Science.gov

Sample records for herpes simplex type-1

  1. Human Herpes Simplex Virus Type 1 in Confiscated Gorilla

    PubMed Central

    Oxford, Kristie L.; Gardner-Roberts, David; Kinani, Jean-Felix; Spelman, Lucy; Barry, Peter A.; Cranfield, Michael R.; Lowenstine, Linda J.

    2014-01-01

    In 2007, we detected human herpes simplex virus type 1, which caused stomatitis, in a juvenile confiscated eastern lowland gorilla (Gorilla beringei graueri) that had a high degree of direct contact with human caretakers. Our findings confirm that pathogens can transfer between nonhuman primate hosts and humans. PMID:25341185

  2. Human herpes simplex virus type 1 in confiscated gorilla.

    PubMed

    Gilardi, Kirsten V K; Oxford, Kristie L; Gardner-Roberts, David; Kinani, Jean-Felix; Spelman, Lucy; Barry, Peter A; Cranfield, Michael R; Lowenstine, Linda J

    2014-11-01

    In 2007, we detected human herpes simplex virus type 1, which caused stomatitis, in a juvenile confiscated eastern lowland gorilla (Gorilla beringei graueri) that had a high degree of direct contact with human caretakers. Our findings confirm that pathogens can transfer between nonhuman primate hosts and humans. PMID:25341185

  3. Burning mouth syndrome due to herpes simplex virus type 1.

    PubMed

    Nagel, Maria A; Choe, Alexander; Traktinskiy, Igor; Gilden, Don

    2015-01-01

    Burning mouth syndrome is characterised by chronic orofacial burning pain. No dental or medical cause has been found. We present a case of burning mouth syndrome of 6 months duration in a healthy 65-year-old woman, which was associated with high copy numbers of herpes simplex virus type 1 (HSV-1) DNA in the saliva. Her pain resolved completely after antiviral treatment with a corresponding absence of salivary HSV-1 DNA 4 weeks and 6 months later. PMID:25833911

  4. Herpes simplex virus type 1 encephalitis in acquired immunodeficiency syndrome.

    PubMed

    Chrétien, F; Bélec, L; Hilton, D A; Flament-Saillour, M; Guillon, F; Wingertsmann, L; Baudrimont, M; de Truchis, P; Keohane, C; Vital, C; Love, S; Gray, F

    1996-10-01

    Herpes simplex (HSV) infection of the central nervous system is uncommon in AIDS and usually has an atypical topography. This review is centred around the case of a 49-year-old homosexual patient with AIDS who died from diffuse encephalopathy. Neuropathological examination revealed necrotic and haemorrhagic changes involving both temporal lobes, insulae and cingulate gyri. Cowdry type A intranuclear inclusion bodies were abundant but inflammation was minimal. Electron microscopy confirmed characteristic herpes virus particles. Immunocyto-chemistry was positive for HSV type 1 and 2. In situ hybridization and PCR, however, were positive for HSV type 1 but excluded HSV type 2. There was associated cytomegalovirus ventriculitis but clearly separated from HSV encephalitis. There were no histological features of HIV encephalitis and HIV could not be demonstrated by immunocytochemistry or by PCR to demonstrate proviral DNA. Apoptotic neurons were numerous in areas with a severe macrophage reaction. Only two pathological cases with characteristic limbic distribution and necrotic haemorrhagic histologic have been reported previously. The rarity of these reports suggests that in advanced AIDS, the immune reaction causing a typical necrotizing encephalitis cannot be mounted. Distinction between HSV type 1 and 2 infection may be difficult by immunocytochemistry and usually requires in situ hybridization, tissue culture or PCR. In AIDS patients, HSV-1 has been identified as responsible for encephalitis whereas HSV-2 has been more responsible for myelitis. Associated productive HIV infection of the CNS was found in none of the cases. In contrast, cytomegalovirus encephalitis was found in nine of 11 cases of AIDS-associated HSV encephalitis. PMID:8930949

  5. Isolation of a protein kinase induced by herpes simplex virus type 1

    SciTech Connect

    Blue, W.T.; Stobbs, D.G.

    1981-04-01

    Researchers have isolated a new cyclic AMP-independent protein kinase activity induced in HeLa cells by infection with herpes simplex virus type 1. Induction of the enzyme does not occur in cells treated with cycloheximide at the time of infection, or in cells infected with UV-inactivated herpes simplex virus type 1. The amount of enzyme induced in infected cells is dependent upon the multiplicity of infection. An enzyme with identical properties to the appearing in infected HeLa cells is also induced by herpes simplex virus type 1 in BHK cells.

  6. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    NASA Astrophysics Data System (ADS)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  7. Structure and origin of defective genomes contained in serially passaged herpes simplex virus type 1 (Justin).

    PubMed Central

    Locker, H; Frenkel, N

    1979-01-01

    Restriction enzyme and hybridization analyses have revealed that high-density DNA prepared from passage 15 of serially passaged herpes simplex virus type 1 (Justin) contains three major classes of modified viral DNA molecules, each composed of distinct but closely related types of repeate units. The DNA sequences within the three types of repeat units are colinear with the DNA sequences located at the right end (between coordinates 0.94 and 1.0) of the parental herpes simplex virus type 1 genome. Thus, the three types of repeat units each contain the entire repeat sequence (ac) (which brackets the unique sequences of the small [S] component of herpes simplex virus type 1 DNA) and differ only with respect to the amount of unique S sequences which they contain. The three classes of high-density DNA molecules were found to be stably propagated between passages 6 and 15 of this series. Images PMID:221666

  8. 75 FR 59611 - Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... final rule that appeared in the Federal Register of August 25, 2009 (74 FR 42773). The direct final rule... INFORMATION: In the Federal Register of August 25, 2009 (74 FR 42773), FDA solicited comments concerning the... Herpes Simplex Virus Types 1 and 2 Serological Assays; Confirmation of Effective Date AGENCY: Food...

  9. Inhibition of topoisomerase II by ICRF-193 prevents efficient replication of herpes simplex virus type 1.

    PubMed Central

    Hammarsten, O; Yao, X; Elias, P

    1996-01-01

    Cellular topoisomerase II is specifically inactivated by the drug ICRF-193. This compound turns topoisomerase II into a closed clamp that is unable to cleave DNA. We have investigated the effects of this inhibitor on the replication of herpes simplex virus type 1. We show that ICRF-193 at low multiplicities of infection dramatically inhibits viral DNA synthesis and the production of infectious virus. The inhibition is less efficient at high multiplicities of infection. In addition, inhibition of viral DNA synthesis was observed only when ICRF-193 was present during the first 4 h of the infectious cycle. The transient replication of plasmids containing a herpes simplex virus type 1 origin of DNA replication, oriS, was affected by ICRF-193 in the same way. In contrast, neither cellular DNA synthesis nor replication of plasmids containing a simian virus 40 origin of DNA replication was inhibited. The observed effect on herpes simplex virus DNA replication was not caused by a decreased transcription of replication genes inasmuch as the levels of UL8, UL9, UL29, and UL30 rmRNAs were unaffected by the drug. These results suggest that topoisomerase II plays a vital role during the replication of herpes simplex virus type 1 DNA. We speculate that topoisomerase II is involved in the decatenation of newly synthesized daughter molecules. PMID:8676478

  10. Herpes Simplex

    MedlinePlus

    ... is an infection that is caused by a herpes simplex virus (HSV). Oral herpes causes cold sores around the mouth or face. ... affects the genitals, buttocks or anal area. Other herpes infections can affect the eyes, skin, or other parts of the body. The virus can be dangerous in newborn babies or in ...

  11. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    SciTech Connect

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells.

  12. Herpes simplex virus type 1 infection in two pet marmosets in Japan.

    PubMed

    Imura, Kei; Chambers, James Kenn; Uchida, Kazuyuki; Nomura, Shunsuke; Suzuki, Satoshi; Nakayama, Hiroyuki; Miwa, Yasutsugu

    2014-12-01

    An 8-month-old common marmoset (Callithrix jacchus) was presented with tic-like symptoms, and a 2-year-old pigmy marmoset (Callithrix pygmaea) was presented with dyspnea and hypersalivation. Both monkeys died within a few days, and necropsies were performed. Histopathological examinations revealed ulcerative stomatitis with epithelial cell swelling and eosinophilic intranuclear inclusion bodies in the oral epithelium of both cases. In the central and peripheral nervous systems, neuronal cell degeneration with intranuclear inclusion bodies was observed. Immunohistochemical examination using anti-herpes simplex virus type 1 antibody revealed virus antigens in both cases. Both animals had been kept as pets with limited exposure to the ambient environment except via their owners. Therefore, herpes simplex virus type-1 was probably acquired from close contact with their owners. PMID:25649955

  13. Herpes Simplex Virus Type 1 Infection in Two Pet Marmosets in Japan

    PubMed Central

    IMURA, Kei; CHAMBERS, James Kenn; UCHIDA, Kazuyuki; NOMURA, Shunsuke; SUZUKI, Satoshi; NAKAYAMA, Hiroyuki; MIWA, Yasutsugu

    2014-01-01

    An 8-month-old common marmoset (Callithrix jacchus) was presented with tic-like symptoms, and a 2-year-old pigmy marmoset (Callithrix pygmaea) was presented with dyspnea and hypersalivation. Both monkeys died within a few days, and necropsies were performed. Histopathological examinations revealed ulcerative stomatitis with epithelial cell swelling and eosinophilic intranuclear inclusion bodies in the oral epithelium of both cases. In the central and peripheral nervous systems, neuronal cell degeneration with intranuclear inclusion bodies was observed. Immunohistochemical examination using anti-herpes simplex virus type 1 antibody revealed virus antigens in both cases. Both animals had been kept as pets with limited exposure to the ambient environment except via their owners. Therefore, herpes simplex virus type-1 was probably acquired from close contact with their owners. PMID:25649955

  14. Early events in herpes simplex virus type 1 infection: photosensitivity of fluorescein isothiocyanate-treated virions.

    PubMed Central

    DeLuca, N; Bzik, D; Person, S; Snipes, W

    1981-01-01

    Herpes simplex virus type 1 is photosensitized by treatment with fluorescein isothiocyante (FITC). The inactivation of FITC-treated virions upon subsequent exposure to light is inhibited by the presence of sodium azide, suggesting the involvement of singlet oxygen in the process. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that treatment with FITC plus light induces crosslinks in viral envelope glycoproteins. Treatment of virions with high concentrations of FITC (50 micrograms/ml) plus light causes a reduction in the adsorption of the virus to monolayers of human embryonic lung cells. For lower concentrations of FITC (10 micrograms/ml) plus light, treated virions adsorb to the host cells, but remain sensitive to light until entry occurs. The loss of light sensitivity coincides with the development of resistance to antibodies. These results are most consistent with a mechanism of entry for herpes simplex virus involving fusion of the viral membrane with the plasma membrane of the host cell. Images PMID:6262783

  15. Early events in herpes simplex virus type 1 infection: photosensitivity of fluorescein isothiocyanate-treated virions.

    PubMed

    DeLuca, N; Bzik, D; Person, S; Snipes, W

    1981-02-01

    Herpes simplex virus type 1 is photosensitized by treatment with fluorescein isothiocyante (FITC). The inactivation of FITC-treated virions upon subsequent exposure to light is inhibited by the presence of sodium azide, suggesting the involvement of singlet oxygen in the process. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that treatment with FITC plus light induces crosslinks in viral envelope glycoproteins. Treatment of virions with high concentrations of FITC (50 micrograms/ml) plus light causes a reduction in the adsorption of the virus to monolayers of human embryonic lung cells. For lower concentrations of FITC (10 micrograms/ml) plus light, treated virions adsorb to the host cells, but remain sensitive to light until entry occurs. The loss of light sensitivity coincides with the development of resistance to antibodies. These results are most consistent with a mechanism of entry for herpes simplex virus involving fusion of the viral membrane with the plasma membrane of the host cell. PMID:6262783

  16. Early events in herpes simplex virus type 1 infection: photosensitivity of fluorescein isothiocyanate-treated virions

    SciTech Connect

    DeLuca, N.; Bzik, D.; Person, S.; Snipes, W.

    1981-02-01

    Herpes simplex virus type 1 is photosensitized by treatment with fluorescein isothiocyanate (FITC). The inactivation of FITC-treated virions upon subsequent exposure to light is inhibited by the presence of sodium azide, suggesting the involvement of singlet oxygen in the process. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that treatment with FITC plus light induces crosslinks in viral envelope glycoproteins. Treatment of virions with high concentrations of FITC (50 ..mu..g/ml) plus light causes a reduction in the adsorption of the virus to monolayers of human embryonic lung cells. For lower concentrations of FITC (10 ..mu..g/ml) plus light, treated virions adsorb to the host cells, but remain sensitive to light until entry occurs. The loss of light sensitivity coincides with the development of resistance to antibodies. These results are most consistent with a mechanism of entry for herpes simplex virus involving fusion of the viral membrane with the plasma membrane of the host cell.

  17. Nongenital herpes simplex virus.

    PubMed

    Usatine, Richard P; Tinitigan, Rochelle

    2010-11-01

    Nongenital herpes simplex virus type 1 is a common infection usually transmitted during childhood via nonsexual contact. Most of these infections involve the oral mucosa or lips (herpes labialis). The diagnosis of an infection with herpes simplex virus type 1 is usually made by the appearance of the lesions (grouped vesicles or ulcers on an erythematous base) and patient history. However, if uncertain, the diagnosis of herpes labialis can be made by viral culture, polymerase chain reaction, serology, direct fluorescent antibody testing, or Tzanck test. Other nonoral herpes simplex virus type 1 infections include herpetic keratitis, herpetic whitlow, herpes gladiatorum, and herpetic sycosis of the beard area. The differential diagnosis of nongenital herpes simplex virus infection includes aphthous ulcers, acute paronychia, varicella-zoster virus infection, herpangina, herpes gestationis (pemphigoid gestationis), pemphigus vulgaris, and Behçet syndrome. Oral acyclovir suspension is an effective treatment for children with primary herpetic gingivostomatitis. Oral acyclovir, valacyclovir, and famciclovir are effective in treating acute recurrence of herpes labialis (cold sores). Recurrences of herpes labialis may be diminished with daily oral acyclovir or valacyclovir. Topical acyclovir, penciclovir, and docosanol are optional treatments for recurrent herpes labialis, but they are less effective than oral treatment. PMID:21121552

  18. The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro.

    PubMed

    Minami, Masato; Kita, Masakazu; Nakaya, Takaaki; Yamamoto, Toshiro; Kuriyama, Hiroko; Imanishi, Jiro

    2003-01-01

    The antiviral effect of 12 essential oils on herpes simplex virus type-1 (HSV-1) replication was examined in vitro. The replication ability of HSV-1 was suppressed by incubation of HSV-1 with 1% essential oils at 4 C for 24 hr. Especially, lemongrass completely inhibited the viral replication even at a concentration of 0.1%, and its antiviral activity was dependent on the concentrations of the essential oil. When Vero cells were treated with the essential oil before or after viral adsorption, no antiviral activity was found, which suggests that the antiviral activity of essential oils including lemongrass may be due to the direct interaction with virions. PMID:14584615

  19. Survival of herpes simplex virus type 1 in saliva and tap water contaminating some common objects.

    PubMed

    Bardell, D

    1993-01-01

    Survival at room temperature (21-24 degrees C) of herpes simplex virus type 1 (HSV-1) in saliva on plastic doorknobs and chrome-plated tap handles was investigated. There was no loss of infectious virus before 30 min. Between 30 and 60 min there was a 2-log drop in titre, and infectious virus could still be recovered after 2 h, the longest period tested. The marked drop in titre coincided with drying of the saliva. There was no decline in titre of infectious HSV-1 in a humid atmosphere in which the saliva remained liquid. Similar results were seen with HSV-1 in tap water on tap handles. PMID:8395643

  20. Social Stress and the Reactivation of Latent Herpes Simplex Virus Type 1

    NASA Astrophysics Data System (ADS)

    Padgett, David A.; Sheridan, John F.; Dorne, Julianne; Berntson, Gary G.; Candelora, Jessica; Glaser, Ronald

    1998-06-01

    Psychological stress is thought to contribute to reactivation of latent herpes simplex virus (HSV). Although several animal models have been developed in an effort to reproduce different pathogenic aspects of HSV keratitis or labialis, until now, no good animal model existed in which application of a psychological laboratory stressor results in reliable reactivation of the virus. Reported herein, disruption of the social hierarchy within colonies of mice increased aggression among cohorts, activated the hypothalamic-pituitary-adrenal axis, and caused reactivation of latent HSV type 1 in greater than 40% of latently infected animals. However, activation of the hypothalamic-pituitary-adrenal axis using restraint stress did not activate the latent virus. Thus, the use of social stress in mice provides a good model in which to investigate the neuroendocrine mechanisms that underlie behaviorally mediated reactivation of latent herpes-viruses.

  1. Striated muscle involvement in experimental oral infection by herpes simplex virus type 1.

    PubMed

    Gonzalez, María Inés; Sanjuan, Norberto A

    2013-07-01

    Herpes simplex virus type 1 is one of the most frequent causes of oral infection in humans, especially during early childhood. Several experimental models have been developed to study the pathogenesis of this virus but all of them employed adult animals. In this work, we developed an experimental model that uses mice younger than 4 days old, to more closely resemble human infection. Mice were infected subcutaneously with the prototype strain McIntyre of Herpes simplex-1, and the progression of infection was studied by immunoperoxidase. All animals died within 24-72 h post-infection, while viral antigens were found in the oral epithelium, nerves and brain. The most striking result was the finding of viral antigens in the nucleus and cytoplasm of cells belonging to striated muscles. Organotypic cultures of striated muscles were performed, and viral replication was observed in them by immunocytochemistry, electron microscopy and viral isolation. We conclude that the infection of striated muscles is present from the onset of oral infection and, eventually, could explain some clinical observations in humans. PMID:23445118

  2. Herpes Simplex Virus (HSV) in Infants and Babies

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Herpes Simplex Virus (HSV) A parent's guide for infants and babies ... Herpes infections are caused by both herpes simplex virus type 1 (HSV-1) and herpes simplex virus ...

  3. Chemical Sympathectomy Increases Susceptibility to Ocular Herpes Simplex Virus Type 1 Infection

    PubMed Central

    Templeton, Amanda; Nguyen, Gabrielle; Ash, John D.; Straub, Rainer H.; Carr, Daniel J. J.

    2008-01-01

    The cornea is one of the most highly innervated tissues in the mammalian host. We hypothesized changes to cornea innervation through chemical sympathectomy would significantly alter the host response to the neurotropic viral pathogen, herpes simplex virus type 1 (HSV-1) following ocular infection. Mice treated with 6-hydroxydopamine hydrobromide displayed reduced tyrosine hydroxylase-positive fibers residing in the cornea. Sympathectomized mice were also found to show a transient rise in virus recovered in infected tissues and succumbed to infection in greater numbers. Whereas there were no differences in infiltrating leukocyte populations including HSV-1-specific cytotoxic T lymphocytes in the infected tissue, an increase in substance P and a decrease in IFN-γ levels in the trigeminal ganglion but not brain stem of sympathectomized mice were noted. Sympathectomized mice treated with the neurokinin-1 receptor antagonist L703,606 had delayed mortality implicating the involvement of substance P in HSV-1-mediated death. PMID:18495255

  4. Resistant herpes simplex virus type 1 infection: an emerging concern after allogeneic stem cell transplantation.

    PubMed

    Chen, Y; Scieux, C; Garrait, V; Socié, G; Rocha, V; Molina, J M; Thouvenot, D; Morfin, F; Hocqueloux, L; Garderet, L; Espérou, H; Sélimi, F; Devergie, A; Leleu, G; Aymard, M; Morinet, F; Gluckman, E; Ribaud, P

    2000-10-01

    Fourteen cases of severe acyclovir-resistant herpes simplex virus type 1 (HSV-1) infection, 7 of which showed resistance to foscarnet, were diagnosed among 196 allogeneic stem cell transplant recipients within a 29-month period. Recipients of unrelated stem cell transplants were at higher risk. All patients received foscarnet; 8 subsequently received cidofovir. Strains were initially foscarnet-resistant in 3 patients and secondarily so in 4 patients. In vitro resistance to acyclovir or foscarnet was associated with clinical failure of these drugs; however, in vitro susceptibility to foscarnet was associated with complete response in only 5 of 7 patients. No strain from any of the 7 patients was resistant in vitro to cidofovir; however, only 3 of 7 patients achieved complete response. Therefore, acyclovir- and/or foscarnet-resistant HSV-1 infections after allogeneic stem cell transplantation have become a concern; current strategies need to be reassessed and new strategies must be evaluated in this setting. PMID:11049772

  5. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    SciTech Connect

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C. . E-mail: glorioso@pitt.edu

    2007-04-10

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection.

  6. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro.

    PubMed

    Schuhmacher, A; Reichling, J; Schnitzler, P

    2003-01-01

    The virucidal effect of peppermint oil, the essential oil of Mentha piperita, against herpes simplex virus was examined. The inhibitory activity against herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) was tested in vitro on RC-37 cells using a plaque reduction assay. The 50% inhibitory concentration (IC50) of peppermint oil for herpes simplex virus plaque formation was determined at 0.002% and 0.0008% for HSV-1 and HSV-2, respectively. Peppermint oil exhibited high levels of virucidal activity against HSV-1 and HSV-2 in viral suspension tests. At noncytotoxic concentrations of the oil, plaque formation was significantly reduced by 82% and 92% for HSV-1 and HSV-2, respectively. Higher concentrations of peppermint oil reduced viral titers of both herpesviruses by more than 90%. A clearly time-dependent activity could be demonstrated, after 3 h of incubation of herpes simplex virus with peppermint oil an antiviral activity of about 99% could be demonstrated. In order to determine the mode of antiviral action of the essential oil, peppermint oil was added at different times to the cells or viruses during infection. Both herpesviruses were significantly inhibited when herpes simplex virus was pretreated with the essential oil prior to adsorption. These results indicate that peppermint oil affected the virus before adsorption, but not after penetration into the host cell. Thus this essential oil is capable to exert a direct virucidal effect on HSV. Peppermint oil is also active against an acyclovir resistant strain of HSV-1 (HSV-1-ACV(res)), plaque formation was significantly reduced by 99%. Considering the lipophilic nature of the oil which enables it to penetrate the skin, peppermint oil might be suitable for topical therapeutic use as virucidal agent in recurrent herpes infection. PMID:13678235

  7. Oligonucleotides Designed to Inhibit TLR9 Block Herpes Simplex Virus type 1 Infection at Multiple Steps

    PubMed Central

    Sauter, Monica M.; Gauger, Joshua J. L.; Brandt, Curtis R.

    2014-01-01

    Herpes simplex virus type 1 (HSV-1) is an important human pathogen which requires activation of nuclear factor–kappa B (NFκB) during its replication cycle. The persistent nature of HSV-1 infection, and the emergence of drug-resistant strains, highlights the importance of research to develop new antiviral agents. Toll-like receptors (TLR) play a prominent role during the early antiviral response by recognizing viral nucleic acid and gene products, activating NFκB, and stimulating the production of inflammatory cytokines. We demonstrate a significant effect on HSV-1 replication in ARPE-19 and Vero cells when oligonucleotides designed to inhibit TLR9 are added 2 hours prior to infection. A greater than 90% reduction in the yield of infectious virus was achieved at oligonucleotide concentrations of 10 to 20 micromolar. TLR9 inhibitory oligonucleotides prevented expression of essential immediate early herpes gene products as determined by immunofluorescence microscopy and Western blotting. TLR9 oligonucleotides also interfered with viral attachment and entry. A TLR9 inhibitory oligonucleotide containing five adjacent guanosine residues (G-ODN) exhibited virucidal activity and inhibited HSV-1 replication when added post-infection. The antiviral effect of the TLR9 inhibitory oligonucleotides did not depend on the presence of TLR9 protein, suggesting a mechanism of inhibition that is not TLR9 specific. TLR9 inhibitory oligonucleotides also reduced NFκB activity in nuclear extracts. Studies using these TLR inhibitors in the context of viral infection should be interpreted with caution. PMID:24995383

  8. Transmission of herpes simplex virus type 1 infection in rugby players.

    PubMed

    White, W B; Grant-Kels, J M

    1984-07-27

    Skin infections, both bacterial and viral, are endemic in contact sports such as wrestling and rugby football. In this report, we describe four cases of extensive cutaneous herpes simplex virus in players on a rugby team. All players had a prodrome of fever, malaise, and anorexia with a weight loss of 3.6 to 9.0 kg. Two players experienced ocular lesions associated with cutaneous vesicular lesions of the face. A third player, who had herpetic lesions on his lower extremity, experienced paresthesias, weakness, and intermittent urinary retention and constipation. All infected players on the team were forwards or members of the "scrum," which suggests a field-acquired infection analogous to the herpetic infections seen in wrestlers (herpes gladiatorum). Considering the serious sequelae of recurrent herpes simplex keratitis, the traumatic skin lesions in rugby football players should be cultured for herpes virus, and infected individuals should be restricted from playing until crusted lesions have disappeared. PMID:6737650

  9. Herpes Simplex Virus (HSV)

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Herpes Simplex Virus (HSV) A parent's guide to condition and treatment ... skin or mouth sores with the herpes simplex virus (HSV) is called primary herpes. This may be ...

  10. Herpes simplex virus type 1 colitis in a patient with common variable immunodeficiency syndrome.

    PubMed

    Dray, Xavier; Treton, Xavier; Mazeron, Marie-Christine; Lavergne-Slove, Anne; Joly, Francisca; Mimram, Dora; Attar, Alain; Tobelem, Gérard; Bouhnik, Yoram

    2006-05-01

    We report on a case of herpes simplex virus (HSV) type 1 colitis in a 69-year-old patient with common variable immunodeficiency syndrome. A treatment with polyvalent immunoglobulins was discontinued in April 2001. In March 2004 she developed chronic diarrhoea related to rectosigmoidal and caecal ulcerations. In November 2004, HSV was recovered in tissue culture from colonic biopsies. Valaciclovir was then started, leading the patient to clinical remission at day 4, and continued for a 6-week course (without any secondary antiviral prophylaxis). Colonic biopsies were negative for HSV by tissue culture and PCR within 3 weeks of antiviral treatment. Intravenous polyvalent immunoglobulin infusions were readministered within the third week of antiviral treatment. She has declared no clinical event since this period. Three months after the antiviral treatment was achieved, a rectosigmoidoscopy showed an ad-integrum macroscopic and histological mucosal healing whereas PCR was negative for HSV in the colonic tissue. As a large proportion of patients with common variable immunodeficiency syndrome present not only as a humoral immunodeficiency but also as a defect in the cellular immunity compartment (with T-cell deficits), HSV, as well as cytomegalovirus, should be investigated in patients with common variable immunodeficiency syndrome presenting colitis. PMID:16607152

  11. Sialylated oligosaccharides O-glycosidically linked to glycoprotein C from herpes simplex virus type 1.

    PubMed

    Dall'Olio, F; Malagolini, N; Speziali, V; Campadelli-Fiume, G; Serafini-Cessi, F

    1985-10-01

    Glycoprotein C (gC) was purified by immunoabsorbent from herpes simplex virus type-1-infected BHK cells labeled with [14C]glucosamine for 11 h and chased for 3 h. Glycopeptides obtained by pronase digestion of gC were fractionated by Bio-Gel filtration and concanavalin A-Sepharose chromatography. Each glycopeptide fraction was analyzed for amino sugar composition by thin-layer chromatography. The majority of radioactivity was recovered as N-acetylglucosamine, but a significant amount of labeled N-acetylgalactosamine was detected and recovered preferentially in some glycopeptide species. Mild alkaline borohydride treatment of the glycopeptides resulted in the release of small degradation products which contained N-acetylgalactosaminitol as the major labeled component and a drastic reduction of N-acetylgalactosamine in the residual glycopeptides. These results demonstrated that gC carries O-glycosidically linked oligosaccharides in addition to the N-linked di- and triantennary glycans previously described (F. Serafini-Cessi, F. Dall'Olio, L. Pereira, and G. Campadelli-Fiume, J. Virol. 51:838-844, 1984). Chromatographic behavior on DEAE-Sephacel chromatography and neuraminidase digestion of O-linked oligosaccharides indicated the presence of two major sialylated species carrying one and two sialic acid residues, respectively. The characterization of a peculiar glycopeptide species supported the notion that some of the O-linked oligosaccharides are bound to a cluster of hydroxyamino acids located near an N-glycosylation site which carries one N-linked diantennary oligosaccharide. PMID:2993643

  12. High Efficiency of Functional Carbon Nanodots as Entry Inhibitors of Herpes Simplex Virus Type 1.

    PubMed

    Barras, Alexandre; Pagneux, Quentin; Sane, Famara; Wang, Qi; Boukherroub, Rabah; Hober, Didier; Szunerits, Sabine

    2016-04-13

    Nanostructures have been lately identified as an efficient therapeutic strategy to modulate viral attachment and entry. The high concentrations of ligands present on nanostructures can considerably enhance affinities toward biological receptors. We demonstrate here the potential of carbon nanodots (C-dots) surface-functionalized with boronic acid or amine functions to interfere with the entry of herpes simplex virus type 1 (HSV-1). C-dots formed from 4-aminophenylboronic acid hydrochloride (4-AB/C-dots) using a modified hydrothermal carbonization are shown to prevent HSV-1 infection in the nanograms per milliliter concentration range (EC50 = 80 and 145 ng mL(-1) on Vero and A549 cells, respectively), whereas the corresponding C-dots formed from phenylboronic acid (B/C-dots) have no effects even at high concentrations. Some of the presented results also suggest that C-dots are specifically acting on the early stage of virus entry through an interaction with the virus and probably the cells at the same time. PMID:27015417

  13. Nucleolin is required for efficient nuclear egress of herpes simplex virus type 1 nucleocapsids.

    PubMed

    Sagou, Ken; Uema, Masashi; Kawaguchi, Yasushi

    2010-02-01

    Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells. PMID:19955312

  14. Structure-function studies of the herpes simplex virus type 1 DNA polymerase.

    PubMed Central

    Haffey, M L; Novotny, J; Bruccoleri, R E; Carroll, R D; Stevens, J T; Matthews, J T

    1990-01-01

    The analysis of the deduced amino acid sequence of the herpes simplex virus type 1 (HSV-1) DNA polymerase reported here suggests that the polymerase structure consists of domains carrying separate biological functions. The HSV-1 enzyme is known to possess 5'-3'-exonuclease (RNase H), 3'-5'-exonuclease, and DNA polymerase catalytic activities. Sequence analysis suggests an arrangement of these activities into distinct domains resembling the organization of Escherichia coli polymerase I. In order to more precisely define the structure and C-terminal limits of a putative catalytic domain responsible for the DNA polymerization activity of the HSV-1 enzyme, we have undertaken in vitro mutagenesis and computer modeling studies of the HSV-1 DNA polymerase gene. Sequence analysis predicts that the major DNA polymerization domain of the HSV-1 enzyme will be contained between residues 690 and 1100, and we present a three-dimensional model of this region, on the basis of the X-ray crystallographic structure of the E. coli polymerase I. Consistent with these structural and modeling studies, deletion analysis by in vitro mutagenesis of the HSV-1 DNA polymerase gene expressed in Saccharomyces cerevisiae has confirmed that certain amino acids from the C terminus (residues 1073 to 1144 and 1177 to 1235) can be deleted without destroying HSV-1 DNA polymerase catalytic activity and that the extreme N-terminal 227 residues are also not required for this activity. Images PMID:2168983

  15. Genetic studies of cell fusion induced by herpes simplex virus type 1

    SciTech Connect

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was a significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.

  16. Recombinant herpes simplex virus type 1 strains with targeted mutations relevant for aciclovir susceptibility

    PubMed Central

    Brunnemann, Anne-Kathrin; Liermann, Kristin; Deinhardt-Emmer, Stefanie; Maschkowitz, Gregor; Pohlmann, Anja; Sodeik, Beate; Fickenscher, Helmut; Sauerbrei, Andreas; Krumbholz, Andi

    2016-01-01

    Here, we describe a novel reliable method to assess the significance of individual mutations within the thymidine kinase (TK) gene of herpes simplex virus type 1 (HSV-1) to nucleoside analogue resistance. Eleven defined single nucleotide polymorphisms that occur in the TK gene of clinical HSV-1 isolates and a fluorescence reporter were introduced into the HSV-1 strain 17+ that had been cloned into a bacterial artificial chromosome. The susceptibility of these different strains to aciclovir, penciclovir, brivudin, and foscarnet was determined with a modified cytopathic effect reduction assay. The strains were also tested for their aciclovir susceptibility by measuring the relative fluorescence intensity as an indicator for HSV-1 replication and by quantifying the virus yield. Our data indicate that the amino acid substitutions R41H, R106H, A118V, L139V, K219T, S276R, L298R, S345P, and V348I represent natural polymorphisms of the TK protein, whereas G61A and P84L mediate broad cross-resistance against aciclovir, penciclovir, brivudin, and susceptibility to foscarnet. This method allows the definition of the resistance genotype of otherwise unclear mutations in the TK gene of HSV-1. Thus, it provides a scientific basis for antiviral testing in clinical isolates of patients suffering from serious diseases and will facilitate testing of new antivirals against HSV-1. PMID:27426251

  17. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  18. Capsaicin-induced reactivation of latent herpes simplex virus type 1 in sensory neurons in culture.

    PubMed

    Hunsperger, Elizabeth A; Wilcox, Christine L

    2003-05-01

    Herpes simplex virus type 1 (HSV-1) produces a life-long latent infection in neurons of the peripheral nervous system, primarily in the trigeminal and dorsal root ganglia. Neurons of these ganglia express high levels of the capsaicin receptor, also known as the vanilloid receptor-1 (VR-1). VR-1 is a non-selective ion channel, found on sensory neurons, that primarily fluxes Ca(2+) ions in response to various stimuli, including physiologically acidic conditions, heat greater than 45 degrees C and noxious compounds such as capsaicin. Using an in vitro neuronal model to study HSV-1 latency and reactivation, we found that agonists of the VR-1 channel - capsaicin and heat - resulted in reactivation of latent HSV-1. Capsaicin-induced reactivation of HSV-1 latently infected neurons was dose-dependent. Additionally, activation of VR-1 at its optimal temperature of 46 degrees C caused a significant increase in virus titres, which could be attenuated with the VR-1 antagonist, capsazepine. VR-1 activation that resulted in HSV-1 reactivation was calcium-dependent, since the calcium chelator BAPTA significantly reduced reactivation following treatment with caspsaicin and forskolin. Taken together, these results suggest that activation of the VR-1 channel, often associated with increases in intracellular calcium, results in HSV-1 reactivation in sensory neurons. PMID:12692270

  19. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication.

    PubMed Central

    Croen, K D

    1993-01-01

    Nitric oxide (NO) has antimicrobial activity against a wide spectrum of infectious pathogens, but an antiviral effect has not been reported. The impact of NO, from endogenous and exogenous sources, on herpes simplex virus type 1 (HSV 1) replication was studied in vitro. HSV 1 replication in RAW 264.7 macrophages was reduced 1,806-fold in monolayers induced to make NO by activation with gamma IFN and LPS. A competitive and a noncompetitive inhibitor of nitric oxide synthetase substantially reduced the antiviral effect of activated RAW macrophages. S-nitroso-L-acetyl penicillamine (SNAP) is a donor of NO and was added to the media of infected monolayers to assess the antiviral properties of NO in the absence of gamma IFN and LPS. A single dose of S-nitroso-L-acetyl penicillamine 3 h after infection inhibited HSV 1 replication in Vero, HEp2, and RAW 264.7 cells in a dose-dependent manner. Neither virucidal nor cytocidal effects of NO were observed under conditions that inhibited HSV 1 replication. Nitric oxide had inhibitory effects, comparable to that of gamma IFN/LPS, on protein and DNA synthesis as well as on cell replication. This report demonstrates that, among its diverse properties, NO has an antiviral effect. PMID:8390481

  20. Enhanced replication of herpes simplex virus type 1 in human cells

    SciTech Connect

    Miller, C.S.; Smith, K.O. )

    1991-02-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate (MMS), methyl methanethiosulfonate (MMTS), ultraviolet light (UV), or gamma radiation (GR)) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of the infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes.

  1. Quantification of the host response proteome after herpes simplex virus type 1 infection.

    PubMed

    Berard, Alicia R; Coombs, Kevin M; Severini, Alberto

    2015-05-01

    Viruses employ numerous host cell metabolic functions to propagate and manage to evade the host immune system. For herpes simplex virus type 1 (HSV1), a virus that has evolved to efficiently infect humans without seriously harming the host in most cases, the virus-host interaction is specifically interesting. This interaction can be best characterized by studying the proteomic changes that occur in the host during infection. Previous studies have been successful at identifying numerous host proteins that play important roles in HSV infection; however, there is still much that we do not know. This study identifies host metabolic functions and proteins that play roles in HSV infection, using global quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling of the host cell combined with LC-MS/MS. We showed differential proteins during early, mid and late infection, using both cytosolic and nuclear fractions. We identified hundreds of differentially regulated proteins involved in fundamental cellular functions, including gene expression, DNA replication, inflammatory response, cell movement, cell death, and RNA post-transcriptional modification. Novel differentially regulated proteins in HSV infections include some previously identified in other virus systems, as well as fusion protein, involved in malignant liposarcoma (FUS) and hypoxia up-regulated 1 protein precursor (HYOU1), which have not been identified previously in any virus infection. PMID:25815715

  2. Repression of host RNA polymerase II transcription by herpes simplex virus type 1.

    PubMed Central

    Spencer, C A; Dahmus, M E; Rice, S A

    1997-01-01

    Lytic infection of mammalian cells with herpes simplex virus type 1 (HSV-1) results in rapid repression of host gene expression and selective activation of the viral genome. This transformation in gene expression is thought to involve repression of host transcription and diversion of the host RNA polymerase (RNAP II) transcription machinery to the viral genome. However, the extent of virus-induced host transcription repression and the mechanisms responsible for these major shifts in transcription specificities have not been examined. To determine how HSV-1 accomplishes repression of host RNAP II transcription, we assayed transcription patterns on several cellular genes in cells infected with mutant and wild-type HSV-1. Our results suggest that HSV-1 represses RNAP II transcription on most cellular genes. However, each cellular gene we examined responds differently to the transcription repressive effects of virus infection, both quantitatively and with respect to the involvement of viral gene products. Virus-induced shutoff of host RNAP II transcription requires expression of multiple immediate-early genes. In contrast, expression of delayed-early and late genes and viral DNA replication appear to contribute little to repression of host cell RNAP II transcription. Modification of RNAP II to the intermediately phosphorylated (II(I)) form appears unlinked to virus-induced repression of host cell transcription. However, full repression of host transcription is correlated with depletion of the hyperphosphorylated (IIO) form of RNAP II. PMID:9032335

  3. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012

    PubMed Central

    Looker, Katharine J.; Magaret, Amalia S.; May, Margaret T.; Turner, Katherine M. E.; Vickerman, Peter; Gottlieb, Sami L.; Newman, Lori M.

    2015-01-01

    Background Herpes simplex virus type 1 (HSV-1) commonly causes orolabial ulcers, while HSV-2 commonly causes genital ulcers. However, HSV-1 is an increasing cause of genital infection. Previously, the World Health Organization estimated the global burden of HSV-2 for 2003 and for 2012. The global burden of HSV-1 has not been estimated. Methods We fitted a constant-incidence model to pooled HSV-1 prevalence data from literature searches for 6 World Health Organization regions and used 2012 population data to derive global numbers of 0-49-year-olds with prevalent and incident HSV-1 infection. To estimate genital HSV-1, we applied values for the proportion of incident infections that are genital. Findings We estimated that 3709 million people (range: 3440–3878 million) aged 0–49 years had prevalent HSV-1 infection in 2012 (67%), with highest prevalence in Africa, South-East Asia and Western Pacific. Assuming 50% of incident infections among 15-49-year-olds are genital, an estimated 140 million (range: 67–212 million) people had prevalent genital HSV-1 infection, most of which occurred in the Americas, Europe and Western Pacific. Conclusions The global burden of HSV-1 infection is huge. Genital HSV-1 burden can be substantial but varies widely by region. Future control efforts, including development of HSV vaccines, should consider the epidemiology of HSV-1 in addition to HSV-2, and especially the relative contribution of HSV-1 to genital infection. PMID:26510007

  4. Invasion of Herpes Simplex Virus Type 1 into Murine Epidermis: An Ex Vivo Infection Study.

    PubMed

    Rahn, Elena; Petermann, Philipp; Thier, Katharina; Bloch, Wilhelm; Morgner, Jessica; Wickström, Sara A; Knebel-Mörsdorf, Dagmar

    2015-12-01

    Herpes simplex virus type 1 (HSV-1) invades its human host via the skin or mucosa. We aim to understand how HSV-1 overcomes the barrier function of the host epithelia, and for this reason, we established an ex vivo infection assay initially with murine skin samples. Here, we report how tissue has to be prepared to be susceptible to HSV-1 infection. Most efficient infection of the epidermis was achieved by removing the dermis. HSV-1 initially invaded the basal epidermal layer, and from there, spreading to the suprabasal layers was observed. Strikingly, in resting stage hair follicles, only the hair germ was infected, whereas the quiescent bulge stem cells (SCs) were resistant to infection. However, during the growth phase, infected cells were also detected in the activated bulge SCs. We demonstrated that cell proliferation was not a precondition for HSV-1 invasion, but SC activation was required as shown by infection of aberrantly activated bulge SCs in integrin-linked kinase (ILK)-deficient hair follicles. These results suggest that the status of the bulge SCs determines whether HSV-1 can reach its receptors, whereas the receptors on basal keratinocytes are accessible irrespective of their proliferation status. PMID:26203638

  5. Structures of herpes simplex virus type 1 genes required for replication of virus DNA.

    PubMed Central

    McGeoch, D J; Dalrymple, M A; Dolan, A; McNab, D; Perry, L J; Taylor, P; Challberg, M D

    1988-01-01

    Recently, a method has been developed to identify regions in the genome of herpes simplex virus type 1 (HSV-1) which contain genes required for DNA synthesis from an HSV-1 origin of DNA replication, and seven genomic loci have been identified as representing the necessary and sufficient gene set for such replication (C. A. Wu, N. J. Nelson, D. J. McGeoch, and M. D. Challberg, J. Virol. 62:435-443, 1988). Two of the loci represent the well-known genes for DNA polymerase and major DNA-binding protein, but the remainder had little or no previous characterization. In this report we present the DNA sequences of the five newly identified genes and their deduced transcript organizations and encoded amino acid sequences. These genes were designated UL5, UL8, UL9, UL42, and UL52 and were predicted to encode proteins with molecular weights of, respectively, 99,000, 80,000, 94,000, 51,000, and 114,000. All of these genes had clear counterparts in the genome of the related alphaherpesvirus varicella-zoster virus, but only UL5 and UL52 were detectably conserved in the distantly related gammaherpesvirus Epstein-Barr virus, as judged by amino acid sequence similarity. The sequence of the UL5 protein, and of its counterparts in the other viruses, contained a region closely resembling known ATP-binding sites; this could be indicative, for instance, of a helicase or primase activity. PMID:2826807

  6. Recombinant herpes simplex virus type 1 strains with targeted mutations relevant for aciclovir susceptibility.

    PubMed

    Brunnemann, Anne-Kathrin; Liermann, Kristin; Deinhardt-Emmer, Stefanie; Maschkowitz, Gregor; Pohlmann, Anja; Sodeik, Beate; Fickenscher, Helmut; Sauerbrei, Andreas; Krumbholz, Andi

    2016-01-01

    Here, we describe a novel reliable method to assess the significance of individual mutations within the thymidine kinase (TK) gene of herpes simplex virus type 1 (HSV-1) to nucleoside analogue resistance. Eleven defined single nucleotide polymorphisms that occur in the TK gene of clinical HSV-1 isolates and a fluorescence reporter were introduced into the HSV-1 strain 17(+) that had been cloned into a bacterial artificial chromosome. The susceptibility of these different strains to aciclovir, penciclovir, brivudin, and foscarnet was determined with a modified cytopathic effect reduction assay. The strains were also tested for their aciclovir susceptibility by measuring the relative fluorescence intensity as an indicator for HSV-1 replication and by quantifying the virus yield. Our data indicate that the amino acid substitutions R41H, R106H, A118V, L139V, K219T, S276R, L298R, S345P, and V348I represent natural polymorphisms of the TK protein, whereas G61A and P84L mediate broad cross-resistance against aciclovir, penciclovir, brivudin, and susceptibility to foscarnet. This method allows the definition of the resistance genotype of otherwise unclear mutations in the TK gene of HSV-1. Thus, it provides a scientific basis for antiviral testing in clinical isolates of patients suffering from serious diseases and will facilitate testing of new antivirals against HSV-1. PMID:27426251

  7. Model for in vivo analysis of immune response to Herpes Simplex virus, type 1 infections

    SciTech Connect

    Alexander, T.S.

    1987-01-01

    A murine model was developed which allowed study of autologous humoral and cellular immune responses (CCMI) to a Herpes Simplex Virus, type 1 (HSV-1) infection. Lethal irradiation was used to render BAlb/c mice non-responsive to T-dependent and T-independent antigens. The immune system of the irradiated animals was reconstituted with either HSV-1 primed or non-immune syngeneic spleen cells and the mice were infected with HSV-1 in the rear footpad. Whereas unirradiated mice showed no symptoms of infection, X-irradiated animals followed a clinical course of lesions, monoplegia, paraplegia and death by day 9. Irradiated animals reconstituted with HSV-1 primed spleen cells recovered from the HSV-1 infection following a transient appearance of lesions. HSV-1 infected, immunodeficient animals reconstituted with unprimed spleen cells survived for 12 days post infection. Removal of T cells from the reconstituting cell population prevented both the recovery mediated by the primed cells and the partial protection mediated by the unprimed cells, however, removal of B cells had no effect on the course of infection. The role of autologous anti-HSV-1 antibody in protection from an HSV-1 infection was assessed HSV-1 primed mice treated with cyclophosphamide to abolish their cell mediated immunity.

  8. In-vivo immunofluorescence confocal microscopy of herpes simplex virus type 1 keratitis

    NASA Astrophysics Data System (ADS)

    Kaufman, Stephen C.; Laird, Jeffery A.; Beuerman, Roger W.

    1996-05-01

    The white-light confocal microscope offers an in vivo, cellular-level resolution view of the cornea. This instrument has proven to be a valuable research and diagnostic tool for the study of infectious keratitis. In this study, we investigate the direct visualization of herpes simplex virus type 1 (HSV-1)-infected corneal epithelium, with in vivo confocal microscopy, using HSV-1 immunofluorescent antibodies. New Zealand white rabbits were infected with McKrae strain of HSV-1 in one eye; the other eye of each rabbit was used as an uninfected control. Four days later, the rabbits were anesthetized and a cellulose sponge was applied to each cornea, and a drop of direct HSV fluorescein-tagged antibody was placed on each sponge every 3 to 5 minutes for 1 hour. Fluorescence confocal microscopy was then performed. The HSV-infected corneas showed broad regions of hyperfluorescent epithelial cells. The uninfected corneas revealed no background fluorescence. Thus, using the confocal microscope with a fluorescent cube, we were able to visualize HSV-infected corneal epithelial cells tagged with a direct fluorescent antibody. This process may prove to be a useful clinical tool for the in vivo diagnosis of HSV keratitis.

  9. Disulfide bond structure of glycoprotein D of herpes simplex virus types 1 and 2.

    PubMed Central

    Long, D; Wilcox, W C; Abrams, W R; Cohen, G H; Eisenberg, R J

    1992-01-01

    Glycoprotein D (gD) is a structural component of the herpes simplex virus envelope which is essential for virus penetration. The function of this protein is highly dependent on its structure, and its structure is dependent on maintenance of three intact disulfide bonds. gD contains six cysteines in its ectodomain whose spacing is conserved among all its homologs in other alphaherpesviruses as well as Marek's disease virus. For other proteins, conservation of cysteine spacing correlates with conservation of disulfide bond structure. We have now solved the disulfide bond structure of gD-1 and gD-2 of herpes simplex virus types 1 and 2, respectively. Two approaches were used. First, we constructed 15 double-Cys mutants of gD-1, representing all possible disulfide pairs. In each case, codons for cysteines were changed to serine. We reasoned that if two cysteines normally form a disulfide bond, double mutations which eliminate one proper bond should be less harmful to gD structure than double mutations which eliminate two disulfide bonds. The mutated genes were cloned into a eucaryotic expression vector, and the proteins were expressed in transiently transfected cells. Three double mutations, Cys-1,5, Cys-2,6, and Cys-3,4 permitted gD-1 folding, processing, transport to the cell surface, and function in virus infection, whereas 12 other double mutations each produced a malfolded and nonfunctional protein. Thus, the three functional double-Cys mutants may represent the actual partners in disulfide bond linkages. The second approach was to define the actual disulfide bond structure of gD by biochemical means. Purified native gD-2 was cleaved by CNBr and proteases, and the peptides were separated by high-performance liquid chromatography. Disulfide-linked peptides were subjected to N-terminal amino acid sequencing. The results show that cysteine 1 (amino acid [aa] 66) is bonded to cysteine 5 (aa 189), cysteine 2 (aa 106) is bonded to cysteine 6 (aa 202), and cysteine 3 (aa

  10. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation

    PubMed Central

    Kennedy, Peter G. E.; Rovnak, Joel; Badani, Hussain

    2015-01-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is

  11. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.

    PubMed

    Kennedy, Peter G E; Rovnak, Joel; Badani, Hussain; Cohrs, Randall J

    2015-07-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing

  12. Effect of the ionophore monensin on herpes simplex virus type 1-induced cell fusion, glycoprotein synthesis, and virion infectivity.

    PubMed

    Kousoulas, K G; Bzik, D J; Person, S

    1983-01-01

    The ionophore monensin inhibited the formation of mature, fully glycosylated glycoproteins gB, gC, and gD during herpes simplex virus type 1 infection of human embryonic lung cells. Underglycosylated forms, including the apparent high-mannose precursor forms of the major glycoproteins, appeared. Monensin inhibited virus-induced cell fusion. Infectious virions produced in the presence of monensin appeared to contain predominantly underglycosylated glycoproteins. PMID:6307921

  13. Herpes simplex virus type 1 entry into epithelial MDCKII cells: role of VASP activities.

    PubMed

    Jaeger, Verena; Hoppe, Sven; Petermann, Philipp; Liebig, Timo; Jansen, Matthias K; Renné, Thomas; Knebel-Mörsdorf, Dagmar

    2010-09-01

    VASP is an actin-regulatory protein that links signalling to remodelling of the cytoskeleton. We investigated the role of VASP during entry of herpes simplex viruses into epithelial MDCKII cells. As VASP functions are regulated by phosphorylations, the phosphorylation pattern was determined upon infection. Phosphorylated VASP decreased temporarily at 15 and 30 min after infection. The impact of phosphorylated VASP was addressed by overexpression of phosphomimetic VASP mutants. Our results revealed that phosphorylated VASP slightly reduced the number of infected cells. Expression studies with deletion mutants further indicated minor effects of VASP on infection efficiency, whereas RNA interference studies demonstrated that reduced VASP expression did not suppress infection. We conclude that VASP activities alone may contribute to herpes simplex virus infection to only a minor extent. PMID:20463151

  14. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    SciTech Connect

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAs decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed.

  15. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  16. Serum herpes simplex antibodies

    MedlinePlus

    ... gov/ency/article/003352.htm Serum herpes simplex antibodies To use the sharing features on this page, please enable JavaScript. Serum herpes simplex antibodies is a blood test that looks for antibodies ...

  17. The transneuronal spread phenotype of herpes simplex virus type 1 infection of the mouse hind footpad.

    PubMed Central

    Engel, J P; Madigan, T C; Peterson, G M

    1997-01-01

    The mouse hind footpad inoculation model has served as a standard laboratory system for the study of the neuropathogenesis of herpes simplex virus type 1 (HSV-1) infection. The temporal and spatial distribution of viral antigen, known as the transneuronal spread phenotype, has not previously been described; nor is it understood why mice develop paralysis in an infection that involves sensory nerves. The HSV-as-transneuronal-tracer experimental paradigm was used to define the transneuronal spread of HSV-1 in this model. A new decalcification technique and standard immunocytochemical staining of HSV-1 antigens enabled a detailed analysis of the time-space distribution of HSV-1 in the intact spinal column. Mice were examined on days 3, 4, 5, and 6 postinoculation (p.i.) of a lethal dose of wild-type HSV-1 strain 17 syn+. Viral antigen was traced retrograde into first-order neurons in dorsal root ganglia on day 3 p.i., to the dorsal spinal roots on days 4 and 5 p.i., and to second- and third-order neurons within sensory regions of the spinal cord on days 5 and 6 p.i. HSV-1 antigen distribution was localized to the somatotopic representation of the footpad dermatome within the dorsal root ganglia and spinal cord. Antigen was found in the spinal cord gray and white matter sensory neuronal circuits of nociception (the spinothalamic tract) and proprioception (the dorsal spinocerebellar tract and gracile fasciculus). Within the brain stems and brains of three paralyzed animals examined late in infection (days 5 and 6 p.i.), HSV antigen was restricted to the nucleus subcoeruleus region bilaterally. Since motor neurons were not directly involved, we postulate that hindlimb paralysis may have resulted from intense involvement of the posterior column (gracile fasciculus) in the thoracolumbar spinal cord, a region known to contain the corticospinal tract in rodents. PMID:9032380

  18. Genetic studies of cell fusion induced by herpes simplex virus type 1.

    PubMed Central

    Read, G S; Person, S; Keller, P M

    1980-01-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infections (complementation test). In single infections, fusion began 4 to 6 h after infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was a significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild-type infected cells. Fusion was decreased in mixed infections with the mutants and wild-type virus, but the mutants displayed a codominant fusion phenotype. Fusion was not decreased in mixed infection with pairs of mutants, indicating that the mutants, with one possible exception, are members of the same complementation group. A linkage map was established for six of the mutants by analysis of recombination frequencies. PMID:6251259

  19. Herpes Simplex Virus Type 1 Glycoprotein gC Mediates Immune Evasion In Vivo

    PubMed Central

    Lubinski, John M.; Wang, Liyang; Soulika, Athena M.; Burger, Reinhard; Wetsel, Rick A.; Colten, Harvey; Cohen, Gary H.; Eisenberg, Roselyn J.; Lambris, John D.; Friedman, Harvey M.

    1998-01-01

    Many microorganisms encode proteins that interact with molecules involved in host immunity; however, few of these molecules have been proven to promote immune evasion in vivo. Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) binds complement component C3 and inhibits complement-mediated virus neutralization and lysis of infected cells in vitro. To investigate the importance of the interaction between gC and C3 in vivo, we studied the virulence of a gC-null strain in complement-intact and C3-deficient animals. Using a vaginal infection model in complement-intact guinea pigs, we showed that gC-null virus grows to lower titers and produces less severe vaginitis than wild-type or gC rescued virus, indicating a role for gC in virulence. To determine the importance of complement, studies were performed with C3-deficient guinea pigs; the results demonstrated significant increases in vaginal titers of gC-null virus, while wild-type and gC rescued viruses showed nonsignificant changes in titers. Similar findings were observed for mice where gC null virus produced significantly less disease than gC rescued virus at the skin inoculation site. Proof that C3 is important was provided by studies of C3 knockout mice, where disease scores of gC-null virus were significantly higher than in complement-intact mice. The results indicate that gC-null virus is approximately 100-fold (2 log10) less virulent that wild-type virus in animals and that gC-C3 interactions are involved in pathogenesis. PMID:9733869

  20. Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1.

    PubMed

    Bzik, D J; Fox, B A; DeLuca, N A; Person, S

    1984-03-01

    The nucleotide sequence thought to specify the glycoprotein gene, gB, of the KOS strain of herpes simplex virus type 1 (HSV-1) has been determined. A 3.1-kilobase (kb), viral-specified RNA was mapped to the left half of the BamHI-G fragment (0.345 to 0.399 map units). TATA, CAT-box, and possible mRNA start sequences characteristic of HSV-1 genes are found near 0.368 map units. The first available ATG codon is at 0.366 and the first in-phase chain terminator at 0.348 map units. A polyA-addition signal (AATAAA) occurs 17 nucleotides past the chain terminator. Translation of these sequences would yield a 100.3-kilodalton (kDa) polypeptide characterized by a 5' signal sequence, nine N-linked saccharide addition sites, a strongly hydrophobic membrane-spanning sequence, and a highly charged 3' cytoplasmic anchor sequence. Two mutants of KOS, tsJ12 and tsJ20, that are temperature-sensitive for viral growth and for the production of gB, have been physically mapped to 0.357 to 0.360 and 0.360 to 0.364 map units, respectively (DeLuca et al., in preparation). The nucleotide sequence of the mutants was determined in these regions. In both cases a single amino acid replacement within the 100.3-kDa polypeptide is predicted from the sequence analysis. PMID:6324454

  1. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    SciTech Connect

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  2. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors

    PubMed Central

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies. PMID:26954758

  3. Cellular transcription factors enhance herpes simplex virus type 1 oriS-dependent DNA replication.

    PubMed

    Nguyen-Huynh, A T; Schaffer, P A

    1998-05-01

    The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains three binding sites for the viral origin binding protein (OBP) flanked by transcriptional regulatory elements of the immediate-early genes encoding ICP4 and ICP22/47. To assess the role of flanking sequences in oriS function, plasmids containing oriS and either wild-type or mutant flanking sequences were tested in transient DNA replication assays. Although the ICP4 and ICP22/47 regulatory regions were shown to enhance oriS function, most individual elements in these regions, including the VP16-responsive TAATGARAT elements, were found to be dispensable for oriS function. In contrast, two oriS core-adjacent regulatory (Oscar) elements, OscarL and OscarR, at the base of the oriS palindrome were shown to enhance oriS function significantly and additively. Specifically, mutational disruption of either element reduced oriS-dependent DNA replication by 60 to 70%, and disruption of both elements reduced replication by 90%. The properties of protein-DNA complexes formed in gel mobility shift assays using uninfected and HSV-1-infected Vero cell nuclear extracts demonstrated that both OscarL and OscarR are binding sites for cellular proteins. Whereas OscarR does not correspond to the consensus binding site of any known transcription factor, OscarL contains a consensus binding site for the transcription factor Sp1. Gel mobility shift and supershift experiments using antibodies directed against members of the Sp1 family of transcription factors demonstrated the presence of Sp1 and Sp3, but not Sp2 or Sp4, in the protein-DNA complexes formed at OscarL. The abilities of OscarL and OscarR to bind their respective cellular proteins correlated directly with the efficiency of oriS-dependent DNA replication. Cooperative interactions between the Oscar-binding factors and proteins binding to adjacent OBP binding sites were not observed. Notably, Oscar element mutations that impaired oriS-dependent DNA

  4. Seroprevalence of Herpes Simplex Virus Type 1 and 2 in Taiwan and Risk Factor Analysis, 2007

    PubMed Central

    Chao-Yu, Chen; Chen, Chih-Jung; Lin, Tzou-Yien; Huang, Yhu-Chering

    2015-01-01

    Background Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) are common human pathogens and might cause severe illness. Following primary infection, the viruses establish lifelong latent infection and are transmitted by close contact, both sexual and nonsexual. However, the information about the seroprevalence of HSV-1 and HSV-2 across all age groups is limited. Methods Residual sera collected during the nationwide serosurvey in 2007 in Taiwan were selected for the study. The enzyme-linked immunosorbent assay was used to detect anti-HSV-1 and anti-HSV-2 type-specific glycoprotein IgG. Demographics and personal health data were used for risk analysis. Results A total of 1411 and 1072 serum samples were included for anti-HSV-1 and anti-HSV-2 seroprevalence analysis, respectively. The weighted overall seroprevalence was 63.2% for HSV-1, and 7.7% for HSV-2, respectively. The HSV-1 seropositive rate was 19.2% for those less than 5 years old, increased to 46.4% for those aged 5–13 years, 60.9% for those aged 14–29 years, and reached as much as 95.0% for those aged over 30 years. In contrast, the HSV-2 seropositve rate was 1.6% for those less than 30 years old, rose to 10.1% for those age 30–39 years, and was up to 31.2% for those aged over 60 years. A significantly higher HSV-2 seropositive rate was noted in females than males aged over 40 years (26.3% v.s. 16.8%), and the overall HSV-2 seropositive rate was almost twice higher in females than males. Smoking history, drinking habit, and educational level were associated with the HSV-1 seropositivity. Female gender and rural residence were independent factors for the HSV-2 seropositivity. Conclusions An obvious increase of primary HSV-1 infection occurred in late adolescents and young adults, joined by the rise of HSV-2 infection in middle-aged adults, especially females. The acquistion and transmission of HSV warrant further studies in the susceptible population. PMID:26252011

  5. Difference in Incidence of Spontaneous Mutations between Herpes Simplex Virus Types 1 and 2

    PubMed Central

    Sarisky, Robert T.; Nguyen, Tammy T.; Duffy, Karen E.; Wittrock, Robert J.; Leary, Jeffry J.

    2000-01-01

    Spontaneous mutations within the herpes simplex virus (HSV) genome are introduced by errors during DNA replication. Indicative of the inherent mutation rate of HSV DNA replication, heterogeneous HSV populations containing both acyclovir (ACV)-resistant and ACV-sensitive viruses occur naturally in both clinical isolates and laboratory stocks. Wild-type, laboratory-adapted HSV type 1 (HSV-1) strains KOS and Cl101 reportedly accumulate spontaneous ACV-resistant mutations at a frequency of approximately six to eight mutants per 104 plaque-forming viruses (U. B. Dasgupta and W. C. Summers, Proc. Natl. Acad. Sci. USA 75:2378–2381, 1978; J. D. Hall, D. M. Coen, B. L. Fisher, M. Weisslitz, S. Randall, R. E. Almy, P. T. Gelep, and P. A. Schaffer, Virology 132:26–37, 1984). Typically, these resistance mutations map to the thymidine kinase (TK) gene and render the virus TK deficient. To examine this process more closely, a plating efficiency assay was used to determine whether the frequencies of naturally occurring mutations in populations of the laboratory strains HSV-1 SC16, HSV-2 SB5, and HSV-2 333 grown in MRC-5 cells were similar when scored for resistance to penciclovir (PCV) and ACV. Our results indicate that (i) HSV mutants resistant to PCV and those resistant to ACV accumulate at approximately equal frequencies during replication in cell culture, (ii) the spontaneous mutation frequency for the HSV-1 strain SC16 is similar to that previously reported for HSV-1 laboratory strains KOS and Cl101, and (iii) spontaneous mutations in the laboratory HSV-2 strains examined were 9- to 16-fold more frequent than those in the HSV-1 strain SC16. These observations were confirmed and extended for a group of eight clinical isolates in which the HSV-2 mutation frequency was approximately 30 times higher than that for HSV-1 isolates. In conclusion, our results indicate that the frequencies of naturally occurring, or spontaneous, HSV mutants resistant to PCV and those resistant to

  6. Detection of the latency-associated transcript in neuronal cultures during the latent infection with herpes simplex virus type 1.

    PubMed

    Doerig, C; Pizer, L I; Wilcox, C L

    1991-07-01

    The transcriptional studies reported in this paper indicate that the latency-associated transcript (LAT) is present in neuronal cultures during the latent infection with herpes simplex virus type 1 (HSV-1). During the latent infection glycoprotein D (gD) mRNA, a mRNA characteristic of the productive infection, is not detected. However, following reactivation by nerve growth factor (NGF) deprivation, gD mRNA is detected in the neuronal cultures. Thus, the restricted viral gene expression in the in vitro neuronal model indicates that the latent infection in culture is analogous to that observed in vivo. PMID:1647075

  7. Invader plus method detects herpes simplex virus in cerebrospinal fluid and simultaneously differentiates types 1 and 2.

    PubMed

    Allawi, Hatim T; Li, Haijing; Sander, Tamara; Aslanukov, Azamat; Lyamichev, Victor I; Blackman, Amondrea; Elagin, Slava; Tang, Yi-Wei

    2006-09-01

    We report here on the development and validation of a prototype Invader Plus method for the qualitative detection of herpes simplex virus types 1 and 2 in cerebrospinal fluid (CSF). The method combines PCR and Invader techniques in a single, closed-tube, continuous-reaction format that gives an analytical sensitivity of approximately 10 copies per reaction. The clinical sensitivity and specificity were 100.0% and 98.6%, respectively, when the results of the method were validated against the results obtained with a PCR colorimetric microtiter plate system by use of clinical CSF specimens. PMID:16954297

  8. Neonatal herpes simplex virus type-1 central nervous system disease with acute retinal necrosis.

    PubMed

    Fong, Choong Yi; Aye, Aye Mya Min; Peyman, Mohammadreza; Nor, Norazlin Kamal; Visvaraja, Subrayan; Tajunisah, Iqbal; Ong, Lai Choo

    2014-04-01

    We report a case of neonatal herpes simplex virus (HSV)-1 central nervous system disease with bilateral acute retinal necrosis (ARN). An infant was presented at 17 days of age with focal seizures. Cerebrospinal fluid polymerase chain reaction was positive for HSV-1 and brain magnetic resonance imaging showed cerebritis. While receiving intravenous acyclovir therapy, the infant developed ARN with vitreous fluid polymerase chain reaction positive for HSV-1 necessitating intravitreal foscarnet therapy. This is the first reported neonatal ARN secondary to HSV-1 and the first ARN case presenting without external ocular or cutaneous signs. Our report highlights that infants with neonatal HSV central nervous system disease should undergo a thorough ophthalmological evaluation to facilitate prompt diagnosis and immediate treatment of this rapidly progressive sight-threatening disease. PMID:24378951

  9. Isolation of a nucleocapsid polypeptide of herpes simplex virus types 1 and 2 possessing immunologically type-specific and cross-reactive determinants.

    PubMed

    Heilman, C J; Zweig, M; Stephenson, J R; Hampar, B

    1979-01-01

    A polypeptide (p40) of approximately 40,000 molecular weight was isolated from herpes simplex virus type 1 and 2 nucleocapsids by gel filtration and ion exchange chromatography. This protein appears to be the same as protein 22a described previously (Gibson and Roizman, J. Virol. 10:1044--1052, 1972). Competition immunoassays were developed by using purified p40 and antisera prepared in guinea pigs. The assays indicated that the p40's from herpes simplex virus types 1 and 2 possess both type-specific and cross-reactive antigenic determinants. Antibodies to the p40 cross-reactive determinant reacted with antigens in simian herpes virus SA8-infected cells, but not with antigens induced by pseudorabies virus. Preliminary results indicated that a radioimmunoprecipitation test can be used to detect type-specific herpes simplex virus p40 antibodies in human sera. PMID:85720

  10. Serum herpes simplex antibodies

    MedlinePlus

    ... when it detects harmful substances such as the herpes virus. This test does not detect the virus itself. ... Philadelphia, PA: Elsevier; 2014:chap 308. Whitley RJ. Herpes simplex virus infections In: Goldman L, Schafer AI, eds. Goldman's ...

  11. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    SciTech Connect

    Pei, Ying; Chen, Zhen-Ping; Ju, Huai-Qiang; Komatsu, Masaaki; Ji, Yu-hua; Liu, Ge; Guo, Chao-wan; Zhang, Ying-Jun; Yang, Chong-Ren; Wang, Yi-Fei; Kitazato, Kaio

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  12. Herpes Simplex (Cold Sores and Genital Herpes)

    MedlinePlus

    ... Select a Language: Fact Sheet 508 Herpes Simplex (Cold Sores and Genital Herpes) WHAT IS HERPES? HSV ... virus 1 (HSV1) is the common cause of cold sores (oral herpes) around the mouth. HSV2 normally ...

  13. Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry

    SciTech Connect

    O'Donnell, Christopher D.; Kovacs, Maria; Akhtar, Jihan; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-02-20

    Heparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed, isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell-cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines.

  14. Pathogenesis of Herpes Simplex Virus Type 1-Induced Corneal Inflammation in Perforin-Deficient Mice

    PubMed Central

    Chang, Eddie; Galle, Laurence; Maggs, David; Estes, D. Mark; Mitchell, William J.

    2000-01-01

    Herpetic stromal keratitis (HSK) is an inflammatory disease of the cornea that often results in blindness. It is mediated by a host immune response which is triggered by herpes simplex virus (HSV) infection. Immune effector mechanisms are hypothesized to be important in disease development. We investigated, in a mouse model, whether perforin-dependent cytotoxicity is an important effector mechanism in the production of HSK. Wild-type (C57BL/6) and perforin-deficient (PKO) mice were infected intracorneally with HSV-1 strain F. Clinical disease and histologic lesions of the cornea at 23 days postinfection (p.i.) were significantly less severe in HSV-1-infected PKO mice than in infected wild-type mice. mRNA for the chemokine macrophage inflammatory protein 1α (MIP-1α) was detected by reverse transcription-PCR in the corneas of infected wild-type mice but not in the corneas of infected PKO mice at 23 days p.i. Adoptive transfer of wild-type HSV-1 immune T-cell-enriched splenocytes into HSV-1-infected PKO mice restored the disease phenotype which was seen in infected wild-type mice. In contrast, mice carrying a null-function mutation in the Fas ligand, which is involved in an alternative cytotoxic mechanism, developed clinical disease and histologic lesions which were comparable to those in wild-type mice. Viral clearance from the eyes of PKO mice was not impaired. There was no significant difference between the infectious viral titers isolated from the eyes of PKO and wild-type mice. Our findings show that perforin is important in the pathogenesis of HSK. PMID:11090183

  15. CAP37-derived antimicrobial peptides have in vitro antiviral activity against adenovirus and herpes simplex virus type 1

    PubMed Central

    Gordon, Y. Jerold; Romanowski, Eric G.; Shanks, Robert M. Q.; Yates, Kathleen A.; Hinsley, Heather; Pereira, H. Anne

    2009-01-01

    Purpose The antiviral activity of an established antibacterial CAP37 domain and its extracellular mechanism of action were investigated. Methods CAP37-derived peptides modified to assess the importance of disulfide bonds were evaluated in cytotoxicity, and antiviral assays (direct time kill, dose-dependency and TOTO-1) for adenovirus (Ad) and herpes simplex virus type 1 (HSV-1). Results Variable virus, adenovirus serotype-dependant, and dose-dependent inhibition were demonstrated without cytotoxicity. For Peptide A (CAP3720-44), TOTO-1 dye uptake was demonstrated for Ad5 and HSV-1. Conclusions Unlike the antibacterial activity of this CAP37 domain, its antiviral activity is not fully dependent upon disulfide bond formation. Viral inhibition appears to result, in part, from disruption of the envelope and/or capsid. PMID:19274533

  16. Three-Dimensional Structure of Herpes Simplex Virus Type 1 Glycoprotein D at 2.4-Nanometer Resolution

    PubMed Central

    Pilling, Andrew; Rosenberg, Mark F.; Willis, Sharon H.; Jäger, Joachim; Cohen, Gary H.; Eisenberg, Roselyn J.; Meredith, David M.; Holzenburg, Andreas

    1999-01-01

    Herpes simplex virus type 1 glycoprotein D (gD) is essential for virus infectivity and is responsible for binding to cellular membrane proteins and subsequently promoting fusion between the virus envelope and the cell. No structural data are available for gD or for any other herpesvirus envelope protein. Here we present a three-dimensional model for the baculovirus-expressed truncated protein gD1(306t) based on electron microscopic data. We demonstrate that gD1(306t) appears as a homotetramer containing a pronounced pocket in the center of the molecule. Monoclonal antibody binding demonstrates that the molecule is oriented such that the pocket protrudes away from the virus envelope. PMID:10438875

  17. The effect of ammonium chloride and tunicamycin on the glycoprotein content and infectivity of herpes simplex virus type 1.

    PubMed

    Kousoulas, K G; Bzik, D J; DeLuca, N; Person, S

    1983-03-01

    Infectious virions of MP, a syncytial strain of herpes simplex virus type 1, are formed in the presence of 50 mM NH4Cl. Underglycosylated virion glycoproteins are synthesized in infected cells and are incorporated into virions in the presence of the same concentration of NH4Cl. We conclude that fully glycosylated glycoproteins are not required for viral infectivity. Virus particles, deficient in glycosylated glycoproteins, are assembled in the presence of tunicamycin but they are not infectious. The decrease in infectivity could be due to the decreased amount of the gB or possibly other peptides and/or to the lack of the high-mannose saccharides of precursor glycoproteins. PMID:6301148

  18. Synthetic pregnenolone derivatives as antiviral agents against acyclovir-resistant isolates of Herpes Simplex Virus Type 1.

    PubMed

    Dávola, María Eugenia; Mazaira, Gisela I; Galigniana, Mario D; Alché, Laura E; Ramírez, Javier A; Barquero, Andrea A

    2015-10-01

    The conventional therapy for the management of Herpes Simplex Virus Type 1 (HSV-1) infections mainly comprises acyclovir (ACV) and other nucleoside analogues. A common outcome of this treatment is the emergence of resistant viral strains, principally when immunosuppressed patients are involved. Thus, the development of new antiherpetic compounds remains as a central challenge. In this work we describe the synthesis and the in vitro antiherpetic activity of a new family of steroidal compounds derived from the endogenous hormone pregnenolone. Some of these derivatives showed a remarkable inhibitory effect on HSV-1 spread both on wild type and ACV-resistant strains. The results also show that these compounds seem to interfere with the late steps of the viral cycle. PMID:26259812

  19. Effect of ammonium chloride and tunicamycin on the glycoprotein content and infectivity of herpes simplex virus type 1

    SciTech Connect

    Kousoulas, K.G.; Bzik, D.J.; DeLuca, N.; Person, S.

    1983-01-01

    Infectious virions of MP, a syncytial strain of herpes simplex virus type 1, are formed in the presence of 50 mM NH/sub 4/Cl. Underglycosylated virion glycoproteins are synthesized in infected cells and are incorporated into virions in the presence of the same concentration of NH/sub 4/Cl. We conclude that fully glycosylated glycoproteins are not required for viral infectivity. Virus particles, deficient in glycosylated glycoproteins, are assembled in the presence of tunicamycin but they are not infectious. The decrease in infectivity could be due to the decreased amount of the gB or possibly other peptides and/or to the lack of the high-mannose saccharides of precursor glycoproteins. 32 references, 4 figures.

  20. Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids

    SciTech Connect

    Bucks, Michelle A.; O'Regan, Kevin J.; Murphy, Michael A.; Wills, John W.; Courtney, Richard J. . E-mail: rcourtney@psu.edu

    2007-05-10

    The assembly of the tegument of herpes simplex virus type 1 (HSV-1) is a complex process that involves a number of events at various sites within virus-infected cells. Our studies focused on determining whether tegument proteins, VP1/2 and UL37, are added to capsids located within the nucleus. Capsids were isolated from the nuclear fraction of HSV-1-infected cells and purified by rate-zonal centrifugation to separate B capsids (containing the scaffold proteins and no viral DNA) and C capsids (containing DNA and no scaffold proteins). Western blot analyses of these capsids indicated that VP1/2 associated primarily with C capsids and UL37 associated with B and C capsids. The results demonstrate that at least two of the tegument proteins of HSV-1 are associated with capsids isolated from the nuclear fraction, and these capsid-tegument protein interactions may represent initial events of the tegumentation process.

  1. Genital herpes simplex virus type 1 in women: detection in cervicovaginal specimens from gynecological practices in the United States.

    PubMed

    Peña, Kristen C; Adelson, Martin E; Mordechai, Eli; Blaho, John A

    2010-01-01

    Herpes simplex virus types 1 and 2 (HSV-1 and -2) are significant human pathogens causing clinically indistinguishable facial and genital lesions. Recently, the number of reported genital herpes cases caused by type 1 virus has increased. Identifying the HSV type is of clinical importance to determine proper treatment, as there is no licensed vaccine or cure. We assessed, by PCR, the frequency of HSV-1 and HSV-2 present in more than 60,000 clinical cervicovaginal specimens derived from samples originating from 43 continental U.S. states. Fourteen percent were positive for HSV-1 and/or HSV-2. This likely represents subclinal shedding. It was not a measurement of the prevalence of HSV infection. While the majority were HSV-2, 32% were HSV-1. The distribution of HSV types varied between the states with the largest number of specimens, New Jersey, Florida, and Texas. Specimens from women under the age of 24 had an HSV-1 positivity rate of 47 percent. Importantly, in New Jersey, an observed age effect was the disproportionately high prevalence of genital HSV-1 in young women. This represents the largest analysis of HSV types reported and has important public health implications, particularly for younger women. PMID:19923487

  2. Physical interaction between the herpes simplex virus type 1 immediate-early regulatory proteins ICP0 and ICP4.

    PubMed Central

    Yao, F; Schaffer, P A

    1994-01-01

    The herpes simplex virus type 1 immediate-early protein ICP0 enhances expression of a spectrum of viral genes alone and synergistically with ICP4. To test whether ICP0 and ICP4 interact physically, we performed far-Western blotting analysis of proteins from mock-, wild-type-, and ICP4 mutant virus-infected cells with in vitro-synthesized [35S]Met-labeled ICP0 and ICP4 as probes. The ICP4 and ICP0 polypeptides synthesized in vitro exhibited molecular weights similar to those of their counterparts in herpes simplex virus type 1-infected cells, and the in vitro-synthesized ICP4 was able to bind to a probe containing the ICP4 consensus binding site. Far-Western blotting experiments demonstrated that ICP0 interacts directly and specifically with ICP4 and with itself. To further define the interaction between ICP0 and ICP4, we generated a set of glutathione S-transferase (GST)-ICP0 fusion proteins that contain GST and either ICP0 N-terminal amino acids 1 to 244 or 1 to 394 or C-terminal amino acids 395 to 616 or 395 to 775. Using GST-ICP0 fusion protein affinity chromatography and in vitro-synthesized [35S]Met-labeled ICP0 and ICP4, ICP4 was shown to interact preferentially with the fusion protein containing ICP0 C-terminal amino acids 395 to 775, whereas ICP0 interacted efficiently with both the N-terminal GST-ICP0 fusion proteins and the C-terminal GST-ICP0 fusion proteins containing amino acids 395 to 775. Fusion protein affinity chromatography also demonstrated that the C-terminal 235 amino acid residues of ICP4 are important for efficient interaction with ICP0. Collectively, these results reveal a direct and specific physical interaction between ICP0 and ICP4. Images PMID:7966607

  3. Susceptibility of Drug-Resistant Clinical Herpes Simplex Virus Type 1 Strains to Essential Oils of Ginger, Thyme, Hyssop, and Sandalwood▿

    PubMed Central

    Schnitzler, Paul; Koch, Christine; Reichling, Jürgen

    2007-01-01

    Acyclovir-resistant clinical isolates of herpes simplex virus type 1 (HSV-1) were analyzed in vitro for their susceptibilities to essential oils of ginger, thyme, hyssop, and sandalwood. All essential oils exhibited high levels of virucidal activity against acyclovir-sensitive strain KOS and acyclovir-resistant HSV-1 clinical isolates and reduced plaque formation significantly. PMID:17353250

  4. The role of viral and host genes in corneal infection with herpes simplex virus type 1.

    PubMed

    Brandt, Curtis R

    2005-05-01

    Herpes simplex virus infection of the eye is the leading cause of blindness due to infection in the US despite the availability of several antiviral drugs. Studies with animal models have shown that three factors, innate host resistance, the host adaptive immune response, and the strain of virus interact to determine whether an infection is asymptomatic or proceeds to the development of blinding keratitis (HSK). Of these, the role of adaptive immunity has received the most attention. This work has clearly shown that stromal keratitis is an immunopathological disease, most likely due to the induction of a delayed type hypersensitivity response. Substantially less is known about the role of specific host genes in resistance to HSK. The fact that different strains of virus display different disease phenotypes indicates that viral 'virulence' genes are critical. Of the 80 plus HSV genes, few have been formally tested for their role in HSV keratitis. Most studies of virulence genes to date have focused on a single gene or protein and large changes in disease phenotypes are usually measured. Large changes in the ability to cause disease are likely to reduce the fitness of the virus, thus such studies, although useful, do not mimic the natural situation. Viral gene products are known to interact with each other, and with host proteins and these interactions are critical in determining the outcome of infection. In reality, the 'constellation' of genes encoded by each particular strain is critical, and how this constellation of genes works together and with host proteins determines the outcome of an infection. The goal of this review is to discuss the current state of knowledge regarding the role of host and viral genes in HSV keratitis. The roles of specific genes that have been shown to influence keratitis are discussed. Recent data showing that different viral genes cooperate to influence disease severity and confirming that the constellation of genes within a particular

  5. Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry.

    PubMed

    Handler, C G; Cohen, G H; Eisenberg, R J

    1996-09-01

    Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events. PMID

  6. Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents

    SciTech Connect

    Croughan, W.S.; Behbehani, A.M.

    1988-02-01

    A comparative study of the different reactions of herpes simplex virus types 1 and 2 to Lysol, Listerine, bleach, rubbing alcohol, Alcide disinfectant (Alcide Corp., Westport, Conn.), and various pHs, temperatures, and UV light exposures was performed. Both types of stock virus (titers of approximately 10(6) and 10(5.5) for types 1 and 2, respectively) were inactivated by 0.5% Lysol in 5 min; by Listerine (1:1 mixtures) in 5 min; by 2000 ppm (2000 microliters/liter) of bleach in 10 min; by rubbing alcohol (1:1 mixtures) at zero time; by Alcide disinfectant (0.2 ml of virus plus 2.0 ml of Alcide) at zero time; by pHs 3, 5, and 11 in 10 min; and by a temperature of 56 degrees C in 30 min. A germicidal lamp at a distance of 48 cm failed to completely inactivate the two types in 15 min. Type 1 showed slightly more resistance to Listerine and bleach and significantly more resistance to heat; moreover, pH 9 did not affect the infectivity of either type after 10 min.

  7. Nonthermal Dielectric Barrier Discharge (DBD) Plasma Suppresses Herpes Simplex Virus Type 1 (HSV-1) Replication in Corneal Epithelium

    PubMed Central

    Alekseev, Oleg; Donovan, Kelly; Limonnik, Vladimir; Azizkhan-Clifford, Jane

    2014-01-01

    Purpose Herpes keratitis (HK) is the leading cause of cornea-derived and infection-associated blindness in the developed world. Despite the availability of effective antivirals, some patients develop refractory disease, drug-resistant infection, and topical toxicity. A nonpharmaceutical treatment modality may offer a unique advantage in the management of such cases. This study investigated the antiviral effect of nonthermal dielectric barrier discharge (DBD) plasma, a partially ionized gas that can be applied to organic substances to produce various biological effects. Methods Human corneal epithelial cells and explanted corneas were infected with herpes simplex virus type 1 (HSV-1) and exposed to culture medium treated with nonthermal DBD plasma. The extent of infection was measured by plaque assay, quantitative PCR, and Western blot. Corneal toxicity assessment was performed with fluorescein staining, histologic examination, and 8-OHdG detection. Results Application of DBD plasma–treated medium to human corneal epithelial cells and explanted corneas produced a dose-dependent reduction of the cytopathic effect, viral genome replication, and the overall production of infectious viral progeny. Toxicity studies showed lack of detrimental effects in explanted human corneas. Conclusions Nonthermal DBD plasma substantially suppresses corneal HSV-1 infection in vitro and ex vivo without causing pronounced toxicity. Translational Relevance Nonthermal plasma is a versatile tool that holds great biomedical potential for ophthalmology, where it is being investigated for wound healing and sterilization and is already in use for ocular microsurgery. The anti-HSV-1 activity of DBD plasma demonstrated here could be directly translated to the clinic for use against drug-resistant herpes keratitis. PMID:24757592

  8. Different presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii in schizophrenia: meta-analysis and analytical study

    PubMed Central

    Gutiérrez-Fernández, José; Luna del Castillo, Juan de Dios; Mañanes-González, Sara; Carrillo-Ávila, José Antonio; Gutiérrez, Blanca; Cervilla, Jorge A; Sorlózano-Puerto, Antonio

    2015-01-01

    In the present study we have performed both a meta-analysis and an analytical study exploring the presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii antibodies in a sample of 143 schizophrenic patients and 143 control subjects. The meta-analysis was performed on papers published up to April 2014. The presence of serum immunoglobulin G and immunoglobulin A was performed by enzyme-linked immunosorbent assay test. The detection of microbial DNA in total peripheral blood was performed by nested polymerase chain reaction. The meta-analysis showed that: 1) C. pneumoniae DNA in blood and brain are more common in schizophrenic patients; 2) there is association with parasitism by T. gondii, despite the existence of publication bias; and 3) herpes viruses were not more common in schizophrenic patients. In our sample only anti-Toxoplasma immunoglobulin G was more prevalent and may be a risk factor related to schizophrenia, with potential value for prevention. PMID:25848282

  9. Native and recombinant herpes simplex virus type 1 envelope proteins induce human immune T-lymphocyte responses.

    PubMed

    Torseth, J W; Cohen, G H; Eisenberg, R J; Berman, P W; Lasky, L A; Cerini, C P; Heilman, C J; Kerwar, S; Merigan, T C

    1987-05-01

    The abilities of whole herpes simplex virus type 1 (HSV-1) antigen (HSV-ag) and purified HSV-1 native and recombinant envelope proteins to stimulate in vitro T-lymphocyte responses were compared in patients with recurrent herpes labialis. Immunochemically purified preparations of native glycoproteins B, C, and D (ngB, ngC, ngD) from cultured HSV-1 as well as expressed recombinant plasmid preparations of gD (rgD-1t, rgD-45K) elicited lymphocyte proliferation (LT) and production of gamma interferon (IFN-gamma) and interleukin-2 (IL-2) only in seropositive individuals. The IFN-gamma induced by rgD-1t correlated with the time to the next herpetic lesion in 19 volunteers followed to recurrence (r = 0.69, P less than 0.008), although the magnitude and frequency of LT and IFN-gamma responses were lower with either recombinant or native purified antigens than with the whole-virus antigen. Combinations of ngB plus ngD or ngB plus ngC plus ngD stimulated more IFN-gamma, equivalent to whole-virus-antigen responses. Recombinant-derived human IL-2 also specifically increased LT and IFN-gamma responses in antigen-driven cultures. ngD stimulated IL-2 and LT responses similar to those of whole-virus antigen and higher than those of ngC. HSV-ag and ngB induced significantly higher titers of total IFN than could be accounted for by IFN-gamma; this was not seen for the other antigens, which induced only IFN-gamma. HSV-ag-driven Leu 2a-, plastic-nonadherent blood cells, unlike whole peripheral blood mononuclear cells, showed evidence of an increase and then a decline in the frequency of HSV-responsive cells after a lesion recurrence. These studies suggest that HSV-1 envelope proteins are capable of stimulating an immune T-helper-cell response which is associated with the prevention of human herpes simplex lesion recurrence. Although the whole virus probably contains additional important antigens, increasing concentrations or combinations of certain purified glycoproteins or the

  10. Activation of human papillomavirus type 18 gene expression by herpes simplex virus type 1 viral transactivators and a phorbol ester

    SciTech Connect

    Gius, D.; Laimins, L.A.

    1989-02-01

    Several viral trans-activators and a tumor promoter were examined for the ability to activate human papillomavirus type 18 (HPV-18) gene expression. A plasmid containing the HPV-18 noncoding region placed upstream of the chloramphenicol acetyltransferase reporter gene was cotransfected with different herpes simplex virus type 1 (HSV-1) genes into several cell lines. Both HSV-1 TIF and ICPO activated HPV-18 expression; however, activation by TIF was observed only in epithelial cells, while ICPO stimulated expression in a wide variety of cells. The element activated by both TIF and ICOP was mapped to a 229-base-pair fragment which also contains an HPV-18 epithelial cell-preferred enhancer. The inclusion of a papillomavirus E2 trans-activator with TIF and ICOP further increased HPV-18 expression. In contrast, the HSV-1 ICP4 and ICP27 genes, as well as the human T-cell lymphotropic virus type I and human immunodeficiency virus type 1 tat genes, were found to have no effect on HPV-18 expression. In transient assays, the addition of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also activated HPV-18 expression. The region of HPV-18 activated by TPA was localized to a sequence which is homologous to other TPA-responsive elements.

  11. Aphidicolin resistance in herpes simplex virus type 1 appears to alter substrate specificity in the DNA polymerase

    SciTech Connect

    Hall, J.D.; Woodward, S.

    1989-06-01

    The authors describe novel mutants of herpes simplex virus which are resistant to aphidicolin. Their mutant phenotypes suggest that they encode DNA polymerases with altered substrate recognition. This conclusion is based on their abnormal sensitivity to polymerase inhibitors and to the abnormal mutation rates exhibited by two of the mutants.

  12. Herpes simplex virus type 1 protein IE63 affects the nuclear export of virus intron-containing transcripts.

    PubMed Central

    Phelan, A; Dunlop, J; Clements, J B

    1996-01-01

    Using in situ hybridization labelling methods, we have determined that the herpes simplex virus type 1 immediate-early protein IE63 (ICP27) affects the cellular localization of virus transcripts. Intronless transcripts from the IE63, UL38, and UL44 genes are rapidly exported to and accumulate in the cytoplasm throughout infection, in either the presence or absence of IE63 expression. The intron-containing transcripts from the IE110 and UL15 genes, while initially cytoplasmic, are increasingly retained in the nucleus in distinct clumps as infection proceeds, and the clumps colocalize with the redistributed small nuclear ribonucleoprotein particles. Infections with the IE63 mutant virus 27-lacZ demonstrated that in the absence of IE63 expression, nuclear retention of intron-containing transcripts was lost. The nuclear retention of UL15 transcripts, which demonstrated both nuclear and cytoplasmic label, was not as pronounced as that of the IE110 transcripts, and we propose that this is due to the late expression of UL15. Infections with the mutant virus 110C1, in which both introns of IE110 have been precisely removed (R.D. Everett, J. Gen. Virol. 72:651-659, 1991), demonstrated IE110 transcripts in both the nucleus and the cytoplasm; thus, exon definition sequences which regulate viral RNA transport are present in the IE110 transcript. By in situ hybridization a stable population of polyadenylated RNAs was found to accumulate in the nucleus in spots, most of which were separate from the small nuclear ribonucleoprotein particle clumps. The IE63 protein has an involvement, either direct or indirect, in the regulation of nucleocytoplasmic transport of viral transcripts, a function which contrasts with the recently proposed role of herpes simplex virus type 1 Us11 in promoting the nuclear export of partially spliced or unspliced transcripts (J.-J. Diaz, M. Duc Dodon, N. Schaerer-Uthurraly, D. Simonin, K. Kindbeiter, L. Gazzolo, and J.-J. Madjar, Nature [London] 379

  13. Inducible cyclic AMP early repressor produces reactivation of latent herpes simplex virus type 1 in neurons in vitro.

    PubMed

    Colgin, M A; Smith, R L; Wilcox, C L

    2001-03-01

    Herpes simplex virus type 1 (HSV-1) establishes a latent infection in neurons of the peripheral nervous system. During latent HSV-1 infection, viral gene expression is limited to latency-associated transcripts (LAT). HSV-1 remains latent until an unknown mechanism induces reactivation. The ability of the latent virus to periodically reactivate and be shed is essential to the transmission of disease. In vivo, the stimuli that induce reactivation of latent HSV-1 include stress, fever, and UV damage to the skin at the site of initial infection. In vitro, in primary neurons harboring latent HSV-1, nerve growth factor (NGF) deprivation or forskolin treatment induces reactivation. However, the mechanism involved in the induction of reactivation remains poorly understood. An in vitro neuronal model of HSV-1 latency was used to investigate potential mechanisms involved in the induction of reactivation of latent HSV-1. In situ hybridization analysis of neuronal cultures harboring latent HSV-1 showed a marked, rapid decrease in the percentage of LAT-positive neurons following induction of reactivation by NGF deprivation or forskolin treatment. Western blot analysis showed a corresponding increase in expression of the cellular transcription factor inducible cyclic AMP early repressor (ICER) during reactivation. In transient-transfection assays, ICER downregulated LAT promoter activity. Expression of ICER from a recombinant adenoviral vector induced reactivation and decreased the percentage of LAT-positive neurons in neuronal cultures harboring latent HSV-1. These results indicate that ICER represses LAT expression and induces reactivation of latent HSV-1. PMID:11222716

  14. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread

    SciTech Connect

    O'Donnell, Christopher D.; Tiwari, Vaibhav; Oh, Myung-Jin; Shukla, Deepak . E-mail: dshukla@uic.edu

    2006-03-15

    Heparan sulfate (HS) 3-O-sulfotransferase isoform-2 (3-OST-2), which belongs to a family of enzymes capable of generating herpes simplex virus type-1 (HSV-1) entry and spread receptors, is predominantly expressed in human brain. Despite its unique expression pattern, the ability of 3-OST-2 to mediate HSV-1 entry and cell-to-cell fusion is not known. Our results demonstrate that expression of 3-OST-2 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and mutant strains of HSV-1. Evidence for generation of gD receptors by 3-OST-2 were suggested by gD-mediated interference assay and the ability of 3-OST-2-expressing CHO-K1 cells to preferentially bind HSV-1 gD, which could be reversed by prior treatment of cells with HS lyases (heparinases II/III). In addition, 3-OST-2-expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins, a phenomenon that mimics a way of viral spread in vivo. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together, our results raise the possibility of a role of 3-OST-2 in the spread of HSV-1 infection in the brain.

  15. Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1.

    PubMed

    Zhu, W; Chiu, L C M; Ooi, V E C; Chan, P K S; Ang, P O

    2006-11-01

    A sulphated polysaccharide (SP-2a) from the brown alga Sargassum patens (Kütz.) Agardh (Sargassaceae) was found to significantly inhibit the in vitro replication of both the acyclovir (ACV)-sensitive and -resistant strains of Herpes simplex virus type 1 (HSV-1), in dose-dependent manners, with 50% inhibitions occurring with 1.5-5.3 microg/ml of the polysaccharide. SP-2a exhibited extracellular virucidal activity only against the ACV-sensitive strains, but not the resistant strain, at the concentration of 100 microg/ml. The strongest antiviral activities against the different strains of HSV-1 were observed when this polysaccharide was present during and after adsorption of the virus to host cells. The inhibitory effect of SP-2a on virus adsorption occurred dose-dependently in all the HSV-1 strains tested, and the adsorption of the ACV-resistant DM2.1 strain was reduced by 81.9% (relative to control) with 4 microg/ml of the polysaccharide. This study clearly demonstrated that the antiviral mode of action of SP-2a is mediated mainly by inhibiting virus attachment to host cells, and this sulphated polysaccharide might have different modes of action against the ACV-sensitive and -resistant strains of HSV-1. PMID:16427262

  16. Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1

    PubMed Central

    Torres, Nicolás I.; Noll, Katia Sutyak; Xu, Shiqi; Li, Ji; Huang, Qingrong; Sinko, Patrick J.; Wachsman, Mónica B.; Chikindas, Michael L.

    2013-01-01

    In the present study the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol) (PVOH)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2.4 mg subtilosin/g fiber, and loading efficiency was 31.6%. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be nontoxic to human epidermal tissues using an in vitro human tissue model. Taking together these results subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection. PMID:23637711

  17. Entry Pathways of Herpes Simplex Virus Type 1 into Human Keratinocytes Are Dynamin- and Cholesterol-Dependent

    PubMed Central

    Hsu, Mei-Ju; Rixon, Frazer J.; Knebel-Mörsdorf, Dagmar

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol. PMID:22022400

  18. Can mutational GC-pressure create new linear B-cell epitopes in herpes simplex virus type 1 glycoprotein B?

    PubMed

    Khrustalev, Vladislav Victorovich

    2009-01-01

    We showed that GC-content of nucleotide sequences coding for linear B-cell epitopes of herpes simplex virus type 1 (HSV1) glycoprotein B (gB) is higher than GC-content of sequences coding for epitope-free regions of this glycoprotein (G + C = 73 and 64%, respectively). Linear B-cell epitopes have been predicted in HSV1 gB by BepiPred algorithm ( www.cbs.dtu.dk/services/BepiPred ). Proline is an acrophilic amino acid residue (it is usually situated on the surface of protein globules, and so included in linear B-cell epitopes). Indeed, the level of proline is much higher in predicted epitopes of gB than in epitope-free regions (17.8% versus 1.8%). This amino acid is coded by GC-rich codons (CCX) that can be produced due to nucleotide substitutions caused by mutational GC-pressure. GC-pressure will also lead to disappearance of acrophobic phenylalanine, isoleucine, methionine and tyrosine coded by GC-poor codons. Results of our "in-silico directed mutagenesis" showed that single nonsynonymous substitutions in AT to GC direction in two long epitope-free regions of gB will cause formation of new linear epitopes or elongation of previously existing epitopes flanking these regions in 25% of 539 possible cases. The calculations of GC-content and amino acid content have been performed by CodonChanges algorithm ( www.barkovsky.hotmail.ru ). PMID:19811425

  19. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers.

    PubMed Central

    Orle, K A; Gates, C A; Martin, D H; Body, B A; Weiss, J B

    1996-01-01

    A multiplex PCR (M-PCR) assay with colorimetric detection was devised for the simultaneous amplification of DNA targets from Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus (HSV) types 1 and 2. By using target-specific oligonucleotides in a microwell format, 298 genital ulcer swab specimens collected in New Orleans during three intervals from 1992 through 1994 were evaluated. The results of the M-PCR assay were compared with the results of dark-field microscopy and H. ducreyi culture on two different culture media. HSV culture results were available for 99 specimens collected during the third interval. Confirmatory PCR assays targeting different gene sequences for each of the three organisms were used to validate the M-PCR results. Specimens were resolved as positive for the determination of sensitivity if the reference diagnostic test was positive or if the results of both the M-PCR and the confirmatory PCR were positive. The resolved sensitivities of M-PCR for HSV, H. ducreyi, and T. pallidum were 100, 98.4, and 91%, respectively. The resolved sensitivities of HSV culture, H. ducreyi culture, and dark-field microscopy were 71.8, 74.2, and 81%, respectively. These results indicate that the M-PCR assay is more sensitive than standard diagnostic tests for the detection of HSV, H. ducreyi, and T. pallidum from genital ulcers. PMID:8748271

  20. A Strategy for O-Glycoproteomics of Enveloped Viruses—the O-Glycoproteome of Herpes Simplex Virus Type 1

    PubMed Central

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; Dabelsteen, Sally; Nyström, Kristina; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.

    2015-01-01

    Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses. PMID:25830354

  1. Survival of herpes simplex virus type 1 on some frequently touched objects in the home and public buildings.

    PubMed

    Bardell, D

    1990-01-01

    The survival of herpes simplex virus type 1 in tissue culture fluid on doorknobs and washbasin tap handles over a 2 h period was investigated. The doorknobs were made of plastic and the taps had a chrome-plated surface. The stock virus suspension had a titre of 10(7.5) TCID50/0.1 ml, and a 0.01 ml droplet was placed on the objects. The droplets dried out after 35-40 min at room temperature (23-27 degrees C). The titre of infectious virus recovered by elution from the objects was determined at 0, 15, 30, 60 and 120 min. Infectious virus was recovered for all time periods studied. However, there was a marked drop in titre between 30 and 60 min. No differences were observed between virus placed on plastic and that on chrome-plate. Infectious virus could be isolated from skin after touching virus-contaminated doorknobs and taps with the middle finger of the right hand at all test times over a 2 h period. PMID:2172749

  2. A Cationic Peptide, TAT-Cd0, Inhibits Herpes Simplex Virus Type 1 Ocular Infection In Vivo

    PubMed Central

    Jose, Gilbert G.; Larsen, Inna V.; Gauger, Joshua; Carballo, Erica; Stern, Rebecca; Brummel, Rachel; Brandt, Curtis R.

    2013-01-01

    Purpose. To test the in vivo activity of a peptide derived from the protein transducing domain of the human immunodeficiency virus (HIV) Tat protein, TAT-Cd0, in a murine herpes simplex type 1 (HSV-1) keratitis model. Methods. The efficacy of TAT-Cd0 was assessed in a postinfection treatment model with different concentrations (1 mg/mL, 0.1 mg/mL, 0.01 mg/mL) of the peptide in one of four delivery vehicles: artificial tears, PBS, methylcellulose, and aquaphor cream. Treatment began within 4 or 24 hours postinfection. Viral titers in the tear film were determined by plaque assay. Results. TAT-Cd0 reduced the severity of keratitis in all of the delivery vehicles tested when treatment started, 4 hours postinfection. Peptide in the tears or PBS delivery vehicle had the most significant reduction in disease severity and delayed the onset of vascularization and stromal keratitis. The percentage of mice presenting with disease was also significantly reduced and viral titers were reduced by 1 log at 24 hours postinfection in mice treated with 1 mg/mL TAT-Cd0, suggesting that inhibiting replication early is sufficient to achieve clinical effects. Lower concentrations were not effective and delaying treatment by 24 hours was also not effective. Conclusions. This study shows that TAT-Cd0 is an effective antiviral against HSV-1 strain KOS when applied shortly postinfection and that aqueous-based formulations are more suitable. PMID:23341013

  3. Computational modeling and functional analysis of Herpes simplex virus type-1 thymidine kinase and Escherichia coli cytosine deaminase fusion protein

    SciTech Connect

    Zhang, Jufeng; Wang, Zhanli; Wei, Fang; Qiu, Wei; Zhang, Liangren; Huang, Qian . E-mail: qhuang@sjtu.edu.cn

    2007-08-17

    Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. The toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.

  4. Repair of DNA following incorporation of 1-beta-D-arabinofuranosylcytosine into herpes simplex virus type 1

    SciTech Connect

    Bubley, G.J.; Crumpacker, C.S.; Schnipper, L.E.

    1984-05-01

    The nucleoside analogue 1-beta-D-arabinofuranosylcytosine (ara-C) is incorporated into herpes simplex virus type 1 (HSV-1) DNA, and this correlates with inhibition of virus replication. The technique of Weigle-type reactivation (WR) was used to compare the ability of induced cellular DNA repair pathways to recognize or repair ara-C incorporated into HSV-1 DNA and ultraviolet (UV)-irradiated virus DNA (254 nm). Pretreatment of monkey cells with low-fluence UV irradiation, growth in cis-dichlorodiammineplatinum(II), or growth in ara-C followed by infection after a 24-hr incubation period resulted in enhanced survival of UV-irradiated HSV-1. Under the same experimental conditions, no reactivation of HSV-1 inactivated by growth in ara-C is observed. Comparisons between uninfected Vero cells exposed to UV irradiation (30 J/m2) or grown in 10(-6) M ara-C demonstrated repair replication in irradiated cells, whereas there was no evidence for DNA repair at various time intervals following removal of the nucleoside analogue. These observations suggest that, once ara-C is incorporated into HSV-1 or eukaryotic DNA, it is not recognized as a repairable lesion within the limits of the DNA repair assays used in these studies.

  5. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection

    PubMed Central

    Tiwari, Vaibhav; Darmani, Nissar A.; Yue, Beatrice Y. J. T.; Shukla, Deepak

    2013-01-01

    Herpes simplex virus type-1 (HSV-1) causes significant health problems from periodical skin and corneal lesions to encephalitis. We report here that an aqueous extract preparation from the barks of neem plant Azardirachta indica acts as a potent entry inhibitor against HSV-1 infection into natural target cells. The extract from neem bark (NBE) significantly blocked HSV-1 entry into cells at concentrations ranging from 50 to 100 μg/ml. The blocking activity of NBE was observed when the extract was pre-incubated with the virus but not with the target cells suggesting a direct anti-HSV-1 property of the neem bark. Further, virions treated with NBE failed to bind the cells which implicate a role of NBE as an attachment step blocker. Cells treated with NBE also inhibited HSV-1 glycoprotein mediated cell to cell fusion and polykaryocytes formation suggesting an additional role of NBE at the viral fusion step. These finding open a potential new avenue for the development of NBE as a novel anti-herpetic microbicide. PMID:20041417

  6. The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue.

    PubMed Central

    Wild, K.; Bohner, T.; Folkers, G.; Schulz, G. E.

    1997-01-01

    Thymidine kinase from Herpes simplex virus type 1 (TK) was crystallized in an N-terminally truncated but fully active form. The structures of TK complexed with ADP at the ATP-site and deoxythymidine-5'-monophosphate (dTMP), deoxythymidine (dT), or idoxuridine-5'-phosphate (5-iodo-dUMP) at the substrate-site were refined to 2.75 A, 2.8 A, and 3.0 A resolution, respectively. TK catalyzes the phosphorylation of dT resulting in an ester, and the phosphorylation of dTMP giving rise to an anhydride. The presented TK structures indicate that there are only small differences between these two modes of action. Glu83 serves as a general base in the ester reaction. Arg163 parks at an internal aspartate during ester formation and binds the alpha-phosphate of dTMP during anhydride formation. The bound deoxythymidine leaves a 35 A3 cavity at position 5 of the base and two sequestered water molecules at position 2. Cavity and water molecules reduce the substrate specificity to such an extent that TK can phosphorylate various substrate analogues useful in pharmaceutical applications. TK is structurally homologous to the well-known nucleoside monophosphate kinases but contains large additional peptide segments. PMID:9336833

  7. DNA Replication Catalyzed by Herpes Simplex Virus Type 1 Proteins Reveals Trombone Loops at the Fork*♦

    PubMed Central

    Bermek, Oya; Willcox, Smaranda; Griffith, Jack D.

    2015-01-01

    Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis. PMID:25471368

  8. Discriminant analysis of DNA polymorphisms in herpes simplex virus type 1 strains involved in primary compared to recurrent infections.

    PubMed

    Umene, Kenichi; Koga, Chihiro; Kameyama, Tadamitsu

    2007-02-01

    The restriction fragment length polymorphism (RFLP) was analyzed using a set of herpes simplex virus type 1 (HSV-1) strains isolated from oro-facial lesions (oro-facial site collection), which was composed of two subsets: one subset consisted of 57 strains from primary oro-facial lesions, and the other of 47 strains from recurrent oro-facial lesions of patients complicated by factors possibly triggering the recurrence (e.g. malignancy, operation, and treatment of dental caries). RFLP analysis was carried out previously on two other sets of HSV-1 strains: one set was from genital lesions (genital site collection), and the other was from non-genital lesions (non-genital site collection). Discriminant analysis was carried out on the three sets of HSV-1 strains: the criterion variable had two values of primary infection or recurrence, and the predictor variables were 20 RFLPs. The degrees of separation between primary infection and recurrence increased in the order oro-facial site collection, genital site collection, and non-genital site collection. The results of discriminant analysis in this study confirmed that reactivation of HSV-1 infection is influenced by triggering factors and the site of infection, thereby suggesting the capabilities of multivariate analysis (including discriminant analysis) with DNA polymorphisms for molecular epidemiological studies. PMID:17070937

  9. Effect of monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex virus type 1

    SciTech Connect

    Eisenberg, R.J.; Long, D.; Pereira, L.; Hampar, B.; Zweig, M.; Cohen, G.H.

    1982-02-01

    We examined the properties of 17 monoclonal antibodies to glycoprotein gD of herpes simplex type 1 (HSV-1) (gD-1) and HSV-2 (gD-2). The antibodies recognized eight separate determinants of gD, based on differences in radioimmuno-precipitation and neutralization assays. The determinants were distributed as follows: three were gD-1 specific, one was gD-2 specific, and four were type common. Several type-specific and type-common determinants appeared to be involved in neutralization. We developed a procedure for examining the effect that binding of monoclonal antibody has on proteolysis of native gD-1 by Staphylococcus aureus protease V8. We showed that several different patterns of protease V8 cleavage were obtained, depending on the monoclonal antibody used. The proteolysis patterns were generally consistent with the immunological groupings. With four groups of antibodies, we found that fragments of gD-1 remained bound to antibody after V8 treatment. A 38,000-dalton fragment remained bound to antibodies in three different groups of monoclonal antibodies. This fragment appeared to contain one type-common and two type-specific determinants. A 12,000-dalton fragment remained bound to antibodies belonging to one type-common group of monoclonal antibodies. Tryptic peptide analysis revealed that the 12,000-dalton fragment represented a portion of the 38,000-dalton fragment and was enriched in a type-common arginine tryptic peptide.

  10. Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1.

    PubMed

    Torres, Nicolás I; Noll, Katia Sutyak; Xu, Shiqi; Li, Ji; Huang, Qingrong; Sinko, Patrick J; Wachsman, Mónica B; Chikindas, Michael L

    2013-03-01

    In the present study the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol) (PVOH)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2.4 mg subtilosin/g fiber, and loading efficiency was 31.6%. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be nontoxic to human epidermal tissues using an in vitro human tissue model. Taking together these results subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection. PMID:23637711

  11. Herpes Simplex Virus Type 1 and Type 2 Infection Increases Atherosclerosis Risk: Evidence Based on a Meta-Analysis

    PubMed Central

    Wu, Yu peng; Wang, Yun; Liu, Wen; Yang, Jun

    2016-01-01

    Objective. The aim of our study was to evaluate the relation of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infection with the risk of atherosclerosis (AS). Methods. A systematic literature search was performed through three electronic databases. The pooled odds ratio (OR) and corresponding 95% confidence interval (CI) were used to assess the effect of HSV-1 and HSV-2 infection on AS risk. Results. 17 studies were available for meta-analysis of HSV-1 infection and AS risk and seven studies for meta-analysis of HSV-2 infection and AS risk. Subjects exposed to HSV-1 infection exhibited an increased risk of AS (OR = 1.77; 95% CI: 1.40–2.23; P < 0.001). And consistent elevated AS risks for HSV-1 positive subjects were found in all subgroup analysis of disease type, region, male proportion, and age. HSV-2 positive subjects demonstrated significantly increased AS risk (OR = 1.37; 95% CI: 1.13–1.67; P < 0.005). In subgroup analysis, elevated AS risks were only observed in myocardial ischemia group, male proportion >60% group, and age ≤60-year-old group. Conclusion. Our meta-analysis indicated that HSV-1 and HSV-2 infection could increase the risk of contracting AS. PMID:27195284

  12. Identification of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1

    SciTech Connect

    Parris, D.S. Institute of Virology, Glasgow ); Cross, A.; Orr, A.; Frame, M.C.; Murphy, M.; McGeoch, D.J.; Marsden, H.S. ); Haarr, L. )

    1988-03-01

    Hybrid arrest of in vitro translation was used to localize the region of the herpes simplex virus type 1 genome encoding the 65-kilodalton DNA-binding protein (65K{sub DBP}) to between genome coordinates 0.592 and 0.649. Knowledge of the DNA sequence of this region allowed us to identify three open reading frames as likely candidates for the gene encoding 65K{sub DBP}. Two independent approaches were used to determine which of these three open reading frames encoded the protein. For the first approach a monoclonal antibody, MAb 6898, which reacted specifically with 65K{sub DBP}, was isolated. This antibody was used, with the techniques of hybrid arrest of in vitro translation and in vitro translation of selected mRNA, to identify the gene encoding 65K{sub DBP}. The second approach involved preparation of antisera directed against oligopeptides corresponding to regions of the predicted amino acid sequence of this gene. These antisera reacted specifically with 65K{sub DBP}, thus confirming the gene assignment.

  13. Enhanced lysis of herpes simplex virus type 1-infected mouse cell lines by NC and NK effectors

    SciTech Connect

    Colmenares, C.; Lopez, C.

    1986-05-01

    Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, the authors used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). They also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the /sup 51/Cr-release assay in the presence of anti-interferon serum. The data show that HSV-1 infection of NK/NC targets induces increased cytotoxity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.

  14. Performance of the HSV OligoGen kit for the diagnosis of herpes simplex virus type 1 and 2.

    PubMed

    Parra-Sánchez, Manuel; Marcuello López, Ana; García-Rey, Silvia; Zakariya-Yousef Breval, Ismail; Bernal Martínez, Samuel; Pueyo Rodríguez, Isabel; Martín-Mazuelos, Estrella; Palomares Folía, José Carlos

    2016-07-01

    PCR methods are nowadays between the most rapid and sensitive methods for screening and diagnosing herpes simplex virus (HSV) type 1 and 2. The aim of this study was to analyze the reliability, accuracy, and usefulness of the new assay HSV OligoGen kit in comparison with the Roche LightCycler HSV ½ Qual Kit assay for the detection of HSV in clinical samples. For this analysis, a prospective study was designed for detection of HSV-1 and HSV-2 including 110 ulcer specimens, 48 urine, 48 endocervical, 43 cerebral spinal fluids, 4 urethral and 3 pharyngeal swabs that were sent from a regional STI clinic or an Intensive Clinical Unit, both in Seville, Spain. In comparison to the Roche LightCycler HSV ½ Qual Kit assay, sensitivity, specificity, positive and negative predicative values, and kappa value for HSV detection using the HSV OligoGen kit were 96.2%, 100%, 100%, 98.3%, and 0.97 for HSV-1, respectively. For HSV-2, the corresponding values were 98.3%, 100%, 100%, 99.5%, and 0.98, respectively. Statistical data obtained in this study confirms the usefulness and reliable results of this new assay. PMID:27185644

  15. Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient.

    PubMed Central

    McCarthy, A M; McMahan, L; Schaffer, P A

    1989-01-01

    Infected cell polypeptide 27 (ICP27, alpha 27, IE63) is the 63-kilodalton product of an immediate-early gene of herpes simplex virus. Functional analysis of temperature-sensitive mutants in herpes simplex virus type 1 ICP27 demonstrated that this protein plays an essential role in virus replication (W. R. Sacks, C. C. Greene, D. P. Aschman, and P. A. Schaffer, J. Virol. 55:796-805, 1985). Because the temperature-sensitive forms of ICP27 induced by the mutants affected gene expression to differing degrees, these mutants were not suitable for establishing the ICP27 null phenotype. For this purpose we generated deletion mutants in ICP27--3dl1.2 and 5dl1.2--lacking the transcriptional start site as well as portions of the promoter and coding sequences of the gene. These mutants failed to specify ICP27-specific transcripts and proteins and were replication incompetent. The mutants induced the synthesis of greatly reduced levels of viral DNA (18% of wild-type levels) and were characterized by the overexpression of early proteins, reduced levels of gamma 1 proteins, and the absence of detectable gamma 2 proteins. The alterations in viral protein synthesis appeared to occur at the level of transcription. The phenotypic properties of the mutants were consistent with the results of transient expression assays demonstrating that ICP27 acts to down-regulate transcription of early genes and to further up-regulate transcription of late genes whose expression is induced by ICP0 and ICP4. Because ICP27 is not thought to be directly involved in viral DNA synthesis, it is likely that the reduced levels of viral DNA characteristic of deletion mutant-infected cells is a consequence of aberrant regulation of certain early genes whose products are involved in viral DNA synthesis and late genes whose products are required to stabilize viral DNA once synthesized. Taken together, these findings suggest an essential role for ICP27 in the modulation of early and late gene expression at the

  16. Synthesis and processing of glycoprotein D of herpes simplex virus types 1 and 2 in an in vitro system.

    PubMed Central

    Matthews, J T; Cohen, G H; Eisenberg, R J

    1983-01-01

    We carried out studies of in vitro translation and processing of glycoprotein D (gD) of herpes simplex virus types 1 and 2 by using mRNA from cells infected for 6 h and a reticulocyte lysate translation system. Polypeptides of 49,000 daltons were immunoprecipitated with anti-gD-1 sera. Each in vitro-synthesized molecule had the same methionine tryptic peptide profile as the respective in vivo precursors, pgD-1 and pgD-2. In addition, the polypeptides synthesized in vitro were larger than the corresponding molecules synthesized in the presence of tunicamycin. This suggested that each of the gD polypeptides synthesized in vitro contained a transient N-terminal signal sequence. When the translation mixture was supplemented with pancreatic microsomes, each of the gD polypeptides was converted cotranslationally to a larger-molecular-weight form. Processing involved addition of three N-asparagine-linked oligosaccharides and removal of the signal peptide. When trypsin was added after in vitro processing, a polypeptide which was 3,000 daltons smaller than the in vitro-modified form of gD was immunoprecipitated. Experiments with endo-beta-N-acetylglucosaminidase H showed that this polypeptide still contained the three N-asparagine-linked oligosaccharides. Two monoclonal antibodies, 57S (group V) and 17O (group VII), were used to further orient gD in microsomes. The group V determinant was located in the trypsin-sensitive 3,000-dalton fragment, and the group VII determinant was located in the portion of gD which was protected from trypsin. We concluded that gD is oriented with the three glycosylation sites inside the vesicles and that 3,000 daltons containing the group V determinant are located outside. Immunofluorescence studies indicated that the group V determinant of gD is inside the plasma membrane of herpes simplex virus-infected cells and that the group VII determinant is outside. This cellular orientation is consistent with predictions based on the in vitro

  17. Transmission of herpes-simplex virus type 1 in a nursery for the newborn. Identification of viral isolates by D.N.A. "fingerprinting".

    PubMed

    Linnemann, C C; Buchman, T G; Light, I J; Ballard, J L

    1978-05-01

    The occurrence of herpes-simplex-virus type-1 infections in two newborn infants in a nursery within a one-month period suggested the possibility of transmission in the nursery. One infant may have been infected by his father, who had active herpes labialis at the time of the child's birth. The source of the second infant's infection was not apparent. Viruses isolated from the two infants were "fingerprinted" by cleaving the virus-specific D.N.A. with several restriction endonucleases and comparing the electrophoretic patterns. Isolates from the two infants were identical and differed from other isolates from epidemiologically unrelated cases. This observation confirmed the possibility of transmission of herpes-simplex virus type 1 in the nursery, but did not define the mode of transmission. Type-1 infections are serious in neonates: one of the infants died and an oesophageal stricture developed in the other. The "fingerprinting" technique provides a useful epidemiological technique for tracing the transmission of herpes virus infections. PMID:76893

  18. Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1)-Derived Amplicon.

    PubMed

    Stein, Benjamin; Alonso, María Teresa; Zufall, Frank; Leinders-Zufall, Trese; Chamero, Pablo

    2016-01-01

    In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified in the mouse VNO, but the tuning properties of individual receptors remain poorly understood, in part due to the lack of a robust heterologous expression system. Here we develop a herpes virus-based amplicon delivery system to overexpress three types of vomeronasal receptor genes and to characterize cell responses to their proposed ligands. Through Ca2+ imaging in native VNO cells we show that virus-induced overexpression of V1rj2, V2r1b or Fpr3 caused a pronounced increase of responsivity to sulfated steroids, MHC-binding peptide or the synthetic hexapeptide W-peptide, respectively. Other related ligands were not recognized by infected individual neurons, indicating a high degree of selectivity by the overexpressed receptor. Removal of G-protein signaling eliminates Ca2+ responses, indicating that the endogenous second messenger system is essential for observing receptor activation. Our results provide a novel expression system for vomeronasal receptors that should be useful for understanding the molecular logic of VNO ligand detection. Functional expression of vomeronasal receptors and their deorphanization provides an essential requirement for deciphering the neural mechanisms controlling behavior. PMID:27195771

  19. Functional Overexpression of Vomeronasal Receptors Using a Herpes Simplex Virus Type 1 (HSV-1)-Derived Amplicon

    PubMed Central

    Stein, Benjamin; Alonso, María Teresa; Zufall, Frank; Leinders-Zufall, Trese; Chamero, Pablo

    2016-01-01

    In mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues. Nearly 400 receptor genes have been identified in the mouse VNO, but the tuning properties of individual receptors remain poorly understood, in part due to the lack of a robust heterologous expression system. Here we develop a herpes virus-based amplicon delivery system to overexpress three types of vomeronasal receptor genes and to characterize cell responses to their proposed ligands. Through Ca2+ imaging in native VNO cells we show that virus-induced overexpression of V1rj2, V2r1b or Fpr3 caused a pronounced increase of responsivity to sulfated steroids, MHC-binding peptide or the synthetic hexapeptide W-peptide, respectively. Other related ligands were not recognized by infected individual neurons, indicating a high degree of selectivity by the overexpressed receptor. Removal of G-protein signaling eliminates Ca2+ responses, indicating that the endogenous second messenger system is essential for observing receptor activation. Our results provide a novel expression system for vomeronasal receptors that should be useful for understanding the molecular logic of VNO ligand detection. Functional expression of vomeronasal receptors and their deorphanization provides an essential requirement for deciphering the neural mechanisms controlling behavior. PMID:27195771

  20. The Calcitonin Receptor Gene Is a Candidate for Regulation of Susceptibility to Herpes simplex Type 1 Neuronal Infection Leading to Encephalitis in Rat

    PubMed Central

    Abdelmagid, Nada; Bereczky-Veress, Biborka; Guerreiro-Cacais, André Ortlieb; Bergman, Petra; Luhr, Katarina M.; Bergström, Tomas; Sköldenberg, Birgit; Piehl, Fredrik

    2012-01-01

    Herpes simplex encephalitis (HSE) is a fatal infection of the central nervous system (CNS) predominantly caused by Herpes simplex virus type 1. Factors regulating the susceptibility to HSE are still largely unknown. To identify host gene(s) regulating HSE susceptibility we performed a genome-wide linkage scan in an intercross between the susceptible DA and the resistant PVG rat. We found one major quantitative trait locus (QTL), Hse1, on rat chromosome 4 (confidence interval 24.3–31 Mb; LOD score 29.5) governing disease susceptibility. Fine mapping of Hse1 using recombinants, haplotype mapping and sequencing, as well as expression analysis of all genes in the interval identified the calcitonin receptor gene (Calcr) as the main candidate, which also is supported by functional studies. Thus, using unbiased genetic approach variability in Calcr was identified as potentially critical for infection and viral spread to the CNS and subsequent HSE development. PMID:22761571

  1. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1.

    PubMed

    Hayashi, K; Niwayama, S; Hayashi, T; Nago, R; Ochiai, H; Morita, N

    1988-09-01

    The antiviral activity of five diterpenoids isolated from Scoparia dulcis L., Scrophulariaceae, was examined in vitro against herpes simplex virus type 1. Among these compounds, only scopadulcic acid B was found to inhibit the viral replication with the in vitro therapeutic index of 16.7. The action of scopadulcic acid B was not due to a direct virucidal effect or inhibition of virus attachment to host cells. Single-cycle replication experiments indicated that the compound interfered with considerably early events of virus growth. The influence of scopadulcic acid B on the course of the primary corneal herpes simplex virus infection was investigated by means of a hamster test model. When the treatment was initiated immediately after virus inoculation, scopadulcic acid B, when applied orally or intraperitoneally, effectively prolonged both the appearance of herpetic lesions and the survival time at the dose of 100 and 200 mg/kg per day. PMID:2852487

  2. Protection against Recurrent Ocular Herpes Simplex Virus Type 1 Disease after Therapeutic Vaccination of Latently Infected Mice

    PubMed Central

    Richards, C. M.; Case, R.; Hirst, T. R.; Hill, T. J.; Williams, N. A.

    2003-01-01

    The potential of therapeutic vaccination of animals latently infected with herpes simplex virus type 1 (HSV-1) to enhance protective immunity to the virus and thereby reduce the incidence and severity of recurrent ocular disease was assessed in a mouse model. Mice latently infected with HSV-1 were vaccinated intranasally with a mixture of HSV-1 glycoproteins and recombinant Escherichia coli heat-labile enterotoxin B subunit (rEtxB) as an adjuvant. The systemic immune response induced was characterized by high levels of virus-specific immunoglobulin G1 (IgG1) in serum and very low levels of IgG2a. Mucosal immunity was demonstrated by high levels of IgA in eye and vaginal secretions. Proliferating T cells from lymph nodes of vaccinated animals produced higher levels of interleukin-10 (IL-10) than were produced by such cells from mock-vaccinated animals. This profile suggests that vaccination of latently infected mice modulates the Th1-dominated proinflammatory response usually induced upon infection. After reactivation of latent virus by UV irradiation, vaccinated mice showed reduced viral shedding in tears as well as a reduction in the incidence of recurrent herpetic corneal epithelial disease and stromal disease compared with mock-vaccinated mice. Moreover, vaccinated mice developing recurrent ocular disease showed less severe signs and a quicker recovery rate. Spread of virus to other areas close to the eye, such as the eyelid, was also significantly reduced. Encephalitis occurred in a small percentage (11%) of mock-vaccinated mice, but vaccinated animals were completely protected from such disease. The possible immune mechanisms involved in protection against recurrent ocular herpetic disease in therapeutically vaccinated animals are discussed. PMID:12767989

  3. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer’s Disease

    PubMed Central

    Harris, Steven A.; Harris, Elizabeth A.

    2015-01-01

    Abstract This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer’s disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials. PMID

  4. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells

    SciTech Connect

    Kang, Wen; Mukerjee, Ruma; Gartner, Jared J.; Hatzigeorgiou, Artemis G.; Sandri-Goldin, Rozanne M.; Fraser, Nigel W. . E-mail: nfraser@mail.med.upenn.edu

    2006-12-20

    The latency-associated transcripts (LATs) of herpes simplex virus type-1 (HSV-1) are the only viral RNAs accumulating during latent infections in the sensory ganglia of the peripheral nervous system. The major form of LAT that accumulates in latently infected neurons is a 2 kb intron, spliced from a much less abundant 8.3 primary transcript. The spliced exon mRNA has been hard to detect. However, in this study, we have examined the spliced exon RNA in productively infected cells using ribonuclease protection (RPA), and quantitative RT-PCR (q-PCR) assays. We were able to detect the LAT exon RNA in productively infected SY5Y cells (a human neuronal cell line). The level of the LAT exon RNA was found to be approximately 5% that of the 2 kb intron RNA and thus is likely to be relatively unstable. Quantitative RT-PCR (q-PCR) assays were used to examine the LAT exon RNA and its properties. They confirmed that the LAT exon mRNA is present at a very low level in productively infected cells, compared to the levels of other viral transcripts. Furthermore, experiments showed that the LAT exon mRNA is expressed as a true late gene, and appears to be polyadenylated. In SY5Y cells, in contrast to most late viral transcripts, the LAT exon RNA was found to be mainly nuclear localized during the late stage of a productive infection. Interestingly, more LAT exon RNA was found in the cytoplasm in differentiated compared to undifferentiated SY5Y cells, suggesting the nucleocytoplasmic distribution of the LAT exon RNA and its related function may be influenced by the differentiation state of cells.

  5. The alterations of matrix metalloproteinase-9 in mouse brainstem during herpes simplex virus type 1-induced facial palsy.

    PubMed

    Chen, Dong; Zhang, Daogong; Xu, Lei; Han, Yuechen; Wang, Haibo

    2013-11-01

    The aim of this study is to explore the changes of matrix metalloproteinase-9 (MMP9) in the mouse brainstem during the development of facial paralysis induced by herpes simplex virus type 1 (HSV-1) and the inhibitory effect of methylprednisolone sodium succinate (MPSS) on MMP9 expression. HSV-1 was inoculated into the surface of posterior auricle of mouse to establish a paralyzed animal model. The paralyzed mice were divided randomly into three groups. In one group without any treatment, mice were killed at different time points of 6 h, 1, 2, 3, and 7 days post-induction of facial paralysis; in the other two groups, mice were injected daily with MPSS and a combination of MPSS and glucocorticoid receptor blocker (RU486) for 2 days, respectively. The expression of MMP9 in the facial nucleus of brainstem was detected by Western blot, quantitative real-time polymerase chain reaction, and immunofluorescence technique. A total of 52.07 % of mice developed unilateral facial paralysis after inoculated with HSV-1. Both mRNA and protein expression of MMP9 were present at low levels in normal facial nucleus of brainstem and were increased significantly after facial paralysis with its peak time at 2 days post-induction of facial paralysis. Expression of MMP9 of paralyzed mice was inhibited by MPSS, and the inhibition could be blocked by RU486. Our findings suggest that MMP9 in mouse brainstem is involved in the evolution of facial palsy induced by HSV-1 and may play an important role in the pathogenesis of this disease. MPSS might effectively relieve HSV-1-mediated damages by inhibitory effect on expression of MMP9 in HSV-1-induced facial paralysis. PMID:23817985

  6. Genome locations of temperature-sensitive mutants in glycoprotein gB of herpes simplex virus type 1.

    PubMed

    DeLuca, N; Person, S; Bzik, D J; Snipes, W

    1984-09-01

    A plasmid containing a herpes simplex virus type 1 (HSV-1) insert from strain KOS, prototypic coordinates 0.345 to 0.368 (3.45 kilobases) was mutagenized in vitro, and potential mutations were introduced into intact viral DNA by cotransfection. Functions normally associated with the glycoprotein gB are in the 1-9 complementation group, and the above coordinates include those that specify the gB glycoprotein gene. Following cotransfection, individual plaques were screened for temperature sensitivity (ts) of viral growth. A total of seven ts mutants was obtained, of which four were spurious mutations due to alterations outside the cloned sequences, presumably mediated by some aspect of the Ca-precipitation-cotransfection method. The remaining three did not complement known mutants of the 1-9 complementation group. These three mutants, along with tsJ12 (P.A. Schaffer, G.M. Aron, N. Biswal, and M. Benyesh-Melnick, 1973, Virology 52, 57-71) and tsJ33 (C.-T. Chu, D.S. Parris, R.A.F. Dixon, F.E. Farber, and P.A. Schaffer, 1979, Virology 98, 168-181), were physically located by marker-rescue experiments to three different restriction fragments between 0.345 to 0.368 map units. Sodium dodecyl sulfate-gel electrophoresis was used to analyze the glycoproteins synthesized during continuous or pulse-chase labeling protocols. All five mutants were found to synthesize a precursor of gB but did not accumulate mature gB during a pulse, a chase, or continuous labeling at the nonpermissive temperature. PMID:6091335

  7. Ocular avirulence of a herpes simplex virus type 1 strain is associated with heightened sensitivity to alpha/beta interferon.

    PubMed Central

    Su, Y H; Oakes, J E; Lausch, R N

    1990-01-01

    BALB/c mice infected on the scarified cornea with herpes simplex virus type 1 strain 35 [HSV-1(35)] rarely developed ocular disease even at challenge doses as high as 10(7) PFU per eye. In contrast, HSV-1(RE) consistently induced stromal keratitis at an inoculum of 2 x 10(4) PFU. The goal of this study was to determine the reason for the difference in virulence between the two HSV strains. Both HSV-1 strains replicated to similar titers in excised corneal "buttons." However, after in vivo infection of the cornea, the growth of strain 35 was evident only during the first 24 h postinfection, whereas the replication of strain RE persisted for at least 4 days. In vitro tests revealed that HSV-1(35) was greater than 10 times more sensitive to alpha/beta interferon (IFN-alpha/beta) than HSV-1(RE). Both strains induced comparable serum levels of IFN after intraperitoneal inoculation. The kinetics of HSV-1(35) clearance from the eye was markedly altered by treatment with rabbit anti-IFN-alpha/beta. Virus titers exceeding 10(4) PFU per eye could be demonstrated 4 to 5 days postinfection in mice given a single inoculation of antiserum 1 h after infection. Furthermore, anti-IFN treatment in 3-week-old mice infected with HSV-1(35) led to the development of clinically apparent corneal disease which subsequently progressed to stromal keratitis in the majority of recipients. These results indicate that the striking difference in the capacity of HSV-1(35) and HSV-1(RE) to induce corneal disease was related to the inherently greater sensitivity of strain 35 to IFN-alpha/beta produced by the host in response to infection. PMID:2157880

  8. Inactivation of acyclovir-sensitive and -resistant strains of herpes simplex virus type 1 in vitro by photodynamic antimicrobial chemotherapy

    PubMed Central

    Latief, Miftahul Akhyar; Ko, Ji-Ae; Kiuchi, Yoshiaki; Sakaguchi, Takemasa; Obana, Akira

    2015-01-01

    Purpose To evaluate the efficacy of photodynamic antimicrobial chemotherapy (PACT) with the new porphyrin derivative TONS 504 and a light-emitting diode (LED) against acyclovir (ACV)-sensitive and -resistant herpes simplex virus type 1 (HSV-1). Methods Human FL cells infected with the viral strains were subjected to PACT with TONS 504 at various concentrations (0.01 to 10 mg/l) and irradiation at various light energies (10 to 30 J/cm2) and were then incubated for 24 h before analysis. Results Immunocytofluorescence analysis with antibodies to HSV-1 revealed that PACT eliminated HSV-1 and ACV-resistant HSV-1 in a manner dependent on the TONS 504 concentration and light energy. Complete eradication of both viruses was apparent at a TONS 504 concentration of 10 mg/l and light energy of 10 to 30 J/cm2 as well as at a TONS 504 concentration of 1 mg/l and light energy of 20 or 30 J/cm2. No antiviral effect was apparent with TONS 504 in the absence of irradiation or with irradiation in the absence of TONS 504. Staining of cell nuclei with 4′, 6-diamidino-2-phenylindole revealed no apparent cytotoxicity of the PACT system, a finding that was confirmed by the system’s failure to induce the release of lactate dehydrogenase from the host cells. Conclusions We conclude that our PACT system based on TONS 504 and an LED is effective for eliminating HSV-1 and ACV-resistant HSV-1 without a harmful effect on host cells. PMID:25999680

  9. Identification and characterization of the herpes simplex virus type 1 protein encoded by the UL37 open reading frame.

    PubMed Central

    Shelton, L S; Pensiero, M N; Jenkins, F J

    1990-01-01

    The UL37 open reading frame of the herpes simplex virus type 1 (HSV-1) DNA genome is located between map units 0.527 and 0.552. We have identified and characterized the UL37 protein product in HSV-1-infected cells. The presence of the UL37 protein was detected by using a polyclonal rabbit antiserum directed against an in vitro-translated product derived from an in vitro-transcribed UL37 mRNA. The UL37 open reading frame encodes for a protein with an apparent molecular mass of 120 kDa in HSV-1-infected cells; the protein's mass was assigned on the basis of its migration in sodium dodecyl sulfate-polyacrylamide gels. The UL37 protein is not present at detectable levels in purified HSV-1 virions, suggesting that it is not a structural protein. Analysis of time course experiments and experiments using DNA synthesis inhibitors demonstrated that the UL37 protein is expressed prior to the onset of viral DNA synthesis, reaching maximum levels late in infection, classifying it as a gamma 1 gene. Elution of HSV-1-infected cell proteins from single-stranded DNA agarose columns by using a linear KCl gradient demonstrated that the UL37 protein elutes from this matrix at a salt concentration similar to that observed for ICP8, the major HSV-1 DNA-binding protein. In addition, computer-assisted analysis revealed a potential ATP-binding domain in the predicted UL37 amino acid sequence. On the basis of the kinetics of appearance and DNA-binding properties, we hypothesize that UL37 represents a newly recognized HSV-1 DNA-binding protein that may be involved in late events in viral replication. Images PMID:2173782

  10. Equimolar generation of the four possible arrangements of adjacent L components in herpes simplex virus type 1 replicative intermediates.

    PubMed Central

    Bataille, D; Epstein, A L

    1997-01-01

    Herpes simplex virus type 1 (HSV-1) replication generates high-molecular-weight intermediates containing branched DNA and concatemers carrying adjacent genomes with inverted L components. We have studied replicative intermediates generated by (i) wild-type HSV-1; (ii) 5dl1.2, an ICP27 null mutant which fails to synthesize normal amounts of DNA and late proteins; (iii) RBMu3, a mutant containing a deletion in the inverted repeats which fails to generate genomic isomers; and (iv) amplicon plasmids and vectors which contain no inverted sequences. Replication intermediates were analyzed by pulsed-field gel electrophoresis, after restriction enzyme digestion of infected-cell DNA, followed by blot hybridization. DNA fragments were statistically quantified after phosphorimaging. We observed that (i) the four possible configurations of L components of two adjacent genomes in the concatemers are present at equimolar amounts at any time during virus replication, (ii) ICP27 is not required for inversions or for branched DNA to occur, and (iii) replication intermediates of both RBMu3 mutant and amplicon plasmids or vectors do contain branched structures, although the concatemers they generate contain no inversions. These data indicate that inversions are generated by a mechanism intrinsically linked to virus DNA replication, most likely homologous recombination between inverted repeats. Branched structures are detected in all replicating molecules, including those that do not invert, suggesting that they are constitutively linked to virus DNA synthesis. Our results are consistent with the notion that the four HSV-1 genomic isomers are generated by alternative cleavage frames of replication concatemers containing equimolar amounts of L-component inversions. PMID:9311858

  11. Frequency of Cytotoxic T Lymphocyte Precursors to Herpes Simplex Virus Type 1 as Determined by Limiting Dilution Analysis

    PubMed Central

    Rouse, Barry T.; Larsen, Hal S.; Wagner, Hermann

    1983-01-01

    The conditions for establishing a limiting dilution assay to measure cytotoxic T lymphocyte precursors (CTL-P) against herpes simplex virus type 1 (HSV-1) were determined. Analysis by Poisson statistics demonstrated that the estimated frequency of HSV-1-reactive cells in the spleens of normal mice was less than 1/250,000. In contrast, mice immunized previously with infectious HSV-1 demonstrated a CTL-P frequency between 1/3,500 and 1/15,670. The generation of a maximum cytotoxic T lymphocyte response required that mice be primed in vivo with infectious virus. Immunization with inactivated virus either failed to elicit detectable CTL-P frequencies or gave frequencies markedly less than those induced with infectious virus. To obtain positive cultures, the responder cell population had to be exposed to stimulator splenocytes expressing viral antigens. Normal splenocytes without virus or normal splenocytes with T cell growth factor did not result in significant cytotoxicity. Split culture analysis comparing cytotoxicity against syngeneic and allogeneic virus-infected targets provided evidence for specificity, H-2 restriction, and the T cell nature of the CTL-P. It was determined that precursors were eliminated by treatment with anti-Thy 1, Lyt 2.1, or Lyt 1.1, indicating the CTL-P were Lyt 1+2+ cells. Cytotoxicity was reduced after treatment of the responders with anti-Lyt 2 plus complement, which gave further evidence of the T cell nature of the cytotoxic T lymphocytes. These experiments demonstrated the feasibility of using the limiting dilution approach as a highly sensitive and quantitative means to measure the cell-mediated immune response to HSV-1 antigens. PMID:6299949

  12. Modulation of the AMPK/Sirt1 axis during neuronal infection by herpes simplex virus type 1.

    PubMed

    Martin, Carolina; Leyton, Luis; Arancibia, Yennyfer; Cuevas, Alexei; Zambrano, Angara; Concha, Margarita I; Otth, Carola

    2014-01-01

    Currently, it is unclear whether a neuron that undergoes viral reactivation and produces infectious particles survives and resumes latency or is killed, which is intriguing even if still unanswered. Previous reports have shown that herpes simplex virus type 1 (HSV-1) inhibits apoptosis during early infection, but is pro-apoptotic during productive infection. Taking in consideration that the stress sensors AMPK and Sirt1 are involved in neuronal survival and neuroprotection, we hypothesized that HSV-1 could activate the AMPK/Sirt1 axis as a strategy to establish latency through inhibition of apoptosis and restoration of the energy status. These effects could be accomplished through deacetylation of pro-apoptotic protein p53 and regulation of the master regulator of mitochondrial biogenesis and function PGC-1α and its target gene TFAM. Accordingly, we evaluated the AMPK/Sirt1 axis and its targets p53, PGC-1α, and acetyl CoA carboxylase in mice neuronal cultures infected with HSV-1 by western blot, RT-qPCR, and immunofluorescence analyses. Herein, we show that HSV-1 differentially modulates the AMPK/Sirt1 axis during the course of infection. In fact, during early infection (2 hpi) activated AMPK (p-AMPK) was down-regulated, but thereafter recovered gradually. In contrast, the levels of acetylated-p53 increased during the first hours post infection, but afterwards were reduced in parallel with the activation of Sirt1. However, acetylated-p53 peaked again at 18 hpi during productive infection, suggesting an activation of apoptosis. Strikingly, acetylated-p53, Sirt1, and p-AMPK apparently translocate from the nucleus to the cytoplasm after 4 hpi, where they accumulate in discrete foci in the perinuclear region. These results suggest that HSV-1 modulates the AMPK/Sirt1 axis differentially during the course of infection interfering with pro-apoptotic signaling and regulating mitochondrial biogenesis. PMID:24858404

  13. A 348-base-pair region in the latency-associated transcript facilitates herpes simplex virus type 1 reactivation.

    PubMed Central

    Bloom, D C; Hill, J M; Devi-Rao, G; Wagner, E K; Feldman, L T; Stevens, J G

    1996-01-01

    Latency-associated transcript (LAT) promoter deletion mutants of herpes simplex virus type 1 have a reduced capacity to reactivate following adrenergic induction in the rabbit eye model. We have mapped a reactivation phenotype within LAT and describe the construction of recombinants in which poly(A) addition sites have been placed at intervals within the LAT region to form truncated LAT transcripts. These mutants localize the induced reactivation phenotype to the 5' end of LAT. To further define this region, we constructed a recombinant containing a 348-bp deletion located 217 bp downstream of the transcription start site of the 8.5-kb LAT. This virus, 17delta348, expresses LAT but exhibits a significantly reduced ability to reactivate following epinephrine iontophoresis into the cornea. Quantitative DNA PCR analysis reveals that 17delta 348 establishes a latent infection within rabbit trigeminal ganglia with the same efficiency as does either the rescuant or wild-type virus. The region deleted in 17delta348 encodes three potential translational initiators (ATGs) which we have mutated and demonstrated to be dispensable for epinephrine-induced reactivation. In addition, three smaller deletions within this region have been constructed and were shown to reactivate at wild-type (parent) frequencies. These studies indicate that an undefined portion of the 348-bp region is required to facilitate induced reactivation. Sequence analysis of this 348-bp region revealed a CpG island which extends into the LAT promoter and which possesses homology to conserved elements within the mouse and human XIST transcript encoded on the X chromosome. Possible implications of these elements in the regulation of LAT expression are discussed. PMID:8642650

  14. Genotypic Characterization of Herpes Simplex Virus Type 1 Isolates in Immunocompromised Patients in Rio de Janeiro, Brazil

    PubMed Central

    Perse da Silva, Amanda; Lopes, Amanda de Oliveira; Vieira, Yasmine Rangel; de Almeida, Adilson José; Sion, Fernando Samuel; Grinsztejn, Beatriz; Wagner, Sandra; de Paula, Vanessa Salete

    2015-01-01

    Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that causes a variety of diseases, including an increased risk of developing more severe disease in HIV-infected individuals. In Brazil, there is no information about the molecular epidemiology of HSV-1 infection, especially in HIV-infected individuals. The aim of this study was to perform the genotypic characterization of HSV-1 among HIV-infected patients. A total of 214 serum samples from HIV-positive patients without HSV infection symptoms were enrolled in one of two reference hospitals for HIV infection managing in Rio de Janeiro. The gG and gI genes were analyzed by restriction fragment length polymorphism (RFLP) and full nucleotide sequencing of the US8 (1601 bp), UL44 (1996 bp), and UL23 (1244 bp) regions was performed. A total of 38.3% (82/214) and 32.7% (70/214) of the serum samples tested positive for gG and gI genes, respectively. RFLP analysis classified the HSV-1 as belonging to genotype A. Phylogenetic analysis of the Brazilian samples for the US8, UL44, and UL23 regions demonstrated that the nucleotide identity between Brazilian samples was higher than 97% for all genes. No acyclovir mutation was detected in the patients. The shedding of HSV in the serum samples from HIV-positive patients who were asymptomatic for HSV infection was detected in this work. This is the first report of molecular characterization of HSV-1 in Brazilian samples since there is no previous data available in the literature concerning the genotypic classification and stable distribution of Brazilian strains of HSV-1 in Rio de Janeiro, Brazil. PMID:26407292

  15. Identification and characterization of a DNA primase activity present in herpes simplex virus type 1-infected HeLa cells

    SciTech Connect

    Holmes, A.M.; Wietstock, S.M.; Ruyechan, W.T. )

    1988-03-01

    A novel DNA primase activity has been identified in HeLa cells infected with herpes simplex virus type 1 (HSV-1). Such an activity has not been detected in mock-infected cells. The primase activity coeluted with a portion of HSV-1 DNA polymerase from single-stranded DNA agarose columns loaded with high-salt extracts derived from infected cells. This DNA primase activity could be distinguished from host HeLa cell DNA primase by several criteria. First, the pH optimum of the HSV primase was relatively broad and peaked at 8.2 to 8.7 pH units. Second, freshly isolated HSV DNA primase was less salt sensitive than the HeLa primase. Third, antibodies raised against individual peptides of the calf thymus DNA polymerase:primase complex cross-reacted with the HeLa primase but did not react with the HSV DNA primase. Fourth, freshly prepared HSV DNA primase appeared to be associated with the HSV polymerase, but after storage at 4{degree}C for several weeks, the DNA primase separated from the viral DNA polymerase. This free DNA primase had an apparent molecular size of approximately 40 kilodaltons, whereas free HeLa DNA primase had an apparent molecular size of approximately 110 kilodaltons. On the basis of these data, the authors believe that the novel DNA primase activity in HSV-infected cells may be virus coded and that this enzyme represents a new and important function involved in the replication of HSV DNA.

  16. Herpes simplex keratitis.

    PubMed

    Kaye, Stephen; Choudhary, Anshoo

    2006-07-01

    Herpes simplex keratitis (HSK) results from an infection with the herpes simplex virus type 1 (HSV-1) also known as human herpesvirus type 1 (HHV-1). Primary infection may involve an ocular or non-ocular site, following which latency might be established principally in the trigeminal ganglion but also in the cornea. During latency, the virus appears as a circular episome associated with histones with active transcription only from the region encoding the latency-associated transcript (LAT). The LAT region is implicated in neuronal survival, anti-apoptosis, virulence, suppression of transcription, establishment of and reactivation from latency. The initial keratitis may develop after infection through the "front door route" (entry into the ocular surface from droplet spread) or "back door route" (spread to the eye from a non-ocular site, principally the mouth). The initial ocular infection may be mild. Visual morbidity results from recurrent keratitis, which leads to corneal scarring, thinning and neovascularisation. Although, recurrent disease may potentially occur through anterograde axonal spread from the trigeminal ganglion to the cornea, recent evidence suggests that HSV-1 in the cornea may be another source of recurrent disease. The pathogenesis and severity of HSK is largely determined by an interaction between viral genes encoded by the strain of HSV-1 and the make up of the host's immune system. Herpetic stromal disease is due to the immune response to virus within the cornea and the ability of the strain to cause corneal stromal disease is correlated with its ability to induce corneal vascularisation. The pathogenesis of corneal scarring and vascularisation is uncertain but appears to be a complex interaction of various cytokines, chemokines and growth factors either brought in by inflammatory cells or produced locally in response to HSV-1 infection. Evidence now suggests that HSV-1 infection disrupts the normal equilibrium between angiogenic and anti

  17. Augmentation of T helper type 1 immune response through intestinal immunity in murine cutaneous herpes simplex virus type 1 infection by probiotic Lactobacillus plantarum strain 06CC2.

    PubMed

    Matsusaki, Tatsuya; Takeda, Shiro; Takeshita, Masahiko; Arima, Yuo; Tsend-Ayush, Chuluunbat; Oyunsuren, Tsendesuren; Sugita, Chihiro; Yoshida, Hiroki; Watanabe, Wataru; Kurokawa, Masahiko

    2016-10-01

    We previously found that Lactobacillus plantarum strain 06CC2 showed probiotic potential, and its oral administration effectively induced Th1 cytokine production and activated the Th1 immune response associated with intestinal immunity in mice. In this study, to evaluate its potential as a versatile oral adjuvant for treatment of viral infection, we assessed the immunomodulatory activity of 06CC2 on murine cutaneous herpes simplex virus type 1 (HSV-1) infection, in which a major immune defense system is a delayed-type hypersensitivity (DTH) reaction based on activation of the Th1 immune response, in relation to its oral efficacy for alleviation of herpetic symptoms. In the HSV-1 infection model, oral administration of 06CC2 (20mg/mouse) twice daily for seven days starting two days before infection was significantly effective in delaying the development of skin lesions in the early phase of infection and reducing virus yields in the brain on day 4 after infection. In addition, 06CC2 significantly augmented the DTH reaction to inactivated HSV-1 antigen and elevated interferon (IFN)-γ production by HSV-1 antigen from splenocytes. On day 2, natural killer (NK) cell activity was significantly elevated, and the elevation was still observed on day 4. Furthermore, gene expressions of interleukin-12 receptor β2 and IFN-γ in Peyer's patches were augmented on day 4 by 06CC2 administration. Thus, 06CC2 was suggested to alleviate herpetic symptoms in mice in correlation with augmentation of the Th1 immune responses associated with NK cell activity through intestinal immunity. Strain 06CC2 may be a versatile oral adjuvant to activate Th1 immune response. PMID:27517518

  18. Inhibition of Herpes Simplex Virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate

    PubMed Central

    de Oliveira, Aline; Adams, Sandra D.; Lee, Lee H.; Murray, Sean R.; Hsu, Stephen D.; Hammond, Jeffrey R.; Dickinson, Douglas; Chen, Ping; Chu, Tin-Chun

    2012-01-01

    Green tea polyphenol epigallocatechin gallate (EGCG) is a strong anti-oxidant that has previously been shown to reduce the number of plaques in HIV-infected cultured cells. Modified EGCG palmitoyl-EGCG (p-EGCG), is of interest as a topical antiviral agent for Herpes Simplex Virus (HSV-1) infections. This study evaluated the effect of p-EGCG on HSV-infected Vero cells. Results of cell viability and cell proliferation assays indicate that p-EGCG is not toxic to cultured Vero cells and show that modification of the green tea polyphenol epigallocatechin gallate (EGCG) with palmitate increases the effectiveness of EGCG as an antiviral agent. Furthermore, p-EGCG is a more potent inhibitor of Herpes Simplex Virus 1 (HSV-1) than EGCG and can be topically applied to skin, one of the primary tissues infected by HSV. Viral binding assay, plaque forming assay, PCR, real-time PCR, and fluorescence microscopy were used to demonstrate that p-EGCG concentrations of 50 µM and higher block the production of infectious HSV-1 particles. p-EGCG was found to inhibit HSV-1 adsorption to Vero cells. Thus, p-EGCG may provide a novel treatment for HSV-1 infections. PMID:23182741

  19. Herpes simplex virus type 1 and Alzheimer’s disease: increasing evidence for a major role of the virus

    PubMed Central

    Itzhaki, Ruth F.

    2014-01-01

    Herpes simplex virus type 1 (HSV1), when present in brain of carriers of the type 4 allele of the apolipoprotein E gene (APOE), has been implicated as a major factor in Alzheimer’s disease (AD). It is proposed that virus is normally latent in many elderly brains but reactivates periodically (as in the peripheral nervous system) under certain conditions, for example stress, immunosuppression, and peripheral infection, causing cumulative damage and eventually development of AD. Diverse approaches have provided data that explicitly support, directly or indirectly, these concepts. Several have confirmed HSV1 DNA presence in human brains, and the HSV1-APOE-ε4 association in AD. Further, studies on HSV1-infected APOE-transgenic mice have shown that APOE-e4 animals display a greater potential for viral damage. Reactivated HSV1 can cause direct and inflammatory damage, probably involving increased formation of beta amyloid (Aβ) and of AD-like tau (P-tau)—changes found to occur in HSV1-infected cell cultures. Implicating HSV1 further in AD is the discovery that HSV1 DNA is specifically localized in amyloid plaques in AD. Other relevant, harmful effects of infection include the following: dynamic interactions between HSV1 and amyloid precursor protein (APP), which would affect both viral and APP transport; induction of toll-like receptors (TLRs) in HSV1-infected astrocyte cultures, which has been linked to the likely effects of reactivation of the virus in brain. Several epidemiological studies have shown, using serological data, an association between systemic infections and cognitive decline, with HSV1 particularly implicated. Genetic studies too have linked various pathways in AD with those occurring on HSV1 infection. In relation to the potential usage of antivirals to treat AD patients, acyclovir (ACV) is effective in reducing HSV1-induced AD-like changes in cell cultures, and valacyclovir, the bioactive form of ACV, might be most effective if combined with an

  20. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line

    PubMed Central

    2014-01-01

    Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804

  1. Herpes simplex virus type 1 and Alzheimer's disease: increasing evidence for a major role of the virus.

    PubMed

    Itzhaki, Ruth F

    2014-01-01

    Herpes simplex virus type 1 (HSV1), when present in brain of carriers of the type 4 allele of the apolipoprotein E gene (APOE), has been implicated as a major factor in Alzheimer's disease (AD). It is proposed that virus is normally latent in many elderly brains but reactivates periodically (as in the peripheral nervous system) under certain conditions, for example stress, immunosuppression, and peripheral infection, causing cumulative damage and eventually development of AD. Diverse approaches have provided data that explicitly support, directly or indirectly, these concepts. Several have confirmed HSV1 DNA presence in human brains, and the HSV1-APOE-ε4 association in AD. Further, studies on HSV1-infected APOE-transgenic mice have shown that APOE-e4 animals display a greater potential for viral damage. Reactivated HSV1 can cause direct and inflammatory damage, probably involving increased formation of beta amyloid (Aβ) and of AD-like tau (P-tau)-changes found to occur in HSV1-infected cell cultures. Implicating HSV1 further in AD is the discovery that HSV1 DNA is specifically localized in amyloid plaques in AD. Other relevant, harmful effects of infection include the following: dynamic interactions between HSV1 and amyloid precursor protein (APP), which would affect both viral and APP transport; induction of toll-like receptors (TLRs) in HSV1-infected astrocyte cultures, which has been linked to the likely effects of reactivation of the virus in brain. Several epidemiological studies have shown, using serological data, an association between systemic infections and cognitive decline, with HSV1 particularly implicated. Genetic studies too have linked various pathways in AD with those occurring on HSV1 infection. In relation to the potential usage of antivirals to treat AD patients, acyclovir (ACV) is effective in reducing HSV1-induced AD-like changes in cell cultures, and valacyclovir, the bioactive form of ACV, might be most effective if combined with an

  2. The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency.

    PubMed Central

    Cai, W; Astor, T L; Liptak, L M; Cho, C; Coen, D M; Schaffer, P A

    1993-01-01

    ICP0 is a potent activator of herpes simplex virus type 1 gene expression in transient assays and in productive infection. A role for ICP0 in reactivation from latency in vivo has also been suggested on the basis of the observation that viruses with mutations in both copies of the diploid gene for ICP0 reactivate less efficiently than wild-type virus. Because the ICP0 gene is contained entirely within the coding sequences for the latency-associated transcripts (LATs), ICP0 mutants also contain mutations in LAT coding sequences. This overlap raises the question of whether mutations in ICP0 or the LATs, which have also been implicated in reactivation, are responsible for the reduced reactivation frequencies characteristic of ICP0 mutants. Two approaches were taken to examine more definitively the role of ICP0 in the establishment and reactivation of latency. First, a series of ICP0 nonsense, insertion, and deletion mutant viruses that exhibit graded levels of ICP0-specific transactivating activity were tested for parameters of the establishment and reactivation of latency in a mouse ocular model. Although these mutants are ICP0 LAT double mutants, all nonsense mutants induced the synthesis of near-wild-type levels of the 2-kb LAT, demonstrating that the nonsense linker did not disrupt the synthesis of this LAT species. All mutants replicated less efficiently than the wild-type virus in mouse eyes and ganglia during the acute phase of infection. The replication efficiencies of the mutants at these sites corresponded well with the ICP0 transactivating activities of individual mutant peptides in transient expression assays. All mutants exhibited reduced reactivation frequencies relative to those of wild-type virus, and reactivation frequencies, like replication efficiencies in eyes and ganglia, correlated well with the level of ICP0 transactivating activity exhibited by individual mutant peptides. The amount of DNA of the different mutants varied in latently infected

  3. Identification and characterization of the herpes simplex virus type 1 virion protein encoded by the UL35 open reading frame.

    PubMed

    McNabb, D S; Courtney, R J

    1992-05-01

    The UL35 open reading frame (ORF) of herpes simplex virus type 1 (HSV-1) has been predicted from DNA sequence analysis to encode a small polypeptide with a molecular weight of 12,095. We have investigated the protein product of the UL35 ORF by using a trpE-UL35 gene fusion to produce a corresponding fusion protein in Escherichia coli. The TrpE-UL35 chimeric protein was subsequently isolated and used as a source of immunogen for the production of rabbit polyclonal antiserum directed against the UL35 gene product. The TrpE-UL35 antiserum was found to recognize a 12-kDa protein which was specifically present in HSV-1-infected cells. By utilizing the TrpE-UL35 antiserum, the kinetics of synthesis of the UL35 gene product was examined, and these studies indicate that UL35 is expressed as a gamma 2 (true late) gene. The 12-kDa protein recognized by the TrpE-UL35 antiserum was associated with purified HSV-1 virions and type A and B capsids, suggesting that the UL35 ORF may encode the 12-kDa capsid protein variably designated p12, NC7, or VP26. To confirm this assignment, immunoprecipitation and immunoblotting studies were performed to demonstrate that the TrpE-UL35 antiserum reacts with the same polypeptide as an antiserum directed against the purified p12 capsid protein (anti-NC7) (G.H. Cohen, M. Ponce de Leon, H. Diggelmann, W.C. Lawrence, S.K. Vernon, and R.J. Eisenberg, J. Virol. 34:521-531, 1980). Furthermore, the anti-NC7 serum was also found to react with the TrpE-UL35 chimeric protein isolated from E. coli, providing additional evidence that the UL35 gene encodes p12. On the basis of these studies, we conclude that UL35 represents a true late gene which encodes the 12-kDa capsid protein of HSV-1. PMID:1313892

  4. Ultrastructural Localization of the Herpes Simplex Virus Type 1 UL31, UL34, and US3 Proteins Suggests Specific Roles in Primary Envelopment and Egress of Nucleocapsids

    PubMed Central

    Reynolds, Ashley E.; Wills, Elizabeth G.; Roller, Richard J.; Ryckman, Brent J.; Baines, Joel D.

    2002-01-01

    The wild-type UL31, UL34, and US3 proteins localized on nuclear membranes and perinuclear virions; the US3 protein was also on cytoplasmic membranes and extranuclear virions. The UL31 and UL34 proteins were not detected in extracellular virions. US3 deletion caused (i) virion accumulation in nuclear membrane invaginations, (ii) delayed virus production onset, and (iii) reduced peak virus titers. These data support the herpes simplex virus type 1 deenvelopment-reenvelopment model of virion egress and suggest that the US3 protein plays an important, but nonessential, role in the egress pathway. PMID:12163613

  5. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    SciTech Connect

    Huang Jialing Lazear, Helen M. Friedman, Harvey M.

    2011-01-05

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  6. A NK complex-linked locus restricts the spread of herpes simplex virus type 1 in the brains of C57BL/6 mice.

    PubMed

    Kastrukoff, Lorne F; Lau, Allen S; Takei, Fumio; Carbone, Francis R; Scalzo, Anthony A

    2015-11-01

    The most frequent cause of sporadic viral encephalitis in western countries is Herpes simplex virus (HSV). Despite treatment, mortality rates reach 20-30% while survivors often suffer from significant morbidity. In mice, resistance to lethal Herpes simplex encephalitis (HSE) is multifactorial and influenced by mouse and virus strain as well as route of infection. The ability to restrict viral spread in the brain is one factor contributing to resistance. After infection of the oral mucosa with HSV type 1 (HSV-1), virus spreads throughout the brains of susceptible strains but is restricted in resistant C57BL/6 mice. To further investigate restriction of viral spread in the brain, mendelian analysis was combined with studies of congenic, intra-natural killer complex (intra-NKC) recombinant and antibody-depleted mice. Results from mendelian analysis support the restriction of viral spread as a dominant trait and consistent with a single gene effect. In congenic mice, the locus maps to the NKC on chromosome 6 and is provisionally termed Herpes Resistance Locus 2 (Hrl2). In intra-NKC recombinants, the locus is further mapped to the segment Cd69 through D6Wum34; a different location from previously identified loci (Hrl and Rhs1) also associated with HSV-1 infection. Studies with antibody-depleted mice indicate the effect of this locus is mediated by NK1.1(+) expressing cells. This model increases our knowledge of lethal HSE, which may lead to new treatment options. PMID:25971711

  7. Acute Morphine Administration Reduces Cell-Mediated Immunity and Induces Reactivation of Latent Herpes Simplex Virus Type 1 in BALB/c Mice

    PubMed Central

    Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat

    2009-01-01

    Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060

  8. Herpes simplex virus type 1 hepatitis due to primary infection in a pancreas-kidney transplant recipient.

    PubMed

    Feugeas, J; Mory, S; Jeulin, H; Velay, A; Pertek, J-P; Ladriere, M; Losser, M-R

    2016-07-01

    Herpes simplex Virus (HSV) hepatitis is a rare complication of HSV-1 primary infection, with a delayed diagnosis, affecting mainly immunocompromised patients. We describe a case of HSV-1 hepatitis after primary infection occurring in the postoperative days after a pancreas-kidney transplantation. The patient presented with an unusual evolution of a persistent severe hepatitis associated with a persistent viremia (Quantitative Polymerase Chain Reaction) despite an adequate intravenous (iv) antiviral treatment. Abdominal computed tomography scan showed a miliary hepatitis. The diagnosis of HSV-1 hepatitis was confirmed by immuno-chemistry on liver biopsy. The donor was negative for anti-HSV antibodies, excluding contamination by the graft. This case report emphasizes a rather seldom risk of care-associated viral infections, predominantly in immunocompromised patients. PMID:27155056

  9. Amino acid substitutions in the thymidine kinase gene of induced acyclovir-resistant herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Hussin, Ainulkhir; Nor, Norefrina Shafinaz Md; Ibrahim, Nazlina

    2013-11-01

    Acyclovir (ACV) is an antiviral drug of choice in healthcare setting to treat infections caused by herpes viruses, including, but not limited to genital herpes, cold sores, shingles and chicken pox. Acyclovir resistance has emerged significantly due to extensive use and misuse of this antiviral in human, especially in immunocompromised patients. However, it remains unclear about the amino acid substitutions in thymidine (TK) gene, which specifically confer the resistance-associated mutation in herpes simplex virus. Hence, acyclovir-resistant HSV-1 was selected at high concentration (2.0 - 4.5 μg/mL), and the TK-gene was subjected to sequencing and genotypic characterization. Genotypic sequences comparison was done using HSV-1 17 (GenBank Accesion no. X14112) for resistance-associated mutation determination whereas HSV-1 KOS, HSV-1 473/08 and HSV clinical isolates sequences were used for polymorphism-associated mutation. The result showed that amino acid substitutions at the non-conserved region (UKM-1: Gln34Lys, UKM-2: Arg32Ser & UKM-5: Arg32Cys) and ATP-binding site (UKM-3: Tyr53End & UKM-4: Ile54Leu) of the TK-gene. These discoveries play an important role to extend another dimension to the evolution of acyclovir-resistant HSV-1 and suggest that selection at high ACV concentration induced ACV-resistant HSV-1 evolution. These findings also expand the knowledge on the type of mutations among acyclovir-resistant HSV-1. In conclusion, HSV-1 showed multiple strategies to exhibit acyclovir resistance, including amino acid substitutions in the TK gene.

  10. Herpes simplex virus type 1 recombination: the Uc-DR1 region is required for high-level a-sequence-mediated recombination.

    PubMed Central

    Dutch, R E; Zemelman, B V; Lehman, I R

    1994-01-01

    The a sequences of herpes simplex virus type 1 are believed to be the cis sites for inversion events that generate four isomeric forms of the viral genome. Using an assay that measures deletion of a beta-galactosidase gene positioned between two directly repeated sequences in plasmids transiently maintained in Vero cells, we had found that the a sequence is more recombinogenic than another sequence of similar size. To investigate the basis for the enhanced recombination mediated by the a sequence, we examined plasmids containing direct repeats of approximately 350 bp from a variety of sources and with a wide range of G+C content. We observed that all of these plasmids show similar recombination frequencies (3 to 4%) in herpes simplex virus type 1-infected cells. However, recombination between directly repeated a sequences occurs at twice this frequency (6 to 10%). In addition, we find that insertion of a cleavage site for an a-sequence-specific endonuclease into the repeated sequences does not appreciably increase the frequency of recombination, indicating that the presence of endonuclease cleavage sites within the a sequence does not account for its recombinogenicity. Finally, by replacing segments of the a sequence with DNA fragments of similar length, we have determined that only the 95-bp Uc-DR1 segment is indispensable for high-level a-sequence-mediated recombination. Images PMID:8189511

  11. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    SciTech Connect

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in the production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.

  12. Neonatal herpes simplex virus.

    PubMed

    Berardi, Alberto; Lugli, Licia; Rossi, Cecilia; Maria, Chiara Laguardia; Guidotti, Isotta; Gallo, Claudio; Ferrari, Fabrizio

    2011-10-01

    Herpes simplex virus is an important cause of neonatal infection, which can lead to death or long-term disabilities. Rarely in utero, the transmission frequently occurs during delivery. The disease may be disseminated, localized to the central nervous system, or involving skin, eye and/or mouth. Mortality rates markedly decreased with high-dose antiviral treatment. Diagnosis of neonatal infection is based on viral isolation from ulcerated vesicles or by scarifying mucocutaneous lesions. Recently polymerase chain reaction plays a central role for both viral detection (skin, mucosal, cerebrospinal fluid samples) and response to therapy. Vertical transmission may be decreased by prophylactic antiviral treatment. PMID:21942600

  13. In vitro Cytotoxicity and Anti-herpes Simplex Virus Type 1 Activity of Hydroethanolic Extract, Fractions, and Isolated Compounds from Stem Bark of Schinus terebinthifolius Raddi

    PubMed Central

    Nocchi, Samara Requena; de Moura-Costa, Gislaine Franco; Novello, Claudio Roberto; Rodrigues, Juliana; Longhini, Renata; de Mello, João Carlos Palazzo; Filho, Benedito Prado Dias; Nakamura, Celso Vataru; Ueda-Nakamura, Tânia

    2016-01-01

    Background: Herpes simplex virus type 1 (HSV-1) is associated with orofacial infections and is transmitted by direct contact with infected secretions. Several efforts have been expended in the search for drugs to the treatment for herpes. Schinus terebinthifolius is used in several illnesses and among them, for the topical treatment of skin wounds, especially wounds of mucous membranes, whether infected or not. Objective: To evaluate the cytotoxicity and anti-HSV-1 activity of the crude hydroethanolic extract (CHE) from the stem bark of S. terebinthifolius, as well as its fractions and isolated compounds. Materials and Methods: The CHE was subjected to bioguided fractionation. The anti-HSV-1 activity and the cytotoxicity of the CHE, its fractions, and isolated compounds were evaluated in vitro by SRB method. A preliminar investigation of the action of CHE in the virus–host interaction was conducted by the same assay. Results: CHE presented flavan-3-ols and showed anti-HSV-1 activity, better than its fractions and isolated compounds. The class of substances found in CHE can bind to proteins to form unstable complexes and enveloped viruses, as HSV-1 may be vulnerable to this action. Our results suggest that the CHE interfered with virion envelope structures, masking viral receptors that are necessary for adsorption or entry into host cells. Conclusion: The plant investigated exhibited potential for future development treatment against HSV-1, but further tests are necessary, especially to elucidate the mechanism of action of CHE, as well as preclinical and clinical studies to confirm its safety and efficacy. SUMMARY Crude hydroethanolic extract (CHE) presents promising activity against herpes simplex virus type 1 (HSV 1), with selectivity index (SI) = 22.50CHE has flavan-3-ols in its composition, such as catechin and gallocatechinThe fractions and isolated compounds obtained from CHE by bioguided fractionation are less active than the CHE against HSV-1CHE interferes

  14. Activation of Checkpoint Kinase 2 Is Critical for Herpes Simplex Virus Type 1 Replication in Corneal Epithelium

    PubMed Central

    Alekseev, Oleg; Limonnik, Vladimir; Donovan, Kelly; Azizkhan-Clifford, Jane

    2015-01-01

    Background/Aims Herpes simplex virus (HSV) type I keratitis remains a leading cause of corneal morbidity, despite the availability of effective antiviral drugs. Improved understanding of virus-host interactions at the level of the host DNA damage response (DDR), a known factor in the development of HSV-1 keratitis, may shed light on potential new therapeutic targets. This report examines the role of checkpoint kinase 2 (Chk2), a DDR mediator protein, in corneal epithelial HSV-1 infection. Methods A small-molecule inhibitor of Chk2 (Chk2 inhibitor II) was applied to HSV-1-infected cultured human corneal epithelial cells (hTCEpi and HCE) as well as to explanted and organotypically cultured human and rabbit corneas. Infection levels were assessed by plaque assay and real-time PCR. RNAi-mediated depletion of Chk2 was performed to confirm the effect of the inhibitor. Results Inhibition of the Chk2 kinase activity greatly suppresses the cytopathic effect, genome replication and infectious progeny production in vitro and ex vivo. Conclusion This report demonstrates the critical role of Chk2 kinase in the establishment of HSV-1 corneal epithelial infection. These data contribute to our understanding of herpesvirus-host interactions and underscore the significance of DDR activation in HSV-1 keratitis. PMID:25531207

  15. Medroxyprogesterone acetate inhibits CD8+ T cell viral specific effector function and induces herpes simplex virus type 1 reactivation

    PubMed Central

    Cherpes, Thomas L.; Busch, James L.; Sheridan, Brian S.; Harvey, Stephen A. K.; Hendricks, Robert L.

    2008-01-01

    Clinical research suggests hormonal contraceptive use is associated with increased frequencies of herpes simplex virus (HSV) reactivation and shedding. We examined the effects of medroxyprogesterone acetate (MPA), the compound most commonly used for injectable hormonal contraception, on HSV-1 reactivation and CD8+ T cell function in murine trigeminal ganglia (TG). In ex vivo TG cultures, MPA dramatically inhibited canonical CD8+ T cell effector functions, including IFN-γ production and lytic granule release, and increased HSV-1 reactivation from latency. In vivo, MPA treatment of latently infected ovariectomized mice inhibited IFN-γ production and lytic granule release by TG resident CD8+ T cells stimulated directly ex vivo. RNA specific for the essential immediate early viral gene ICP4 as well as viral genome DNA copy number were increased in mice that received MPA during latency, suggesting that treatment increased in vivo reactivation. The increase in HSV-1 copy number appeared to be the result of a two-tine effect, as MPA induced higher reactivation frequencies from latently infected explanted TG neurons in the presence or absence of CD45+ cells. Our data suggest hormonal contraceptives that contain MPA may promote increased frequency of HSV reactivation from latency through the combinatory effects of inhibiting protective CD8+ T cell responses and by a leukocyte-independent effect on infected neurons. PMID:18606648

  16. A subset of human plasmacytoid dendritic cells expresses CD8α upon exposure to herpes simplex virus type 1

    PubMed Central

    Schuster, Philipp; Thomann, Sabrina; Werner, Maren; Vollmer, Jörg; Schmidt, Barbara

    2015-01-01

    Classical and plasmacytoid dendritic cells (DC) play important roles in the defense against murine and human infections with herpes simplex virus (HSV). So far, CD8α expression has only been reported for murine DC. CD8α+ DC have prominent cross-presenting activities, which are enhanced by murine CD8α+ PDC. The human orthologue of murine CD8α+ DC, the CD141 (BDCA3)+ DC, mainly cross-present after TLR3 ligation. We report here the serendipitous finding that a subset of human PDC upregulates CD8α upon HSV-1 stimulation, as shown by gene array and flow cytometry analyses. CD8α, not CD8ß, was expressed upon exposure. Markers of activation, migration, and costimulation were upregulated on CD8α-expressing human PDC. In these cells, increased cytokine and chemokine levels were detected that enhance development and function of T, B, and NK cells, and recruit immature DC, monocytes, and Th1 cells, respectively. Altogether, human CD8α+ PDC exhibit a highly activated phenotype and appear to recruit other immune cells to the site of inflammation. Further studies will show whether CD8α-expressing PDC contribute to antigen cross-presentation, which may be important for immune defenses against HSV infections in vitro and in vivo. PMID:26082771

  17. Herpes Simplex Virus (Cold Sores)

    MedlinePlus

    ... the skin, eyes, and mouth. This is a life-threatening infection that can lead to permanent brain damage or even death. Herpes simplex viruses also cause encephalitis, an infection of the brain. ...

  18. [Neonatal herpes simplex infection].

    PubMed

    van Ham-Borawitz, V E J; Stam, E D; Welborn, K M; Sas, T C J

    2016-01-01

    Neonatal encephalitis caused by herpes simplex virus (HSV) is a familiar disease with a high mortality and morbidity rate. Isolated skin-eye-mouth infection is less familiar among professionals. In this article we present two neonates with an isolated skin lesion caused by an HSV infection. Of the neonates infected with HSV, 40-45% show isolated skin-eye-mouth disease. With correct treatment, the risk of spread to the central nervous system will decrease from 50-60% to 5-10%. Typical HSV skin lesions may present at a late stage of the disease or may be masked by a secondary bacterial infection. When a neonate presents with atypical skin lesions starting 7-12 days after the birth, immediate testing for HSV and immediate treatment are required, to decrease the risk of further progression of the disease. PMID:27122069

  19. The impact of Herpes simplex virus type 1 on cognitive impairments in young, healthy individuals - A historical prospective study.

    PubMed

    Fruchter, Eyal; Goldberg, Shira; Fenchel, Daphna; Grotto, Itamar; Ginat, Keren; Weiser, Mark

    2015-10-01

    Herpes simplex virus (HSV) is a highly prevalent neurotropic virus. Although on the whole, chronic, latent or persistent infection is considered to be relatively benign, HSV infections can cause cognitive impairment during and after acute encephalitis. Some studies have documented cognitive impairment in exposed persons that is untraceable to encephalitis. Most studies have focused on these impairments in the mentally ill, mostly among individuals with schizophrenia, and only recently have studies begun to examine the impact of HSV infection on the cognition of healthy individuals. Subjects were a representative, random sample of 612 soldiers before active duty in the Israeli military (Israeli defense force - IDF), 62.2% HSV positive (n=381) and 38.8% HSV negative (n=231). Cognitive functioning and language abilities were compared between these groups, controlling for years of education, immigration status, and gender. Compared to soldiers who were sero-negative, soldiers who were sero-positive for HSV had significantly lower IQ scores (IQ=97.96, SD=15.19 vs IQ=103.23, SD=14.23; p≤0.001, effect size (ES)=0.2), and significantly lower Hebrew language scores (ES=0.1, p≤0.01). The results remained significant after removing subjects with mild depression, anxiety or personality disorders. Although we could not control for socio-economic status directly, our findings indicate that infection with HSV-1 is associated with reduced cognitive functioning in healthy individuals. This finding adds to the growing number of studies in the schizophrenia literature and indicates that many research findings seemingly characteristic of schizophrenia are related to the association between HSV exposure and cognitive functioning in general, and are not illness specific. PMID:26362735

  20. Localization of latency-associated transcripts in the uterovaginal plexus of herpes simplex virus type 1 and 2 latently infected mice.

    PubMed

    Podlech, J; Hengerer, F; Fleck, M; Kunkel, J; Falke, D

    1997-05-01

    The vagina and medulla of the adrenal gland of mice vaginally infected with herpes simplex virus (HSV) types 1 and 2 were examined in the latent stage of infection (5 to 51 weeks post-infection). RNA in situ hybridization with HSV-1 and -2 latency-associated transcript (LAT) RNA probes resulted in positively stained neuronal cell nuclei in the uterovaginal plexus, but not in the medulla of the adrenal gland. These organs were chosen because HSV antigens can be detected not only in the vaginal epithelium, but also in neurons of the uterovaginal plexus and in the medulla of the adrenal gland at the acute stage of genital infection. To our knowledge, this is the first report describing LATs in neurons of the uterovaginal plexus in the genital tract of latently HSV-infected mice. PMID:9152429

  1. Herpes simplex virus type 1 and normal protein permeability in the lungs of critically ill patients: a case for low pathogenicity?

    PubMed Central

    Verheij, Joanne; Groeneveld, AB Johan; Beishuizen, Albertus; Lingen, Arthur van; Simoons-Smit, Alberdina M; van Schijndel, Rob JM Strack

    2004-01-01

    Introduction The pathogenicity of late respiratory infections with herpes simplex virus type 1 (HSV-1) in the critically ill is unclear. Methods In four critically ill patients with persistent pulmonary infiltrates of unknown origin and isolation of HSV-1 from tracheal aspirate or bronchoalveolar lavage fluid, at 7 (1–11) days after start of mechanical ventilatory support, a pulmonary leak index (PLI) for 67Gallium (67Ga)-transferrin (upper limit of normal 14.1 × 10-3/min) was measured. Results The PLI ranged between 7.5 and 14.0 × 10-3/min in the study patients. Two patients received a course of acyclovir and all survived. Conclusions The normal capillary permeability observed in the lungs argues against pathogenicity of HSV-1 in the critically ill, and favors that isolation of the virus reflects reactivation in the course of serious illness and immunodepresssion, rather than primary or superimposed infection in the lungs. PMID:15153242

  2. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2.

    PubMed

    Sauerbrei, Andreas; Bohn-Wippert, Kathrin; Kaspar, Marisa; Krumbholz, Andi; Karrasch, Matthias; Zell, Roland

    2016-01-01

    The use of genotypic resistance testing of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is increasing because the rapid availability of results significantly improves the treatment of severe infections, especially in immunocompromised patients. However, an essential precondition is a broad knowledge of natural polymorphisms and resistance-associated mutations in the thymidine kinase (TK) and DNA polymerase (pol) genes, of which the DNA polymerase (Pol) enzyme is targeted by the highly effective antiviral drugs in clinical use. Thus, this review presents a database of all non-synonymous mutations of TK and DNA pol genes of HSV-1 and HSV-2 whose association with resistance or natural gene polymorphism has been clarified by phenotypic and/or functional assays. In addition, the laboratory methods for verifying natural polymorphisms or resistance mutations are summarized. This database can help considerably to facilitate the interpretation of genotypic resistance findings in clinical HSV-1 and HSV-2 strains. PMID:26433780

  3. Retention of the herpes simplex virus type 1 (HSV-1) UL37 protein on single-stranded DNA columns requires the HSV-1 ICP8 protein.

    PubMed Central

    Shelton, L S; Albright, A G; Ruyechan, W T; Jenkins, F J

    1994-01-01

    The UL37 and ICP8 proteins present in herpes simplex virus type 1 (HSV-1)-infected-cell extracts produced at 24 h postinfection coeluted from single-stranded-DNA-cellulose columns. Experiments carried out with the UL37 protein expressed by a vaccinia virus recombinant (V37) revealed that the UL37 protein did not exhibit DNA-binding activity in the absence of other HSV proteins. Analysis of extracts derived from cells coinfected with V37 and an ICP8-expressing vaccinia virus recombinant (V8) and analysis of extracts prepared from cells infected with the HSV-1 ICP8 deletion mutants d21 and n10 revealed that the retention of the UL37 protein on single-stranded DNA columns required a DNA-binding-competent ICP8 protein. Images PMID:8254765

  4. The Pattern of Tegument-Capsid Interaction in the Herpes Simplex Virus Type 1 Virion Is Not Influenced by the Small Hexon-Associated Protein VP26

    PubMed Central

    Chen, Dong-Hua; Jakana, Joanita; McNab, David; Mitchell, Joyce; Zhou, Z. Hong; Dougherty, Matthew; Chiu, Wah; Rixon, Frazer J.

    2001-01-01

    Examination of the three-dimensional structure of intact herpes simplex virus type 1 (HSV-1) virions had revealed that the icosahedrally symmetrical interaction between the tegument and capsid involves the pentons but not the hexons (Z. H. Zhou, D. H. Chen, J. Jakana, F. J. Rixon, and W. Chiu, J. Virol. 73:3210–3218, 1999). To account for this, we postulated that the presence of the small capsid protein, VP26, on top of the hexons was masking potential binding sites and preventing tegument attachment. We have now tested this hypothesis by determining the structure of virions lacking VP26. Apart from the obvious absence of VP26 from the capsids, the structures of the VP26 minus and wild-type virions were essentially identical. Notably, they showed the same tegument attachment patterns, thereby demonstrating that VP26 is not responsible for the divergent tegument binding properties of pentons and hexons. PMID:11689667

  5. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng

    2011-07-01

    Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.

  6. Promoter for the late gene encoding Vp5 of herpes simplex virus type 1 is recognized by cell extracts derived from uninfected cells

    SciTech Connect

    Chisholm, G.E.; Summers, W.C.

    1986-11-01

    The ability of whole-cell extracts from unidentified HeLa cells to recognize the promoter for the herpes simplex virus type 1 late gene encoding the major capsid protein Vp5 was investigated by using both in vitro transcriptional and S1 nuclease protection analysis. This gene promoter was recognized by the cell extracts and produced abundant amounts of transcript in the absence of any other virus-encoded factors. This transcript was shown to arise, in vitro, from specific initiation at or very near the physiological mRNA start site. Thus, it appears that cell extracts from uninfected HeLa cells can efficiently recognize both early- and late-gene promoters.

  7. An autophosphorylating but not transphosphorylating activity is associated with the unique N terminus of the herpes simplex virus type 1 ribonucleotide reductase large subunit.

    PubMed Central

    Conner, J; Cooper, J; Furlong, J; Clements, J B

    1992-01-01

    We report on a protein kinase function encoded by the unique N terminus of the herpes simplex virus type 1 (HSV-1) ribonucleotide reductase large subunit (R1). R1 expressed in Escherichia coli exhibited autophosphorylation activity in a reaction which depended on the presence of the unique N terminus. When the N terminus was separately expressed in E. coli and partially purified, a similar autophosphorylation reaction was observed. Importantly, transphosphorylation of histones and of proteins in HSV-1-infected cell extracts was also observed with purified R1 and with truncated R1 mutants in which most of the N terminus was deleted. Ion-exchange chromatography was used to separate the autophosphorylating activity of the N terminus from the transphosphorylating activity of an E. coli contaminant protein kinase. We propose a putative function for this activity of the HSV-1 R1 N terminus during the immediate-early phase of virus replication. Images PMID:1331536

  8. Herpes Simplex Encephalitis: An Uncommon Presentation

    PubMed Central

    Bansal, Sunil; Bhatia, Rohan; Ahmad, Sohaib

    2016-01-01

    Herpes Simplex Virus (HSV) encephalitis is an uncommon illness, with about 2 cases per 250,000 per year. Most are caused by HSV-1, with 10% having HSV-2 as the aetiologic factor. We present a case of Herpes simplex type1encephalitis in a 70 year old male with an uncommon presentation. The patient was a known case of endogenous depression with no medical records and on no treatment for the same, reported with acute changes in mental state for the past five days. He was talking irrelevantly, had hallucinations and was unduly aggressive and violent. He was subjected to a thorough clinical and diagnostic work-up which included cerebrospinal fluid analysis, CT head and MRI brain. MRI brain was suggestive of mild subdural effusion which hinted towards infectious cause of encephalitis. The cerebrospinal fluid viral serology panel detected herpes simplex type 1 virus (HSV1) that was later confirmed by CSF Polymerase Chain Reaction (PCR) technique. Hence, acyclovir was initiated by intravenous route at a dosage of 10mg/kg body weight and continued for two weeks. This case holds significance in view of the fact that organic causes must be excluded in suspected cases of psychiatric illness especially in the absence of fever. Also, CSF-PCR testing plays a pivotal role in diagnosing herpes simplex encephalitis. PMID:27437286

  9. Herpes Simplex Encephalitis: An Uncommon Presentation.

    PubMed

    Kaeley, Nidhi; Bansal, Sunil; Bhatia, Rohan; Ahmad, Sohaib

    2016-05-01

    Herpes Simplex Virus (HSV) encephalitis is an uncommon illness, with about 2 cases per 250,000 per year. Most are caused by HSV-1, with 10% having HSV-2 as the aetiologic factor. We present a case of Herpes simplex type1encephalitis in a 70 year old male with an uncommon presentation. The patient was a known case of endogenous depression with no medical records and on no treatment for the same, reported with acute changes in mental state for the past five days. He was talking irrelevantly, had hallucinations and was unduly aggressive and violent. He was subjected to a thorough clinical and diagnostic work-up which included cerebrospinal fluid analysis, CT head and MRI brain. MRI brain was suggestive of mild subdural effusion which hinted towards infectious cause of encephalitis. The cerebrospinal fluid viral serology panel detected herpes simplex type 1 virus (HSV1) that was later confirmed by CSF Polymerase Chain Reaction (PCR) technique. Hence, acyclovir was initiated by intravenous route at a dosage of 10mg/kg body weight and continued for two weeks. This case holds significance in view of the fact that organic causes must be excluded in suspected cases of psychiatric illness especially in the absence of fever. Also, CSF-PCR testing plays a pivotal role in diagnosing herpes simplex encephalitis. PMID:27437286

  10. Cytotoxicity in L929 fibroblasts and inhibition of herpes simplex virus type 1 Kupka by estuarine cyanobacteria extracts.

    PubMed

    Lopes, Viviana R; Schmidtke, Michaela; Helena Fernandes, M; Martins, Rosário; Vasconcelos, Vitor

    2011-06-01

    The cyanobacteria are known to be a rich source of metabolites with a variety of biological activities in different biological systems. In the present work, the bioactivity of aqueous and organic (methanolic and hexane) crude extracts of cyanobacteria isolated from estuarine ecosystems was studied using different bioassays. The assessment of DNA damage on the SOS gene repair region of mutant PQ37 strain of Escherichia coli was performed. Antiviral activity was evaluated against influenza virus, HRV-2, CVB3 and HSV-1 viruses using crystal violet dye uptake on HeLa, MDCK and GMK cell lines. Cytotoxicity evaluation was performed with L929 fibroblasts by MTT assay. Of a total of 18 cyanobacterial isolates studied, only the crude methanolic extract of LEGE 06078 proved to be genotoxic (IF > 1.5) in a dose-dependent manner and other four were putative candidates to induce DNA damage. Furthermore, the crude aqueous extract of LEGE 07085 showed anti- herpes type 1 activity (IC50 = 174.10 μg dry extract mL(-1)) while not presenting any cytotoxic activity against GMK cell lines. Of the 54 cyanobacterial extracts tested, only the crude methanolic and hexane ones showed impair on metabolic activity of L929 fibroblasts after long exposure (48-72 h). The inhibition of HSV-1 and the strong cytotoxicity against L929 cells observed emphasizes the importance of evaluating the impact of those estuarine cyanobacteria on aquatic ecosystem and on human health. The data also point out their potential application in HSV-1 treatment and pharmacological interest. PMID:21396440

  11. The Significance of Herpes Simplex for School Nurses

    ERIC Educational Resources Information Center

    Ensor, Deirdre

    2005-01-01

    Herpes simplex is a common recurrent viral infection caused by the herpes simplex virus. The two closely related but distinct viruses that cause herpes simplex infections are herpes simplex 1 (HSV-1) and herpes simplex 2 (HSV-2). HSV-1 is commonly associated with infections around the oral mucosa and is the cause of herpes labialis, often referred…

  12. A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+ T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a “Humanized” HLA Transgenic Rabbit Model

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Huang, Jiawei; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2015-01-01

    Purpose. A clinical vaccine that protects from ocular herpes simplex virus type 1 (HSV-1) infection and disease still is lacking. In the present study, preclinical vaccine trials of nine asymptomatic (ASYMP) peptides, selected from HSV-1 glycoproteins B (gB), and tegument proteins VP11/12 and VP13/14, were performed in the “humanized” HLA–transgenic rabbit (HLA-Tg rabbit) model of ocular herpes. We recently reported that these peptides are highly recognized by CD8+ T cells from “naturally” protected HSV-1–seropositive healthy ASYMP individuals (who have never had clinical herpes disease). Methods. Mixtures of three ASYMP CD8+ T-cell peptides derived from either HSV-1 gB, VP11/12, or VP13/14 were delivered subcutaneously to different groups of HLA-Tg rabbits (n = 10) in incomplete Freund's adjuvant, twice at 15-day intervals. The frequency and function of HSV-1 epitope-specific CD8+ T cells induced by these peptides and their protective efficacy, in terms of survival, virus replication in the eye, and ocular herpetic disease were assessed after an ocular challenge with HSV-1 (strain McKrae). Results. All mixtures elicited strong and polyfunctional IFN-γ– and TNF-α–producing CD107+CD8+ cytotoxic T cells, associated with a significant reduction in death, ocular herpes infection, and disease (P < 0.015). Conclusions. The results of this preclinical trial support the screening strategy used to select the HSV-1 ASYMP CD8+ T-cell epitopes, emphasize their valuable immunogenic and protective efficacy against ocular herpes, and provide a prototype vaccine formulation that may be highly efficacious for preventing ocular herpes in humans. PMID:26098469

  13. A herpes simplex virus type 1 mutant disrupted for microRNA H2 with increased neurovirulence and rate of reactivation

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; Li, Lily; Chan, Lucas; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    The herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) encodes several microRNAs. One of these, miR-H2, overlaps and is antisense to the ICP0 gene, and appears to decrease expression of the ICP0 protein. To determine if miR-H2 plays a role in the HSV-1 latency-reactivation cycle, we constructed a mutant, McK-ΔH2, in which this microRNA has been disrupted without altering the predicted amino acid sequence of ICP0. McK-ΔH2 produced increased amounts of ICP0. Although replication of McK-ΔH2 was similar to that of its wt McKrae parental virus in RS cells and mouse eyes, McK-ΔH2 was more neurovirulent in Swiss Webster mice than McKrae based on the percent of mice that died from herpes encephalitis following ocular infection. In addition, using a mouse TG explant model of induced reactivation, we show here for the first time that miR-H2 appears to play a role in modulating HSV-1 reactivation. Although the percent of TG from which virus reactivated by day 10 after explant was similar for McK-ΔH2, wt McKrae, and the marker rescued virus McK-ΔH2Res, at earlier times significantly more reactivation was seen with McK-ΔH2. Our results suggest that in the context of the virus, miR-H2 downregulates ICP0 and this moderates both HSV-1 neurovirulence and reactivation. PMID:25645379

  14. [Rash and fever illness caused by herpes simplex virus type 1 needs to be distinguished from hand, foot and mouth disease].

    PubMed

    Zhu, Shuang-Li; Liu, Jian-Feng; Sun, Qiang; Li, Jing; Li, Xiao-Lei; Zhang, Yong; Chen, Ying; Wen, Xiao-Yun; Yan, Dong-Mei; Huang, Guo-Hong; Zhang, Bao-Min; Zhang, Bo; An, Hong-Qiu; Li, Hui; Xu, Wen-Bo

    2013-06-01

    An epidemic of rash and fever illnesses suspected of hand, foot and mouth disease (HFMD) occurred in Gansu Province of China in 2008, laboratory tests were performed in order to identify the pathogen that caused this epidemic. Eight clinical specimens collected from the 4 patients (each patient has throat swab and herpes fluid specimens) with rash and febrile illness, were inoculated onto RD and HEp-2 cells for virus isolation, and the viral nucleic acid was then extracted with the positive virus isolates, the dual-channel real-time reverse transcript-polymerase chain reaction (RT-PCR) was performed to detect the nucleic acid of human enterovirus (HEV) in the viral isolates at the same time. For the viral isolates with the negative results of HEV, a sequence independent single primer amplification technique (SISPA) was used for "unknown pathogen" identification. Totally, 6 viral isolates were identified as herpes simplex virus type 1 (HSV-1). Comprehensive analyses results of the clinical manifestations of the patients, epidemiological findings and laboratory test indicated that this epidemic of rash and febrile illness was caused by HSV-1. The differences among the gG region of 6 HSV-1 isolates at nucleotide level and amino acid level were all small, and the identities were up to 98. 8% and 97.9%, respectively, showing that this outbreak was caused by only one viral transmission chain of HSV-1. HSV-1 and other viruses that cause rash and febrile illnesses need differential diagnosis with HFMD. The etiology of rash and febrile illness is sometimes difficult to distinguish from the clinical symptoms and epidemiological data, the laboratory diagnosis is therefore critical. PMID:23895007

  15. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1.

    PubMed Central

    Garber, D A; Schaffer, P A; Knipe, D M

    1997-01-01

    Herpes simplex virus (HSV) persists in the human population by establishing long-term latent infections followed by periodic reactivation and transmission. Latent infection of sensory neurons is characterized by repression of viral productive-cycle gene expression, with abundant transcription limited to a single locus that encodes the latency-associated transcripts (LATs). We have observed that LAT- deletion mutant viruses express viral productive-cycle genes in greater numbers of murine trigeminal ganglion neurons than LAT+ HSV type 1 at early times during acute infection but show reduced reactivation from latent infection. Thus, a viral function associated with the LAT region exerts an effect at an early stage of neuronal infection to reduce productive-cycle viral gene expression. These results provide the first evidence that the virus plays an active role in down-regulating productive infection during acute infection of sensory neurons. The effect of down-regulation of productive-cycle gene expression during acute infection may contribute to viral evasion from the host immune responses and to reduced cytopathic effects, thereby facilitating neuronal survival and the establishment of latency. PMID:9223478

  16. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency.

    PubMed Central

    Leib, D A; Bogard, C L; Kosz-Vnenchak, M; Hicks, K A; Coen, D M; Knipe, D M; Schaffer, P A

    1989-01-01

    We have generated and characterized a deletion mutant of herpes simplex virus type-1, dlLAT1.8, which lacks the putative promoter region, transcriptional start site, and 1,015 base pairs of the DNA sequences specifying the latency-associated transcripts (LATs). When tested in a CD-1 mouse ocular model, dlLAT1.8 was replication competent in the eye and in ganglia during acute infection but reactivated from explant cultures of ganglia with reduced efficiency (49%) relative to those of wild-type and marker-rescued viruses (94 and 85%, respectively) despite the fact that levels of mutant viral DNA in ganglia during latent infection were comparable to wild-type levels. The neurovirulence of KOS was not significantly altered by the removal of sequences specifying the LATs, as judged by numbers of animals dying on or before 30 days postinfection. Examination of ganglia latently infected with dlLAT1.8 by in situ hybridization revealed no LAT expression. The genotype of reactivated virus was identical to that of input dlLAT1.8 virus as judged by Southern blot analysis. These studies suggest that although the LATs are not essential for the establishment and reactivation of latency in our model, they may play a role in determining the frequency of reactivation of virus from the latent state. Images PMID:2542601

  17. Phytochemical analysis and in vitro evaluation of the biological activity against herpes simplex virus type 1 (HSV-1) of Cedrus libani A. Rich.

    PubMed

    Loizzo, Monica Rosa; Saab, Antoine; Tundis, Rosa; Statti, Giancarlo A; Lampronti, Ilaria; Menichini, Francesco; Gambari, Roberto; Cinatl, Jindrich; Doerr, Hans Wilhelm

    2008-01-01

    Cedrus libani are widely used as traditional medicine in Lebanon for treatment of different infection diseases. In the present study we reported the phytochemical composition analyzed by GC-MS of wood essential oil and cones and leaves ethanol extracts. The main components of wood essential oil were himachalol (22.50%), beta-himachalene (21.90%), and alpha-himachalene (10.50%). Leaves ethanol extract was characterized by a high content of germacrene d (29.40%). The same extract obtained from cones essentially contained alpha-pinene (51.0%) and beta-myrcene (13.0%). Moreover, we investigated extracts, essential oil, and identified compounds for their in vitro antiviral activities against herpes simplex virus type 1 (HSV-1). Cytotoxicity was evaluated by MTT assay in Vero cells. Cones and leaves ethanol extracts exhibited an interesting activity with IC50 of 0.50 and 0.66 mg/ml, respectively, at non-cytotoxic concentration. A comparable activity was found when essential oil was tested (IC50 of 0.44 mg/ml). PMID:17482448

  18. The herpes simplex virus type 1 immediate-early protein ICP0 is necessary for the efficient establishment of latent infection.

    PubMed

    Wilcox, C L; Smith, R L; Everett, R D; Mysofski, D

    1997-09-01

    The immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is not essential for viral replication. However, ICP0 is important for efficient viral replication during the productive infection and for reactivation of latent HSV-1 in vivo. The in vitro model of HSV-1 latency in dorsal root ganglia neurons was used to examine the role of ICP0 in the individual steps that could lead to the appearance of a decreased reactivation phenotype of ICP0 mutant viruses. After establishment of latent infections in the neuronal cultures, induction of reactivation by nerve growth factor (NGF) deprivation resulted in the production of infectious virus with delayed kinetics and a burst size that was significantly decreased for the ICP0 mutants compared with wild-type HSV-1. The efficiency of establishment of latency with the ICP0 mutants was similarly decreased at least 10-fold, as measured by three criteria: (i) the percentage of neurons expressing the major latency-associated transcript during the latent infection, (ii) the amount of viral DNA detected in the neuronal cultures, and (iii) the percentage of neurons expressing ICP4 immunoreactivity after the induction of reactivation. The most striking finding was that ICP0 supplied by an adenovirus vector significantly restored the ability of an ICP0 mutant to establish latency and reactivation. These results strongly indicate a critical role for ICP0 in the establishment of the latent HSV-1 infection in the in vitro neuronal model. PMID:9261402

  19. p32 Is a Novel Target for Viral Protein ICP34.5 of Herpes Simplex Virus Type 1 and Facilitates Viral Nuclear Egress*

    PubMed Central

    Wang, Yu; Yang, Yin; Wu, Songfang; Pan, Shuang; Zhou, Chaodong; Ma, Yijie; Ru, Yongxin; Dong, Shuxu; He, Bin; Zhang, Cuizhu; Cao, Youjia

    2014-01-01

    As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles. PMID:25355318

  20. Localization of Herpes Simplex Virus Type 1 DNA in Latently Infected BALB/c Mice Neurons Using in situ Polymerase Chain Reaction

    PubMed Central

    Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Ghaemi, Amir; Tiraihi, Taki; Pour Beiranvand, Shahram

    2010-01-01

    Background: Herpes simplex virus type-1 (HSV-1) establishes a lifelong latent infection in neurons following primary infection. The existence of latent HSV-1 DNA in the trigeminal ganglia of infected BALB/c mice was examined using a direct in situ PCR technique, based on Digoxigenin-11-dUTP detection system with anti-digoxigenin-peroxidase and 3,3'-diaminobenzidine (DAB) substrate. Methods: Eight-week-old male BALB/c mice were inoculated via the eye by 104 plaque forming unit of wild type Iranian isolates of HSV-1. After establishment of latency, trigeminal ganglia were removed and examined using in situ PCR to detect HSV-1 genome. Finally, the results of in situ PCR were verified by a two-round PCR method, using amplification cocktail of in situ reaction, as a template for a conventional gel base PCR. Results and Conclusion: The results suggest that a direct in situ PCR method using a peroxidase and DAB detection system is a useful means for detection of latent HSV-1 DNA in the latently infected ganglia. PMID:21079658

  1. Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA.

    PubMed Central

    Zhang, F; Cole, C N

    1987-01-01

    Cleavage and polyadenylation of substrate RNAs containing the herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene polyadenylation signal region were examined in HeLa cell nuclear extract. 3'-End RNA processing was accurate and efficient and required ATP and Mg2+. Cleavage, but not polyadenylation, occurred in the presence of EDTA or when ATP was replaced with 3' dATP (cordycepin) or AMP(CH2)PP, a nonhydrolyzable analog of ATP. Processing in vitro and in vivo showed the same signal element requirements: a series of substrates containing linker scanning, internal deletion, and small insertion mutations was processed with the same relative efficiencies and at the same sites in vitro and in vivo. A complex involved in 3'-end RNA processing was identified by gel mobility shift analysis. This complex formed rapidly, reached a maximum level after 20 to 30 min, and was much reduced after 2 h. Very little complex was formed at 0 degree C or with substrates lacking a polyadenylation signal. Entry of 32P-labeled tk substrate into the complex could be prevented by addition of excess 35S-labeled tk or adenovirus L3 precursor RNAs. Competition was not observed with tk RNAs lacking a complete polyadenylation signal. Images PMID:2823124

  2. Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells

    PubMed Central

    Waguespack, Yan; Figliozzi, Robert W.; Kharel, Madan K.; Zhang, Qiaojuan; Martin-Caraballo, Miguel

    2016-01-01

    Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency. PMID:27537375

  3. Herpes simplex virus type 1 and 2 intracellular p40: type-specific and cross-reactive antigenic determinants on peptides generated by partial proteolysis.

    PubMed Central

    Heilman, C J; Zweig, M; Hampar, B

    1981-01-01

    Intracellular p40 is a class of protein ranging in molecular weight from 39,000 to 45,000 that is immunoprecipitated from herpes simplex virus type 1 (HSV-1)- and HSV-2-infected cell extracts by mouse monoclonal antibodies or guinea pig antisera against HSV-1 and HSV-2 nucleocapsid p40. Analysis by a two-dimensional gel system showed that HSV-1 and HSV-2 intracellular p40 each consisted of three major components. However, these HSV-1 and HSV-2 proteins differed in charge and size. Analysis of Staphylococcus aureus V8 protease partial digests by two-dimensional gel electrophoresis indicated that none of the peptides of HSV-1 and HSV-2 intracellular p40 were identical. Immunoprecipitation of the partial digest products of intracellular p40-1 and p40-2 with homologous and heterologous guinea pig antisera resulted in the precipitation of various combinations of peptides indicating the presence of either type-specific or cross-reactive antigenic determinants. Images PMID:6172597

  4. Mutagenic analysis of herpes simplex virus type 1 glycoprotein L reveals the importance of an arginine-rich region for function

    SciTech Connect

    Klyachkin, Yuri M.; Geraghty, Robert J.

    2008-04-25

    Herpes simplex virus type 1 (HSV-1) glycoproteins H and L (gH and gL) are required for virus-induced membrane fusion. Expression of gH at the virion or infected cell surface is mediated by the chaperone-like activity of gL. We have previously shown that a region between amino acids 155 and 161 is critical for gL chaperone-like activity. Here, we conducted Ala substitution mutagenesis of residues in this region and found that substitution of Cys160, Arg156, Arg158, or Arg156/158/159 with Ala resulted in a gL mutant that bound gH but displayed a reduced ability in gH trafficking and membrane fusion. Substitution of Arg156 with another positively charged amino acid, Lys, restored function. Substitution of Arg158 with Lys restored function in gH trafficking and cell fusion but not virus entry. These results indicate that an arginine-rich region of gL is critical for function.

  5. Expression of cell-associated and secreted forms of herpes simplex virus type 1 glycoprotein gB in mammalian cells.

    PubMed Central

    Pachl, C; Burke, R L; Stuve, L L; Sanchez-Pescador, L; Van Nest, G; Masiarz, F; Dina, D

    1987-01-01

    The gene for glycoprotein gB1 of herpes simplex virus type 1 strain Patton was expressed in stable Chinese hamster ovary cell lines. Expression vectors containing the dihydrofolate reductase (dhfr) cDNA plus the complete gB1 gene or a truncated gene lacking the 194 carboxyl-terminal amino acids of gB1 were transfected into CHO DHFR-deficient cells. Radioimmunoprecipitation demonstrated that the complete gB1 protein expressed in CHO cell lines was cell associated, whereas the truncated protein was secreted from the cells due to deletion of the transmembrane and C-terminal domains of gB1. Cells expressing the truncated gB1 protein were subjected to stepwise methotrexate selection, and a cell line was isolated in which the gB1 gene copy number had been amplified 10-fold and the level of expression of gB1 had increased over 60-fold. The truncated gB1 protein was purified from medium conditioned by the amplified cell line. N-terminal amino acid sequence analysis of this purified protein identified the signal peptide cleavage site and predicted the cleavage of a 30-amino-acid signal sequence from the primary protein. The immunogenicity of the truncated gB1 protein was also tested in mice, and high levels of antibody and protection from virus challenge were observed. Images PMID:3027363

  6. CD4+ T Cell Migration into the Cornea is Reduced in CXCL9 Deficient but not CXCL10 Deficient Mice following Herpes Simplex Virus Type 1 Infection1

    PubMed Central

    Wuest, Todd; Farber, Joshua; Luster, Andrew; Carr, Daniel J. J.

    2007-01-01

    The role of CXCL9 and CXCL10 in the ocular immune response to herpes simplex virus type 1 (HSV-1) infection was investigated using mice deficient in either CXCL9 or CXCL10. CXCL10 but not CXCL9 deficient mice showed an increase in sensitivity to ocular virus infection as measured by an elevation in virus titer recovered in the tear film and corneal tissue. The increase in virus was associated with an increase in the expression of the chemokine CCL2 but no significant change in the infiltration of CD4+ T cells or NK cells into the corneal stroma. In contrast, a significant reduction in CD4+ T cell infiltration into the cornea was found in CXCL9 deficient mice following HSV-1 infection consistent with the absence of CXCL9 expression and reduction in expression of other chemokines including CCL3, CCL5, CXCL1, and CXCL10. Collectively, the results suggest a non-redundant role for CXCL9 and CXCL10 in response to ocular HSV-1 infection in terms of controlling virus replication and recruitment of CD4+ T cells into the cornea. PMID:17296171

  7. Activation of Cellular Immunity in Herpes Simplex Virus Type 1-Infected Mice by the Oral Administration of Aqueous Extract of Moringa oleifera Lam. Leaves.

    PubMed

    Kurokawa, Masahiko; Wadhwani, Ashish; Kai, Hisahiro; Hidaka, Muneaki; Yoshida, Hiroki; Sugita, Chihiro; Watanabe, Wataru; Matsuno, Koji; Hagiwara, Akinori

    2016-05-01

    Moringa oleifera Lam. is used as a nutritive vegetable and spice. Its ethanol extract has been previously shown to be significantly effective in alleviating herpetic skin lesions in mice. In this study, we evaluated the alleviation by the aqueous extract (AqMOL) and assessed the mode of its anti-herpetic action in a murine cutaneous herpes simplex virus type 1 (HSV-1) infection model. AqMOL (300 mg/kg) was administered orally to HSV-1-infected mice three times daily on days 0 to 5 after infection. AqMOL significantly limited the development of herpetic skin lesions and reduced virus titers in the brain on day 4 without toxicity. Delayed-type hypersensitivity (DTH) reaction to inactivated HSV-1 antigen was significantly stronger in infected mice administered AqMOL and AqMOL augmented interferon (IFN)-γ production by HSV-1 antigen from splenocytes of HSV-1-infected mice at 4 days post-infection. AqMOL administration was effective in elevating the ratio of CD11b(+) and CD49b(+) subpopulations of splenocytes in infected mice. As DTH is a major host defense mechanism for intradermal HSV infection, augmentation of the DTH response by AqMOL may contribute to their efficacies against HSV-1 infection. These results provided an important insights into the mechanism by which AqMOL activates cellular immunity. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26814058

  8. An investigation of herpes simplex virus type 1 latency in a novel mouse dorsal root ganglion model suggests a role for ICP34.5 in reactivation.

    PubMed

    Mattila, R K; Harila, K; Kangas, S M; Paavilainen, H; Heape, A M; Mohr, I J; Hukkanen, V

    2015-08-01

    After a primary lytic infection at the epithelia, herpes simplex virus type 1 (HSV-1) enters the innervating sensory neurons and translocates to the nucleus, where it establishes a quiescent latent infection. Periodically, the virus can reactivate and the progeny viruses spread back to the epithelium. Here, we introduce an embryonic mouse dorsal root ganglion (DRG) culture system, which can be used to study the mechanisms that control the establishment, maintenance and reactivation from latency. Use of acyclovir is not necessary in our model. We examined different phases of the HSV-1 life cycle in DRG neurons, and showed that WT HSV-1 could establish both lytic and latent form of infection in the cells. After reactivating stimulus, the WT viruses showed all markers of true reactivation. In addition, we showed that deletion of the γ(1)34.5 gene rendered the virus incapable of reactivation, even though the virus was clearly able to replicate and persist in a quiescent form in the DRG neurons. PMID:25854552

  9. The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the transcription start site for long-term expression during latency.

    PubMed Central

    Lokensgard, J R; Berthomme, H; Feldman, L T

    1997-01-01

    The latency-associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1) is unique among the many promoters on the viral genome in that it remains active during the latent state. We have previously shown that a DNA fragment comprising the LAT promoter element through the cap site, when moved from the LAT locus to the glycoprotein C gene, is capable of only short-term expression. These and other data suggested that an HSV DNA element from the repeat region, not included in the LAT promoter itself, might be needed to preserve long-term expression. Based on a number of recombinant viruses, we narrowed our search for this putative element to a region 3' of the LAT transcription start site. In the present study, we have shown that a 1.1-kb DNA fragment containing the putative long-term expression element (LTE) is able to restore latent-phase gene expression to the LAT promoter. The element appeared to function best when it was placed in its natural location, which is 3' of the LAT promoter; however, partial function was obtained when the LTE was inserted upstream of the LAT promoter in the reverse direction. These data indicate that the LAT promoter region is more complex than originally anticipated and that in addition to requiring both core promoter and neuronal transcription factor binding sites, the promoter requires a specific region of DNA to prevent its shutoff during a latent infection. PMID:9261395

  10. Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells.

    PubMed

    Rochford, Kevin; Chen, Feng; Waguespack, Yan; Figliozzi, Robert W; Kharel, Madan K; Zhang, Qiaojuan; Martin-Caraballo, Miguel; Hsia, S Victor

    2016-01-01

    Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency. PMID:27537375

  11. ICP27-dependent resistance of herpes simplex virus type 1 to leptomycin B is associated with enhanced nuclear localization of ICP4 and ICP0

    SciTech Connect

    Lengyel, Joy; Strain, Anna K.; Perkins, Keith D.; Rice, Stephen A. . E-mail: ricex019@umn.edu

    2006-09-01

    It was previously shown that herpes simplex virus type 1 (HSV-1) is sensitive to leptomycin B (LMB), an inhibitor of nuclear export factor CRM1, and that a single methionine to threonine change at residue 50 (M50T) of viral immediate-early (IE) protein ICP27 can confer LMB resistance. In this work, we show that deletion of residues 21-63 from ICP27 can also confer LMB resistance. We further show that neither the M50T mutation nor the presence of LMB affects the nuclear shuttling activity of ICP27, suggesting that another function of ICP27 determines LMB resistance. A possible clue to this function emerged when it was discovered that LMB treatment of HSV-1-infected cells dramatically enhances the cytoplasmic accumulation of two other IE proteins, ICP0 and ICP4. This effect is completely dependent on ICP27 and is reversed in cells infected with LMB-resistant mutants. Moreover, LMB-resistant mutations in ICP27 enhance the nuclear localization of ICP0 and ICP4 even in the absence of LMB, and this effect can be discerned in transfected cells. Thus, the same amino (N)-terminal region of ICP27 that determines sensitivity to LMB also enhances ICP27's previously documented ability to promote the cytoplasmic accumulation of ICP4 and ICP0. We speculate that ICP27's effects on ICP4 and ICP0 may contribute to HSV-1 LMB sensitivity.

  12. Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames

    SciTech Connect

    Wechsler, S.L.; Nesburn, A.B.; Watson, R.; Slanina, S.M.; Ghiasi, H.

    1988-11-01

    The latency-related (LR) gene of herpes simplex virus type 1 (HSV-1) is transcriptionally active during HSV-1 latency, producing at least two LR-RNAs. The LR gene partially overlaps the immediate-early gene ICP0 and is transcribed in the opposite direction from ICP0, producing LR-RNAs that are complementary (antisense) to ICP0 mRNA. The LR gene is thought to be involved in HSV-1 latency. The authors report here the time mapping and partial sequence analysis of this HSV-1 LR gene. /sup 32/P-labeled genomic DNA restriction fragments and synthetic oligonucleotides were used as probes for in situ hybridizations and Northern (RNA) blot hybridizations of RNA from trigeminal ganglia of rabbits latently infected with HSV-1. The two most abundant LR-RNAs appeared to share their 5' and 3' ends and to be produced by alternative splicing. These LR-RNAs were approximately 2 and 1.3 to 1.5 kilobases in length and were designated LR-RNA 1 and LF-RNA 2, respectively. LR-RNA 1 appeared to have at least one intron removed, while LR-RNA 2 appeared to have at least two introns removed. The LR-RNAs contained two potential long open reading frames, suggesting the possibility that one or more of the LR-RNAs may be a functional mRNA.

  13. RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice

    SciTech Connect

    Deatly, A.M.; Spivack, J.G.; Lavi, E.; Fraser, N.W.

    1987-05-01

    Transcription of the type 1 herpes simplex virus (HSV-1) genome in trigeminal ganglia of latently infected mice was studied using in situ hybridization. Probes representative of each temporal gene class were used to determine the regions of the genome that encode the transcripts present in latently infected cells. Probes encoding HSV-1 sequences of the five immediate early genes and representative early (thymidine kinase), early-late (major capsid protein), and late (glycoprotein C) genes were used in these experiments. Of the probes tested, only those encoding the immediate early gene product infected-cell polypeptide (ICP) 0 hybridized to RNA in latently infected tissues. Probes containing the other immediate early genes (ICP4, ICP22, ICP27, and ICP47) and the representative early, early-late, and late genes did not hybridize. Two probes covering approx. = 30% of the HSV-1 genome and encoding over 20 early and late transcripts also did not hybridize to RNA in latently infected tissues. These results, with probes spanning > 60% of the HSV-1 genome, suggest that transcription of the HSV-1 genome is restricted to one region in latently infected mouse trigeminal ganglia.

  14. The Presence of a Single N-terminal Histidine Residue Enhances the Fusogenic Properties of a Membranotropic Peptide Derived from Herpes Simplex Virus Type 1 Glycoprotein H

    PubMed Central

    Galdiero, Stefania; Falanga, Annarita; Vitiello, Mariateresa; Raiola, Luca; Russo, Luigi; Pedone, Carlo; Isernia, Carla; Galdiero, Massimiliano

    2010-01-01

    Herpes simplex virus type 1 (HSV-1)-induced membrane fusion remains one of the most elusive mechanisms to be deciphered in viral entry. The structure resolution of glycoprotein gB has revealed the presence of fusogenic domains in this protein and pointed out the key role of gB in the entry mechanism of HSV-1. A second putative fusogenic glycoprotein is represented by the heterodimer comprising the membrane-anchored glycoprotein H (gH) and the small secreted glycoprotein L, which remains on the viral envelope in virtue of its non-covalent interaction with gH. Different domains scattered on the ectodomain of HSV-1 gH have been demonstrated to display membranotropic characteristics. The segment from amino acid 626 to 644 represents the most fusogenic region identified by studies with synthetic peptides and model membranes. Herein we have identified the minimal fusogenic sequence present on gH. An enlongation at the N terminus of a single histidine (His) has proved to profoundly increase the fusogenic activity of the original sequence. Nuclear magnetic resonance (NMR) studies have shown that the addition of the N-terminal His contributes to the formation and stabilization of an α-helical domain with high fusion propensity. PMID:20348105

  15. The epidemiology of genital infection with herpes simplex virus types 1 and 2 in genitourinary medicine attendees in inner London

    PubMed Central

    Ramaswamy, M; McDonald, C; Sabin, C; Tenant-Flowers, M; Smith, M; Geretti, A

    2005-01-01

    Methods: Genital swabs (n = 186) were tested by real time polymerase chain reaction (PCR) and serum samples (n = 70) by HSV-2 specific enzyme linked immunoassay (ELISA). Results: Among 186 patients (median age 29 years), 104/186 (56%) were male and 176/186 (95%) heterosexual; ethnicity was predominantly black Caribbean (76/186, 41%), white (65/186, 35%), or black-African (41/186, 22%). The most common lesion sites were penis (85/104 men, 82%) and vulva (63/82 women, 77%); 114/186 (61%) patients were diagnosed clinically with first episode disease. Women were more likely to present <5 days of onset (p = 0.008). Black Caribbean patients were more likely to present ⩾5 days (p = 0.04) and decline HIV testing (p = 0.03). By PCR, 108/186 (58%) swabs tested positive for HSV-1 (7/108, 6.5%) or HSV-2 (101/108, 93.5%). Independent predictors of a positive PCR were heterosexual group, <5 days of onset, and visible genital ulceration on examination. HSV-2 was associated with black Caribbean and black African ethnicity; HSV-1 with white ethnicity (p = 0.006). By HSV-2 specific serology, 16/42 (38%) first episodes caused by HSV-2 were recurrent infections, and 7/19 (37%) patients with recurrent genital disease but negative PCR had genital herpes. Conclusions: Epidemiological trends in genital HSV-1 and HSV-2 infection appear to vary between ethnic groups in the United Kingdom. HSV-2 specific serology improves diagnostic accuracy in GUM populations where most genital infections are caused by HSV-2. PMID:16061536

  16. In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide.

    PubMed

    Civitelli, Livia; Panella, Simona; Marcocci, Maria Elena; De Petris, Alberto; Garzoli, Stefania; Pepi, Federico; Vavala, Elisabetta; Ragno, Rino; Nencioni, Lucia; Palamara, Anna Teresa; Angiolella, Letizia

    2014-05-15

    Several essential oils exert in vitro activity against bacteria and viruses and, among these latter, herpes simplex virus type 1 (HSV-1) is known to develop resistance to commonly used antiviral agents. Thus, the effects of the essential oil derived from Mentha suaveolens (EOMS) and its active principle piperitenone oxide (PEO) were tested in in vitro experimental model of infection with HSV-1. The 50% inhibitory concentration (IC50) was determined at 5.1μg/ml and 1.4μg/ml for EOMS and PEO, respectively. Australian tea tree oil (TTO) was used as control, revealing an IC50 of 13.2μg/ml. Moreover, a synergistic action against HSV-1 was observed when each oil was added in combination with acyclovir. In order to find out the mechanism of action, EOMS, PEO and TTO were added to the cells at different times during the virus life-cycle. Results obtained by yield reduction assay indicated that the antiviral activity of both compounds was principally due to an effect after viral adsorption. Indeed, no reduction of virus yield was observed when cells were treated during viral adsorption or pre-treated before viral infection. In particular, PEO exerted a strong inhibitory effect by interfering with a late step of HSV-1 life-cycle. HSV-1 infection is known to induce a pro-oxidative state with depletion of the main intracellular antioxidant glutathione and this redox change in the cell is important for viral replication. Interestingly, the treatment with PEO corrected this deficit, thus suggesting that the compound could interfere with some redox-sensitive cellular pathways exploited for viral replication. Overall our data suggest that both EOMS and PEO could be considered good candidates for novel anti-HSV-1 strategies, and need further exploration to better characterize the targets underlying their inhibition. PMID:24629600

  17. Protective Mucosal Immunity to Ocular Herpes Simplex Virus Type 1 Infection in Mice by Using Escherichia coli Heat-Labile Enterotoxin B Subunit as an Adjuvant

    PubMed Central

    Richards, C. M.; Aman, A. T.; Hirst, T. R.; Hill, T. J.; Williams, N. A.

    2001-01-01

    The potential of nontoxic recombinant B subunits of cholera toxin (rCtxB) and its close relative Escherichia coli heat-labile enterotoxin (rEtxB) to act as mucosal adjuvants for intranasal immunization with herpes simplex virus type 1 (HSV-1) glycoproteins was assessed. Doses of 10 μg of rEtxB or above with 10 μg of HSV-1 glycoproteins elicited high serum and mucosal anti-HSV-1 titers comparable with that obtained using CtxB (10 μg) with a trace (0.5 μg) of whole toxin (Ctx-CtxB). By contrast, doses of rCtxB up to 100 μg elicited only meager anti-HSV-1 responses. As for Ctx-CtxB, rEtxB resulted in a Th2-biased immune response with high immunoglobulin G1 (IgG1)/IgG2a antibody ratios and production of interleukin 4 (IL-4) and IL-10 as well as gamma interferon by proliferating T cells. The protective efficacy of the immune response induced using rEtxB as an adjuvant was assessed following ocular challenge of immunized and mock-immunized mice. Epithelial disease was observed in both groups, but the immunized mice recovered by day 6 whereas mock-immunized mice developed more severe corneal disease leading to stromal keratitis. In addition, a significant reduction in the incidence of lid disease and zosteriform spread was observed in immunized animals and there was no encephalitis compared with 95% encephalitis in mock-immunized mice. The potential of such mucosal adjuvants for use in human vaccines against pathogens such as HSV-1 is discussed. PMID:11160664

  18. Reactivation of Herpes Simplex Virus Type 1 in the Mouse Trigeminal Ganglion: an In Vivo Study of Virus Antigen and Cytokines

    PubMed Central

    Shimeld, Carolyn; Easty, David L.; Hill, Terry J.

    1999-01-01

    Reactivation of herpes simplex virus type 1 (HSV-1) in the trigeminal ganglion (TG) was induced by UV irradiation of the corneas of latently infected mice. Immunocytochemistry was used to monitor the dynamics of cytokine (interleukin-2 [IL-2], IL-4, IL-6, IL-10, gamma interferon [IFN-γ], and tumor necrosis factor alpha [TNF-α]) and viral antigen production in the TG and the adjacent central nervous system on days 1 to 4, 6, 7, and 10 after irradiation. UV irradiation induced increased expression of IL-6 and TNF-α from satellite cells in uninfected TG. In latently infected TG, prior to reactivation, all satellite cells were TNF-α+ and most were also IL-6+. Reactivation, evidenced by HSV-1 antigens and/or infiltrating immune cells, occurred in 28 of 45 (62%) TG samples. Viral antigens were present in the TG in neurons, often disintegrating on days 2 to 6 after irradiation. Infected neurons were usually surrounded by satellite cells and the foci of immune cells producing TNF-α and/or IL-6. IL-4+ cells were detected as early as day 3 and were more numerous by day 10 (a very few IL-2+ and/or IFN-γ+ cells were seen at this time). No IL-10 was detected at any time. Our observations indicate that UV irradiation of the cornea may modulate cytokine production by satellite cells. We confirm that neurons are the site of reactivation and that they probably do not survive this event. The predominance of TNF-α and IL-6 following reactivation parallels primary infection in the TG and suggests a role in viral clearance. The presence of Th2-type cytokines (IL-4 and IL-6) indicates a role for antibody. Thus, several clearance mechanisms may be at work. PMID:9971753

  19. The acidic amino-terminal region of herpes simplex virus type 1 alpha protein ICP27 is required for an essential lytic function.

    PubMed Central

    Rice, S A; Lam, V; Knipe, D M

    1993-01-01

    The herpes simplex virus type 1 (HSV-1) alpha protein ICP27 regulates the transition between the delayed-early and late phases of the viral infection. Previous genetic analyses have suggested that the important functional domains of ICP27 map to its carboxyl-terminal half. One striking feature of the primary sequence of ICP27, however, is an extremely acidic region near its amino terminus. To determine whether this region is required for ICP27 function, we deleted the sequences in the ICP27 gene which encode it (codons 12 through 63). In transient expression assays, the deletion mutant was unable to efficiently repress the expression of a cotransfected reporter gene or to efficiently complement the growth of d27-1, an HSV-1 ICP27 null mutant. These results suggested that the acidic region of ICP27 is involved in a regulatory function required for lytic growth. To test this possibility further, we introduced the mutant allele into the HSV-1 genome by marker transfer. Two independently derived isolates of the mutant virus, designated d1-2a and d1-2b, were recovered and analyzed. Both isolates were defective for growth in Vero cells, exhibiting a 100-fold reduction in virus yield compared with the wild-type infection. Vero cells infected with the d1-2 isolates showed a three- to eightfold reduction in viral DNA replication, a moderate reduction in the expression of viral gamma genes, and a delay in the repression of beta genes. The phenotype of the d1-2 isolates differs substantially from the phenotypes of previously isolated ICP27 mutants, which show much more severe defects in viral gene expression. Our results demonstrate that the amino-terminal half of ICP27 participates in its regulatory activities in both infected and transfected cells. Images PMID:8383210

  20. Herpes Simplex Virus Type 1/Adeno-Associated Virus rep+ Hybrid Amplicon Vector Improves the Stability of Transgene Expression in Human Cells by Site-Specific Integration

    PubMed Central

    Wang, Y.; Camp, S. M.; Niwano, M.; Shen, X.; Bakowska, J. C.; Breakefield, X. O.; Allen, P. D.

    2002-01-01

    Herpes simplex virus type 1 (HSV-1) amplicon vectors are promising gene delivery tools, but their utility in gene therapy has been impeded to some extent by their inability to achieve stable transgene expression. In this study, we examined the possibility of improving transduction stability in cultured human cells via site-specific genomic integration mediated by adeno-associated virus (AAV) Rep and inverted terminal repeats (ITRs). A rep− HSV/AAV hybrid amplicon vector was made by inserting a transgene cassette flanked with AAV ITRs into an HSV-1 amplicon backbone, and a rep+ HSV/AAV hybrid amplicon was made by inserting rep68/78 outside the rep− vector 3′ AAV ITR sequence. Both vectors also had a pair of loxP sites flanking the ITRs. The resulting hybrid amplicon vectors were successfully packaged and compared to a standard amplicon vector for stable transduction frequency (STF) in human 293 and Gli36 cell lines and primary myoblasts. The rep+, but not the rep−, hybrid vector improved STF in all three types of cells; 84% of Gli36 and 40% of 293 stable clones transduced by the rep+ hybrid vector integrated the transgene into the AAVS1 site. Due to the difficulty in expanding primary myoblasts, we did not assess site-specific integration in these cells. A strategy to attempt further improvement of STF by “deconcatenating” the hybrid amplicon DNA via Cre-loxP recombination was tested, but it did not increase STF. These data demonstrate that introducing the integrating elements of AAV into HSV-1 amplicon vectors can significantly improve their ability to achieve stable gene transduction by conferring the AAV-like capability of site-specific genomic integration in dividing cells. PMID:12072515

  1. Herpes Simplex Virus Type 1 ICP27 Induces p38 Mitogen-Activated Protein Kinase Signaling and Apoptosis in HeLa Cells▿

    PubMed Central

    Gillis, Peter A.; Okagaki, Laura H.; Rice, Stephen A.

    2009-01-01

    The herpes simplex virus type 1 (HSV-1) protein ICP27 has been implicated in a variety of functions important for viral replication including host shutoff, viral gene expression, activation of mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK), and apoptosis inhibition. In the present study we sought to examine the functions of ICP27 in the absence of viral infection by creating stable HeLa cell lines that inducibly express ICP27. Here, we characterize two such cell lines and show that ICP27 expression is associated with a cellular growth defect. The observed defect is caused at least in part by the induction of apoptosis as indicated by caspase-3 activation, annexin V staining, and characteristic changes in cellular morphology. In an effort to identify the function of ICP27 responsible for inducing apoptosis, we show that ICP27 expression is sufficient to activate p38 signaling to a level that is similar to that observed during wild-type HSV-1 infection. However, ICP27 expression alone is unable to lead to a strong activation of JNK signaling. Using chemical inhibitors, we show that the ICP27-mediated activation of p38 signaling is responsible for the observed induction of apoptosis in the induced cell lines. Our findings suggest that during viral infection, ICP27 activates p38 and JNK signaling pathways via two distinct mechanisms. ICP27 directly activates p38 signaling, leading to stimulation of the host cell apoptotic pathways. In contrast, robust activation of JNK signaling by ICP27 requires one or more delayed early or late viral gene products and may be associated with the inhibition of apoptosis. PMID:19073744

  2. Eclipse Phase of Herpes Simplex Virus Type 1 Infection: Efficient Dynein-Mediated Capsid Transport without the Small Capsid Protein VP26

    PubMed Central

    Döhner, Katinka; Radtke, Kerstin; Schmidt, Simone; Sodeik, Beate

    2006-01-01

    Cytoplasmic dynein,together with its cofactor dynactin, transports incoming herpes simplex virus type 1 (HSV-1) capsids along microtubules (MT) to the MT-organizing center (MTOC). From the MTOC, capsids move further to the nuclear pore, where the viral genome is released into the nucleoplasm. The small capsid protein VP26 can interact with the dynein light chains Tctex1 (DYNLT1) and rp3 (DYNLT3) and may recruit dynein to the capsid. Therefore, we analyzed nuclear targeting of incoming HSV1-ΔVP26 capsids devoid of VP26 and of HSV1-GFPVP26 capsids expressing a GFPVP26 fusion instead of VP26. To compare the cell entry of different strains, we characterized the inocula with respect to infectivity, viral genome content, protein composition, and particle composition. Preparations with a low particle-to-PFU ratio showed efficient nuclear targeting and were considered to be of higher quality than those containing many defective particles, which were unable to induce plaque formation. When cells were infected with HSV-1 wild type, HSV1-ΔVP26, or HSV1-GFPVP26, viral capsids were transported along MT to the nucleus. Moreover, when dynein function was inhibited by overexpression of the dynactin subunit dynamitin, fewer capsids of HSV-1 wild type, HSV1-ΔVP26, and HSV1-GFPVP26 arrived at the nucleus. Thus, even in the absence of the potential viral dynein receptor VP26, HSV-1 used MT and dynein for efficient nuclear targeting. These data suggest that besides VP26, HSV-1 encodes other receptors for dynein or dynactin. PMID:16873277

  3. The Herpes Simplex Virus Type 1 UL3 Transcript Starts within the UL3 Open Reading Frame and Encodes a 224-Amino-Acid Protein▿

    PubMed Central

    Markovitz, Nancy S.

    2007-01-01

    Several different herpes simplex viruses (HSVs) and vectors are being explored as therapeutic products for use in the treatment of cancer and neurological disorders. The viral strain and the combination of mutant viral genes that ultimately may serve as a safe and optimal backbone for such products are still being explored. The large genome size and complexity of the viral life cycle make such determinations difficult, because the significance of differences between proposed products is difficult to evaluate. For example, we previously reported that two lineages of γ34.5-deleted HSVs used in clinical studies differ from each other in the size of the UL3 protein expressed (M. J. Dambach et al., Mol. Ther. 13:891-898, 2006). Because the function of UL3 is not known and UL3 gene expression is poorly understood, the significance of such a difference cannot be predicted. Here, I begin to address the function of UL3 by investigating UL3 gene expression. I report that the transcript start site of UL3 mRNA isolated from HSV type 1 (HSV-1)-infected cells maps to a position downstream of the predicted translation start site. By constructing and characterizing the recombinant virus CB8116, which has a mutation in the first in-frame start codon of this UL3 transcript, I demonstrated that UL3 protein translation initiates at the second in-frame start codon of the UL3 open reading frame. This information adds to the body of basic knowledge of HSV-1 biology that forms the foundation for our current understanding of HSV-based products. Future research on HSV-1 biology will facilitate the rational design and evaluation of future generations of therapeutic viruses. PMID:17626086

  4. Defective herpes simplex virus type 1 vectors harboring gag, pol, and env genes can be used to rescue defective retrovirus vectors.

    PubMed Central

    Savard, N; Cosset, F L; Epstein, A L

    1997-01-01

    A retroviral packaging transcription unit was constructed in which the Moloney murine leukemia virus (MoMLV) gag-pol and env genes are expressed under the control of herpesvirus regulatory sequences. This transcription unit, lacking long terminal repeats, primer binding sites, and most of the retrovirus packaging signal but retaining both retroviral donor and acceptor splice sites, was cloned into a herpes simplex virus type 1 (HSV-1) amplicon plasmid, and amplicon vectors (the gag-pol-env [GPE] vectors) were generated by using a defective HSV-1 vector as helper virus. The GPE vector population was used to infect human TE671 cells (ATCC CRL 8805), harboring a lacZ provirus (TE-lac2 cells), and supernatants of infected cells were collected and filtered at different times after infection. These supernatants were found to contain infectious ecotropic lacZ retroviral particles, as shown both by reverse transcription-PCR and by their ability to transduce a beta-galactosidase activity to murine NIH 3T3 cells but not to human TE671 cells. The titer of retroviral vectors released by GPE vector-infected TE-lac2 cells increased with the dose of infectious amplicon particles. Retrovirus vector production was inhibited by superinfection with helper virus, indicating that helper virus coinfection negatively interfered with retrovirus production. Induction of retrovirus vectors by GPE vectors was neutralized by anti-HSV-1 but not by anti-MoMLV antiserum, while transduction of beta-galactosidase activity to NIH 3T3 cells by supernatants of GPE vector-infected TE-lac2 cells was neutralized by anti-MoMLV antiserum. These results demonstrate that HSV-1 GPE amplicon vectors can rescue defective lacZ retrovirus vectors and suggest that they could be used as a sort of launching ramp to fire defective retrovirus vectors from within virtually any in vitro or in vivo cell type containing defective retroviral vectors. PMID:9094692

  5. Nucleotide sequences of Herpes Simplex Virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gB (VP7)

    SciTech Connect

    DeLuca, N.; Bzik, D.J.; Bond, V.C.; Person, S.; Snipes, W.

    1982-10-30

    The tsB5 strain of Herpes Simplex Virus type 1 (HSV-1) contains at least two mutations; one mutation specifies the syncytial phenotype and the other confers temperature sensitivity for virus growth. These functions are known to be located between the prototypic map coordinates 0.30 and 0.42. In this study it was demonstrated that tsB5 enters human embryonic lung (HEL) cells more rapidly than KOS, another strain of HSV-1. The EcoRI restriction fragment F from the KOS strain (map coordinates 0.315 to 0.421) was mapped with eight restriction endonucleases, and 16 recombinant plasmids were constructed which contained varying portions of the KOS genome. Recombinant viruses were generated by marker-rescue and marker-transfer cotransfection procedures, using intact DNA from one strain and a recombinant plasmid containing DNA from the other strain. The region of the crossover between the two nonisogenic strains was inferred by the identification of restriction sites in the recombinants that were characteristic of the parental strains. The recombinants were subjected to phenotypic analysis. Syncytium formation, rate of virus entry, and the production of gB were all separable by the crossovers that produced the recombinants. The KOS sequences which rescue the syncytial phenotype of tsB5 were localized to 1.5 kb (map coordinates 0.345 to 0.355), and the temperature-sensitive mutation was localized to 1.2 kb (0.360 to 0.368), giving an average separation between the mutations of 2.5 kb on the 150-kb genome. DNA sequences that specify a functional domain for virus entry were localized to the nucleotide sequences between the two mutations. All three functions could be encoded by the virus gene specifying the gB glycoprotein.

  6. Immunization with a dominant-negative recombinant Herpes Simplex Virus (HSV) type 1 protects against HSV-2 genital disease in guinea pigs

    PubMed Central

    2010-01-01

    Background CJ9-gD is a novel dominant-negative recombinant herpes simplex virus type 1 (HSV-1) that is completely replication-defective, cannot establish detectable latent infection in vivo, and expresses high levels of the major HSV-1 antigen glycoprotein D immediately following infection. In the present study, CJ9-gD was evaluated as a vaccine against HSV-2 genital infection in guinea pigs. Results Animals immunized with CJ9-gD developed at least 700-fold higher titers of HSV-2-specific neutralization antibodies than mock-immunized controls. After challenge with wild-type HSV-2, all 10 control guinea pigs developed multiple genital lesions with an average of 21 lesions per animal. In contrast, only 2 minor lesions were found in 2 of 8 CJ9-gD-immunized animals, representing a 40-fold reduction on the incidence of primary genital lesions in immunized animals (p < 0.0001). Immunization significantly reduced the amount and duration of viral shedding and provided complete protection against neurological symptoms, while 90% of mock-immunized animals succumbed due to the severity of disease. Importantly, immunized animals showed no signs of recurrent disease or viral shedding during a 60-days observation period after recovery from primary infection, and carried 50-fold less latent viral DNA load in their dorsal root ganglia than the surviving mock-vaccinated controls (p < 0.0001). Conclusions Collectively, we demonstrate that vaccination with the HSV-1 recombinant CJ9-gD elicits strong and protective immune responses against primary and recurrent HSV-2 genital disease and significantly reduces the extent of latent infection. PMID:20525279

  7. Kinetic studies with N2-phenylguanines and with L-thymidine indicate that herpes simplex virus type-1 thymidine kinase and thymidylate kinase share a common active site.

    PubMed

    Maga, G; Focher, F; Wright, G E; Capobianco, M; Garbesi, A; Bendiscioli, A; Spadari, S

    1994-08-15

    It is known that the Herpes simplex virus type 1 (HSV-1)-encoded thymidine kinase (TK) co-purifies with an associated thymidylate kinase (TMPK) activity and that thymidylate (TMP) inhibits the phosphorylation of thymidine by the HSV-1 TK. Here we demonstrate that: (i) TMP phosphorylation catalysed by the viral TMPK is competitively inhibited by thymidine (TdR) with a Ki equal to its Km as substrate for the viral TK; (ii) L-thymidine (L-TdR), the enantiomer of the naturally occurring D-TdR and a substrate for the HSV-1 TK [Spadari, Maga, Focher, Ciarrocchi, Manservigi, Arcamone, Capobianco, Caruso, Colonna, Iotti and Garbesi (1992) J. Med. Chem. 35, 4214-4220], is a powerful inhibitor of the HSV-1 TMPK activity with a Ki value identical with its Km as a substrate for the viral TK; (iii) both viral TK and TMPK activities are inhibited, in a competitive way and with identical Ki values, by novel, non-substrate inhibitors of HSV-1 TK, N2-phenylguanines; (iv) L-TdR is phosphorylated to L-TMP by the viral TK, but L-TMP is not phosphorylated to L-TDP by the viral TMPK activity; and (v) L-TMP inhibits competitively and with identical potencies the phosphorylation of TdR and TMP catalysed respectively by the HSV-1 TK and TMPK activities. In conclusion, our data demonstrate that both TK and TMPK activities encoded by HSV-1 share a common active site which is very tolerant in accepting modified nucleosides, but cannot readily accommodate modified nucleoside monophosphates. PMID:8068016

  8. Kinetic studies with N2-phenylguanines and with L-thymidine indicate that herpes simplex virus type-1 thymidine kinase and thymidylate kinase share a common active site.

    PubMed Central

    Maga, G; Focher, F; Wright, G E; Capobianco, M; Garbesi, A; Bendiscioli, A; Spadari, S

    1994-01-01

    It is known that the Herpes simplex virus type 1 (HSV-1)-encoded thymidine kinase (TK) co-purifies with an associated thymidylate kinase (TMPK) activity and that thymidylate (TMP) inhibits the phosphorylation of thymidine by the HSV-1 TK. Here we demonstrate that: (i) TMP phosphorylation catalysed by the viral TMPK is competitively inhibited by thymidine (TdR) with a Ki equal to its Km as substrate for the viral TK; (ii) L-thymidine (L-TdR), the enantiomer of the naturally occurring D-TdR and a substrate for the HSV-1 TK [Spadari, Maga, Focher, Ciarrocchi, Manservigi, Arcamone, Capobianco, Caruso, Colonna, Iotti and Garbesi (1992) J. Med. Chem. 35, 4214-4220], is a powerful inhibitor of the HSV-1 TMPK activity with a Ki value identical with its Km as a substrate for the viral TK; (iii) both viral TK and TMPK activities are inhibited, in a competitive way and with identical Ki values, by novel, non-substrate inhibitors of HSV-1 TK, N2-phenylguanines; (iv) L-TdR is phosphorylated to L-TMP by the viral TK, but L-TMP is not phosphorylated to L-TDP by the viral TMPK activity; and (v) L-TMP inhibits competitively and with identical potencies the phosphorylation of TdR and TMP catalysed respectively by the HSV-1 TK and TMPK activities. In conclusion, our data demonstrate that both TK and TMPK activities encoded by HSV-1 share a common active site which is very tolerant in accepting modified nucleosides, but cannot readily accommodate modified nucleoside monophosphates. PMID:8068016

  9. Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins.

    PubMed Central

    Soliman, T M; Sandri-Goldin, R M; Silverstein, S J

    1997-01-01

    The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP27 is required posttranscriptionally for the expression of HSV-1 late genes during a productive infection. ICP27 also inhibits host cell pre-mRNA splicing, effectively shutting off host cell protein synthesis. Here we describe intragenic suppressors of LG4, a virus with a conditional lethal mutation in the gene encoding ICP27. At the restrictive temperature, tsICP27 from LG4 fails to inhibit host cell pre-mRNA splicing and to activate the expression of HSV-1 late-gene products. Although the suppressors of LG4 restore virus growth, they still fail to inhibit host cell pre-mRNA splicing. Thus, the role of ICP27 in the synthesis of late proteins is independent of host shutoff. In HSV-1-infected cells, ICP27 shuttles between the nucleus and the cytoplasm. Shuttling of ICP27 occurs only at late times during infection. In transfected cells, ICP27 shuttling was dependent on coexpression of RNA from a late HSV-1 gene. While shuttling does not occur in cells infected with LG4 at 39.5 degrees C, the suppressors of LG4 restore shuttling. Temperature shift experiments correlate the defect in shuttling with the temperature-sensitive phenotype of LG4. These data provide a correlation between shuttling of ICP27 and the expression of HSV-1 late-gene products. We propose that ICP27 regulates late-gene protein synthesis by facilitating the export of late RNAs. PMID:9371577

  10. Syncytium-inducing mutations localize to two discrete regions within the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B.

    PubMed Central

    Gage, P J; Levine, M; Glorioso, J C

    1993-01-01

    Herpes simplex virus type 1 glycoprotein B (gB) is essential for virus entry, an event involving fusion of the virus envelope with the cell surface membrane, and virus-induced cell-cell fusion, resulting in polykaryocyte, or syncytium, formation. The experiments described in this report employed a random mutagenesis strategy to develop a more complete genetic map of mutations resulting in the syn mutant phenotype. The results indicate that syn mutations occur within two essential and highly conserved hydrophilic, alpha-helical regions of the gB cytoplasmic domain. Region I is immediately proximal to the transmembrane domain and includes residues R796 to E816/817. Region II is localized centrally in the cytoplasmic domain and includes residues A855 and R858. Positively charged residues were particularly affected in both regions, suggesting that charge interactions may be required to suppress the syn mutant phenotype. No syn mutations were identified within the transmembrane domain. A virus containing a rate of entry (roe) mutation at residue A851, either within or immediately proximal to syn region II, was isolated. Since roe mutations have also been discovered in the external domain of gB, it appears likely that the external and cytoplasmic domains cooperate in virus penetration. Moreover, the observation that both roe and syn mutations occur in the cytoplasmic domain further suggests that gB functions in an analogous manner in both membrane fusion events. It might be predicted from these observations that membrane fusion involves transduction of a fusion signal along the gB molecule through the transmembrane domain. Communication between the external and cytoplasmic domain may thus be required for gB-mediated membrane fusion events. Images PMID:8383236

  11. Effector CD4+ T-Cell Involvement in Clearance of Infectious Herpes Simplex Virus Type 1 from Sensory Ganglia and Spinal Cords ▿

    PubMed Central

    Johnson, Alison J.; Chu, Chin-Fun; Milligan, Gregg N.

    2008-01-01

    In primary infection, CD8+ T cells are important for clearance of infectious herpes simplex virus (HSV) from sensory ganglia. In this study, evidence of CD4+ T-cell-mediated clearance of infectious HSV type 1 (HSV-1) from neural tissues was also detected. In immunocompetent mice, HSV-specific CD4+ T cells were present in sensory ganglia and spinal cords coincident with HSV-1 clearance from these sites and remained detectable at least 8 months postinfection. Neural CD4+ T cells isolated at the peak of neural infection secreted gamma interferon, tumor necrosis factor alpha, interleukin-2 (IL-2), or IL-4 after stimulation with HSV antigen. HSV-1 titers in neural tissues were greatly reduced over time in CD8+ T-cell-deficient and CD8+ T-cell-depleted mice, suggesting that CD4+ T cells could mediate clearance of HSV-1 from neural tissue. To examine possible mechanisms by which CD4+ T cells resolved neural infection, CD8+ T cells were depleted from perforin-deficient or FasL-defective mice. Clearance of infectious virus from neural tissues was not significantly different in perforin-deficient or FasL-defective mice compared to wild-type mice. Further, in spinal cords and brains after vaginal HSV-1 challenge of chimeric mice expressing both perforin and Fas or neither perforin nor Fas, virus titers were significantly lower than in control mice. Thus, perforin and Fas were not required for clearance of infectious virus from neural tissues. These results suggest that HSV-specific CD4+ T cells are one component of a long-term immune cell presence in neural tissues following genital HSV-1 infection and play a role in clearance of infectious HSV-1 at neural sites, possibly via a nonlytic mechanism. PMID:18667492

  12. Association between the p170 form of human topoisomerase II and progeny viral DNA in cells infected with herpes simplex virus type 1.

    PubMed Central

    Ebert, S N; Subramanian, D; Shtrom, S S; Chung, I K; Parris, D S; Muller, M T

    1994-01-01

    Endogenous host topoisomerase II acts upon herpes simplex virus type 1 (HSV-1) DNA in infected cells (S.N. Ebert, S.S. Shtrom, and M.T. Muller, J. Virol. 56:4059-4066, 1990), and cleavage is directed exclusively at progeny viral DNA while parental DNA is resistant. To evaluate the possibility that HSV-1 induces topoisomerase II activity which could account for the preferential cleavage of progeny viral DNA, we assessed topoisomerase II cleavage activity on cellular and viral DNA substrates before and after the initiation of viral DNA replication. We show that cleavage of a host gene in mock-infected cells was similar to that observed in HSV-1-infected cells, regardless of whether viral DNA replication had occurred. In addition, quantitative measurements revealed comparable amounts of topoisomerase II activity in infected and mock-infected cells; thus, HSV-1 neither induces nor encodes its own type II topoisomerase and cleavages in vivo are due to a preexisting host topoisomerase. Human cells contain two isozymes of topoisomerase II (p170 and p180), encoded by separate genes. Through the use of isozyme-specific antibodies, we demonstrate that only p170 was found to be cross-linked to HSV-1 DNA even though both forms were present at nearly constant levels in HSV-1-infected cells. Immunofluorescence revealed that by 6 h postinfection, p170 becomes redistributed and localized to sites of active viral DNA synthesis. The data suggest that p170 gains preferential access to replicated viral DNA molecules, which explains why topoisomerase II activity is concentrated on progeny DNA. Images PMID:8289331

  13. The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    SciTech Connect

    Makhov, A.M.; Simon, M.; Sen, A.; Yu, X.; Griffith, J. D.; Egelman, E. H.

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.

  14. Contrasting Geographic Distribution Profiles of the Herpes Simplex Virus Type 1 BgOL and BgKL Variants in Japan Suggest Dispersion and Replacement▿

    PubMed Central

    Eda, Hiroyuki; Ozawa, Shigeru; Yoshino, Kamesaburo; Yanagi, Kazuo

    2007-01-01

    Thelifelong latent infection-reactivation mode of infection of herpes simplex virus type 1 (HSV-1) transmitted by close contact has allowed a diversity of restriction fragment length polymorphism (RFLP) variations to accumulate in human populations. Whether and how the variants of the HSV-1 that is ubiquitous worldwide spread to different human populations is not clear. In our previous study the geographically gradient distribution of the HSV-1 BgKL variant, which is a good marker for the BgKL:SaCFJM:SaGHM:SaD/EL:KpMS variant, suggested that BgKL dispersed geographically. Southern hybridization analyses showed that in BgKL the BglII cleavage site between the BglII K and small “Q/#13” fragments is lost, the SalI cleavage sites between the SalI J and C and between SalI F and J fragments are lost, and the SalI E fragment is abnormally large (SaEL variation). The RFLP and geographic distribution of one more HSV-1 RFLP variant, BgOL, were comparatively analyzed. The BglII cleavage site between the BglII O and Q/#13 fragments is lost in BgOL. BgOL clinical isolates were not associated with any of the SaCFJM, SaEL, SaGHM, or KpMS variations, whereas one-fourth of the non-BgOL:non-BgKL isolates was associated with SaCFJM and SaGHM, indicating that BgKL and BgOL are distant in terms of diversification. BgOL is distributed highly in the northeastern region and the southwestern island of Kyushu but is rare between the two regions in Japan, in a remarkable contrast to BgKL. These are the first epidemiologic data to show contrasting geographic distribution profiles of two HSV-1 variants and suggest the gradual dispersion and replacement of HSV-1 variants. PMID:17215348

  15. Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells.

    PubMed Central

    Cai, W; Schaffer, P A

    1992-01-01

    The herpes simplex virus type 1 protein, ICP0, can activate expression of all kinetic classes of viral promoters in transient expression assays. To examine the role of ICP0 in the regulation of viral gene expression during productive infection, we characterized the wild-type virus, an ICP0 null mutant (7134), and several ICP0 nonsense mutant viruses with regard to virus replication and protein synthesis in Vero cells. Relative to wild-type virus, 7134 was severely deficient in viral growth and protein synthesis at low multiplicities of infection but exhibited a nearly wild-type phenotype at high multiplicities. The phenotypes of the ICP0 nonsense mutants were intermediate between those of the wild-type virus and 7134 in that the more ICP0-coding sequence expressed by a given nonsense mutant, the more wild type-like was its phenotype. The location of the ICP0 domain responsible for transactivation during productive infection was confirmed to be within the N-terminal portion of the protein, as previously shown in transient expression assays. Immunoprecipitation and immunofluorescence tests were used to detect low-level expression of selected immediate-early (IE), early (E), and late (L) proteins by mutant and wild-type viruses following low-multiplicity infection. The 7134 deletion mutant and several nonsense mutants expressed markedly reduced levels of E and L proteins but wild-type levels of the IE protein, ICP4. Because the latency-associated transcripts (LATs) are specified by the strand opposite that which encodes ICP0, the ICP0 deletion and nonsense mutants are by definition ICP0-LAT double mutants. The ability of a LAT- ICP0+ mutant to replicate as efficiently as wild-type virus at low multiplicities and the ability of ICP0-expressing 0-28 cells to complement the defects of the mutants in E and L protein synthesis indicates that the phenotypes of the mutants are caused by mutations in ICP0 and not the LATs. Thus, we conclude that ICP0 up-regulates E and L but

  16. Differences in the susceptibility of herpes simplex virus types 1 and 2 to modified heparin compounds suggest serotype differences in viral entry.

    PubMed Central

    Herold, B C; Gerber, S I; Belval, B J; Siston, A M; Shulman, N

    1996-01-01

    Although heparan sulfate (HS) serves as an initial receptor for the binding of both herpes simplex virus type 1 (HSV-1) and HSV-2 to cell surfaces, the two serotypes differ in epidemiology, cell tropism, and ability to compete for viral receptors in vitro. These observations are not necessarily contradictory and can be explained if the two serotypes recognize different structural features of HS. To compare the specific features of HS important for the binding and infection of HSV-1 and HSV-2, we took advantage of structural similarities between heparin and cell surface HS and compared the abilities of chemically modified heparin compounds to inhibit plaque formation. We found that the antiviral activity of heparin for both serotypes was independent of anticoagulant activity. Moreover, specific negatively charged regions of the polysaccharide, including N sulfations and the carboxyl groups, are key structural features for interactions of both HSV-1 and HSV-2 with cell surfaces since N desulfation or carboxyl reduction abolished heparin's antiviral activity. In contrast, 6-O sulfations and 2-,3-O sulfations are important determinants primarily for HSV- 1 infection. The O-desulfated heparins had little or no inhibitory effect on HSV-1 infection but inhibited HSV-2 infection. Using a series of intertypic recombinant mutant viruses, we found that susceptibility to O-desulfated heparins can be transferred to HSV-1 by the gene for glycoprotein C of HSV-2 (gC-2). This supports the notion that the envelope glycoproteins of HSV-1 and HSV-2 interact with different affinities for different structural features of heparin. To determine if the modified heparin compounds inhibited plaque formation by competing with cell surface HS for viral attachment, binding studies were also performed. As anticipated, most compounds inhibited binding and plaque formation in parallel. However, several compounds inhibited the binding of HSV-1 to cells during the initial attachment period at 4

  17. 5-[18F]Fluoroalkyl Pyrimidine Nucleosides: Probes for PET Imaging of Herpes Simplex Virus Type-1 Thymidine Kinase Gene Expression

    PubMed Central

    Chacko, Ann-Marie; Blankemeyer, Eric; Lieberman, Brian P.; Qu, Wenchao; Kung, Hank F.

    2009-01-01

    Introduction The preliminary in vivo evaluation of novel 5-[18F]fluoroalkyl-2’-deoxyuridines ([18F]FPrDU, [18F]FBuDU, [18F]FPeDU; [18F]1a–c, respectively) and 2’-fluoro-2’-deoxy-5-[18F]fluoroalkyl-1-β-D-arabinofuranosyl uracils ([18F]FFPrAU, [18F]FFBuAU, [18F]FFPeAU; [18F]1d–f, respectively) as probes for imaging herpes simplex virus type-1 thymidine kinase (HSV1-tk) gene expression are described. Methods [18F]1a–f were successfully synthesized by a rapid and efficient two step one-pot nucleophilic fluorination reaction using 5-O-mesylate precursors and [18F]F-. For in vivo studies, tumor xenografts were grown in nude mice by implanting RG2 cells stably expressing HSV1-tk (RG2TK+) and wild-type cells (RG2). Results Biodistribution studies at 2 h p.i. revealed that the uptake of [18F]1a–b and [18F]1d–e in RG2TK+ tumors was not significantly different from control tumors. However, [18F]1c and [18F]1f had an average 1.6 and 1.7–fold higher uptake in RG2TK+ tumors than control RG2 tumors. Blood activity curves for [18F]1c and [18F]1f highlight rapid clearance of radioactivity in the blood. Dynamic small animal PET (A-PET) imaging studies of tumor-bearing mice with [18F]1c and [18F]1f showed higher initial uptake (3.5–fold and 1.4–fold, respectively) in RG2TK+ tumors than control tumors, with continued washout of activity from both tumors over time. Conclusions Biological evaluations suggest that [18F]1c and [18F]1f may have limited potential for imaging HSV1-tk gene expression due fast washout of activity from the blood thus significantly decreasing sensitivity and specificity of tracer accumulation in HSV1-tk expressing tumors. PMID:19181266

  18. An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1.

    PubMed Central

    Yao, F; Schaffer, P A

    1995-01-01

    Among the five immediate-early regulatory proteins of herpes simplex virus (HSV) type 1, only ICP0 is capable of activating all kinetic classes of viral genes. Consistent with its broad transactivating activity, ICP0 plays a major role in enhancing the reactivation of HSV from latency both in vivo and in vitro. Although not essential for viral replication, ICP0 confers a significant growth advantage on the virus, especially at low multiplicities of infection. In this report we describe the expression of a novel activity by the osteosarcoma cell line U2OS that can substitute functionally for ICP0. Compared with Vero cells, both U2OS cells and cells of the ICP0-expressing line 0-28 significantly enhanced the plating efficiency of an ICP0 null mutant, 7134. In contrast, the plating efficiencies of the wild-type virus in all three cell types were similar. Single-step growth experiments demonstrated that the yield of 7134 in U2OS cells was severalfold higher than that in 0-28 cells and about 100-fold higher than that in Vero cells. In order to identify the viral genes whose expression is enhanced by the activity in U2OS cells, levels of expression of selected viral proteins in extracts of Vero and U2OS cells were compared by Western blot (immunoblot) analysis following low-multiplicity infection. At a multiplicity of 0.1 PFU per cell, the levels of expression of the immediate-early protein ICP4 and the early protein gD in 7134-infected U2OS cells were significantly higher than those in 7134-infected Vero cells. When infections were carried out at a multiplicity of 1 PFU per cell, however, no major differences in the levels of expression of these proteins in U2OS and Vero cells were observed. Cycloheximide reversal experiments demonstrated that the cellular activity expressed in U2OS cells that promotes high-level expression of ICP4 is not synthesized de novo but appears to exist as a preformed protein(s). To confirm this observation and to determine whether, like

  19. Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia

    PubMed Central

    2011-01-01

    Background Therapeutic vaccines can be designed to enhance existing T cell memory populations for increased protection against re-infection. In the case of herpes simplex virus type 1, recurrent disease results from reactivation of latent virus in sensory ganglia, which is controlled in part by a ganglia-resident HSV-specific memory CD8+ T cell population. Thus, an important goal of a therapeutic HSV-1 vaccine would be to enhance this population. Methods HSV-1-infected mice were treated with TAK-779 to block CCR5- and CXCR3-mediated CD8+ T cell migration during both acute and latent infections. Additionally, HSV-1-specific CD8+ T cells were transferred into HSV-1 latently infected mice to mimic the effect of a therapeutic vaccine, and their migration into trigeminal ganglia (TG) was traced during steady-state latency, or during recovery of the TG-resident memory CD8+ T cell population following stress-, and corticosterone-induced depletion and HSV-1 reactivation from latency. Bromodeoxy uridine (BrdU) incorporation measured cell proliferation in vivo. Results TAK-779 treatment during acute HSV-1 infection reduced the number of infiltrating CD8+ T cells but did not alter the number of viral genome copies. TAK-779 treatment during HSV latency did not affect the size of the TG-resident memory CD8+ T cell population. Transferred HSV-specific CD8+ T cells failed to access latently infected TG during steady-state latency, or during recovery of the TG resident HSV-specific CD8+ T cell population following exposure of latently infected mice to stress and corticosterone. Recovery of the HSV-specific CD8+ T cell population after stress and corticosterone treatment occurred with homeostatic levels of cell division and did not require CD4+ T cell help. Conclusions Our findings are consistent with the notion that the CD8+ T cells in latently infected TG are a tissue-resident memory (Trm) population that is maintained without replenishment from the periphery, and that when this

  20. Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap.

    PubMed Central

    Conway, J E; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1997-01-01

    Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate

  1. A Systematic Analysis of Host Factors Reveals a Med23-Interferon-λ Regulatory Axis against Herpes Simplex Virus Type 1 Replication

    PubMed Central

    Griffiths, Samantha J.; Koegl, Manfred; Boutell, Chris; Zenner, Helen L.; Crump, Colin M.; Pica, Francesca; Gonzalez, Orland; Friedel, Caroline C.; Barry, Gerald; Martin, Kim; Craigon, Marie H.; Chen, Rui; Kaza, Lakshmi N.; Fossum, Even; Fazakerley, John K.; Efstathiou, Stacey; Volpi, Antonio; Zimmer, Ralf; Ghazal, Peter; Haas, Jürgen

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to

  2. [Update on Herpes Simplex Encephalitis].

    PubMed

    Kuroda, Hiroshi

    2015-07-01

    Herpes simplex encephalitis (HSE), which is caused by the herpes simplex virus (HSV), is a severe neuro-infectious disease characterized by high mortality and morbidity. We reviewed the pathomechanism, diagnosis, and treatment of HSE based on recent progress in the field. The highlighted mechanism of HSE in this review is immune-mediated tissue damage caused by host immunity. Major symptoms of HSE include psychiatric alteration, Klüver-Bucy syndrome, and amnesia, caused by frequent involvement of the limbic system. An important differential diagnosis of HSE is autoimmune limbic encephalitis, including anti-N-methyl-D-aspartate receptor encephalitis, and anti-voltage-gated K+ channel encephalitis. HSE is definitely diagnosed based on the detection of HSV-DNA by polymerase chain reaction and/or the detection of HSV-IgG antibody in the cerebrospinal fluid (CSF). Repeated CSF examinations are required for the accurate diagnosis of HSE. Acyclovir (ACV) plays a central role in the treatment of HSE, and its early initiation is essential for good outcome in patients with HSE. Acute administration of corticosteroids for HSE is controversial; a randomized, double-blind, placebo-controlled trial to investigate the efficacy of add-on corticosteroids to ACV is ongoing. PMID:26160820

  3. Transition from a heterozygous to a homozygous state of a pair of loci in the inverted repeat sequences of the L component of the herpes simplex virus type 1 genome.

    PubMed Central

    Umene, K

    1987-01-01

    The behavior of herpes simplex virus type 1 heterozygous isolates, in which the two inverted repeats of the L component (RL) were differentiated by a polymorphism marker (the presence [type B] or absence [type A] of a SalI site), was investigated. The progeny viruses derived from the heterozygote (A/B) consisted of heterozygotes (A/B), type A homozygotes (A/A), and type B homozygotes (B/B). The heterology between RL, albeit tolerated, was unstable, as is the case with heterology between the repeats of the S component. The two repeats TRL (terminal) and IRL (internal) were equipotent in generating homozygotes from a heterozygote. Data obtained from an analysis of 426 progeny viruses derived from heterozygous clones supported the hypothesis that the two loci in RL of a herpes simplex virus type 1 genome are determined as a random combination of the corresponding two loci in RL of the parent virus and that the ratio of heterozygotes/type A homozygotes/type B homozygotes in the progeny viruses from a heterozygote is expected to be 2:1:1. An ephemeral dominance of one type of homozygote over the other was observed in subclones from several heterozygous clones. Images PMID:3029414

  4. Antigenic and protein sequence homology between VP13/14, a herpes simplex virus type 1 tegument protein, and gp10, a glycoprotein of equine herpesvirus 1 and 4.

    PubMed Central

    Whittaker, G R; Riggio, M P; Halliburton, I W; Killington, R A; Allen, G P; Meredith, D M

    1991-01-01

    Monospecific polyclonal antisera raised against VP13/14, a major tegument protein of herpes simplex virus type 1 cross-reacted with structural equine herpesvirus 1 and 4 proteins of Mr 120,000 and 123,000, respectively; these proteins are identical in molecular weight to the corresponding glycoprotein 10 (gp10) of each virus. Using a combination of immune precipitation and Western immunoblotting techniques, we confirmed that anti-VP13/14 and a monoclonal antibody to gp10 reacted with the same protein. Sequence analysis of a lambda gt11 insert of equine herpesvirus 1 gp10 identified an open reading frame in equine herpesvirus 4 with which it showed strong homology; this open reading frame also shared homology with gene UL47 of herpes simplex virus type 1 and gene 11 of varicella-zoster virus. This showed that, in addition to immunological cross-reactivity, VP13/14 and gp10 have protein sequence homology; it also allowed identification of VP13/14 as the gene product of UL47. Images PMID:1850013

  5. The conserved helicase motifs of the herpes simplex virus type 1 origin-binding protein UL9 are important for function.

    PubMed Central

    Martinez, R; Shao, L; Weller, S K

    1992-01-01

    The UL9 gene of herpes simplex virus encodes a protein that specifically recognizes sequences within the viral origins of replication and exhibits helicase and DNA-dependent ATPase activities. The specific DNA binding domain of the UL9 protein was localized to the carboxy-terminal one-third of the molecule (H. M. Weir, J. M. Calder, and N. D. Stow, Nucleic Acids Res. 17:1409-1425, 1989). The N-terminal two-thirds of the UL9 gene contains six sequence motifs found in all members of a superfamily of DNA and RNA helicases, suggesting that this region may be important for helicase activity of UL9. In this report, we examined the functional significance of these six motifs for the UL9 protein through the introduction of site-specific mutations resulting in single amino acid substitutions of the most highly conserved residues within each motif. An in vivo complementation test was used to study the effect of each mutation on the function of the UL9 protein in viral DNA replication. In this assay, a mutant UL9 protein expressed from a transfected plasmid is used to complement a replication-deficient null mutant in the UL9 gene for the amplification of herpes simplex virus origin-containing plasmids. Mutations in five of the six conserved motifs inactivated the function of the UL9 protein in viral DNA replication, providing direct evidence for the importance of these conserved motifs. Insertion mutants resulting in the introduction of two alanines at 100-residue intervals in regions outside the conserved motifs were also constructed. Three of the insertion mutations were tolerated, whereas the other five abolished UL9 function. These data indicate that other regions of the protein, in addition to the helicase motifs, are important for function in vivo. Several mutations result in instability of the mutant products, presumably because of conformational changes in the protein. Taken together, these results suggest that UL9 is very sensitive to mutations with respect to both

  6. Immunomodulation by roquinimex decreases the expression of IL-23 (p19) mRNA in the brains of herpes simplex virus type 1 infected BALB/c mice

    PubMed Central

    Peltoniemi, J; Broberg, E K; Halenius, A; Setälä, N; Erälinna, J-P; Salmi, A A; Röyttä, M; Hukkanen, V

    2004-01-01

    Herpes simplex virus (HSV) is a common neurotropic virus which infects epithelial cells and subsequently the trigeminal ganglia (TG) and brain tissue. We studied how immunomodulation with roquinimex (Linomide®) affects the course of corneal HSV infection in BALB/c mice. BALB/c mice have also been used in a model for HSV-based vectors in treating an autoimmune disease of the central nervous system (CNS). We addressed the questions of how immunomodulation affects the local as well as the systemic immune response and whether roquinimex could facilitate the spread of HSV to the CNS. The cytokine response in the brain and TG was studied using a quantitative rapid real-time RT-PCR method. We were interested in whether immunomodulation affects the expression of the recently described Th1-cytokine IL-23p19 in the brain and TG. The expression of IL-23 mRNA was decreased in brains of roquinimex-treated BALB/c mice. Also the expression of IL-12p35 and IFN-γ mRNAs decreased. No significant changes were seen in IL-4 and IL-10 mRNA expression. The cytokine response was also studied using supernatants of stimulated splenocytes by EIA. Roquinimex treatment suppressed the production of IFN-γ and also the production of IL-10 in HSV-infected BALB/c mice. PMID:15270847

  7. Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion.

    PubMed

    Bzik, D J; Fox, B A; DeLuca, N A; Person, S

    1984-08-01

    The tsB5 isolate of herpes simplex virus type I (HSV-1) enters host cells more rapidly than does KOS, an independent isolate of HSV-1, and this rate-of-entry determinant is located between prototypic map coordinates 0.350 and 0.360 (1). The nucleotide sequence of strain tsB5 has now been determined between prototypic map coordinates 0.347 and 0.360. Comparison of the tsB5 sequence to the homologous KOS sequence revealed that the rate-of-entry difference between these two HSV-1 strains may be due to the single amino acid difference observed within these sequences (0.350 to 0.360). A cell fusion determinant in tsB5 is located between coordinates 0.345 and 0.355 and to the left of the rate-of-entry determinant (1). Nucleotide sequence analysis revealed a second amino acid difference between tsB5 and KOS at coordinate 0.349. The cell fusion determinant was tentatively assigned to this location. PMID:6089415

  8. N-ethylmaleimide inhibition of the DNA-binding activity of the herpes simplex virus type 1 major DNA-binding protein

    SciTech Connect

    Ruyechan, W.T. )

    1988-03-01

    The major herpes simplex virus DNA-binding protein, designated ICP8, binds tightly to single-stranded DNA and is required for replication of viral DNA. The sensitivity of the DNA-binding activity of ICP8 to the action of the sulfhydryl reagent N-ethylmaleimide has been examined by using nitrocellulose filter-binding and agarose gel electrophoresis assays. Incubation of ICP8 with N-ethylmaleimide results in a rapid loss of DNA-binding activity. Preincubation of ICP8 with single-stranded DNA markedly inhibits this loss of binding activity. These results imply that a free sulfhydryl group is involved in the interaction of ICP8 with single-stranded DNA and that this sulfhydryl group becomes less accessible to the environment upon binding. Agarose gel electrophoretic analysis of the binding interaction in the presence and absence of N-ethylmaleimide indicates that the cooperative binding exhibited by ICP8 is lost upon treatment with this reagent but that some residual noncooperative binding may remain. This last result was confirmed by equilibrium dialysis experiments with the {sup 32}P-labeled oligonucleotide dT{sub 10} and native and N-ethylmaleimide-treated ICP8.

  9. Deciphering the epidemic synergy of herpes simplex virus type 2 (HSV-2) on human immunodeficiency virus type 1 (HIV-1) infection among women in sub-Saharan Africa

    PubMed Central

    2012-01-01

    Background Herpes Simplex Virus Type 2 (HSV-2) is highly prevalent in regions disproportionately affected by the human immunodeficiency virus (HIV-1) epidemic. The objective of our study was to identify the risk factors of HSV-2 and HIV-1 infections and to examine the association between the two infections. Methods The study participants were recruited through a community based cross-sectional study that was conducted from November 2002 to March 2003 in the Moshi urban district of Northern Tanzania. A two-stage sampling design was used in recruiting the study participants. Information on socio-demographics, alcohol use, sexual behaviors, and STIs symptoms were obtained. Blood and urine samples were drawn for testing of HIV-1, HSV-2 and other STIs. Results The prevalence of HSV-2 infection among all study participants was 43%. The prevalence rate of HSV-2 among the HIV-negative and HIV-positive women was 40% and 65%, respectively. We found 2.72 times odds of having HIV-1 in an HSV-2 positive woman than in an HSV-2 negative woman. Furthermore, HIV-1 and HSV-2 shared common high-risk sexual behavior factors such as early onset of sexual debut, and testing positive for other STIs. Conclusions Our findings suggest that HSV-2 may be both a biological and risk-associated cofactor for HIV-1 acquisition. In resource-limited countries, where both infections are prevalent efforts at symptomatic and diagnostic screening and treatment of HSV-2 should be part of HIV-1 prevention programs. PMID:22909236

  10. Two phenotypically distinct T cells are involved in ultraviolet-irradiated urocanic acid-induced suppression of the efferent delayed-type hypersensitivity response to herpes simplex virus, type 1 in vivo

    SciTech Connect

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.

    1987-09-01

    When UVB-irradiated urocanic acid, the putative photoreceptor/mediator for UVB suppression, is administered to mice it induces a dose-dependent suppression of the delayed-type hypersensitivity response to herpes simplex virus, type 1 (HSV-1), of similar magnitude to that induced by UV irradiation of mice. In this study, the efferent suppression of delayed-type hypersensitivity by UV-irradiated urocanic acid is demonstrated to be due to 2 phenotypically distinct T cells, (Thy1+, L3T4-, Ly2+) and (Thy1+, L3T4+, Ly2-). The suppression is specific for HSV-1. This situation parallels the generation of 2 distinct T-suppressor cells for HSV-1 by UV irradiation of mice and provides further evidence for the involvement of urocanic acid in the generation of UVB suppression.

  11. Antiviral agents for herpes simplex virus.

    PubMed

    Vere Hodge, R Anthony; Field, Hugh J

    2013-01-01

    This review starts with a brief description of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), the clinical diseases they cause, and the continuing clinical need for antiviral chemotherapy. A historical overview describes the progress from the early, rather toxic antivirals to acyclovir (ACV) which led the way for its prodrug, valacyclovir, to penciclovir and its prodrug, famciclovir (FCV). These compounds have been the mainstay of HSV therapy for two decades and have established a remarkable safety record. This review focuses on these compounds, the preclinical studies which reveal potentially important differences, the clinical trials, and the clinical experience through two decades. Some possible areas for further investigation are suggested. The focus shifts to new approaches and novel compounds, in particular, the combination of ACV with hydrocortisone, known as ME609 or zovirax duo, an HSV helicase-primase inhibitor, pritelivir (AIC316), and CMX001, the cidofovir prodrug for treating resistant HSV infection in immunocompromised patients. Letermovir has established that the human cytomegalovirus terminase enzyme is a valid target and that similar compounds could be sought for HSV. We discuss the difficulties facing the progression of new compounds. In our concluding remarks, we summarize the present situation including a discussion on the reclassification of FCV from prescription-only to pharmacist-controlled for herpes labialis in New Zealand in 2010; should this be repeated more widely? We conclude that HSV research is emerging from a quiescent phase. PMID:23885997

  12. Fatal Neonatal Herpes Simplex Infection Likely from Unrecognized Breast Lesions.

    PubMed

    Field, Scott S

    2016-02-01

    Type 1 herpes simplex virus (HSV-1) is very prevalent yet in rare circumstances can lead to fatal neonatal disease. Genital acquisition of type 2 HSV is the usual mode for neonatal herpes, but HSV-1 transmission by genital or extragenital means may result in greater mortality rates. A very rare scenario is presented in which the mode of transmission was likely through breast lesions. The lesions were seen by nurses as well as the lactation consultant and obstetrician in the hospital after delivery of the affected baby but not recognized as possibly being caused by herpes. The baby died 9 days after birth with hepatic failure and disseminated intravascular coagulation. Peripartum health care workers need to be aware of potential nongenital (including from the breast[s]) neonatal herpes acquisition, which can be lethal. PMID:26185119

  13. Human herpes simplex virus: life cycle and development of inhibitors.

    PubMed

    Kukhanova, M K; Korovina, A N; Kochetkov, S N

    2014-12-01

    WHO reports that 90% of human population is infected by different types of herpesviruses, which develop latency or cause oral and genital herpes, conjunctivitis, eczema herpeticum, and other diseases. Herpesvirus almost always accompanies HIV-infection and complicates AIDS treatment. Herpes simplex virus type 1 is one of the most wide spread viruses from the Herpesviridae family. HSV virion, genome structure, replication mechanisms, antiherpes drug development strategies, including design of prodrugs, and mutations causing ACV-resistance in clinical HSV isolates are discussed in this review. PMID:25749169

  14. Recurrent lumbosacral herpes simplex virus infection

    PubMed Central

    Vassantachart, Janna M.

    2016-01-01

    We present the case of a 54-year-old white woman with episodic lumbosacral lesions that she had been treating as psoriasis. Evaluation revealed classic herpes simplex virus (HSV) infection. The discussion reviews the significance and potential complications of recurrent lumbosacral HSV infection. PMID:26722168

  15. Can Herpes Simplex Virus Encephalitis Cause Aphasia?

    ERIC Educational Resources Information Center

    Naude, H.; Pretorius, E.

    2003-01-01

    Aphasia implies the loss or impairment of language caused by brain damage. The key to understanding the nature of aphasic symptoms is the neuro-anatomical site of brain damage, and not the causative agent. However, because "Herpes simplex" virus (HSV) encephalitis infection usually affects the frontal and temporal lobes, subcortical structures and…

  16. Anti-glycoprotein D monoclonal antibody protects against herpes simplex virus type 1-induced diseases in mice functionally depleted of selected T-cell subsets or asialo GM1+ cells.

    PubMed Central

    Staats, H F; Oakes, J E; Lausch, R N

    1991-01-01

    Passive transfer of a monoclonal antibody (MAb) specific for glycoprotein D (gD) is highly effective in preventing the development of herpes simplex virus type 1-induced stromal keratitis. In the present study, we investigated whether animals which had been functionally depleted of T-cell subsets or asialo GM1+ cells would continue to be responsive to MAb therapy. BALB/c mice were depleted of CD4+, CD8+, or asialo GM1+ cells by treatment with anti-L3T4, anti-Lyt 2.2, or anti-asialo GM1 antibodies, respectively. Functional depletion of CD4+ cells was documented by the loss of delayed-type hypersensitivity responsiveness, while CD8+ cell depletion was accompanied by abrogation of cytotoxic lymphocyte activity. Anti-asialo GM1 treatment led to the loss of natural killer cell lytic activity. Mice depleted of the desired cell population and infected on the scarified cornea with herpes simplex virus type 1 uniformly developed necrotizing stromal keratitis by 3 weeks postinfection. A single inoculation of anti-gD MAb (55 micrograms) given intraperitoneally 24 h postinfection strongly protected hosts depleted of CD4+ cells against stromal keratitis. Likewise, antibody treatment in CD8+ or asialo GM1+ cell-depleted hosts was as therapeutically effective as that seen in non-cell-depleted mice. We also observed that in cell-depleted mice, the virus spread into the central nervous system and caused encephalitis. The CD4+ cell-depleted mice were the most severely affected, as 100% developed fatal disease. Anti-gD MAb treatment successfully protected all (32 of 32) CD4+-, CD8+-, or asialo GM1(+)-depleted hosts against encephalitis. We therefore conclude that antibody-mediated prevention of stromal keratitis and encephalitis does not require the obligatory participation of CD4+, CD8+, or asialo GM1+ cells. However, when mice were simultaneously depleted of both CD4+ and CD8+ T-cell subsets, antibody treatment could not prevent fatal encephalitis. Thus, antibody can compensate for

  17. Vaccines for herpes simplex virus infections.

    PubMed

    Koelle, David M

    2006-02-01

    Infections with herpes simplex virus (HSV) type 1 (HSV-1) and type 2 (HSV-2) can have serious medical consequences. Although antiviral medications can suppress symptomatic disease, asymptomatic shedding and transmission, they neither cure nor alter the natural history of HSV infections. Manipulation of the immune response is one potential method to decrease disease burden. Current research on prophylactic and therapeutic vaccination approaches is discussed in this review, with a focus on compounds that have entered clinical trials or that display novel compositions or proposed mechanisms of action. One such vaccine is an alum and monophosphoryl lipid A-adjuvanted subunit glycoprotein D2 vaccine that has demonstrated activity in the prevention of HSV-2 infection and disease in HSV-uninfected women in a phase III clinical trial. Further confirmatory clinical trials of this vaccine are currently underway. Other vaccine formats also in development include attenuated live or replication-incompetent HSV-2 strains and technologies that target virus-specific CD8 T-cell responses. PMID:16499283

  18. Detection of Vero Cells Infected with Herpes Simplex Types 1 and 2 and Varicella Zoster Viruses Using Raman Spectroscopy and Advanced Statistical Methods

    PubMed Central

    Huleihel, Mahmoud; Shufan, Elad; Zeiri, Leila; Salman, Ahmad

    2016-01-01

    Of the eight members of the herpes family of viruses, HSV1, HSV2, and varicella zoster are the most common and are mainly involved in cutaneous disorders. These viruses usually are not life-threatening, but in some cases they might cause serious infections to the eyes and the brain that can lead to blindness and possibly death. An effective drug (acyclovir and its derivatives) is available against these viruses. Therefore, early detection and identification of these viral infections is highly important for an effective treatment. Raman spectroscopy, which has been widely used in the past years in medicine and biology, was used as a powerful spectroscopic tool for the detection and identification of these viral infections in cell culture, due to its sensitivity, rapidity and reliability. Our results showed that it was possible to differentiate, with a 97% identification success rate, the uninfected Vero cells that served as a control, from the Vero cells that were infected with HSV-1, HSV-2, and VZV. For that, linear discriminant analysis (LDA) was performed on the Raman spectra after principal component analysis (PCA) with a leave one out (LOO) approach. Raman spectroscopy in tandem with PCA and LDA enable to differentiate among the different herpes viral infections of Vero cells in time span of few minutes with high accuracy rate. Understanding cell molecular changes due to herpes viral infections using Raman spectroscopy may help in early detection and effective treatment. PMID:27078266

  19. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT).

    PubMed

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton; Wechsler, Steven L

    2015-10-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  20. Inhibition of herpes simplex type 1 and type 2 infections by Oximacro(®), a cranberry extract with a high content of A-type proanthocyanidins (PACs-A).

    PubMed

    Terlizzi, Maria Elena; Occhipinti, Andrea; Luganini, Anna; Maffei, Massimo E; Gribaudo, Giorgio

    2016-08-01

    In the absence of efficient preventive vaccines, topical microbicides offer an attractive alternative in the prevention of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Because of their recognized anti-adhesive activity against bacterial pathogens, cranberry (Vaccinium macrocarpon Ait.) extracts may represent a natural source of new antiviral microbicides. However, few studies have addressed the applications of cranberry extract as a direct-acting antiviral agent. Here, we report on the ability of the novel cranberry extract Oximacro(®) and its purified A-type proanthocyanidins (PACs-A), to inhibit HSV-1 and HSV-2 replication in vitro. Analysis of the mode of action revealed that Oximacro(®) prevents adsorption of HSV-1 and HSV-2 to target cells. Further mechanistic studies confirmed that Oximacro(®) and its PACs-A target the viral envelope glycoproteins gD and gB, thus resulting in the loss of infectivity of HSV particles. Moreover, Oximacro(®) completely retained its anti-HSV activity even at acidic pHs (3.0 and 4.0) and in the presence of 10% human serum proteins; conditions that mimic the physiological properties of the vagina - a potential therapeutic location for Oximacro(®). Taken together, these findings indicate Oximacro(®) as an attractive candidate for the development of novel microbicides of natural origin for the prevention of HSV infections. PMID:27321663

  1. Herpes simplex virus colitis in a neonate.

    PubMed

    Daley, Andrew J; Craven, Paul; Holland, Andrew J A; Jones, Cheryl A; Badawi, Nadia; Isaacs, David

    2002-09-01

    Involvement of the gastrointestinal tract in neonates with congenital herpes simplex virus (HSV) infection is rarely described. We report a case of a newborn with disseminated HSV infection associated with profuse hematochezia and late sigmoid colon perforation. Histologic examination showed patchy areas of ulceration with multinucleated giant cells and HSV nucleic acid was detected by polymerase chain reaction in colonic tissue. No clinically apparent episodes of recurrent colitis occurred in the first year of life. PMID:12380594

  2. Recent Progress in Herpes Simplex Virus Immunobiology and Vaccine Research

    PubMed Central

    Koelle, David M.; Corey, Lawrence

    2003-01-01

    Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) cause prevalent, chronic infections that have serious outcomes in some individuals. Neonatal herpes may occur when the infant traverses the cervix during maternal genital herpes. Genital herpes is a major risk factor for human immunodeficiency virus type 1 transmission. Considerable efforts have been made to design and test vaccines for HSV, focusing on genital infection with HSV-2. Several protein subunit vaccines based on HSV-2 envelope glycoproteins have reached advanced-phase clinical trials. These antigens were chosen because they are the targets of neutralizing-antibody responses and because they elicit cellular immunity. Encouraging results have been reported in studies of treatment of HSV-seronegative women with a vaccine consisting of truncated glycoprotein D of HSV-2 and a novel adjuvant. Because most sexual HSV transmission occurs during asymptomatic shedding, it is important to evaluate the impact of vaccination on HSV-2 infection, clinically apparent genital herpes, and HSV shedding among vaccine recipients who acquire infection. There are several other attractive formats, including subunit vaccines that target cellular immune responses, live attenuated virus strains, and mutant strains that undergo incomplete lytic replication. HSV vaccines have also been evaluated for the immunotherapy of established HSV infection. PMID:12525427

  3. Herpes simplex virus virion host shutoff function.

    PubMed Central

    Kwong, A D; Kruper, J A; Frenkel, N

    1988-01-01

    Herpes simplex virus (HSV) virions contain one or more functions which mediate the shutoff of host protein synthesis and the degradation of host mRNA. HSV type 1 (HSV-1) mutants deficient in the virion shutoff of host protein synthesis (vhs mutants) were isolated and were found to be defective in their ability to degrade host mRNA. Furthermore, it was found that viral mRNAs in cells infected with the vhs 1 mutant have a significantly longer functional half-life than viral mRNAs in wild-type virus-infected cells. In the present study we have mapped the vhs1 mutation affecting the virion shutoff of host protein synthesis to a 265-base-pair NruI-XmaIII fragment spanning map coordinates 0.604 to 0.606 of the HSV-1 genome. The mutation(s) affecting the functional half-lives of host mRNA as well as the alpha (immediate-early), beta (early), and gamma (late) viral mRNAs were also mapped within this 265-base-pair fragment. Thus, the shutoff of host protein synthesis is most likely mediated by the same function which decreases the half-life of viral mRNA. The shorter half-life of infected-cell mRNAs may allow a more rapid modulation of viral gene expression in response to changes in the transcription of viral genes. Interestingly, the vhs1 mutation of HSV-1 maps within a region which overlaps the Bg/II-N sequences of HSV-2 DNA shown previously to transform cells in culture. The possible relationship between the transformation and host shutoff functions are discussed. Images PMID:2828686

  4. Stimulation of human lymphocytes by Herpes simplex virus antigens.

    PubMed Central

    Starr, S E; Karatela, S A; Shore, S L; Duffey, A; Nahmias, A J

    1975-01-01

    Lymphocytes from individuals with laboratory evidence of prior infection with herpes simplex virus (HSV) type 1 or type 2 demonstrated transformation (av antigens. Higher stimulation indexes were obtained when lymphocytes were incubated with the homologous as compared with the heterologous antigen. Higher mean lymphocyte stimulation indexes were also demonstrated in seropositive as compared with seronegative individuals. Lymphocytes from children with HSV-1 stomatitis usually became responsive to HSV-1 antigen within 2 to 6 weeks after the onset of illness. Lymphocytes from infants with neonatal HSV-2 infection were stimulated by HSV-2 antigen. PMID:163788

  5. Direct correlation between a negative autoregulatory response element at the cap site of the herpes simplex virus type 1 IE175 (alpha 4) promoter and a specific binding site for the IE175 (ICP4) protein.

    PubMed Central

    Roberts, M S; Boundy, A; O'Hare, P; Pizzorno, M C; Ciufo, D M; Hayward, G S

    1988-01-01

    In transient-expression assays, the IE175 (alpha 4) promoter region of herpes simple virus is down-regulated after cotransfection with DNA encoding its own protein product (IE175 or ICP4). The inhibition by IE175 proved to be highly specific for its own promoter region and did not act on either the herpes simplex virus type 1 IE110 (alpha 0) or human cytomegalovirus major immediate-early promoters. Furthermore, the inhibition was still exhibited by IE175 effector plasmids driven by strong heterologous promoters and therefore must be a direct autoregulatory response that cannot be explained by promoter competition effects. In gel mobility retardation assays with infected-cell nuclear extracts, a prominent and specific DNA-protein complex was formed with DNA fragments containing sequences from -108 to +30 in the IE175 promoter region. This activity was not present in mock-infected samples. Even stronger binding occurred with a fragment containing sequences from -128 to +120 in the IE110 promoter, but this second locus was not associated with any detectable response phenotype in cotransfection assays. Supershift experiments with an anti-IE175 monoclonal antibody confirmed the presence of the IE175 protein in both DNA-protein complexes. In the IE175 promoter, specific binding correlated closely with the presence of an intact autoregulatory signal near the cap site as judged by the loss of both activities in a 3'-deleted promoter fragment lacking sequences from -7 to +30. Insertion of a cloned 30-mer synthetic oligonucleotide sequence from positions -8 to +18 in IE175 restored both IE175 binding activity and the down-regulation phenotype. Direct shift-up assays with a similar 30-base-pair (bp) oligonucleotide containing 21 bp from positions -75 to -55 of IE110 (which encompasses a consensus ATCGTC motif) also produced a specific DNA-protein complex containing the IE175 protein. This ATCGTC motif proved to be a necessary component of both the IE110 and IE175 binding

  6. The Herpes Simplex Virus Type 1 vhs-UL41 Gene Secures Viral Replication by Temporarily Evading Apoptotic Cellular Response to Infection: Vhs-UL41 Activity Might Require Interactions with Elements of Cellular mRNA Degradation Machinery

    PubMed Central

    Barzilai, Ari; Zivony-Elbom, Ifaat; Sarid, Ronit; Noah, Eran; Frenkel, Niza

    2006-01-01

    We have previously shown that herpes simplex virus type 1 (HSV-1) infection is associated with early destabilization/degradation of infected cell mRNAs and consequent shutoff of host protein synthesis by the activity of the virion-associated host shutoff (vhs) UL41 protein. Wild-type (wt) virus destabilized/degraded the housekeeping β-actin and α-tubulin mRNAs as well host stress functions, like the heat shock 70 protein induced postinfection. vhs mutants did not degrade the mRNAs. Elaborate studies by others have been concerned with the mode of mRNA degradation and the mRNAs affected. We now describe vhs activity in primary cultures of mouse cerebellar granule neurons (CGNs). Specifically, (i) upon infection in the presence of actinomycin D to test activity of input viral particles, there was a generalized inhibition of protein synthesis, which depended on the input multiplicity of infection (MOI). (ii) Low-MOI infection with vhs-1 mutant virus was associated with increased synthesis of all apparent proteins. Higher MOIs caused some shutoff, albeit significantly lower than that of wt virus. This pattern could reflect an interaction(s) of vhs-1 protein with host machinery involved in cellular mRNA destabilization/degradation, sequestering this activity. (iii) wt virus infection was associated with cell survival, at least for a while, whereas mutant virus induced apoptotic cell death at earlier times. (iv) wt virus replicated well in the CGNs, whereas there was no apparent replication of the vhs-1 mutant virus. (v) The vhs-1 mutant could serve as helper virus for composite amplicon vectors carrying marker genes and the human p53 gene. Ongoing studies test the use of vhs-1-based composite oncolytic vectors towards cancer gene therapy. PMID:16352574

  7. Tracking the Spread of a lacZ-Tagged Herpes Simplex Virus Type 1 between the Eye and the Nervous System of the Mouse: Comparison of Primary and Recurrent Infection

    PubMed Central

    Shimeld, Carolyn; Efstathiou, Stacey; Hill, Terry

    2001-01-01

    The spread of herpes simplex virus type 1 (HSV-1) during primary ocular infection and after reactivation of latent infection in the trigeminal ganglion (TG) was examined in the mouse using a genetically modified virus containing the lacZ reporter gene under the control of the immediate-early 110 promoter. Whole tissue mounts of the eye and lids, their sensory nerves, and TG with the attached dorsal root entry zone (DRE) into the central nervous system (CNS) were stained for β-galactosidase. Sixteen hours after inoculation of the cornea by scarification, staining was found in the scarified epithelium of the cornea and in the unscarified conjunctiva. By 24 h, staining was also seen in a few TG neurons and by 96 h their number had greatly increased and their distribution was more widespread. Stained cells (identified as Schwann cells by their staining for glial fibrillary acidic protein [GFAP] or S-100) in the TG were first seen close to stained neurons at 40 h, and by 48 h lines of such cells extended partway toward the periphery and toward the DRE. By 72 h, these lines had reached the periphery and the DRE where the adjacent CNS was also stained. In the cornea, stained cells with the morphology and arrangement of Schwann cells were seen from 40 to 120 h. After reactivation of latent infection, 10 of 22 samples had positively stained neurons. In eight samples, corneal and lid epithelial cells were stained. No stained Schwann cells were seen in the TG; however, branched networks of such cells were present in the cornea and the lids. This detailed sequential analysis has provided new information on the involvement of Schwann cells in the pathogenesis of primary and recurrent HSV-1 disease in the TG and the cornea. PMID:11333907

  8. Evaluation of multiplex real-time PCR for detection of Haemophilus ducreyi, Treponema pallidum, herpes simplex virus type 1 and 2 in the diagnosis of genital ulcer disease in the Rakai District, Uganda

    PubMed Central

    Suntoke, T R; Hardick, A; Tobian, A A R; Mpoza, B; Laeyendecker, O; Serwadda, D; Opendi, P; Gaydos, C A; Gray, R H; Wawer, M J; Quinn, T C; Reynolds, S J

    2009-01-01

    Objective: To develop a real-time PCR assay that reliably and accurately detects the predominant sexually transmitted aetiological agents of genital ulcer disease (GUD) (Haemophilus ducreyi, Treponema pallidum and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2)) and to assess the use of real-time PCR diagnostic testing in a rural African field site. Methods: Two multiplex real-time PCR reactions were used to detect H ducreyi/and HSV-1/HSV-2 in ulcer swabs from 100 people with symptomatic genital ulcers in rural Rakai, Uganda. Results were compared with syphilis, HSV-1 and HSV-2 serology. Results: Of 100 GUD samples analysed from 43 HIV positive and 57 HIV negative individuals, 71% were positive for one or more sexually transmitted infection (STI) pathogens by real-time PCR (61% for HSV-2, 5% for T pallidum, 3% for HSV-1, 1% for H ducreyi and 1% for dual H ducreyi/HSV-2). The frequency of HSV in genital ulcers was 56% (32/57) in HIV negative individuals and 77% (33/43) in HIV positive individuals (p=0.037). Assay reproducibility was evaluated by repeat PCR testing in the USA with 96% agreement (κ=0.85). Conclusions: STI pathogens were detected in the majority of GUD swab samples from symptomatic patients in Rakai, Uganda, by real-time PCR. HSV-2 was the predominant cause of genital ulcers. Real-time PCR technology can provide sensitive, rapid and reproducible evaluation of GUD aetiology in a resource-limited setting. PMID:19066198

  9. Treatment of human papillomavirus (HPV) type 16-infected cells using herpes simplex virus type 1 thymidine kinase-mediated gene therapy transcriptionally regulated by the HPV E2 protein.

    PubMed

    Sethi, Neerja; Palefsky, Joel

    2003-01-01

    Human papillomavirus type 16 (HPV-16) is associated with development of anogenital squamous cell cancers (SCCs) and their precursor, intraepithelial neoplasia (IN). Few approaches to the treatment of IN to prevent SCC are targeted specifically to HPV. We have designed an HPV-specific therapy using the herpes simplex virus type 1 thymidine kinase (HSV-1 TK) gene driven by an HPV-specific promoter in the HPV-16 long control region (LCR) (nucleotide 7450-nucleotide 104), which is regulated by the HPV E2 protein. Expression of the HSV-1 TK gene is designed to render HPV-infected cells sensitive to the prodrugs ganciclovir (GCV) and acyclovir (ACV). To assess the E2 specificity of gene expression driven by the HPV-16 LCR, we measured luciferase expression in HPV-positive and HPV-negative cell lines. Significant induction of luciferase activity was observed in HPV-positive cells when compared with four different HPV-negative epithelial cell lines. Cotransfection of an HPV-negative cell line, MDCK, with an HPV-16 E2-expressing plasmid resulted in 15- to 20-fold induction of luciferase activity, suggesting specific activation by E2 protein. A plasmid expressing the HSV-1 TK gene driven by the LCR was transfected into CaSki and SiHa cells. Treatment of transfected cells with either GCV or ACV (20-30 microg/ml) for 6-10 days resulted in 80-95% cell death. Cell death was progressive, dose dependent, and mediated by apoptosis. These results suggest that direct gene transfer of the HSV-1 TK gene into HPV-16-infected cells expressing E2 protein, accompanied by treatment with either GCV or ACV, may be a clinically feasible therapeutic strategy. PMID:12573058

  10. Amino Acid Substitutions in the V Domain of Nectin-1 (HveC) That Impair Entry Activity for Herpes Simplex Virus Types 1 and 2 but Not for Pseudorabies Virus or Bovine Herpesvirus 1

    PubMed Central

    Martinez, Wanda M.; Spear, Patricia G.

    2002-01-01

    The entry of herpes simplex virus (HSV) into cells requires the interaction of viral glycoprotein D (gD) with a cellular gD receptor to trigger the fusion of viral and cellular membranes. Nectin-1, a member of the immunoglobulin superfamily, can serve as a gD receptor for HSV types 1 and 2 (HSV-1 and HSV-2, respectively) as well as for the animal herpesviruses porcine pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1). The HSV-1 gD binding domain of nectin-1 is hypothesized to overlap amino acids 64 to 104 of the N-terminal variable domain-like immunoglobulin domain. Moreover, the HSV-1 and PRV gDs compete for binding to nectin-1. Here we report that two amino acids within this region, at positions 77 and 85, are critical for HSV-1 and HSV-2 entry but not for the entry of PRV or BHV-1. Replacement of either amino acid 77 or amino acid 85 reduced HSV-1 and HSV-2 gD binding but had a lesser effect on HSV entry activity, suggesting that weak interactions between gD and nectin-1 are sufficient to trigger the mechanism of HSV entry. Substitution of both amino acid 77 and amino acid 85 in nectin-1 significantly impaired entry activity for HSV-1 and HSV-2 and eliminated binding to soluble forms of HSV-1 and HSV-2 gDs but did not impair the entry of PRV and BHV-1. Thus, amino acids 77 and 85 of nectin-1 form part of the interface with HSV gD or influence the conformation of that interface. Moreover, the binding sites for HSV and PRV or BHV-1 gDs on nectin-1 may overlap but are not identical. PMID:12072525