Science.gov

Sample records for hermitized atmospheric diffusion

  1. An Atlas-Based Geometry Pipeline for Cardiac Hermite Model Construction and Diffusion Tensor Reorientation

    PubMed Central

    Zhang, Yongjie; Liang, Xinghua; Ma, Jun; Jing, Yiming; Gonzales, Matthew J.; Villongco, Christopher; Krishnamurthy, Adarsh; Frank, Lawrence R.; Nigam, Vishal; Stark, Paul; Narayan, Sanjiv M.; McCulloch, Andrew D.

    2012-01-01

    Here we present a novel atlas-based geometry pipeline for constructing three-dimensional cubic Hermite finite element meshes of the whole human heart from tomographic patient image data. To build the cardiac atlas, two superior atria, two inferior ventricles as well as the aorta and the pulmonary trunk are first segmented, and epicardial and endocardial boundary surfaces are extracted and smoothed. Critical points and skeletons (or central-line paths) are identified, following the cardiac topology. The surface model and the path tree are used to construct a hexahedral control mesh via a skeleton-based sweeping method. Derivative parameters are computed from the control mesh, defining cubic Hermite finite elements. The thickness of the atria and the ventricles is obtained using segmented epicardial boundaries or via offsetting from the endocardial surfaces in regions where the image resolution is insufficient. We also develop a robust optical flow approach to deform the constructed atlas and align it with the image from a second patient. This registration method is fully-automatic, and avoids manual operations required by segmentation and path extraction. Moreover, we demonstrate that this method can also be used to deformably map diffusion tensor MRI data with patient geometries to include fiber and sheet orientations in the finite element model. PMID:22841777

  2. Handbook on atmospheric diffusion

    SciTech Connect

    Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.

    1982-01-01

    Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)

  3. Ambipolar diffusion in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Tzur, I.; Roble, R. G.

    1984-01-01

    In the middle atmosphere above 60 km, the electron concentration increases with altitude, reaching values of 10 to the 10th per cu m in the daytime ionospheric E region near 100 km. The electrons are more mobile than the ions and diffuse more rapidly through the neutral atmosphere. The electron diffusion polarizes the medium, causing an electric field to develop that acts to retard the electron diffusion and enhance the conduction current of ions. A global zonally averaged numerical model of atmosheric electricity from the ground to 100 km is used to examine the effect of ambipolar diffusion and the earth's geomagnetic field on the currents and fields in the middle atmosphere. The results show that above about 65 km, ambipolar diffusion generates local electric fields and conduction currents that balance electron diffusion currents. The electric fields and conduction currents are a few orders of magnitude larger than the vertical fields and currents calculated from the downward mapping of the ionospheric potential without taking electron diffusion into account. Ambipolar diffusion does not alter the total current flowing in the global circuit. It is a local effect where enhanced conduction currens flow to balance the electron diffusion current.

  4. Study of atmospheric diffusion using LANDSAT

    NASA Technical Reports Server (NTRS)

    Torsani, J. A.; Viswanadham, Y.

    1982-01-01

    The parameters of diffusion patterns of atmospheric pollutants under different conditions were investigated for use in the Gaussian model for calculation of pollution concentration. Value for the divergence pattern of concentration distribution along the Y axis were determined using LANDSAT images. Multispectral scanner images of a point source plume having known characteristics, wind and temperature data, and cloud cover and solar elevation data provided by LANDSAT, were analyzed using the 1-100 system for image analysis. These measured values are compared with pollution transport as predicted by the Pasquill-Gifford, Juelich, and Hoegstroem atmospheric models.

  5. Diffusion impact on atmospheric moisture transport

    NASA Astrophysics Data System (ADS)

    Moseley, C.; Haerter, J.; Göttel, H.; Hagemann, S.; Jacob, D.

    2009-04-01

    To ensure numerical stability, many global and regional climate models employ numerical diffusion to dampen short wavelength modes. Terrain following sigma diffusion is known to cause unphysical effects near the surface in orographically structured regions. They can be reduced by applying z-diffusion on geopotential height levels. We investigate the effect of the diffusion scheme on atmospheric moisture transport and precipitation formation at different resolutions in the European region. With respect to a better understanding of diffusion in current and future grid-space global models, current day regional models may serve as the appropriate tool for studies of the impact of diffusion schemes: Results can easily be constrained to a small test region and checked against reliable observations, which often are unavailable on a global scale. Special attention is drawn to the Alps - a region of strong topographic gradients and good observational coverage. Our study is further motivated by the appearance of the "summer drying problem" in South Eastern Europe. This too warm and too dry simulation of climate is common to many regional climate models and also to some global climate models, and remains a permanent unsolved problem in the community. We perform a systematic comparison of the two diffusion-schemes with respect to the hydrological cycle. In particular, we investigate how local meteorological quantities - such as the atmospheric moisture in the region east of the Alps - depend on the spatial model resolution. Higher model resolution would lead to a more accurate representation of the topography and entail larger gradients in the Alps. This could lead to consecutively stronger transport of moisture along the slopes in the case of sigma-diffusion with subsequent orographic precipitation, whereas the effect could be qualitatively different in the case of z-diffusion. For our study, we analyse a sequence of simulations of the regional climate model REMO employing

  6. Time-dependent diffusion in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Alecian, G.; Stift, M. J.; Dorfi, E. A.

    2011-12-01

    The chemical peculiarities of Ap stars are due to abundance stratifications produced by atomic diffusion in their outer layers. Theoretical models can predict such stratifications, but so far only provide equilibrium solutions which correspond to the maximum depth-dependent abundances for each element that can be supported by the radiation field. However, these stratifications are actually built up through a non-linear, time-dependent process which has never been modelled for realistic stellar atmospheres. Here, we present the first numerical simulations of time-dependent diffusion. We solve the continuity equation after having computed, as accurately as possible, atomic diffusion velocities (with and without a magnetic field) for a simplified fictitious - but still realistic - chemical element: cloudium. The direct comparison with existing observations is not the immediate aim of this work but rather a general understanding of how the stratification build-up proceeds in time and space. Our results raise serious questions as to the relevance of equilibrium solutions and reinforce the suspicion that certain accumulations of chemical elements might prove unstable.

  7. Monogenic Generalized Hermite Polynomials and Associated Hermite-Bessel Functions

    NASA Astrophysics Data System (ADS)

    Cação, I.

    2010-09-01

    A large range of generalizations of the ordinary Hermite polynomials of one or several real or complex variables has been considered by several authors, using different methods. We construct monogenic generalizations of ordinary Hermite polynomials starting from a hypercomplex analogue to the real valued Lahiri exponential generating function. By using specific operational techniques, we derive some of their properties. As an application of the constructed polynomials, we define associated monogenic Hermite-Bessel functions.

  8. Atmospheric transport and diffusion mechanisms in coastal circulation systems

    SciTech Connect

    Kaleel, R.J.; Shearer, D.L.; MacRae, B.L.

    1983-06-01

    This study defines the cyclical aspects of coastal atmospheric behavior that are important to the transport and diffusion (dispersion) of radionuclides. The report is developed around discussions of the meteorological dynamics of the cyclical and (cellular) atmospheric coastal phenomena and the atmospheric transport/diffusion mechanisms along with an assessment of the measurements accompanying both. Further, the efforts directed to modeling both the atmospheric and transport/diffusion processes are summarized and evaluated. Lastly, the review is summarized through a set of conclusions about the current level of understanding of coastal atmospheric phenomena. Recommendations are offered which identify certain aspects of local scale cyclical coastal phenomena that are important to the NRC.

  9. GUIDELINE FOR FLUID MODELING OF ATMOSPHERIC DIFFUSION

    EPA Science Inventory

    The fundamental principles for fluid modeling of flow and dispersion of pollutants in the atmospheric boundary layer are reviewed. The usefulness of fluid models are evaluated from both scientific and engineering viewpoints. Because many detailed decisions must be made during the...

  10. Propagation characteristics of a non-uniformly Hermite-Gaussian correlated beam

    NASA Astrophysics Data System (ADS)

    Song, Zhenzhen; Liu, Zhengjun; Zhou, Keya; Sun, Qiongge; Liu, Shutian

    2016-01-01

    We introduce a new kind of partially coherent beam, non-uniformly Hermite-Gaussian correlated beam, by employing a non-uniformly Hermite function to modulate the spectral degree of coherence. The evolution of such scalar beam on propagation in free space and turbulent atmosphere are investigated. It is demonstrated that the spectral intensity distributions exhibit extraordinary propagation characteristics, such as self-focusing and laterally shifted intensity maxima. The position of the maximum intensity and the intensity profile can be controlled by the order of the Hermite function. The results can be useful in free-space optical communications and beam shaping.

  11. Exhaust cloud rise and diffusion in the atmosphere

    NASA Technical Reports Server (NTRS)

    Chandler, M. W.; Chu, R. T.; Thayer, S. D.

    1971-01-01

    Analytical approach develops physical-mathematical model of rocket engine exhaust cloud rise, growth, and diffusion. Analytic derivations and resultant model apply to hot exhaust cloud study or industrial stack plumes, making work results applicable to air pollution. Model formulations apply to all exhaust cloud types and various atmospheric conditions.

  12. Turbulence and diffusion in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Baskett, Ronald L.

    1990-05-01

    This conference addressed recent theoretical advancements of turbulence and diffusion in the atmospheric boundary layer (ABL). Activities were centered on the technical sessions of the conference. Sessions addressed clouds and the marine atmospheric boundary layer, field experimental techniques, physical and numerical simulations, transport and diffusion, surface properties, general boundary layer, stratified turbulence and turbulence in complex terrain. A jointly authored poster on an evaluation of the ARAC emergency response models with and without on-site sound detection and ranging systems (sodars) which measure vertical wind profiles was presented. Several scientists commented on our work and some requested further information. In addition, there was a workshop on dispersion around groups of buildings and a tour of Riso National Laboratory. Developments relevant to our work included work on dispersion model evaluation, especially using Monte Carlo random walk techniques, parameterizations of mixing height and turbulence from remote sensing systems such as sodars and radars, and measurements and parameterizations of enhanced turbulence around groups of buildings.

  13. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  14. Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications

    NASA Technical Reports Server (NTRS)

    Giere, A. C.

    1977-01-01

    An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.

  15. Elegant Hermite-Airy beams

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Zhang, Lijun; Ru, Guoyun

    2015-09-01

    As Ai(x)Ai(-x) can be approximated by \\text{exp}≤ft(-{{x}2}/2\\right) , a kind of elegant Hermite-Airy (EHA) beam that is similar to the elegant Hermite-Gaussian (EHG) beam is introduced in this paper. Analytical expression of the EHA beams passing through an ABCD paraxial optical system is derived. By using the method of numerical fitting, the approximate expressions of 02> , 04> , <\\Thetaj2> , <\\Thetaj4> , and 02\\Thetaj2> for an EHA beam are presented, respectively. When the transverse mode number is larger than 2, 02> , 04> , <\\Thetaj2> , <\\Thetaj4> , and 02\\Thetaj2> of an EHA beam are all larger than those of the EHG beam. Based on the higher-order intensity moments, one can calculate the beam propagation factor, the beam half width, and the kurtosis parameter of the EHA beam passing through an ABCD paraxial optical system. As a numerical example, the propagation characteristics of the EHA beam are demonstrated in free space. Moreover, the propagation properties of the EHA beam are compared with those of the corresponding EHG beam. The evolutionary process of the EHA beam is far slower than that of the corresponding EHG beam. The research denotes that the EHA beams can be used to describe specially distributed optical beams that can not be characterized by the existing EHG beam model. The EHA beam model enriches and replenishes the existing beam model.

  16. Spreading lengths of Hermite polynomials

    NASA Astrophysics Data System (ADS)

    Sánchez-Moreno, P.; Dehesa, J. S.; Manzano, D.; Yáñez, R. J.

    2010-03-01

    The Renyi, Shannon and Fisher spreading lengths of the classical or hypergeometric orthogonal polynomials, which are quantifiers of their distribution all over the orthogonality interval, are defined and investigated. These information-theoretic measures of the associated Rakhmanov probability density, which are direct measures of the polynomial spreading in the sense of having the same units as the variable, share interesting properties: invariance under translations and reflections, linear scaling and vanishing in the limit that the variable tends towards a given definite value. The expressions of the Renyi and Fisher lengths for the Hermite polynomials are computed in terms of the polynomial degree. The combinatorial multivariable Bell polynomials, which are shown to characterize the finite power of an arbitrary polynomial, play a relevant role for the computation of these information-theoretic lengths. Indeed these polynomials allow us to design an error-free computing approach for the entropic moments (weighted Lq-norms) of Hermite polynomials and subsequently for the Renyi and Tsallis entropies, as well as for the Renyi spreading lengths. Sharp bounds for the Shannon length of these polynomials are also given by means of an information-theoretic-based optimization procedure. Moreover, the existence of a linear correlation between the Shannon length (as well as the second-order Renyi length) and the standard deviation is computationally proved. Finally, the application to the most popular quantum-mechanical prototype system, the harmonic oscillator, is discussed and some relevant asymptotical open issues related to the entropic moments, mentioned previously, are posed.

  17. Hermite polynomials and quasi-classical asymptotics

    SciTech Connect

    Ali, S. Twareque; Engliš, Miroslav

    2014-04-15

    We study an unorthodox variant of the Berezin-Toeplitz type of quantization scheme, on a reproducing kernel Hilbert space generated by the real Hermite polynomials and work out the associated quasi-classical asymptotics.

  18. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    SciTech Connect

    Tang, Jie Jiang, Weiman; Wang, Yishan; Zhao, Wei; Li, Jing; Duan, Yixiang

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  19. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Jiang, Weiman; Li, Jing; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2015-08-01

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  20. Motion magnification using the Hermite transform

    NASA Astrophysics Data System (ADS)

    Brieva, Jorge; Moya-Albor, Ernesto; Gomez-Coronel, Sandra L.; Escalante-Ramírez, Boris; Ponce, Hiram; Mora Esquivel, Juan I.

    2015-12-01

    We present an Eulerian motion magnification technique with a spatial decomposition based on the Hermite Transform (HT). We compare our results to the approach presented in.1 We test our method in one sequence of the breathing of a newborn baby and on an MRI left ventricle sequence. Methods are compared using quantitative and qualitative metrics after the application of the motion magnification algorithm.

  1. Tarantula and Hermit Crab Emergency Care.

    PubMed

    Marnell, Cinthia

    2016-05-01

    Tarantulas and hermit crabs are commonly kept pets and are underappreciated in veterinary medicine. Safe handling, biology and husbandry, diagnostic techniques, anesthesia, fluid therapy, disorders, and euthanasia are covered in this article. Current research is applied to these topics to keep practitioners abreast with the best medicine for these creatures. PMID:27131164

  2. Atmospheric physics: Chorus keeps the diffuse aurora humming

    NASA Astrophysics Data System (ADS)

    Newell, Patrick T.

    2010-10-01

    The origin of the diffuse aurora, whose beauty and intensity pale beside those of the famous aurora borealis, has remained controversial. A convincing explanation for this auroral display is now at hand. See Letter p.943

  3. Diffusion of Sound Waves in a Turbulent Atmosphere

    NASA Technical Reports Server (NTRS)

    Lyon, Richard H.

    1960-01-01

    The directional and frequency diffusion of a plane monochromatic 2 sound wave in statistically homogeneous, isotropic, and stationary turbulence is analyzed theoretically. The treatment is based on the diffusion equation for the energy density of sound waves, using the scattering cross section derived by Kraichnan for the type of turbulence assumed here. A form for the frequency-wave number spectrum of the turbulence is adopted which contains the pertinent parameters of the flow and is adapted to ease of calculation. A new approach to the evaluation of the characteristic period of the flow is suggested. This spectrum is then related to the scattering cross section. Finally, a diffusion equation is derived as a small-angle scattering approximation to the rigorous transport equation. The rate of spread of the incident wave in frequency and direction is calculated, as well as the power spectrum and autocorrelation for the wave.

  4. A comparison of the Monte Carlo and the flux gradient method for atmospheric diffusion

    SciTech Connect

    Lange, R.

    1990-05-01

    In order to model the dispersal of atmospheric pollutants in the planetary boundary layer, various methods of parameterizing turbulent diffusion have been employed. The purpose of this paper is to use a three-dimensional particle-in-cell transport and diffusion model to compare the Markov chain (Monte Carlo) method of statistical particle diffusion with the deterministic flux gradient (K-theory) method. The two methods are heavily used in the study of atmospheric diffusion under complex conditions, with the Monte Carlo method gaining in popularity partly because of its more direct application of turbulence parameters. The basis of comparison is a data set from night-time drainage flow tracer experiments performed by the US Department of Energy Atmospheric Studies in Complex Terrain (ASCOT) program at the Geysers geothermal region in northern California. The Atmospheric Diffusion Particle-In-Cell (ADPIC) model used is the main model in the Lawrence Livermore National Laboratory emergency response program: Atmospheric Release Advisory Capability (ARAC). As a particle model, it can simulate diffusion in both the flux gradient and Monte Carlo modes. 9 refs., 6 figs.

  5. Constraints on gravity wave induced diffusion in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.

    1988-01-01

    A review of the important constraints on gravity wave induced diffusion of chemical tracers, heat and momentum is given. Ground-based microwave spectroscopy measurements of H2O and CO and rocket-based mass spectrometer measurements of Ar constrain the eddy diffusion coefficient for constituent transport (K sub zz) to be (1-3) x 10 to the 5th sq cm/sec in the upper mesosphere. Atomic oxygen data also limits K sub zz to a comparable value in the mesopause. From the energy balance of the upper mesosphere the eddy diffusion coefficient for heat transport (D sub H) is, at most, 6 x 10 to the 5th sq cm/sec at the mesopause and decreasing substantially with decreasing altitude. The available evidence for mean wind deceleration and the corresponding eddy diffusion coefficient for momentum stresses (D sub M) suggests that it is at least 1 x 10 to the 6th sq cm/sec in the upper mesosphere. Consequently the eddy Prandtl number for macroscopic scale lengths is greater than 3.

  6. Wavelets based on Hermite cubic splines

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2016-06-01

    In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.

  7. Hermite base Bernoulli type polynomials on the umbral algebra

    NASA Astrophysics Data System (ADS)

    Dere, R.; Simsek, Y.

    2015-01-01

    The aim of this paper is to construct new generating functions for Hermite base Bernoulli type polynomials, which generalize not only the Milne-Thomson polynomials but also the two-variable Hermite polynomials. We also modify the Milne-Thomson polynomials, which are related to the Bernoulli polynomials and the Hermite polynomials. Moreover, by applying the umbral algebra to these generating functions, we derive new identities for the Bernoulli polynomials of higher order, the Hermite polynomials and numbers of higher order, and the Stirling numbers of the second kind.

  8. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  9. Modeling of TCE diffusion to the atmosphere and distribution in plant stems.

    PubMed

    Ma, Xingmao; Burken, Joel

    2004-09-01

    Fate of chlorinated solvents in phytoremediation has been delineated by many discoveries made in recent years. Plant uptake, metabolism, rhizosphere degradation, accumulation, and volatilization were shown to occur to differing degrees for many organic contaminants including chlorinated solvents. Among these mechanistic findings, recent research confirmed that volatile organic compounds (VOCs) volatilize from stems and that the resulting diffusive flux to the atmosphere is related to exposure concentration and to height up the stem. A comprehensive model was developed based upon all identified fate and transport mechanisms for VOCs, including translocation in the xylem flow and diffusion. The dispersion and diffusion in the radial direction were considered as one process (effective diffusion) as the two could not be investigated individually. The mechanism-based model mathematically indicates an exponential decrease of concentrations with height. While an analytic solution for the comprehensive model was not attained, it can serve as a starting point for other modeling efforts. The comprehensive model was simplified in this work for practical application to experimentally obtained data on trichloroethylene (TCE) fate. Model output correlated well with experimental results, and effective diffusivities for TCE in plant tissues were obtained through the model calibrations. The simplified model approximated TCE concentrations in the transpiration stream as well as TCE volatilization to the atmosphere. Xylem transport, including advection, dispersion, and diffusion through cell walls with subsequent volatilization to the atmosphere, is a major fate for VOCs in phytoremediation. PMID:15461166

  10. Hermiticity studies in SSC type calorimeters

    SciTech Connect

    Iwasaki, H.; Milliken, B.; Protopopescu, S.D.; Raja, R.

    1986-01-01

    We examine the effect of both dead material and missing material on the hermiticity of calorimetry for the type of detector proposed for the SSC. Using a simulation of the D0 detector based on the CERN Monte Carlo program Geant, we study the effects of cracks and cryostat dead material on missing E/sub T/. An improved version of the Isajet program that incorporates initial state Bremsstrahlung is used to investigate the contribution due to missing E/sub T/ from energy disappearing down the beam pipe.

  11. Production and propagation of Hermite-sinusoidal-Gaussian laser beams.

    PubMed

    Tovar, A A; Casperson, L W

    1998-09-01

    Hermite-sinusoidal-Gaussian solutions to the wave equation have recently been obtained. In the limit of large Hermite-Gaussian beam size, the sinusoidal factors are dominant and reduce to the conventional modes of a rectangular waveguide. In the opposite limit the beams reduce to the familiar Hermite-Gaussian form. The propagation of these beams is examined in detail, and resonators are designed that will produce them. As an example, a special resonator is designed to produce hyperbolic-sine-Gaussian beams. This ring resonator contains a hyperbolic-cosine-Gaussian apodized aperture. The beam mode has finite energy and is perturbation stable. PMID:9729853

  12. Measurement of nitrogen dioxide diffusive sampling rates for Palmes diffusion tubes using a controlled atmosphere test facility (CATFAC)

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas A.; Helmore, Jonathan J.; White, Samual; Barker Snook, Ieuan L.; Parish, Andy; Gates, Linda S.

    2014-09-01

    We report measurements of the 28 day NO2 diffusive sampling rates for seven designs of Palmes diffusion tubes (PDTs), which were exposed in a controlled atmosphere test facility (CATFAC) containing traceable concentrations of nitrogen dioxide, nitric oxide and water vapour under defined conditions of temperature (20 °C) and wind speed. One of the aims of the work was to implement low cost modifications to the conventional open tube PDT design, using either meshes or filters. This would potentially reduce some of the undesirable bias effects due to wind, which may lead to an over estimation of the NO2 concentration. Exposure tests in the CATFAC were carried out over a wide concentration range applicable to ambient monitoring, and also over a range of wind speeds at a constant concentration. For a given PDT design, the measured NO2 diffusive sampling rates were found to be effectively constant over the conditions tested. These rates were then applied to NO2 field measurements carried out at a monitoring station in central London, and three of the modified PDT designs were found to deliver improved repeatability and consequently reduced measurement uncertainty over the conventional open tubes.

  13. A diffusion source for sodium and potassium in the atmospheres of Mercury and the moon

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.

    1990-03-01

    Deep grain-boundary diffusion and regolith diffusion through a fractured crust and regolith can account not only for the Na/K ratios observed in the Mercurian and lunar atmospheres, but the large Na abundance enhancement of Mercury over lunar levels. A hot component of Na and K at Mercury is noted to be smaller in proportion to the total abundances of these two constituents than at the moon; this hot component is consistent with a population of meteoritic substances similar to lunar ones, as well as with a surface composition which has undergone no greater K depletion than that of the moon.

  14. Surface modification of aluminum by runaway electron preionized diffuse discharges in different gases at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Erofeev, Mikhail V.; Shulepov, Mikhail A.; Tarasenko, Victor F.

    2015-12-01

    The paper presents the results of an examination of aluminum samples exposed to runaway electron preionized diffuse discharges in air, nitrogen, and argon at atmospheric pressure. The changes in the chemical composition, structure, and hardness of the aluminum surface layers caused by the action of the discharge were investigated. It has been found that the oxygen and carbon concentrations in the surface layers depend on the number of discharge pulses and on the chemical composition of the working gas. The goal of the study was to find possible uses of runaway electron preionized diffuse discharges in research and industry.

  15. A diffusion source for sodium and potassium in the atmospheres of Mercury and the moon

    NASA Technical Reports Server (NTRS)

    Sprague, Ann L.

    1990-01-01

    Deep grain-boundary diffusion and regolith diffusion through a fractured crust and regolith can account not only for the Na/K ratios observed in the Mercurian and lunar atmospheres, but the large Na abundance enhancement of Mercury over lunar levels. A hot component of Na and K at Mercury is noted to be smaller in proportion to the total abundances of these two constituents than at the moon; this hot component is consistent with a population of meteoritic substances similar to lunar ones, as well as with a surface composition which has undergone no greater K depletion than that of the moon.

  16. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C072)

    EPA Science Inventory

    Abstract

    Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  17. ANALYTICAL SOLUTIONS OF THE ATMOSPHERIC DIFFUSION EQUATION WITH MULTIPLE SOURCES AND HEIGHT-DEPENDENT WIND SPEED AND EDDY DIFFUSIVITIES. (R825689C048)

    EPA Science Inventory

    Abstract

    Three-dimensional analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities are derived in a systematic fashion. For homogeneous Neumann (total reflection), Dirichlet (total adsorpti...

  18. Developing a passive trap for diffusive atmospheric 14CO2 sampling

    NASA Astrophysics Data System (ADS)

    Walker, Jennifer C.; Xu, Xiaomei; Fahrni, Simon M.; Lupascu, Massimo; Czimczik, Claudia I.

    2015-10-01

    14C-CO2 measurement is an unique tool to quantify source-based emissions of CO2 for both the urban and natural environments. Acquiring a sample that temporally integrates the atmospheric 14C-CO2 signature that allows for precise 14C analysis is often necessary, but can require complex sampling devices, which can be difficult to deploy and maintain, especially for multiple locations. Here we describe our progress in developing a diffusive atmospheric CO2 molecular sieve trap, which requires no power to operate. We present results from various cleaning procedures, and rigorously tested for blank and memory effects. Traps were tested in the environment along-side conventional sampling flasks for accuracy. Results show that blank and memory effects can be minimized with thorough cleaning and by avoiding overheating, and that diffusively collected air samples agree well with traditionally canister-sampled air.

  19. The hermit crab's nose—antennal transcriptomics

    PubMed Central

    Groh, Katrin C.; Vogel, Heiko; Stensmyr, Marcus C.; Grosse-Wilde, Ewald; Hansson, Bill S.

    2014-01-01

    In the course of evolution, crustaceans adapted to a large variety of habitats. Probably the most extreme habitat shift was the transition from water to land, which occurred independently in at least five crustacean lineages. This substantial change in life style required adaptations in sensory organs, as the medium conveying stimuli changed in both chemical and physical properties. One important sensory organ in crustaceans is the first pair of antennae, housing their sense of smell. Previous studies on the crustacean transition from water to land focused on morphological, behavioral, and physiological aspects but did not analyze gene expression. Our goal was to scrutinize the molecular makeup of the crustacean antennulae, comparing the terrestrial Coenobita clypeatus and the marine Pagurus bernhardus. We sequenced and analyzed the antennal transcriptomes of two hermit crab species. Comparison to previously published datasets of similar tissues revealed a comparable quality and GO annotation confirmed a highly similar set of expressed genes in both datasets. The chemosensory gene repertoire of both species displayed a similar set of ionotropic receptors (IRs), most of them belonging to the divergent IR subtype. No binding proteins, gustatory receptors (GRs) or insect-like olfactory receptors (ORs) were present. Additionally to their olfactory function, the antennules were equipped with a variety of pathogen defense mechanisms, producing relevant substances on site. The overall similarity of both transcriptomes is high and does not indicate a general shift in genetic makeup connected to the change in habitat. IRs seem to perform the task of olfactory detection in both hermit crab species studied. PMID:24478616

  20. Development and field validation of a new diffusive sampler for determination of atmospheric volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Özden Üzmez, Özlem; Gaga, Eftade O.; Döğeroğlu, Tuncay

    2015-04-01

    A tailor-made diffusive sampler was developed for the determination of atmospheric Volatile Organic Compounds (VOCs) and the validation of the sampler was carried out under field conditions. All parts of the diffusive sampler which are reusable after a proper cleaning process were made of plastic material (delrin). The reusability of the sampler brings an important advantage considering its lower cost. Activated carbon was used as adsorbent and VOCs adsorbed on the activated carbon were analyzed by GC-MS (gas chromatography equipped with mass selective detector). A comprehensive validation study including detection limit, precision, bias, recovery, self-consistency, shelf life, storage stability, reusability was carried out in accordance with the related European standards ((EN) 13528-1 (2000) and 13528-2 (2000)). Also, a comparison was performed with some commercial diffusive samplers such as 3 M OVM 3500 and Radiello to test the performance of the new diffusive sampler in different environments such as urban area and road tunnel. Uptake rates for the measured VOCs were determined and they were evaluated together with the meteorological parameters (temperature, humidity, wind speed). According to the validation results; all the parameters evaluated for the sampler comply with the related standards and this is an indication of the reliability of the sampler for the sampling of VOCs in the atmosphere.

  1. On the one-dimensional chemistry-diffusion model in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam

    Most of the current atmospheric chemistry models for planets (e.g., Krasnopolsky & Parshev 1981; Yung et al., 1984; Lavvas et al., 2008) and exo-planets (e.g., Moses et al., 2011; Line et al., 2011; Hu et al., 2012) adopt a one-dimensional (1D) chemistry-diffusion approach in the vertical coordinate such as pressure or altitude. Although only a crude approximation, these 1D models have succeeded in explaining the global-averaged vertical profiles of many chemical species in observations. One of the important assumptions of these models is that, all chemical species are transported via the same eddy diffusion profile. Here we show that, as also noticed in the Earth community (e.g., Holton 1986), in the presence of horizontal transport driven by eddies in the middle atmospheres such as the stratospheres on Earth and Titan, this “homogenous eddy diffusion” assumption generally breaks down. Instead, the eddy diffusion should depend both on the horizontal eddy mixing and the chemical lifetime of the species. It implies that the long-lived species and short-lived species could have significantly different eddy diffusion profiles. We show analytically why this new approach is more physically based. We also show numerically why the old approach fails compared with the globally averaged results from a more realistic two-dimensional (2D) simulation using the state-of-art Caltech/JPL 2D chemistry-diffusion-advection model (Zhang et al., 2013), and discuss the possible consequences. This research was supported by the Bisgrove Scholar Program in the University of Arizona.

  2. Pore-Filling Ice Diffusively Derived From Atmospheric Water Vapor Under Mars Conditions

    NASA Astrophysics Data System (ADS)

    Hudson, T. L.; Aharonson, O.; Oslund, K.; Siegler, M.; Schorghofer, N.

    2007-12-01

    Conditions during previous climate epochs on Mars may have allowed subsurface ice to form via diffusion from a moist atmosphere. The deposition and recharge of such reservoirs is driven by subsurface humidity gradients; an atmospheric frostpoint greater than that of the subsurface results in a net influx of vapor which deposits in pore space as ice. Observations of the hydrogen distribution by Mars Odyssey indicate that the ice content of some high-latitude regions (e.g. Olympia Undae) exceeds 70% by volume. Reconciliation of this concentration with typically lower porosities of soils demands a process of ice segregation (lensing) and mechanical expansion, or direct precipitation. We investigate the possibility and consequences of volumetrically significant subsurface ice derived from the Mars atmosphere by vapor diffusion, at present and in the past. Experiments conducted at the Mars Simulation and Ice Laboratory at Caltech demonstrate that diffusion processes produce significant pore-filling ice under controlled lab conditions. Atmospherically derived water vapor is deposited within an initially dry porous medium subject to a strong (~15~K/cm) temperature gradient forcing a humidity gradient. This mimics the humidity gradient caused by time varying temperatures in the shallow subsurface of Mars with a static experimental setup. The vertical profile of water content is determined at the end of the experiment by gravimetric analysis and the thermal conductivity of the ice-bearing sample is calculated. Pore filling fractions up to 100% have been measured. Profiles with a marked transition in ice content at the frostpoint depth are observed corresponding to a subsurface ice table. The data enable calculation of time-varying diffusion coefficients which exhibit a reduction of up to an order of magnitude with respect to ice-free regolith. These are compared to numerical models of vapor diffusion incorporating ice deposition and pore constriction. Formation theories of

  3. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  4. A discussion on the assumption of ambipolar diffusion of meteor trails in the Earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Subrahmanyam, Kandula Venkata

    2012-09-01

    For the first time, height profiles of meteor trail decay time due to the ambipolar diffusion process are estimated using temperature and pressure measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on-board Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. The comparison of the meteor trail decay time measured by a meteor radar over Thumba (8?5 N, 77°E) and SABER offered very valuable insights into the meteor trail decay processes and also provided much needed validation for assumption of ambipolar diffusion of meteor trails. It is observed that the assumption of ambipolar diffusion is valid in the height region of 90-96 km only where both SABER and radar measurements show excellent agreement in meteor trail decay time. The present analysis also shows that there are other processes which govern the meteor trail decay in the 80-90 km region, where large deviations are found between radar and SABER measurements. The differences between the SABER- and radar-observed decay times are quantified, and the processes responsible for the observed differences are also discussed extensively in the light of present understanding. The important outcome of the present study is the validation of assumption on ambipolar diffusivity of the meteor trails, which has significant implications in estimating the temperature using meteor trail decay time.

  5. Characterisation of gaseous and particulate atmospheric pollutants in the East Mediterranean by diffusion denuder sampling lines.

    PubMed

    Perrino, C; Catrambone, M; Esposito, G; Lahav, D; Mamane, Y

    2009-05-01

    A field study aimed to characterize atmospheric pollutants in the gaseous and the particulate phases was conducted during the fall-winter of 2004 and the summer of 2005 in the Ashdod area, Israel. The site is influenced by both anthropogenic sources (power plants, refineries, chemical and metal industries, a cargo port, road traffic) and natural sources (sea-spray and desert dust). The use of diffusion lines--a series of annular diffusion denuders for sampling gaseous compounds followed by a cyclone and a filter pack for determining PM(2.5) composition--allowed a good daily characterization of the main inorganic compounds in both the gaseous (HCl, HNO(3), SO(2), NH(3)) and the particulate phase (Cl(-), NO(3)(-), SO(4)(=), NH(4)(+), and base cations). During the summer campaign two other activities were added: an intensive 3-h sampling period and the determination of PM(2.5) bulk composition. The results were interpreted on the basis of meteorological condition, especially the mixing properties of the lower atmosphere as determined by monitoring the natural radioactivity due to Radon progeny, a good proxy of the atmospheric ability to dilute pollutants. Several pollution episodes were identified and the predominance of different sources was highlighted (sea-spray, desert dust, secondary photochemical pollutants). During the summer period a considerable increase of nitric acid and particulate sulphate was observed. Secondary inorganic pollutants (nitrate, sulphate and ammonium) constituted, on the average, 57% of the fine particle fraction, organic compounds 20%, primary anthropogenic compounds 14%, natural components (sea-spray and crustal elements) 9%. The advantages of the diffusion lines in determining gaseous and particulate N- and S- inorganic compounds are discussed. PMID:18535917

  6. 40Ar/39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres

    USGS Publications Warehouse

    Landis, G.P.; Snee, L.W.

    1991-01-01

    Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [40Ar/39Ar ???32o] than the much more abundant surface absorbed argon [40Ar/39Ar ???295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150?? -250??C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D???1.5 x 10-17 cm2S-1 is calculated from 39Ar retention. 40Ar/39Ar age calculations indicate Dominican Republic amber is ??? 45 Ma and North Dakota amber is ??? 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O2-rich end-member gas with air-like N2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O2 levels in the Late Cretaceous of ??? 35%, and that atmospheric O2 dropped by early Tertiary time to near a present atmospheric level of 21% O2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O2 reaction with amber). ?? 1991.

  7. Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface

    NASA Technical Reports Server (NTRS)

    Strelkov, S. A.; Sushkevich, T. A.

    1983-01-01

    Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.

  8. Interplay between Diffusion, Accretion and Nuclear Reactions in the Atmospheres of Sirius and Przybylski's Star

    NASA Astrophysics Data System (ADS)

    Yushchenko, A.; Gopka, V.; Goriely, S.; Lambert, D.; Shavrina, A.; Kang, Y. W.; Rostopchin, S.; Valyavin, G.; Lee, B.-C.; Kim, C.

    2007-06-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that peculiar stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. The first case is one of the hottest Am stars - Sirius. We determined the abundances of more than 50 chemical elements in the atmosphere of Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is the well known Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of our investigation on the stratification of chemical elements in the atmosphere of Przybylski's star and the new identification of lines corresponding to short-lived actinides in its spectrum. Possible explanations of the abundances pattern of Przybylski's star (as well as HR465 and HD965) can be the natural radioactive decays of thorium and uranium, the explosion of a companion as a supernova or the spallation reactions. These three hypotheses and (or) diffusion can possibly explain the abundance pattern of Przybylski's star and several similar objects such as HR465 and HD965.

  9. Thermal evolution of diffusive transport of atmospheric halocarbons through artificial sea-ice

    NASA Astrophysics Data System (ADS)

    Shaw, M. D.; Carpenter, L. J.; Baeza-Romero, M. T.; Jackson, A. V.

    2011-11-01

    Diffusion through brine channels in sea-ice is a potential pathway for trace gases produced under and within sea-ice to exchange with the overlying atmosphere. The effectiveness of this transport pathway is highly dependent on temperature and sea-ice thickness, both of which are changing in favour of increased gas diffusion through porous sea-ice. We conducted several experiments with artificial sea-ice in a cold chamber to assess the potential for dissolved gaseous halocarbons to percolate through brine channels within sea-ice to the overlying air. Physico-chemical properties of the hyper-saline brine, sea-ice and the under-lying seawater were measured to quantify the vertical transport of a comprehensive range of volatile organic iodinated compounds (VOICs), including CH 3I, C 2H 5I, 2-C 3H 7I and 1-C 3H 7I, at air temperatures of -3 and -14 °C. We find that the vertical transport of VOICs through sea-ice provides a very small flux pathway for gas transport during periods of consolidated ice cover. The results suggest that VOIC gas transfer velocities from diffusion through the sea-ice alone are at least ˜60 times lower at -3 °C than gas exchange from leads and polynas during the winter (assuming a sea-ice fractional coverage of 0.1). Assuming 100% brine channel fractional connectivity and a diffusion coefficient ( D) of 5 × 10 -5 cm 2 s -1 at -3 °C, the timescale of diffusion through 500 mm of first year sea-ice is ˜145 days. This has significant implications for in-situ VOIC losses within the brine from chlorination, hydrolysis and photolysis processes and it is unlikely that measurable concentrations of VOICs would survive vertical transport from the under-lying seawater to the surface sea-ice quasi-liquid layer.

  10. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented. PMID:24182161

  11. A non-monotonic eddy diffusivity profile of Titan's atmosphere revealed by Cassini observations

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Zhang, Xi; Kammer, Joshua A.; Liang, Mao-Chang; Shia, Run-Lie; Yung, Yuk L.

    2014-12-01

    Recent measurements from the limb-view soundings of Cassini/CIRS and the stellar occultations from Cassini/UVIS revealed the complete vertical profiles of minor species (e.g., C2H2 and C2H4) from 100 to 1000 km in the atmosphere of Titan. In this study, we developed an inversion technique to retrieve the eddy diffusion profile using C2H2 as a tracer species. The retrieved eddy profile features a low eddy diffusion zone near the altitude of the detached haze layer (~ 550 km), which could be a consequence of stabilization through aerosol heating. Photochemical modeling results using the retrieved eddy profile are in better agreement with the Cassini measurements than previous models. The underestimation of C2H4 in the stratosphere has been a long-standing problem in planetary photochemical modeling, and the new eddy diffusion profile does not solve this problem. In order to match the observations, we suggest a new expression for the rate coefficient of the key reaction, H +C2H4 + M ⟶C2H5 + M. The new reaction rate coefficient is estimated to be ~ 10 times lower than that used by Moses et al. (2005)'s model, and should be validated in the laboratory and tested against the hydrocarbon chemistry of giant planets.

  12. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ˜30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  13. Discrete integrable systems generated by Hermite-Padé approximants

    NASA Astrophysics Data System (ADS)

    Aptekarev, Alexander I.; Derevyagin, Maxim; Van Assche, Walter

    2016-05-01

    We consider Hermite-Padé approximants in the framework of discrete integrable systems defined on the lattice {{{Z}}2} . We show that the concept of multiple orthogonality is intimately related to the Lax representations for the entries of the nearest neighbor recurrence relations and it thus gives rise to a discrete integrable system. We show that the converse statement is also true. More precisely, given the discrete integrable system in question there exists a perfect system of two functions, i.e. a system for which the entire table of Hermite-Padé approximants exists. In addition, we give a few algorithms to find solutions of the discrete system.

  14. Generalised Hermite-Gaussian beams and mode transformations

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-05-01

    Generalised Hermite-Gaussian modes (gHG modes), an extended notion of Hermite-Gaussian modes (HG modes), are formed by the summation of normal HG modes with a characteristic function α, which can be used to unite conventional HG modes and Laguerre-Gaussian modes (LG modes). An infinite number of normalised orthogonal modes can thus be obtained by modulation of the function α. The gHG mode notion provides a useful tool in analysis of the deformation and transformation phenomena occurring in propagation of HG and LG modes with astigmatic perturbation.

  15. Multiresolution fusion of remotely sensed images with the Hermite transform

    NASA Astrophysics Data System (ADS)

    Escalante-Ramirez, Boris; Lopez-Caloca, Alejandra A.; Zambrano-Gallardo, Cira F.

    2004-02-01

    The Hermite Transform is an image representation model that incorporates some important properties of visual perception such as the analysis through overlapping receptive fields and the Gaussian derivative model of early vision. It also allows the construction of pyramidal multiresolution analysis-synthesis schemes. We show how the Hermite Transform can be used to build image fusion schemes that take advantage of the fact that Gaussian derivatives are good operators for the detection of relevant image patterns at different spatial scales. These patterns are later combined in the transform coefficient domain. Applications of this fusion algorithm are shown with remote sensing images, namely LANDSAT, IKONOS, RADARSAT and SAR AeS-1 images.

  16. Aggression and Food Resource Competition between Sympatric Hermit Crab Species

    PubMed Central

    Tran, Mark V.; O’Grady, Matthew; Colborn, Jeremiah; Van Ness, Kimberly; Hill, Richard W.

    2014-01-01

    The vertical zonation patterns of intertidal organisms have been topics of interest to marine ecologists for many years, with interspecific food competition being implicated as a contributing factor to intertidal community organization. In this study, we used behavioral bioassays to examine the potential roles that interspecific aggression and food competition have on the structuring of intertidal hermit crab assemblages. We studied two ecologically similar, sympatric hermit crab species, Clibanarius digueti [1] and Paguristes perrieri [2], which occupy adjacent zones within the intertidal region of the Gulf of California. During the search phase of foraging, C. digueti showed higher frequencies of aggressive behaviors than P. perrieri. In competition assays, C. digueti gained increased access to food resources compared to P. perrieri. The results suggest that food competition may play an important role in structuring intertidal hermit crab assemblages, and that the zonation patterns of Gulf of California hermit crab species may be the result of geographical displacement by the dominant food competitor (C. digueti). PMID:24632897

  17. Use of Terrestrial Hermit Crabs in the Study of Habituation

    ERIC Educational Resources Information Center

    Nolan, Laurence J.

    2004-01-01

    For small colleges, the use of invertebrates in undergraduate learning laboratory experiments may be a valuable alternative to the use of vertebrate species. This article describes a habituation experiment using terrestrial hermit crabs. All of the materials required are inexpensive and readily available. What makes this experiment unique is that…

  18. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  19. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  20. Hourly global and diffuse radiation of Lagos, Nigeria-correlation with some atmospheric parameters

    SciTech Connect

    Chendo, M.A.C.; Maduekwe, A.A.L. )

    1994-03-01

    The influence of four climatic parameters on the hourly diffuse fraction in Lagos, Nigeria, has been studied. Using data for two years, new correlations were established. The standard error of the Liu and Jordan-type equation was reduced by 12.83% when solar elevation, ambient temperature, and relative humidity were used together as predictor variables for the entire data set. Ambient temperature and relative humidity proved to be very important variables for predicting the diffuse fraction of the solar radiation passing through the humid atmosphere of the coastal and tropic city of Lagos. Seasonal analysis carried out with the data showed improvements on the standard errors for the new seasonal correlations. In the case of the dry season, the improvement was 18.37%, whole for the wet season, this was 12.37%. Comparison with existing correlations showed that the performance of the one parameter model (namely K[sub t]), of Orgill and Hollands and Reindl, Beckman, and Duffie were very different from the Liu and Jordan-type model obtained for Lagos.

  1. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  2. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  3. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  4. A Field Study of Intraspecific Competition for Food in Hermit Crabs ( Pagurus bernhardus)

    NASA Astrophysics Data System (ADS)

    Ramsay, K.; Kaiser, M. J.; Hughes, R. N.

    1997-02-01

    A tethered, frame-mounted video camera deployed on the sea-bed was used to observe the competitive interactions that occurred between hermit crabs, Pagurus bernhardus,that were attracted to food patches (dead dragonets, Callionymus lyra) of differing size. Hermit crab numbers on the small food patch ceased increasing c. 20 min after the camera arrived on the sea-bed, whilst numbers on the large patch increased throughout the experiment. The number of observed aggressive interactions increased with increasing hermit crab density, but was generally highest on the small patch. The probability of a hermit crab being able to feed increased with size for each of three size-groups on the small patch, whereas on the large patch, both large and medium-sized hermit crabs were equally likely to feed. Small and medium-sized hermit crabs had a higher probability of being able to feed on the large patch than the small patch. As the density of hermit crabs around a patch increased, the proportion of small individuals actively feeding decreased. The size-frequency distribution of hermit crabs on the large patch was significantly different from that on the small patch, with the latter being skewed towards larger individuals. These results suggest that the intensity of competition increases both with increasing numbers of hermit crabs and decreasing size of food resource. Large hermit crabs were more successful at feeding than smaller crabs when competition was more intense.

  5. HermiteFit: fast-fitting atomic structures into a low-resolution density map using three-dimensional orthogonal Hermite functions.

    PubMed

    Derevyanko, Georgy; Grudinin, Sergei

    2014-08-01

    HermiteFit, a novel algorithm for fitting a protein structure into a low-resolution electron-density map, is presented. The algorithm accelerates the rotation of the Fourier image of the electron density by using three-dimensional orthogonal Hermite functions. As part of the new method, an algorithm for the rotation of the density in the Hermite basis and an algorithm for the conversion of the expansion coefficients into the Fourier basis are presented. HermiteFit was implemented using the cross-correlation or the Laplacian-filtered cross-correlation as the fitting criterion. It is demonstrated that in the Hermite basis the Laplacian filter has a particularly simple form. To assess the quality of density encoding in the Hermite basis, an analytical way of computing the crystallographic R factor is presented. Finally, the algorithm is validated using two examples and its efficiency is compared with two widely used fitting methods, ADP_EM and colores from the Situs package. HermiteFit will be made available at http://nano-d.inrialpes.fr/software/HermiteFit or upon request from the authors. PMID:25084327

  6. WET EFFLUENT PARALLEL PLATE DIFFUSION DENUDER COUPLED CAPILLARY ION CHROMATOGRAPH FOR THE DETERMINATION OF ATMOSPHERIC TRACE GASES. (R825344)

    EPA Science Inventory

    We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...

  7. A GENERALIZED MATHEMATICAL SCHEME TO ANALYTICALLY SOLVE THE ATMOSPHERIC DIFFUSION EQUATION WITH DRY DEPOSITION. (R825689C072)

    EPA Science Inventory

    Abstract

    A generalized mathematical scheme is developed to simulate the turbulent dispersion of pollutants which are adsorbed or deposit to the ground. The scheme is an analytical (exact) solution of the atmospheric diffusion equation with height-dependent wind speed a...

  8. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  9. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  10. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  11. Evaluation of the impact of atmospheric ozone and aerosols on the horizontal global/diffuse UV Index at Livorno (Italy)

    NASA Astrophysics Data System (ADS)

    Scaglione, Daniele; Giulietti, Danilo; Morelli, Marco

    2016-08-01

    A study was conducted at Livorno (Italy) to evaluate the impact of atmospheric aerosols and ozone on the solar UV radiation and its diffuse component at ground in clear sky conditions. Solar UV radiation has been quantified in terms of UV Index (UVI), following the ISO 17166:1999/CIE S007/E-1998 international standard. UVI has been calculated by exploiting the libRadtran radiative transfer modelling software as a function of both the Aerosols Optical Depth (AOD) and the Total Ozone Column (TOC). In particular AOD and TOC values have been remotely sensed by the Ozone Monitoring Instrument (OMI) on board the NASA's EOS (Earth Observing System) satellites constellation. An experimental confirmation was also obtained by exploiting global UVI ground-based measurements from the 26/9/14 to 12/8/15 and diffuse UVI ground-based measurements from the 17/5/15 to 12/8/15. For every considered value of Solar Zenith Angle (SZA) and atmospheric condition, estimates and measurements confirm that the diffuse component contributes for more than 50% on the global UV radiation. Therefore an exposure of human skin also to diffuse solar UV radiation can be potentially harmful for health and need to be accurately monitored, e.g. by exploiting innovative applications such as a mobile app with a satellite-based UV dosimeter that has been developed. Global and diffuse UVI variations due to the atmosphere are primarily caused by the TOC variations (typically cyclic): the maximum TOC variation detected by OMI in the area under study leads to a corresponding variation in global and diffuse UVI of about 50%. Aerosols in the area concerned, mainly of maritime nature, have instead weaker effects causing a maximum variation of the global and diffuse UVI respectively of 9% and 35% with an SZA of 20° and respectively of 13% and 10% with an SZA of 60°.

  12. Self-similar propagation of Hermite-Gauss water-wave pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2016-01-01

    We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank. PMID:26871174

  13. C1 Hermite shape preserving polynomial splines in R3

    NASA Astrophysics Data System (ADS)

    Gabrielides, Nikolaos C.

    2012-06-01

    The C 2 variable degree splines1-3 have been proven to be an efficient tool for solving the curve shape-preserving interpolation problem in two and three dimensions. Based on this representation, the current paper proposes a Hermite interpolation scheme, to construct C 1 shape-preserving splines of variable degree. After this, a slight modification of the method leads to a C 1 shape-preserving Hermite cubic spline. Both methods can easily be developed within a CAD system, since they compute directly (without iterations) the B-spline control polygon. They have been implemented and tested within the DNV Software CAD/CAE system GeniE. [Figure not available: see fulltext.

  14. Type II Hermite-Pade approximation to the exponential function

    NASA Astrophysics Data System (ADS)

    Kuijlaars, A. B. J.; Stahl, H.; van Assche, W.; Wielonsky, F.

    2007-10-01

    We obtain strong and uniform asymptotics in every domain of the complex plane for the scaled polynomials a(3nz), b(3nz), and c(3nz) where a, b, and c are the type II Hermite-Pade approximants to the exponential function of respective degrees 2n+2, 2n and 2n, defined by and as z-->0. Our analysis relies on a characterization of these polynomials in terms of a 3x3 matrix Riemann-Hilbert problem which, as a consequence of the famous Mahler relations, corresponds by a simple transformation to a similar Riemann-Hilbert problem for type I Hermite-Pade approximants. Due to this relation, the study that was performed in previous work, based on the Deift-Zhou steepest descent method for Riemann-Hilbert problems, can be reused to establish our present results.

  15. Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays

    NASA Astrophysics Data System (ADS)

    Ren-Wu, Zhou; Ru-Sen, Zhou; Jin-Xing, Zhuang; Jiang-Wei, Li; Mao-Dong, Chen; Xian-Hui, Zhang; Dong-Ping, Liu; Kostya (Ken, Ostrikov; Si-Ze, Yang

    2016-04-01

    A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313005), and the Fund from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  16. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  17. Taking refuge from modernity: 21st century hermits

    PubMed Central

    Boyd, I; Rubin, GJ; Wessely, S

    2012-01-01

    Idiopathic environmental intolerances, such as ‘multiple chemical sensitivity’ and ‘electrosensitivity,’ can drastically affect the quality of life of those affected. A proportion of severely affected patients remove themselves from modern society, to live in isolation away from the purported causal agent of their ill health. This is not a new phenomenon; reports of hermits extend back to the 3rd century AD. We conducted a literature review of case reports relating to ancient hermits and modern day reclusion resulting from idiopathic environmental intolerance, in order to explore whether there are similarities between these two groups and whether the symptoms of these ‘illnesses of modernity’ are simply a present-day way of reaching the end-point of reclusion. Whilst there were some differences between the cases, recurring themes in ancient and modern cases included: dissatisfaction with society, a compulsion to flee, reports of a constant struggle and a feeling of fighting against the establishment. The similarities which exist between the modern-day cases and the historical hermits may provide some insight into the extreme behaviours exhibited by this population. The desire to retreat from society in order to escape from harm has existed for many centuries, but in different guises. PMID:23288087

  18. The Hot Horizontal-Branch Stars in NGC288 - Effects of Diffusion and Stratification on Their Atmospheric Parameters*

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Dreizler, S.; LeBlanc, F.; Khalack, V.; Michaud, G.; Richer, J.; Sweigart, Allen V.; Grundahl, F.

    2014-01-01

    Context. NGC288 is a globular cluster with a well developed blue horizontal branch covering the so-called u-jump which indicates the onset of diffusion. It is therefore well suited to study the effects of diffusion in blue horizontal branch (HB) stars. Aims. We compare observed abundances to predictions from stellar evolution models calculated with diffusion and from stratified atmospheric models. We verify the effect of using stratified model spectra to derive atmospheric parameters. In addition we investigate the nature of the overluminous blue HB stars around the u-jump. Methods. We define a new photometric index sz from uvby measurements that is gravity sensitive between 8 000K and 12 000 K. Using medium-resolution spectra and Stroemgren photometry we determine atmospheric parameters (Teff, logg) and abundances for the blue HB stars. We use both homogeneous and stratified model spectra for our spectroscopic analyses. Results. The atmospheric parameters and masses of the hot HB stars in NGC288 show a behaviour seen also in other clusters for temperatures between 9 000K and 14 000 K. Outside this temperature range, however, they follow rather the results found for such stars in (omega)Cen. The abundances derived from our observations are for most elements (except He and P) within the abundance range expected from evolutionary models that include the effects of atomic diffusion and assume a surface mixed mass of 10(exp -7) M. The abundances predicted by stratified model atmospheres are generally significantly more extreme than observed, except for Mg. The use of stratified model spectra to determine effective temperatures, surface gravities and masses moves the hotter stars to a closer agreement with canonical evolutionary predictions. Conclusions. Our results show definite promise towards solving the long-standing issue of surface gravity and mass discrepancies for hot HB stars, but there is still much work needed to arrive at a self-consistent solution.

  19. Atmospheric diffusion predictions for the exhaust effluents from the launch of a Titan 3C, December 13, 1973

    NASA Technical Reports Server (NTRS)

    Stephens, J. B. (Editor)

    1974-01-01

    Results for the predictions with the NASA/MSFC Multilayer Diffusion Model for the dispersive transport of the Titan 3C rocket exhaust effluents for the 1857 EST launch on December 13, 1973, from the Eastern Test Range at Cape Canaveral Air Force Station are presented. An atmospheric assessment is made in support of the joint Marshall Space Flight Center, Langley Research Center, and Kennedy Space Center rocket exhaust prediction and measurement program. The predictions are primarily intended to define a monitoring grid and for a postflight assessment of the field measurements in order to improve diffusion prediction techniques.

  20. Multigenerational Effects of Rearing Atmospheric Oxygen Level on the Tracheal Dimensions and Diffusing Capacities of Pupal and Adult Drosophila melanogaster.

    PubMed

    Klok, C Jaco; Kaiser, Alexander; Socha, John J; Lee, Wah-Keat; Harrison, Jon F

    2016-01-01

    Insects are small relative to vertebrates, and were larger in the Paleozoic when atmospheric oxygen levels were higher. The safety margin for oxygen delivery does not increase in larger insects, due to an increased mass-specific investment in the tracheal system and a greater use of convection in larger insects. Prior studies have shown that the dimensions and number of tracheal system branches varies inversely with rearing oxygen in embryonic and larval insects. Here we tested whether rearing in 10, 21, or 40 kPa atmospheric oxygen atmospheres for 5-7 generations affected the tracheal dimensions and diffusing capacities of pupal and adult Drosophila. Abdominal tracheae and pupal snorkel tracheae showed weak responses to oxygen, while leg tracheae showed strong, but imperfect compensatory changes. The diffusing capacity of leg tracheae appears closely matched to predicted oxygen transport needs by diffusion, perhaps explaining the consistent and significant responses of these tracheae to rearing oxygen. The reduced investment in tracheal structure in insects reared in higher oxygen levels may be important for conserving tissue PO2 and may provide an important mechanism for insects to invest only the space and materials necessary into respiratory structure. PMID:27343104

  1. Incorporation of an explosive cloud rise code into ARAC's (Atmospheric Release Advisory Capability) ADPIC transport and diffusion model

    SciTech Connect

    Foster, K.T.; Freis, R.P. ); Nasstrom, J.S. )

    1990-04-01

    The US Department of Energy's Atmospheric Release Advisory Capability (ARAC) supports various government agencies by modeling the transport and diffusion of radiological material released into the atmosphere. ARAC provides this support principally in the form of computer-generated isopleths of radionuclide concentrations. In order to supply these concentration estimates in a timely manner, a suite of operational computer models is maintained by the ARAC staff. One primary tools used by ARAC is the ADPIC transport and diffusion computer model. This three-dimensional, particle-in-cell code simulates the release of a pollutant into the atmosphere, by injecting marker particles into a gridded, mass-consistent modeled wind field. The particles are then moved through the gridded domain by applying the appropriate advection, diffusion, and gravitational fall velocities. A cloud rise module has been incorporated into ARAC's ADPIC dispersion model to allow better simulation of particle distribution early after an explosive release of source material. The module is based on the conservation equations of mass, momentum, and energy, which are solved for the cloud radius, height, temperature, and velocity as a function of time. 6 refs., 5 figs., 2 tabs.

  2. Observation of Diffuse Cosmic and Atmospheric Gamma Rays at Balloon Altitudes with an Electron-tracking Compton Camera

    NASA Astrophysics Data System (ADS)

    Takada, Atsushi; Kubo, Hidetoshi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Mizuta, Eiichi; Nagayoshi, Tsutomu; Nonaka, Naoki; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru

    2011-05-01

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency on 2006 September 1, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60°. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm-2 we found that 50% and 21% of the gamma rays at energies of 150 keV and 1 MeV, respectively, were scattered in the atmosphere prior to reaching the detector. Moreover, by using Geant4 simulations and the QinetiQ atmospheric radiation model, we estimated that the detected events consisted of diffuse cosmic and atmospheric gamma rays (79%), secondary photons produced in the instrument through the interaction between cosmic rays and materials surrounding the detector (19%), and other particles (2%). The obtained growth curve was comparable to Ling's model, and the fluxes of diffuse cosmic and atmospheric gamma rays were consistent with the results of previous experiments. The expected detection sensitivity of a future SMILE experiment measuring gamma rays between 150 keV and 20 MeV was estimated from our SMILE-I results and was found to be 10 times better than that of other experiments at around 1 MeV.

  3. Symbiosis of sea anemones and hermit crabs: different resource utilization patterns in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Vafeiadou, Anna-Maria; Antoniadou, Chryssanthi; Chintiroglou, Chariton

    2012-09-01

    The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.

  4. Hermite polynomial excited squeezed vacuum as quantum optical vortex states

    NASA Astrophysics Data System (ADS)

    Li, Ya-Zhou; Jia, Fang; Zhang, Hao-Liang; Huang, Jie-Hui; Hu, Li-Yun

    2015-11-01

    We introduce theoretically a kind of Hermite polynomial excited squeezed vacuum by extending the wave-packet states with a vortex structure to a general case. Its normalised factor is found to be the Legendre polynomial and the condition converting the general case to a special one is achieved. Then we consider its statistical properties according to the photon number distribution and the Wigner function. As an application, we investigate the performance of the teleportation of the coherent state. It is shown that these parameters in the generalised state can modulate all the above properties including the vortex structure.

  5. Diffusion and thermal escape of CH4 and H2 from Titan's upper atmosphere: Direct Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Tucker, O. J.; Tenishev, V.; Combi, M. R.; Nagy, A. F.; Johnson, R. E.

    2013-12-01

    15). Snowden D., 2013a. The thermal structure of Titan's upper atmosphere, I: Temperature profiles from Cassini INMS observations. Icarus 226 552-582. Snowden D., 2013b. The Thermal Structure of Titan's Upper Atmosphere, II: Energetics. JGR DOI: :10.1029/. Tucker, O.J., et al., 2013. Diffusion and thermal escape of H2 from Titan's atmosphere: Monte Carlo simulations. Icarus 222, 149-158. Westlake, J.H. et al., 2011. Titan's thermospheric response to various plasma environments. J. Geophys. Res. 116, A03318.

  6. Er{sup 3+} diffusion in congruent LiNbO{sub 3} crystal in Li-enriched atmosphere

    SciTech Connect

    Zhang Delong; Jia Qishen; Hua Pingrang; Pei Zhang; Zhang Wenjun; Yang Qingzhong; Liu Hongli; Cui Yuming; Pun, E. Y. B.

    2007-10-01

    The thermal diffusion of Er{sup 3+} into X- and Z-cut congruent LiNbO{sub 3} crystal in Li-enriched atmosphere [i.e., vapor transport equilibration (VTE)], created by Li{sub 3}NbO{sub 4}-LiNbO{sub 3} two-phase powder at the temperature around 1130 deg. C, was attempted. Single-crystal x-ray diffraction, micro-Raman, photoluminescence spectroscopy, and secondary ion mass spectrometry (SIMS) were used to study the crystalline phase with respect to Er{sup 3+} ion and the Er{sup 3+} diffusivity. The results show that the thickness of the Er film coated should not be thicker than 10 nm for an X-cut plate and 15 nm for a Z-cut plate. In this case, the diffusion is complete if the duration is long enough (>150 h) and the Er{sup 3+} ions in the diffused layer still retain the LiNbO{sub 3} phase. On the other hand, if the initial thickness of the Er metal film is thicker than 10 nm for the X-cut plate and 15 nm for the Z-cut plate, the diffusion will be incomplete no matter how long the duration is. This is because the residual Er{sup 3+} ions form irremovable ErNbO{sub 4} grains on the surface of the crystal. SIMS analysis on an X-cut VTE (1130 deg. C/192 h) and a Z-cut VTE (1129 deg. C/158 h) crystal coated, respectively, with 10 and 15 nm thick Er film reveals that the Er diffusion shows obvious anisotropy with the mean diffusion coefficients of 0.0155 and 0.0957 {mu}m{sup 2}/h, respectively. The surface concentrations are 1.5x10{sup 20} and 1.0x10{sup 20} at./cm{sup 3}, respectively. The diffused Er{sup 3+} ions follow the stretched-exponential decay profile with a stretching factor of 1.85 and 3.5, respectively. The Li/Nb ratio in the Er-diffused layer is similar to 99.4% for the X-cut sample coated with 10 nm thick Er film and 99.3% for the Z-cut crystal coated with 15 nm thick Er film. The rms roughness of the diffused surface is better than 6 and 4 nm for the X-cut and Z-cut samples, respectively.

  7. Relaxation Time of Artificial Periodic Irregularities of the Ionospheric Plasma and Diffusion in the Inhomogeneous Atmosphere

    NASA Astrophysics Data System (ADS)

    Grigor'ev, G. I.; Bakhmet'eva, N. V.; Tolmacheva, A. V.; Kalinina, E. E.

    2013-09-01

    We consider diffusion of the ionospheric-plasma irregularities as applied to the problem of experimental determination of the lower-ionosphere parameters by artificial periodic irregularities of the electron number density. A rigorous solution to the problem of diffusion of one-dimensional plasma irregularities in a weakly ionized medium, whose diffusion coefficient exponentially decreases with the altitude, is obtained. The Green's function for this problem is found. Three parameters are taken into account in the solution, namely, the size of the region occupied by the irregularities, the size of the irregularities, and a typical spatial scale of the e-fold decrease in the diffusion coefficient. Theoretical relaxation times of the irregularities as functions of these parameters are analyzed. Calculated relaxation times are compared with the times measured in the observation of the artificial periodic irregularities created by the SURA facility. Calculated relaxation times of these irregularities are in good agreement with the observed values.

  8. Weak turbulence simulations with the Hermite-Fourier spectral method

    NASA Astrophysics Data System (ADS)

    Vencels, Juris; Delzanno, Gian Luca; Manzini, Gianmarco; Roytershteyn, Vadim; Markidis, Stefano

    2015-11-01

    Recently, a new (transform) method based on a Fourier-Hermite (FH) discretization of the Vlasov-Maxwell equations has been developed. The resulting set of moment equations is discretized implicitly in time with a Crank-Nicolson scheme and solved with a nonlinear Newton-Krylov technique. For periodic boundary conditions, this discretization delivers a scheme that conserves the total mass, momentum and energy of the system exactly. In this work, we apply the FH method to study a problem of Langmuir turbulence, where a low signal-to-noise ratio is important to follow the turbulent cascade and might require a lot of computational resources if studied with PIC. We simulate a weak (low density) electron beam moving in a Maxwellian plasma and subject to an instability that generates Langmuir waves and a weak turbulence field. We also discuss some optimization techniques to optimally select the Hermite basis in terms of its shift and scaling argument, and show that this technique improve the overall accuracy of the method. Finally, we discuss the applicability of the HF method for studying kinetic plasma turbulence. This work was funded by LDRD under the auspices of the NNSA of the U.S. by LANL under contract DE-AC52-06NA25396 and by EC through the EPiGRAM project (grant agreement no. 610598. epigram-project.eu).

  9. Behavioral reactions to novel food odors by intertidal hermit crabs.

    PubMed

    Tran, Mark V

    2015-04-01

    Novel food items represent important food resources for generalist scavengers, such as intertidal hermit crabs. For animals that rely heavily on olfaction to mediate foraging, their first encounters with novel food items come from the detection of novel food odors. Although crustaceans have been shown to possess sensory mechanisms for processing novel odors, little is known about the level of stimulus reinforcement needed to maintain behavioral responses to novel food odors upon subsequent exposures. In the context of foraging, reinforcement of a novel food odor comes from feeding on the novel food item after sensory detection of the food item. This study tested the behavioral responses of hermit crabs to a novel food odor over repeated exposures both with and without stimulus reinforcement. The results show that stimulus reinforcement is needed for the animals to maintain their baseline level of behavioral responses to the novel food odors. Animals that were allowed to feed on the novel food item after first exposure (reinforced treatment) maintained strong behavioral reactions to the novel food odor during subsequent exposures. The behavioral reactions of animals that were not allowed to feed on the novel food item after first exposure (unreinforced treatment) rapidly declined. PMID:25562193

  10. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure

    SciTech Connect

    Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing; Duan Yixiang

    2013-01-21

    A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.

  11. A new model of atmospheric gamma rays and its implications for measurement of diffuse cosmic gamma rays from within the atmosphere

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Ling, J. C.; Peterson, L. E.

    1974-01-01

    A semi-empirical model is discussed which describes atmospheric gamma rays in the range 0.3 less then or equal to E less than or equal to 10 MeV based on the production per unit mass of air. The model is based on the concept of a source strength (photon/g sec MeV) which is energy- and depth-dependent, and derived from measured fluxes. Quantities such as directional fluxes, angular distributions, and growth curves are calculated directly from this model. The source function is described by four energy-dependent parameters determined empirically from fluxes measured with a 7.5 cm x 7.5 cm Nal counter over the atmospheric depth range from 3.5 to 500 g/sq cm. From S(E,x), obtained for both continuum and discrete gamma rays at lambda = 40 deg, the depth and angle dependence of directional fluxes were calculated. Growth-curve predictions needed to separate atmospheric from diffuse cosmic fluxes were determined.

  12. Behavioral evidence illuminating the visual abilities of the terrestrial Caribbean hermit crab Coenobita clypeatus.

    PubMed

    Ping, Xiaoge; Lee, Ji Sun; Garlick, Dennis; Jiang, Zhigang; Blaisdell, Aaron P

    2015-09-01

    Hermit crabs hide into shells when confronted with potential dangers, including images presented on a monitor. We do not know, however, what hermit crabs can see and how they perceive different objects. We examined the hiding response of the Caribbean hermit crab (Coenobita clypeatus) to various stimuli presented on a monitor in seven experiments to explore whether crabs could discriminate different properties of a threatening digital image, including color, brightness, contrast, shape and orientation. We found crabs responded differently to expanding circles presented in wavelengths of light corresponding to what humans see as red, blue, and green. "Blue" stimuli elicited the strongest hiding response (Experiments 1, 2, & 7). "Blue" was also more effective than a gray stimulus of similar brightness (Experiment 3). Hermit crabs were sensitive to the amount of contrast between a stimulus and its background rather than absolute brightness of the stimulus (Experiment 4). Moreover, we did not find evidence that crabs could discriminate orientation (Experiment 6), and mixed evidence that they could discriminate stimulus shape (Experiments 5 & 7). These results suggest that the Caribbean hermit crab is sensitive to color features, but not spatial features, of a threatening object presented on a computer screen. This is the first study to use the hiding response of the hermit crab to examine its visual ability, and demonstrates that the hiding response provides a useful behavioral approach with which to study learning and discrimination in the hermit crab. PMID:26051192

  13. Particle pair diffusion of inertial particles such as dust in the atmosphere

    NASA Astrophysics Data System (ADS)

    Malik, Nadeem; Tereda, Yoseph; Usama, Syed

    2016-04-01

    The transport of particles in turbulent flows is ubiquitous in industrial applications and also in nature such as in dust storms and pollens. The mathematical equations that describe the motion of individual inertial particles (i.e. particles with weight and friction) is not fully developed yet, although simplified descriptions in specific contexts have been proposed, such as by Maxey and Riley [1]. The relative motion of groups of particles is equally important to understand, and this can usually be related to the relative motion of two particles, or pair diffusion. In 1926 Richardson [2] proposed a pioneering theory of pair diffusion of fluid particles based upon the idea of a separation dependent pair diffusivity, K(l), where l is the distance between two particles. Richardson advanced the theory based on a locality hypothesis in which only energy in the turbulent scales similar to the pair separation l is effective in further increasing the pair separation, leading to the famous 4/3-scaling, K˜ l4/3. Recent studies in turbulent particle pair diffusion [3] has suggested that both local and non-local effects govern the pair diffusion process inside the inertial subrange in high Reynolds number turbulence containing generalised power-law energy spectra, E(k)˜ k-p with 1

  14. Wind tunnel study on atmospheric diffusion near a two dimensional ridge

    SciTech Connect

    Chin-wen Hsu; Hsu-Cherng Chiang

    1996-12-31

    The objective of this study is to carry out a series of wind tunnel experiments to investigate the effects of the slope of the ridge on the transport and diffusion of air pollutants. Three shapes of ridge were considered. For each case, eight experiments were performed in order to study the behaviors of plumes released from different locations and heights. The resulting velocity and concentration distributions were measured. It is found that the perturbation quantities of velocities and turbulent parameters in the mixing region follow the similarity solutions suggested by Counihan et al. The Gaussian model can adequately describe the concentration distribution of plume over a two-dimensional ridge under a neutral condition if the plume centerline and diffusion coefficients were properly modified. The diffusion coefficients will be increased while the slope of the ridge increase, however the enhancement of diffusion coefficients is not proportional to the slope. The plume centerline will be affected by the disturbed boundary layer flow. A further study is needed to develop a practical formula for the prediction of diffusion coefficients and plume heights.

  15. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Shulepov, M. A.; Erofeev, M. V.

    2015-12-01

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  16. Electron avalanches and diffused {gamma}-mode in radio-frequency capacitively coupled atmospheric-pressure microplasmas

    SciTech Connect

    Liu, D. W.; Iza, F.; Kong, M. G.

    2009-07-20

    Space-, time- and wavelength-resolved optical emission profiles suggest that the helium emission at 706 nm can be used to indicate the presence of high energy electrons and estimate the sheath in helium rf discharges containing small concentration of air impurities. Furthermore, the experimental data supports the theoretical predictions of energetic electron avalanches transiting across the discharge gap in rf microdischarges and the absence of an {alpha}-mode. Nonetheless, microdischarges sustained between bare metal electrodes and operating in the {gamma}-mode can produce diffuse glowlike discharges rather than the typical radially constricted plasmas observed in millimeter-size rf atmospheric-pressure {gamma} discharges.

  17. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    SciTech Connect

    Tarasenko, V. F. Shulepov, M. A.; Erofeev, M. V.

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  18. A diffusion model for use with directional samplers. [particle dispersion in atmosphere

    NASA Technical Reports Server (NTRS)

    Anbar, D.

    1978-01-01

    The paper presents a mathematical model for describing dispersion processes of airborne particles in the atmosphere. The process is described as a superposition of independent Brownian motion processes with drifts and a boundary at zero. It is assumed that the terrain is flat and of a homogeneous roughness. All sources are assumed to be point sources. The time dependencies of emission rates, wind speed, wind direction, and atmospheric conditions are taken into account.

  19. Eddy diffusion coefficients and the variance of the atmosphere 30-60 km

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Belmont, A. D.; Brown, D. E.

    1980-01-01

    The results of numerical models or of new observational programs are checked by comparing them with past observations. In view of the differing analysis techniques or differing data samples, the eddy diffusivities presented here agree remarkably well with past estimates. However, in the application of K-values to two-dimensional models, the actual magnitude of the diffusivities is no more important than their spatial patterns, i.e., their gradients with height and latitude. It should thus be noted that the present patterns are often much different from those of past results.

  20. Hermit crabs in the diet of Pigeon Guillemots at Kachemak Bay, Alaska

    USGS Publications Warehouse

    Litzow, M.A.; Piatt, J.F.; Figurski, J.D.

    1998-01-01

    Guillemots (Cepphus spp.) feed their chicks a diet that is almost exclusively fish. We observed Pigeon Guillemots (C. columba) at two colonies in Alaska where hermit crabs (Crustacea: Anomura) were a major part of the diet for some nestlings. Hermit crabs were delivered to three of five observed nests at one colony, comprised between 2% and 22% of the items delivered at those nests, and were the second most common food type at one nest. Hermit crabs may be an attractive prey item when lipid-rich forage fish are scarce, and crabs living in gastropod shells that have been softened by encrustations of Suberiles sponges may be vulnerable to guillemot predation.

  1. Compilation and evaluation of gas-phase diffusion coefficients of reactive trace gases in the atmosphere: volume 2. Organic compounds and Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Pöschl, U.; Cox, R. A.; Kalberer, M.

    2015-02-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. Knudsen numbers of gases with unknown diffusivity can be approximated by a simple function of particle diameter and pressure and can be used to characterize the influence of diffusion on gas uptake by aerosol or cloud particles. We use a kinetic multi-layer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas-phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  2. Physical and plasmachemical aspects of diffuse coplanar barrier discharge as a novel atmospheric-pressure plasma source

    NASA Astrophysics Data System (ADS)

    Cernak, M.; Kovacik, D.; Zahoranova, A.; Rahel, J.

    2008-07-01

    Collaborating Czech and Slovakian university teams have recently developed an innovative plasma source, the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD), which has the potential to move a step closer to the industry requirement for in-line treatment of low-added-value materials using a highly-nonequlibrium ambient air plasma (Simor et al. 2002, The idea is to generate a thin (on the order of 0.1 mm) layer of highly-nonequlibrium plasma with a high power density (up to 100 W/cm^3) in the immediate vicinity of the treated surface and bring it into a close contact with the treated surface. Comparing to atmospheric-pressure glow discharge, volume dielectric barrier discharge, and plasma jet plasmas, such a diffuse plasma layer is believed to provide substantial advantages in energy consumption, exposure time, and technical simplicity. A brief outline of physical mechanism and basic properties of DCSBD will given using the results of emission spectroscopy, high-speed camera, and spatially resolved cross-correlation spectroscopy studies. The presentation will review also a current state of the art in in-line plasma treatment of low-cost materials and opportunities for the use of the so-called Diffuse Coplanar Surface Dielectric Barrier Discharge (DCSBD). The results obtained on the ambient air plasma treatments of textile, paper, wood, and glass illustrate that DCSBD offers outstanding performance with extremely low energy consumption for large area, uniform surface modifications of materials under continuous process conditions.

  3. Collision cross sections and diffusion parameters for H and D in atomic oxygen. [in upper earth and Venus atmospheres

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1993-01-01

    Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.

  4. Hermiticity of the Dirac Hamiltonian in curved spacetime

    SciTech Connect

    Huang Xing; Parker, Leonard

    2009-01-15

    In previous work on the quantum mechanics of an atom freely falling in a general curved background spacetime, the metric was taken to be sufficiently slowly varying on time scales relevant to atomic transitions that time derivatives of the metric in the vicinity of the atom could be neglected. However, when the time dependence of the metric cannot be neglected, it was shown that the Hamiltonian used there was not Hermitian with respect to the conserved scalar product. This Hamiltonian was obtained directly from the Dirac equation in curved spacetime. This raises the paradox of how it is possible for this Hamiltonian to be non-Hermitian. Here, we show that this non-Hermiticity results from a time dependence of the position eigenstates that enter into the Schroedinger wave function, and we write the expression for the Hamiltonian that is Hermitian for a general metric when the time dependence of the metric is not neglected.

  5. Multivariable Hermite polynomials and phase-space dynamics

    NASA Technical Reports Server (NTRS)

    Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.

    1994-01-01

    The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.

  6. Diffusion near buildings as determined from atmospheric tracer experiments. Technical report

    SciTech Connect

    Sagendorf, J.F.; Ricks, N.R.; Start, G.E.; Dickson, C.R.

    1980-09-01

    Data from the innermost arcs and roof top samplers of the Rancho Seco and EOCR field studies were used to examine diffusion close to a building. The minimum length plume paths were determined from each release location to each sampler position at these two test sites. Measured concentrations, normalized by source strength (C/Q), were plotted versus plume path length and an envelope containing 95% of the measured values of C/Q was determined. The curves from the two sites were similar in shape and implied three zones of diffusion. Comparisons were also made with current NRC methods for predicting maximum expected concentrations close to a building. The NRC model overestimated concentrations in all but one case. The model was generally within an order of magnitude at EOCR, and within two orders of magnitude at Rancho Seco.

  7. ESTIMATES OF ALPHA-PINENE EMISSIONS FROM A LOBLOLLY PINE FOREST USING AN ATMOSPHERIC DIFFUSION MODEL

    EPA Science Inventory

    The body of information presented in this paper is directed to atmospheric chemists and modelers who are concerned with assessing the impact of biogenic hydrocarbon emissions. A field study was conducted to determine the emission rate of alpha-pinene from a loblolly pine forest u...

  8. Stable carbon isotope ratio in atmospheric CO2 collected by new diffusive devices.

    PubMed

    Proto, Antonio; Cucciniello, Raffaele; Rossi, Federico; Motta, Oriana

    2014-02-01

    In this paper, stable carbon isotope ratios (δ (13)C) were determined in the atmosphere by using a Ca-based sorbent, CaO/Ca12Al14O33 75:25 w/w, for passively collecting atmospheric CO2, in both field and laboratory experiments. Field measurements were conducted in three environments characterized by different carbon dioxide sources. In particular, the environments under consideration were a rather heavily trafficked road, where the source of CO2 is mostly vehicle exhaust, a rural unpolluted area, and a private kitchen where the major source of CO2 was gas combustion. Samplers were exposed to the free atmosphere for 3 days in order to allow collection of sufficient CO2 for δ(13)C analysis, then the collected CO2 was desorbed from the adsorbent with acid treatment, and directly analyzed by nondispersive infrared (NDIR) instrument. δ (13)C results confirmed that the samplers collected representative CO2 samples and no fractionation occurred during passive trapping, as also confirmed by an appositely designed experiment conducted in the laboratory. Passive sampling using CaO/Ca12Al14O33 75:25 w/w proved to be an easy and reliable method to collect atmospheric carbon dioxide for δ (13)C analysis in both indoor and outdoor places. PMID:24281683

  9. A new generalization of Apostol type Hermite-Genocchi polynomials and its applications.

    PubMed

    Araci, Serkan; Khan, Waseem A; Acikgoz, Mehmet; Özel, Cenap; Kumam, Poom

    2016-01-01

    By using the modified Milne-Thomson's polynomial given in Araci et al. (Appl Math Inf Sci 8(6):2803-2808, 2014), we introduce a new concept of the Apostol Hermite-Genocchi polynomials. We also perform a further investigation for aforementioned polynomial and derive some implicit summation formulae and general symmetric identities arising from different analytical means and generating functions method. The results obtained here are an extension of Hermite-Bernoulli polynomials (Pathan and Khan in Mediterr J Math 12:679-695, 2015a) and Hermite-Euler polynomials (Pathan and Khan in Mediterr J Math 2015b, doi:10.1007/s00009-015-0551-1) to Apostol type Hermite-Genocchi polynomials defined in this paper. PMID:27386309

  10. Distribution and shell selection by two hermit crabs in different habitats on Egyptian Red Sea Coast

    NASA Astrophysics Data System (ADS)

    El-Kareem Ismail, Tarek Gad

    2010-05-01

    The present work aims to assess the spatial distribution, analyze shell utilization, shell fitness and determine the effect of coexistence of two hermit crabs Calcinus latens and Clibanarius signatus on used shell resources in various habitats on the Red Sea Coast. Also, to determine the choice of shells and investigate the shell species preference of C. latens and C. signatus in the laboratory. The hermit crabs C. latens and C. signatus were found to occupy shells of 39 gastropod species. The most commonly occupied gastropod shells are those belonging to genera Strombus, Nerita, Cerithium and Planaxis. The results showed that crab individuals utilized mainly the shell with elongate aperture. Laboratory experiments showed that two crab species preferred shells of Strombus followed by Cerithium and Nerita when offered shells of nearly similar size (optimal). Crab individuals showed a significant preference for optimal sized shells when given suboptimal shells as an alternative choice. Also, the hermit crabs avoid damaged shells when given a choice of optimal sized damaged shell and optimal sized intact one. In addition, two hermit crab species chose shells of smaller than optimal size when given a choice of damaged optimal sized shells and smaller intact ones. On the other hand, field observations showed that most crab individuals lived in adequate sized shells. The present data conclude that shell selection by hermit crabs C. latens and C. signatus depends mostly on shell internal volume, shell quality and shell aperture size than other factors, because they provide a maximum protection for hermit crabs.

  11. Modification of the surface layers of copper by a diffuse discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Shulepov, Mikhail A.; Erofeev, Mikhail V.; Oskomov, Konstantin V.; Tarasenko, Victor F.

    2015-12-01

    The paper presents the results of examination of copper samples exposed to a diffuse discharge initiated by a runaway electron beam in air under normal pressure. The changes in the chemical composition of the surface layers of copper caused by the action of the discharge were investigated. It has been found that the oxygen and carbon concentrations in the surface layers depend on the number of discharge pulses. The study was aimed at finding possible ways of using this type of discharge in research and industry.

  12. Atmospheric response in aurora experiment: Observations of E and F region neutral winds in a region of postmidnight diffuse aurora

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Marshall, T. R.; Mikkelsen, I. S.; Emery, B. A.; Christensen, A.; Kayser, D.; Hecht, J.; Lyons, L.; Walterscheid, R.

    1995-01-01

    The goal of the Atmospheric Response in Aurora (ARIA) experiment carried out at Poker Flat, Alaska, on March 3, 1992, was to determine the response of the neutral atmosphere to the long-lived, large-scale forcing that is characteristic of the diffuse aurora in the post midnight sector. A combination of chemical release rocket wind measurements, instrumented rocket composition measurements, and ground-based optical measurements were used to characterize the response of the neutral atmosphere. The rocket measurements were made at the end of a 90-min period of strong Joule heating. We focus on the neutral wind measurements made with the rocket. The forcing was determined by running the assimilated mapping of ionospheric electrodynamics (AMIE) analysis procedure developed at the National Center for Atmospheric Research. The winds expected at the latitude and longitude of the experiment were calculated using the spectral thermospheric general circulation model developed at the Danish Meteorological Institute. Comparisons of the observations and the model suggest that the neutral winds responded strongly in two height ranges. An eastward wind perturbation of approximately 100 m/s developed between 140 and 200 km altitude with a peak near 160 km. A southwestward wind with peak magnitude of approximately 150 m/s developed near 115 km altitude. The large amplitude winds at the lower altitude are particularly surprising. They appear to be associated with the upward propagating semidiurnal tide. However, the amplitude is much larger than predicted by any of the tidal models, and the shear found just below the peak in the winds was nominally unstable with a Richardson number of approximately 0.08.

  13. Contribution of emission control and atmospheric diffusion ability to the improved air quality in 2015 of China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wang, K.

    2015-12-01

    China experiences extremely severe and frequent PM2.5 (fine particulate matters with diameters less than 2.5 µm) pollution in recent years, arousing unprecedented public concern. Tough targets have been set for three particularly smog-ridden regions: JingJinJi area, the Yangtze River Delta and Pearl River Delta, requiring these regions to reduce their atmospheric levels of PM2.5 by 25%, 20% and 15% respectively by the year 2017. A lot of mitigation actions have been taken to improve the air quality in China. In January 2013, China began to deploy instruments to measure PM2.5 nationally and released hourly observational data to the public. Observed PM2.5 concentrations showed a significant decrease in 2015 comparing to that of 2014 as shown in Fig.1. Many studies have attributed this kind of air quality improvement to the effect of emission control. However, air quality not only depends on the original emission, the atmospheric abilities of contaminant transfer, spread and wet deposition play a big role in reducing the ambient air pollutants and directly determined by the occurrence of pollution episodes. Here we used the first 2 years PM2.5 observation data in China to quantify the contribution of the effect of emission control and atmospheric ability of diffusing on reducing ambient PM2.5 concentrations. We found that PM2.5 decreased by 24% in 2015 winter (Dec. 2014-Feb. 2015) comparing to that in 2014; and 12% of decrease occurred for the spring time. The inconsistent seasonal improvement of air quality is mainly due to the favorable atmospheric background in 2015, with its frequent precipitation, infrequency of surface calm wind during the wintertime.

  14. Propagation law for the generating function of Hermite-Gaussian-type modes in first-order optical systems.

    PubMed

    Bastiaans, Martin; Alieva, Tatiana

    2005-02-21

    Based on the common Hermite-Gaussian modes, a general class of orthonormal Hermite-Gaussian-type modes is introduced. Such modes can most easily be defined by means of their generating function. It is shown that these modes remain in their class of orthonormal Hermite-Gaussiantype modes, when they propagate through first-order optical systems. A propagation law for the generating function is formulated. PMID:19494978

  15. Passive Effluent Diffusion in a Convective Atmospheric Boundary Layer: An Airborne Approach to Locating Sources and Estimating Their Emission Rates

    NASA Astrophysics Data System (ADS)

    Suard, Maxime

    We studied the near field dispersion of natural gas plumes leaking from transmission lines and diffusing in a convective Atmospheric Boundary Layer (ABL), with the intent of providing an aerial system of leak detection and pinpointing, as well as quantitative leak rate estimation. We used high frequency measurements of methane and ethane concentrations on a fixed wing aircraft using high rate spectroscopic gas concentration measurements. We looked for characteristics of the effluent concentration field which can be related to the distance from the effluent source, and developed an empirical approach to effluent source position estimation from airborne effluent concentration measurements. From a mass-balance approach we developed a practical method of effluent leak rate estimation based on airborne effluent concentration measurements. Since gathering experimental data was costly and time-expensive, Large Eddy Simulation (LES) results were also investigated. Results showed that analysis of effluent concentration variability is likely to provide information about the position of the effluent source. The developed leak rate estimation method provided encouraging results showing that such an approach is able to yield relatively accurate leak rate estimates. LES results proved to be very useful as they helped to provide guidelines for experiments as well as to deepen our understanding of the diffusion dynamics of turbulent effluent plumes.

  16. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    SciTech Connect

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  17. Transitions between various diffuse discharge modes in atmospheric-pressure helium in the medium-frequency range

    NASA Astrophysics Data System (ADS)

    Boisvert, J.-S.; Margot, J.; Massines, F.

    2016-08-01

    In this paper, we investigate DBDs in the medium frequency range (MF, 0.3–3 MHz). More precisely, for a 2 inter-dielectric gap in helium at atmospheric pressure, the frequency is varied from 1.0 to 2.7 MHz. The generated discharge shows similarities with both the low-frequency atmospheric-pressure glow discharge (APGD) and the atmospheric pressure capacitively coupled radio-frequency (CCRF) discharge. In the frequency range under investigation, two diffuse discharge modes can be observed depending on the voltage applied between the electrodes. At low applied voltage, the discharge emissions are barely visible and are concentrated in the center of the gas gap similarly to CCRF discharges in the Ω mode where the electron density is concentrated in the bulk. Ohmic heating is the main power transfer mechanism. At higher applied voltage, the discharge emissions are 10 times more intense and are closer to the dielectric surfaces similarly to the more common radio-frequency α mode. These two discharge modes can be observed in the same experimental conditions with the amplitude of the applied voltage as sole control parameter. The gas temperature obtained from N2 impurities rotational spectrum increases from room temperature to about 500 K while the power density rises from 10‑1 to 101 W cm‑3 when the applied voltage is increased. In addition, when the discharge transits back and forth from the Ω to the α mode, a hysteresis is observed. The transition from the Ω to the α mode occurs abruptly with a large RMS current increase while the transition from the α to the Ω mode is rather smooth with no significant discontinuity in the RMS current.

  18. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Shiraiwa, M.; Poschl, U.; Cox, R. A.; Kalberer, M.

    2015-05-01

    Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. This is because different trace gas molecules have similar mean free paths in air at a given pressure. Thus, we introduce the pressure-normalised mean free path, λP ~ 100 nm atm, as a near-constant generic parameter that can be used for approximate calculation of Knudsen numbers as a simple function of gas pressure and particle diameter to characterise the influence of gas phase diffusion on the uptake of gases by aerosol or cloud particles. We use a kinetic multilayer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.

  19. Vector Hermite-Gaussian correlated Schell-model beam.

    PubMed

    Chen, Yahong; Wang, Fang; Yu, Jiayi; Liu, Lin; Cai, Yangjian

    2016-07-11

    A new kind of partially coherent vector beam named vector Hermite-Gaussian correlated Schell-model (HGCSM) beam is introduced as a natural extension of recently introduced scalar HGCSM beam. The realizability and beam conditions for a vector HGCSM beam with uniform state of polarization (SOP) or non-uniform SOP are derived, respectively. Furthermore, analytical formulae for a vector HGCSM beam propagating in free space are derived, and the propagation properties of a vector HGCSM beam with uniform SOP or non-uniform SOP in free space are studied and analyzed in detail. We find that the behaviors of a vector HGCSM beam on propagation are quite different from those of a conventional vector partially coherent beam with uniform SOP or non-uniform SOP, and modulating the structures of the correlation functions cannot only modulate the intensity distribution, but also the state of polarization, the degree of polarization and the polarization singularities of a partially coherent vector beam on propagation. Furthermore, we report experimental generation of a radially polarized HGCSM beam for the first time. Our results provide a novel way for polarization modulation. PMID:27410801

  20. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  1. Transport of Carbon Tetrachloride in a Fractured Vadose Zone due to Atmospheric Pressure Fluctuations, Diffusion, and Vapor Density

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Downs, W.; Falta, R. W.; Housley, T.

    2005-12-01

    DNAPL sources of carbon tetrachloride (CT) vapors are of interest at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The site is underlain by thick fractured basalt that includes sedimentary interbeds, each are a few meters thick. Daily atmospheric pressure fluctuations serve as driving forces for CT vapor transport in the subsurface. Other important transport processes for vapor movement include gas-phase diffusion and density-driven transport. The objective of this research is to investigate the influence and relative importance of these processes on gaseous transport of CT. Gas pressure and vapor concentration measurements were conducted at various depths in two wells. A numerical multiphase flow model (TOUGH2), calibrated to field pressure data, is used to conduct sensitivity analyses to elucidate the importance of the different transport mechanisms. Results show that the basalt is highly permeable to vertical air flow. The pressure dampening occurs mainly in the sedimentary interbeds. Model-calibrated permeability values for the interbeds are similar to those obtained in a study by the U.S. Geological Survey for shallow sediments, and an order of magnitude higher than column-scale values obtained by previous studies conducted by INEEL scientists. The transport simulations indicate that considering the effect of barometric pressure changes is critical to simulating transport of pollutants in the vadose zone above the DNAPL source. Predicted concentrations can be orders of magnitude smaller than actual concentrations if the effect is not considered. Below the DNAPL vapor source, accounting for density and diffusion alone would yield acceptable results provided that a 20% error in concentrations are acceptable, and that simulating concentrations trends (and not actual concentrations) is the primary goal.

  2. Effects of tributyltin exposure in hermit crabs: Clibanarius vittatus as a model.

    PubMed

    Sant'Anna, Bruno Sampaio; Santos, Dayana Moscardi Dos; Marchi, Mary Rosa Rodrigues de; Zara, Fernando José; Turra, Alexander

    2012-03-01

    Tributyltin (TBT) contamination affects the reproductive system of many species of invertebrates worldwide. The present study was designed to evaluate the effects of exposure to TBT pollution on the reproduction of the hermit crab Clibanarius vittatus. An orthogonal experiment was designed with two treatments: contamination (with or without TBT in the food) and crab sex (males and females). The animals were reared in the laboratory for nine months, and macroscopic and histological analyses of reproductive organs were carried out after the end of the experiment. Tributyltin was recorded in exposed crabs, but no morphological alterations were detected in the gonads of males, regardless of whether they were exposed to TBT. In contrast, females exposed to TBT displayed disorganization and atrophy of their ovaries, thus directly affecting reproduction in this hermit crab species. This effect observed in female hermit crabs may harm populations located in harbor regions, where TBT concentration is high, even after the worldwide TBT ban. PMID:22189504

  3. Efficient modeling of photonic crystals with local Hermite polynomials

    NASA Astrophysics Data System (ADS)

    Boucher, C. R.; Li, Zehao; Albrecht, J. D.; Ram-Mohan, L. R.

    2014-04-01

    Developing compact algorithms for accurate electrodynamic calculations with minimal computational cost is an active area of research given the increasing complexity in the design of electromagnetic composite structures such as photonic crystals, metamaterials, optical interconnects, and on-chip routing. We show that electric and magnetic (EM) fields can be calculated using scalar Hermite interpolation polynomials as the numerical basis functions without having to invoke edge-based vector finite elements to suppress spurious solutions or to satisfy boundary conditions. This approach offers several fundamental advantages as evidenced through band structure solutions for periodic systems and through waveguide analysis. Compared with reciprocal space (plane wave expansion) methods for periodic systems, advantages are shown in computational costs, the ability to capture spatial complexity in the dielectric distributions, the demonstration of numerical convergence with scaling, and variational eigenfunctions free of numerical artifacts that arise from mixed-order real space basis sets or the inherent aberrations from transforming reciprocal space solutions of finite expansions. The photonic band structure of a simple crystal is used as a benchmark comparison and the ability to capture the effects of spatially complex dielectric distributions is treated using a complex pattern with highly irregular features that would stress spatial transform limits. This general method is applicable to a broad class of physical systems, e.g., to semiconducting lasers which require simultaneous modeling of transitions in quantum wells or dots together with EM cavity calculations, to modeling plasmonic structures in the presence of EM field emissions, and to on-chip propagation within monolithic integrated circuits.

  4. Efficient modeling of photonic crystals with local Hermite polynomials

    SciTech Connect

    Boucher, C. R.; Li, Zehao; Albrecht, J. D.; Ram-Mohan, L. R.

    2014-04-21

    Developing compact algorithms for accurate electrodynamic calculations with minimal computational cost is an active area of research given the increasing complexity in the design of electromagnetic composite structures such as photonic crystals, metamaterials, optical interconnects, and on-chip routing. We show that electric and magnetic (EM) fields can be calculated using scalar Hermite interpolation polynomials as the numerical basis functions without having to invoke edge-based vector finite elements to suppress spurious solutions or to satisfy boundary conditions. This approach offers several fundamental advantages as evidenced through band structure solutions for periodic systems and through waveguide analysis. Compared with reciprocal space (plane wave expansion) methods for periodic systems, advantages are shown in computational costs, the ability to capture spatial complexity in the dielectric distributions, the demonstration of numerical convergence with scaling, and variational eigenfunctions free of numerical artifacts that arise from mixed-order real space basis sets or the inherent aberrations from transforming reciprocal space solutions of finite expansions. The photonic band structure of a simple crystal is used as a benchmark comparison and the ability to capture the effects of spatially complex dielectric distributions is treated using a complex pattern with highly irregular features that would stress spatial transform limits. This general method is applicable to a broad class of physical systems, e.g., to semiconducting lasers which require simultaneous modeling of transitions in quantum wells or dots together with EM cavity calculations, to modeling plasmonic structures in the presence of EM field emissions, and to on-chip propagation within monolithic integrated circuits.

  5. A model for the effective diffusion of gas or the vapor phase in a fractured media unsaturated zone driven by periodic atmospheric pressure fluctuations

    SciTech Connect

    Vold, E.L.

    1997-03-01

    There is evidence for migration of tritiated water vapor through the tuff in the unsaturated zone from the buried disposal shafts located on a narrow mesa top at Area G, Los Alamos, NM. Field data are consistent with an effective in-situ vapor phase diffusion coefficient of 1.5x10{sup {minus}3} m{sup s}/s, or a factor of 60 greater than the binary diffusion coefficient for water vapor in air. A model is derived to explain this observation of anomolously large diffusion, which relates an effective vapor or gas phase diffusion coefficient in the fractured porous media to the subsurface propagation of atmospheric pressure fluctuations (barometric pumping). The near surface (unattenuated) diffusion coefficient is independent of mode period under the simplified assumptions of a complete {open_quote}mixing mechanism{close_quote} for the effective diffusion process. The unattenuated effective diffusion driven by this barometric pumping is proportional to an average media permeability times the sum of the square of pressure mode amplitudes, while the attenuation length is proportional to the squarer root of the product of permeability times mode period. There is evidence that the permeability needed to evaluate the pressure attenuation length is the in-situ value, approximately that of the matrix. The diffusion which results using Area G parameter values is negligible in the matrix but becomes large at the effective permeability of the fractured tuff matrix. The effective diffusion coefficient predicted by this model, due to pressure fluctuations and the observed fracture characteristics, is in good agreement with the observed in-situ diffusion coefficient for tritium field measurements. It is concluded that barometric pumping in combination with the enhanced permeability of the fractured media is a likely candidate to account for the observed in-field migration of vapor in the near surface unsaturated zone at Area G.

  6. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  7. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  8. Multiple tree-ring isotopes as environmental indicators of diffuse atmospheric pollution in a peri-urban area

    NASA Astrophysics Data System (ADS)

    Doucet, A.; Savard, M. M.; Bégin, C.; Ouarda, T. B.; Marion, J.

    2010-12-01

    The combined analyses of tree-ring δ13C, δ18O, δ15N, 206Pb/207Pb, 206Pb/204Pb and 206Pb/208Pb isotope ratios of three red spruce specimens from the Tantaré ecological reserve located 40 km northwest of Québec City (Canada) were studied with the aim of reconstructing environmental conditions and unravel past air-quality changes of the 1880-2007 period. To separate the tree-ring δ18O and δ13C patterns induced by natural conditions from those generated by anthropogenic perturbations, a linear regression was applied between the most explicative meteorological parameters and the isotopic series for the period of low pollution (1880 to 1909). The model equations were then applied to the most recent part of the series (1910-2007) to verify if climatic conditions have remained the main driver of the tree-ring isotopic variations. The good fit between the modeled and measured δ18O series for the entire studied period suggests that the assimilation of oxygen by red spruce trees is not significantly affected by pollution stress near Québec City. However, the deviation between the measured and modeled δ13C values for the 1944-2007 period indicates that diffuse pollution affected carbon assimilation by the investigated trees. To independently validate if atmospheric pollution could have generated the deviation between the measured and the estimated δ13C values, a linear regression was applied between the portion of the residual δ13C values and atmospheric pollution (Canadian fossil fuel proxy from 1958 to 2000). The nice fit between the modeled δ13C values from the combination of the two regression analyses based on climate and emission proxy strongly supports the hypothesis that there is a natural and an anthropogenic portion in the δ13C variations of the studied specimens. The short-term variations of the red spruce δ15N series are correlated with the instrumentally measured amounts of provincial N emissions for the 1990 to 2006 period (longest measurements

  9. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  10. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure.

    PubMed

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C(3)Πu→B(3)Πg 1-3) and N2 (C(3)Πu→B(3)Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material. PMID:23673240

  11. Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): a role for ecological causation

    PubMed Central

    Temeles, Ethan J.; Miller, Jill S.; Rifkin, Joanna L.

    2010-01-01

    Unambiguous examples of ecological causation of sexual dimorphism are rare, and the best evidence involves sexual differences in trophic morphology. We show that moderate female-biased sexual dimorphism in bill curvature is the ancestral condition in hermit hummingbirds (Phaethornithinae), and that it is greatly amplified in species such as Glaucis hirsutus and Phaethornis guy, where bills of females are 60 per cent more curved than bills of males. In contrast, bill curvature dimorphism is lost or reduced in a lineage of short-billed hermit species and in specialist Eutoxeres sicklebill hermits. In the hermits, males tend to be larger than females in the majority of species, although size dimorphism is typically small. Consistent with earlier studies of hummingbird feeding performance, both raw regressions of traits and phylogenetic independent contrasts supported the prediction that dimorphism in bill curvature of hermits is associated with longer bills. Some evidence indicates that differences between sexes of hermit hummingbirds are associated with differences in the use of food plants. We suggest that some hermit hummingbirds provide model organisms for studies of ecological causation of sexual dimorphism because their sexual dimorphism in bill curvature provides a diagnostic clue for the food plants that need to be monitored for studies of sexual differences in resource use. PMID:20194168

  12. Parametric studies with an atmospheric diffusion model that assesses toxic fuel hazards due to the ground clouds generated by rocket launches

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Grose, W. L.

    1975-01-01

    Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.

  13. On Generalized Continuous D Semi-Classical Hermite and Chebychev Orthogonal Polynomials of Class One

    NASA Astrophysics Data System (ADS)

    Azatassou, E.; Hounkonnou, M. N.

    2002-10-01

    In this contribution, starting from the system of equations for recurrence coefficients generated by continuous D semi-classical Laguerre-Freud equations of class 1, we deduce the β constant recurrence relation coefficient γn leading to the generalized D semi-classical Hermite and Chebychev orthogonal polynomials of class 1. Various interesting cases are pointed out.

  14. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    NASA Astrophysics Data System (ADS)

    de Abreu, Giuseppe Thadeu Freitas; Mitchell, Craig John; Kohno, Ryuji

    2005-12-01

    The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR) communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf), the decomposition yields an equivalent distribution of [InlineEquation not available: see fulltext.]-by-[InlineEquation not available: see fulltext.] matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM-) UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN).

  15. DIFFUSION IN THE VICINITY OF STANDARD-DESIGN NUCLEAR POWER PLANTS-I. WIND-TUNNEL EVALUATION OF DIFFUSIVE CHARACTERISTICS OF A SIMULATED SUBURBAN NEUTRAL ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...

  16. Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Lou, Sen-Yue

    2015-07-01

    Based on the operator Hermite polynomials method (OHPM), we study Stirling numbers in the context of quantum mechanics, i.e., we present operator realization of generating function formulas of Stirling numbers with some applications. As a by-product, we derive a summation formula involving both Stirling number and Hermite polynomials. Project supported by the National Natural Science Foundation of China (Grant No. 11175113).

  17. Generation Of Atmospheric Pressure Non-Thermal Plasma By Diffusive And Constricted Discharges In Rest And Flowing Gases (Air And Nitrogen)

    NASA Astrophysics Data System (ADS)

    Akishev, Y.; Grushin, M.; Karalnik, V.; Kochetov, I.; Napartovich A.; Trushkin N.

    2010-07-01

    Weekly ionized non-thermal plasma (NTP) is of great interest for many applications because of its strong non-equilibrium state wherein an average electron energy Te exceeds markedly gas temperature Tg, i.e. electrons in the NTP are strongly overheated compared to neutral gas. Energetic electrons due to frequent collisions with the neutrals excite and dissociate effectively atoms and molecules of the plasma-forming gas that results in a creation of physically-, and bio-chemically active gaseous medium in a practically cold background gas. At present there are many kinds of plasma sources working at low and atmospheric pressure and using MW, RF, low frequency, pulsed and DC power supplies for NTP generation. The NTP at atmospheric pressure is of considerable interest for practice. A reason is that sustaining the NTP at atmospheric pressure at first allows us to avoid the use of expensive vacuum equipment and second gives opportunity to use the NTP for treatment of the exhausted gases and polluted liquids. The second opportunity cannot be realized at all with use of the NTP at low pressure. Main subject of this talk is low current atmospheric pressure gas discharges powering with DC power supplies. Plasma forming gases are air and nitrogen which are much cheaper compared to rare gases like He or Ar. Besides, great interest to molecular nitrogen as plasma forming gas is caused first of all its unique capability to accumulate huge energy in vibration, electron (metastables) and dissociated (atomic) states providing high chemical reactivity of the activated nitrogen. All active particles mentioned above have a long lifetime, and they can be therefore transported for a long distance away from place of their generation. Different current modes (diffusive and constricted) of these discharges are discussed. Experimental and numerical results on generation of chemically active species in the diffusive and constricted mode are presented. Some data on the usage of the

  18. A tutorial solution to scattering of radiation in a thin atmosphere bounded below by a diffusely reflecting, absorbing surface

    NASA Technical Reports Server (NTRS)

    Buglia, J. J.

    1982-01-01

    A simple tutorial method, based on a photon tracking procedure, is described to determine the spherical albedo for a thin atmosphere overlying a reflecting surface. This procedure is used to provide a physical structure with which to interpret the more detailed but highly mathematical analyses presented. The final equations are shown to be in good numerical agreement with more exact solutions for thin atmospheres.

  19. Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs.

    PubMed

    Krieger, Jakob; Sombke, Andy; Seefluth, Florian; Kenning, Matthes; Hansson, Bill S; Harzsch, Steffen

    2012-04-01

    The European shore crab Carcinus maenas and the common hermit crab Pagurus bernhardus are members of the sister taxa Brachyura and Anomura (together forming the taxon Meiura) respectively. Both species share similar coastal marine habitats and thus are confronted with similar environmental conditions. This study sets out to explore variations of general brain architecture of species that live in seemingly similar habitats but belong to different major malacostracan taxa and to understand possible differences of sensory systems and related brain compartments. We examined the brains of Carcinus maenas, Pagurus bernhardus, and three other hermit crab species with immunohistochemistry against tyrosinated tubulin, f-actin, synaptic proteins, RF-amides and allatostatin. Our comparison showed that their optic neuropils within the eyestalks display strong resemblance in gross morphology as well as in detailed organization, suggesting a rather similar potential of processing visual input. Besides the well-developed visual system, the olfactory neuropils are distinct components in the brain of both C. maenas and P. bernhardus as well as the other hermit crabs, suggesting that close integration of olfactory and visual information may be useful in turbid marine environments with low visibility, as is typical for many habitats such as, e.g., the Baltic and the North Sea. Comparing the shape of the olfactory glomeruli in the anomurans showed some variations, ranging from a wedge shape to an elongate morphology. Furthermore, the tritocerebrum and the organization of the second antennae associated with the tritocerebrum seem to differ markedly in C. maenas and P. bernhardus, indicating better mechanosensory abilities in the latter close to those of other Decapoda with long second antennae, such as Astacida, Homarida, or Achelata. This aspect may also represent an adaptation to the "hermit lifestyle" in which competition for shells is a major aspect of their life history. The shore

  20. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.

    PubMed

    Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko

    2014-04-01

    The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials. PMID:24827360

  1. Evolution of sea anemones (Cnidaria: Actiniaria: Hormathiidae) symbiotic with hermit crabs.

    PubMed

    Gusmão, Luciana C; Daly, Marymegan

    2010-09-01

    Sea anemones in genera Adamsia, Calliactis and Paracalliactis (family Hormathiidae) engage in a mutualistic symbiosis with hermit crabs in which the anemone gains substrate and food in exchange for defending the crab. Some of the sea anemones also expand the living space of the crab by producing a carcinoecium, a chitinous structure that overlies the initial gastropod shell in which the hermit crab lives. The symbiosis is initiated either by the crab, or by the anemone. Although behavioral and physiological aspects of this symbiosis have been studied, interpretations cannot be generalized without an evolutionary framework. After reconstructing relationships among members of Hormathiidae using DNA sequences, we find that the association has evolved at least twice: Adamsia nests within Calliactis in a single clade, and Paracalliactis belongs to a different clade within the family. The carcinoecium and complex behavioral and anatomical features associated with the symbiosis are interpreted as having evolved at least twice within Hormathiidae and seem to be phylogenetically labile. PMID:20457262

  2. Approximation of functions by asymmetric two-point hermite polynomials and its optimization

    NASA Astrophysics Data System (ADS)

    Shustov, V. V.

    2015-12-01

    A function is approximated by two-point Hermite interpolating polynomials with an asymmetric orders-of-derivatives distribution at the endpoints of the interval. The local error estimate is examined theoretically and numerically. As a result, the position of the maximum of the error estimate is shown to depend on the ratio of the numbers of conditions imposed on the function and its derivatives at the endpoints of the interval. The shape of a universal curve representing a reduced error estimate is found. Given the sum of the orders of derivatives at the endpoints of the interval, the ordersof-derivatives distribution is optimized so as to minimize the approximation error. A sufficient condition for the convergence of a sequence of general two-point Hermite polynomials to a given function is given.

  3. On the representation of the diffracted field of Hermite-Gaussian modes in an alien basis and the young diffraction principle

    SciTech Connect

    Smirnov, V.N.; Strokovskii, G.A.

    1994-10-01

    An analytical form of expansion coefficients of a diffracted field for an arbitrary Hermite-Gaussian beam in an alien Hermite-Gaussian basis is obtained. A possible physical interpretation of the well-known Young phenomenological diffraction principle and experiments on diffraction of Hermite-Gaussian beams of the lowest types (n = 0 - 5) from half-plane are discussed. The case of nearly homogenous expansion corresponding to misalignment and mismatch of optical systems is also analyzed. 7 refs., 2 figs.

  4. Experimental generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase holograms

    NASA Astrophysics Data System (ADS)

    Mellado-Villaseñor, Gabriel; Aguirre-Olivas, Dilia; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-08-01

    We generate Hermite-Gauss and Ince-Gauss beams by using kinoform phase holograms encoded onto a liquid crystal display. The phase transmittance of this holograms coincide with the phases of such beams. Scale versions of the desired beams appear at the Fourier domain of the KPHs. When an appropriated pupil size is employed, the method synthesizes HG and IG beams with relatively high accuracy and high efficiency. It is noted that experimental and numerical results are agreement with the theory.

  5. Multigene Molecular Systematics Confirm Species Status of Morphologically Convergent Pagurus Hermit Crabs

    PubMed Central

    Matzen da Silva, Joana; dos Santos, Antonina; Cunha, Marina R.; Costa, Filipe O.; Creer, Simon; Carvalho, Gary R.

    2011-01-01

    Introduction In spite of contemporary morphological taxonomy appraisals, apparent high morphological similarity raises uncertainty about the species status of certain Pagurus hermit crabs. This is exemplified between two European species, Pagurus excavatus (Herbst, 1791) and Pagurus alatus (Fabricius 1775), whose species status is still difficult to resolve using morphological criteria alone. Methodology/Principal Findings To address such ambiguities, we used combinations of Maximum Likelihood (ML) and Bayesian Inference (BI) methods to delineate species boundaries of P. alatus and P. excavatus and formulate an intermediate Pagurus phylogenetic hypothesis, based upon single and concatenated mitochondrial (cytochrome oxidase I [COI]) and nuclear (16S and 28s ribosomal RNA) gene partitions. The molecular data supported the species status of P. excavatus and P. alatus and also clearly resolved two divergent clades within hermit crabs from the Northeast Atlantic Ocean and the Mediterranean Sea. Conclusions/Significance Despite the abundance and prominent ecological role of hermit crabs, Pagurus, in North East Atlantic Ocean and Mediterranean Sea ecosystems, many important aspects of their taxonomy, biology, systematics and evolution remain poorly explored. The topologies presented here should be regarded as hypotheses that can be incorporated into the robust and integrated understanding of the systematic relationships within and between species of the genus Pagurus inhabiting the Northeast Atlantic Ocean and the Mediterranean Sea. PMID:22174780

  6. High-order central Hermite WENO schemes: Dimension-by-dimension moment-based reconstructions

    NASA Astrophysics Data System (ADS)

    Tao, Zhanjing; Li, Fengyan; Qiu, Jianxian

    2016-08-01

    In this paper, a class of high-order central finite volume schemes is proposed for solving one- and two-dimensional hyperbolic conservation laws. Formulated on staggered meshes, the methods involve Hermite WENO (HWENO) spatial reconstructions, and Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. Differently from the central Hermite WENO methods we developed previously in Tao et al. (2015) [34], the spatial reconstructions, a core ingredient of the methods, are based on the zeroth-order and the first-order moments of the solution, and are implemented through a dimension-by-dimension strategy when the spatial dimension is higher than one. This leads to much simpler implementation of the methods in higher dimension and better cost efficiency. Meanwhile, the proposed methods have the attractive features of the general central Hermite WENO methods such as being compact in reconstruction and requiring neither flux splitting nor numerical fluxes, while being accurate and essentially non-oscillatory. A collection of one- and two-dimensional numerical examples is presented to demonstrate high resolution and robustness of the methods in capturing smooth and non-smooth solutions.

  7. Some new results on electron transport in the atmosphere. [Monte Carlo calculation of penetration, diffusion, and slowing down of electron beams in air

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Seltzer, S. M.; Maeda, K.

    1972-01-01

    The penetration, diffusion and slowing down of electrons in a semi-infinite air medium has been studied by the Monte Carlo method. The results are applicable to the atmosphere at altitudes up to 300 km. Most of the results pertain to monoenergetic electron beams injected into the atmosphere at a height of 300 km, either vertically downwards or with a pitch-angle distribution isotropic over the downward hemisphere. Some results were also obtained for various initial pitch angles between 0 deg and 90 deg. Information has been generated concerning the following topics: (1) the backscattering of electrons from the atmosphere, expressed in terms of backscattering coefficients, angular distributions and energy spectra of reflected electrons, for incident energies T(o) between 2 keV and 2 MeV; (2) energy deposition by electrons as a function of the altitude, down to 80 km, for T(o) between 2 keV and 2 MeV; (3) the corresponding energy depostion by electron-produced bremsstrahlung, down to 30 km; (4) the evolution of the electron flux spectrum as function of the atmospheric depth, for T(o) between 2 keV and 20 keV. Energy deposition results are given for incident electron beams with exponential and power-exponential spectra.

  8. Hermit crabs and their symbionts: Reactions to artificially induced anoxia on a sublittoral sediment bottom

    PubMed Central

    Pretterebner, Katrin; Riedel, Bettina; Zuschin, Martin; Stachowitsch, Michael

    2012-01-01

    Hermit crabs play an important role in the Northern Adriatic Sea due to their abundance, wide range of symbionts, and function in structuring the benthic community. Small-scale (0.25 m2) hypoxia and anoxia were experimentally generated on a sublittoral soft bottom in 24 m depth in the Gulf of Trieste. This approach successfully simulates the seasonal low dissolved oxygen (DO) events here and enabled studying the behaviour and mortality of the hermit crab Paguristes eremita. The crabs exhibited a sequence of predictable stress responses and ultimately mortality, which was correlated with five oxygen thresholds. Among the crustaceans, which are a sensitive group to oxygen depletion, P. eremita is relatively tolerant. Initially, at mild hypoxia (2.0 to 1.0 ml l− 1 DO), hermit crabs showed avoidance by moving onto better oxygenated, elevated substrata. This was accompanied by a series of responses including decreased locomotory activity, increased body movements and extension from the shell. During a moribund phase at severe hypoxia (0.5 to 0.01 ml l− 1 DO), crabs were mostly immobile in overturned shells and body movements decreased. Anoxia triggered emergence from the shell, with a brief locomotion spurt of shell-less crabs. The activity pattern of normally day-active crabs was altered during hypoxia and anoxia. Atypical interspecific interactions occurred: the crab Pisidia longimana increasingly aggregated on hermit crab shells, and a hermit crab used the emerged infaunal sea urchin Schizaster canaliferus as an elevated substrate. Response patterns varied somewhat according to shell size or symbiont type (the sponge Suberites domuncula). Mortality occurred after extended anoxia (~ 1.5 d) and increased hydrogen sulphide levels (H2S ~ 128 μmol). The relative tolerance of crabs and certain symbionts (e.g. the sea anemone Calliactis parasitica) – as potential survivors and recolonizers of affected areas – may influence and promote community recovery

  9. Validation of the Institute of Atmospheric Physics emergency response model with the meteorological towers measurements and SF6 diffusion and pool fire experiments

    NASA Astrophysics Data System (ADS)

    An, Junling; Xiang, Weiling; Han, Zhiwei; Xiao, Kaitao; Wang, Zifa; Wang, Xinhua; Wu, Jianbin; Yan, Pingzhong; Li, Jie; Chen, Yong; Li, Jian; Li, Ying

    2013-12-01

    The urban canopy layer parameterization (UCP), a successive bias correction method (SBC), an atmospheric dispersion module for denser-than-air releases, and the emission intensity of chemicals monitored by a Fourier-transform-infrared remote sensor (EM27) were incorporated into the Institute of Atmospheric Physics emergency response model (IAPERM). IAPERM's performance was tested in Beijing using the field data collected from a 325-m meteorological tower and sulfur hexafluoride (SF6) diffusion and pool fire experiments. The results show that the IAPERM simulations of the vertical wind speeds in the urban canopy layer (UCL) with the UCP perform much better than those with the Monin-Obukhov similarity parameterization scheme. The IAPERM forecasts for air temperature and relative humidity are more accurate than those for wind speed and direction, which require correction. When the SBC with the local terrain effect is adopted, the wind speed and direction and the maximum concentrations of black carbon near the ground are well forecasted. IAPERM reproduces the spatial distributions of the SF6 observations more accurately near the release source (≤500 m) than at locations far away from the release source with the use of the observed meteorological parameters. These results suggest that IAPERM could be a promising tool for passive and dense gas diffusion simulations or forecasts.

  10. Dynamics of the atmospheric pressure diffuse dielectric barrier discharge between cylindrical electrodes in roll-to-roll PECVD reactor

    NASA Astrophysics Data System (ADS)

    Starostin, Sergey A.; Welzel, Stefan; Liu, Yaoge; van der Velden-Schuermans, Bernadette; Bouwstra, Jan B.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.

    2015-07-01

    The high current diffuse dielectric barrier discharge (DBD) was operated in a bi-axial cylindrical electrode configuration using nitrogen, oxygen and argon gas flow with the addition of tetraethyl orthosilicate as precursor for silica-like film deposition. The behaviour of the transient plasma was visualized by means of fast imaging from two orthogonal directions. The formation and propagation (~3 × 104 m s-1) of lateral ionization waves with the transverse light emission structure similar to the low pressure glow discharge was observed at time scales below 1 µs. Despite plasma non-uniformity at nanosecond time scale the deposition process on the web-rolled polymer results in smooth well adherent films with good film uniformity and excellent gas diffusion barrier properties. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  11. Contribution of CO2 and H2S emitted to the atmosphere by plume and diffuse degassing from volcanoes: the Etna volcano case study

    NASA Astrophysics Data System (ADS)

    Hernández, Pedro A.; Melián, Gladys; Giammanco, Salvatore; Sortino, Francesco; Barrancos, José; Pérez, Nemesio M.; Padrón, Eleazar; López, Manuela; Donovan, Amy; Mori, Toshiya; Notsu, Kenji

    2015-05-01

    Active subaerial volcanoes often discharge large amounts of CO2 and H2S to the atmosphere, not only during eruptions but also during periods of quiescence. These gases are discharged through focused (plumes, fumaroles, etc.) and diffuse emissions. Several studies have been carried out to estimate the global contribution of CO2 and H2S emitted to the atmosphere by subaerial volcanism, but additional volcanic degassing studies will help to improve the current estimates of both CO2 and H2S discharges. In October 2008, a wide-scale survey was carried out at Mt. Etna volcano, one the world's most actively degassing volcanoes on Earth, for the assessment of the total budget of volcanic/hydrothermal discharges of CO2 and H2S, both from plume and diffuse emissions. Surface CO2 and H2S effluxes were measured by means of the accumulation chamber method at 4075 sites, covering an area of about 972.5 km2. Concurrently, plume SO2 emission at Mt. Etna was remotely measured by a car-borne Differential Optical Absorption Spectrometry (DOAS) instrument. Crater emissions of H2O, CO2 and H2S were estimated by multiplying the plume SO2 emission times the H2O/SO2, CO2/SO2 and H2S/SO2 gas plume mass ratios measured in situ using a portable multisensor. The total output of diffuse CO2 emission from Mt. Etna was estimated to be 20,000 ± 400 t day-1 with 4520 t day-1 of deep-seated CO2. Diffuse H2S output was estimated to be 400 ± 20 kg day-1, covering an area of 9.1 km2 around the summit craters of the volcano. Diffuse H2S emission on the volcano flanks was either negligible or null, probably due to scrubbing of this gas before reaching the surface. During this study, the average crater SO2 emission rate was ~2100 t day-1. Based on measured SO2 emission rates, the estimated H2O, CO2 and H2S emission rates from Etna's crater degassing were 220,000 ± 100,000, 35,000 ± 16,000 and 510 ± 240 t day-1, respectively. These high values are explained in terms of intense volcanic activity at

  12. Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons

    PubMed Central

    Groh-Lunow, Katrin C.; Getahun, Merid N.; Grosse-Wilde, Ewald; Hansson, Bill S.

    2015-01-01

    Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs) as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs) has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs. PMID:25698921

  13. Behavioral Response of Hermit Crabs (Clibanarius digueti) to Dissolved Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Maier, H. J.

    2015-12-01

    CO2 induced ocean acidification is currently changing the population dynamics of marine organisms. As a result of ocean acidification, marine organisms expend extra energy on modifying behaviors. The current rate of ocean acidification will deplete the marine food chain that much of the world relies on as their major food supply. The purpose of this study was to understand whether and how ocean acidification affects the behavior of hermit crabs Clibanarius digueti. We hypothesized that an increase in carbonic acid would modify grazing and individual movement, because an increase in acidification alters the normal chemical composition of the water and potentially the niche occupancy of C. digueti. A model tidal pool experiment consisting of two tanks (control and treatment) inhabited with seven living C. digueti was set up in the Ocean Biome of Biosphere-2. Each tank was also provided with uninhabited shells: two Turbo fluctuosa and four Cerithium sp. Gaseous CO2 was dissolved into a treatment tank and measured as dissolved CO2 by using a sodium hydroxide titration method. Additionally, water conditions were characterized for UV- light and temperature. Two trials were run in this experiment with tanks and treatments interchanged in each trial. We assessed whether increased CO2 affected hermit crab shell change rate. We found that shell changes only happened among C. digueti placed under increased CO2. The information from this analysis will allow us to assess whether ocean acidification affects basic behavior in hermit crabs, which could later affect population dynamics. Bringing together all of this information will allow us to measure the effects of climate change on the behavior of C.Digueti.

  14. Small-displacement measurements using high-order Hermite-Gauss modes

    SciTech Connect

    Sun, Hengxin; Liu, Kui; Liu, Zunlong; Guo, Pengliang; Zhang, Junxiang; Gao, Jiangrui

    2014-03-24

    We present a scheme for small-displacement measurements using high-order Hermite-Gauss modes and balanced homodyne detection. We demonstrate its use with experimental results of displacement measurements using fundamental transverse mode TEM{sub 00} and first order transverse mode TEM{sub 10} as signal modes. The results show a factor of 1.41 improvement in measurement precision with the TEM{sub 10} mode compared with that with the TEM{sub 00} mode. This scheme has potential applications in precision metrology, atomic force microscopy, and optical imaging.

  15. Performance evaluation of the Hermite scheme on many-core accelerators

    NASA Astrophysics Data System (ADS)

    Nakasato, Naohito

    2016-02-01

    We are developing a software library to calculate gravitational interaction for the Hermite scheme on parallel computing systems supported by OpenCL API. Our library is partly compatible with a standard GRAPE-6A interface and is easily usable in existing N-body codes. Since our library is based on OpenCL standard API, our library is working on many parallel computing systems such as a multi-core CPU, a GPU, and a many-core architecture. We report the performance evaluation of our library on computing platforms from various vendors.

  16. Contractivity-preserving explicit Hermite-Obrechkoff ODE solver of order 13

    NASA Astrophysics Data System (ADS)

    Nguyen-Ba, Truong; Desjardins, Steven J.; Sharp, Philip W.; Vaillancourt, Rémi

    2013-12-01

    A new optimal, explicit, Hermite-Obrechkoff method of order 13, denoted by HO(13), that is contractivity-preserving (CP) and has nonnegative coefficients is constructed for solving nonstiff first-order initial value problems. Based on the CP conditions, the new 9-derivative HO(13) has maximum order 13. The new method usually requires significantly fewer function evaluations and significantly less CPU time than the Taylor method of order 13 and the Runge-Kutta method DP(8,7)13M to achieve the same global error when solving standard -body problems.

  17. Multidimensional Hermite-Gaussian quadrature formulae and their application to nonlinear estimation

    NASA Technical Reports Server (NTRS)

    Mcreynolds, S. R.

    1975-01-01

    A simplified technique is proposed for calculating multidimensional Hermite-Gaussian quadratures that involves taking the square root of a matrix by the Cholesky algorithm rather than computation of the eigenvectors of the matrix. Ways of reducing the dimension, number, and order of the quadratures are set forth. If the function f(x) under the integral sign is not well approximated by a low-order algebraic expression, the order of the quadrature may be reduced by factoring f(x) into an expression that is nearly algebraic and one that is Gaussian.

  18. New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials

    SciTech Connect

    Marquette, Ian; Quesne, Christiane

    2013-04-15

    In recent years, many exceptional orthogonal polynomials (EOP) were introduced and used to construct new families of 1D exactly solvable quantum potentials, some of which are shape invariant. In this paper, we construct from Hermite and Laguerre EOP and their related quantum systems new 2D superintegrable Hamiltonians with higher-order integrals of motion and the polynomial algebras generated by their integrals of motion. We obtain the finite-dimensional unitary representations of the polynomial algebras and the corresponding energy spectrum. We also point out a new type of degeneracies of the energy levels of these systems that is associated with holes in sequences of EOP.

  19. Self-focusing of Hermite-Gaussian laser beam with relativistic nonlinearity

    SciTech Connect

    Sharma, Prerana

    2015-07-31

    This paper presents an investigation of self-focusing of Hermite-Gaussian laser beams in plasma considering relativistic nonlinearity. The differential equations for beam width parameters are obtained using the usual Wentzel–Kramers–Brillouin and paraxial approximations. The nonlinearity in the dielectric constant is assumed to be aroused mainly due to the relativistic mass correction of electron. To highlight the nature of focusing, graphical results of the behavior of beam-width parameters with the dimensionless distance of propagation is presented. The numerical computation is completed by using Taylor series method. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments.

  20. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    PubMed

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit. PMID:26479622

  1. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  2. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  3. Characteristics of the motions, turbulence intensity, diffusivity, flux of momentum and sensible heat in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Kao, S. K.; Lordi, N. J.

    1977-01-01

    Analyses of the meteorological rocket data obtained from an experiment conducted at 3-hour intervals at 8 western meridional rocket stations are presented. Large variations in the meridional wind contribute substantially to overall turbulence in the tropical stratosphere. The solar semidiurnal component of wind oscillations in the tropics was observed to be much higher than predicted by theory, often exceeding the magnitude of the diurnal amplitude throughout the stratosphere. The observed value of the solar diurnal amplitude in the stratosphere was in line with theoretical prediction. The solar terdiurnal amplitudes for temperature, meridional and zonal winds were non-negligible and must be considered in any harmonic analysis. Phase angle variation with height was rapid for all harmonics; however, there was general agreement between predicted and observed phase angles. Because of large changes in the mean winds in the mesosphere with season, harmonic determinations are difficult. There appear to be large zonal wind changes even within the same season as mentioned previously. Turbulence diffusivity in the upper stratosphere is greater near the equator than in the mid-latitudes.

  4. Individual quality and personality: bolder males are less fecund in the hermit crab Pagurus bernhardus

    PubMed Central

    Bridger, Danielle; Bonner, Simon J.; Briffa, Mark

    2015-01-01

    One explanation for animal personality is that different behavioural types derive from different life-history strategies. Highly productive individuals, with high growth rates and high fecundity, are assumed to live life at a fast pace showing high levels of boldness and risk taking, compared with less productive individuals. Here, we investigate among-individual differences in mean boldness (the inverse of the latency to recover from a startling stimulus) and in the consistency of boldness, in male hermit crabs in relation to two aspects of life-history investment. We assessed aerobic scope by measuring the concentration of the respiratory pigment haemocyanin, and we assessed fecundity by measuring spermatophore size. First, we found that individuals investing in large spermatophores also had high concentrations of haemocyanin. Using doubly hierarchical-generalized linear models to analyse longitudinal data on startle responses, we show that hermit crabs vary both in their mean response durations and in the consistency of their behaviour. Individual consistency was unrelated to haemocyanin concentration or spermatophore size, but mean startle response duration increased with spermatophore size. Thus, counter to expectations, it was the most risk-averse individuals, rather than the boldest and most risk prone, that were the most productive. We suggest that similar patterns should be present in other species, if the most productive individuals avoid risky behaviour. PMID:25673676

  5. Transition from sea to land: olfactory function and constraints in the terrestrial hermit crab Coenobita clypeatus.

    PubMed

    Krång, Anna-Sara; Knaden, Markus; Steck, Kathrin; Hansson, Bill S

    2012-09-01

    The ability to identify chemical cues in the environment is essential to most animals. Apart from marine larval stages, anomuran land hermit crabs (Coenobita) have evolved different degrees of terrestriality, and thus represent an excellent opportunity to investigate adaptations of the olfactory system needed for a successful transition from aquatic to terrestrial life. Although superb processing capacities of the central olfactory system have been indicated in Coenobita and their olfactory system evidently is functional on land, virtually nothing was known about what type of odourants are detected. Here, we used electroantennogram (EAG) recordings in Coenobita clypeatus and established the olfactory response spectrum. Interestingly, different chemical groups elicited EAG responses of opposite polarity, which also appeared for Coenobita compressus and the closely related marine hermit crab Pagurus bernhardus. Furthermore, in a two-choice bioassay with C. clypeatus, we found that water vapour was critical for natural and synthetic odourants to induce attraction or repulsion. Strikingly, also the physiological response was found much greater at higher humidity in C. clypeatus, whereas no such effect appeared in the terrestrial vinegar fly Drosophila melanogaster. In conclusion, our results reveal that the Coenobita olfactory system is restricted to a limited number of water-soluble odourants, and that high humidity is most critical for its function. PMID:22673356

  6. Mechanisms of coexistence and competition between ants and land hermit crabs in a Bahamian archipelago

    NASA Astrophysics Data System (ADS)

    Morrison, Lloyd W.

    2006-01-01

    Ants and land crabs are common inhabitants of many coastal and insular communities across the tropics and subtropics, and yet direct evidence of interspecific competition between ants and land crabs has only recently been documented. I conducted a series of observational and manipulative experiments to further elucidate the mechanisms of competition, as well as coexistence, in these two groups in an archipelago of small Bahamian islands. Diel baiting trials demonstrated a significant temporal difference in foraging activity between the land hermit crab, Coenobita clypeatus (Herbst), and ant Brachymyrmex obscurior Forel, suggesting this is one mechanism underlying their coexistence on small oceanic islands. Reciprocal manipulative baiting experiments, in which one of a pair of species was removed from baits, documented that aggressive interspecific interactions underlie patterns of complementary distribution and temporal turnover at rich food resources. This was true for competition between hermit crabs and B. obscurior, and between B. obscurior and a second ant species, Dorymyrmex pyramicus Roger. Negative species associations at baits were found to be common throughout an archipelago of 69 small islands. A trade-off in exploitative and interference abilities may be a second mechanism allowing species coexistence on these small islands. Interspecific interactions such as competition and predation may occur commonly between ants and land crabs and have important consequences for the structure and function of tropical and subtropical insular ecosystems.

  7. Novel Gauss-Hermite integration based Bayesian inference on optimal wavelet parameters for bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung; Zhou, Qiang

    2016-05-01

    Rolling element bearings are commonly used in machines to provide support for rotating shafts. Bearing failures may cause unexpected machine breakdowns and increase economic cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults should be detected as early as possible. Because wavelet transform can be used to highlight impulses caused by localized bearing faults, wavelet transform has been widely investigated and proven to be one of the most effective and efficient methods for bearing fault diagnosis. In this paper, a new Gauss-Hermite integration based Bayesian inference method is proposed to estimate the posterior distribution of wavelet parameters. The innovations of this paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters is constructed to describe the relationship between wavelet parameters and hypothetical measurements. Secondly, the joint posterior probability density function of wavelet parameters and hypothetical measurements is assumed to follow a joint Gaussian distribution so as to generate Gaussian perturbations for the state space model. Thirdly, Gauss-Hermite integration is introduced to analytically predict and update moments of the joint Gaussian distribution, from which optimal wavelet parameters are derived. At last, an optimal wavelet filtering is conducted to extract bearing fault features and thus identify localized bearing faults. Two instances are investigated to illustrate how the proposed method works. Two comparisons with the fast kurtogram are used to demonstrate that the proposed method can achieve better visual inspection performances than the fast kurtogram.

  8. Hermite-Gaussian beams with self-forming spiral phase distribution

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  9. Adaptive constructive neural networks using Hermite polynomials for compression of still and moving images

    NASA Astrophysics Data System (ADS)

    Ma, Liying; Khorasani, Khashayar; Azimi-Sadjadi, Mahmood R.

    2002-03-01

    Compression of digital images has been a very important subject of research for several decades, and a vast number of techniques have been proposed. In particular, the possibility of image compression using Neural Networks (Nns) has been considered by many researchers in recent years, and several Feed-forward Neural Networks (FNNs) have been proposed with reported promising experimental results. Constructive One-Hidden-Layer Feedforward Neural Network (OHL-FNN) is one such architecture. At previous SPIE conferences, we have proposed a new constructive OHL-FNN using Hermite polynomials for regression and recognition problems, and good experimental results were demonstrated. In this paper, we first modify and then apply our proposed OHL-FNN to compress still and moving images and investigated its performance in terms of both training and generalization capabilities. Extensive experimental results for still images (Lena, Lake, and Girl) and moving images (football game) are presented. It is revealed that the performance of the constructive OHL-FNN using Hermite polynomials is quite good for both still and moving image compression.

  10. Transition from sea to land: olfactory function and constraints in the terrestrial hermit crab Coenobita clypeatus

    PubMed Central

    Krång, Anna-Sara; Knaden, Markus; Steck, Kathrin; Hansson, Bill S.

    2012-01-01

    The ability to identify chemical cues in the environment is essential to most animals. Apart from marine larval stages, anomuran land hermit crabs (Coenobita) have evolved different degrees of terrestriality, and thus represent an excellent opportunity to investigate adaptations of the olfactory system needed for a successful transition from aquatic to terrestrial life. Although superb processing capacities of the central olfactory system have been indicated in Coenobita and their olfactory system evidently is functional on land, virtually nothing was known about what type of odourants are detected. Here, we used electroantennogram (EAG) recordings in Coenobita clypeatus and established the olfactory response spectrum. Interestingly, different chemical groups elicited EAG responses of opposite polarity, which also appeared for Coenobita compressus and the closely related marine hermit crab Pagurus bernhardus. Furthermore, in a two-choice bioassay with C. clypeatus, we found that water vapour was critical for natural and synthetic odourants to induce attraction or repulsion. Strikingly, also the physiological response was found much greater at higher humidity in C. clypeatus, whereas no such effect appeared in the terrestrial vinegar fly Drosophila melanogaster. In conclusion, our results reveal that the Coenobita olfactory system is restricted to a limited number of water-soluble odourants, and that high humidity is most critical for its function. PMID:22673356

  11. VOCALIZATIONS AND ASSOCIATED BEHAVIORS OF THE SOMBRE HUMMINGBIRD (APHANTOCHROA CIRRHOCHLORIS) AND THE RUFOUS-BREASTED HERMIT (GLAUCIS HIRSUTUS)

    PubMed Central

    Ferreira, Adriana R. J.; Smulders, Tom V.; Sameshima, Koichi; Mello, Claudio V.; Jarvis, Erich D.

    2008-01-01

    Vocal behavior in tropical hummingbirds is a new area of study. Here, we present findings on the vocalizations and associated behaviors of two species: Sombre Hummingbird (Aphantochroa cirrhochloris) and Rufous-breasted Hermit (Glaucis hirsutus). These are the only hummingbirds in which the brain areas activated by singing have been demonstrated. They are also among the basal species of their respective subfamilies, Trochilinae and Phaethornithinae and, thus, represent early stages in the evolution of hummingbird vocal communication. We found that the two species exhibit distinctive vocalizations and behaviors. Sombre Hummingbird calls had more modulation and were often used during agonistic interactions, whereas Rufous-breasted Hermit calls had higher pitch and purer tones and were produced in less aggressive interactions. Sombre Hummingbird song was highly stereotyped in syllable structure and syntax, whereas Rufous-breasted Hermit song was highly variable. Comparative analysis points to consistent similarities in use of vocalizations by the Sombre Hummingbird and other trochilines, and by the Rufous-breasted Hermit and other phaethornithines. We hypothesize that differences in vocal behavior between hummingbird lineages arise as adaptations to their foraging strategies. PMID:18802498

  12. 77 FR 61620 - Privacy Act of 1974; Home Equity Reverse Mortgage Information Technology (HERMIT)-Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ...,'' July 25, 1994 (59 FR 37914). Authority: 5 U.S.C. 552a; 88 Stat. 1896; 42 U.S.C. 3535(d). Dated... URBAN DEVELOPMENT Privacy Act of 1974; Home Equity Reverse Mortgage Information Technology (HERMIT... amended (5 U.S.C. 552a), the Department of Housing and Urban Development (HUD) is providing notice of...

  13. An Experimental Field Dataset with Buoyant, Neutral, and Dense Gas Atmospheric Releases and Model Comparisons in Low-Wind Speed (Diffusion) Conditions

    SciTech Connect

    Veronica E. Wannberg, Gustavious Williams, Patrick Sawyer, and Richard Venedam

    2010-09-01

    Aunique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h21. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current stateof- the-practice models, Aerial locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.

  14. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.

    PubMed

    Borrelli, Raffaele; Peluso, Andrea

    2016-03-21

    A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems. PMID:27004857

  15. Entanglement of photons with complex spatial structure in Hermite-Laguerre-Gaussian modes

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Ming, Yang; Chen, Zhao-xian; Hu, Wei; Xu, Fei; Lu, Yan-qing

    2016-07-01

    Photons with complicated spatial mode structures can be applied for different quantum information tasks. Here, we show the entanglement of photons with complex singularity patterns called Hermite-Laguerre-Gaussian (HLG) modes. Measuring one photon of the entangled pairs by HLG mode basis to define its singularity pattern, we can steer the singularity structure of its partner, while the initial singularity structure of the photons is undefined. We also calculate the HLG specific quantum-correlation function. It can be used to extend the quantum key distribution protocols and to tune experiments dealing with high-order transverse modes. In addition we discuss orbital angular momentum properties of the HLG modes and summarize some features of the singularity pattern of the HLG modes with varying angle parameter.

  16. Scattering of an anisotropic sphere by an arbitrarily incident Hermite-Gaussian beam

    NASA Astrophysics Data System (ADS)

    Qu, Tan; Wu, Zhensen; Shang, Qingchao; Li, Zhengjun; Bai, Lu; Li, Haiying

    2016-02-01

    An analytic theory for the scattering of an off-axis Hermite-Gaussian (HG) beam obliquely incident on an anisotropic sphere is developed. Based on the complex-source-point method and coordinate rotation theory, a general expansion expression for an arbitrarily incident HG beam in terms of Spherical Vector Wave Functions (SVWFs) is derived, and its convergence is numerically discussed. By introducing the Fourier transformation, the internal field expressions of the anisotropic sphere are represented. With the continuous tangential boundary conditions applied, the unknown scattering coefficients are solved. The theory and code are verified from the comparisons between the degenerated cases using our theory and those in the references. Two eigenmodes inside the uniaxial anisotropic sphere are characterized. The influences of beam mode, oblique incident angles, permittivity and permeability tensors, and sphere radius on the scattered field are analyzed numerically. The scattering intensity distributions on uniaxial anisotropic sphere in xoz and yoz plane are enantiomorphous for on-axis oblique illumination.

  17. Weak rappers rock more: hermit crabs assess their own agonistic behaviour.

    PubMed

    Edmonds, Elizabeth; Briffa, Mark

    2016-01-01

    Fighting animals use a variety of information sources to make strategic decisions. A neglected potential source of information is an individual's own performance during a fight. Surprisingly, this possibility has yet to be incorporated into the large body of theory concerning the evolution of aggressive behaviour. Here, by experimentally dampening the impact of their shell rapping behaviour, we test for the possibility that attacking hermit crabs monitor their own fight performance. Attackers with dampened raps did not show a reduction in the number of raps used. By contrast, they showed an increased frequency of a less intense agonistic behaviour, shell rocking. This change in behaviour, in attackers that are forced to rap weakly, indicates that they assess their own agonistic behaviour. PMID:26740563

  18. Tunable cavity-enhanced photon pairs source in Hermite-Gaussian mode

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-01

    The spatial modes of light have grasped great research interests because of its great potentials in optical communications, optical manipulation and trapping, optical metrology and quantum information processing. Here we report on generating of photon pairs in Hermite-Gaussian (HG) mode in a type-I optical parametric oscillator operated far below threshold. The bandwidths of the photon pairs are 11.4 MHz and 20.8MHz for two different HG modes respectively, therefore the photons can be stored in cold Rubidium atomic ensembles. The non-classical properties of HG modes are clearly verified by the violation of Cauchy-Schwarz inequality. Our study provides an effective way to generate photon pairs with narrow bandwidth in high order spatial modes for high dimensional quantum communication.

  19. An Assessment of Hermite Function Based Approximations of Mutual Information Applied to Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Sorensen, Julian

    2008-12-01

    At the heart of many ICA techniques is a nonparametric estimate of an information measure, usually via nonparametric density estimation, for example, kernel density estimation. While not as popular as kernel density estimators, orthogonal functions can be used for nonparametric density estimation (via a truncated series expansion whose coefficients are calculated from the observed data). While such estimators do not necessarily yield a valid density, which kernel density estimators do, they are faster to calculate than kernel density estimators, in particular for a modified version of Renyi's entropy of order 2. In this paper, we compare the performance of ICA using Hermite series based estimates of Shannon's and Renyi's mutual information, to that of Gaussian kernel based estimates. The comparisons also include ICA using the RADICAL estimate of Shannon's entropy and a FastICA estimate of neg-entropy.

  20. The Problem of Electric Sources in Einstein's Hermite-symmetric Field Theory

    NASA Astrophysics Data System (ADS)

    Kreisel, Eckhard

    It is considered, if a geometric source breaks the A-invariance and Hermite-symmetry of Einstein's Hermitian relativity. It would be very meaningful to interpret a source of this kind as electric current. With this extension Einstein's unitary field theory contains electromagnetism and the gluonic vacuum of chromodynamics.Translated AbstractDas Problem elektrischer Quellen in Einsteins Hermitesymmetrischer FeldtheorieEs wird untersucht, ob man Quellen so einführen kann, daß die A-Invarianz und die Hermitesymmetrie der Einsteinschen unitären Feldtheorie nicht verletzt werden. Die Quellen sind als elektrische Ströme zu interpretieren. Mit dieser Erweiterung umfaßt die unitäre Feldtheorie Einsteins Gravitation, Elektromagnetismus und das Gluonvakuum der Chromodynamik.

  1. Hermitization and the Poisson bracket-commutator correspondence as a consequence of averaging

    NASA Astrophysics Data System (ADS)

    Pesci, Adriana I.; Goldstein, Raymond E.; Uys, Hermann

    2006-01-01

    Here we present a study of the solutions and mathematical structure of the momentum-averaged Liouville (or Collisionless Boltzmann) equation in Fourier space. We show that the averaging procedure leads to a formalism identical to that of the density matrix of quantum mechanics. This mathematical mapping leaves the averages of all quantities unaltered and provides a unique way to construct the Hermitian version of a given operator. This seems to be the only method that resolves the ambiguity of Hermitization of operators that contain products of non-commuting variables. We also present a systematic perturbation scheme to evaluate correctly the classical solutions from the quantum ones and a formal proof of the approximate correspondence between the Poisson brackets and commutators.

  2. A new distinctive species of pagurid hermit crab (Crustacea: Decapoda: Anomura) from Japan.

    PubMed

    Komai, T; Osawa, M

    2001-12-01

    A new species of pagurid hermit crab, Pagurus decimbranchiae, is described and illustrated based on 20 specimens collected from shallow waters of the Pacific coast of Japan ranging from Boso Peninsula to Tanegashima Island. It is quite distinctive in having the rudimentary arthrobranch on the third maxilliped represented by a single bud, however close morphological similarity is found between the new species and P. moluccensis Haig and Ball. Comparisons are also made among other species, including P. boriaustraliensis Morgan, P. sp. cf. boriaustraliensis sensu Rahayu and Komai (2000) and the members of the P. anachoretus group. The present generic assignment of the new species should be considered provisional, as more extensive study is needed to investigate phylogenetic relationships of the new species and the other species of Pagurus. PMID:11911085

  3. Watermarked cardiac CT image segmentation using deformable models and the Hermite transform

    NASA Astrophysics Data System (ADS)

    Gomez-Coronel, Sandra L.; Moya-Albor, Ernesto; Escalante-Ramírez, Boris; Brieva, Jorge

    2015-01-01

    Medical image watermarking is an open area for research and is a solution for the protection of copyright and intellectual property. One of the main challenges of this problem is that the marked images should not differ perceptually from the original images allowing a correct diagnosis and authentication. Furthermore, we also aim at obtaining watermarked images with very little numerical distortion so that computer vision tasks such as segmentation of important anatomical structures do not be impaired or affected. We propose a preliminary watermarking application in cardiac CT images based on a perceptive approach that includes a brightness model to generate a perceptive mask and identify the image regions where the watermark detection becomes a difficult task for the human eye. We propose a normalization scheme of the image in order to improve robustness against geometric attacks. We follow a spread spectrum technique to insert an alphanumeric code, such as patient's information, within the watermark. The watermark scheme is based on the Hermite transform as a bio-inspired image representation model. In order to evaluate the numerical integrity of the image data after watermarking, we perform a segmentation task based on deformable models. The segmentation technique is based on a vector-value level sets method such that, given a curve in a specific image, and subject to some constraints, the curve can evolve in order to detect objects. In order to stimulate the curve evolution we introduce simultaneously some image features like the gray level and the steered Hermite coefficients as texture descriptors. Segmentation performance was assessed by means of the Dice index and the Hausdorff distance. We tested different mark sizes and different insertion schemes on images that were later segmented either automatic or manual by physicians.

  4. Higher order correlation beams in atmosphere under strong turbulence conditions.

    PubMed

    Avetisyan, H; Monken, C H

    2016-02-01

    Higher order correlation beams, that is, two-photon beams obtained from the process of spontaneous parametric down-conversion pumped by Hermite-Gauss or Laguerre-Gauss beams of any order, can be used to encode information in many modes, opening the possibility of quantum communication with large alphabets. In this paper we calculate, analytically, the fourth-order correlation function for the Hermite-Gauss and Laguerre-Gauss coherent and partially coherent correlation beams propagating through a strong turbulent medium. We show that fourth-order correlation functions for correlation beams have, under certain conditions, expressions similar to those of intensities of classical beams and are degraded by turbulence in a similar way as the classical beams. Our results can be useful in establishing limits for the use of two-photon beams in quantum communications with larger alphabets under atmospheric turbulence. PMID:26906808

  5. A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations

    NASA Astrophysics Data System (ADS)

    Liu, Yilong; Fischer, Achim; Eberhard, Peter; Wu, Baohai

    2015-06-01

    A high-order full-discretization method (FDM) using Hermite interpolation (HFDM) is proposed and implemented for periodic systems with time delay. Both Lagrange interpolation and Hermite interpolation are used to approximate state values and delayed state values in each discretization step. The transition matrix over a single period is determined and used for stability analysis. The proposed method increases the approximation order of the semidiscretization method and the FDM without increasing the computational time. The convergence, precision, and efficiency of the proposed method are investigated using several Mathieu equations and a complex turning model as examples. Comparison shows that the proposed HFDM converges faster and uses less computational time than existing methods.

  6. Propagation equation of Hermite-Gauss beams through a complex optical system with apertures and its application to focal shift.

    PubMed

    Peng, Sun; Jin, Guo; Tingfeng, Wang

    2013-07-01

    Based on the generalized Huygens-Fresnel diffraction integral (Collins' formula), the propagation equation of Hermite-Gauss beams through a complex optical system with a limiting aperture is derived. The elements of the optical system may be all those characterized by an ABCD ray-transfer matrix, as well as any kind of apertures represented by complex transmittance functions. To obtain the analytical expression, we expand the aperture transmittance function into a finite sum of complex Gaussian functions. Thus the limiting aperture is expressed as a superposition of a series of Gaussian-shaped limiting apertures. The advantage of this treatment is that we can treat almost all kinds of apertures in theory. As application, we define the width of the beam and the focal plane using an encircled-energy criterion and calculate the intensity distribution of Hermite-Gauss beams at the actual focus of an aperture lens. PMID:24323153

  7. Hermite approximation of a hyperbolic Fokker-Planck optimality system to control a piecewise-deterministic process

    NASA Astrophysics Data System (ADS)

    Mohammadi, Masoumeh; Borzì, Alfio

    2016-07-01

    The Hermite spectral approximation of a hyperbolic Fokker-Planck (FP) optimality system arising in the control of an unbounded piecewise-deterministic process (PDP) is discussed. To control the probability density function (PDF) corresponding to the PDP process, an optimal control based on an FP strategy is considered. The resulting optimality system consists of a hyperbolic system with opposite-time orientation and an integral optimality condition equation. A Hermite spectral discretisation is investigated to approximate solutions to the optimality system in unbounded domains. It is proven that the proposed scheme satisfies the conservativity requirement of the PDFs. The spectral convergence rate of the discretisation scheme is proved and validated by numerical experiments.

  8. Hermite finite elements for high accuracy electromagnetic field calculations: A case study of homogeneous and inhomogeneous waveguides

    NASA Astrophysics Data System (ADS)

    Boucher, C. R.; Li, Zehao; Ahheng, C. I.; Albrecht, J. D.; Ram-Mohan, L. R.

    2016-04-01

    Maxwell's vector field equations and their numerical solution represent significant challenges for physical domains with complex geometries. There are several limitations in the presently prevalent approaches to the calculation of field distributions in physical domains, in particular, with the vector finite elements. In order to quantify and resolve issues, we consider the modeling of the field equations for the prototypical examples of waveguides. We employ the finite element method with a new set of Hermite interpolation polynomials derived recently by us using group theoretic considerations. We show that (i) the approach presented here yields better accuracy by several orders of magnitude, with a smoother representation of fields than the vector finite elements for waveguide calculations. (ii) This method does not generate any spurious solutions that plague Lagrange finite elements, even though the C1 -continuous Hermite polynomials are also scalar in nature. (iii) We present solutions for propagating modes in inhomogeneous waveguides satisfying dispersion relations that can be derived directly, and investigate their behavior as the ratio of dielectric constants is varied both theoretically and numerically. Additional comparisons and advantages of the proposed method are detailed in this article. The Hermite interpolation polynomials are shown to provide a robust, accurate, and efficient means of solving Maxwell's equations in a variety of media, potentially offering a computationally inexpensive means of designing devices for optoelectronics and plasmonics of increasing complexity.

  9. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  10. Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro

    2015-11-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  11. Parallel iterative solution of the Hermite Collocation equations on GPUs II

    NASA Astrophysics Data System (ADS)

    Vilanakis, N.; Mathioudakis, E.

    2014-03-01

    Hermite Collocation is a high order finite element method for Boundary Value Problems modelling applications in several fields of science and engineering. Application of this integration free numerical solver for the solution of linear BVPs results in a large and sparse general system of algebraic equations, suggesting the usage of an efficient iterative solver especially for realistic simulations. In part I of this work an efficient parallel algorithm of the Schur complement method coupled with Bi-Conjugate Gradient Stabilized (BiCGSTAB) iterative solver has been designed for multicore computing architectures with a Graphics Processing Unit (GPU). In the present work the proposed algorithm has been extended for high performance computing environments consisting of multiprocessor machines with multiple GPUs. Since this is a distributed GPU and shared CPU memory parallel architecture, a hybrid memory treatment is needed for the development of the parallel algorithm. The realization of the algorithm took place on a multiprocessor machine HP SL390 with Tesla M2070 GPUs using the OpenMP and OpenACC standards. Execution time measurements reveal the efficiency of the parallel implementation.

  12. Plastic proteans: reduced predictability in the face of predation risk in hermit crabs

    PubMed Central

    Briffa, Mark

    2013-01-01

    Variation in behaviour occurs at multiple levels, including between individuals (personality) and between situations (plasticity). Behaviour also varies within individuals, and intra-individual variation (IIV) in behaviour describes within-individual residual variance in behaviour that remains after the effects of obvious external and internal influences on behaviour have been accounted for. IIV thus describes how predictable an individual's behaviour is. Differences in predictability, between individuals and between situations, might be biologically significant. For example, behaving unpredictably under predation threat might reduce the chance of capture. Here, we investigated the duration of startle responses in hermit crabs, in the presence and absence of a predator cue. Individuals differed in startle response duration (personality) and while individuals also varied in their sensitivity to risk, mean response time was greater in the presence of a predator (plasticity). Moreover, IIV was greater in the presence of a predator, providing some of the first evidence that the facultative injection of unpredictability into behaviour might represent a strategy for dealing with risk. PMID:23985348

  13. From one-dimensional fields to Vlasov equilibria: Theory and application of Hermite polynomials

    NASA Astrophysics Data System (ADS)

    Allanson, Oliver; Neukirch, Thomas; Troscheit, Sascha; Wilson, Fiona

    2016-06-01

    We consider the theory and application of a solution method for the inverse problem in collisionless equilibria, namely that of calculating a Vlasov-Maxwell equilibrium for a given macroscopic (fluid) equilibrium. Using Jeans' theorem, the equilibrium distribution functions are expressed as functions of the constants of motion, in the form of a Maxwellian multiplied by an unknown function of the canonical momenta. In this case it is possible to reduce the inverse problem to inverting Weierstrass transforms, which we achieve by using expansions over Hermite polynomials. A sufficient condition on the pressure tensor is found which guarantees the convergence and the boundedness of the candidate solution, when satisfied. This condition is obtained by elementary means, and it is clear how to put it into practice. We also argue that for a given pressure tensor for which our method applies, there always exists a positive distribution function solution for a sufficiently magnetised plasma. Illustrative examples of the use of this method with both force-free and non-force-free macroscopic equilibria are presented, including the full verification of a recently derived distribution function for the force-free Harris sheet (Allanson et al., Phys. Plasmas, vol. 22 (10), 2015, 102116). In the effort to model equilibria with lower values of the plasma β, solutions for the same macroscopic equilibrium in a new gauge are calculated, with numerical results presented for β_{pl}=0.05.

  14. Viriato: A Fourier-Hermite spectral code for strongly magnetized fluid-kinetic plasma dynamics

    NASA Astrophysics Data System (ADS)

    Loureiro, N. F.; Dorland, W.; Fazendeiro, L.; Kanekar, A.; Mallet, A.; Vilelas, M. S.; Zocco, A.

    2016-09-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations (Zocco and Schekochihin, 2011) (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations (Schekochihin et al., 2009). Two main applications of these equations are magnetized (Alfvénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.

  15. Smooth convex partition of unity on uniform triangulations with Hermite interpolation using radial ERBS

    NASA Astrophysics Data System (ADS)

    Zanaty, Peter; Dechevsky, Lubomir T.

    2012-11-01

    In [2] a new general construction of smooth convex partition of unity was proposed for a very general class of covers and partitions of multidimensional domains providing the option of Hermite interpolation on a scattered point set consistent with domain/partition. The tensor-product based and radial-based versions of this construction were studied in further detail in [5] and [3], respectively. In all versions the underlying concept of the construction is the univariate expo-rational B-spline [7] and its generalizations [4]. One of the interesting features of the construction is that, in general, the basis functions generated via it depend on the ordering of the elements of the domain cover/partition and the respective scattered-point set, while for a narrower range of the construction parameters the basis is unique and independent of this ordering. In the present paper we consider the radial-based version of the construction from [3] in the special context of uniform triangulation in the bivariate case, and conduct exhaustive study of all possible cases of different bases obtained in the general, orderdependent, case. We provide graphical comparative visualization of the different cases of basis functions, using 2-dimensional level maps and ray-traced images in 3 dimension.

  16. From one-dimensional fields to Vlasov equilibria: Theory and application of Hermite polynomials

    NASA Astrophysics Data System (ADS)

    Allanson, Oliver; Neukirch, Thomas; Troscheit, Sascha; Wilson, Fiona

    2016-06-01

    We consider the theory and application of a solution method for the inverse problem in collisionless equilibria, namely that of calculating a Vlasov-Maxwell equilibrium for a given macroscopic (fluid) equilibrium. Using Jeans’ theorem, the equilibrium distribution functions are expressed as functions of the constants of motion, in the form of a Maxwellian multiplied by an unknown function of the canonical momenta. In this case it is possible to reduce the inverse problem to inverting Weierstrass transforms, which we achieve by using expansions over Hermite polynomials. A sufficient condition on the pressure tensor is found which guarantees the convergence and the boundedness of the candidate solution, when satisfied. This condition is obtained by elementary means, and it is clear how to put it into practice. We also argue that for a given pressure tensor for which our method applies, there always exists a positive distribution function solution for a sufficiently magnetised plasma. Illustrative examples of the use of this method with both force-free and non-force-free macroscopic equilibria are presented, including the full verification of a recently derived distribution function for the force-free Harris sheet (Allanson et al., Phys. Plasmas, vol. 22 (10), 2015, 102116). In the effort to model equilibria with lower values of the plasma β, solutions for the same macroscopic equilibrium in a new gauge are calculated, with numerical results presented for β_{pl}=0.05.

  17. Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes

    NASA Astrophysics Data System (ADS)

    Zheng, Feng; Qiu, Jianxian

    2016-02-01

    In this paper, we present a class of new Hermite weighted essentially non-oscillatory (HWENO) schemes based on finite volume framework to directly solve the Hamilton-Jacobi (HJ) equations. For HWENO reconstruction, both the cell average and the first moment of the solution are evolved, and for two dimensional case, HWENO reconstruction is based on a dimension-by-dimension strategy which is the first used in HWENO reconstruction. For spatial discretization, one of key points for directly solving HJ equation is the reconstruction of numerical fluxes. We follow the idea put forward by Cheng and Wang (2014) [3] to reconstruct the values of solution at Gauss-Lobatto quadrature points and numerical fluxes at the interfaces of cells, and for neither the convex nor concave Hamiltonian case, the monotone modification of numerical fluxes is added, which can guarantee the precision in the smooth region and converge to the entropy solution when derivative discontinuities come up. The third order TVD Runge-Kutta method is used for the time discretization. Extensive numerical experiments in one dimensional and two dimensional cases are performed to verify the efficiency of the methods.

  18. Characterization of the occupied shells by the hermit crab Clibanarius vittatus (Decapoda, Diogenidae) at Baixio Mirim tideflat, Guaratuba Bay, southern Brazil.

    PubMed

    Sampaio, Sara R; Masunari, Setuko

    2010-12-01

    A characterization of the occupied shells by the hermit crab Clibanarius vittatus was carried out. Hermit crabs were collected in the intertidal zone, during the low spring tide monthly from April 2005 to March 2006. They were sexed and their cephalothoracic shield length (CL) was measured. Shells were identified, dried, weighed and the aperture length (AL) and width (AW) were measured. 1187 crabs were collected (949 males, 216 females and 22 intersexes), which occupied 12 species of gastropod shells. Stramonita haemastoma, Olivancillaria urceus and Dorsanum moniliferum made up 96.55% of the total shell species. Male hermit crabs attained significantly larger sizes than females; therefore, males occupied a wider spectrum of shells in size and weight. A stronger correlation ratio was obtained between CL and AW of S. haemastoma. Last whorl with a rounded shape and a spacious inner area is a common feature of all shell species most frequently occupied by this hermit crab where it occurs. The successful establishment of C. vittatus at Baixio Mirim is mainly due to the appropriately shaped and wide range of size of S. haemastoma shells that were most often occupied by the hermit crabs of the studied population. PMID:21152757

  19. Salinity tolerance and osmotic response of the estuarine hermit crab Pagurus maclaughlinae in the Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Rhodes-Ondi, Sarah E.; Turner, Richard L.

    2010-01-01

    Pagurus maclaughlinae is the most common hermit in the Indian River Lagoon System. Wide variations in lagoonal salinity make it likely that P. maclaughlinae is euryhaline and that other hermit species in the area are more stenohaline, at least in some stages of their life histories. In a study of salinity tolerance, crabs were held unfed at salinities of 5-50 (25 control) for up to 30 days. Based on survivorship curves, P. maclaughlinae tolerated acute exposure to salinities of 10-45 for up to 18 days, and survivorship up to 30 days at 20-45 equaled or exceeded survivorship of the control. In a study of acclimation, the osmotic pressure of hemolymph was measured after crabs were held in the laboratory for 12, 48, and 96 h acutely exposed to salinities of 10-45. Paired t-tests revealed that the crabs weakly hyperregulated their hemolymph at 45-154 mOsmol above the external medium at all salinities and sampling times, and the osmotic differential of their hemolymph was fully acclimated by 96 h. In a third study, acclimatization of hemolymph was studied on crabs at four field sites that differed in their recent salinity histories. Field-collected crabs weakly regulated their hemolymph 72-84 mOsmol above the external medium at all sites sampled. Performance did not differ by site. The range of salinity tolerance and acclimation of hemolymph of P. maclaughlinae partly explain their wide distribution, and the consistent osmotic differential of its hemolymph indicates that the osmoregulatory ability of this small-bodied species is conserved in populations throughout the lagoon. Although some other larger-bodied hermit species in the region are euryhaline as adults, their tendency to hyperregulate strongly at low salinities possibly adds an energetic burden that, along with their less euryhaline long-lived larvae, might exclude them from the lagoon. Salinity tolerance of larval P. maclaughlinae has yet to be studied.

  20. Contractivity-preserving explicit multistep Hermite-Obrechkoff series differential equation solvers

    NASA Astrophysics Data System (ADS)

    Nguyen-Ba, Truong; Giordano, Thierry; Vaillancourt, Rémi

    2016-04-01

    New optimal, contractivity-preserving (CP), explicit, d-derivative, k-step Hermite-Obrechkoff series methods of order p up to p=20, denoted by CP HO( d, k, p), with nonnegative coefficients are constructed. These methods are used to solve nonstiff first-order initial value problems y'=f(t,y), y(t_0)=y_0. The upper bound p_u of order p of HO( d, k, p) can reach, approximately, as high as 2.4 times the number of derivatives d. The stability regions of HO( d, k, p) have generally a good shape and grow with decreasing p-d. We, first, note that three selected CP HO methods: 4-derivative 7-step HO of order 13, denoted by HO(4, 7, 13), 5-derivative 6-step HO of order 13, denoted by HO(5, 6, 13), and 9-derivative 2-step HO of order 13, denoted by CMDAHO(13) compare favorably with Adams-Cowell of order 13, denoted by AC(13), in solving standard N-body problems over an interval of 1000 periods on the basis of the relative error of energy as a function of the CPU time. Next, the three HO methods compare positively with AC(13) in solving standard N-body problems on the basis of the growth of relative positional error and relative energy error over 10, 000 periods of integration. Finally, these three methods compare also well with P-stable methods of Cash and Franco et al. on some quasi periodic, second-order linear and nonlinear problems. The coefficients of selected HO methods are listed in the appendix.

  1. A comparative study of population traits between two South American populations of the striped-legged hermit crab Clibanarius vittatus

    NASA Astrophysics Data System (ADS)

    Mantelatto, Fernando Luis; Fernandes-Góes, Lissandra Corrêa; Fantucci, Marina Zilio; Biagi, Renata; Pardo, Luis Miguel; Marcos de Góes, João

    2010-01-01

    The striped-legged hermit crab Clibanarius vittatus, with a geographical distribution covering a wide range of latitudes in the western Atlantic, was selected for a comparative study on population features between two different areas of the Brazilian coast that are separated by approximately 3000 km. The two populations were sampled concurrently for nine months. The populations in northern and southeastern Brazil showed different profiles in terms of size of specimens, sex ratio, and shell occupation. The observed plasticity of these life-cycle traits of C. vittatus in relation to local environmental conditions is discussed.

  2. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  3. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  4. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Woodrum, A. W.

    1989-01-01

    GRAM series of four-dimensional atmospheric model validated by years of data. GRAM program, still available. More current are Gram 86, which includes atmospheric data from 1986 and runs on DEC VAX, and GRAM 88, which runs on IBM 3084. Program generates altitude profiles of atmospheric parameters along any simulated trajectory through atmosphere, and also useful for global circulation and diffusion studies.

  5. The symmetric q-oscillator algebra: q-coherent states, q-Bargmann-Fock realization and continuous q-Hermite polynomials with 0 < q < 1

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Hashemi, A.

    2016-01-01

    The symmetric q-analysis is used to construct a type of minimum-uncertainty q-coherent states in the Fock representation space of the symmetric q-oscillator ∗-algebra with 0 < q < 1. Then, its corresponding q-Hermite polynomials are derived by using the q-Bargmann-Fock realization of the symmetric q-oscillator algebra.

  6. Shell occupation by the hermit crab Dardanus insignis (Decapoda, Diogenidae) from the north Coast of São Paulo state, Brazil.

    PubMed

    Frameschi, I F; Andrade, L S; Fransozo, V; Fernandes-Góes, L C; Castilho, A L

    2015-11-01

    The pattern of shell occupation by the hermit crab Dardanus insignis (Saussure, 1858) from the subtropical region of southeastern coast of Brazil was investigated in the present study. The percentage of shell types that were occupied and the morphometric relationships between hermit crabs and occupied shells were analyzed from monthly collections conducted during two years (from January 1998 to December 1999). Individuals were categorized according to sex and gonadal maturation, weighed and measured with respect to their cephalothoracic shield length (CSL) and wet weight (CWW). Shells were measured regarding their aperture width (SAW), dry weight (SDW) and internal volume (SIV). A total of 1086 hermit crabs was collected, occupying shells of 11 gastropod species. Olivancillaria urceus (Roding, 1798) was most commonly used by the hermit crab D. insignis, followed by Buccinanops cochlidium (Dillwyn, 1817), and Stramonita haemastoma (Linnaeus, 1767). The highest determination coefficients (r2 > 0.50, p < 0.01) were recorded particularly in the morphometric relationships between CSL vs. CWW and SAW vs. SIV, which are important indication that in this D. insignis population the great majority the animals occupied adequate shells during the two years analysed. The high number of used shell species and relative plasticity in pattern of shell utilization by smaller individuals of D. insignis indicated that occupation is influenced by the shell availability, while larger individuals demonstrated more specialized occupation in Tonna galea (Linnaeus, 1758) shell. PMID:26628234

  7. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Self-Similar Hermite-Gaussian Spatial Solitons in Two-Dimensional Nonlocal Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Zhong, Wei-Ping; Belić, Milivoj R.

    2010-05-01

    We study analytically and numerically the propagation of spatial solitons in a two-dimensional strongly nonlocal nonlinear medium. Exact analytical solutions in the form of self-similar spatial solitons are obtained involving higher-order Hermite-Gaussian functions. Our theoretical predictions provide new insights into the low-energy spatial soliton transmission with high fidelity.

  8. Using quantum filters to process images of diffuse axonal injury

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-06-01

    Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.

  9. Narrowband interference mitigation in body surface to external communication in UWB body area networks using first-order Hermite pulse

    NASA Astrophysics Data System (ADS)

    Rout, Deepak Kumar; Das, Susmita

    2016-06-01

    Ultra wideband (UWB) is the most preferred candidate for body area networks (BAN). The higher data rate and lower multipath fading makes it highly suitable for the design of BAN. However, narrowband interference (NBI) may significantly degrade the performance of UWB. The paper presents an effective method of NBI mitigation for UWB BAN. The method uses modified Hermite pulse (MHP) in lieu of Gaussian and other pulse shapes. The spectral characteristics of the MHP make them immune to interference. The performance has been tested in various body postures in the CM4 channel model of the BAN, and further validated by transmitting medical signals like electrocardiography and MRI. The results show that MHP pulse is highly immune to NBI.

  10. Foraging behaviour of the Scale-throated Hermit Phaethornis eurynome Lesson, 1832 (Aves, Trochilidae) in Vriesea incurvata Gaudich (Bromeliaceae).

    PubMed

    Silva, B G; Piratelli, A J

    2014-05-01

    In this study we tested for density-dependent relationships between visitation rates of the Scale-throated Hermit (Phaethornis eurynome) and the plant density and flower number of the bromeliad Vriesea incurvata, by comparing plots with varying densities of this bromeliad. Eight 100 m2 plots were established at least 200 m from each other; four plots contained 10-15 individuals of V. incurvata each, whereas the other four contained 4-5 individuals each. The visitors, number of visits, behaviour (nectar thief or potential pollinator) and the height of foraging were recorded during focal observations on the plants. The number of visits of P. eurynome varied according to the local density of V. incurvata, showing that the heterogeneous distribution of this bromeliad species may promote adjustments in the pollinator populations, through resource variation at a local scale. PMID:25166315

  11. Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series

    NASA Astrophysics Data System (ADS)

    Mondali, Mehdi; Monfared, Vahid; Abedian, Ali

    2013-07-01

    A novel analytical model is presented for analyzing the steady-state creep in short-fiber composites under axial load utilizing the previous shear-lag theory, the imaginary fiber technique and also new approaches of Hermite polynomials, hyperbolic trigonometric functions and power series. The steady-state creep behavior of the matrix is described by an exponential law, while the fibers behave elastically. In this model, in spite of the previous researches, some unknowns such as shear stress, displacement rates, and creep strain rates are correctly determined in all regions of the unit cell without using any further assumptions. In comparison with previous analytical approaches, the results of the present work are closer to the FEM simulations. This strong method can be used in various problems in applied physics and mechanics such as elastic and plastic analysis of nano-composites.

  12. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell

    PubMed Central

    Harzsch, Steffen; Hansson, Bill S

    2008-01-01

    Background During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of Coenobita clypeatus (Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase. Results The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that C. clypeatus has visual and mechanosensory skills that are comparable to those of marine Crustacea. Conclusion In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of C. clypeatus. More detailed analyses with additional markers will be

  13. Morphology and Histochemistry of the Aesthetasc-Associated Epidermal Glands in Terrestrial Hermit Crabs of the Genus Coenobita (Decapoda: Paguroidea)

    PubMed Central

    Müller, Carsten H. G.; Wielsch, Natalie; Hupfer, Yvonne; Svatoš, Aleš; Grosse-Wilde, Ewald; Hansson, Bill S.

    2014-01-01

    Crustaceans have successfully adapted to a variety of environments including fresh- and saltwater as well as land. Transition from an aquatic to a terrestrial lifestyle required adaptations of the sensory equipment of an animal, particularly in olfaction, where the stimulus itself changes from hydrophilic to mainly hydrophobic, air-borne molecules. Hermit crabs Coenobita spp. (Anomura, Coenobitidae) have adapted to a fully terrestrial lifestyle as adults and have been shown to rely on olfaction in order to detect distant food items. We observed that the specialized olfactory sensilla in Coenobita, named aesthetascs, are immersed in a layer of mucous-like substance. We hypothesized that the mucous is produced by antennal glands and affects functioning of the aesthetascs. Using various microscopic and histochemical techniques we proved that the mucous is produced by aesthetasc-associated epidermal glands, which we consider to be modified rosette-type aesthetasc tegumental glands known from aquatic decapods. These epidermal glands in Coenobita are multicellular exocrine organs of the recto-canal type with tubulo-acinar arrangement of the secretory cells. Two distinct populations of secretory cells were clearly distinguishable with light and electron microscopy. At least part of the secretory cells contains specific enzymes, CUB-serine proteases, which are likely to be secreted on the surface of the aesthetasc pad and take part in antimicrobial defense. Proteomic analysis of the glandular tissue corroborates the idea that the secretions of the aesthetasc-associated epidermal glands are involved in immune responses. We propose that the mucous covering the aesthetascs in Coenobita takes part in antimicrobial defense and at the same time provides the moisture essential for odor perception in terrestrial hermit crabs. We conclude that the morphological modifications of the aesthetasc-associated epidermal glands as well as the functional characteristics of their secretions

  14. The hermit crab Calcinus tibicen lives commensally on Millepora spp. in St. John, United States Virgin Islands

    NASA Astrophysics Data System (ADS)

    Brown, D.; Edmunds, P. J.

    2013-03-01

    The present work describes an association between the hermit crab Calcinus tibicen and milleporine hydrocorals on shallow reefs (<6-m depth) in St. John, US Virgin Islands. In one bay, most colonies of Millepora spp. were occupied by C. tibicen in 2010 (62 %) and 2011 (50 %). In 2011, the association was common along 23 km of the coast of St. John, as well as at several locations around St. Thomas. On average, a colony of Millepora spp. harbored 4 C. tibicen within its branches, but more crabs were found on bigger colonies. During the day, large numbers of C. tibicen were found on Millepora spp., and these crabs frequently (>88 % of trials) returned to the same colony of Millepora spp. when removed and placed on adjacent surfaces. Of the C. tibicen found on Millepora spp. during the day, 48 % left their colonies at night, but most subsequently returned to the same colony as shown by the high site fidelity of tagged crabs (51 % over 5 days). A Y-maze experiment conducted in the laboratory suggested that C. tibicen could detect (and move toward) Millepora spp. on a spatial scale of about 30 cm and under a flow speed of about 5 cm s-1. When tethered on algal turf or sand, 45 % of C. tibicen disappeared over 7 days and presumably were eaten, whereas 15 % disappeared when tethered on Millepora spp. These results demonstrate that the association between C. tibicen and Millepora spp. is temporally stable and widespread, and suggest that hermit crabs seek Millepora spp. to secure a daytime refuge from predators. In the absence of negative fitness consequences for Millepora spp., but demonstrable benefits to C. tibicen, we propose that the Calcinus- Millepora association is commensal.

  15. Carbonate formation on Mars: History of the CO2 atmosphere from models of diffusion-limited growth in non-aqueous environments

    NASA Astrophysics Data System (ADS)

    Stephens, Stuart K.; Stevenson, David J.

    1992-12-01

    We conducted preliminary experiments designed to measure the amount of CO2 reacted from a simulated Martian atmosphere to form carbonate on silicate grains. Warm experiments at constant T (300-350 K) and with no water (vapor or liquid) yielded no detectable reaction, suggesting the following result. If we are indeed operating in the thermodynamically-favorable regime (supported by Gooding (1978) for the gas-solid reaction), then the lack of a reaction at warm temperatures suggests that a reaction in the 200-300 K regime will be less favored if reaction kinetics dominate. The completely dry scenario is thus not favored. An additional experiment, with abundant water vapor and at T approx. 300 K (constant), yielded a negative result as well. However, this is not inconsistent with Booth's findings, since lower temperatures may be required for the absorption of a monolayer of water. We plan further (lower-T) experiments.

  16. Carbonate formation on Mars: History of the CO2 atmosphere from models of diffusion-limited growth in non-aqueous environments

    NASA Technical Reports Server (NTRS)

    Stephens, Stuart K.; Stevenson, David J.

    1992-01-01

    We conducted preliminary experiments designed to measure the amount of CO2 reacted from a simulated Martian atmosphere to form carbonate on silicate grains. Warm experiments at constant T (300-350 K) and with no water (vapor or liquid) yielded no detectable reaction, suggesting the following result. If we are indeed operating in the thermodynamically-favorable regime (supported by Gooding (1978) for the gas-solid reaction), then the lack of a reaction at warm temperatures suggests that a reaction in the 200-300 K regime will be less favored if reaction kinetics dominate. The completely dry scenario is thus not favored. An additional experiment, with abundant water vapor and at T approx. 300 K (constant), yielded a negative result as well. However, this is not inconsistent with Booth's findings, since lower temperatures may be required for the absorption of a monolayer of water. We plan further (lower-T) experiments.

  17. On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Delzanno, G. L.; Bergen, B. K.; Moulton, J. D.

    2016-01-01

    We describe a spectral method for the numerical solution of the Vlasov-Poisson system where the velocity space is decomposed by means of an Hermite basis, and the configuration space is discretized via a Fourier decomposition. The novelty of our approach is an implicit time discretization that allows exact conservation of charge, momentum and energy. The computational efficiency and the cost-effectiveness of this method are compared to the fully-implicit PIC method recently introduced by Markidis and Lapenta (2011) and Chen et al. (2011). The following examples are discussed: Langmuir wave, Landau damping, ion-acoustic wave, two-stream instability. The Fourier-Hermite spectral method can achieve solutions that are several orders of magnitude more accurate at a fraction of the cost with respect to PIC.

  18. Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial

    NASA Astrophysics Data System (ADS)

    Marquette, Ian; Quesne, Christiane

    2016-05-01

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed Xm1,m2,…,mk Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

  19. Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS

    NASA Astrophysics Data System (ADS)

    Wagner, Steven; Klein, Moritz; Kathrotia, Trupti; Riedel, Uwe; Kissel, Thilo; Dreizler, Andreas; Ebert, Volker

    2012-11-01

    We developed a new, spatially traversing, direct tunable diode laser absorption spectrometer (TDLAS) for quantitative, calibration-free, and spatially resolved in situ measurements of CO profiles in atmospheric, laminar, non-premixed CH4/air model flames stabilized at a Tsuji counter-flow burner. The spectrometer employed a carefully characterized, room temperature distributed feedback diode laser to detect the R20 line of CO near 2,313 nm (4,324.4 cm-1), which allows to minimize spectral CH4 interference and detect CO even in very fuel-rich zones of the flame. The burner head was traversed through the 0.5 mm diameter laser beam in order to derive spatially resolved CO profiles in the only 60-mm wide CH4/air flame. Our multiple Voigt line Levenberg-Marquardt fitting algorithm and the use of highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations as well as careful fringe interference suppression permitted to achieve a fractional optical resolution of up to 2.4 × 10-4 OD (1σ) in the flame ( T up to 1,965 K). Highly accurate, spatially resolved, absolute gas temperature profiles, needed to compute mole fraction and correct for spectroscopic temperature dependencies, were determined with a spatial resolution of 65 μm using ro-vibrational N2-CARS (Coherent anti-Stokes Raman spectroscopy). With this setup we achieved temperature-dependent CO detection limits at the R20 line of 250-2,000 ppmv at peak CO concentrations of up to 4 vol.%. This permitted local CO detection with signal to noise ratios of more than 77. The CO TDLAS spectrometer was then used to determine absolute, spatially resolved in situ CO concentrations in the Tsuji flame, investigate the strain dependence of the CO Profiles and favorably compare the results to a new flame-chemistry model.

  20. Numerical and experimental study of an axisymmetric coflow laminar methane-air diffusion flame at pressures between 5 and 40 atmospheres

    SciTech Connect

    Liu, Fengshan; Thomson, Kevin A.; Guo, Hongsheng; Smallwood, Gregory J.

    2006-08-15

    A numerical and experimental study of an axisymmetric coflow laminar methane-air diffusion flame at pressures between 5 and 40 atm was conducted to investigate the effect of pressure on the flame structure and soot formation characteristics. Experimental work was carried out in a new high-pressure combustion chamber described in a recent study [K.A. Thomson, O.L. Gulder, E.J. Weckman, R.A. Fraser, G.J. Smallwood, D.R. Snelling, Combust. Flame 140 (2005) 222-232]. Radially resolved soot volume fraction was experimentally measured using both spectral soot emission and line-of-sight attenuation techniques. Numerically, the elliptic governing equations were solved in axisymmetric cylindrical coordinates using the finite volume method. Detailed gas-phase chemistry and complex thermal and transport properties were employed in the numerical calculations. The soot model employed in this study accounts for soot nucleation and surface growth using a semiempirical acetylene-based global soot model with oxidation of soot by O{sub 2}, OH, and O taken into account. Radiative heat transfer was calculated using the discrete-ordinates method and a nine-band nongray radiative property model. Two soot surface growth submodels were investigated and the predicted pressure dependence of soot yield was compared with available experimental data. The experiment, the numerical model, and a simplified theoretical analysis found that the visible flame diameter decreases with pressure as P{sub a}{sup -0.5}. The flame-diameter-integrated soot volume fraction increases with pressure as P{sub a}{sup 1.3} between 5 and 20 atm. The assumption of a square root dependence of the soot surface growth rate on the soot particle surface area predicts the pressure dependence of soot yield in good agreement with the experimental observation. On the other hand, the assumption of linear dependence of the soot surface growth rate on the soot surface area predicts a much faster increase in the soot yield with

  1. Holographic diffusers

    NASA Astrophysics Data System (ADS)

    Wadle, Stephen; Wuest, Daniel; Cantalupo, John; Lakes, Roderic S.

    1994-01-01

    Holographic diffusers are prepared using silver halide (Agfa 8E75 and Kodak 649F) and photopolymer (Polaroid DMP 128 and DuPont 600, 705, and 150 series) media. It is possible to control the diffusion angle in three ways: by selection of the properties of the source diffuser, by control of its subtended angle, and by selection of the holographic medium. Several conventional diffusers based on refraction or scattering of light are examined for comparison.

  2. FRUIT ABUNDANCE AND LOCAL DISTRIBUTION OF WINTERING HERMIT THRUSHES (CATHARUS GUTTATUS) AND YELLOW-RUMPED WARBLERS (DENDROICA CORONATA) IN SOUTH CAROLINA.

    SciTech Connect

    KWIT, CHARLES; LEVEY, DOUGLAS, J.; GREENBERG, CATHRYN, H.; PEARSON, SCOTT, F.; MCCARTY, JOHN, P.; SARGENT, SARAH; MUMME, RONALD, L.

    2004-01-01

    The Auk 121(1):46-57, 2004 We conducted winter censuses of two short-distance migrants, Hermit Thrushes (Catharus guttatus) and Yellow-rumped Warblers (Dendroica coronata), over seven years in five different habitats to determine whether their local abundances could be predicted by fruit pulp biomass. Sampled habitats were stands of upland and bottomland hardwood, loblolly pine (Pinus taeda), longleaf pine (P. palustris), and young «10 years) longleaf pine. Hermit Thrush abundance, which was highest in bottomland hardwood habitats, was positively related to total dry mass of fruit pulp. Those results are consistent with the hypothesis that resource availability affects the local distribution of migrant passerines on their wintering grounds. Our results also indicate that bottomland hardwood habitats in the southeastern United States may be especially important to wintering Hermit Thrushes. Yellow-rumped Warbler abundance was correlated with ripe-fruit pulp dry mass of Myrica cerifera, a major source of winter food for that species. However, because M. cerifera pulp dry mass was confounded with habitat type, we could not distinguish the relative importance of fruit resources and habitat for Yellow- rumped Warblers. Our results underscore the importance of fruit to wintering birds. However, the overall percentage of variation in winter bird abundance explained by differences in ripe-fruit biomass was modest, indicating that other factors are also important.

  3. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  4. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  5. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  6. Overtone-based pitch selection in hermit thrush song: Unexpected convergence with scale construction in human music

    PubMed Central

    Doolittle, Emily L.; Gingras, Bruno; Endres, Dominik M.; Fitch, W. Tecumseh

    2014-01-01

    Many human musical scales, including the diatonic major scale prevalent in Western music, are built partially or entirely from intervals (ratios between adjacent frequencies) corresponding to small-integer proportions drawn from the harmonic series. Scientists have long debated the extent to which principles of scale generation in human music are biologically or culturally determined. Data from animal “song” may provide new insights into this discussion. Here, by examining pitch relationships using both a simple linear regression model and a Bayesian generative model, we show that most songs of the hermit thrush (Catharus guttatus) favor simple frequency ratios derived from the harmonic (or overtone) series. Furthermore, we show that this frequency selection results not from physical constraints governing peripheral production mechanisms but from active selection at a central level. These data provide the most rigorous empirical evidence to date of a bird song that makes use of the same mathematical principles that underlie Western and many non-Western musical scales, demonstrating surprising convergence between human and animal “song cultures.” Although there is no evidence that the songs of most bird species follow the overtone series, our findings add to a small but growing body of research showing that a preference for small-integer frequency ratios is not unique to humans. These findings thus have important implications for current debates about the origins of human musical systems and may call for a reevaluation of existing theories of musical consonance based on specific human vocal characteristics. PMID:25368163

  7. Cesium diffusion in graphite

    SciTech Connect

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  8. Sucrose diffusion in aqueous solution.

    PubMed

    Price, Hannah C; Mattsson, Johan; Murray, Benjamin J

    2016-07-28

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  9. PROBABILISTIC CHARACTERIZATION OF ATMOSPHERIC TRANSPORT AND DIFFUSION

    EPA Science Inventory

    The observed scatter of observations about air quality model predictions stems from a combination of naturally occurring stochastic variations that are impossible for any model to explicitly simulate and variations arising from limitations in our knowledge and from imperfect inpu...

  10. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura).

    PubMed

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J; Hansson, Bill S

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  11. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    SciTech Connect

    Nanda, Vikas; Kant, Niti

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  12. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura)

    PubMed Central

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J.; Hansson, Bill S.

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  13. Nectar robbery by a hermit hummingbird: association to floral phenotype and its influence on flowers and network structure.

    PubMed

    Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Dalsgaard, Bo; Sazima, Ivan; Sazima, Marlies

    2015-07-01

    Interactions between flowers and their visitors span the spectrum from mutualism to antagonism. The literature is rich in studies focusing on mutualism, but nectar robbery has mostly been investigated using phytocentric approaches focused on only a few plant species. To fill this gap, we studied the interactions between a nectar-robbing hermit hummingbird, Phaethornis ruber, and the array of flowers it visits. First, based on a literature review of the interactions involving P. ruber, we characterized the association of floral larceny to floral phenotype. We then experimentally examined the effects of nectar robbing on nectar standing crop and number of visits of the pollinators to the flowers of Canna paniculata. Finally, we asked whether the incorporation of illegitimate interactions into the analysis affects plant-hummingbird network structure. We identified 97 plant species visited by P. ruber and found that P. ruber engaged in floral larceny in almost 30% of these species. Nectar robbery was especially common in flowers with longer corolla. In terms of the effect on C. paniculata, the depletion of nectar due to robbery by P. ruber was associated with decreased visitation rates of legitimate pollinators. At the community level, the inclusion of the illegitimate visits of P. ruber resulted in modifications of how modules within the network were organized, notably giving rise to a new module consisting of P. ruber and mostly robbed flowers. However, although illegitimate visits constituted approximately 9% of all interactions in the network, changes in nestedness, modularity, and network-level specialization were minor. Our results indicate that although a flower robber may have a strong effect on the pollination of a particular plant species, the inclusion of its illegitimate interactions has limited capacity to change overall network structure. PMID:25740333

  14. A GIS Model Predicting Potential Distributions of a Lineage: A Test Case on Hermit Spiders (Nephilidae: Nephilengys)

    PubMed Central

    Năpăruş, Magdalena; Kuntner, Matjaž

    2012-01-01

    Background Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. Methodology/Principal Findings We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Conclusions Our model is a customizable GIS tool intended to predict current and future potential distributions of globally

  15. Vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Senoo, Y.

    The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.

  16. Jovian atmospheres

    SciTech Connect

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers.

  17. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  18. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  19. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    The objectives of this three year proposal are: (1) to calculate the likely diffusive flux of Ar and He from the interior of Mercury for representative crustal compositions; (2) compute a reasonable estimate of the fractional escape flux of photoions for the likely range of field conditions; and (3) to calculate the capture rate of solar wind ions into the atmosphere. The morphology of the magnetosphere in response to the solar wind and the IMF is the crucial boundary condition for the flux of ions to the surface. We have tackled problem (1) using a multipath diffusion code, and problems (2) and (3) using a combination of MHD and kinetic plasma dynamics.

  20. Ti Diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2006-12-01

    Diffusion of Ti under anhydrous conditions at 1 atmosphere and under fluid-present conditions at 1.1-1.2 GPa has been measured in natural zircon. The source of diffusant for 1-atm experiments was a ZrO2- TiO2-ZrSiO4 mixture, with experiments run in Pt capsules. Diffusion experiments conducted in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source of ground TiO2, ZrSiO4 and SiO2, with oxalic acid added to produce H2O-CO2 vapor and partially melt the solid source material, yielding an assemblage of rutile + zircon + melt + vapor. Resonant nuclear reaction analysis (NRA) with the nuclear reaction ^{48}Ti(p,Γ)^{49}V was used to measure diffusion profiles for both sets of experiments. The following Arrhenius relation was obtained for Ti diffusion normal to c over the temperature range 1350-1550C at one atmosphere: DTi = 3.3x102 exp(-754 ± 56 kJ mol-1 /RT) m2sec-1 Ti diffusivities were found to be similar for experiments run under fluid-present conditions. A fit to all of the data yields the Arrhenius relation D = 1.3x103 exp(-741 ± 46 kJ mol-1 /RT) m2sec-1. These data suggest that zircon should be extremely retentive of Ti chemical signatures, indicating that the recently developed Ti-in-zircon crystallization geothermometer (Watson and Harrison, 2005; Watson et al., 2006) will be quite robust in preserving temperatures of zircon crystallization. Titanium diffuses somewhat faster in zircon than larger tetravalent cations U, Th, and Hf, but considerably more slowly than Pb, the REE, and oxygen; hence Ti crystallization temperatures may be retained under circumstances when radiometric ages or other types of geochemical information are lost. Watson EB, Harrison TM (2005) Science 308, 841-844. Watson EB, Wark DA, Thomas JB (2006) CMP(in press).

  1. Trade-offs between predator avoidance and electric shock avoidance in hermit crabs demonstrate a non-reflexive response to noxious stimuli consistent with prediction of pain.

    PubMed

    Magee, Barry; Elwood, Robert W

    2016-09-01

    Arthropods have long been thought to respond to noxious stimuli by reflex reaction. One way of testing if this is true is to provide the animal with a way to avoid the stimulus but to vary the potential cost of avoidance. If avoidance varies with potential cost then a decision making process is evident and the behaviour is not a mere reflex. Here we examine the responses of hermit crabs to electric shock within their shell when also exposed to predator or non-predator odours or to no odour. The electric shocks start with low voltage but increase in voltage with each repetition to determine how odour affects the voltage at which the shell is abandoned. There was no treatment effect on the voltage at which hermit crabs left their shells, however, those exposed to predator odours were less likely to evacuate their shells compared with no odour or low concentrations of non-predator odour. However, highly concentrated non-predator also inhibited evacuation. The data show that these crabs trade-off avoidance of electric shock with predator avoidance. They are thus not responding purely by reflex and the data are thus consistent with predictions of pain but do not prove pain. PMID:27374025

  2. Jupiter's outer atmosphere.

    NASA Technical Reports Server (NTRS)

    Brice, N. M.

    1973-01-01

    The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Allen belt is attributed to solar wind particles diffused in toward the planet by dynamo electric fields from ionospheric neutral winds, and the consequences of this theory are indicated.

  3. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  4. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  5. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  6. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  7. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727

  8. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  9. Diffusion of Ca and Mg in Calcite

    SciTech Connect

    Cygan, R.T.; Fisler, D.K.

    1999-02-10

    The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.

  10. A quantitative determination of air-water heat fluxes in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year

    NASA Astrophysics Data System (ADS)

    Kyper, Nicholas D.

    An extensive heat flux study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual heat fluxes on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) heat fluxes are calculated. The incident heat flux is the dominate term in the net flux, accounting for 93% of the variance found in Qn and producing a heat gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of heat in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of heat within the lake. The latent and blackbody heat fluxes produce the largest losses of heat in the net heat flux with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible heat flux is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net heat produces a net gain of heat of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to air temperature, surface water temperature, and wind speed data, as well as data from the five heat fluxes. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three