabolism. As a result, drug-drug interactions involving inhibitors of CYP3A-mediated metabolism can be of great clinical consequence. It is the position of the authors that, because of the factors responsible for the broad substrate specificity of CYP3A, discovery and development of compounds across a large and broad portfolio that are completely devoid of CYP3A metabolism is not feasible. Thus, it is important that scientifically valid approaches to the discovery and development of compounds metabolised by CYP3A be realised. The clinical relevance of CYP3A metabolism is dependent on a multitude of factors that include the degree of intestinal and hepatic CYP3A-mediated first-pass extraction, the therapeutic index of the compound and the adverse event associated with inhibition of CYP3A metabolism. Thus, a better understanding of the disposition of a CYP3A-metabolised compound relative to the projected or observed therapeutic index (or safety margin) can provide ample evidence to support the continued development of a CYP3A substrate. This document will highlight current practices as well as the benefits and risks associated with those practices. PMID:12908853

  6. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

    PubMed Central

    Yang, Xia; Zhang, Bin; Molony, Cliona; Chudin, Eugene; Hao, Ke; Zhu, Jun; Gaedigk, Andrea; Suver, Christine; Zhong, Hua; Leeder, J. Steven; Guengerich, F. Peter; Strom, Stephen C.; Schuetz, Erin; Rushmore, Thomas H.; Ulrich, Roger G.; Slatter, J. Greg; Schadt, Eric E.; Kasarskis, Andrew; Lum, Pek Yee

    2010-01-01

    Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s. PMID:20538623

  7. P450 2C18 catalyzes the metabolic bioactivation of phenytoin.

    PubMed

    Kinobe, Robert T; Parkinson, Oliver T; Mitchell, Deanne J; Gillam, Elizabeth M J

    2005-12-01

    The safe clinical use of phenytoin (PHT) is compromised by a drug hypersensitivity reaction, hypothesized to be due to bioactivation of the drug to a protein-reactive metabolite. Previous studies have shown PHT is metabolized to the primary phenol metabolite, HPPH, then converted to a catechol which then autoxidizes to produce reactive quinone. PHT is known to be metabolized to HPPH by cytochromes P450 (P450s) 2C9 and 2C19 and then to the catechol by P450s 2C9, 2C19, 3A4, 3A5, and 3A7. However, the role of many poorly expressed or extrahepatic P450s in the metabolism and/or bioactivation of PHT is not known. The aim of this study was to assess the ability of other human P450s to catalyze PHT metabolism. P450 2C18 catalyzed the primary hydroxylation of PHT with a kcat (2.46 +/- 0.09 min-1) more than an order of magnitude higher than that of P450 2C9 (0.051 +/- 0.004 min-1) and P450 2C19 (0.054 +/- 0.002 min-1) and Km (45 +/- 5 microM) slightly greater than those of P450 2C9 (12 +/- 4 microM) and P450 2C19 (29 +/- 4 microM). P450 2C18 also efficiently catalyzed the secondary hydroxylation of PHT as well as covalent drug-protein adduct formation from both PHT and HPPH in vitro. While P450 2C18 is expressed poorly in the liver, significant expression has been reported in the skin. Thus, P450 2C18 may be important for the extrahepatic tissue-specific bioactivation of PHT in vivo. PMID:16359177

  8. Furafylline is a potent and selective inhibitor of cytochrome P450IA2 in man.

    PubMed Central

    Sesardic, D; Boobis, A R; Murray, B P; Murray, S; Segura, J; de la Torre, R; Davies, D S

    1990-01-01

    1. Furafylline (1,8-dimethyl-3-(2'-furfuryl)methylxanthine) is a methylxanthine derivative that was introduced as a long-acting replacement for theophylline in the treatment of asthma. Administration of furafylline was associated with an elevation in plasma levels of caffeine, due to inhibition of caffeine oxidation, a reaction catalysed by one or more hydrocarbon-inducible isoenzymes of P450. We have now investigated the selectivity of inhibition of human monooxygenase activities by furafylline. 2. Furafylline was a potent, non-competitive inhibitor of high affinity phenacetin O-deethylase activity of microsomal fractions of human liver, a reaction catalysed by P450IA2, with an IC50 value of 0.07 microM. 3. Furafylline had either very little or no effect on human monooxygenase activities catalysed by other isoenzymes of P450, including P450IID1, P450IIC, P450IIA. Of particular interest, furafylline did not inhibit P450IA1, assessed from aryl hydrocarbon hydroxylase activity of placental samples from women who smoked cigarettes. 4. It is concluded that furafylline is a highly selective inhibitor of P450IA2 in man. 5. Furafylline was a potent inhibitor of the N3-demethylation of caffeine and of a component of the N1- and N7-demethylation. This confirms earlier suggestions that caffeine is a selective substrate of a hydrocarbon-inducible isoenzyme of P450 in man, and identifies this as P450IA2. Thus, caffeine N3-demethylation should provide a good measure of the activity of P450IA in vivo in man. 6. Although furafylline selectively inhibited P450IA2, relative to P450IA1, in the rat, this was at 1000-times the concentration required to inhibit the human isoenzyme, suggesting a major difference in the active site geometry between the human and the rat orthologues of P50IA2. PMID:2378786

  9. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update.

    PubMed

    Crews, K R; Gaedigk, A; Dunnenberger, H M; Leeder, J S; Klein, T E; Caudle, K E; Haidar, C E; Shen, D D; Callaghan, J T; Sadhasivam, S; Prows, C A; Kharasch, E D; Skaar, T C

    2014-04-01

    Codeine is bioactivated to morphine, a strong opioid agonist, by the hepatic cytochrome P450 2D6 (CYP2D6); hence, the efficacy and safety of codeine are governed by CYP2D6 activity. Polymorphisms are a major cause of CYP2D6 variability. We summarize evidence from the literature supporting this association and provide therapeutic recommendations for codeine based on CYP2D6 genotype. This document is an update to the 2012 Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2D6 genotype and codeine therapy. PMID:24458010

  10. Inactivation of purified rat liver cytochrome P-450 2B1 and rabbit liver cytochrome P-450 2B4 by N-methylcarbazole.

    PubMed

    Kuemmerle, S C; Shen, T; Hollenberg, P F

    1994-01-01

    Metabolism of N-methylcarbazole by purified rat liver cytochrome P-450 2B1 or rabbit liver P-450 2B4 resulted in the inactivation of these enzymes in a time-dependent, pseudo-first order manner as assayed spectrally by the decrease in the reduced CO spectrum at 450 nm. The inactivation was saturable with respect to the concentration of N-methylcarbazole, and a Ki = 5.2 microM and kINACT = 0.14 min-1 were determined for the inactivation of P-450 2B1. For P-450 2B4 inactivation, the Ki was 23 microM and the kINACT = 0.21 min-1. There was no increase in the reduced CO spectrum at 420 nm accompanying the inactivation, and the slight loss of the P-450 heme prosthetic group, as determined by the spectrum at 418 nm, was not sufficient to account for the loss of the reduced CO spectrum at 450 nm. The metabolism of N-methylcarbazole by P-450 did not result in the formation of a metabolic intermediate complex, which could also be responsible for the loss of cytochrome P-450 activity. Loss of catalytic activity for further substrate metabolism was also observed after preincubation of enzyme with N-methylcarbazole and the loss of catalytic activity correlated with the loss of the reduced CO spectrum. Accompanying the loss of spectrally detectable P-450 2B1 and P-450 2B4 catalytic activity, there was an increase in the NADPH oxidation rate. This increased rate persisted on subsequent addition of NADPH. PMID:8070309

  11. Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes

    PubMed Central

    Shimada, Tsutomu; Takenaka, Shigeo; Murayama, Norie; Yamazaki, Hiroshi; Kim, Joo-Hwan; Kim, Donghak; Yoshimoto, Francis K.; Guengerich, F. Peter; Komori, Masayuki

    2016-01-01

    Acenaphthene and acenaphthylene, two known environmental polycyclic aromatic hydrocarbon (PAH) pollutants, were incubated at 50 µM concentrations in a standard reaction mixture with human P450s 2A6, 2A13, 1B1, 1A2, 2C9, and 3A4 and the oxidation products were determined using HPLC and LC-MS. HPLC analysis showed that P450 2A6 converted acenaphthene and acenaphthylene to several mono- and di-oxygenated products. LC-MS analysis of acenaphthene oxidation by P450s indicated the formation of 1-acenaphthenol as a major product, with turnover rates of 6.7, 4.5, and 3.6 nmol product formed/min/nmol P450 for P450 2A6, 2A13, and 1B1, respectively. Acenaphthylene oxidation by P450 2A6 showed the formation of 1,2-epoxyacenaphthene as a major product (4.4 nmol epoxide formed/min/nmol P450) and also several mono- and di-oxygenated products. P450 2A13, 1B1, 1A2, 2C9, and 3A4 formed 1,2-epoxyacenaphthene at rates of 0.18, 5.3 2.4, 0.16, and 3.8 nmol/min nmol P450, respectively. 1-Acenaphthenol, which induced Type I binding spectra with P450 2A13, was further oxidized by P450 2A13 but not P450 2A6. 1,2-Epoxyacenaphthene induced Type I binding spectra with P450 2A6 and 2A13 (Ks 1.8 and 0.16 µM, respectively) and was also oxidized to several oxidation products by these P450s. Molecular docking analysis suggested different orientations of acenaphthene, acenaphthylene, 1-acenaphthenol, and 1,2-epoxyacenaphthene in their interactions with P450 2A6 and 2A13. Neither these four PAHs induced umu gene expression in a Salmonella typhimurium NM tester strain. These results suggest, for the first time, that acenaphthene and acenaphthylene are oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and di-oxygenated products. The results are of use in considering the biological and toxicological significance of these environmental PAHs in humans. PMID:25642975

  12. Inhibitory effects of sanguinarine on human liver cytochrome P450 enzymes.

    PubMed

    Qi, Xiao-Yi; Liang, Si-Cheng; Ge, Guang-Bo; Liu, Yong; Dong, Pei-Pei; Zhang, Jiang-Wei; Wang, Ao-Xue; Hou, Jie; Zhu, Liang-Liang; Yang, Ling; Tu, Cai-Xia

    2013-06-01

    Sanguinarine (SAG) has been recognized as an anticancer drug candidate. However, the drug-drug interactions (DDI) potential for SAG via the inhibition against human cytochrome P450 (CYP) enzymes remains unclear. In the present study, the inhibitory effects of SAG on seven major human CYP isoforms 1A2, 2A6, 2E1, 2D6, 2C8, 2C9 and 3A4 were investigated with human liver microsomes (HLM). The results showed that SAG was a potent noncompetitive inhibitor of CYP2C8 activity (Ki=8.9 μM), and competitive inhibitor of CYP1A2, CYP2C9 and CYP3A4 activities (Ki=2.7, 3.8 and 2.0 μM, respectively). Furthermore, SAG exhibited time- and NADPH-dependent inhibition towards CYP1A2 and CYP3A4 with KI/kinact values of 13.3/0.087 and 5.58/0.029 min(-1) μM(-1), respectively. Weak inhibition of SAG against CYP2E1, CYP2D6 and CYP2A6 was also observed. In vitro-in vivo extrapolation (IV-IVE) from HLM data showed that more than 35.9% of CYP1A2, CYP2C9, CYP2C8 and CYP3A4 activities in vivo could be inhibited by SAG, suggesting that harmful DDIs could occur when SAG or its medical preparations are co-administered with drugs primarily cleared by these CYP isoforms. Further in vivo studies are needed to evaluate the clinical significance of the data presented herein. PMID:23500771

  13. Cytochrome P450s in the development of target-based anticancer drugs.

    PubMed

    Purnapatre, Kedar; Khattar, Sunil K; Saini, Kulvinder Singh

    2008-01-18

    Enzymes of the cytochrome P450 (CYP) superfamily are the major determinants of half-life and execute pharmacological effects of many therapeutic drugs. In new drug discovery research, recombinant (human) CYPs are also used for identifying active or inactive metabolites that could lead to increased potency or toxicity of a molecule. In addition, CYP inhibition by anticancer drugs might lead to adverse drug reactions, multiple-drug resistance, and drug-drug interactions. During the discovery and pre-clinical evaluation of a New Chemical Entity (NCE), large amounts of purified recombinant CYPs are required for studying metabolism and pharmacokinetic parameters. Therefore, present research efforts are focused to over-express these human CYPs in bacteria, yeast, insect and mammalian cells, followed by their purification on an industrial scale to facilitate identification of novel anticancer drugs. This review summarizes the merits and limitations of these expression systems for an optimized production of individual CYP isoforms, and their usefulness in the discovery and development of target-based, safe and efficacious NCEs for the treatment of cancer. PMID:18053638

  14. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer

    PubMed Central

    Johnson, Amanda L.; Edson, Katheryne Z.; Totah, Rheem A.; Rettie, Allan E.

    2015-01-01

    Cytochrome P450-dependent ω-hydroxylation is a prototypic metabolic reaction of CYP4 family members that is important for the elimination and bioactivation of not only therapeutic drugs, but also endogenous compounds, principally fatty acids. Eicosanoids, derived from arachidonic acid, are key substrates in the latter category. Human CYP4 enzymes, mainly CYP4A11, CYP4F2, and CYP4F3B, hydroxylate arachidonic acid at the omega position to form 20-HETE, which has important effects in tumor progression and on angiogenesis and blood pressure regulation in the vasculature and kidney. CYP4F3A in myeloid tissue catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an inactivation process that is critical for the regulation of the inflammatory response. Here, we review the enzymology, tissue distribution, and substrate selectivity of human CYP4 ω-hydroxylases and their roles as catalysts for the formation and termination of the biological effects of key eicosanoid metabolites in inflammation and cancer progression. PMID:26233909

  15. Redox-dependent dynamics in cytochrome P450cam.

    PubMed

    Pochapsky, Susan Sondej; Dang, Marina; OuYang, Bo; Simorellis, Alana K; Pochapsky, Thomas C

    2009-05-26

    Local protein backbone dynamics of the camphor hydroxylase cytochrome P450(cam) (CYP101) depend upon the oxidation and ligation state of the heme iron. (1)H-(15)N correlation nuclear magnetic resonance experiments were used to compare backbone dynamics of oxidized and reduced forms of this 414-residue metalloenzyme via hydrogen-deuterium exchange kinetics (H-D exchange) and (15)N relaxation measurements, and these results are compared with previously published results obtained by H-D exchange mass spectrometry. In general, the reduced enzyme exhibits lower-amplitude motions of secondary structural features than the oxidized enzyme on all of the time scales accessible to these experiments, and these differences are more pronounced in regions of the enzyme involved in substrate access to the active site (B' helix and beta3 and beta5 sheets) and binding of putidaredoxin (C and L helices), the iron-sulfur protein that acts as the effector and reductant of CYP101 in vivo. These results are interpreted in terms of local structural effects of changes in the heme oxidation state, and the relevance of the observed effects to the enzyme mechanism is discussed. PMID:19366254

  16. Hot-spot residues in the cytochrome P450cam-putidaredoxin binding interface.

    PubMed

    Hiruma, Yoshitaka; Gupta, Ankur; Kloosterman, Alexander; Olijve, Caroline; Olmez, Betül; Hass, Mathias A S; Ubbink, Marcellus

    2014-01-01

    Cytochrome P450cam (P450cam) is a heme-containing monooxygenase that catalyzes the hydroxylation of D-camphor to produce 5-exo-hydroxycamphor. The catalytic cycle of P450cam requires two electrons, both of which are donated by putidaredoxin (Pdx), a ferredoxin containing a [2 Fe-2 S] cluster. Atomic-resolution structures of the Pdx-P450cam complex have recently been solved by X-ray crystallography and paramagnetic NMR spectroscopy. The binding interface showed the potential electron transfer pathways and interactions between Pdx Asp38 and P450cam Arg112, as well as hydrophobic contacts between the Pdx Trp106 and P450cam residues. Several polar residues not previously recognized as relevant for binding were found in the interface. In this study, site-directed mutagenesis, kinetic measurements, and NMR studies were employed to probe the energetic importance and role of the polar residues in the Pdx-P450cam interaction. A double mutant cycle (DMC) analysis of kinetic data shows that favorable interactions exist between Pdx Tyr33 and P450cam Asp125, as well as between Pdx Ser42 and P450cam His352. The results show that alanine substitutions of these residues and several others do not influence the rates of electron transfer. It is concluded that these polar interactions contribute to partner recognition rather than to electronic coupling of the redox centers. PMID:24302683

  17. Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors.

    PubMed

    Schuster, Daniela; Laggner, Christian; Steindl, Theodora M; Palusczak, Anja; Hartmann, Rolf W; Langer, Thierry

    2006-01-01

    Cytochrome P450 19 (P450 19, aromatase) constitutes a successful target for the treatment of breast cancer. This study analyzes chemical features common to P450 19 inhibitors to develop ligand-based, selective pharmacophore models for this enzyme. The HipHop and HypoRefine algorithms implemented in the Catalyst software package were employed to create both common feature and quantitative models. The common feature model for P450 19 includes two ring aromatic features in its core and two hydrogen bond acceptors at the ends. The models were used as database search queries to identify active compounds from the NCI database. PMID:16711749

  18. The role of metabolites in predicting drug-drug interactions: Focus on irreversible P450 inhibition

    PubMed Central

    VandenBrink, Brooke M.; Isoherranen, Nina

    2010-01-01

    Irreversible inhibition of cytochrome P450 enzymes can cause significant drug-drug interactions (DDIs). Formation of metabolites is fundamental for the inactivation of P450 enzymes. Of the 19 inactivators with a known mechanism of inactivation, 10 have circulating metabolites that are known to be on path to inactive P450. The fact that inactivation usually requires multiple metabolic steps implies that predicting in vivo interactions may require complex models, and in vitro data generated from each metabolite. The data reviewed here suggest that circulating metabolites are much more important in in vivo P450 inhibition than is currently acknowledged. PMID:20047147

  19. An artificial electron donor supported catalytic cycle of Pseudomonas putida cytochrome P450{sub cam}

    SciTech Connect

    Prasad, Swati . E-mail: swati@scripps.edu; Murugan, Rajamanickam; Mitra, Samaresh

    2005-09-23

    Putidaredoxin (PdX), the physiological effector of cytochrome P450{sub cam} (P450{sub cam}), serves to gate electron transfer into oxy-P450{sub cam} during the catalytic cycle of the enzyme. Redox-linked structural changes in PdX are necessary for the effective P450{sub cam} turnover reaction. PdX is believed to be difficult to be replaced by an artificial electron donor in the reaction pathway of P450{sub cam}. We demonstrate that the catalytic cycle of wild-type P450{sub cam} can be supported in the presence of an artificial reductant, potassium ferrocyanide. Upon rapid mixing of ferrocyanide ion with P450{sub cam}, we observed an intermediate with spectral features characteristic of compound I. The rate constant for the formation of compound I in the presence of ferrocyanide supported reaction cycle was found to be comparable to the ones observed for H{sub 2}O{sub 2} supported compound I formation in wild-type P450{sub cam}, but was much lower than those observed for classical peroxidases. The results presented in this paper form the first kinetic analysis of this intermediate for an artificial electron-driven P450{sub cam} catalytic pathway in solution.

  20. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    SciTech Connect

    Kreamer, G.L.; Squibb, K.; Gioeli, D.; Garte, S.J.; Wirgin, I. )

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.

  1. Radiometric assay for direct quantitation of rat liver cytochrome P-450b using monoclonal antibodies.

    PubMed

    Rothwell, C E; Khazaeli, M B; Bernstein, I A

    1985-08-15

    A simple and sensitive assay has been developed that is capable of detecting as little as 0.2 ng of the major isozyme of cytochrome P-450 (P-450b) isolated from the livers of phenobarbital-induced rats. This assay employs monoclonal antibodies generated against cytochrome P-450b to directly quantify the levels of this enzyme in various tissues. Separation of bound from free labeled antibody is achieved by using 6,9-diaminoacridine lactate (Rivanol). The useful range of the assay is between 1 and 100 ng of P-450b. PMID:3935002

  2. Isolation of immunochemically distinct form of cytochrome P-450 from microsomes of tulip bulbs.

    PubMed

    Higashi, K; Ikeuchi, K; Karasaki, Y; Obara, M

    1983-08-30

    A highly purified cytochrome P-450 was obtained from the microsomes of tulip bulbs (Tulipa gesneriana L.). The molecular weight (Mr = 52,500) and amino acid composition of this plant cytochrome P-450 are similar to those reported for rat livers. On the contrary, Ouchterlony double diffusion analyses indicated that cytochrome P-450 isolated from tulip bulbs shares no common antigenic determinants with those of 9 other plants, in spite of the presence of comparable contents of cytochrome P-450 and/or trans-cinnamate 4-monooxygenase with tulip bulbs. PMID:6412714

  3. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    SciTech Connect

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  4. The 2001 Veylien Henderson Award of the Society of Toxicology of Canada. Positive and negative transcriptional regulation of cytochromes P450 by polycyclic aromatic hydrocarbons.

    PubMed

    Riddick, David S; Lee, Chunja; Bhathena, Anahita; Timsit, Yoav E

    2003-01-01

    Most responses to aromatic hydrocarbons such as 3-methylcholanthrene (MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin are mediated by the aromatic hydrocarbon receptor (AHR). The AHR regulates induction of drug-metabolizing enzymes such as cytochrome P450 1A1. However, the expression of several genes of biological significance is decreased by these chemicals. We are examining the mechanisms by which aromatic hydrocarbons suppress constitutive hepatic cytochromes P450, especially the male-specific rat liver cytochrome P450 2C11 (CYP2C11), which is regulated by pulsatile growth hormone (GH) secretion. Aromatic hydrocarbons suppress CYP2C11 via a transcriptional mechanism both in vivo and in cultured hepatocytes, and the AHR appears to be involved; however, studies of protein-DNA interactions and reporter genes driven by the CYP2C11 5'-flanking region have not provided a definitive mechanism for this response. MC attenuates the ability of GH to stimulate hepatic CYP2C11 expression in hypophysectomized (hypx) male rats, and this prompted studies of effects of aromatic hydrocarbons on hepatic GH signaling pathways as a novel aspect of endocrine disruption. Our studies with hypx rats also suggest that the hepatic AHR protein is regulated by a pituitary factor(s). The goal of these molecular mechanistic studies is to improve our understanding of how environmental contaminants modulate the expression of genes coding for xenobiotic- and hormone-metabolizing enzymes. PMID:12665258

  5. Engineering of daidzein 3’-hydroxylase P450 enzyme into catalytically self-sufficient cytochrome P450

    PubMed Central

    2012-01-01

    A cytochrome P450 (CYP) enzyme, 3’-daidzein hydroxylase, CYP105D7 (3’-DH), responsible for daidzein hydroxylation at the 3’-position, was recently reported. CYP105D7 (3’-DH) is a class I type of CYP that requires electrons provided through electron transfer proteins such as ferredoxin and ferredoxin reductase. Presently, we constructed an artificial CYP in order to develop a reaction host for the production of a hydroxylated product. Fusion-mediated construction with the reductase domain from self-sufficient CYP102D1 was done to increase electron transfer efficiency and coupling with the oxidative process. An artificial self-sufficient daidzein hydroxylase (3’-ASDH) displayed distinct spectral properties of both flavoprotein and CYP. The fusion enzyme catalyzed hydroxylation of daidzein more efficiently, with a kcat/Km value of 16.8 μM-1 min-1, which was about 24-fold higher than that of the 3’-DH-camA/B reconstituted enzyme. Finally, a recombinant Streptomyces avermitilis host for the expression of 3’-ASDH and production of the hydroxylated product was developed. The conversion that was attained (34.6%) was 5.2-fold higher than that of the wild-type. PMID:22697884

  6. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1)

    PubMed Central

    Simonov, Alexandr N.; Holien, Jessica K.; Yeung, Joyee Chun In; Nguyen, Ann D.; Corbin, C. Jo; Zheng, Jie; Kuznetsov, Vladimir L.; Auchus, Richard J.; Conley, Alan J.; Bond, Alan M.; Parker, Michael W.; Rodgers, Raymond J.; Martin, Lisandra L.

    2015-01-01

    Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. PMID:26587646

  7. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal

    PubMed Central

    Rana, Satiander; Lattoo, Surrinder K.; Dhar, Niha; Razdan, Sumeer; Bhat, Wajid Waheed; Dhar, Rekha S.; Vishwakarma, Ram

    2013-01-01

    Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis

  8. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  9. Characterization of human cytochrome P450 induction by pesticides.

    PubMed

    Abass, Khaled; Lämsä, Virpi; Reponen, Petri; Küblbeck, Jenni; Honkakoski, Paavo; Mattila, Sampo; Pelkonen, Olavi; Hakkola, Jukka

    2012-03-29

    Pesticides are a large group of structurally diverse toxic chemicals. The toxicity may be modified by cytochrome P450 (CYP) enzyme activity. In the current study, we have investigated effects and mechanisms of 24 structurally varying pesticides on human CYP expression. Many pesticides were found to efficiently activate human pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Out of the 24 compounds tested, 14 increased PXR- and 15 CAR-mediated luciferase activities at least 2-fold. While PXR was predominantly activated by pyrethroids, CAR was, in addition to pyrethroids, well activated by organophosphates and several carbamates. Induction of CYP mRNAs and catalytic activities was studied in the metabolically competent, human derived HepaRG cell line. CYP3A4 mRNA was induced most powerfully by pyrethroids; 50 μM cypermethrin increased CYP3A4 mRNA 35-fold. CYP2B6 was induced fairly equally by organophosphate, carbamate and pyrethroid compounds. Induction of CYP3A4 and CYP2B6 by these compound classes paralleled their effects on PXR and CAR. The urea herbicide diuron and the triazine herbicide atrazine induced CYP2B6 mRNA more than 10-fold, but did not activate CAR indicating that some pesticides may induce CYP2B6 via CAR-independent mechanisms. CYP catalyzed activities were induced much less than the corresponding mRNAs. At least in some cases, this is probably due to significant inhibition of CYP enzymes by the studied pesticides. Compared with human CAR activation and CYP2B6 expression, pesticides had much less effect on mouse CAR and CYP2B10 mRNA. Altogether, pesticides were found to be powerful human CYP inducers acting through both PXR and CAR. PMID:22310298

  10. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    PubMed Central

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  11. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex

    PubMed Central

    Baldwin, William S; Marko, Peter B; Nelson, David R

    2009-01-01

    Background Cytochrome P450s (CYPs) in animals fall into two categories: those that synthesize or metabolize endogenous molecules and those that interact with exogenous chemicals from the diet or the environment. The latter form a critical component of detoxification systems. Results Data mining and manual curation of the Daphnia pulex genome identified 75 functional CYP genes, and three CYP pseudogenes. These CYPs belong to 4 clans, 13 families, and 19 subfamilies. The CYP 2, 3, 4, and mitochondrial clans are the same four clans found in other sequenced protostome genomes. Comparison of the CYPs from D. pulex to the CYPs from insects, vertebrates and sea anemone (Nematostella vectensis) show that the CYP2 clan, and to a lesser degree, the CYP4 clan has expanded in Daphnia pulex, whereas the CYP3 clan has expanded in insects. However, the expansion of the Daphnia CYP2 clan is not as great as the expansion observed in deuterostomes and the nematode C. elegans. Mapping of CYP tandem repeat regions demonstrated the unusual expansion of the CYP370 family of the CYP2 clan. The CYP370s are similar to the CYP15s and CYP303s that occur as solo genes in insects, but the CYP370s constitute ~20% of all the CYP genes in Daphnia pulex. Lastly, our phylogenetic comparisons provide new insights into the potential origins of otherwise mysterious CYPs such as CYP46 and CYP19 (aromatase). Conclusion Overall, the cladoceran, D. pulex has a wide range of CYPs with the same clans as insects and nematodes, but with distinct changes in the size and composition of each clan. PMID:19383150

  12. Metabolism of Oral Turinabol by Human Steroid Hormone-Synthesizing Cytochrome P450 Enzymes.

    PubMed

    Schiffer, Lina; Brixius-Anderko, Simone; Hannemann, Frank; Zapp, Josef; Neunzig, Jens; Thevis, Mario; Bernhardt, Rita

    2016-02-01

    The human mitochondrial cytochrome P450 enzymes CYP11A1, CYP11B1, and CYP11B2 are involved in the biosynthesis of steroid hormones. CYP11A1 catalyzes the side-chain cleavage of cholesterol, and CYP11B1 and CYP11B2 catalyze the final steps in the biosynthesis of gluco- and mineralocorticoids, respectively. This study reveals their additional capability to metabolize the xenobiotic steroid oral turinabol (OT; 4-chlor-17β-hydroxy-17α-methylandrosta-1,4-dien-3-on), which is a common doping agent. By contrast, microsomal steroid hydroxylases did not convert OT. Spectroscopic binding assays revealed dissociation constants of 17.7 µM and 5.4 µM for CYP11B1 and CYP11B2, respectively, whereas no observable binding spectra emerged for CYP11A1. Catalytic efficiencies of OT conversion were determined to be 46 min(-1) mM(-1) for CYP11A1, 741 min(-1) mM(-1) for CYP11B1, and 3338 min(-1) mM(-1) for CYP11B2, which is in the same order of magnitude as for the natural substrates but shows a preference of CYP11B2 for OT conversion. Products of OT metabolism by the CYP11B subfamily members were produced at a milligram scale with a recombinant Escherichia coli-based whole-cell system. They were identified by nuclear magnetic resonance spectroscopy to be 11β-OH-OT for both CYP11B isoforms, whereby CYP11B2 additionally formed 11β,18-diOH-OT and 11β-OH-OT-18-al, which rearranges to its tautomeric form 11β,18-expoxy-18-OH-OT. CYP11A1 produces six metabolites, which are proposed to include 2-OH-OT, 16-OH-OT, and 2,16-diOH-OT based on liquid chromatography-tandem mass spectrometry analyses. All three enzymes are shown to be inhibited by OT in their natural function. The extent of inhibition thereby depends on the affinity of the enzyme for OT and the strongest effect was demonstrated for CYP11B2. These findings suggest that steroidogenic cytochrome P450 enzymes can contribute to drug metabolism and should be considered in drug design and toxicity studies. PMID:26658226

  13. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease.

    PubMed

    Nicoli, Elena-Raluca; Al Eisa, Nada; Cluzeau, Celine V M; Wassif, Christopher A; Gray, James; Burkert, Kathryn R; Smith, David A; Morris, Lauren; Cologna, Stephanie M; Peer, Cody J; Sissung, Tristan M; Uscatu, Constantin-Daniel; Figg, William D; Pavan, William J; Vite, Charles H; Porter, Forbes D; Platt, Frances M

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  14. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  15. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers.

    PubMed

    Cheng, Feixiong; Yu, Yue; Shen, Jie; Yang, Lei; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2011-05-23

    Adverse side effects of drug-drug interactions induced by human cytochrome P450 (CYP) inhibition is an important consideration, especially, during the research phase of drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP isoform. In this study, inhibitor predicting models were developed for five major CYP isoforms, namely 1A2, 2C9, 2C19, 2D6, and 3A4, using a combined classifier algorithm on a large data set containing more than 24,700 unique compounds, extracted from PubChem. The combined classifiers algorithm is an ensemble of different independent machine learning classifiers including support vector machine, C4.5 decision tree, k-nearest neighbor, and naïve Bayes, fused by a back-propagation artificial neural network (BP-ANN). All developed models were validated by 5-fold cross-validation and a diverse validation set composed of about 9000 diverse unique compounds. The range of the area under the receiver operating characteristic curve (AUC) for the validation sets was 0.764 to 0.815 for CYP1A2, 0.837 to 0.861 for CYP2C9, 0.793 to 0.842 for CYP2C19, 0.839 to 0.886 for CYP2D6, and 0.754 to 0.790 for CYP3A4, respectively, using the new developed combined classifiers. The overall performance of the combined classifiers fused by BP-ANN was superior to that of three classic fusion techniques (Mean, Maximum, and Multiply). The chemical spaces of data sets were explored by multidimensional scaling plots, and the use of applicability domain improved the prediction accuracies of models. In addition, some representative substructure fragments differentiating CYP inhibitors and noninhibitors were characterized by the substructure fragment analysis. These classification models are applicable for virtual screening of the five major CYP isoforms inhibitors or can be used as simple filters of potential chemicals in drug discovery. PMID:21491913

  16. Electrochemical Detection of Anti-Breast-Cancer Agents in Human Serum by Cytochrome P450-Coated Carbon Nanotubes

    PubMed Central

    Baj-Rossi, Camilla; De Micheli, Giovanni; Carrara, Sandro

    2012-01-01

    We report on the electrochemical detection of anti-cancer drugs in human serum with sensitivity values in the range of 8–925 nA/μM. Multi-walled carbon nanotubes were functionalized with three different cytochrome P450 isoforms (CYP1A2, CYP2B6, and CYP3A4). A model used to effectively describe the cytochrome P450 deposition onto carbon nanotubes was confirmed by Monte Carlo simulations. Voltammetric measurements were performed in phosphate buffer saline (PBS) as well as in human serum, giving well-defined current responses upon addition of increasing concentrations of anti-cancer drugs. The results assert the capability to measure concentration of drugs in the pharmacological ranges in human serum. Another important result is the possibility to detect pairs of drugs present in the same sample, which is highly required in case of therapies with high side-effects risk and in anti-cancer pharmacological treatments based on mixtures of different drugs. Our technology holds potentials for inexpensive multi-panel drug-monitoring in personalized therapy. PMID:22778656

  17. PROTEINS FROM EIGHT EUKARYOTIC CYTOCHROME P-450 FAMILIES SHARE A SEGMENTED REGION OF SEQUENCE SIMILARITY

    EPA Science Inventory

    Proteins from eight eukaryotic families in the cytochrome P-450 superfamily share one region of sequence similarity. his region begins 275-310 amino acids from the amino terminus of each P-450, continues for 170 residues, and ends 35-50 amino acids before the carboxyl terminus. h...

  18. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  19. Efficient Bioelectronic Actuation of the Natural Catalytic Pathway of Human Metabolic Cytochrome P450s

    PubMed Central

    Krishnan, Sadagopan; Wasalathanthri, Dhanuka; Zhao, Linlin; Schenkman, John B.; Rusling, James F

    2011-01-01

    Cytochrome (cyt) P450s comprise the enzyme superfamily responsible for human oxidative metabolism of a majority of drugs and xenobiotics. Electronic delivery of electrons to cyt P450s could be used to drive the natural catalytic cycle for fundamental investigations, stereo- and regioselective synthesis, and biosensors. We describe herein nm-thick films on electrodes featuring excess human cyt P450s and cyt P450 reductase (CPR) microsomes that efficiently mimic the natural catalytic pathway for the first time. Redox potentials, electron-transfer rates, CO-binding, and substrate conversion rates confirmed that electrons are delivered from the electrode to CPR, which transfers them to cyt P450. The film system enabled electrochemical probing of the interaction between cyt P450 and CPR for the first time. Agreement of film voltammetry data with theoretical simulations support a pathway featuring a key equilibrium redox reaction in the natural catalytic pathway between reduced CPR and cyt P450 occurring within a CPR-cyt P450 complex uniquely poised for substrate conversion. PMID:21214177

  20. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  1. Transcriptional Regulation of Grape Cytochrome P450 Gene Expression in Response to Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cytochrome P450 monooxygenases are versatile redox proteins that mediate biosynthesis of lignins, terpenes, alkaloids, and a variety of other secondary compounds as plant defense agents against a range of pathogens and insects. To determine if cytochrome P450 monooxygenases are involved in the...

  2. Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis

    PubMed Central

    2016-01-01

    Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane and photosynthesis-driven, NADPH-independent P450 catalytic activity mediated by the electron carrier protein ferredoxin. Here, we report the fusion of ferredoxin with P450 CYP79A1 from the model plant Sorghum bicolor, which catalyzes the initial step in the pathway leading to biosynthesis of the cyanogenic glucoside dhurrin. Fusion with ferredoxin allows CYP79A1 to obtain electrons for catalysis by interacting directly with photosystem I. Furthermore, electrons captured by the fused ferredoxin moiety are directed more effectively toward P450 catalytic activity, making the fusion better able to compete with endogenous electron sinks coupled to metabolic pathways. The P450-ferredoxin fusion enzyme obtains reducing power solely from its fused ferredoxin and outperforms unfused CYP79A1 in vivo. This demonstrates greatly enhanced electron transfer from photosystem I to CYP79A1 as a consequence of the fusion. The fusion strategy reported here therefore forms the basis for enhanced partitioning of photosynthetic reducing power toward P450-dependent biosynthesis of important natural products. PMID:27119279

  3. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  4. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  5. Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis.

    PubMed

    Mellor, Silas Busck; Nielsen, Agnieszka Zygadlo; Burow, Meike; Motawia, Mohammed Saddik; Jakubauskas, Dainius; Møller, Birger Lindberg; Jensen, Poul Erik

    2016-07-15

    Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane and photosynthesis-driven, NADPH-independent P450 catalytic activity mediated by the electron carrier protein ferredoxin. Here, we report the fusion of ferredoxin with P450 CYP79A1 from the model plant Sorghum bicolor, which catalyzes the initial step in the pathway leading to biosynthesis of the cyanogenic glucoside dhurrin. Fusion with ferredoxin allows CYP79A1 to obtain electrons for catalysis by interacting directly with photosystem I. Furthermore, electrons captured by the fused ferredoxin moiety are directed more effectively toward P450 catalytic activity, making the fusion better able to compete with endogenous electron sinks coupled to metabolic pathways. The P450-ferredoxin fusion enzyme obtains reducing power solely from its fused ferredoxin and outperforms unfused CYP79A1 in vivo. This demonstrates greatly enhanced electron transfer from photosystem I to CYP79A1 as a consequence of the fusion. The fusion strategy reported here therefore forms the basis for enhanced partitioning of photosynthetic reducing power toward P450-dependent biosynthesis of important natural products. PMID:27119279

  6. P450 3A-Catalyzed O-Dealkylation of Lapatinib Induces Mitochondrial Stress and Activates Nrf2.

    PubMed

    Eno, Marsha Rebecca; El-Gendy, Bahaa El-Dien M; Cameron, Michael D

    2016-05-16

    Lapatinib (LAP), an oral tyrosine kinase inhibitor for the treatment of metastatic breast cancer, has been associated with idiosyncractic hepatotoxicity. Recent investigations have implicated the importance of P450 3A4/5 enzymes in the formation of an electrophilic quinone imine (LAPQI) metabolite generated through further oxidation of O-dealkylated lapatinib (OD-LAP). In the current study, hepatic stress was observed via mitochondrial impairment. OD-LAP caused a time- and concentration-dependent decrease in oxygen consumption in HepG2 cells, whereas LAP did not alter the oxygen consumption rate. Interestingly, however, HepG2 cells transfected with human P450 3A4 did exhibit mitochondrial dysfunction via P450 3A4-mediated metabolism of LAP to OD-LAP. OD-LAP-induced mitochondrial toxicity was enhanced upon depletion of intracellular GSH levels, demonstrating that cellular GSH levels are important in the protection of mitochondrial function against LAPQI. Given the nature of LAPQI and the importance of GSH levels in LAP-induced mitochondrial stress, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) was evaluated, as this transcription factor induces the expression of NAD(P)H quinone oxidoreductase 1, glutathione S-transferase, UDP-glucuronosyltransferases, and glutathione synthetase, all of which might be expected to decrease the toxicity of LAP. Using a FRET-based target gene assay in HepG2 cells, OD-LAP was indeed found to activate Nrf2. Follow-up assays showed increased mRNA levels of Nrf2 target genes after a 4 h treatment with OD-LAP but not with LAP. LAP activation of Nrf2 was observed only when HepG2 cells were transduced with P450 3A4. The significance of Nrf2 protection was established in vivo in Nrf2-KO mice. Increased transaminase levels were found after a single LAP dose in both Nrf2-KO and control mice, indicating elevated hepatic necrosis, although transaminase levels reverted to baseline levels in the control mice upon repeat dosing

  7. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1)

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2014-01-01

    It is well recognized that herbal supplements or herbal medicines are now commonly used. As many patients taking prescription medications are concomitantly using herbal supplements, there is considerable risk for adverse herbal drug interactions. Such interactions can enhance the risk for an individual patient, especially with regard to drugs with a narrow therapeutic index such as warfarin, cyclosporine A and digoxin. Herbal drug interactions can alter pharmacokinetic or/and pharmacodynamic properties of administered drugs. The most common pharmacokinetic interactions usually involve either the inhibition or induction of the metabolism of drugs catalyzed by the important enzymes, cytochrome P450 (CYP). The aim of the present article is to provide an updated review of clinically relevant metabolic CYP-mediated drug interactions between selected herbal supplements and prescription drugs. The commonly used herbal supplements selected include Echinacea, Ginkgo biloba, garlic, St. John's wort, goldenseal, and milk thistle. To date, several significant herbal drug interactions have their origins in the alteration of CYP enzyme activity by various phytochemicals. Numerous herbal drug interactions have been reported. Although the significance of many interactions is uncertain but several interactions, especially those with St. John’s wort, may have critical clinical consequences. St. John’s wort is a source of hyperforin, an active ingredient that has a strong affinity for the pregnane xenobiotic receptor (PXR). As a PXR ligand, hyperforin promotes expression of CYP3A4 enzymes in the small intestine and liver. This in turn causes induction of CYP3A4 and can reduce the oral bioavailability of many drugs making them less effective. The available evidence indicates that, at commonly recommended doses, other selected herbs including Echinacea, Ginkgo biloba, garlic, goldenseal and milk thistle do not act as potent or moderate inhibitors or inducers of CYP enzymes. A good

  8. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2)

    PubMed Central

    Wanwimolruk, Sompon; Phopin, Kamonrat; Prachayasittikul, Virapong

    2014-01-01

    To date, a number of significant herbal drug interactions have their origins in the alteration of cytochrome P450 (CYP) activity by various phytochemicals. Among the most noteworthy are those involving St. John's wort and drugs metabolized by human CYP3A4 enzyme. This review article is the continued work from our previous article (Part 1) published in this journal (Wanwimolruk and Prachayasittikul, 2014[ref:133]). This article extends the scope of the review to six more herbs and updates information on herbal drug interactions. These include black cohosh, ginseng, grape seed extract, green tea, kava, saw palmetto and some important Chinese medicines are also presented. Even though there have been many studies to determine the effects of herbs and herbal medicines on the activity of CYP, most of them were in vitro and in animal studies. Therefore, the studies are limited in predicting the clinical relevance of herbal drug interactions. It appeared that the majority of the herbal medicines have no clear effects on most of the CYPs examined. For example, the existing clinical trial data imply that black cohosh, ginseng and saw palmetto are unlikely to affect the pharmacokinetics of conventional drugs metabolized by human CYPs. For grape seed extract and green tea, adverse herbal drug interactions are unlikely when they are concomitantly taken with prescription drugs that are CYP substrates. Although there were few clinical studies on potential CYP-mediated interactions produced by kava, present data suggest that kava supplements have the ability to inhibit CYP1A2 and CYP2E1 significantly. Therefore, caution should be taken when patients take kava with CYP1A2 or CYP2E1 substrate drugs as it may enhance their therapeutic and adverse effects. Despite the long use of traditional Chinese herbal medicines, little is known about the potential drug interactions with these herbs. Many popularly used Chinese medicines have been shown in vitro to significantly change the

  9. Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon.

    PubMed Central

    Thies, F; Backhaus, T; Bossmann, B; Grimme, L H

    1996-01-01

    The N-demethylation of the pyridazinone pro-herbicide metflurazon into norflurazon implies a toxification in photosynthetic organisms. This is confirmed by quantitative structure activity relationships determined for two unicellular green algae, Chlorella sorokiniana and Chlorella fusca; however, the latter is 25 to 80 times more sensitive to metflurazon. This sensitivity is linked to differences in the N-demethylase activity of both algae, as determined by an optimized in vivo biotransformation assay. Apparent K(m) values of the metflurazon-N-demethylase indicate a 10-fold higher affinity for this xenobiotic substrate for Chlorella fusca. Furthermore, algal metflurazon-N-demethylation is characterized by distinct variations in activity, depending on the stage of cell development within the cell cycle. Several well-established inhibitors of cytochrome P450-mediated reactions, including piperonylbutoxide, 1-aminobenzotriazole, 1-phenoxy-3-(1H-1,2,4-triol-1yl)-4-hydroxy-5,5-dimethylhexane++ +, and tetcyclacis, as well as cinnamic acid, a potential endogenous substrate, inhibited the N-demethylation of metflurazon. The results suggest that the N-demethylation of metflurazon by both algae is mediated by a cytochrome P450 monooxygenase. The determination of antigenic cross-reactivity of algal proteins with heterologous polyclonal antibodies originally raised against plant P450s, anti-cinnamic acid 4-hydroxylase (CYP73A1), anti-ethoxycoumarin-O-dealkylase, anti-tulip allene oxidase (CYP74), and an avocado P450 (CYP71A1) or those of bacterial origin, CYP105A1 and CYP105B1, suggests the presence of distinct P450 isoforms in both algae. PMID:8819332

  10. Fluorescence-based screening of cytochrome P450 activities in intact cells.

    PubMed

    Donato, M Teresa; Gómez-Lechón, M José

    2013-01-01

    Fluorimetric methods to assess cytochrome P450 (P450) activities that do not require metabolite separation have been developed. These methods make use of non- or low-fluorescent P450 substrates that produce highly fluorescent metabolites in aqueous solutions. The assays are based on the direct incubation of intact cells in culture with appropriate fluorogenic probe substrates, followed by fluorimetric quantification of the product formed and released into incubation medium. We describe a battery of fluorescence assays for rapid measurement of the activity of nine P450s involved in drug metabolism. For each individual P450 activity the probe showing the best properties (highest metabolic rates, lowest background fluorescence) has been selected. Fluorescence-based assays are highly sensitive and allow the simultaneous activity assessments of cells cultured in 96-well plates, using plate readers, with notable reductions in costs, time, and cells, thus enhancing sample throughput. PMID:23475674

  11. Cytochrome P450-encoding genes from the Heliconius genome as candidates for cyanogenesis.

    PubMed

    Chauhan, R; Jones, R; Wilkinson, P; Pauchet, Y; Ffrench-Constant, R H

    2013-10-01

    Cytochrome P450s are important both in the metabolism of xenobiotics and the production of compounds such as cyanogenic glucosides, which insects use in their defence. In the present study, we use transcriptomic and genomic information to isolate and name P450-encoding genes from the butterfly Heliconius melpomene. We classify each of the putative genes into its appropriate superfamily and compare the distribution of P450s across sequenced insects. We also identify homologues of two P450s known to be involved in cyanogenesis in the six-spot Burnet moth, Zygaena filipendulae. Classification of Heliconius P450s should be an important step in the dissection of their role in the exploitation of their host plant, the passion vine Passiflora. PMID:23834845

  12. Evaluation of cytochrome P450{sub BS{beta}} reactivity against polycyclic aromatic hydrocarbons and drugs

    SciTech Connect

    Torres, Eduardo; Hayen, Heiko; Niemeyer, Christof M.; E-mail: christof.niemeyer@uni-dortmund.de

    2007-03-30

    The oxidation of 10 polycyclic aromatic hydrocarbons (PAH) by cytochrome P450{sub BS{beta}} using three different electron acceptors is reported. Three PAH were found to be substrates for the oxidation by P450{sub BS{beta}}, namely anthracene, 9-methyl-anthracene and azulene. The respective oxidation products were identified by reversed-phase high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry. In addition, 10 drug-like compounds were investigated for their effects on the catalytic activity of P450{sub BS{beta}} by carrying out inhibition studies. The stability of P450{sub BS{beta}} against hydrogen peroxide, cumene, and ter-butyl hydroperoxide was determined. Overall, the results of this study suggested that the P450{sub BS{beta}} enzyme represents a powerful catalyst in terms of the catalytic activity and operational stability.

  13. [Overexpression, homology modeling and coenzyme docking studies of the cytochrome P450nor2 from Cylindrocarpon tonkinense].

    PubMed

    Li, N; Zhang, Y Z; Li, D D; Niu, Y H; Liu, J; Li, S X; Yuan, Y Z; Chen, S L; Geng, H; Liu, D L

    2016-01-01

    Cytochrome P450nor catalyzes an unusual reaction that transfers electrons from NADP/NADPH to bound heme directly. To improve the expression level of P450nor2 from Cylindrocarpon tonkinense (C.P450nor2), Escherichia coli system was utilized to substitute the yeast system we constructed for expression of the P450nor2 gene, and the protein was purified in soluble form using Ni(+)-NTA affinity chromatography. In contrast to P450nor from Fusarium oxysporum (F.P450nor) and P450nor1 from Cylindrocarpon tonkinense (C.P450nor1), C.P450nor2 shows a dual specificity for using NADH or NADPH as electron donors. The present study developed a computational approach in order to illustrate the coenzyme specificity of C.P450nor2 for NADH and NADPH. This study involved homology modeling of C.P450nor2 and docking analyses of NADH and NADPH into the crystal structure of F.P450nor and the predictive model of C.P450nor2, respectively. The results suggested that C.P450nor2 and F.P450nor have different coenzyme specificity for NADH and NADPH; whilst the space around the B'-helix of the C.P450nor2, especially the Ser79 and Gly81, play a crucial role for the specificity of C.P450nor2. In the absence of the experimental structure of C.P450nor2, we hope that our model will be useful to provide rational explanation on coenzyme specificity of C.P450nor2. PMID:27239859

  14. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    PubMed

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species. PMID:19444989

  15. Effects of gestational and overt diabetes on placental cytochromes P450 and glutathione S-transferase.

    PubMed

    Glover; McRobie; Tracy

    1998-07-01

    Objective: Animal and in vivo human studies have observed that diabetes alters the expression of hepatic metabolizing cytochrome P450 (CYP) and glutathione S-transferase (GST) enzymes. The placenta has the ability to metabolize a number of xenobiotic and endogenous compounds by processes similar to those seen in the liver. Our objective was to compare placental xenobiotic metabolizing activity in diabetics to matched non-diabetic controls to determine if the presence of diabetes alters placental xenobiotic metabolizing activity.Methods: The catalytic activities of 7-ethoxyresorufin-O-deethylation [EROD] (CYP1A1), chlorzoxazone 6-hydroxylation (CYP2E1), dextromethorphan N-demethylation (CYP3A4), dextromethorphan O-demethylation (CYP2D6), and 1-chloro-2,4-dinitrobenzene (CDNB) conjugation with glutathione (GST) from placentas of diet controlled (class A1) and insulin-dependent (class A2) gestational diabetics and overt diabetics were compared to matched controls.Results: No differences in EROD activity were observed among overt or gestational diabetics and their respectively matched controls. CYP2E1, 2D6, and 3A4 enzyme activity were not detected in human placentas. In contrast, GST activity was significantly reduced by 30% (P <.05) in overt diabetics as compared to their matched controls and gestational diabetics.Conclusion: Pregnant women with overt diabetes have reduced GST activity in the placenta, which could potentially result in exposure of the fetus to harmful reactive electrophilic metabolites. PMID:10838356

  16. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats

    SciTech Connect

    Ohhira, Shuji . E-mail: s-ohhira@dokkyomed.ac.jp; Enomoto, Mitsunori; Matsui, Hisao

    2006-01-15

    Tributyltin is metabolized by cytochrome P-450 (CYP) system enzymes, and its metabolic fate may contribute to the toxicity of the chemical. In the present study, it is examined whether sex differences in the metabolism of tributyltin exist in rats. In addition, the in vivo and in vitro metabolism of tributyltin was investigated using rat hepatic CYP systems to confirm the principal CYP involved. A significant sex difference in metabolism occurred both in vivo and in vitro, suggesting that one of the CYPs responsible for tributyltin metabolism in rats is male specific or predominant at least. Eight cDNA-expressed rat CYPs, including typical phenobarbital (PB)-inducible forms and members of the CYP2C subfamily, were tested to determine their capability for tributyltin metabolism. Among the enzymes studied, a statistically significant dealkylation of tributyltin was mediated by CYP2C6 and 2C11. Furthermore, the sex difference in metabolism disappeared in vitro after anti-rat CYP2C11 antibody pretreatment because CYP2C11 is a major male-specific form in rats. These results indicate that CYP2C6 is the principal CYP for tributyltin metabolism in female rats, whereas CYP2C11 as well as 2C6 is involved in tributyltin metabolism in male rats, and it is suggested that CYP2C11 is responsible for the significant sex difference in the metabolism of tributyltin observed in rats.

  17. Effector Roles of Putidaredoxin on Cytochrome P450cam Conformational States.

    PubMed

    Liou, Shu-Hao; Mahomed, Mavish; Lee, Young-Tae; Goodin, David B

    2016-08-17

    In this study, the effector role of Pdx (putidaredoxin) on cytochrome P450cam conformation is refined by attaching two different spin labels, MTSL or BSL (bifunctional spin-label) onto the F or G helices and using DEER (double electron-electron resonance) to measure the distance between labels. Recent EPR and crystallographic studies have observed that oxidized Pdx induces substrate-bound P450cam to change from the closed to the open state. However, this change was not observed by DEER in the reduced Pdx complex with carbon-monoxide-bound P450cam (Fe(2+)CO). In addition, recent NMR studies have failed to observe a change in P450cam conformation upon binding Pdx. Hence, resolving these issues is important for a full understanding the effector role of Pdx. Here we show that oxidized Pdx induces camphor-bound P450cam to shift from the closed to the open conformation when labeled on either the F or G helices with MTSL. BSL at these sites can either narrow the distance distribution widths dramatically or alter the extent of the conformational change. In addition, we report DEER spectra on a mixed oxidation state containing oxidized Pdx and ferrous CO-bound P450cam, showing that P450cam remains closed. This indicates that CO binding to the heme prevents P450cam from opening, overriding the influence exerted by Pdx binding. Finally, we report the open form P450cam crystal structure with substrate bound, which suggests that crystal packing effects may prevent conformational conversion. Using multiple labeling approaches, DEER provides a unique perspective to resolve how the conformation of P450cam depends on Pdx and ligand states. PMID:27452076

  18. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    SciTech Connect

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  19. Computer modeling of 3D structures of cytochrome P450s.

    PubMed

    Chang, Y T; Stiffelman, O B; Loew, G H

    1996-01-01

    The understanding of structure-function relationship of enzymes requires detailed information of their three-dimensional structure. Protein structure determination by X-ray and NMR methods, the two most frequently used experimental procedures, are often difficult and time-consuming. Thus computer modeling of protein structures has become an increasingly active and attractive option for obtaining predictive models of three-dimensional protein structures. Specifically, for the ubiquitous metabolizing heme proteins, the cytochrome P450s, the X-ray structures of four isozymes of bacterial origin, P450cam, P450terp, P450BM-3 and P450eryF have now been determined. However, attempts to obtain the structure of mammalian forms by experimental means have thus far not been successful. Thus, there have been numerous attempts to construct models of mammalian P450s using homology modeling methods in which the known structures have been used to various extents and in various strategies to build models of P450 isozymes. In this paper, we review these efforts and then describe a strategy for structure building and assessment of 3D models of P450s recently developed in our laboratory that corrects many of the weaknesses in the previous procedures. The results are 3D models that for the first time are stable to unconstrained molecular dynamics simulations. The use of this method is demonstrated by the construction and validation of a 3D model for rabbit liver microsomal P450 isozyme 2B4, responsible for the oxidative metabolism of diverse xenobiotics including widely used inhalation anesthetics. Using this 2B4 model, the substrate access channel, substrate binding site and plausible surface regions for binding with P450 redox partners were identified. PMID:9010606

  20. Purification of a sheep liver cytochrome P-450 from the P450IIIA gene subfamily. Its contribution to the N-dealkylation of veterinary drugs.

    PubMed

    Pineau, T; Galtier, P; Bonfils, C; Derancourt, J; Maurel, P

    1990-03-01

    Oral administration of troleandomycin at a dose of 100 mg/kg/day for 6 days to three adult male Lacaune sheep produced a 1.6-fold increase in specific content of liver microsomal cytochrome P-450. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, microsomal preparations from treated animals exhibited a strong band in the zone of electrophoretic mobility of cytochromes P-450. This band corresponded to a cytochrome P-450 which cross-reacted with rabbit P450IIIA6 antibodies, as demonstrated by immunoblotting. The ovine isozyme was purified to electrophoretic homogeneity by means of successive DEAE cellulose, CM cellulose and hydroxylapatite chromatographic separations. This hemoprotein had an apparent molecular weight of 52 kD as determined by calibrated sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was characterized in terms of spectral data, NH2-terminal amino acid sequence, immunologic and catalytic properties. This study revealed some interspecies differences with the orthologous rabbit isozyme. The contribution of this form to the N-demethylation of erythromycin and of three veterinary drugs: chlorpromazine, chlorpheniramine and bromhexine was demonstrated from inhibition by TAO, from immunoinhibition studies, using polyclonal antibodies raised in rabbit and from the existence of significant correlations between its microsomal level and these N-demethylase activities. In contrast, the results suggest that ovine P450IIIA could not be predominantly involved in the N-dealkylation of benzphetamine, ephedrine, ivermectine or spiramycin. PMID:2310415

  1. Structure and Function of an NADPH-Cytochrome P450 Oxidoreductase in an Open Conformation Capable of Reducing Cytochrome P450

    SciTech Connect

    Hamdane, Djemel; Xia, Chuanwu; Im, Sang-Choul; Zhang, Haoming; Kim, Jung-Ja P.; Waskell, Lucy

    2010-01-20

    NADPH-cytochrome P450 oxidoreductase (CYPOR) catalyzes the transfer of electrons to all known microsomal cytochromes P450. A CYPOR variant, with a 4-amino acid deletion in the hinge connecting the FMN domain to the rest of the protein, has been crystallized in three remarkably extended conformations. The variant donates an electron to cytochrome P450 at the same rate as the wild-type, when provided with sufficient electrons. Nevertheless, it is defective in its ability to transfer electrons intramolecularly from FAD to FMN. The three extended CYPOR structures demonstrate that, by pivoting on the C terminus of the hinge, the FMN domain of the enzyme undergoes a structural rearrangement that separates it from FAD and exposes the FMN, allowing it to interact with its redox partners. A similar movement most likely occurs in the wild-type enzyme in the course of transferring electrons from FAD to its physiological partner, cytochrome P450. A model of the complex between an open conformation of CYPOR and cytochrome P450 is presented that satisfies mutagenesis constraints. Neither lengthening the linker nor mutating its sequence influenced the activity of CYPOR. It is likely that the analogous linker in other members of the diflavin family functions in a similar manner.

  2. Electron transfer by human wild-type and A287P mutant P450 oxidoreductase assessed by transient kinetics: functional basis of P450 oxidoreductase deficiency

    PubMed Central

    Jin, Yi; Chen, Mo; Penning, Trevor M.; Miller, Walter L.

    2015-01-01

    Cytochrome P450 oxidoreductase (POR) is a 2-flavin protein that transfers electrons from NADPH via its FAD and FMN moieties to all microsomal cytochrome P450 enzymes, including steroidogenic and drug-metabolizing P450s. Defects in the POR gene can cause POR deficiency (PORD), manifested clinically by disordered steroidogenesis, genital anomalies and skeletal malformations. We examined the POR mutant A287P, which is the most frequent cause of PORD in patients of European ancestry and partially disrupts most P450 activities in vitro. Flavin content analysis showed that A287P is deficient in FAD and FMN binding, although the mutation site is distant from the binding sites of both flavins. Externally added flavin partially restored the cytochrome c reductase activity of A287P, suggesting that flavin therapy may be useful for this frequent form of PORD. Transient kinetic dissection of the reaction of POR with NADPH and the reduction in cytochrome c by POR using stopped-flow techniques revealed defects in individual electron transfer steps mediated by A287P. A287P had impaired ability to accept electrons from NADPH, but was capable of a fast FMN ➔ cytochrome c electron donation reaction. Thus the reduced rates of P450 activities with A287P may be due to deficient flavin and impaired electron transfer from NADPH. PMID:25728647

  3. Isolation of S9 fractions from mouse and rat with increased enzyme activities after repeated administration of cytochrome P-450 and P-448 inducers.

    PubMed

    Paolini, M; Sapigni, E; Hrelia, P; Grilli, S; Cantelli-Forti, G

    1988-05-01

    Cytochrome P-450 (cyt P-450), NADPH cytochrome P-450 reductase and various microsomal monooxygenase activities [e.g. aminopyrine N-demethylase, p-nitroanisole O-demethylase, dinemorphan N-demethylase, ethoxycoumarin O-deethylase and ethoxyresorufin O-deethylase (ERD)], were determined in hepatic post-mitochondrial supernatant from mice and rats. Experiments were performed on male and female animals treated with a combination of sodium phenobarbital and beta-naphthoflavone according to the standard protocol schedule for short-term genotoxicity testing. A second inductive treatment after 2, 3, 4 or 5 weeks was provided. The increase in cyt P-450 and in all enzymatic activities measured was enhanced in both species by a second induction treatment, particularly when given after 4 weeks. ERD activity was the only monooxygenase activity which was sex-dependent, being more active in female than in male animals. To extend the biochemical data, experiments were performed with the proposed S9 fractions on styrene, which previously has proved difficult to detect in short-term in vitro mutagenicity tests. Using the new induction conditions positive results were obtained with the D7 strain of Saccharomyces cerevisiae. It was concluded that a simple pre-induction of the animals 3-4 weeks before the main induction treatment leads to a more active S9 fraction for in vitro genotoxicity studies. PMID:3045486

  4. Experimental approaches to evaluate activities of cytochromes P450 3A

    PubMed Central

    Bořek-Dohalská, Lucie; Hodek, Petr; Hudeček, Jiří; Stiborová, Marie

    2008-01-01

    Cytochrome P450 (CYP) is a heme protein oxidizing various xenobiotics, as well as endogenous substrates. Understanding which CYP enzymes are involved in metabolic activation and/or detoxication of different compounds is important in the assessment of an individual's susceptibility to the toxic action of these substances. Therefore, investigation which of several in vitro experimental models are appropriate to mimic metabolism of xenobiotics in organisms is the major challenge for research of many laboratories. The aim of this study was to evaluate the efficiency of different in vitro systems containing individual enzymes of the mixed-function monooxygenase system to oxidize two model substrates of CYP3A enzymes, exogenous and endogenous compounds, α-naphtoflavone (α-NF) and testosterone, respectively. Several different enzymatic systems containing CYP3A enzymes were utilized in the study: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (Supersomes™), (iv) membranes isolated from of Escherichia coli, containing recombinant human CYP3A4 and cytochrome b5, and (v) purified human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. The most efficient systems oxidizing both compounds were Supersomes™ containing human CYP3A4 and cytochrome b5. The results presented in this study demonstrate the suitability of the supersomal CYP3A4 systems for studies investigating oxidation of testosterone and α-NF in vitro. PMID:21218106

  5. Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization.

    PubMed

    Hawkes, David B; Adams, Gregory W; Burlingame, Alma L; Ortiz de Montellano, Paul R; De Voss, James J

    2002-08-01

    Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at approximately 2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450(cin), it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K(D) = 0.7 microm), and a large spin state

  6. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. PMID:22819650

  7. Cytochrome P450 Regulation by α-Tocopherol in Pxr-Null and PXR-Humanized Mice

    PubMed Central

    Johnson, Caroline H.; Bonzo, Jessica A.; Cheng, Jie; Krausz, Kristopher W.; Kang, Dong Wook; Luecke, Hans; Idle, Jeffrey R.

    2013-01-01

    The pregnane X receptor (PXR) has been postulated to play a role in the metabolism of α-tocopherol owing to the up-regulation of hepatic cytochrome P450 (P450) 3A in human cell lines and murine models after α-tocopherol treatment. However, in vivo studies confirming the role of PXR in α-tocopherol metabolism in humans presents significant difficulties and has not been performed. PXR-humanized (hPXR), wild-type, and Pxr-null mouse models were used to determine whether α-tocopherol metabolism is influenced by species-specific differences in PXR function in vivo. No significant difference in the concentration of the major α-tocopherol metabolites was observed among the hPXR, wild-type, and Pxr-null mice through mass spectrometry-based metabolomics. Gene expression analysis revealed significantly increased expression of Cyp3a11 as well as several other P450s only in wild-type mice, suggesting species-specificity for α-tocopherol activation of PXR. Luciferase reporter assay confirmed activation of mouse PXR by α-tocopherol. Analysis of the Cyp2c family of genes revealed increased expression of Cyp2c29, Cyp2c37, and Cyp2c55 in wild-type, hPXR, and Pxr-null mice, which suggests PXR-independent induction of Cyp2c gene expression. This study revealed that α-tocopherol is a partial agonist of PXR and that PXR is necessary for Cyp3a induction by α-tocopherol. The implications of a novel role for α-tocopherol in Cyp2c gene regulation are also discussed. PMID:23160821

  8. Mammalian Cytochrome P450-Dependent Metabolism of Polychlorinated Dibenzo-p-dioxins and Coplanar Polychlorinated Biphenyls

    PubMed Central

    Inui, Hideyuki; Itoh, Toshimasa; Yamamoto, Keiko; Ikushiro, Shin-Ichi; Sakaki, Toshiyuki

    2014-01-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and coplanar polychlorinated biphenyls (PCBs) contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP)-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high activities toward monoCDDs, diCDDs, and triCDDs but no detectable activity toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD). Large amino acids located at putative substrate-recognition sites and the F-G loop in rat CYP1A1 contributed to the successful metabolism of 2,3,7,8-tetraCDD. Rat, but not human, CYP1A1 metabolized 3,3',4,4',5-pentachlorobiphenyl (CB126) to two hydroxylated metabolites. These metabolites are probably less toxic than is CB126, due to their higher solubility. Homology models of human and rat CYP1A1s and CB126 docking studies indicated that two amino acid differences in the CB126-binding cavity were important for CB126 metabolism. In this review, the importance of CYPs in the metabolism of dioxins and PCBs in mammals and the species-based differences between humans and rats are described. In addition, the authors reveal the molecular mechanism behind the binding modes of dioxins and PCBs in the heme pocket of CYPs. PMID:25123135

  9. A Highly Selective Ratiometric Two-Photon Fluorescent Probe for Human Cytochrome P450 1A.

    PubMed

    Dai, Zi-Ru; Ge, Guang-Bo; Feng, Lei; Ning, Jing; Hu, Liang-Hai; Jin, Qiang; Wang, Dan-Dan; Lv, Xia; Dou, Tong-Yi; Cui, Jing-Nan; Yang, Ling

    2015-11-18

    Cytochrome P450 1A (CYP1A), one of the most important phase I drug-metabolizing enzymes in humans, plays a crucial role in the metabolic activation of procarcinogenic compounds to their ultimate carcinogens. Herein, we reported the development of a ratiometric two-photon fluorescent probe NCMN that allowed for selective and sensitive detection of CYP1A for the first time. The probe was designed on the basis of substrate preference of CYP1A and its high capacity for O-dealkylation, while 1,8-naphthalimide was selected as fluorophore because of its two-photon absorption properties. To achieve a highly selective probe for CYP1A, a series of 1,8-naphthalimide derivatives were synthesized and used to explore the potential structure-selectivity relationship, by using a panel of human CYP isoforms for selectivity screening. After screening and optimization, NCMN displayed the best combination of selectivity, sensitivity and ratiometric fluorescence response following CYP1A-catalyzed O-demetylation. Furthermore, the probe can be used to real-time monitor the enzyme activity of CYP1A in complex biological systems, and it has the potential for rapid screening of CYP1A modulators using tissue preparation as enzyme sources. NCMN has also been successfully used for two-photon imaging of intracellular CYP1A in living cells and tissues, and showed high ratiometric imaging resolution and deep-tissue imaging depth. In summary, a two-photon excited ratiometric fluorescent probe NCMN has been developed and well-characterized for sensitive and selective detection of CYP1A, which holds great promise for bioimaging of endogenous CYP1A in living cells and for further investigation on CYP1A associated biological functions in complex biological systems. PMID:26488456

  10. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans

    PubMed Central

    Wang, Zaiqi; Hall, Stephen D; Maya, Juan F; Li, Lang; Asghar, Ali; Gorski, J C

    2003-01-01

    Aim Cytochrome P450 2E1 (CYP2E1) is thought to activate a number of protoxins, and has been implicated in the development of liver disease. Increased hepatic expression of CYP2E1 occurs in rat models of diabetes but it is unclear whether human diabetics display a similar up-regulation. This study was designed to test the hypothesis that human diabetics experience enhanced CYP2E1 expression. Methods The pharmacokinetics of a single dose of chlorzoxazone (500 mg), used as an index of hepatic CYP2E1 activity, was determined in healthy subjects (n = 10), volunteers with Type I (n = 13), and Type II (n = 8) diabetes mellitus. Chlorzoxazone and 6-hydroxychlorzoxazone in serum and urine were analysed by high-performance liquid chromatography. The expression of CYP2E1 mRNA in peripheral blood mononuclear cells was quantified by reverse transcriptase-polymerase chain reaction. Results The mean ± s.d. (90% confidence interval of the difference) chlorzoxazone area under the plasma concentration-time curve was significantly (P ≤ 0.05) reduced in obese Type II diabetics (15.7 ± 11.3 µg h ml−1; 9, 22) compared with healthy subjects (43.5 ± 16.9 µg h ml−1; 16, 40) and Type I diabetics (32.8 ± 9.2 µg h ml−1; 9, 25). There was a significant two-fold increase in the oral clearance of chlorzoxazone in obese Type II diabetics compared with healthy volunteers and Type I diabetics. The protein binding of chlorzoxazone was not significantly different between the three groups. In contrast, Type 1 diabetics and healthy volunteers demonstrated no difference in the oral clearance of chlorzoxazone. The urinary recovery of 6-hydroxychlorzoxazone as a percentage of the administered dose was not different between healthy, Type I and obese Type II diabetics. The elimination half-life of chlorzoxazone did not differ between the three groups. CYP2E1 mRNA was significantly elevated in Type I and obese Type II diabetics compared with healthy volunteers. The oral clearance of

  11. [Induction and measurement of cytochrome P450 in white rot fungi].

    PubMed

    Ning, Da-liang; Wang, Hui; Li, Dong

    2009-08-15

    The induction and measurement of cytochrome P450 in white rot fungus Phanerochaete chrysosporium were studied in this work. The spectrophotometric results demonstrated that n-hexane was able to induce the fungal P450 to high level, which facilitated isolation and measurement of microsomal P450. The highest concentration of microsomal P450 could reach 140-160 pmol/mg after 6-h-induction by addition of 2 microL/mL hexane each hour, and the concentration of hexane and incubation time had significant effect on the induction of P450s. After effective induction, the method for isolation and measurement of microsomal P450 with CO difference spectrum was studied and the optimized method was obtained as followed. High-speed disperser and glass homogenizer were used to disrupt cells, which obtained higher amount of microsomal P450 than those from cells disrupted by glass homogenizer, ultrasonicator and bead-beater respectively. To record CO difference spectrum,the sample was bubbled with CO for 40 s at a rate of 3 mL/min (300 microL sample), and the reference cuvette was bubbled with N2 to the same extent. Then, the reducer sodium dithionite was added to a concentration 0.4 mol/L. PMID:19799321

  12. Ethynylflavones, Highly Potent, and Selective Inhibitors of Cytochrome P450 1A1

    PubMed Central

    2015-01-01

    The flavone backbone is a well-known pharmacophore present in a number of substrates and inhibitors of various P450 enzymes. In order to find highly potent and novel P450 family I enzyme inhibitors, an acetylene group was incorporated into six different positions of flavone. The introduction of an acetylene group at certain locations of the flavone backbone lead to time-dependent inhibitors of P450 1A1. 3′-Ethynylflavone, 4′-ethynylflavone, 6-ethynylflavone, and 7-ethynylflavone (KI values of 0.035–0.056 μM) show strong time-dependent inhibition of P450 1A1, while 5-ethynylflavone (KI value of 0.51 μM) is a moderate time-dependent inhibitor of this enzyme. Meanwhile, 4′-ethynylflavone and 6-ethynylflavone are highly selective inhibitors toward this enzyme. Especially, 6-ethynylflavone possesses a Ki value of 0.035 μM for P450 1A1 177- and 15-fold lower than those for P450s 1A2 and 1B1, respectively. The docking postures observed in the computational simulations show that the orientation of the acetylene group determines its capability to react with P450s 1A1 and 1A2. Meanwhile, conformational analysis indicates that the shape of an inhibitor determines its inhibitory selectivity toward these enzymes. PMID:25033111

  13. Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor

    PubMed Central

    Tian, Zhenghua; Cheng, Qian; Yoshimoto, Francis K.; Lei, Li; Lamb, David C.; Guengerich, F. Peter

    2013-01-01

    The filamentous bacterium Streptomyces coelicolor has a complex life cycle involving the formation of hair-like aerial mycelia on the colony surface, which differentiate into chains of spores. Genes required for the initiation of aerial mycelium formation have been termed ‘bld’ (bald), describing the smooth, undifferentiated colonies of mutant strains. We report the identification of a new bld gene designated as sco3099 and biochemical analysis of its encoded enzyme, cytochrome P450 (P450, or CYP) 107U1. Deletion of sco3099 resulted in a mutant defective in aerial hyphae sporulation and sensitive to heat shock, indicating that P450 107U1 plays a key role in growth and development of S. coelicolor. This is the first P450 reported to participate in a sporulation process in Streptomycetes. The substrate and catalytic properties of P450 107U1 were further investigated in mass spectrometry-based metabolomic studies. Glycocholic acid (from the medium) was identified as a substrate of P450 107U1 and was oxidized to glyco-7-oxo-deoxycholic acid. Although this reaction is apparently not relevant to the observed sporulation deficiency, it suggests that P450 107U1 might exert its physiological function by oxidizing other steroid-like molecules. PMID:23357279

  14. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    SciTech Connect

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  15. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism

    PubMed Central

    Slominski, Andrzej; Semak, Igor; Zjawiony, Jordan; Wortsman, Jacobo; Li, Wei; Szczesniewski, Andre; Tuckey, Robert C.

    2008-01-01

    We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized. PMID:16098191

  16. Orphans in the Human Cytochrome P450 Superfamily: Approaches to Discovering Functions and Relevance in Pharmacology

    PubMed Central

    Cheng, Qian

    2011-01-01

    As a result of technical advances in recombinant DNA technology and nucleotide sequencing, entire genome sequences have become available in the past decade and offer potential in understanding diseases. However, a central problem in the biochemical sciences is that the functions of only a fraction of the genes/proteins are known, and this is also an issue in pharmacology. This review is focused on issues related to the functions of cytochrome P450 (P450) enzymes. P450 functions can be categorized in several groups: 1) Some P450s have critical roles in the metabolism of endogenous substrates (e.g., sterols and fat-soluble vitamins). 2) Some P450s are not generally critical to normal physiology but function in relatively nonselective protection from the many xenobiotic chemicals to which mammals (including humans) are exposed in their diets [as well as more anthropomorphic chemicals (e.g., drugs, pesticides)]. 3) Some P450s have not been extensively studied and are termed “orphans” here. With regard to elucidation of any physiological functions of the orphan P450s, the major subject of this review, it is clear that simple trial-and-error approaches with individual substrate candidates will not be very productive in addressing questions about function. A series of liquid chromatography/mass spectrometry/informatics approaches are discussed, along with some successes with both human and bacterial P450s. Current information on what are still considered “orphan” P450s is presented. The potential for application of some of these approaches to other enzyme systems is also discussed. PMID:21737533

  17. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana

    PubMed Central

    Ehlting, Jürgen; Sauveplane, Vincent; Olry, Alexandre; Ginglinger, Jean-François; Provart, Nicholas J; Werck-Reichhart, Danièle

    2008-01-01

    Background Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s) is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism. Results We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here. Conclusion The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling. PMID:18433503

  18. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  19. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  20. Effects of Chronic Renal Failure on Brain Cytochrome P450 in Rats.

    PubMed

    Naud, Judith; Harding, Jessica; Lamarche, Caroline; Beauchemin, Stephanie; Leblond, Francois A; Pichette, Vincent

    2016-08-01

    Chronic renal failure (CRF) impedes renal excretion of drugs and their metabolism by reducing the expression of liver cytochrome P450 (P450). Uremic serum contains factors, such as parathyroid hormone (PTH), that decrease liver P450s. The P450s are also involved in the metabolism of xenobiotics in the brain. This study investigates: 1) the effects of CRF on rat brain P450, 2) the role of PTH in the downregulation of brain P450s in CRF rats, and 3) the effects of PTH on P450s in astrocytes. Protein and mRNA expression of P450s were assessed in the brain of CRF and control (CTL) rats, as well as from CTL or CRF rats that underwent parathyroidectomy (PTX) 1 week before nephrectomy. CYP3A activity was measured using 3-[(3, 4-difluorobenzyl) oxy]-5, 5-dimethyl-4-[4-methylsulfonyl) phenyl] furan-2(5H)-1 metabolism in brain microsomal preparation. CYP3A protein expression was assessed in primary cultured astrocytes incubated with serum obtained from CRF or CTL rats or with PTH. Significant downregulations (≥40%) of CYP1A, CYP2C11, and CYP3A proteins were observed in microsomes from CRF rat brains. CYP3A activity reduction was also observed. CYP3A expression and activity were unaffected in PTX-pretreated CRF rats. Serum of PTX-treated CRF rats had no impact on CYP3A levels in astrocytes compared with that of untreated CRF rats. Finally, PTH addition to normal calf serum induced a reduction in CYP3A protein similar to CRF serum, suggesting that CRF-induced hyperparathyroidism is associated with a significant decrease in P450 drug-metabolizing enzymes in the brain, which may have implications in drug response. PMID:27271372

  1. The P450–1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis

    PubMed Central

    Rojas, María Cecilia; Hedden, Peter; Gaskin, Paul; Tudzynski, Bettina

    2001-01-01

    Recent studies have shown that the genes of the gibberellin (GA) biosynthesis pathway in the fungus Gibberella fujikuroi are organized in a cluster of at least seven genes. P450–1 is one of four cytochrome P450 monooxygenase genes in this cluster. Disruption of the P450–1 gene in the GA-producing wild-type strain IMI 58289 led to total loss of GA production. Analysis of the P450–1-disrupted mutants indicated that GA biosynthesis was blocked immediately after ent-kaurenoic acid. The function of the P450–1 gene product was investigated further by inserting the gene into mutants of G. fujikuroi that lack the entire GA gene cluster; the gene was highly expressed under GA production conditions in the absence of the other GA-biosynthesis genes. Cultures of transformants containing P450–1 converted ent-[14C]kaurenoic acid efficiently into [14C]GA14, indicating that P450–1 catalyzes four sequential steps in the GA-biosynthetic pathway: 7β-hydroxylation, contraction of ring B by oxidation at C-6, 3β-hydroxylation, and oxidation at C-7. The GA precursors ent-7α-hydroxy[14C]kaurenoic acid, [14C]GA12-aldehyde, and [14C]GA12 were also converted to [14C]GA14. In addition, there is an indication that P450–1 may also be involved in the formation of the kaurenolides and fujenoic acids, which are by-products of GA biosynthesis in G. fujikuroi. Thus, P450–1 displays remarkable multifunctionality and may be responsible for the formation of 12 products. PMID:11320210

  2. Antigenic Crossreactivity between Bacterial and Plant Cytochrome P-450 Monoxygenases 1

    PubMed Central

    Stewart, Cassie B.; Schuler, Mary A.

    1989-01-01

    Although cytochrome P-450 monoxygenases mediate critical reactions in plant microsomes, characterization of their activities has been difficult due to their inherent instability and the lack of a crossreacting P-450 antibody. We have surveyed the effects of protein stabilizing agents on t-cinnamic acid hydroxylase (t-CAH), a prominent microsomal P-450, and on total P-450 monoxygenase content. Trans-cinnamic acid is the most effective protecting agent for t-CAH activity. Leupeptin, a broad spectrum protease inhibitor, stabilizes t-CAH activity and increases the apparent P-450 content more than serine protease inhibitors such as phenylmethylsulfonyl fluoride. The combination of t-cinnamic acid and protease inhibitors increase the level of detectable t-CAH activity 4- to 14-fold over the levels detected by previously published procedures. In order to estimate the molecular weights and diversity of the plant P-450 monoxygenases in wounded pea epicotyls, we have prepared two polyclonal antibodies against the Pseudomonas putida camphor hydroxylase (P-450cam). One of the heterologous antibodies cross-reacts with constitutive microsomal polypeptides between 52 and 54 kilodaltons and several pea (Pisum sativum L.) mitochondrial proteins between 47 and 48 kilodaltons. The other polyclonal antibody cross-reacts strongly with two wound-induced polypeptides (65 and 47 kilodaltons) and weakly with one constitutive polypeptide (58 kilodaltons). We conclude that at least two subclasses of plant P-450 monoxygenases share common epitopes with the bacterial P-450 enzyme. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:16666804

  3. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism.

    PubMed

    Slominski, Andrzej; Semak, Igor; Zjawiony, Jordan; Wortsman, Jacobo; Li, Wei; Szczesniewski, Andre; Tuckey, Robert C

    2005-08-01

    We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized. PMID:16098191

  4. Cytochrome P-450-dependent monooxygenases in olfactory epithelium of dogs: possible role in tumorigenicity

    SciTech Connect

    Dahl, A.R.; Hadley, W.M.; Hahn, F.F.; Benson, J.M.; McClellan, R.O.

    1982-04-02

    The respiratory tract epithelium of dogs, from the nose to the lungs, was examined for cytochrome P-450 and associated biotransformation activities. In the ethmoturbinates, where olfactory epithelium is located, the amount of cytochrome P-450 was comparable to that in the liver, when measured on the basis of activity per milligram of microsomal protein. The rest of the nasal region also contained large quantities of cytochrome P-450. The presence of these enzymes in the nose may be important in chemical-induced tumorigenesis. The nasal carcinogen hexamethylphosphoramide was shown to be metabolized by nasal microsomal enzymes to another nasal carcinogen, formaldehyde.

  5. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    SciTech Connect

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  6. Cytochrome P450 Family 1 Inhibitors and Structure-Activity Relationships

    PubMed Central

    Liu, Jiawang; Sridhar, Jayalakshmi; Foroozesh, Maryam

    2014-01-01

    With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990’s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes. However, the details of structure-activity relationships and selectivity of these inhibitors ar