Science.gov

Sample records for heptenes

  1. Studies on the reaction of trans-2-heptenal with peanut proteins.

    PubMed

    Globisch, Martin; Schindler, Marco; Kreßler, Jana; Henle, Thomas

    2014-08-20

    Hexanal, 2-heptenal, and nonanal were identified as relevant reaction products formed in the course of the lipid peroxidation of heated peanut oil. For the identification of potential amino acid side chain adducts, kinetic studies between N(α)-benzoylglycyl-l-lysine as a model for protein-bound lysine and trans-2-heptenal were performed, showing a strong decrease of the lysine-derivative whereupon the loss of trans-2-heptenal was moderate. Following acid hydrolysis of the incubation mixture of N(α)-acetyl-l-lysine and trans-2-heptenal, two UV-active major lipation products were observed, isolated and identified as isomeric pyridinium-derivatives, namely (Z)- and (E)-1-(5-amino-5-carboxypentyl)-4-butyl-3-(pent-1-en-1-yl)pyridin-1-ium (cis- and trans-BPP-lysine). After heating of a native peanut protein extract with trans-2-heptenal, both derivatives were quantitated by LC-ESI-MS/MS after acid hydrolysis and the modification of lysine was measured by amino acid analysis. At low, "food-relevant", concentrations of trans-2-heptenal, up to 80% of the lysine modification could be explained by the formation of cis- and trans-BPP-lysine, showing that these two lipation derivatives represent good markers for a protein modification by the lipid peroxidation product trans-2-heptenal. PMID:25065678

  2. Conformations of 1-heptene secondary ozonide as studied by low temperature FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bariseviciute, R.; Ceponkus, J.; Sablinskas, V.; Kimtys, L.

    2007-11-01

    Conformational diversity of the 1-heptene secondary ozonides (SOZ) in solid neat films as well as isolated in Ar or CO 2 matrices was studied by the means of FT-IR absorption spectroscopy. The ozonization reaction was performed at 77 K in the neat films of the reactants. The spectra of the ozonide were analyzed by combining the experimental data with the results of theoretical calculations performed at B3LYP 6-311++G (3df, 3pd) level. It was found that the samples of 1-heptene secondary ozonide exist as a mixture of three dominating conformers. The most stable conformer is the one with O-O half-chair configuration of the five membered ring, the aliphatic radical attached to the ring in equatorial position and the aliphatic chain being in gauche (∠OCCC ≈ -60°) position. The other two stable conformers are equatorial with aliphatic chain in anti (∠OCCC ≈ 180°) and gauche (∠OCCC ≈ 60°) positions. It was found from Van't Hoff plots that Δ H of the equatorial anti conformer is equal to 0.24 ± 0.03 kJ/mol. The experimental value of Δ H is in reasonable accordance to the calculated one - 0.5 kJ/mol.

  3. First Biosynthetic pathway of 1-hepten-3-one in Iporangaia pustulosa (Opiliones)

    PubMed Central

    Rocha, Daniele F. O.; Wouters, Felipe C.; Machado, Glauco; Marsaioli, Anita J.

    2013-01-01

    Arthropods produce a great variety of natural compounds, many of which have unexplored biosynthesis. Among the armored harvestmen (Arachnida: Opiliones) of the suborder Laniatores, the defensive gland exudates contain vinyl ketones and other constituents of supposed polyketide origin. We have studied the biosynthesis of 1-hepten-3-one in the Neotropical harvestman Iporangaia pustulosa by feeding individuals with 13C-labeled precursors, demonstrating its mixed acetate/propionate origin. 13C NMR spectroscopy showed an unusual labeling pattern suggesting different propionate sources for starting and extender units. Our analysis also indicates the presence of methylmalonyl-CoA mutase, converting acetate into propionyl-CoA via succinyl-CoA, together with other C3 unit routes. This is the first biosynthetic study of alkyl vinyl ketones in arthropods. Our results shed light on the origin and diversification of chemical compounds in a major arthropod group. PMID:24193576

  4. An exploratory study on the peroxyl-radical-scavenging activity of 2,6-dimethyl-5-hepten-2-ol and its heterocyclic analogues

    NASA Astrophysics Data System (ADS)

    Stobiecka, Agnieszka; Sikora, Magdalena; Bonikowski, Radosław; Kula, Józef

    2016-03-01

    The structural properties and radical scavenging activity of 2,6-dimethyl-5-hepten-2-ol (1) and its new heterocyclic analogues, i.e. 2-methyl-4-(5-methylfuran-2-yl)-butan-2-ol (2) and 2-methyl-4-(5-methylthiophen-2-yl)-butan-2-ol (3) and have been studied by using the experimental and theoretical methods for the first time. Activity of title compounds against the peroxyl radical was determined by using standard fluorimetric test, i.e. the Oxygen Radical Absorbance Capacity assay (ORACFL). Furthermore, the electron-donating ability of odorants has been evaluated by using colorimetric ABTS assay. According to the experimental results obtained from the ORACFL test 2,6-dimethyl-5-hepten-2-ol was characterized by the highest activity in comparison with the novel counterparts. Nevertheless, all investigated compounds exhibited pronounced anti-peroxyl radical activity comparable to that exerted by the one of the most prominent antioxidant among the monoterpene alcohols, i.e. by linalool. On the other hand, the title compounds exerted relatively low capacity to quench the radical cation of ABTS. Theoretical calculations based on the Density Functional Theory (DFT) method with the hybrid functional B3LYP were carried out in order to investigate selected structural and electronic properties including the geometrical parameters as well as the energy of frontier molecular orbitals of parent molecules and the resulting radicals. Furthermore, the possible mechanism of peroxyl-radical-scavenging has been determined by using the thermodynamic descriptors such as the bond dissociation enthalpies (BDEs) and ionization potentials (IPs). These theoretical data pointed out the relevance of HAT mechanism in the peroxyl-radical-scavenging exhibited by 2,6-dimethyl-5-hepten-2-ol and its new heterocyclic analogues in polar and non-polar medium.

  5. Ozonolysis at vegetation surfaces. a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere

    NASA Astrophysics Data System (ADS)

    Fruekilde, P.; Hjorth, J.; Jensen, N. R.; Kotzias, D.; Larsen, B.

    The present study gives a possible explanation for the ubiquitous occurrence of 6-methyl-5-hepten-2-one and acetone in ambient air and reports for the first time on a widespread occurrence of geranyl acetone and 4-oxopentanal. We have conducted a series of laboratory experiments in which it is demonstrated that significant amounts of geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and acetone are formed by the reaction of ozone with foliage of common vegetation in the Mediterranean area ( Quercus ilex>Citrus sinensis>Quercus suber>Quercus freinetto>Pinus pinea). In order to rule out biological formation, epicuticular waxes were extracted from the leaves, dispersed on glass wool and allowed to react with a flow of artificial air. Significant amounts of 6-MHO and 4-OPA were formed at ozone concentrations of 50-100 ppbv, but not at zero ozone. A number of terpenoids common in vegetation contain the structural element necessary for ozonolytic formation of 6-MHO. Two sesquiterpenes (nerolidol; farnesol), and a triterpene (squalene) selected as representative test compounds were demonstrated to be strong precursors for acetone, 4-OPA, and 6-MHO. Squalene was also a strong precursor for geranyl acetone. The atmospheric lifetime of geranyl acetone and 6-MHO is less than 1 h under typical conditions. For the present study, we have synthesized 4-OPA and investigated the kinetics of its gas-phase reaction with OH, NO 3, and O 3. A tropospheric lifetime longer than 17 h under typical conditions was calculated from the measured reaction rate constants, which explains the tropospheric occurrence of 4-OPA. It is concluded that future atmospheric chemistry investigations should included geranyl acetone, 6-MHO, and 4-OPA. In a separate experiment it was demonstrated that human skin lipid which contains squalene as a major component is a strong precursor for the four above-mentioned compounds plus nonanal and decanal. The accidental touching of material

  6. Behavioural response of sexually naïve and experienced male rats to the smell of 6-methyl-5-hepten-2-one and female rat faeces.

    PubMed

    Nielsen, Birte L; Jerôme, Nathalie; Saint-Albin, Audrey; Rampin, Olivier; Maurin, Yves

    2013-08-15

    Sexually experienced male rats display penile erections when exposed to faeces from mammalian females in oestrus (Rampin et al., Behav Brain Res, 172:169, 2006), suggesting that specific odours indicate female receptiveness across species. However, it is unknown to what extent the sexual response observed results from an odorous conditioning acquired during sexual experience. We tested the behavioural response of male Brown Norway rats both when sexually naïve and experienced to four odours, including oestrous rat faeces and 6-methyl-5-hepten-2-one (methylheptenone; a molecule found in higher concentrations during oestrus in female rats, foxes and horses). Odour had a significant effect on the sexual response of the naïve rats, with oestrus faeces provoking significantly more erections than herb odour, and with methylheptenone and di-oestrus faeces being intermediate. This indicates that sexually naïve male rats have an unconditioned ability to detect oestrous mediated via odour. After gaining sexual experience, the response to methylheptenone, di- and oestrus faeces was significantly higher than that observed with herb odour. These results strongly suggest that methylheptenone is part of the odorous bouquet of oestrus and contributes to the olfactory determination of female receptiveness. PMID:23911690

  7. Kinetics of the gas-phase reaction between ozone and three unsaturated oxygenated compounds: Ethyl 3,3-dimethyl acrylate, 2-methyl-2-pentenal and 6-methyl-5-hepten-2-one at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gaona Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.

    2015-05-01

    Rate coefficients for the gas-phase reactions of O3 molecules with three unsaturated oxygenated compounds have been determined using the relative kinetic technique in an environmental chamber with FTIR detection of the reactants at (298 ± 2) K in 760 Torr total pressure of synthetic air. The following rate coefficients (in units of 10-17 cm3 molecule-1 s-1) were determined: ethyl 3,3-dimethyl acrylate (0.82 ± 0.19), 2-methyl-2-pentenal (0.71 ± 0.16) and 6-methyl-5-hepten-2-one (26 ± 7). The different reactivity of the unsaturated oxygenated compounds toward O3 is discussed in terms of their chemical structure. In addition, a correlation between the reactivity of structurally different unsaturated compounds (alkenes and unsaturated oxygenated VOCs, such as ethers, esters, aldehydes, ketones and alcohols) toward O3 molecules and the HOMO (Highest Occupied Molecular Orbital) of the compounds is presented. Using the kinetic parameters determined in this work, residence times of these unsaturated compounds in the atmosphere with respect to reaction with O3 have been calculated. In urban and rural areas the main sink of 6-methyl-5-hepten-2-one is reaction with O3 molecules with a residence time in the order of few minutes.

  8. Surface chemistry of dihydromyrcenol (2,6-dimethyl-7-octen-2-ol) with ozone on silanized glass, glass, and vinyl flooring tiles

    NASA Astrophysics Data System (ADS)

    Ham, Jason E.; Raymond Wells, J.

    The surface-phase reaction products of dihydromyrcenol (2,6-dimethyl-7-octen-2-ol) with ozone (O 3), air, or nitrogen (N 2) on silanized glass, glass and vinyl flooring tile were investigated using the recently published FACS (FLEC (Field and Laboratory Emission Cell) Automation and Control System). The FACS was used to deliver ozone (100 ppb), air, or N 2 to the surface at a specified flow rate (300 mL min -1) and relative humidity (50%) after application of a 2.0% dihydromyrcenol solution in methanol. Oxidation products were detected using the derivatization agents: O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and N, O-bis(trimethysilyl)trifluoroacetamide (BSTFA). The positively identified reaction products were glycolaldehyde, 2,6-dimethyl-5-heptenal, and glyoxal. The proposed oxidation products based on previously published VOC/O 3 reaction mechanisms were: 2,6-dimethyl-4-heptenal, 6-methyl-7-octen-2-one and the surface-specific reaction products: 6-methyl-6-hepten-2-one, 6-methyl-5-hepten-2-one, and 6-hydroxy-6-methylheptan-2-one. Though similar products were observed in gas-phase dihydromyrcenol/O 3 reactions, the ratio, based on peak area, of the reaction products was different suggesting stabilization of larger molecular weight species by the surface. Emission profiles of these oxidation products over 72 h are also reported.

  9. ESTIMATES OF REGIONAL NATURAL VOLATILE ORGANIC COMPOUND FLUXES FROM ENCLOSURE AND AMBIENT MEASUREMENTS

    EPA Science Inventory

    The paper discusses results of an investigation at two forested sites in the Southeastern United States. A variety of VOC compounds including methanol, 2-methyl-3-buten-2-ol, 6-methyl-5-hepten-
    2-one, isoprene, and 15 monoterpenes were emitted from vegetation at these sites. D...

  10. Validation of a headspace trap gas chromatography and mass spectrometry method for the quantitative analysis of volatile compounds from degraded rapeseed oil.

    PubMed

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2016-05-01

    Due to lipid oxidation, off-flavors, characterized by a fishy odor, are emitted during the heating of rapeseed oil in a fryer and affect the flavor of rapeseed oil even at low concentrations. Thus, there is a need for analytical methods to identify and quantify these products. To study the headspace composition of degraded rapeseed oil, and more specifically the compounds responsible for the fishy odor, a headspace trap gas chromatography with mass spectrometry method was developed and validated. Six volatile compounds formed during the degradation of rapeseed oil were quantified: 1-penten-3-one, (Z)-4-heptenal, hexanal, nonanal, (E,E)-heptadienal, and (E)-2-heptenal. Validation using accuracy profiles allowed us to determine the valid ranges of concentrations for each compound, with acceptance limits of 40% and tolerance limits of 80%. This method was then successfully applied to real samples of degraded oils. PMID:26990911

  11. Arm-in-cage testing of natural human-derived mosquito repellents

    PubMed Central

    2010-01-01

    Background Individual human subjects are differentially attractive to mosquitoes and other biting insects. Previous investigations have demonstrated that this can be attributed partly to enhanced production of natural repellent chemicals by those individuals that attract few mosquitoes in the laboratory. The most important compounds in this respect include three aldehydes, octanal, nonanal and decanal, and two ketones, 6-methyl-5-hepten-2-one and geranylacetone [(E)-6,10-dimethylundeca-5,9-dien-2-one]. In olfactometer trials, these compounds interfered with attraction of mosquitoes to a host and consequently show promise as novel mosquito repellents. Methods To test whether these chemicals could provide protection against mosquitoes, laboratory repellency trials were carried out to test the chemicals individually at different concentrations and in different mixtures and ratios with three major disease vectors: Anopheles gambiae, Culex quinquefasciatus and Aedes aegypti. Results Up to 100% repellency was achieved depending on the type of repellent compound tested, the concentration and the relative composition of the mixture. The greatest effect was observed by mixing together two compounds, 6-methyl-5-hepten-2-one and geranylacetone in a 1:1 ratio. This mixture exceeded the repellency of DEET when presented at low concentrations. The repellent effect of this mixture was maintained over several hours. Altering the ratio of these compounds significantly affected the behavioural response of the mosquitoes, providing evidence for the ability of mosquitoes to detect and respond to specific mixtures and ratios of natural repellent compounds that are associated with host location. Conclusion The optimum mixture of 6-methyl-5-hepten-2-one and geranylacetone was a 1:1 ratio and this provided the most effective protection against all species of mosquito tested. With further improvements in formulation, selected blends of these compounds have the potential to be exploited and

  12. Synthesis of the aggregation pheromone of the Colorado potato beetle from its degradation product.

    PubMed

    Wacławczyk-Biedroń, Weronika; Frąckowiak-Wojtasek, Bożena; Strub, Daniel; Rzechak, Magdalena; Wojtasek, Hubert

    2015-09-01

    Incubation of the Colorado potato beetle aggregation pheromone, (S)-1,3-dihydroxy-3,7-dimethyl-6-octen-2-one, with antennal or leg extracts from this beetle gave 6-methyl-5-hepten-2-one as the major product. This ketone was used as a substrate in a stereoselective synthesis of the pheromone. It was attached to the butanediacetal of glycolic acid with good stereoselectivity and the desired isomer was further enriched by purification of the product of this reaction on silica gel. PMID:26169127

  13. Identification of male-produced aggregation pheromone of the curculionid beetle Acrotomopus atropunctellus.

    PubMed

    Rodríguez, S A; Pérez, M L P; Nazareno, M A

    2016-08-01

    The sugarcane stem weevil, Acrotomopus atropunctellus (Boheman) (Curculionidae: Molytinae: Cholini) is an important economic pest from the Northwestern region of Argentina. Analyses of the headspace volatiles produced by separated males and females revealed one male-specific compound. Its structural identification is reported here in using gas chromatography coupled with mass spectroscopy analysis and chemical micro-reactions. Besides, two laboratory olfactometry assays allowed us to propose 6-methyl-5-hepten-2-one (sulcatone) as an aggregation pheromone for this insect, being attractive to both conspecific males and females. This compound is reported for the first time as involved in the Curculionidae family communication. PMID:27019030

  14. New Approach to Evaluate the Antennal Response of an Adult Predator Insect to Different Volatile Chemical Compounds by using Electroantennogram Technique

    NASA Astrophysics Data System (ADS)

    Shonouda, Mourad L.

    The antennal response of adult syrphid flies to selected plant volatile chemical compounds was investigated in the present study. The main chemical classes and their chemical compounds were aldehydes (nonanal and benzaldehyde), monoterpene-alcohols (linalool and alpha-terpineol), ketones (6-methyl-5-heptene-2-one and 2-undecanone), hydrocarbons (tetradecane) and benzoids (methyl salicylate). Electroantennogram (EAG) records showed that the syrphid antennae were strongly responded to linalool, 6-methyl-5-heptene-2-one and methyl salicylate even at low concentrations, in addition to the high dose concentration of nonanal comparably to the other chemical compounds. The antennae of old syrphid adults were more responsive and elicited higher levels of responses to all compounds rather than young syrphid adults. The antennal sensitivity may differ from one compound to another according to the sex. The difference in responses could be attributed to the sensitivity of olfactory receptors and/or the characterization of binding protein(s). The quality of biocontrol agent could be improved if the chemical interaction between beneficial natural enemies and the surrounding environment is intensively studied and we clearly understand the chemical ecology of each natural enemy.

  15. Do Flower Color and Floral Scent of Silene Species affect Host Preference of Hadena bicruris, a Seed-Eating Pollinator, under Field Conditions?

    PubMed Central

    Page, Paul; Favre, Adrien; Schiestl, Florian P.; Karrenberg, Sophie

    2014-01-01

    Specialization in plant–insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization. PMID:24905986

  16. Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS.

    PubMed

    Zhu, JianCai; Chen, Feng; Wang, LingYing; Niu, YunWei; Yu, Dan; Shu, Chang; Chen, HeXing; Wang, HongLin; Xiao, ZuoBing

    2015-09-01

    The aroma profile of oolong tea infusions (Dongdingwulong, DDWL; Tieguanyin, TGY; Dahongpao, DHP) were investigated in this study. Gas chromatography-olfactometry (GC-O) with the method of aroma intensity (AI) was employed to investigate the aroma-active compounds in tea infusions. The results presented forty-three, forty-five, and forty-eight aroma-active compounds in the TGY, DHP, and DDWL infusions, including six, seven, and five sulfur compounds, respectively. In addition, the concentration of volatile compounds in the tea infusions was further quantitated by solid phase microextraction-gas chromatography (SPME)-GC-MS and SPME-GC-flame photometric detection (FPD). Totally, seventy-six and thirteen volatile and sulfur compounds were detected in three types of tea infusions, respectively. Quantitative results showed that forty-seven aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), 2-methylpropanal (OAV: 230-455), 3-methylbutanal (1-353), 2-methylbutanal (34-68), nerolidol (108-184), (E)-2-heptenal (148-294), hexanal (134-230), octanal (28-131), β-damascenone (29-59), indole (96-138), 6-methyl-5-hepten-2-one (34-67), (R)-(-)-linalool (63-87), and dimethyl sulfide (7-1320) presented relatively higher OAVs than those of other compounds, indicating the importance of these compounds in the overall aroma of tea infusions. PMID:26257073

  17. Effect of release rate and enantiomeric composition on response to pheromones of Megaplatypus mutatus (Chapuis) in poplar plantations of Argentina and Italy.

    PubMed

    Funes, Hernán; Zerba, Eduardo; Gonzalez-Audino, Paola

    2013-10-01

    Megaplatypus mutatus (=Platypus sulcatus Chapuis) is an Ambrosia beetle native to South America, which was recently introduced in Italy and its presence there is causing severe damage to the local poplar plantations. The male M. mutatus pheromone is composed of (S)-(+)-6-methyl-5-hepten-2-ol [(+)-sulcatol], 6-methyl-5-hepten-2-one (sulcatone) and 3-pentanol. A series of field trials testing dose, blend and enantiomer composition performed in Argentina and Italy evaluated attraction and found that the optimal release rate of pheromone components as baits in cross vane baited traps (CIPEIN-CV) was 6, 6 and 30 mg day−1 of sulcatone, (+)-sulcatol and 3-pentanol, respectively. It was also determined that racemic sulcatol is as effective as the pure (+)-isomer for the purpose of beetle catch, due to the inert nature of the (−)-isomer allowing the usage of low cost racemic sulcatol instead of highly expensive (+)-sulcatol. The results of our work contribute to the development of pheromone-based local technologies with low environmental impact and low cost for control or monitoring of an important pest. PMID:23590828

  18. A new thiophene and two new monoterpenoids from Xanthium sibiricum.

    PubMed

    Shi, Yu-Sheng; Li, Li; Liu, Yun-Bao; Ma, Shuang-Gang; Li, Yong; Qu, Jing; Liu, Quan; Shen, Zhu-Fang; Chen, Xiao-Guang; Yu, Shi-Shan

    2015-01-01

    Three new compounds (1-3), together with six known compounds (4-9), were isolated from the fruits of Xanthium sibiricum. The structures and the absolute configurations of sibiricumthionol (1), (+)-(5Z)-6-methyl-2-ethenyl-5-hepten-1,2,7-triol [(+)-2], ( - )-(5Z)-6-methyl-2-ethenyl-5-hepten-1,2,7-triol [( - )-2], (2E,4E,1'S, 2'R, 4'S, 6'R)-dihydrophaseic acid (3), (+)-xanthienopyran [(+)-4] and ( - )-xanthienopyran [( - )-4] were established by extensive spectroscopic analyses, X-ray crystallographic analysis, ECCD analysis and ECD calculations. Caffeic acid (7) and caffeic acid ethyl ester (8) weekly inhibited α-glucosidase enzymatic activity by 44.5% and 40.2%, respectively, at 40 μM. Protocatechuic acid (9) selectively exhibited cytotoxicity against HepG2 cell lines, with an IC50 value of 2.92 μM. PMID:26466199

  19. Chemical defense in the plant bug Lopidea robiniae (Uhler).

    PubMed

    Staples, Joseph K; Krall, Bryan S; Bartelt, Robert J; Whitman, Douglas W

    2002-03-01

    Secretions from the metathoracic glands (MTG) of the black locust bug, Lopidea robiniae (Uhler) (Heteroptera: Miridae) contained six major compounds, including (E)-2-hexenal, (E)-2-hexen-1-ol, (E)-2-octenal, (E)-2-octen-1-ol (E)-2-heptenal, and (Z)-3-octen-1-ol. Males and females did not differ significantly in the relative compositions of identified compounds. In feeding trials, six bird species [robin (Turdus migratorious), blue jay (Cyanocitta cristata), brown thrasher (Toxostoma rufum), killdeer (Charadrius vociferus), starling (Sturnus vulgaris), and house wren (Troglodytes aedon)] demonstrated feeding aversions towards L. robiniae implying that black locust bugs are chemically defended. Bugs discharged the liquid contents of their MTG when attacked, thereby producing a strong and distinct odor. Some birds immediately ejected bugs out of their mouth after biting them, suggesting that the MTG secretion was a deterrent. PMID:11944836

  20. Trichodermaerin: a diterpene lactone from Trichoderma asperellum.

    PubMed

    Chantrapromma, Suchada; Jeerapong, Chotika; Phupong, Worrapong; Quah, Ching Kheng; Fun, Hoong-Kun

    2014-04-01

    The title compound, C20H28O3, known as 'trichodermaerin' [systematic name: (4E)-4,9,15,16,16-penta-methyl-6-oxa-tetra-cyclo-[10.3.1.0(1,10).0(5,9)]hexa-dec-4-ene-7,13-dione], is a diterpene lactone which was isolated from Trichoderma asperellum. The structure has a tetra-cycic 6-5-7-5 ring system, with the cyclo-hexa-none ring adopting a twisted half-chair conformation and the cyclo-pentane ring adopting a half-chair conformation, whereas the cyclo-heptene and tetra-hydro-furan-anone rings are in chair and envelope (with the methyl-substituted C atom as the flap) conformations, respectively. The three-dimensional architecture is stabilized by C-H⋯O inter-actions. PMID:24826124

  1. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objective for this quarter was to study the effect of co-feeding a 1-olefin on the Ruhrchemie catalyst activity and selectivity, during-both conventional Fisher-Tropsch synthesis (FTS) and FTS under supercritical conditions. We used propane as the supercritical fluid and 1-dodecene (1-C{sub 12}H{sub 24}) in this test. Motivation for this study was the work of Fujimoto and co-workers who reported that suppression of methane and enhancement of high molecular weight hydrocarbons selectivities occurs with co-feeding of 1-olefins (1-heptene, 1-tetradecene, or 1-hexadecene) during FTS under supercritical conditions, but not during the conventional FTS (Co-La catalyst supported on silica in supercritical n-pentane).The diffusion coefficients of products in supercritical fluids is discussed.

  2. Diarylheptanoids with inhibitory effects on melanogenesis from the rhizomes of Curcuma comosa in B16 melanoma cells.

    PubMed

    Matsumoto, Takahiro; Nakamura, Seikou; Nakashima, Souichi; Yoshikawa, Masayuki; Fujimoto, Katsuyoshi; Ohta, Tomoe; Morita, Azumi; Yasui, Rie; Kashiwazaki, Eri; Matsuda, Hisashi

    2013-09-15

    The methanolic extract from the dried rhizomes of Curcuma comosa cultivated in Thailand was found to inhibit melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. From the methanolic extract, three new diarylheptanoids, diarylcomosols I-III, were isolated together with 12 known diarylheptanoids. Their chemical structures were elucidated on the basis of chemical and physicochemical evidence. The diarylheptanoids inhibited melanogenesis, and several structural requirements of the active constituents for the inhibition were clarified. In particular, (3R)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol exhibited stronger inhibitory effect [IC50=0.36 μM] without inducing cytotoxicity. The biological effect was much stronger than that of a reference compound, arbutin [IC50=174 μM]. We conclude that diarylheptanoid analogs are promising therapeutic agents for the treatment of skin disorders. PMID:23910596

  3. DPPH free radical scavenger components from the fruits of Alpinia rafflesiana Wall. ex. Bak. (Zingiberaceae).

    PubMed

    Mohamad, Habsah; Abas, Faridah; Permana, Dharma; Lajis, Nordin H; Ali, Abdul Manaf; Sukari, Mohd Aspollah; Hin, Taufiq Y Y; Kikuzaki, Hiroe; Nakatani, Nobuji

    2004-01-01

    The methanol extract of the dried ripe fruits of Alpinia rafflesiana was investigated for its DPPH free radical scavenger constituents. 2',3',4',6'-Tetrahydroxychalcone (7), which has never been isolated from natural sources was found to be most active as a DPPH free radical scavenger with the IC50 value of 55 microM. Other known compounds isolated from this species include 5,6-dehydrokawain (1), flavokawin B (2). 1,7-diphenyl-5-hydroxy-6-hepten-3-one (3), (-)-pinocembrin (4), cardamonin (5) and (-)-pinostrobin (6). The DPPH free radical scavenger compounds were detected using TLC autographic analysis. The percentage inhibition of DPPH free radical scavenging activity was measured on isolates (5-7) using colorimetric analysis. PMID:15666539

  4. Relationship between flavour deterioration and the volatile compound profile of semi-ripened sausage.

    PubMed

    Lorenzo, José Manuel; Bedia, Mario; Bañón, Sancho

    2013-03-01

    This study provides data on the relationship between flavour deterioration and the volatile compound profile of semi-ripened pork salami kept under retail conditions for up to 150 days. The flavour of salami deteriorated for 120 days, resulting in rancidity and a loss of acceptability. TBARS increased from 0.16 to 0.57 MDA/kg. The flavour changes during the shelf life of salami were monitored from changes in the volatile profile. The retailing time influenced (p<0.05) the level of 27 of the 30 headspace volatiles determined by SPME-GC/MS. Flavour deterioration was associated with the loss and/or degradation of volatiles resulting from spices and microbial activities, and the formation of volatiles from lipid oxidation. The levels of 2-heptenal and methyl esters of heptanoic, pentanoic and hexanoic acids were the best discriminators of storage time, and therefore seem to be promising as marker compounds of flavour deterioration and acceptability. PMID:23273472

  5. Reaction of deuterium with olefins on nickel catalysts: evidence for adsorbed vinylic species

    SciTech Connect

    Mintsa-Eya, V.; Hilaire, L.; Choplin, A.; Touroude, R.; Gault, F.G.

    1983-08-01

    The interaction of deuterium with 1,2-dimethylcyclopentene, 2,3-dimethylcyclopentene, 1-methyl-2-methylenecyclopentane, 1,2-dimethylcyclobutene, 1-methyl-2-methylenecyclobutane, bicyclo(2,2,1)heptene, but-1-ene, and cis-but-2-ene was studied from -85 to 50/sup 0/C on nickel films in a static apparatus and on Ni/pumice in a flow system. Unexpected d/sub 3/ and d/sub 4/ molecules were obtained in the deuteration of bicyclo(2,2,1)heptene. The position of the double bond in the ring of the other cycloolefins was the main factor governing their behavior: in the deuteration of 1,2-dimethylcycloalkenes, the saturated products, especially the trans somers, were much more exchanged and the percentage of trans was lower than when the starting material consisted of the olefins with the double bond in 2,3 or exocyclic positions. The hyperfine distribution, obtained by microwave analysis, of the exchanged d/sub 1/ but-1-ene, revealed that the major part of the deuterium was introduced on C/sub 2/; the cis-trans isomerization was much faster than the double bond migration with the introduction of zero or one deuterium atom while the isomerized but-1-ene showed a multiple exchange up to d/sub 4/; in the isomerized d/sub 1/ but-1-ene, the deuterium atom was distributed on the three carbon atoms C/sub 1/, C/sub 2/, C/sub 3/. Most of these results clearly show that the classical Horiuti-Polanyi mechanism is not the only one taking part in the reactions. The introduction of other intermediaries, sigma-vinylic, sigma-vinylic ..pi..-olefinic, and sigma-vinylic ..pi..-allylic species, provides a coherent explanation for all our findings. It is shown that nickel and iron behave in a very similar way. 5 tables.

  6. The stable-carbon kinetic isotope effects of the reactions of isoprene, methacrolein, and methyl vinyl ketone with ozone in the gas phase

    NASA Astrophysics Data System (ADS)

    Iannone, Richard; Koppmann, Ralf; Rudolph, Jochen

    The stable-carbon kinetic isotope effects (KIEs) for the gas-phase reactions of isoprene, methacrolein (MACR), and methyl vinyl ketone (MVK) with ozone were studied in a 25 L reaction chamber at 298 ± 2 K and ambient pressure. The time dependence of both the stable-carbon isotope ratios and the concentrations was determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The volatile organic compounds (VOCs) used in the KIE experiments had natural-abundance isotopic composition thus KIE data obtained from these experiments can be directly applied to atmospheric studies of isoprene chemistry. All 13C/ 12C KIEs reported herein are as per mille ɛ values, where ɛ = (KIE - 1) × 1000‰, and KIE = k12/ k13. The following average stable-carbon KIEs were obtained: (8.40 ± 0.11)‰ (isoprene), (8.38 ± 0.42)‰ (MACR), and (8.01 ± 0.07)‰ (MVK). The stable-carbon KIE values of three 1-alkenes, which were used as reference compounds for relative rate experiments, were also determined: (5.48 ± 0.09)‰ (1-heptene), (4.67 ± 0.17)‰ (1-octene), and (4.59 ± 0.56)‰ (1-nonene). The ɛ values for the reactions of isoprene and 1-heptene with ozone agree with measurements in a previous study [Iannone, R., Anderson, R.S., Rudolph, J., Huang, L., Ernst, D., 2003. The carbon kinetic isotope effects of ozone-alkene reactions in the gas-phase and the impact of ozone reactions on the stable carbon isotope ratio of alkenes in the atmosphere. Geophysical Research Letters 30, 1684, doi: 10.1029/2003GL017221.], but the values presented here have a substantially improved accuracy. The ɛ values for 1-octene and 1-nonene reactions with ozone have not been measured before and closely follow the 1/ NC dependence (where NC represents the number of carbon atoms in the alkene) derived in the aforementioned study. MACR and MVK had ɛ values that were somewhat below the expected range of values predicted by the 1/ NC dependence found for alkenes.

  7. Attraction Behaviors of Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) to Synthetic Volatiles Emitted by Insect Damaged Potato Tubers.

    PubMed

    Laznik, Žiga; Trdan, Stanislav

    2016-04-01

    Entomopathogenic nematodes (EPNs) play a role in indirect defense of plants under attack by root herbivores. Several investigations have shown that EPNs are attracted or repelled by various volatile compounds (VOCs) released from insect damaged plant roots. We hypothesized that the directional responses of EPNs to the VOCs would be affected by foraging strategy and would vary among species, VOC type, and VOC concentrations. We tested the chemotactic responses of four commercial EPN species (Steinernema feltiae, S. carpocapsae, S. kraussei, and Heterorhabditis bacteriophora) to seven compounds released from insect (Melolontha hippocastani)-damaged (decanal, nonanal, octanal, undecane, 6-methyl-5-hepten-2-one, and 1,2,4-trimethylbenzene) and undamaged (2-ethyl-1-hexanol) potato tubers. Our results suggest that EPNs are able to distinguish herbivore-induced VOCs from those that are typical for healthy potato tubers. In our investigation, nonanal, octanal, and decanal had a greater influence on the movement of EPNs than other tested synthetic volatiles. Decanal was an attractant for H. bacteriophora and S. kraussei at both tested concentrations (as a pure compound and at a concentration of 0.03 ppm). The results suggest that the susceptibility to perception of chemical stimuli from the environment is a species-specific characteristic that prevails over the influence of the foraging strategy. PMID:27108451

  8. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena.

    PubMed

    Huang, Fong-Chin; Horváth, Györgyi; Molnár, Péter; Turcsi, Erika; Deli, József; Schrader, Jens; Sandmann, Gerhard; Schmidt, Holger; Schwab, Wilfried

    2009-03-01

    Several of the key flavor compounds in rose essential oil are C(13)-norisoprenoids, such as beta-damascenone, beta-damascone, and beta-ionone which are derived from carotenoid degradation. To search for genes putatively responsible for the cleavage of carotenoids, cloning of carotenoid cleavage (di-)oxygenase (CCD) genes from Rosa damascena was carried out by a degenerate primer approach and yielded a full-length cDNA (RdCCD1). The RdCCD1 gene was expressed in Escherichia coli and recombinant protein was assayed for its cleavage activity with a multitude of carotenoid substrates. The RdCCD1 protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrates. RdCCD1 could also cleave lycopene at the 5-6 and 5'-6' positions to produce 6-methyl-5-hepten-2-one. Expression of RdCCD1 was studied by real-time PCR in different tissues of rose. The RdCCD1 transcript was present predominantly in rose flower, where high levels of volatile C(13)-norisoprenoids are produced. Thus, the accumulation of C(13)-norisoprenoids in rose flower is correlated to the expression of RdCCD1. PMID:19264332

  9. Effect of management (organic vs conventional) on volatile profiles of six plum cultivars (Prunus salicina Lindl.). A chemometric approach for varietal classification and determination of potential markers.

    PubMed

    Cuevas, F J; Moreno-Rojas, J M; Arroyo, F; Daza, A; Ruiz-Moreno, M J

    2016-05-15

    The volatile profiles of six plum cultivars ('Laetitia', 'Primetime', 'Sapphire', 'Showtime', 'Songold' and 'Souvenir') produced under two management systems (conventional and organic) and harvested in two consecutive years were obtained by HS-SPME-GC-MS. Twenty-five metabolites were determined, five of which (pentanal, (E)-2-heptenal, 1-octanol, eucalyptol and 2-pentylfuran) are reported for the first time in Prunus salicina Lindl. Hexanal stood out as a major volatile compound affected by the management system. In addition, partial least square discriminant analysis (PLS-DA) achieved an effective classification of genotypes based on their volatile profiles. A high classification accuracy model was obtained with a sensitivity of 97.9% and a specificity of 99.6%. Furthermore, the application of a dual criterion, based on a method of variable selection, VIP (variable importance in projection) and the results of a univariate analysis (ANOVA), allowed the identification of potential volatile markers in 'Primetime', 'Showtime' and 'Souvenir' genotypes (cultivars not characterised to date). PMID:26775998

  10. Influence of rearing conditions on the volatile compounds of cooked fillets of Silurus glanis (European catfish).

    PubMed

    Hallier, Arnaud; Prost, Carole; Serot, Thierry

    2005-09-01

    Volatile compounds of cooked fillets of Silurus glanis reared under two conditions occurring in France were studied. They were extracted by dynamic headspace, identified by gas chromatography/mass spectrometry, and quantified by gas chromatography-flame ionization detection. Odor active volatile compounds were characterized by gas chromatography-olfactometry. Sixty volatile compounds were detected in dynamic headspace extracts, among which 33 were odor active. Rearing conditions affected their estimated concentrations and their odor intensities, but very few qualitative differences were exhibited (only seven volatile compounds were concerned). A good correlation between quantitative and olfactometric results is shown. 2-Methylisoborneol and (E)-2-hexenal were less represented in OUTDOOR extracts, while 2-butanone was less represented in INDOOR extracts. In addition, olfactometric results can be closely related to those previously obtained by sensory analysis. Boiled potato sensory odor of the silurus cooked fillets can be related to (Z)-4-heptenal and methional, and buttery odor can be related to 2,3-butanedione, an unknown compound (RI = 1010), and 2,3-pentadione. PMID:16131131

  11. Products of the gas-phase reactions of O{sub 3} with alkenes

    SciTech Connect

    Atkinson, R.; Tuazon, E.C.; Aschmann, S.M.

    1995-12-01

    Selected products of the gas-phase reactions of a series of alkenes (1-pentene, 1-hexene, 1-heptene, 1-octene, 2,3-dimethyl-l-butene, cyclopentene and 1-methylcyclohexene) with O{sub 3} have been identified and quantified by gas chromatography and in situ Fourier transform infrared absorption spectroscopy. Because OH radicals are formed in these O{sub 3} reactions, experiments were carried out in the presence of sufficient cyclohexane or n-octane to scavenge > 90 % of the OH radicals formed. OH radical formation yields from the O{sub 3}-alkene reactions were derived from the amounts of cyclohexanone and cyclohexanol formed in O{sub 3}-alkene-cyclohexane-air mixtures. The molar yields of the carbonyls products R{sub 1}C(O)R{sub 2} plus HCHO from the O{sub 3} reactions with the five 1-alkenes (R{sub 1}R{sub 2}C=CH{sub 2}) studied were 1.1 {plus_minus} 0.1, as expected from the presently accepted reaction mechanism.

  12. Volatile composition of six horsetails: prospects and perspectives.

    PubMed

    Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Fruchier, Alain; Buatois, Bruno; Rapior, Sylvie

    2013-04-01

    Six horsetails were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Seventy-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including isoprenoid derivatives were detected from these putative natural resources. E. palustre var. americana contained mainly lipidic derivatives, i.e., 1-octen-3-ol (mushroom-like odor), (E)-2-hexenoic acid (fruity odor) and (E)-2-hexenal (green odor). Many isoprenoid flavour precursors, i.e., 3-oxo-alpha-ionol (spicy odor) and (E,E)-pseudoionone (balsamic odor), as well as odorous benzenic derivatives, i.e, phenylethanal (hyacinth, lilac note) and 2-phenylethanol (rose odor) contributed to the odor of E. arvense. The volatile pattern of E. telmateia is dominated by high amounts of isoprenoids and benzenic derivatives. The complex volatile profiles of E. hyemale and E. ramosissimum are based on ferulic acid isomers, along with either (E)-2-heptenal (green vegetable-like odor) or 4-vinylguaiacol (spicy clove smoky odor) for E. hyemale and E. ramosissimum, respectively. The broad spectrum of E. scirpioides shows the lowest VOC content with high amount of isoprenoids (46.9%), mainly ionone derivatives. Equisetum resources are of great interest as bioactive litter and new potential functional feed ingredients. PMID:23738466

  13. Emission rates of selected volatile organic compounds from skin of healthy volunteers

    PubMed Central

    Mochalski, Paweł; King, Julian; Unterkofler, Karl; Hinterhuber, Hartmann; Amann, Anton

    2014-01-01

    Gas chromatography with mass spectrometric detection (GC–MS) coupled with solid phase micro-extraction as pre-concentration method (SPME) was applied to identify and quantify volatile organic compounds (VOCs) emitted by human skin. A total of 64 C4-C10 compounds were quantified in skin emanation of 31 healthy volunteers. Amongst them aldehydes and hydrocarbons were the predominant chemical families with eighteen and seventeen species, respectively. Apart from these, there were eight ketones, six heterocyclic compounds, six terpenes, four esters, two alcohols, two volatile sulphur compounds, and one nitrile. The observed median emission rates ranged from 0.55 to 4790 fmol cm−2 min−1. Within this set of analytes three volatiles; acetone, 6-methyl-5-hepten-2-one, and acetaldehyde exhibited especially high emission rates exceeding 100 fmol cm−2 min−1. Thirty-three volatiles were highly present in skin emanation with incidence rates over 80%. These species can be considered as potential markers of human presence, which could be used for early location of entrapped victims during Urban Search and Rescue Operations (USaR). PMID:24768920

  14. Conformational Analysis of 1-ALKENE Secondary Ozonides by Means of Matrix Isolation FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sablinskas, Valdas; Strazdaite, Simona; Ceponkus, Justinas

    2009-06-01

    An ability of ozone to break double C=C bond in olefins is known for more than five decades. Understanding of those reactions is very important in atmospheric chemistry. During different steps of the reaction the primary ozonide (POZ), carbonyl oxide (COX) and the secondary ozonide (SOZ) are formed. Fate of the reaction depends on many parameters such as type of radical, conformation of alkene, temperature of the reaction and environmental effects. Despite of numerous studies of the reaction by different spectroscopic techniques the precise mechanism of the reaction is still unknown. It is experimentally observed that the SOZ is more stable than POZ. Stability of the SOZ depends on the size and configuration of the radical. Unfortunately, it is not much known about the spatial structures of the SOZ'es. The aim of this study is to define the geometrical structures and stability of the different conformers of the 1-butene and 1-heptene secondary ozonides by combined analysis of the matrix isolation FTIR spectral data with the results of Density Functional Theory (DFT) calculations.

  15. The effects of inferior olive lesion on strychnine seizure

    SciTech Connect

    Anderson, M.C.; Chung, E.Y.; Van Woert, M.H. )

    1990-10-01

    Bilateral inferior olive lesions, produced by systemic administration of the neurotoxin 3-acetylpyridine (3AP) produce a proconvulsant state specific for strychnine-induced seizures and myoclonus. We have proposed that these phenomena are mediated through increased excitation of cerebellar Purkinje cells, through activation of glutamate receptors, in response to climbing fiber deafferentation. An increase in quisqualic acid (QA)-displaceable ({sup 3}H)AMPA ((RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding in cerebella from inferior olive-lesioned rats was observed, but no difference in ({sup 3}H)AMPA binding displaced by glutamate, kainic acid (KA) or glutamate diethylester (GDEE) was seen. The excitatory amino acid antagonists GDEE and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclo-hepten-5,10 imine) were tested as anticonvulsants for strychnine-induced seizures in 3AP inferior olive-lesioned and control rats. Neither drug effected seizures in control rats, however, both GDEE and MK-801 produced a leftward shift in the strychnine-seizure dose-response curve in 3AP inferior olive-lesioned rats. GDEE also inhibited strychnine-induced myoclonus in the lesioned group, while MK-801 had no effect on myoclonus. The decreased threshold for strychnine-induced seizures and myoclonus in the 3AP-inferior olive-lesioned rats may be due to an increase in glutamate receptors as suggested by the ({sup 3}H)AMPA binding data.

  16. Combined untargeted and targeted fingerprinting with comprehensive two-dimensional chromatography for volatiles and ripening indicators in olive oil.

    PubMed

    Magagna, Federico; Valverde-Som, Lucia; Ruíz-Samblás, Cristina; Cuadros-Rodríguez, Luis; Reichenbach, Stephen E; Bicchi, Carlo; Cordero, Chiara

    2016-09-14

    Comprehensive two-dimensional gas chromatography (GC × GC) is the most effective multidimensional separation technique for in-depth investigations of complex samples of volatiles (VOC) in food. However, each analytical run produces dense, multi-dimensional data, so elaboration and interpretation of chemical information is challenging. This study exploits recent advances of GC × GC-MS chromatographic fingerprinting to study VOCs distributions from Extra Virgin Olive Oil (EVOO) samples of a single botanical origin (Picual), cultivated in well-defined plots in Granada (Spain), and harvested at different maturation stages. A new integrated work-flow, fully supported by dedicated and automated software tools, combines untargeted and targeted (UT) approaches based on peak-region features to achieve the most inclusive fingerprinting. Combined results from untargeted and targeted methods are consistent, reliable, and informative on discriminant features (analytes) correlated with optimal ripening of olive fruits and sensory quality of EVOOs. The great flexibility of the UT fingerprinting here adopted enables retrospective analysis with great confidence and provides data to validate the transferability of ripening indicators ((Z)-3-hexenal, (Z)-2-hexenal, (E)-2-pentenal, nonanal, 6-methyl-5-hepten-2-one, octane) to external samples sets. Direct image comparison, based on visual features, also is investigated for quick and effective pair-wise investigations. Its implementation with reliable metadata generated by UT fingerprinting confirms the maturity of 2D data elaboration tools and makes advanced image processing a real perspective. PMID:27566362

  17. Odour characteristics of seafood flavour formulations produced with fish by-products incorporating EPA, DHA and fish oil.

    PubMed

    Peinado, I; Miles, W; Koutsidis, G

    2016-12-01

    Thermal degradation of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids was investigated. As a novelty, EPA, DHA or fish oil (FO) were incorporated as ω-fatty acid sources into model systems containing fish powder produced via Maillard reactions. Aroma composition of the resulting products was determined and complemented with sensory evaluation. Heating of the oils led to a fast decrease of both, EPA and DHA, and to the development of characteristic volatile compounds including hexanal, 2,4-heptadienal and 4-heptenal, the most abundant being (E,E)-2,4-heptadienal (132±44-329±122μmol/g). EPA and DHA addition to the model systems increased the concentration of these characteristic volatile compounds. However, it did not have a considerable impact on the development of characteristic Maillard reaction products, such as pyrazines and some aldehydes. Finally, the results of the sensory evaluation illustrated that panellists would chose samples fortified with FO as the ones with a more pleasant aroma. PMID:27374575

  18. Ozone-Initiated Chemistry in an Occupied Simulated AircraftCabin

    SciTech Connect

    Weschler, C.J.; Wisthaler, A.; Cowlind, S.; Tamas, G.; Strom-Tejsena, P.; Hodgson, A.T.; Destaillats, H.; Herrington, J.; Zhang,J.; Nazaroff, W.W.

    2007-07-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 h-1), <2 ppb ozone; low air exchange, 61-64 ppb ozone; high air exchange (8.8 h-1), <2 ppb ozone; and high air exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from {approx}70 to 130 ppb at the lower air exchange rate and from {approx}30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  19. Skimming behaviour and spreading potential of Stenus species and Dianous coerulescens (Coleoptera: Staphylinidae)

    NASA Astrophysics Data System (ADS)

    Lang, Carolin; Seifert, Karlheinz; Dettner, Konrad

    2012-11-01

    Rove beetles of the genus Stenus Latreille and the genus Dianous Leach possess pygidial glands containing a multifunctional secretion of piperidine and pyridine-derived alkaloids as well as several terpenes. One important character of this secretion is the spreading potential of its different compounds, stenusine, norstenusine, 3-(2-methyl-1-butenyl)pyridine, cicindeloine, α-pinene, 1,8-cineole and 6-methyl-5-heptene-2-one. The individual secretion composition enables the beetles to skim rapidly and far over the water surface, even when just a small amount of secretion is emitted. Ethological investigations of several Stenus species revealed that the skimming ability, skimming velocity and the skimming behaviour differ between the Stenus species. These differences can be linked to varied habitat claims and secretion saving mechanisms. By means of tensiometer measurements using the pendant drop method, the spreading pressure of all secretion constituents as well as some naturally identical beetle secretions on the water surface could be established. The compound 3-(2-methyl-1-butenyl)pyridine excelled stenusine believed to date to be mainly responsible for skimming relating to its surface activity. The naturally identical secretions are not subject to synergistic effects of the single compounds concerning the spreading potential. Furthermore, evolutionary aspects of the Steninae's pygidial gland secretion are discussed.

  20. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii

    PubMed Central

    Suh, Eunho; Choe, Dong-Hwan; Saveer, Ahmed M.; Zwiebel, Laurence J.

    2016-01-01

    Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and 6-methyl-5-hepten-2-one (sulcatone) each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females. PMID:26900947

  1. Metal and precursor effect during 1-heptyne selective hydrogenation using an activated carbon as support.

    PubMed

    Lederhos, Cecilia R; Badano, Juan M; Carrara, Nicolas; Coloma-Pascual, Fernando; Almansa, M Cristina; Liprandi, Domingo; Quiroga, Mónica

    2013-01-01

    Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX>PdNRX>PtClRX≫RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX=PdNRX>RuClRX>PtClRX, and it can be mainly attributed to thermodynamic effects. PMID:24348168

  2. Foreign-language skills in rove-beetles? Evidence for chemical mimicry of ant alarm pheromones in myrmecophilous Pella beetles (Coleoptera: Staphylinidae).

    PubMed

    Stoeffler, Michael; Maier, Tanja S; Tolasch, Till; Steidle, Johannes L M

    2007-07-01

    By using chemical analyses, as well as laboratory and field behavioral tests, we tested the hypothesis that rove beetles of the myrmecophilous genus Pella use alarm pheromone compounds to avert attacks by their host ant Lasius fuliginosus. The secretions of Pellafunestus and P. humeralis contain quinones and different aliphatic compounds, mainly undecane and 6-methyl-5-hepten-2-one (sulcatone). The latter two chemicals are also found in L. fuliginosus pheromone glands. Behavioral tests confirmed that undecane serves as an "aggressive alarm"-inducing pheromone in L. fuliginosus, whereas sulcatone most likely is a "panic-alarm"-inducing pheromone. The main tergal-secretion compounds, various quinones and undecane, individually and in mixtures induced aggression in L. fuliginosus workers. When sulcatone was added to these compounds, the space around the odor source was avoided and a reduced number of aggressive acts observed, suggesting that sulcatone blocks the aggression-inducing effect of undecane and the quinones. These results support the hypothesis that Pella beetles mimic alarm pheromones of their hosts. This is a rare example of chemical mimicry in myrmecophilous insects in which chemicals other than cuticular hydrocarbons are used. PMID:17558536

  3. Chemical features of Pericarpium Citri Reticulatae and Pericarpium Citri Reticulatae Viride revealed by GC-MS metabolomics analysis.

    PubMed

    Yi, Lunzhao; Dong, Naiping; Liu, Shao; Yi, Zhibiao; Zhang, Yi

    2015-11-01

    This paper introduces a detailed method to apply metabolic profiles conducting on tangerine peels (Citrus reticulata 'Dahongpao') at three maturity stages from July to December. Principal component analysis not only demonstrated the metabolic footprints of tangerine peels during ripening but also revealed the compounds (D-limonene and linalool) that mostly contributed to it. Furthermore, some other characteristic compounds were screened to further reveal the chemical features of Pericarpium Citri Reticulatae (PCR) and Pericarpium Citri Reticulatae Viride (PCRV). In particular, compounds such as 4-carene (r = -0.94), 3-carene (r = -0.91), β-pinene (r = -0.85) and γ-terpinene (r = -0.87) were screened as major components for the pungent smell of PCRV. Geranyl acetate (r = 0.81), farnesyl acetate (r = 0.87) and three alcohols (6-hepten-1-ol, 3-methyl-1-hexanol, 1-octanol) may lead to the pleasant odour of PCR. We therefore propose that the metabolomics analysis focusing on ripening process will be an effective strategy for quality control of closely related herbal medicines. PMID:25976810

  4. Electrophysiological and Behavioral Responses of Male Fall Webworm Moths (Hyphantria cunea) to Herbivory-Induced Mulberry (Morus alba) Leaf Volatiles

    PubMed Central

    Tang, Rui; Zhang, Jin Ping; Zhang, Zhong Ning

    2012-01-01

    Volatile organic compounds (VOCs) were collected from damaged and intact mulberry leaves (Morus alba L., Moraceae) and from Hyphantria cunea larvae by headspace absorption with Super Q columns. We identified their constituents using gas chromatography-mass spectrometry, and evaluated the responses of male H. cunea antennae to the compounds using gas chromatography-flame ionization detection coupled with electroantennographic detection. Eleven VOC constituents were found to stimulate antennae of male H. cunea moths: β-ocimene, hexanal, cis-3-hexenal, limonene, trans-2-hexenal, cyclohexanone, cis-2-penten-1-ol, 6-methyl-5-hepten-2-one, 4-hydroxy-4-methyl-2-pentanone, trans-3-hexen-1-ol, and 2,4-dimethyl-3-pentanol. Nine of these chemicals were released by intact, mechanically-damaged, and herbivore-damaged leaves, while cis-2-penten-1-ol was released only by intact and mechanically-damaged leaves and β-ocimene was released only by herbivore-damaged leaves. Results from wind tunnel experiments conducted with volatile components indicated that male moths were significantly more attracted to herbivory-induced volatiles than the solvent control. Furthermore, male moths' attraction to a sex pheromone lure was increased by herbivory-induced compounds and β-ocimene, but reduced by cis-2-penten-1-ol. A proof long-range field trapping experiment showed that the efficiency of sex pheromone lures in trapping male moths was increased by β-ocimene and reduced by cis-2-penten-1-ol. PMID:23166622

  5. Identification of human-derived volatile chemicals that interfere with attraction of the Scottish biting midge and their potential use as repellents.

    PubMed

    Logan, James G; Seal, Nicola J; Cook, James I; Stanczyk, Nina M; Birkett, Michael A; Clark, Suzanne J; Gezan, Salvador A; Wadhams, Lester J; Pickett, John A; Mordue, A Jennifer

    2009-03-01

    The Scottish biting midge, Culicoides impunctatus (Diptera: Ceratopogonidae), is a major pest in Scotland, causing a significant impact to the Scottish tourist and forestry industries. C. impunctatus is a generalist feeder, preferring to feed on large mammals, and is notorious for its attacks on humans. Until now, there was anecdotal evidence for differential attraction of female host-seeking C. impunctatus to individual human hosts, and the mechanism for this phenomenon was unknown. Using extracts of human odor collected by air entrainment, electroantennogram recordings to identify the physiologically active components, followed by behavioral assays, we show, for the first time, the differential attraction of female C. impunctatus to human odors and the chemical basis for this phenomenon. Certain chemicals, found in greater amounts in extracts that cause low attractiveness to midges, elicit a repellent effect in laboratory assays and repellency trials in the field. Differences in the production of these natural human-derived compounds could help to explain differential "attractiveness" between different human hosts. A mixture of two compounds in particular, 6-methyl-5-hepten-2-one and geranylacetone [(E)-6,10-dimethylundeca-5,9-dien-2-one], showed significant repellency (87, 77.4, 74.2, and 31.6% at hours 0, 1, 2, and 3, respectively) in the field and have the potential to be developed as novel repellents. PMID:19351071

  6. Identification of volatile markers in potato brown rot and ring rot by combined GC-MS and PTR-MS techniques: study on in vitro and in vivo samples.

    PubMed

    Blasioli, Sonia; Biondi, Enrico; Samudrala, Devasena; Spinelli, Francesco; Cellini, Antonio; Bertaccini, Assunta; Cristescu, Simona M; Braschi, Ilaria

    2014-01-15

    Ralstonia solanacearum (Rs) and Clavibacter michiganensis subsp. sepedonicus (Cms) are the bacterial causal agents of potato brown and ring rot, respectively, and are included in the A2 list of quarantine pathogens in Europe. Identification by GC-MS analysis of volatile organic compounds from Rs or Cms cultured on different nutrient media was performed. GC-MS and PTR-MS analysis were carried out also on unwounded potato tubers infected with the same pathogens. Infected tubers were produced by experimental inoculations of the plants. In in vitro experiments, Rs or Cms emitted volatile compounds, part of which were specific disease markers of potato (2-propanol and 3-methylbutanoic acid), mainly originating from bacterial metabolism (i.e., amino acid degradation, carbohydrate and fatty acid oxidation). In potato tubers, pathogen metabolism modified the volatile compound pattern emitted from healthy samples. Both bacteria seem to accelerate metabolic processes ongoing in potatoes and, in the case of Rs, disease markers (1-hepten-3-ol, 3,6-dimethyl-3-octanone, 3-ethyl-3-methylpentane, 1-chloroctane, and benzothiazole) were identified. PMID:24313381

  7. Microbial production of aliphatic (S)-epoxyalkanes by using Rhodococcus sp. strain ST-10 styrene monooxygenase expressed in organic-solvent-tolerant Kocuria rhizophila DC2201.

    PubMed

    Toda, Hiroshi; Ohuchi, Takuya; Imae, Ryouta; Itoh, Nobuya

    2015-03-01

    We describe the development of biocatalysis for producing optically pure straight-chain (S)-epoxyalkanes using styrene monooxygenase of Rhodococcus sp. strain ST-10 (RhSMO). RhSMO was expressed in the organic solvent-tolerant microorganism Kocuria rhizophila DC2201, and the bioconversion reaction was performed in an organic solvent-water biphasic reaction system. The biocatalytic process enantioselectively converted linear terminal alkenes to their corresponding (S)-epoxyalkanes using glucose and molecular oxygen. When 1-heptene and 6-chloro-1-hexene were used as substrates (400 mM) under optimized conditions, 88.3 mM (S)-1,2-epoxyheptane and 246.5 mM (S)-1,2-epoxy-6-chlorohexane, respectively, accumulated in the organic phase with good enantiomeric excess (ee; 84.2 and 95.5%). The biocatalysis showed broad substrate specificity toward various aliphatic alkenes, including functionalized and unfunctionalized alkenes, with good to excellent ee. Here, we demonstrate that this biocatalytic system is environmentally friendly and useful for producing various enantiopure (S)-epoxyalkanes. PMID:25556188

  8. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique.

    PubMed

    El Fels, Loubna; Lemee, Laurent; Ambles, André; Hafidi, Mohamed

    2016-08-01

    The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances. PMID:27197656

  9. Ozone and Ozone By-Products in the Cabins of Commercial Aircraft

    PubMed Central

    Weisel, Clifford; Weschler, Charles J.; Mohan, Kris; Vallarino, Jose; Spengler, John D.

    2013-01-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were > 75ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO’s formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  10. Chemical Analysis of Suspected Unrecorded Alcoholic Beverages from the States of São Paulo and Minas Gerais, Brazil.

    PubMed

    Negri, Giuseppina; Soares Neto, Julino Assunção Rodrigues; de Araujo Carlini, Elisaldo Luiz

    2015-01-01

    Our study analyzed 152 samples of alcoholic beverages collected from the states of São Paulo and Minas Gerais, Brazil, using gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma atomic emission spectrometry (ICP-AES). The methanol content varied from 20 to 180 ppm in 28 samples, and the limit of the accepted level of 200 ppm was exceeded in only one sample. High content of cyanide derivatives and ethyl carbamate, above the accepted level of 150 ppb, was observed in 109 samples. Carbonyl compounds were also observed in 111 samples, showing hydroxy 2-propanone, 4-methyl-4-hepten-3-one, furfural, and 2-hydroxyethylcarbamate as main constituents. Copper was found at concentrations above 5 ppm in 26 samples; the maximum value observed was 28 ppm. This work evaluated the human health risk associated with the poor quality of suspected unrecorded alcohols beverages. PMID:26495155

  11. SPME-GC-MS versus Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing.

    PubMed

    Olivares, Alicia; Dryahina, Kseniya; Navarro, José Luis; Smith, David; Spanĕl, Patrik; Flores, Mónica

    2011-03-01

    The use of selected ion flow tube mass spectrometry (SIFT-MS) and gas chromatography-mass spectrometry together with solid phase microextraction (GC-MS-SPME) has been compared in the analysis of volatile compounds during dry fermented sausage processing. Thus, the headspace (HS) of samples of dry fermented sausages with different fat contents was analyzed during their manufacture using both techniques, and significant and positive correlations were found between SIFT-MS and SPME-GC-MS measurements for the compounds pentanal, hexanal, 2-heptenal, octanal, 2-nonenal, 2-butanone, 2-pentanone, ethanol, acetic acid, and hexanoic acid. The oxidative status of fermented sausages during processing was also evaluated, and a significant correlation was obtained between the HS concentration of lipid autoxidation volatile compounds measured by SIFT-MS and SPME-GC-MS and the level of thiobarbituric acid reactive substances (TBARS) in the sausage. The hexanal measured by SIFT-MS resulted in a higher correlation coefficient (r = 0.936) than that obtained using SPME-GC-MS (r = 0.927). SIFT-MS is shown to be a fast, real time analytical technique for monitoring changes in the profile of volatile compounds in dry fermented sausages during processing and a useful tool to evaluate the oxidative status of meat products. PMID:21294565

  12. Quantitative analysis by GC-MS/MS of 18 aroma compounds related to oxidative off-flavor in wines.

    PubMed

    Mayr, Christine M; Capone, Dimitra L; Pardon, Kevin H; Black, Cory A; Pomeroy, Damian; Francis, I Leigh

    2015-04-01

    A quantitation method for 18 aroma compounds reported to contribute to "oxidative" flavor in wines was developed. The method allows quantitation of the (E)-2-alkenals ((E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, and (E)-2-nonenal), various Strecker aldehydes (methional, 2-phenylacetaldehyde, 3-methylbutanal, and 2-methylpropanal), aldehydes (furfural, 5-methylfurfural, hexanal, and benzaldehyde), furans (sotolon, furaneol, and homofuraneol), as well as alcohols (methionol, eugenol, and maltol) in the same analysis. The aldehydes were determined after derivatization directly in the wine with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride; the formed oximes along with the underivatized aroma compounds were isolated by solid-phase extraction and analyzed by means of GC-MS/MS. The method was used to investigate the effect of different closures (synthetic closures, natural corks, and screw cap) on the formation of oxidation-related compounds in 14 year old white wine. Results showed a significant increase in the concentration of some of the monitored compounds in the wine, particularly methional, 2-phenylacetaldehyde, and 3-methylbutanal. PMID:25819472

  13. Evidence of female sex pheromones and characterization of the cuticular lipids of unfed, adult male versus female blacklegged ticks, Ixodes scapularis.

    PubMed

    Carr, Ann L; Sonenshine, Daniel E; Strider, John B; Roe, R Michael

    2016-04-01

    Copulation in Ixodes scapularis involves physical contact between the male and female (on or off the host), male mounting of the female, insertion/maintenance of the male chelicerae in the female genital pore (initiates spermatophore production), and the transfer of the spermatophore by the male into the female genital pore. Bioassays determined that male mounting behavior/chelicerae insertion required direct contact with the female likely requiring non-volatile chemical cues with no evidence of a female volatile sex pheromone to attract males. Unfed virgin adult females and replete mated adult females elicited the highest rates of male chelicerae insertion with part fed virgin adult females exhibiting a much lower response. Whole body surface hexane extracts of unfed virgin adult females and males, separately analyzed by GC-MS, identified a number of novel tick surface associated compounds: fatty alcohols (1-hexadecanol and 1-heptanol), a fatty amide (erucylamid), aromatic hydrocarbons, a short chain alkene (1-heptene), and a carboxylic acid ester (5β-androstane). These compounds are discussed in terms of their potential role in female-male communication. The two most abundant fatty acid esters found were butyl palmitate and butyl stearate present in ratios that were sex specific. Only 6 n-saturated hydrocarbons were identified in I. scapularis ranging from 10 to 18 carbons. PMID:26864785

  14. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions.

    PubMed

    Kim, Tae-Kyoung; Moon, Bo-Ram; Kim, Taeyeon; Kim, Moon-Kyung; Zoh, Kyung-Duk

    2016-11-01

    We conducted chlorination, UV photolysis, and UV/chlorin reactions to investigate the intermediate formation and degradation mechanisms of geosmin and 2-methylisoborneol (2-MIB) in water. Chlorination hardly removed geosmin and 2-MIB, while the UV/chlorine reaction at 254 nm completely removed geosmin and 2-MIB within 40 min and 1 h, respectively, with lesser removals of both compounds during UV photolysis. The kinetics during both UV photolysis and UV/chlorine reactions followed a pseudo first-order reaction. Chloroform was found as a chlorinated intermediate during the UV/chlorine reaction of both geosmin and 2-MIB. The pH affected both the degradation and chloroform production during the UV/chlorine reaction. The open ring and dehydration intermediates identified during UV/chlorine reactions were 1,4-dimethyl-adamantane, and 1,3-dimethyl-adamantane from geosmin, 2-methylenebornane, and 2-methyl-2-bornene from 2-MIB, respectively. Additionally, 2-methyl-3-pentanol, 2,4-dimethyl-1-heptene, 4-methyl-2-heptanone, and 1,1-dichloro-2,4-dimethyl-1-heptane were newly identified intermediates from UV/chlorine reactions of both geosmin and 2-MIB. These intermediates were degraded as the reaction progressed. We proposed possible degradation pathways during the UV photolysis and UV/chlorine reactions of both compounds using the identified intermediates. PMID:27494316

  15. Effect of Fresh Garlic on Lipid Oxidation and Microbiological Changes of Pork Patties during Refrigerated Storage

    PubMed Central

    2014-01-01

    The effects of two levels (1.4 vs 2.8%) of fresh garlic on lipid oxidation and microbial growth in pork patties were evaluated. Hunter color (L, a, b), pH, thiobarbituric acid reactive substances (TBARS), oxidative volatile compounds, total bacteria and Enterobacteriaceae in the pork patties with or without fresh garlic were measured during storage at 4℃. Addition of fresh garlic decreased redness (a), while increased pH and yellowness (b) values of the fresh pork patties were observed, regardless of the levels added. The TBARS values of the pork patties were increased with the addition of fresh garlic (p<0.05). Similar results were observed in oxidative volatile compounds. A total of 13 volatile compounds were detected in the patties (5 sulfur-containing compounds, including allyl mercaptan, allyl methyl sulfide, diallyl sulfide, methyl-(E)-propenyl-disulfide, and diallyl disulfide, and the 8 other oxidative compounds, including 1-pentanol, hexanal, 1-hexanol, heptanal, (E)-2-heptenal, 1-octen-3-ol, (E)-2-octenal and nonanal). Fresh garlic accelerated development of oxidative products in the pork patties, especially hexanal and the total oxidative volatile compounds. However, the addition of 1.4 and 2.8% of fresh garlic inhibited the growth of total bacteria and Enterobacteriaceae, indicating low total bacterial counts and Enterobacteriaceae than the controls. PMID:26761498

  16. Headspace solid-phase microextraction with on-fiber derivatization for the determination of aldehydes in algae by gas chromatography-mass spectrometry.

    PubMed

    Ma, Jiping; Xiao, Ronghui; Li, Jinhua; Li, Jie; Shi, Benzhang; Liang, Yanjuan; Lu, Wenhui; Chen, Lingxin

    2011-06-01

    A simple, fast, sensitive and cost-effective method based on headspace solid-phase microextraction (HS-SPME) with on-fiber derivatization coupled with gas chromatography-mass spectrometry was developed for the determination of six typical aldehydes, 2E-hexenal, heptanal, 2E-heptenal, 2E,4E-heptadienal, 2E-decenal and 2E,4E-decadienal in laboratory algae cultures. As derivatization reagent, O-2,3,4,5,6-(pentafluorobenzyl) hydroxylamine hydrochloride, was loaded onto the poly(dimethylsiloxane)/divinylbenzene fiber for aldehydes on-fiber derivatization prior to HS-SPME. Various influence factors of extraction efficiency were systematically investigated. Under optimized extraction conditions, excellent method performances for all the six aldehydes were attained, such as satisfactory extraction recoveries ranging from 67.1 to 117%, with the precision (relative standard deviation) within 5.3-11.1%, and low detection limits in the range of 0.026-0.044 μg/L. The validated method was successfully applied for the analysis of the aldehydes in two diatoms (Skeletonema costatum and Chaetoceros muelleri), two pyrrophytas (Prorocentrum micans and Scrippsiella trochoidea) and Calanus sinicus eggs (feeding on the two diatoms above). PMID:21567947

  17. Theoretical Analysis of the Effect of C═C Double Bonds on the Low-Temperature Reactivity of Alkenylperoxy Radicals.

    PubMed

    You, Xiaoqing; Chi, Yawei; He, Tanjin

    2016-08-01

    Biodiesel contains a large proportion of unsaturated fatty acid methyl esters. Its combustion characteristics, especially its ignition behavior at low temperatures, have been greatly affected by these C═C double bonds. In this work, we performed a theoretical analysis of the effect of C═C double bonds on the low-temperature reactivity of alkenylperoxy radicals, the key intermediates from the low-temperature combustion of biodiesel. To understand how double bonds affect the fate of peroxy radicals, we selected three representative peroxy radicals from heptane, heptene, and heptadiene having zero, one, and two double C═C bonds, respectively, for study. The potential energy surfaces were explored at the CBS-QB3 level, and the reaction rate constants were computed using canonical/variational transition state theories. We have found that the double bond is responsible for the very different bond dissociation energies of the various types of C-H bonds, which in turn affect significantly the reaction kinetics of alkenylperoxy radicals. PMID:27404895

  18. Ozone and ozone byproducts in the cabins of commercial aircraft.

    PubMed

    Weisel, Clifford; Weschler, Charles J; Mohan, Kris; Vallarino, Jose; Spengler, John D

    2013-05-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density, and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were >75 ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal, and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy, and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO's formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  19. ESR study of. gamma. -irradiated substituted norbornanes in thiourea clathrate and adamantane matrix: novel 2-norbornyl-type radicals. [Irradiation at 77/sup 0/K

    SciTech Connect

    Faucitano, A.; Buttafava, A.; Martinotti, F.F.; Cesca, S.

    1981-02-19

    The ..gamma.. irradiation at 77/sup 0/K of 2-methyl-2-ethylbicyclo(2.2.1)heptane and of 2-methylene-2-ethylidenebicyclo(2.2.1)heptene in the state of thiourea adducts leads to formation of 2-methyl- and 2-ethylnorbornyl radicals by loss of hydrogen atoms at the substituent sites or by partial hydrogenation of the double bonds. On warming above 77/sup 0/K after irradiation, the 2-alkylnorbornyls add to double bonds of neighboring molecules yielding new adduct radicals alkylnorbornyl. The reactions can be reversed by uv irraidation at 77/sup 0/K, thus suggesting that the addition does not proceed beyond the first step. A reaction model based on the geometrical control by the molecular packing within the clathrate channels has been proposed. The irradiation of 2-ethylidenenorbornene in the state of thiourea clathrate or trapped in adamantane matrix yields an allyl-type radical by loss of a hydrogen atom from the methyl group. The structure and ESR properties of 2-alkylnorbornyls and of the allylnorbornyl have been investigated by MO methods to the INDO and extended Hueckel levels of approximation.

  20. Multi-trait mimicry of ants by a parasitoid wasp

    PubMed Central

    Malcicka, Miriama; Bezemer, T. Martijn; Visser, Bertanne; Bloemberg, Mark; Snart, Charles J. P.; Hardy, Ian C. W.; Harvey, Jeffrey A.

    2015-01-01

    Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized. PMID:25622726

  1. Evaluation of lipid oxidation and oxidative products as affected by pork meat cut, packaging method, and storage time during frozen storage (-10 degrees C).

    PubMed

    Park, S Y; Yoo, S S; Uh, J H; Eun, J B; Lee, H C; Kim, Y J; Chin, K B

    2007-03-01

    Lipid oxidation and oxidative volatiles as affected by pork meat cut and packaging method during frozen storage at -10 degrees C were evaluated. Pork belly cut had higher thiobarbituric acid reactive substance (TBARS) and pH values than did the loin, whereas the loin had higher free fatty acid (FFA) values than that of the belly cut. Peroxide values increased with increased storage time, but were not affected by pork meat cut and packaging method. Volatiles with carbon numbers less than 10 in the belly cut were higher than those in the loin cut, whereas those with carbon numbers greater than 10 in the loin cut were higher than those in belly cut. Most volatiles were decreased with increased storage time, except for propane. Both 4-pentenal and 4-methyl-2-hexanone in the belly cut showed a positive correlation with FFA, whereas 2,4-dimethyl-1-heptene and 9-octadecenal in the loin cut were positively correlated with TBARS and FFA, respectively, even though the values were not high enough to predict the degree of lipid oxidation. PMID:17995825

  2. Differences in the volatile compositions of ginseng species (Panax sp.).

    PubMed

    Cho, In Hee; Lee, Hyun Jeong; Kim, Young-Suk

    2012-08-01

    The volatile compositions in dried white ginseng according to species (Panax ginseng, Panax notoginseng, and Panax quinquefolius) were analyzed and compared by applying multivariate statistical techniques to gas chromatography-mass spectrometry data sets. Main volatile compounds of ginseng species in the present study were sesquiterpenes, such as bicyclogermacrene, (E)-β-farnesene, β-panasinsene, calarene, α-humulene, β-elemene, etc. In particular, α-selinene, α-terpinolene, β-bisabolene, β-phellandrene, β-sesquiphellandrene, zingiberene, germacrene D, limonene, α-gurjunene, (E)-caryophyllene, δ-cadinene, (E)-β-farnesene, α-humulene, bicyclogermacrene, longiborn-8-ene, β-neoclovene, and (+)-spathulenol were mainly associated with the difference between P. ginseng and P. notoginseng versus P. quinquefolius species. On the other hand, the discrimination between P. ginseng and P. notoginseng could be constructed by hexanal, 2-pyrrolidinone, (E)-2-heptenal, (E)-2-octenal, heptanal, isospathulenol, (E,E)-2,4-decadienal, 3-octen-2-one, benzaldehyde, 2-pentylfuran, and (E)-2-nonenal. PMID:22804575

  3. A natural diarylheptanoid promotes neuronal differentiation via activating ERK and PI3K-Akt dependent pathways.

    PubMed

    Tang, G; Dong, X; Huang, X; Huang, X-J; Liu, H; Wang, Y; Ye, W-C; Shi, L

    2015-09-10

    Neuronal differentiation is a critical developmental process that determines accurate synaptic connection and circuit wiring. A wide variety of naturally occurring compounds have been shown as promising drug leads for the generation and differentiation of neurons. Here we report that a diarylheptanoid from the plant Alpinia officinarum, 7-(4-hydroxyphenyl)-1-phenyl-4E-hepten-3-one (Cpd 1), exhibited potent activities in neuronal differentiation and neurite outgrowth. Cpd 1 induced differentiation of neuroblastoma Neuro-2a cells into a neuron-like morphology, and accelerated the establishment of axon-dendrite polarization of cultured hippocampal neurons. Moreover, Cpd 1 promoted neurite extension in both Neuro-2a cells and neurons. We showed that the effects of Cpd 1 on neuronal differentiation and neurite growth were specifically dependent on the activation of extracellular signal-regulated kinases (ERKs) and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways. Importantly, intraperitoneal administration of Cpd 1 promoted the differentiation of new-born progenitor cells into mature neurons in the adult hippocampal dentate gyrus. Collectively, this study identifies a naturally occurring diarylheptanoid with beneficial effects on neuronal differentiation and neurite outgrowth in vitro and in vivo. PMID:26183020

  4. Ozone removal by occupants in a classroom

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Ljungström, Evert; Langer, Sarka

    2013-12-01

    Ozone concentrations were measured in a classroom with and without occupants, with the purpose to quantify effects on indoor O3 concentrations. The teacher and 24 11-year old pupils each removed O3 at a rate, first order in O3, corresponding to a rate constant of (2.5 ± 0.6) × 10-5 s-1 in the present locality and to a deposition velocity of 0.45 cm s-1. The O3-removal caused by the occupants was approximately 2.6 times larger than that of the available surfaces belonging to the classroom and its furniture. Observation of 6-methyl-5-hepten-2-one and 4-oxopentanal at maximum concentrations of 0.2 ppb and 0.7 ppb, respectively, suggested squalene from human skin oil as a reactive, ozone-consuming substance. There are indications of a source of 4-oxopentanal in the classroom, even some time after the pupils left for the day. The work presented is important for a proper description of indoor exposure, both to ozone itself and some of its reaction products when trying to quantify relations between exposure and health effects.

  5. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host.

    PubMed

    Menger, D J; Van Loon, J J A; Takken, W

    2014-12-01

    Mosquito repellents are used around the globe to protect against nuisance biting and disease-transmitting mosquitoes. Recently, there has been renewed interest in the development of repellents as tools to control the transmission of mosquito-borne diseases. We present a new bioassay for the accurate assessment of candidate repellent compounds, using a synthetic odour that mimics the odour blend released by human skin. Using DEET (N,N-diethyl-meta-toluamide) and PMD (p-menthane-3,8-diol) as reference compounds, nine candidate repellents were tested, of which five showed significant repellency to the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). These included: 2-nonanone; 6-methyl-5-hepten-2-one; linalool; δ-decalactone, and δ-undecalactone. The lactones were also tested on the yellow fever mosquito Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae), against which they showed similar degrees of repellency. We conclude that the lactones are highly promising repellents, particularly because these compounds are pleasant-smelling, natural products that are also present in human food sources. PMID:24797537

  6. Effect of milk protein concentrate on lipid oxidation and formation of fishy volatiles in herring mince (Clupea harengus) during frozen storage.

    PubMed

    Joaquin, H J F; Tolasa, S; Oliveira, A C M; Lee, C M; Lee, K H

    2008-01-01

    The effect of milk protein concentrate (MPC) at 0, 2, 4, and 6% on lipid oxidation and volatile formation in frozen stored herring mince (-18 degrees C) was evaluated by analyzing samples at 0, 2, and 4 months for fatty acid composition, volatiles, and thiobarbituric acid reactive substances (TBARS). Sensory evaluation was also conducted to assess the intensity of fishy odor, and the volatiles were analyzed using static headspace gas chromatography-mass spectrometry (SHGC-MS). The addition of 4 and 6% MPC to herring mince resulted in a 33% and 50% reduction of TBARS, respectively, at month 4 and lessened the intensity of fishy odor throughout storage. However, MPC did not protect fatty acids from enzymatic degradation unless it was added immediately after mincing. Volatile analysis using SHGC-MS showed that 4% MPC was able to reduce headspace volatiles associated with fishy odor. MPC is most effective for reducing 4-heptenal, 3-methyl-1-butanol, 2-hexenal, and 1-penten-3-ol, which are known to be potent odorants associated with lipid oxidation. PMID:18052036

  7. Electrophysiological and behavioral responses of sorghum shoot fly, Atherigona soccata, to sorghum volatiles.

    PubMed

    Padmaja, Poluru G; Woodcock, Christine M; Bruce, Toby J A

    2010-12-01

    The sorghum shoot fly, Atherigona soccata, is an economically important pest of sorghum in Asia, Mediterranean Europe and Africa. Field observations have suggested that shoot fly susceptible sorghum varieties emit attractive volatiles, but the compounds involved were unknown. The objective of the present study was to identify plant-derived attractants for A. soccata. Headspace samples were collected from the susceptible cultivar 'Swarna,' and when female A. soccata were exposed to the volatiles in an olfactometer bioassay, a strong positive behavioral response was observed. Coupled GC-EAG with female A. soccata revealed eight compounds that elicited an EAG response, which were identified by coupled GC-MS and GC peak enhancement on two GC columns of different polarity as (Z)-3-hexen-1-yl acetate, (-)-α-pinene, (-)-(E)-caryophyllene, methyl salicylate, octanal, decanal, 6-methyl-5-hepten-2-one and nonanal. When an eight-component synthetic blend of the EAG active compounds, at the same concentration (2.64 μg) and ratio as in the natural headspace sample, was tested, A. soccata spent more time in the treated region of the olfactometer than controls (P = 0.001). Furthermore, when this synthetic blend and the natural headspace sample were tested in a choice test, the shoot flies did not show any preference for either of the two treatments, demonstrating that the synthetic blend had similar activity to the natural sample. Results are discussed in relation to breeding sorghum varieties less attractive to this pest. PMID:21082333

  8. Effect of preparation conditions on release of selected volatiles in tea headspace.

    PubMed

    Wright, Jonathan; Wulfert, Florian; Hort, Joanne; Taylor, Andrew J

    2007-02-21

    The release of volatile compounds from infused tea was monitored using on-line atmospheric pressure chemical ionization (APCI) mass spectrometry. Assignment of the APCI ions to particular compounds was achieved using gas chromatography of tea headspace with dual electron ionization and APCI-MS detectors. Six ions in the APCI spectrum could be assigned to individual compounds, five ions were associated with isobaric compounds (e.g., 2- and 3-methylbutanal and pentanal) or stereoisomers (e.g., heptenals or heptadienals), and a further four ions monitored were identified compounds but with some unknown impurities. Reproducibility of infusion preparation and the analytical system was good with percentage variation values generally below 5%. The analysis was used to study the effect of infusion and holding temperatures on the volatile profile of tea headspace samples, and this was found to be compound-dependent. Both the extraction of volatiles from leaf tea and the release of volatiles into the headspace play a role in creating the aroma profile that the consumer experiences. PMID:17261012

  9. Multi-trait mimicry of ants by a parasitoid wasp.

    PubMed

    Malcicka, Miriama; Bezemer, T Martijn; Visser, Bertanne; Bloemberg, Mark; Snart, Charles J P; Hardy, Ian C W; Harvey, Jeffrey A

    2015-01-01

    Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized. PMID:25622726

  10. A rapid compression machine investigation of oxidation and auto-ignition of n-heptane: Measurements and modeling

    SciTech Connect

    Minetti, R.; Carlier, M.; Ribaucour, M.; Therssen, E.; Sochet, L.R.

    1995-08-01

    n-Heptane oxidation and auto-ignition in a rapid compression machine is studied in the low and intermediate temperature regimes at high pressures. Experimental ignition delay times and some phenomenological aspects related to knock in engines are presented, providing additional information at lower temperatures on previously published delays from shock tube experiments. The products of oxidation are identified and time profiles are measured during a two-stage ignition process. Eight C{sub 7} heterocycles, heptenes, lower 1-alkenes, aldehydes, and carbon monoxide are the main species. Their origin is discussed in relation to the isomerization and decomposition of heptylperoxy radicals. The high selectivity observed in the formation of lower 1-alkenes is explained by the scission of the {beta} C-C bond of the {beta}-hydroperoxyheptyl radicals weakened by the presence of oxygen atoms. Numerical simulation of the experiments with Warnatz`a comprehensive chemical mechanism gives satisfactory results for cool flame and total ignition delays, but fails to reproduce the detailed chemistry before auto-ignition.

  11. Fabrication of liquid and vapor protective cotton fabrics.

    PubMed

    Lovingood, Derek D; Salter, W Bruce; Griffith, Kara R; Simpson, Katherine M; Hearn, John D; Owens, Jeffery R

    2013-12-01

    Through microwave-assisted techniques, cotton textiles treated with heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane in the presence of high surface area silica nanoparticles create a material capable of repelling bulk liquid challenges while simultaneously adsorbing organic vapors from bulk liquid droplets. Characterizing the contradictory behavior of adsorption of vapors and repellency of liquids is the primary focus of this article. These procedures reveal a quick and simple method for a one-step deposition of a vapor-sorptive, liquid-repellent, Cassie-Baxter surface onto textiles. Packed column breakthrough and single swatch permeation experiments showed that treated materials possess a high affinity for 3-hepten-2-one vapor, while goniometry revealed contact angles in excess of 120° for surface-deposited, 5 μL droplets of several test liquids. Scanning electron micrograph images confirm a lotus-like, nanorough surface, while ATR-FTIR spectra confirm surface fluorocarbon moieties. The performance of so-treated materials lends itself to the application of chemical protective apparel, while the simplicity of the treatment bodes well for potential commercialization. PMID:24219872

  12. Ion mobility spectrometry versus classical physico-chemical analysis for assessing the shelf life of extra virgin olive oil according to container type and storage conditions.

    PubMed

    Garrido-Delgado, Rocío; Dobao-Prieto, M Mar; Arce, Lourdes; Aguilar, Joaquín; Cumplido, José L; Valcárcel, Miguel

    2015-03-01

    An experimental study was conducted to assess the stability of a single-variety (Arbequina) extra virgin olive oil (EVOO) as a function of container type and storage conditions over a period of 11 months. EVOO quality was assessed by using ion mobility spectrometry (IMS), which provides increased simplicity, expeditiousness, and relative economy. The results were compared with the ones obtained by using the official method based on classical physico-chemical analysis. Bag-in-box, metal, dark glass, clear glass, and polyethylene terephthalate containers holding EVOO were opened on a periodic basis for sampling to simulate domestic use; in parallel, other containers were kept closed until analysis to simulate the storage conditions on market shelves. The results of the physico-chemical and instrumental analyses led to similar conclusions. Thus, samples packaged in bag-in-box containers preserved oil quality for 11 months, better than other container types. The HS-GC-IMS results confirm that 2-heptenal and 1-penten-3-one are two accurate markers of EVOO quality. PMID:25645180

  13. Chemical Analysis of Suspected Unrecorded Alcoholic Beverages from the States of São Paulo and Minas Gerais, Brazil

    PubMed Central

    Negri, Giuseppina; Soares Neto, Julino Assunção Rodrigues; de Araujo Carlini, Elisaldo Luiz

    2015-01-01

    Our study analyzed 152 samples of alcoholic beverages collected from the states of São Paulo and Minas Gerais, Brazil, using gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma atomic emission spectrometry (ICP-AES). The methanol content varied from 20 to 180 ppm in 28 samples, and the limit of the accepted level of 200 ppm was exceeded in only one sample. High content of cyanide derivatives and ethyl carbamate, above the accepted level of 150 ppb, was observed in 109 samples. Carbonyl compounds were also observed in 111 samples, showing hydroxy 2-propanone, 4-methyl-4-hepten-3-one, furfural, and 2-hydroxyethylcarbamate as main constituents. Copper was found at concentrations above 5 ppm in 26 samples; the maximum value observed was 28 ppm. This work evaluated the human health risk associated with the poor quality of suspected unrecorded alcohols beverages. PMID:26495155

  14. Identification and Structure-Activity Relationships of a Novel Series of Estrogen Receptor Ligands Based on 7-Thiabicyclo[2.2.1]hept-2-ene-7-oxide1

    PubMed Central

    Wang, Pengcheng; Min, Jian; Nwachukwu, Jerome C.; Cavett, Valerie; Carlson, Kathryn E.; Guo, Pu; Zhu, Manghong; Zheng, Yangfan; Dong, Chune; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2012-01-01

    To develop estrogen receptor (ER) ligands having novel structures and activities, we have explored compounds in which the central hydrophobic core has a more three-dimensional topology than typically found in estrogen ligands and thus exploit the unfilled space in the ligand-binding pocket. Here, we build upon our previous investigations of 7-oxabicyclo[2.2.1]heptene core ligands, by replacing the oxygen bridge with a sulfoxide. These new 7-thiabicyclo[2.2.1]hept-2-ene-7-oxides were conveniently prepared by a Diels-Alder reaction of 3,4-diarylthiophenes with dienophiles in the presence of an oxidant and give cycloadducts with endo stereochemistry. Several new compounds demonstrated high binding affinities with excellent ERα selectivity, but unlike oxabicyclic compounds, which are transcriptional antagonists, most thiabicyclic compounds are potent, ERα-selective agonists. Modeling suggests that the gain in activity of the thiabicyclic compounds arises from their endo stereochemistry that stabilizes an active ER conformation. Further, the disposition of methyl substituents in the phenyl groups attached to the bicyclic core unit contribute to their binding affinity and subtype selectivity. PMID:22283328

  15. Microbial Production of Aliphatic (S)-Epoxyalkanes by Using Rhodococcus sp. Strain ST-10 Styrene Monooxygenase Expressed in Organic-Solvent-Tolerant Kocuria rhizophila DC2201

    PubMed Central

    Toda, Hiroshi; Ohuchi, Takuya; Imae, Ryouta

    2015-01-01

    We describe the development of biocatalysis for producing optically pure straight-chain (S)-epoxyalkanes using styrene monooxygenase of Rhodococcus sp. strain ST-10 (RhSMO). RhSMO was expressed in the organic solvent-tolerant microorganism Kocuria rhizophila DC2201, and the bioconversion reaction was performed in an organic solvent-water biphasic reaction system. The biocatalytic process enantioselectively converted linear terminal alkenes to their corresponding (S)-epoxyalkanes using glucose and molecular oxygen. When 1-heptene and 6-chloro-1-hexene were used as substrates (400 mM) under optimized conditions, 88.3 mM (S)-1,2-epoxyheptane and 246.5 mM (S)-1,2-epoxy-6-chlorohexane, respectively, accumulated in the organic phase with good enantiomeric excess (ee; 84.2 and 95.5%). The biocatalysis showed broad substrate specificity toward various aliphatic alkenes, including functionalized and unfunctionalized alkenes, with good to excellent ee. Here, we demonstrate that this biocatalytic system is environmentally friendly and useful for producing various enantiopure (S)-epoxyalkanes. PMID:25556188

  16. Oxidation of aliphatic olefins by toluene dioxygenase: enzyme rates and product identification.

    PubMed Central

    Lange, C C; Wackett, L P

    1997-01-01

    Toluene dioxygenase from Pseudomonas putida F1 has been studied extensively with aromatic substrates. The present work examined the toluene dioxygenase-catalyzed oxidation of various halogenated ethenes, propenes, butenes and nonhalogenated cis-2-pentene, an isomeric mix of 2-hexenes, cis-2-heptene, and cis-2-octene as substrates for toluene dioxygenase. Enzyme specific activities were determined for the more water-soluble C2 to C5 compounds and ranged from <4 to 52 nmol per min per mg of protein. Trichloroethene was oxidized at a rate of 33 nmol per min per mg of protein. Products from enzyme reactions were identified by gas chromatography-mass spectrometry. Proton and carbon nuclear magnetic resonance spectroscopy of compounds from whole-cell incubation confirmed the identity of products. Substrates lacking a halogen substituent on sp2 carbon atoms were dioxygenated, while those with halogen and one or more unsubstituted allylic methyl groups were monooxygenated to yield allylic alcohols. 2,3-Dichloro-1-propene, containing both a halogenated double bond and a halogenated allylic methyl group, underwent monooxygenation with allylic rearrangement to yield an isomeric mixture of cis- and trans-2,3-dichloro-2-propene-1-ol. PMID:9190800

  17. Metabolism of 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone by Retinal Pigmented Epithelial Cells.

    PubMed

    Wang, Hua; Linetsky, Mikhail; Guo, Junhong; Yu, Annabelle O; Salomon, Robert G

    2016-07-18

    4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates. This molecule appeared inside of ARPE-19 cells within seconds after exposure to HOHA-lactone. The intracellular level reached a maximum concentration at 30 min and then decreased with concomitant increases in its level in the extracellular medium, thus revealing a unidirectional export of the reduced GSH-HOHA-lactone adduct from the cytosol to extracellular medium. This metabolism is likely to modulate the involvement of HOHA-lactone in the pathogenesis of human diseases. HOHA-lactone is biologically active, e.g., low concentrations (0.1-1 μM) induce secretion of vascular endothelial growth factor (VEGF) from ARPE-19 cells. HOHA-lactone is also a precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amino groups in proteins and ethanolamine phospholipids that have significant pathological and physiological relevance to age-related macular degeneration (AMD), cancer, and wound healing. Both HOHA-lactone and the derived CEP can contribute to the angiogenesis that defines the neovascular "wet" form of AMD and that promotes the growth of tumors. While GSH depletion can increase the lethality of radiotherapy, because it will impair the metabolism of HOHA-lactone, the present study suggests that GSH depletion will also increase levels of HOHA-lactone and CEP that may promote recurrence of tumor growth. PMID:27355557

  18. Identification of aroma active compounds of cereal coffee brew and its roasted ingredients.

    PubMed

    Majcher, Małgorzata A; Klensporf-Pawlik, Dorota; Dziadas, Mariusz; Jeleń, Henryk H

    2013-03-20

    Cereal coffee is a coffee substitute made mainly from roasted cereals such as barley and rye (60-70%), chicory (15-20%), and sugar beets (6-10%). It is perceived by consumers as a healthy, caffeine free, non-irritating beverage suitable for those who cannot drink regular coffee made from coffee beans. In presented studies, typical Polish cereal coffee brew has been subjected to the key odorants analysis with the application of gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). In the analyzed cereal coffee extract, 30 aroma-active volatiles have been identified with FD factors ranging from 16 to 4096. This approach was also used for characterization of key odorants in ingredients used for the cereal coffee production. Comparing the main odors detected in GC-O analysis of roasted cereals brew to the odor notes of cereal coffee brew, it was evident that the aroma of cereal coffee brew is mainly influenced by roasted barley. Flavor compound identification and quantitation has been performed with application of comprehensive multidimentional gas chromatography and time-of-flight mass spectrometry (GCxGC-ToFMS). The results of the quantitative measurements followed by calculation of the odor activity values (OAV) revealed 17 aroma active compounds of the cereal coffee brew with OAV ranging from 12.5 and 2000. The most potent odorant was 2-furfurylthiol followed by the 3-mercapto-3-methylbutyl formate, 3-isobutyl-2-methoxypyrazine and 2-ethyl-3,5-dimethylpyrazine, 2-thenylthiol, 2,3-butanedione, 2-methoxy phenol and 2-methoxy-4-vinyl phenol, 3(sec-butyl)-2-methoxypyrazine, 2-acetyl-1-pyrroline, 3-(methylthio)-propanal, 2,3-pentanedione, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, (E,E)-2,4-decadienal, (Z)-4-heptenal, phenylacetaldehyde, and 1-octen-3-one. PMID:23414530

  19. Origins of volatile organic compounds emerging from tank 241-C-106 during sluicing

    SciTech Connect

    STAUFFER, L.A.

    1999-06-02

    Unexpectedly high concentrations of inorganic gases and volatile organic compounds (VOC) were released from the ventilation stack of tank 241-C-106 during sluicing operations on November 18, 1998. Workers experienced serious discomfort. They reported an obnoxious acrid odor and the 450 ppm VOC in ventilation stack 296-C-006 exceeded the level approved in the air discharge permit. Consequently, the operation was terminated. Subsequent analyses of samples collected opportunistically from the stack indicated many organic compounds including heptenes, heptanones, and normal paraffin hydrocarbons (NPH) and their remnants were present. Subsequently, a process test designed to avoid unnecessary worker exposure and enable collection of analytical samples from the stack, the breathing area, and the receiver tank was conducted on December 16, 1998. The samples obtained during that operation, in which the maximum VOC content of the stack was approximately 35 ppm, have been analyzed by teams at Pacific Northwest National Laboratory and Special Analytic Services (SAS). This report examines the results of these investigations. Future revisions of the report will examine the analytical results obtained for samples collected during sluicing operations in March. This report contains the available evidence about the source term for these emissions. Chapter 2 covers characterization work, including historical information about the layers of waste in the tank, the location of organic compounds in these layers, the total organic carbon (TOC) content and the speciation of organic compounds. Chapter 3 covers the data for the samples from the ventilation stack, which has the highest concentrations of organic compounds. Chapter 4 contains an interpretation of the information connecting the composition of the organic emissions with the composition of the original source term. Chapter 5 summarizes the characterization work, the sample data, and the interpretation of the results.

  20. Structural elucidation of chemical constituents from Benincasa hispida seeds and Carissa congesta roots by gas chromatography: Mass spectroscopy

    PubMed Central

    Doshi, Gaurav M.; Nalawade, Vivek V.; Mukadam, Aaditi S.; Chaskar, Pratip K.; Zine, Sandeep P.; Somani, Rakesh R.; Une, Hemant D.

    2015-01-01

    Background: Benincasa hispida (BH) and Carissa congesta (CC) are regarded as ethnopharmacological imperative plants in Asian countries. Objective: Phytochemical screening of the extracts has shown the presence of steroids, flavonoids, saponins, glycosides, tannins, phenolic compounds, fixed oils, and fats in the BH and CC extracts. The presence of lupeol has been reported previously by us using high-performance thin-layer chromatography and high-performance liquid chromatography. Materials and Methods: Present research studies encompasses identification of chemical constituents in BH seeds and CC roots petroleum ether extracts by hyphenated technique such as gas chromatography-mass spectroscopy (MS) which when coupled gives a clear insight of constituents. Results: The components were identified by matching mass spectra with MS libraries. There were 13 and 10 different compounds analyzed from CC and BH, respectively. The components present were Pentanoic acid, 5-hydroxy, 2,4-butylphenyl; n-Hexadecanoic acid (Palmitic acid); Sulfurous acid, 2-ethylhexylhepatdecyl ester; n-Tridecane; 6-methyltridecane; (9E, 12E)-9,12-Octadecadienyl chloride, Hexadecanoic acid, 3-(trimethylsilyl)-oxy] propyl ester; 9,12-Octadecadenoic acid, 2 hydroxy-1-(hyroxymethylethyl) ester; 9,12-Octadecadienoic acid, 2,3 dihydroxypropyl ester; n-Propyl-9,12-Octadecadienoate, Lupeol; Taraxasterol; 6a, 14a-Methanopicene, perhydro-12,4a, 61a, 9,9,12a-hepatmethyl-10-hydoxy and 9-Octadecene; 2-Isoprpenyl-5-methyl-6-hepten-1-ol; n-Hexadecanoic acid, 2-hyroxy-1-(hydroxymethyl) ethyl ether; Butyl-9,12-Octadecadieonate; Friedoolean-8-en-3-one; friedours-7-en-3-one; 13,27-Cyclosuran-3-one; Stigmaste-7,25-dien-3-ol (3β, 5α); Stigmasta-7,16-dien-3-ol; chrondrillasterol in BH seeds and CC roots extracts respectively. Conclusion: Eluted components from the extracts could provide further researchers to work with various pharmacological activities related models and studies. PMID:26130941

  1. Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics

    NASA Astrophysics Data System (ADS)

    Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Nazaroff, William W.

    We measured ozone consumption and byproduct formation on materials commonly found in aircraft cabins at flight-relevant conditions. Two series of small-chamber experiments were conducted, with most runs at low relative humidity (10%) and high air-exchange rate (˜20 h -1). New and used cabin materials (seat fabric, carpet, and plastic) and laundered and worn clothing fabrics (cotton, polyester, and wool) were studied. We measured ozone deposition to many material samples, and we measured ozone uptake and primary and secondary emissions of volatile organic compounds (VOCs) from a subset of samples. Deposition velocities ranged from 0.06 to 0.54 cm s -1. Emissions of VOCs were higher with ozone than without ozone in every case. The most commonly detected secondary emissions were C 1 through C 10 saturated aldehydes and the squalene oxidation products 6-methyl-5-hepten-2-one and acetone. For the compounds measured, summed VOC emission rates in the presence of 55-128 ppb (residual level) ozone ranged from 1.0 to 8.9 μmol h -1 m -2. Total byproduct yield ranged from 0.07 to 0.24 moles of product volatilized per mole of ozone consumed. Results were used to estimate the relative contribution of different materials to ozone deposition and byproduct emissions in a typical aircraft cabin. The dominant contributor to both was clothing fabrics, followed by seat fabric. Results indicate that ozone reactions with surfaces substantially reduce the ozone concentration in the cabin but also generate volatile byproducts of potential concern for the health and comfort of passengers and crew.

  2. Mechanistic Analysis and Thermochemical Kinetic Simulation of the Pathways for Volatile Product Formation from Pyrolysis of Polystyrene, Especially of the Dimer

    SciTech Connect

    Poutsma, Marvin L

    2006-01-01

    Simulations of the initial distribution of volatiles from pyrolysis of polystyrene were based on propagation rate constants estimated by thermochemical kinetic procedures. The voluminous database exhibits a disturbing lack of consistency with respect to effects of conversion level, temperature, and reactor type. It therefore remains difficult to assign the true primary distribution of the major products, styrene, 2,4-diphenyl-1-butene (''dimer''), 2,4,6-triphenyl-1-hexene (''trimer''), 1,3-diphenylpropane, and toluene, and its dependence on conditions. Probable perturbations by secondary reactions and selective evaporation are considered. The rate constant for 1,3-hydrogen shift appears much too small to accommodate the commonly proposed ''back-biting'' mechanism for dimer formation. Dimer more likely arises by addition of benzyl radical to olefinic chain-ends, followed by {beta}-scission, although ambiguities remain in assigning rate constants for the addition and {beta}-scission steps. With this modification, the major products can be successfully associated with decay of the sec-benzylic chain-end radical. In contrast, the minimal formation of allylbenzene, 2,4-diphenyl-1-pentene, and 2,4,6-triphenyl-1-heptene suggests a minimal chain-propagating role for the prim chain-end radical. Compared with polyethylene, the much enhanced ''unzipping'' to form monomer from polystyrene and the more limited depth of ''back-biting'' into the chain arise from an enthalpy-driven acceleration of {beta}-scission coupled with a kinetically driven deceleration of intramolecular hydrogen transfer. In contrast, the greater ''unzipping'' of poly(isobutylene) compared with polyethylene is proposed to result from relief of steric strain.

  3. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction.

    PubMed

    Beaulieu, John C; Lea, Jeanne M

    2006-10-01

    Seedless triploid watermelons have increased in popularity since the early 1990s, and the demand for seedless fruit is on the rise. Sweetness and sugars are crucial breeding focuses for fruit quality. Volatiles also play an important role; yet, we found no literature for seedless varieties and no reports using solid-phase microextraction (SPME) in watermelon. The objective of this experiment was to identify volatile and semivolatile compounds in five seedless watermelon varieties using carboxen divinylbenzene polydimethylsiloxane solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS). Fully ripe watermelon was squeezed through miracloth to produce rapid juice extracts for immediate headspace SPME GC-MS. Aldehydes, alcohols, ketones, and one furan (2-pentyl furan, a lipid oxidation product) were recovered. On the basis of total ion count peak area, the most abundant compounds in five varieties were 3-nonen-1-ol/(E,Z)-2,6-nonadienal (16.5-28.2%), (E)-2-nonenal (10.6-22.5%), and (Z)-6-nonenal (2.0-11.3%). Hexanal was most abundant (37.7%) in one variety (Petite Perfection) [corrected] The most abundant ketone was 6-methyl-5-hepten-2-one (2.7-7.7%). Some sensory attributes reported for these compounds are melon, citrus, cucumber, orange, rose, floral, guava, violet, vegetable, green, grassy, herbaceous, pungent, fatty, sweet, and waxy. Identifying and relating these compounds to sensory attributes will allow for future monitoring of the critical flavor compounds in seedless watermelon after processing and throughout fresh-cut storage. PMID:17002453

  4. ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES

    SciTech Connect

    FRYE JM; ANASTOS HL; GUTIERREZ FC

    2012-06-07

    While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%; and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.

  5. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species

    NASA Astrophysics Data System (ADS)

    König, Georg; Brunda, Monika; Puxbaum, Hans; Hewitt, C. Nicholas; Duckham, S. Craig; Rudolph, Jochen

    Emission rates of more than 50 individual VOCs were determined for eight plant species and three different types of grass land typical for natural deciduous and agricultural vegetation in Austria. In addition to the emissions of isoprene and monoterpenes, 33 biogenic oxygenated volatile organic compounds (BOVOCs) were detected. Of these, 2-methyl-l-propanol, 1-butanal, 2-butanal, 1-pentanol, 3-pentanol, 1-hexanol, 6-methyl-5-hepten-2-one, butanal and ethylhexylacetate were observed for the first time as plant emissions. In terms of prevalence of one of the groups of emitted VOCs (isoprene, terpenes, BOVOCs) the grain plants wheat and rye, grape, oilseed rape and the decidous trees hombeam and birch could be classified as "BOVOC"-emitters. For the grass plots examined, BOVOCs and terpenes appear to be of equal importance. The emission rates of the total assigned organic plant emissions ranged from 0.01 μ g -1 h -1 for wheat to 0.8 μg g -1 h -1 for oak (based on dry leaf weight). Intercomparison with available data from other studies show that our emission rates are rather at the lower end of reported ranges. The influence of the stage of growth was examined for rye, rape (comparing emissions of blossoming and nonblossoming plants) and for grape (with and without fruit). Emission rate differences for different stages of growth varied from nondetectable for blossoming and nonblossoming rye to a factor of six for the grape with fruits vs grape without fruits (emission rate based on dry leaf weight). The major decidous tree in Austria (beech) is a terpene emitter, with the contribution of BOVOCs below 5% of the total assigned emissions of 0.2 μg g -1 h -1 for the investigations of 20°C.

  6. Comparative Characterization of Aroma Volatiles and Related Gene Expression Analysis at Vegetative and Mature Stages in Basmati and Non-Basmati Rice (Oryza sativa L.) Cultivars.

    PubMed

    Hinge, Vidya; Patil, Hemant; Nadaf, Altafhusain

    2016-02-01

    Aroma volatiles in Basmati-370, Ambemohar-157 (non-basmati scented), and IR-64 (non-scented) rice cultivars were qualitatively and quantitatively analyzed at vegetative and maturity stages to study their differential accumulation using headspace solid-phase microextraction, followed by gas chromatography mass spectrometry (HS-SPME-GCMS) with selected ion monitoring (SIM) approach. In addition, expression analysis of major aroma volatile 2-acetyl-1-pyrroline (2AP)-related genes, betaine aldehyde dehydrogenase 2 (badh2) and Δ(1)-pyrolline-5-carboxylic acid synthetase (P5CS), were studied by real-time PCR. Maximum number of volatiles recorded at vegetative (72-58) than at mature stage (54-39). Twenty new compounds (12 in scented and 8 in both) were reported in rice. N-containing aromatic compounds were major distinguishing class separating scented from non-scented. Among quantified 26 volatiles, 14 odor-active compounds distinguished vegetative and mature stage. Limit of detection (LOD) and limit of quantification (LOQ) for 2AP was 0.001 mg/kg of 2AP and 0.01 g of rice, respectively. 2AP accumulation in mature grains was found three times more than in leaves of scented rice. Positive correlation of 2AP with 2-pentylfuran, 6-methyl-5-hepten-2-one, and (E)-2-nonenal suggests their major role as aroma contributors. The badh2 expression was inversely and P5CS expression was positively correlated with 2AP accumulation in scented over non-scented cultivar. PMID:26481230

  7. Asplenioideae Species as a Reservoir of Volatile Organic Compounds with Potential Therapeutic Properties.

    PubMed

    Froissard, Didier; Rapior, Sylvie; Bessière, Jean-Marie; Buatois, Bruno; Fruchier, Alain; Sol, Vincent; Fons, Françoise

    2015-06-01

    Twelve French Asplenioideae ferns (genera Asplenium and subgenera Ceterach and Phyllitis) were investigated for the first time for volatile organic compounds (VOC) using GC-MS. Sixty-two VOC biosynthesized from the lipidic, shikimic, terpenic and carotenoid pathways were identified. Several VOC profiles can be highlighted from Asplenium jahandiezii and A. xalternifolium with exclusively lipidic derivatives to A. onopteris with an equal ratio of lipidic/shikimic compounds. Very few terpenes as caryophyllene derivatives were identified, but only in A. obovatum subsp. bilotii. The main odorous lipidic derivatives were (E)-2-decenal (waxy and fatty odor), nonanal (aldehydic and waxy odor with a fresh green nuance), (E)-2-heptenal (green odor with a fatty note) and 1-octen-3-ol (mushroom-like odor), reported for all species. A few VOC are present in several species in high content, i.e., 9-oxononanoic acid used as a precursor for biopolymers (19% in A. jahandiezii), 4-hydroxyacetophenone with a sweet and heavy floral odor (17.1% in A. onopteris), and 4-hydroxybenzoic acid used as a precursor in the synthesis of parabens (11.3% in A. foreziense). Most of the identified compounds have pharmacological activities, i.e., octanoic acid as antimicrobial, in particular against Salmonellas, with fatty and waxy odor (41.1% in A. petrarchae), tetradecanoic acid with trypanocidal activity (13.3% in A. obovatum subsp. bilotii), 4-hydroxybenzoic acid (8.7% in A. onopteris) with antimicrobial and anti-aging effects, 3,4-dihydroxybenzaldehyde as an inhibitor of growth of human cancer cells (6.7% in Ceterach officinarum), and phenylacetic acid with antifungal and antibacterial activities (5.8% in A. onopteris). Propionylfilicinic acid was identified in the twelve species. The broad spectrum of odorous and bioactive VOC identified from the Asplenium, Ceterach and Phyllitis species are indeed of great interest to the cosmetic and food industries. PMID:26197556

  8. Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro

    PubMed Central

    2013-01-01

    Background Volatile organic compounds (VOCs) emitted by human body offer a unique insight into biochemical processes ongoing in healthy and diseased human organisms. Unfortunately, in many cases their origin and metabolic fate have not been yet elucidated in sufficient depth, thus limiting their clinical application. The primary goal of this work was to identify and quantify volatile organic compounds being released or metabolized by HepG2 hepatocellular carcinoma cells. Methods The hepatocellular carcinoma cells were incubated in specially designed head-space 1-L glass bottles sealed for 24 hours prior to measurements. Identification and quantification of volatiles released and consumed by cells under study were performed by gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap device extraction (HS-NTD) as the pre-concentration technique. Most of the compounds were identified both by spectral library match as well as retention time comparison based on standards. Results A total of nine compounds were found to be metabolised and further twelve released by the cells under study (Wilcoxon signed-rank test, p<0.05). The former group comprised 6 aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-ethylacrolein, 3-methyl butanal, n-hexanal and benzaldehyde), n-propyl propionate, n-butyl acetate, and isoprene. Amongst the released species there were five ketones (2-pentanone, 3-heptanone, 2-heptanone, 3-octanone, 2-nonanone), five volatile sulphur compounds (dimethyl sulfide, ethyl methyl sulfide, 3-methyl thiophene, 2-methyl-1-(methylthio)- propane and 2-methyl-5-(methylthio) furan), n-propyl acetate, and 2-heptene. Conclusions The emission and uptake of the aforementioned VOCs may reflect the activity of abundant liver enzymes and support the potential of VOC analysis for the assessment of enzymes function. PMID:23870484

  9. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro.

    PubMed

    Filipiak, Wojciech; Sponring, Andreas; Filipiak, Anna; Ager, Clemens; Schubert, Jochen; Miekisch, Wolfram; Amann, Anton; Troppmair, Jakob

    2010-01-01

    The aim of this study was to confirm the existence of volatile organic compounds (VOC) specifically released or consumed by the lung cancer cell line A549, which could be used in future screens as biomarkers for the early detection of lung cancer. For comparison, primary human bronchial epithelial cells (HBEpC) and human fibroblasts (hFB) were included. VOCs were detected in the headspace of cell cultures or medium controls following adsorption on solid sorbents, thermodesorption, and analysis by gas chromatography mass spectrometry. Using this approach, we identified VOCs that behaved similarly in normal and transformed cells. Thus, concentrations of 2-pentanone and 2,4-dimethyl-1-heptene were found to increase in the headspace of A549, HBEpC, and hFB cell cultures. In addition, the ethers methyl tert-butyl ether and ethyl tert-butyl ether could be detected at elevated levels in the case of A549 cells and one of the untransformed cell lines. However, especially branched hydrocarbons and alcohols were seen increased more frequently in untransformed than A549 cells. A big variety of predominantly aldehydes and the ester n-butyl acetate were found at decreased concentrations in the headspace of all cell lines tested compared with medium controls. Again, more different aldehydes were found to be decreased in hFB and HBEpC cells compared with A549 cells and 2-butenal was metabolized exclusively by both control cell lines. These data suggest that certain groups of VOCs may be preferentially associated with the transformed phenotype. PMID:20056637

  10. Metal and Precursor Effect during 1-Heptyne Selective Hydrogenation Using an Activated Carbon as Support

    PubMed Central

    Lederhos, Cecilia R.; Badano, Juan M.; Carrara, Nicolas; Coloma-Pascual, Fernando; Almansa, M. Cristina; Liprandi, Domingo; Quiroga, Mónica

    2013-01-01

    Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX > PdNRX > PtClRX ≫ RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX = PdNRX > RuClRX > PtClRX, and it can be mainly attributed to thermodynamic effects. PMID:24348168

  11. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.

    PubMed

    Nørgaard, A W; Kofoed-Sørensen, V; Mandin, C; Ventura, G; Mabilia, R; Perreca, E; Cattaneo, A; Spinazzè, A; Mihucz, V G; Szigeti, T; de Kluizenaar, Y; Cornelissen, H J M; Trantallidi, M; Carrer, P; Sakellaris, I; Bartzis, J; Wolkoff, P

    2014-11-18

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways. PMID:25299176

  12. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    SciTech Connect

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner. Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.

  13. Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model

    DOE PAGESBeta

    Skeen, Scott A.; Yang, Bin; Jasper, Ahren W.; Pitz, William J.; Hansen, Nils

    2011-11-14

    The chemical compositions of three low-pressure premixed flames of methylcyclohexane (MCH) are investigated with the emphasis on the chemistry of MCH decomposition and the formation of aromatic species, including benzene and toluene. The flames are stabilized on a flat-flame (McKenna type) burner at equivalence ratios of φ = 1.0, 1.75, and 1.9 and at low pressures between 15 Torr (= 20 mbar) and 30 Torr (= 40 mbar). The complex chemistry of MCH consumption is illustrated in the experimental identification of several C7H12, C7H10, C6H12, and C6H10 isomers sampled from the flames as a function of distance from the burner.more » Three initiation steps for MCH consumption are discussed: ring-opening to heptenes and methyl-hexenes (isomerization), methyl radical loss yielding the cyclohexyl radical (dissociation), and H abstraction from MCH. Mole fraction profiles as a function of distance from the burner for the C7 species supplemented by theoretical calculations are presented, indicating that flame structures resulting in steeper temperature gradients and/or greater peak temperatures can lead to a relative increase in MCH consumption through the dissociation and isomerization channels. Trends observed among the stable C6 species as well as 1,3-pentadiene and isoprene also support this conclusion. Relatively large amounts of toluene and benzene are observed in the experiments, illustrating the importance of sequential H-abstraction steps from MCH to toluene and from cyclohexyl to benzene. Furthermore, modeled results using the detailed chemical model of Pitz et al. (Proc. Combust. Inst.2007, 31, 267–275) are also provided to illustrate the use of these data as a benchmark for the improvement or future development of a MCH mechanism.« less

  14. Characterization of the Key Aroma Volatile Compounds in Cranberry (Vaccinium macrocarpon Ait.) Using Gas Chromatography-Olfactometry (GC-O) and Odor Activity Value (OAV).

    PubMed

    Zhu, JianCai; Chen, Feng; Wang, LingYing; Niu, YunWei; Chen, HeXing; Wang, HongLin; Xiao, ZuoBing

    2016-06-22

    The volatile compounds of cranberries obtained from four cultivars (Early Black, Y1; Howes, Y2; Searles, Y3; and McFarlin, Y4) were analyzed by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and GC-flame photometric detection (FPD). The result presented that a total of thirty-three, thirty-four, thirty-four, and thirty-six odor-active compounds were identified by GC-O in the Y1, Y2, Y3, and Y4, respectively. In addition, twenty-two, twenty-two, thirty, and twenty-seven quantified compounds were demonstrated as important odorants according to odor activity values (OAVs > 1). Among these compounds, hexanal (OAV: 27-60), pentanal (OAV: 31-51), (E)-2-heptenal (OAV: 17-66), (E)-2-hexenal (OAV: 18-63), (E)-2-octenal (OAV: 10-28), (E)-2-nonenal (OAV: 8-77), ethyl 2-methylbutyrate (OAV: 10-33), β-ionone (OAV: 8-73), 2-methylbutyric acid (OAV: 18-37), and octanal (OAV: 4-24) contributed greatly to the aroma of cranberry. Partial least-squares regression (PLSR) was used to process the mean data accumulated from sensory evaluation by the panelists, odor-active aroma compounds (OAVs > 1), and samples. Sample Y3 was highly correlated with the sensory descriptors "floral" and "fruity". Sample Y4 was greatly related to the sensory descriptors "mellow" and "green and grass". Finally, an aroma reconstitution (Model A) was prepared by mixing the odor-active aroma compounds (OAVs > 1) based on their measured concentrations in the Y1 sample, indicating that the aroma profile of the reconstitution was pretty similar to that of the original sample. PMID:27265519

  15. Is H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?

    PubMed

    Walavalkar, M P; Vijayakumar, S; Sharma, A; Rajakumar, B; Dhanya, S

    2016-06-23

    The relative yields of products of the reaction of Cl atoms with 1-alkenes (C4-C9) were determined to see whether H atom abstraction is an important channel and if it is to identify the preferred position of abstraction. The presence of all the possible positional isomers of long chain alkenones and alkenols among the products, along with chloroketones and chloroalcohols, confirms the occurrence of H atom abstraction. A consistent pattern of distribution of abstraction products is observed with oxidation at C4 (next to allyl) being the lowest and that at CH2 groups away from the double bond being the highest. This contradicts with the higher stability of allyl (C3) radical. For a better understanding of the relative reactivity, ab initio calculations at MP2/6-311+G (d,p) level of theory are carried out in the case of 1-heptene. The total rate coefficient, calculated using conventional transition state theory, was found to be in good agreement with the experimental value at room temperature. The preferred position of Cl atom addition is predicted to be the terminal carbon atom, which matches with the experimental observation, whereas the rate coefficients calculated for individual channels of H atom abstraction do not explain the observed pattern of products. The distribution of abstraction products except at C4 is found to be better explained by reported structure activity relationship, developed from experimental rate coefficient data. This implies the reactions to be kinetically dictated and emphasizes the importance of secondary reactions. PMID:27253670

  16. The carbon kinetic isotope effects of ozone-alkene reactions in the gas-phase and the impact of ozone reactions on the stable carbon isotope ratios of alkenes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Anderson, R. S.; Rudolph, J.; Huang, L.; Ernst, D.

    2003-07-01

    The kinetic isotope effects (KIEs) for several ozone-alkene reactions in the gas phase were studied in a 30 L PTFE reaction chamber. The time dependence of the stable carbon isotope ratios and the concentrations were determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The following average KIE values were obtained: 18.9 +/- 2.8 (ethene), 9.5 +/- 2.5 (propene), 8.7 +/- 1 (1-butene), 8.1 +/- 0.4 (E-2-butene), 7.9 +/- 0.4 (1,3-butadiene), 6.7 +/- 0.9 (1-pentene), 7.3 +/- 0.2 (Z-2-pentene), 6.7 +/- 0.7 (cyclopentene), 6.1 +/- 1 (isoprene), 5.0 +/- 0.7 (1-hexene), 5.6 +/- 0.5 (cyclohexene), and 4.3 +/- 0.7 (1-heptene). These data are the first of their kind to be reported in the literature. The ozone-alkene KIE values show a systematic inverse dependence from alkene carbon number. Based on the observed KIEs, the contribution of ozone-alkene reactions to the isotopic fractionation of alkenes in the atmosphere can be estimated. On average this contribution is generally small compared to the impact of reaction with OH radicals. However, when OH-concentrations are very low, e.g. during nighttime and at high latitudes in winter, the contribution of the ozone reaction dominates and under these conditions the ozone-alkene reaction will have a clearly visible impact on the stable carbon isotope ratio of atmospheric alkenes.

  17. Electrophysiological responses of the olfactory receptors of the tick Amblyomma cajennense (Acari: Ixodidae) to host-related and tick pheromone-related synthetic compounds.

    PubMed

    Soares, Sara Fernandes; Borges, Lígia Miranda Ferreira

    2012-12-01

    In the present study, host-related and tick pheromone-related chemical compounds were tested by means of the tip-recording technique in order to obtain electrophysiological responses in olfactory sensilla of non-fed Amblyomma cajennense ticks. The following chemicals were tested on the multiporose sensilla DI.1, located anterior to Haller's organ, and the sensillum DII.1, in the anterior pit of this organ: isobutyric acid, butyric acid, valeric acid, trans-2-heptenal, heptanal, benzaldehyde, salicylaldehyde, nonanal, m-, o- and p-tolualdehyde, 2-furaldehyde, 3-pentanone, γ-valerolactone and 1-octen-3-ol (which are all vertebrate-associated volatiles); and 2,6-dichlorophenol (2,6-DCP), 2-nitrophenol, methyl salicylate and nonanoic acid (tick pheromone components). These were used at 10(-3)M and 10(-2)M on at least 10 ticks per substance, and the chemicals that were found to be active at these concentrations were then tested as a series from 10(-6)M to 10(-2)M, in decadic steps, on at least 15 ticks per substance. 2,6-DCP was active on both sensilla, with detection thresholds of 10(-6)M on the DI.1 sensillum and 10(-4)M on the DII.1 sensillum. The olfactory neurons of this sensillum also responded to nonanal at the highest concentration used (10(-2)M), while those of DII.1 responded not only to 2.6 DCP but also to 2-nitrophenol (to the same extent as to 2,6-DCP) and to 1-octen-3-ol. These results confirm the importance of 2,6-DCP in the chemical ecology of A. cajennense and indicate other compounds that may interfere with the behavior of this tick and which should be investigated. PMID:22925715

  18. Cl atom initiated oxidation of 1-alkenes under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Walavalkar, M.; Sharma, A.; Alwe, H. D.; Pushpa, K. K.; Dhanya, S.; Naik, P. D.; Bajaj, P. N.

    2013-03-01

    In view of the importance of the oxidation pathways of alkenes in the troposphere, and the significance of Cl atom as an oxidant in marine boundary layer (MBL) and polluted industrial atmosphere, the reactions of four 1-alkenes (C6-C9) with Cl atoms are investigated. The rate coefficients at 298 K are measured to be (4.0 ± 0.5), (4.4 ± 0.7), (5.5 ± 0.9) and (5.9 ± 1.7) × 10-10 cm3 molecule-1 s-1 for 1-hexene, 1-heptene, 1-octene and 1-nonene, respectively. The quoted errors include the experimental 2σ, along with the error in the reference rate coefficients. From the systematic increase in the rate coefficients with the number of carbon atoms, an approximate value for the average rate coefficient for hydrogen abstraction per CH2 group in alkenes is estimated to be (4.9 ± 0.3) × 10-11 cm3 molecule-1 s-1. Based on these rate coefficients, the contribution of Cl atom reactions towards the degradation of these molecules is found to be comparable to that of OH radical reactions, under MBL conditions. The products identified in gas phase indicate that Cl atom addition occurs mainly at the terminal carbon, leading to the formation of 1-chloro-2-ketones and 1-chloro-2-ols. The major gas phase products from the alkenyl radicals (formed by H atom abstraction) are different positional isomers of long chain enols and enones. A preference for dissociation leading to an allyl radical, resulting in aldehydes, lower by three carbon atoms, is indicated. The observed relative yields suggest that in general, the increased contribution of the reactions of Cl atoms towards degradation of 1-alkenes in NOx free air does not result in an increase in the generation of small aldehydes (carbon number < 4), including chloroethanal, as compared to that in the reaction of 1-butene.

  19. Effect of enzyme activity and frozen storage on jalapeño pepper volatiles by selected ion flow tube-mass spectrometry.

    PubMed

    Azcarate, Carolina; Barringer, Sheryl A

    2010-01-01

    Samples of unblanched (fresh), stannous chloride-treated, or blanched jalapeño peppers were measured for real-time generation of lipoxygenase-derived volatiles during 10 min after tissue disruption. Volatiles were also measured before and after 1.5, 2.5, 3, 6, and 9 mo of frozen storage at -15 °C. The concentration of all lipoxygenase-derived compounds was significantly higher in unblanched jalapeño peppers compared to enzyme inhibited peppers. The maximum concentration of (Z)-3-hexenal, (E)-2-hexenal, and hexanal was detected at about 1.2, 1.5, and 1.5 min after tissue disruption, respectively. A decrease in (Z)-3-hexenal and an increase in dimethyl sulfide and methylbutanal occurred in blanched compared to stannous chloride-treated peppers due to heat. Frozen storage resulted in no major changes in the lipoxygenase-derived volatiles of whole and pureed blanched peppers after 9 mo. However, in whole unblanched peppers a gradual decrease of (Z)-3-hexenal, (E)-2-hexenal, hexanal, hexenol, and hexanol was observed over time; whereas in pureed unblanched peppers these compounds increased, reached maximum concentration, and then decreased. Similarly, the minor volatiles 2-pentenal, 1-penten-3-one, (E)-2-heptenal, (E)-2-octenal, and (E)-2-nonenal showed an initial increase followed by a decline in both whole and pureed unblanched peppers. Tissue disruption increased generation and degradation rates during frozen storage. The compounds (E,Z)-2,6-nonadienal, n-propyl aldehyde, 2-isobutyl-3-methoxypyrazine, and a mixture of terpenes decreased in unblanched and blanched frozen samples, while nonanal and methylbutanal increased only in unblanched samples. PMID:21535582

  20. Selective conversion of n-butene to isobutylene at extremely high space velocities on ZSM-23 zeolites

    SciTech Connect

    Xu, Wen-Qing; Yin, Yuan-Gen; Suib, S.L.; O`Young, C.L.

    1994-11-01

    n-Butene has been isomerized to isobutylene on zeolite ZSM-23 catalysts at extremely high space velocities from 171 to 342 WHSV. The zeolite catalysts were prepared with hydrothermal methods by using pyrrolidine as a structure-directing template. The prepared materials have been characterized by SEM-EDX, XRD, FTIR, AA-ICP, TPD, BET surface area/pore size distributions, and pyridine chemisorption. Selectivities to isobutylene ranged from 85 to 95% and yields of isobutylene from 30 to 20%, depending on the space velocity of but-1-ene. Good stability in the catalytic activity for n-butene skeletal isomerization is an important characteristic of such ZMS-23 zeolites. Isobutylene is believed to be formed from n-butene via a methyl cyclopropane carbenium intermediate and this is a reversible process. Dimerization of butene molecules is a primary side reaction for n-butene skeletal isomerization. The dimerized products (octenes) are further cracked into propylene and pentenes via {beta}-scission of carbenium intermediates. Propylene, a product of the secondary reaction, is then dimerized to form hexenes or codimerized with butene to form heptenes. Conversion of but-1-ene to cis/trans-but-2-enes is greater than one predicts from thermodynamic equilibrium data. cis-But-2-ene is observed to be the preferential product for but-1-ene double bond migration. The preferential formation of cis-but-2-ene is due to a steric interaction of the methyl group in the secondary butyl carbenium intermediate with the pore wall of the small pore zeolite, ZSM-23. Zeolite ZSM-23 also shows shape selectivity for adsorption of ammonia, but-1-ene, and isobutylene. The shape selectivities of these materials are further improved after aging of catalysts used in but-1-ene skeletal isomerization. 26 refs., 14 figs., 2 tabs.

  1. On the combustion chemistry of n-heptane and n-butanol blends.

    PubMed

    Karwat, Darshan M A; Wagnon, Scott W; Wooldridge, Margaret S; Westbrook, Charles K

    2012-12-27

    High-speed gas sampling experiments to measure the intermediate products formed during fuel decomposition remain challenging yet important experimental objectives. This article presents new speciation data on two important fuel reference compounds, n-heptane and n-butanol, at practical thermodynamic conditions of 700 K and 9 atm, for stoichiometric fuel-to-oxygen ratios and a dilution of 5.64 (molar ratio of inert gases to O(2)), and at two blend ratios, 80%-20% and 50%-50% by mole of n-heptane and n-butanol, respectively. When compared against 100% n-heptane ignition results, the experimental data show that n-butanol slows the reactivity of n-heptane. In addition, speciation results of n-butanol concentrations show that n-heptane causes n-butanol to react at temperatures where n-butanol in isolation would not be considered reactive. The chemical kinetic mechanism developed for this work accurately predicts the trends observed for species such as carbon monoxide, methane, propane, 1-butene, and others. However, the mechanism predicts a higher amount of n-heptane consumed at the first stage of ignition compared to the experimental data. Consequently, many of the species concentration predictions show a sharp rise at the first stage of ignition, a trend that is not observed experimentally. An important discovery is that the presence of n-butanol reduces the measured concentrations of the large linear alkenes, including heptenes, hexenes, and pentenes, showing that the addition of n-butanol affects the fundamental chemical pathways of n-heptane during ignition. PMID:23206273

  2. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions

    PubMed Central

    Xu, Z-q; Broza, Y Y; Ionsecu, R; Tisch, U; Ding, L; Liu, H; Song, Q; Pan, Y-y; Xiong, F-x; Gu, K-s; Sun, G-p; Chen, Z-d; Leja, M; Haick, H

    2013-01-01

    Background: Upper digestive endoscopy with biopsy and histopathological evaluation of the biopsy material is the standard method for diagnosing gastric cancer (GC). However, this procedure may not be widely available for screening in the developing world, whereas in developed countries endoscopy is frequently used without major clinical gain. There is a high demand for a simple and non-invasive test for selecting the individuals at increased risk that should undergo the endoscopic examination. Here, we studied the feasibility of a nanomaterial-based breath test for identifying GC among patients with gastric complaints. Methods: Alveolar exhaled breath samples from 130 patients with gastric complaints (37 GC/32 ulcers / 61 less severe conditions) that underwent endoscopy/biopsy were analyzed using nanomaterial-based sensors. Predictive models were built employing discriminant factor analysis (DFA) pattern recognition, and their stability against possible confounding factors (alcohol/tobacco consumption; Helicobacter pylori) was tested. Classification success was determined (i) using leave-one-out cross-validation and (ii) by randomly blinding 25% of the samples as a validation set. Complementary chemical analysis of the breath samples was performed using gas chromatography coupled with mass spectrometry. Results: Three DFA models were developed that achieved excellent discrimination between the subpopulations: (i) GC vs benign gastric conditions, among all the patients (89% sensitivity; 90% specificity); (ii) early stage GC (I and II) vs late stage (III and IV), among GC patients (89% sensitivity; 94% specificity); and (iii) ulcer vs less severe, among benign conditions (84% sensitivity; 87% specificity). The models were insensitive against the tested confounding factors. Chemical analysis found that five volatile organic compounds (2-propenenitrile, 2-butoxy-ethanol, furfural, 6-methyl-5-hepten-2-one and isoprene) were significantly elevated in patients with GC and

  3. Effects of selective inhibition of N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) on mice in learning and memory tasks.

    PubMed

    Lukawski, Krzysztof; Kamiński, Rafał M; Czuczwar, Stanisław J

    2008-01-28

    The purpose of the present study was to examine the effects of 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a selective inhibitor of N-acetylated-alpha-linked-acidic dipeptidase (NAALADase, glutamate carboxypeptidase II), an enzyme catalyzing the cleavage of glutamate from the neuropeptide N-acetyl-aspartyl-glutamate (NAAG), on memory processes in mice. Long-term memory was evaluated in step-through passive avoidance task while alternation behavior, as a measure involving spatial working memory, was assessed in Y-maze task. Additionally, horizontal activity was evaluated by means of electronically monitored locomotor activity system. The mice were treated with either 2-PMPA (50, 100 and 150 mg/kg i.p.) or N-methyl-d-aspartate (NMDA) receptor antagonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5,10-imine hydrogen maleate (MK-801) at doses of: 0.05, 0.1, 0.15 and 0.2 mg/kg i.p., as a comparator. In the passive avoidance task, the drugs were administered once before or immediately after training, and before retention test. 2-PMPA at the doses used did not affect retention of passive avoidance; however, it increased the latency to enter the dark box during the training day. In the Y-maze task, 2-PMPA (150 mg/kg i.p.) impaired spontaneous alternation and reduced locomotion while the lower dose of 100 mg/kg was ineffective. In the locomotor activity test, 2-PMPA (100 and 150 mg/kg i.p.) did not significantly affect horizontal activity. MK-801 (0.2 mg/kg i.p.) injected before training reduced retention in the passive avoidance task. In the Y-maze task, MK-801 (0.1 mg/kg i.p.) impaired alternation behavior and considerably increased locomotion in the Y-maze and locomotor activity test. These results indicate that NAALADase inhibition may impair alternation behavior. PMID:18031726