Science.gov

Sample records for herpesvirus viral protein

  1. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    SciTech Connect

    Kim, Seong K. Kim, Seongman; Dai Gan; Zhang Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2011-09-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: > We examine the functional domains of IR2P that mediates negative regulation. > IR2P inhibits at the transcriptional level. > DNA-binding mutant or TFIIB-binding mutant fails to inhibit. > C-terminal aa 707 to 1116 are required for full inhibition. > Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.

  2. Kaposi's sarcoma associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 suppresses CXCR4 expression by upregulating miR-146a

    PubMed Central

    Punj, Vasu; Matta, Hittu; Schamus, Sandra; Tamewitz, Aletheia; Anyang, Bean; Chaudhary, Preet M.

    2009-01-01

    Kaposi's sarcoma (KS) associated herpesvirus (KSHV)-encoded viral FLICE inhibitory protein (vFLIP) K13 is a potent activator of the NF-κB pathway. Here we demonstrate that infection with KHSV and ectopic expression of K13, but not its NF-κB-defective mutant, suppressed the expression of CXCR4. Suppression of CXCR4 by KSHV and K13 was associated with upregulated expression of miR-146a, a microRNA that is known to bind to the 3′ untranslated region of CXCR4 mRNA. Reporter studies identified two NF-κB sites in the promoter of miR-146a that were essential for its activation by K13. Accordingly, ectopic expression of K13, but not its NF-κB-defective mutant or other vFLIPs, strongly stimulated the miR-146a promoter activity, which could be blocked by specific genetic and pharmacological inhibitors of the NF-κB pathway. Finally, expression of CXCR4 was downregulated in clinical samples of KS and this was accompanied by increased expression of miR-146a. Our results demonstrate that K13-induced NF-κB activity suppresses CXCR4 via upregulation of miR-146a. Downregulation of CXCR4 expression by K13 may contribute to KS development by promoting premature release of KSHV-infected endothelial progenitors into the circulation. PMID:20023696

  3. Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key

    PubMed Central

    Gruffat, Henri; Marchione, Roberta; Manet, Evelyne

    2016-01-01

    During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II) is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the transcription start site (TSS). Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies (β and γ). In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors – especially ICP4 – play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein. PMID:27375590

  4. p53 Tumor Suppressor Protein Stability and Transcriptional Activity Are Targeted by Kaposi's Sarcoma-Associated Herpesvirus-Encoded Viral Interferon Regulatory Factor 3

    PubMed Central

    Baresova, Petra; Musilova, Jana; Pitha, Paula M.

    2014-01-01

    Viruses have developed numerous strategies to counteract the host cell defense. Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA tumor virus linked to the development of Kaposi's sarcoma, Castleman's disease, and primary effusion lymphoma (PEL). The virus-encoded viral interferon regulatory factor 3 (vIRF-3) gene is a latent gene which is involved in the regulation of apoptosis, cell cycle, antiviral immunity, and tumorigenesis. vIRF-3 was shown to interact with p53 and inhibit p53-mediated apoptosis. However, the molecular mechanism underlying this phenomenon has not been established. Here, we show that vIRF-3 associates with the DNA-binding domain of p53, inhibits p53 phosphorylation on serine residues S15 and S20, and antagonizes p53 oligomerization and the DNA-binding affinity. Furthermore, vIRF-3 destabilizes p53 protein by increasing the levels of p53 polyubiquitination and targeting p53 for proteasome-mediated degradation. Consequently, vIRF-3 attenuates p53-mediated transcription of the growth-regulatory p21 gene. These effects of vIRF-3 are of biological relevance since the knockdown of vIRF-3 expression in KSHV-positive BC-3 cells, derived from PEL, leads to an increase in p53 phosphorylation, enhancement of p53 stability, and activation of p21 gene transcription. Collectively, these data suggest that KSHV evolved an efficient mechanism to downregulate p53 function and thus facilitate uncontrolled cell proliferation and tumor growth. PMID:24248600

  5. Kaposi’s Sarcoma Associated Herpesvirus Encoded Viral FLICE Inhibitory Protein K13 Activates NF-κB Pathway Independent of TRAF6, TAK1 and LUBAC

    PubMed Central

    Matta, Hittu; Gopalakrishnan, Ramakrishnan; Graham, Ciaren; Tolani, Bhairavi; Khanna, Akshat; Yi, Han; Suo, Yulan; Chaudhary, Preet M.

    2012-01-01

    Background Kaposi’s sarcoma associated herpesvirus encoded viral FLICE inhibitory protein (vFLIP) K13 activates the NF-κB pathway by binding to the NEMO/IKKγ subunit of the IκB kinase (IKK) complex. However, it has remained enigmatic how K13-NEMO interaction results in the activation of the IKK complex. Recent studies have implicated TRAF6, TAK1 and linear ubiquitin chains assembled by a linear ubiquitin chain assembly complex (LUBAC) consisting of HOIL-1, HOIP and SHARPIN in IKK activation by proinflammatory cytokines. Methodology/Principal Findings Here we demonstrate that K13-induced NF-κB DNA binding and transcriptional activities are not impaired in cells derived from mice with targeted disruption of TRAF6, TAK1 and HOIL-1 genes and in cells derived from mice with chronic proliferative dermatitis (cpdm), which have mutation in the Sharpin gene (Sharpincpdm/cpdm). Furthermore, reconstitution of NEMO-deficient murine embryonic fibroblast cells with NEMO mutants that are incapable of binding to linear ubiquitin chains supported K13-induced NF-κB activity. K13-induced NF-κB activity was not blocked by CYLD, a deubiquitylating enzyme that can cleave linear and Lys63-linked ubiquitin chains. On the other hand, NEMO was required for interaction of K13 with IKK1/IKKα and IKK2/IKKβ, which resulted in their activation by “T Loop” phosphorylation. Conclusions/Significance Our results demonstrate that K13 activates the NF-κB pathway by binding to NEMO which results in the recruitment of IKK1/IKKα and IKK2/IKKβ and their subsequent activation by phosphorylation. Thus, K13 activates NF-κB via a mechanism distinct from that utilized by inflammatory cytokines. These results have important implications for the development of therapeutic agents targeting K13-induced NF-κB for the treatment of KSHV-associated malignancies. PMID:22590573

  6. Regulation of the retinoblastoma proteins by the human herpesviruses

    PubMed Central

    Hume, Adam J; Kalejta, Robert F

    2009-01-01

    Viruses are obligate intracellular parasites that alter the environment of infected cells in order to replicate more efficiently. One way viruses achieve this is by modulating cell cycle progression. The main regulators of progression out of G0, through G1, and into S phase are the members of the retinoblastoma (Rb) family of tumor suppressors. Rb proteins repress the transcription of genes controlled by the E2F transcription factors. Because the expression of E2F-responsive genes is required for cell cycle progression into the S phase, Rb arrests the cell cycle in G0/G1. A number of viral proteins directly target Rb family members for inactivation, presumably to create an environment more hospitable for viral replication. Such viral proteins include the extensively studied oncoproteins E7 (from human papillomavirus), E1A (from adenovirus), and the large T (tumor) antigen (from simian virus 40). Elucidating how these three viral proteins target and inactivate Rb has proven to be an invaluable approach to augment our understanding of both normal cell cycle progression and carcinogenesis. In addition to these proteins, a number of other virally-encoded inactivators of the Rb family have subsequently been identified including a surprising number encoded by human herpesviruses. Here we review how the human herpesviruses modulate Rb function during infection, introduce the individual viral proteins that directly or indirectly target Rb, and speculate about what roles Rb modulation by these proteins may play in viral replication, pathogenesis, and oncogenesis. PMID:19146698

  7. The ICP0 protein of equine herpesvirus 1 is an early protein that independently transactivates expression of all classes of viral promoters.

    PubMed Central

    Bowles, D E; Holden, V R; Zhao, Y; O'Callaghan, D J

    1997-01-01

    To assess the role of the equine herpesvirus type 1 (EHV-1) ICP0 protein (EICP0) in gene regulation, a variety of molecular studies on the EICP0 gene and gene products of both the attenuated cell culture-adapted Kentucky A (KyA) strain and the Ab4p strain were conducted. These investigations revealed that (i) the ICP0 open reading frame (ORF) of the KyA virus strain is 1,257 bp in size and would encode a protein of 419 amino acids, and in comparison to the ICP0 gene (ORF63) of the Ab4p strain of 1,596 bp (E. A. Telford, M. S. Watson, K. McBride, and A. J. Davison, Virology 189:304-316, 1992), it has an internal in-frame deletion of 339 bp; (ii) one early transcript of 1.4 kb predicted to encode the EICP0 protein and a late transcript of 1.8 kb are detected in Northern blot analyses using probes containing the EICP0 ORF; (iii) the KyA EICP0 protein (50 kDa) and the Ab4p EICP0 protein (80 kDa) are expressed as several species of early proteins that are first detected at 3 to 4 h postinfection by Western blot analyses of infected-cell polypeptides, using an antiserum generated to a TrpE fusion protein that harbors amino acids 46 to 153 of the EICP0 protein; and (iv) the EICP0 protein of both EHV-1 strains is a potent transactivator of EHV-1 genes. Transient expression assays using a simian virus 40 expression construct of the EICP0 protein of the KyA strain showed that the EICP0 protein independently transactivated chloramphenicol acetyltransferase reporter constructs under the control of the immediate-early promoter (3.9-fold), the early thymidine kinase promoter (95-fold), the late (gamma1) IR5 promoter (85-fold), and the late (gamma2) glycoprotein K promoter (21-fold). The finding that the EICP0 protein of the KyA virus can function as an activator of gene expression indicates that amino acids corresponding to residues 319 to 431 of the Ab4p EICP0 protein are not essential for EICP0 transactivation of EHV-1 promoters. PMID:9188552

  8. Immune evasion strategies of the human gamma-herpesviruses: implications for viral tumorigenesis.

    PubMed

    Zhang, Xiangning; Dawson, Christopher W; He, Zhiwei; Huang, Peichun

    2012-02-01

    Two human gamma-herpesviruses, Epstein-Barr virus and Kaposi's sarcoma associated herpesvirus/human herpesvirus 8 display oncogenic potential, causing benign and malignant lymphoproliferative disorders in genetically susceptible or immunosuppressed individuals. As a family of viruses that establish persistent life-long infections, herpesviruses have evolved strategies to limit innate antiviral responses and evade host immune surveillance. Herpesviruses have developed mechanisms to disrupt antigen presentation, pirate the production of immune regulating cytokines, and inhibit pro-apoptotic signaling pathways. Although these strategies are designed to facilitate the long-term persistence of herpesviruses, in certain circumstances they can contribute to viral-driven carcinogenesis. PMID:22170548

  9. Structural proteins of Herpesvirus saimiri.

    PubMed Central

    Keil, G; Fleckenstein, B; Bodemer, W

    1983-01-01

    Herpesvirus saimiri particles were purified from productively infected owl monkey kidney cell cultures, and the virion polypeptides were analyzed by polyacrylamide gel electrophoresis. A total of 21 predominant proteins were found in lysates of H. saimiri 11 particles by Coomassie blue staining or by [35S]methionine labeling and autoradiography; all proteins were between 160,000 and 12,000 daltons in size. They are most probably virion constituents, as most of them were precipitated by immune sera, and no dominant proteins of equivalent sizes were found in mock-infected cultures. Four glycoproteins (gp 155/160, gp 128, gp 84/90, gp 55) and three polypeptides that appeared not to be glycosylated (p71, p35, p28) were assigned to the envelope or matrix of virions, whereas at least four phosphoproteins (pp132, pp118, pp55, pp13) and ten polypeptides without apparent secondary modification (p155/160, p106, p96, p67, p53, p36, p32, p15, p14, p12) were found in the nucleocapsid fraction. Analysis of virion proteins from different H. saimiri strains did not reveal appreciable differences in the migration behavior of most polypeptides, including all glycoproteins; however, determination of a strain-specific size pattern was possible for three of four phosphoproteins. The overall similarity in protein architecture of H. saimiri strains obviously does not reflect the variability in biology, such as oncogenic properties. In comparison, DNA sequence divergences appear to remain a better taxonomic criterion for strain distinction. Images PMID:6312078

  10. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors

    PubMed Central

    de Munnik, Sabrina M.; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies. PMID:25805993

  11. Tegument protein control of latent herpesvirus establishment and animation.

    PubMed

    Penkert, Rhiannon R; Kalejta, Robert F

    2011-01-01

    Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation. PMID:21429246

  12. Characterization of a Novel Human Herpesvirus 8-Encoded Protein, vIRF-3, That Shows Homology to Viral and Cellular Interferon Regulatory Factors

    PubMed Central

    Lubyova, Barbora; Pitha, Paula M.

    2000-01-01

    The genome of the human herpesvirus 8 (HHV-8) contains a cluster of open reading frames (ORFs) encoding proteins with homology to the cellular transcription factors of the interferon regulatory factor (IRF) family. Two of these homologues, vIRF-1 and vIRF-2, were previously identified and functionally analyzed. In this study, we have characterized a novel gene, designated vIRF-3, encoded within the previously predicted ORF K10.5 and our newly identified ORF K10.6. Northern blotting of RNA extracted from BCBL-1 cells with a vIRF-3-specific probe and reverse transcription-PCR analyses revealed a single transcript of 2.2 kb with a splice present in the coding region. The vIRF-3 mRNA levels in BCBL-1 cells were increased upon 12-O-tetradecanoylphorbol-13-acetate treatment, with kinetics of expression similar to those of the early immediate genes. The vIRF-3 ORF encodes a 73-kDa protein with homology to cellular IRF-4 and HHV-8-encoded vIRF-2 and K11. In transient transfection assays with the IFNACAT reporter, vIRF-3 functioned as a dominant-negative mutant of both IRF-3 and IRF-7 and inhibited virus-mediated transcriptional activity of the IFNA promoter. Similarly, the overexpression of vIRF-3 in mouse L929 cells resulted in inhibition of virus-mediated synthesis of biologically active interferons. These results suggest that by targeting IRF-3 and IRF-7, which play a critical role in the activation of alpha/beta interferon (IFN) genes, HHV-8 has evolved a mechanism by which it directly subverts the functions of IRFs and down-regulates the induction of the IFN genes that are important components of the innate immunity. PMID:10933732

  13. Modulation of Immune System by Kaposi’s Sarcoma-Associated Herpesvirus: Lessons from Viral Evasion Strategies

    PubMed Central

    Lee, Hye-Ra; Brulois, Kevin; Wong, LaiYee; Jung, Jae U.

    2012-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV), a member of the herpesvirus family, has evolved to establish a long-term, latent infection of cells such that while they carry the viral genome gene expression is highly restricted. Latency is a state of cryptic viral infection associated with genomic persistence in their host and this hallmark of KSHV infection leads to several clinical–epidemiological diseases such as KS, a plasmablastic variant of multicentric Castleman’s disease, and primary effusion lymphoma upon immune suppression of infected hosts. In order to sustain efficient life-long persistency as well as their life cycle, KSHV dedicates a large portion of its genome to encode immunomodulatory proteins that antagonize its host’s immune system. In this review, we will describe our current knowledge of the immune evasion strategies employed by KSHV at distinct stages of its viral life cycle to control the host’s immune system. PMID:22403573

  14. Class III viral membrane fusion proteins

    PubMed Central

    Backovic, Marija

    2010-01-01

    SUMMARY Accumulating structural studies of viral fusion glycoproteins have revealed unanticipated structural relationships between unrelated virus families and allowed the grouping of these membrane fusogens into three distinct classes. Here we review the newly identified group of class III viral fusion proteins, whose members include fusion proteins from rhabdoviruses, herpesviruses and baculoviruses. While clearly related in structure, the class III viral fusion proteins exhibit distinct structural features in their architectures as well as in their membrane-interacting fusion loops, which are likely related to their virus-specific differences in cellular entry. Further study of the similarities and differences in the class III viral fusion glycoproteins may provide greater insights into protein:membrane interactions that are key to promoting efficient bilayer fusion during virus entry. PMID:19356922

  15. Identification, expression, and immunogenicity of Kaposi's sarcoma-associated herpesvirus-encoded small viral capsid antigen.

    PubMed Central

    Lin, S F; Sun, R; Heston, L; Gradoville, L; Shedd, D; Haglund, K; Rigsby, M; Miller, G

    1997-01-01

    We describe a recombinant antigen for use in serologic tests for antibodies to Kaposi's sarcoma (KS)-associated herpesvirus (KSHV). The cDNA for a small viral capsid antigen (sVCA) was identified by immunoscreening of a library prepared from the BC-1 body cavity lymphoma cell line induced into KSHV lytic gene expression by sodium butyrate. The cDNA specified a 170-amino-acid peptide with homology to small viral capsid proteins encoded by the BFRF3 gene of Epstein-Barr virus and the ORF65 gene of herpesvirus saimiri. KSHV sVCA was expressed from a 0.85-kb mRNA present late in lytic KSHV replication in BC-1 cells. This transcript was sensitive to phosphonoacetic acid and phosphonoformic acid, inhibitors of herpesvirus DNA replication. KSHV sVCA expressed in mammalian cells or Escherichia coli or translated in vitro was recognized as an antigen by antisera from KS patients. Rabbit antisera raised to KSHV sVCA expressed in E. coli detected a 22-kDa protein in KSHV-infected human B cells. Overexpressed KSHV sVCA purified from E. coli and used as an antigen in immunoblot screening assay did not cross-react with EBV BFRF3. Antibodies to sVCA were present in 89% of 47 human immunodeficiency virus (HIV)-positive patients with KS, in 20% of 54 HIV-positive patients without KS, but in none of 122 other patients including children born to HIV-seropositive mothers and patients with hemophilia, autoimmune disease, or nasopharyngeal carcinoma. Low-titer antibody was detected in three sera from 28 healthy subjects. Antibodies to recombinant sVCA correlate with KS in high-risk populations. Recombinant sVCA can be used to examine the seroepidemiology of infection with KSHV in the general population. PMID:9060668

  16. Fluorescent Protein Approaches in Alpha Herpesvirus Research.

    PubMed

    Hogue, Ian B; Bosse, Jens B; Engel, Esteban A; Scherer, Julian; Hu, Jiun-Ruey; Del Rio, Tony; Enquist, Lynn W

    2015-11-01

    In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer. PMID:26610544

  17. Fluorescent Protein Approaches in Alpha Herpesvirus Research

    PubMed Central

    Hogue, Ian B.; Bosse, Jens B.; Engel, Esteban A.; Scherer, Julian; Hu, Jiun-Ruey; del Rio, Tony; Enquist, Lynn W.

    2015-01-01

    In the nearly two decades since the popularization of green fluorescent protein (GFP), fluorescent protein-based methodologies have revolutionized molecular and cell biology, allowing us to literally see biological processes as never before. Naturally, this revolution has extended to virology in general, and to the study of alpha herpesviruses in particular. In this review, we provide a compendium of reported fluorescent protein fusions to herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV) structural proteins, discuss the underappreciated challenges of fluorescent protein-based approaches in the context of a replicating virus, and describe general strategies and best practices for creating new fluorescent fusions. We compare fluorescent protein methods to alternative approaches, and review two instructive examples of the caveats associated with fluorescent protein fusions, including describing several improved fluorescent capsid fusions in PRV. Finally, we present our future perspectives on the types of powerful experiments these tools now offer. PMID:26610544

  18. Interaction between ORF24 and ORF34 in the Kaposi's Sarcoma-Associated Herpesvirus Late Gene Transcription Factor Complex Is Essential for Viral Late Gene Expression

    PubMed Central

    Davis, Zoe H.; Hesser, Charles R.; Park, Jimin

    2015-01-01

    Transcription of herpesviral late genes is stimulated after the onset of viral DNA replication but otherwise restricted. Late gene expression in gammaherpesviruses requires the coordination of six early viral proteins, termed viral transactivation factors (vTFs). Here, we mapped the organization of this protein complex for Kaposi's sarcoma-associated herpesvirus. Disruption of this complex via point mutation of the interaction interface between the open reading frame 24 (ORF24) and ORF34 vTFs ablated both late gene expression and viral replication. PMID:26468530

  19. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  20. Human herpesvirus-8 and other viral infections, Papua New Guinea.

    PubMed Central

    Rezza, G.; Danaya, R. T.; Wagner, T. M.; Sarmati, L.; Owen, I. L.; Monini, P.; Andreoni, M.; Suligoi, B.; Ensoli, B.; Pozio, E.

    2001-01-01

    We studied residents of remote villages and the capital (Port Moresby) of Papua New Guinea to determine the distribution of human herpesvirus-8 (HHV-8) infection. Our data suggest that HHV-8 has been endemic on the island for a long time and that the epidemiologic pattern of HHV-8 is more similar to that of herpes simplex virus-2 than hepatitis C virus. PMID:11747707

  1. Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA.

    PubMed

    Rossetto, Cyprian C; Tarrant-Elorza, Margaret; Verma, Subhash; Purushothaman, Pravinkumar; Pari, Gregory S

    2013-05-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma and body cavity lymphoma. In cell culture, KSHV results in a latent infection, and lytic reactivation is usually induced with the expression of K-Rta or by treatment with phorbol 12-myristate 13-acetate (TPA) and/or n-butyrate. Lytic infection is marked by the activation of the entire viral genomic transcription cascade and the production of infectious virus. KSHV-infected cells express a highly abundant, long, noncoding transcript referred to as polyadenylated nuclear RNA (PAN RNA). PAN RNA interacts with specific demethylases and physically binds to the KSHV genome to mediate activation of viral gene expression. A recombinant BACmid lacking the PAN RNA locus fails to express K-Rta and does not produce virus. We now show that the lack of PAN RNA expression results in the failure of the initiation of the entire KSHV transcription program. In addition to previous findings of an interaction with demethylases, we show that PAN RNA binds to protein components of Polycomb repression complex 2 (PRC2). RNA-Seq analysis using cell lines that express PAN RNA shows that transcription involving the expression of proteins involved in cell cycle, immune response, and inflammation is dysregulated. Expression of PAN RNA in various cell types results in an enhanced growth phenotype, higher cell densities, and increased survival compared to control cells. Also, PAN RNA expression mediates a decrease in the production of inflammatory cytokines. These data support a role for PAN RNA as a major global regulator of viral and cellular gene expression. PMID:23468496

  2. Human herpesvirus 6 U11 protein is critical for virus infection.

    PubMed

    Mahmoud, Nora F; Kawabata, Akiko; Tang, Huamin; Wakata, Aika; Wang, Bochao; Serada, Satoshi; Naka, Tetsuji; Mori, Yasuko

    2016-02-01

    All herpesviruses contain a tegument layer comprising a protein matrix; these proteins play key roles during viral assembly and egress. Here, liquid chromatography and tandem mass spectrometry analysis (LC-MS/MS) of proteins from human herpesvirus 6 (HHV-6)-infected cells revealed a possible association between two major tegument proteins, U14 and U11. This association was verified by immunoprecipitation experiments. Moreover, U11 protein was expressed during the late phase of infection and incorporated into virions. Finally, in contrast to its revertant, a U11 deletion mutant could not be reconstituted. Taken together, these results suggest that HHV-6 U11 is an essential gene for virus growth and propagation. PMID:26761397

  3. Small RNA deep sequencing identifies viral microRNAs during malignant catarrhal fever induced by alcelaphine herpesvirus 1.

    PubMed

    Sorel, Océane; Tuddenham, Lee; Myster, Françoise; Palmeira, Leonor; Kerkhofs, Pierre; Pfeffer, Sébastien; Vanderplasschen, Alain; Dewals, Benjamin G

    2015-11-01

    Alcelaphine herpesvirus 1 (AlHV-1) is a c-herpesvirus (c-HV) carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces a fatal lymphoproliferative disease named malignant catarrhal fever (MCF) in many ruminants, including cattle, and the rabbit model. Latency has been shown to be essential for MCF induction. However, the mechanisms causing the activation and proliferation of infected CD8+T cells are unknown. Many c-HVs express microRNAs (miRNAs). These small non-coding RNAs can regulate expression of host or viral target genes involved in various pathways and are thought to facilitate viral infection and/or mediate activation and proliferation of infected lymphocytes. The AlHV-1 genome has been predicted to encode a large number of miRNAs. However, their precise contribution in viral infection and pathogenesis in vivo remains unknown. Here, using cloning and sequencing of small RNAs we identified 36 potential miRNAs expressed in a lymphoblastoid cell line propagated from a calf infected with AlHV-1 and developing MCF. Among the sequenced candidate miRNAs, 32 were expressed on the reverse strand of the genome in two main clusters. The expression of these 32 viral miRNAs was further validated using Northern blot and quantitative reverse transcription PCR in lymphoid organs of MCF developing calves or rabbits. To determine the concerted contribution in MCF of 28 viralmiRNAs clustered in the non-protein-coding region of the AlHV-1 genome, a recombinant virus was produced. The absence of these 28 miRNAs did not affect viral growth in vitro or MCF induction in rabbits, indicating that the AlHV-1 miRNAs clustered in this non-protein-coding genomic region are dispensable for MCF induction. PMID:26329753

  4. MicroRNAs encoded by Kaposi's sarcoma-associated herpesvirus regulate viral life cycle.

    PubMed

    Lu, Chih-Chung; Li, Zhonghan; Chu, Chia-Ying; Feng, Jiaying; Feng, Jun; Sun, Ren; Rana, Tariq M

    2010-10-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with Kaposi's sarcoma and lymphomas. The pathogenesis of KSHV depends on the balance between two phases of the viral cycle: latency and lytic replication. In this study, we report that KSHV-encoded microRNAs (miRNAs) function as regulators by maintaining viral latency and inhibiting viral lytic replication. MiRNAs are short, noncoding, small RNAs that post-transcriptionally regulate the expression of messenger RNAs. Of the 12 viral miRNAs expressed in latent KSHV-infected cells, we observed that expression of miR-K3 can suppress both viral lytic replication and gene expression. Further experiments indicate that miR-K3 can regulate viral latency by targeting nuclear factor I/B. Nuclear factor I/B can activate the promoter of the viral immediate-early transactivator replication and transcription activator (RTA), and depletion of nuclear factor I/B by short hairpin RNAs had similar effects on the viral life cycle to those of miR-K3. Our results suggest a role for KSHV miRNAs in regulating the viral life cycle. PMID:20847741

  5. Kaposi's Sarcoma-Associated Herpesvirus ORF45 Interacts with Kinesin-2 Transporting Viral Capsid-Tegument Complexes along Microtubules

    PubMed Central

    Sathish, Narayanan; Zhu, Fan Xiu; Yuan, Yan

    2009-01-01

    Open reading frame (ORF) 45 of Kaposi's sarcoma-associated herpesvirus (KSHV) is a tegument protein. A genetic analysis with a null mutant suggested a possible role for this protein in the events leading to viral egress. In this study, ORF45 was found to interact with KIF3A, a kinesin-2 motor protein that transports cargoes along microtubules to cell periphery in a yeast two-hybrid screen. The association was confirmed by both co-immunoprecipitation and immunoflorescence approaches in primary effusion lymphoma cells following virus reactivation. ORF45 principally mediated the docking of entire viral capsid-tegument complexes onto the cargo-binding domain of KIF3A. Microtubules served as the major highways for transportation of these complexes as evidenced by drastically reduced viral titers upon treatment of cells with a microtubule depolymerizer, nocodazole. Confocal microscopic images further revealed close association of viral particles with microtubules. Inhibition of KIF3A–ORF45 interaction either by the use of a headless dominant negative (DN) mutant of KIF3A or through shRNA-mediated silencing of endogenous KIF3A expression noticeably decreased KSHV egress reflecting as appreciable reductions in the release of extracellular virions. Both these approaches, however, failed to impact HSV-1 egress, demonstrating the specificity of KIF3A in KSHV transportation. This study thus reports on transportation of KSHV viral complexes on microtubules by KIF3A, a kinesin motor thus far not implicated in virus transportation. All these findings shed light on the understudied but significant events in the KSHV life cycle, delineating a crucial role of a KSHV tegument protein in cellular transport of viral particles. PMID:19282970

  6. Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes

    PubMed Central

    Davis, Zoe H.; Verschueren, Erik; Jang, Gwendolyn M.; Kleffman, Kevin; Johnson, Jeffrey R.; Park, Jimin; Von Dollen, John; Maher, M. Cyrus; Johnson, Tasha; Newton, William; Jäger, Stefanie; Shales, Michael; Horner, Julie; Hernandez, Ryan D.; Krogan, Nevan J.; Glaunsinger, Britt A.

    2014-01-01

    SUMMARY Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle. PMID:25544563

  7. Phase-dependent immune evasion of herpesviruses.

    PubMed

    Vider-Shalit, Tal; Fishbain, Vered; Raffaeli, Shai; Louzoun, Yoram

    2007-09-01

    Viruses employ various modes to evade immune detection. Two possible evasion modes are a reduction of the number of epitopes presented and the mimicry of host epitopes. The immune evasion efforts are not uniform among viral proteins. The number of epitopes in a given viral protein and the similarity of the epitopes to host peptides can be used as a measure of the viral attempts to hide this protein. Using bioinformatics tools, we here present a genomic analysis of the attempts of four human herpesviruses (herpes simplex virus type 1-human herpesvirus 1, Epstein-Barr virus-human herpesvirus 4, human cytomegalovirus-human herpesvirus 5, and Kaposi's sarcoma-associated herpesvirus-human herpesvirus 8) and one murine herpesvirus (murine herpesvirus 68) to escape from immune detection. We determined the full repertoire of CD8 T-lymphocyte epitopes presented by each viral protein and show that herpesvirus proteins present many fewer epitopes than expected. Furthermore, the epitopes that are presented are more similar to host epitopes than are random viral epitopes, minimizing the immune response. We defined a score for the size of the immune repertoire (the SIR score) based on the number of epitopes in a protein. The numbers of epitopes in proteins expressed in the latent and early phases of infection were significantly smaller than those in proteins expressed in the lytic phase in all tested viruses. The latent and immediate-early epitopes were also more similar to host epitopes than were lytic epitopes. A clear trend emerged from the analysis. In general, herpesviruses demonstrated an effort to evade immune detection. However, within a given herpesvirus, proteins expressed in phases critical to the fate of infection (e.g., early lytic and latent) evaded immune detection more than all others. The application of the SIR score to specific proteins allows us to quantify the importance of immune evasion and to detect optimal targets for immunotherapy and vaccine development

  8. Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins

    PubMed Central

    Klupp, Barbara G.; Granzow, Harald; Fuchs, Walter; Keil, Günther M.; Finke, Stefan; Mettenleiter, Thomas C.

    2007-01-01

    Although the nuclear envelope is a dynamic structure that disassembles and reforms during mitosis, the formation of membranous vesicles derived from the nuclear envelope has not yet been described in noninfected cells. However, during herpesvirus maturation, intranuclear capsids initiate transit to the cytosol for final maturation by budding at the inner nuclear membrane. Two conserved herpesvirus proteins are required for this primary envelopment, designated in the alphaherpesviruses as pUL31 and pUL34. Here, we show that simultaneous expression of pUL31 and pUL34 of the alphaherpesvirus pseudorabies virus in stably transfected rabbit kidney cells resulted in the formation of vesicles in the perinuclear space that resemble primary envelopes without a nucleocapsid. They contain pUL31 and pUL34 as shown by immunolabeling and are derived from the nuclear envelope. Thus, coexpression of only two conserved herpesvirus proteins without any other viral factor is sufficient to induce the formation of vesicles from the nuclear membrane. This argues for the contribution of cellular factors in this process either recruited from their natural cytoplasmic location or not yet identified as components of the nuclear compartment. PMID:17426144

  9. A virally encoded small peptide regulates RTA stability and facilitates Kaposi's sarcoma-associated herpesvirus lytic replication.

    PubMed

    Jaber, Tareq; Yuan, Yan

    2013-03-01

    In both mammalian and viral genomes, a large proportion of sequences are transcribed and annotated as noncoding RNAs. A polyadenylated RNA of 3.0 kb (T3.0) is transcribed from the opposite strand of the open reading frame 50 (ORF50) DNA template in the genome of Kaposi's sarcoma-associated herpesvirus (KSHV) and has been annotated previously as a noncoding RNA. ORF50 encodes the replication and transcription activator (RTA), which controls the switch of the virus between the latent and lytic phases of the life cycle. Here we show that T3.0 encodes a small peptide of 48 amino acids (designated viral small peptide 1 [vSP-1]). vSP-1 interacts with RTA at the protein abundance regulatory signal (PARS) motifs, and the association prevents RTA from being subjected to degradation through the ubiquitin-proteasome pathway. As a consequence, vSP-1 facilitates KSHV gene expression and lytic replication. This finding reveals a novel mechanism of gene regulation in the viral life cycle. PMID:23302891

  10. Crystal Structure of Human Herpesvirus 6B Tegument Protein U14

    PubMed Central

    Tang, Huamin; Kawabata, Akiko; Mahmoud, Nora F.; Khanlari, Zahra; Hamada, Daizo; Tsuruta, Hiroki; Mori, Yasuko

    2016-01-01

    The tegument protein U14 of human herpesvirus 6B (HHV-6B) constitutes the viral virion structure and is essential for viral growth. To define the characteristics and functions of U14, we determined the crystal structure of the N-terminal domain of HHV-6B U14 (U14-NTD) at 1.85 Å resolution. U14-NTD forms an elongated helix-rich fold with a protruding β hairpin. U14-NTD exists as a dimer exhibiting broad electrostatic interactions and a network of hydrogen bonds. This is first report of the crystal structure and dimerization of HHV-6B U14. The surface of the U14-NTD dimer reveals multiple clusters of negatively- and positively-charged residues that coincide with potential functional sites of U14. Three successive residues, L424, E425 and V426, which relate to viral growth, reside on the β hairpin close to the dimer's two-fold axis. The hydrophobic side-chains of L424 and V426 that constitute a part of a hydrophobic patch are solvent-exposed, indicating the possibility that the β hairpin region is a key functional site of HHV-6 U14. Structure-based sequence comparison suggests that U14-NTD corresponds to the core fold conserved among U14 homologs, human herpesvirus 7 U14, and human cytomegalovirus UL25 and UL35, although dimerization appears to be a specific feature of the U14 group. PMID:27152739

  11. Crystal Structure of Human Herpesvirus 6B Tegument Protein U14.

    PubMed

    Wang, Bochao; Nishimura, Mitsuhiro; Tang, Huamin; Kawabata, Akiko; Mahmoud, Nora F; Khanlari, Zahra; Hamada, Daizo; Tsuruta, Hiroki; Mori, Yasuko

    2016-05-01

    The tegument protein U14 of human herpesvirus 6B (HHV-6B) constitutes the viral virion structure and is essential for viral growth. To define the characteristics and functions of U14, we determined the crystal structure of the N-terminal domain of HHV-6B U14 (U14-NTD) at 1.85 Å resolution. U14-NTD forms an elongated helix-rich fold with a protruding β hairpin. U14-NTD exists as a dimer exhibiting broad electrostatic interactions and a network of hydrogen bonds. This is first report of the crystal structure and dimerization of HHV-6B U14. The surface of the U14-NTD dimer reveals multiple clusters of negatively- and positively-charged residues that coincide with potential functional sites of U14. Three successive residues, L424, E425 and V426, which relate to viral growth, reside on the β hairpin close to the dimer's two-fold axis. The hydrophobic side-chains of L424 and V426 that constitute a part of a hydrophobic patch are solvent-exposed, indicating the possibility that the β hairpin region is a key functional site of HHV-6 U14. Structure-based sequence comparison suggests that U14-NTD corresponds to the core fold conserved among U14 homologs, human herpesvirus 7 U14, and human cytomegalovirus UL25 and UL35, although dimerization appears to be a specific feature of the U14 group. PMID:27152739

  12. Herpesvirus saimiri.

    PubMed Central

    Fickenscher, H; Fleckenstein, B

    2001-01-01

    Herpesvirus saimiri (saimiriine herpesvirus 2) is the classical prototype of the gamma(2)-herpesviruses or rhadinoviruses, which also contains a human member, the Kaposi's sarcoma-associated herpesvirus. The T-lymphotropic Herpesvirus saimiri establishes specific replicative and persistent conditions in different primate host species. Virtually all squirrel monkeys (Saimiri sciureus) are persistently infected with this virus. In its natural host, the virus does not cause disease, whereas it induces fatal acute T-cell lymphoma in other monkey species after experimental infection. The virus can be isolated by cocultivation of permissive epithelial cells with peripheral blood cells from naturally infected squirrel monkeys and from susceptible New World monkeys during the virus-induced disease. Tumour-derived and in vitro-transformed T-cell lines from New World monkeys release virus particles. Herpesvirus ateles is a closely related virus of spider monkeys (Ateles spp.) and has similar pathogenic properties to Herpesvirus saimiri in other New World primate species. Similar to other rhadinoviruses, the genome of Herpesvirus saimiri harbours a series of virus genes with pronounced homology to cellular counterparts including a D-type cyclin, a G-protein-coupled receptor, an interleukin-17, a superantigen homologue, and several inhibitors of the complement cascade and of different apoptosis pathways. Preserved function has been demonstrated for most of the homologues of cellular proteins. These viral functions are mostly dispensable for the transforming and pathogenic capability of the virus. However, they are considered relevant for the apathogenic persistence of Herpesvirus saimiri in its natural host. A terminal region of the non-repetitive coding part of the virus genome is essential for pathogenicity and T-cell transformation. Based on the pathogenic phenotypes and the different alleles of this variable region, the virus strains have been assigned to three subgroups

  13. Going Viral with Fluorescent Proteins

    PubMed Central

    Costantini, Lindsey M.

    2015-01-01

    Many longstanding questions about dynamics of virus-cell interactions can be answered by combining fluorescence imaging techniques with fluorescent protein (FP) tagging strategies. Successfully creating a FP fusion with a cellular or viral protein of interest first requires selecting the appropriate FP. However, while viral architecture and cellular localization often dictate the suitability of a FP, a FP's chemical and physical properties must also be considered. Here, we discuss the challenges of and offer suggestions for identifying the optimal FPs for studying the cell biology of viruses. PMID:26202231

  14. Canine herpesvirus ORF2 is a membrane protein modified by N-linked glycosylation.

    PubMed

    Nishikawa, Yoshifumi; Kimura, Michiko; Xuan, Xuenan; Makala, Levi; Nagasawa, Hideyuki; Mikami, Takeshi; Otsuka, Haruki

    2002-07-01

    Canine herpesvirus (CHV) ORF2, located downstream of the glycoprotein C (gC) gene, has homologues with some of the alphaherpesviruses. To characterize CHV OFR2, a recombinant CHV carrying a LacZ gene in the ORF2 locus, and recombinant vaccinia virus expressing ORF2 protein were constructed. Northern blot analysis revealed ORF2 and a gamma2 class late gene, and its protein product was detectable in CHV-infected cells reacted with ORF2 protein antiserum. Tunicamycin and N-glycosidase F treatment revealed that the ORF2 protein was modified by N-linked glycosylation. Fractionation and immune fluorescence analyses of the CHV-infected cells showed the ORF2 as a membrane protein transportable to the surface of infected cells. In vitro, the ORF2 protein did not affect viral replication and cell-to-cell viral spreading. Present findings represent the first evidence pointing to the CHV ORF2 as a membrane protein modified by an N-linked glycosylation. PMID:12135784

  15. Distinct Roles of Kaposi's Sarcoma-Associated Herpesvirus-Encoded Viral Interferon Regulatory Factors in Inflammatory Response and Cancer

    PubMed Central

    Baresova, Petra; Pitha, Paula M.

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). Similar to other herpesviruses, KSHV has two life cycles, latency and lytic replication. In latency, the KSHV genome persists as a circular episome in the nucleus of the host cell and only a few viral genes are expressed. In this review, we focus on oncogenic, antiapoptotic, and immunomodulating properties of KSHV-encoded homologues of cellular interferon regulatory factors (IRFs)—viral IRF1 (vIRF1) to vIRF4—and their possible role in the KSHV-mediated antiviral response, apoptosis, and oncogenicity. PMID:23785197

  16. Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes

    PubMed Central

    Hill, James M.; Quenelle, Debra C.; Cardin, Rhonda D.; Vogel, Jodi L.; Clement, Christian; Bravo, Fernando J.; Foster, Timothy P.; Bosch-Marce, Marta; Raja, Priya; Lee, Jennifer S.; Bernstein, David I.; Krause, Philip R.; Knipe, David M.; Kristie, Thomas M.

    2015-01-01

    The high prevalence of Herpesviruses in the population and the maintenance of lifelong latent reservoirs are challenges to the control of herpetic diseases, despite the availability of antiviral pharmaceuticals that target viral DNA replication. In addition to oral and genital lesions, herpes simplex virus infections and recurrent reactivations from the latent pool can result in severe pathology including neonatal infection and mortality, blindness due to ocular keratitis, and viral-induced complications in immunosuppressed individuals. Herpesviruses, like their cellular hosts, are subject to the regulatory impacts of chromatin and chromatin modulation machinery that promotes or suppresses gene expression. The initiation of herpes simplex virus infection and reactivation from latency is dependent on a transcriptional coactivator complex that contains two required histone demethylases, LSD1 and JMJD2s. Inhibition of either of these enzymes results in heterochromatic suppression of the viral genome and a block to infection and reactivation in vitro. Here, the concept of epigenetic suppression of viral infection is demonstrated in three animal models of herpes simplex virus infection and disease. Inhibition of LSD1 via treatment of animals with the monoamine oxidase inhibitor tranylcypromine results in suppression of viral lytic infection, subclinical shedding, and reactivation from latency in vivo. Phenotypic suppression is correlated with enhanced epigenetic suppression of the viral genome and suggests that, even during latency, the chromatin state of the virus is dynamic. Given the expanding development of epipharmaceuticals, this approach has substantial potential for anti-herpetic treatments with distinct advantages over the present pharmaceutical options. PMID:25473037

  17. A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins.

    PubMed Central

    Nicholas, J; Ruvolo, V; Zong, J; Ciufo, D; Guo, H G; Reitz, M S; Hayward, G S

    1997-01-01

    Two small fragments of a novel human gammaherpesvirus genome known as Kaposi's sarcoma (KS)-associated herpesvirus or human herpesvirus 8 (HHV-8) have been shown to be present in virtually all AIDS and non-AIDS KS lesions, as well as in body cavity-based lymphomas (BCBL) and in multicentric Castleman's disease. We have extended those studies by identifying and sequencing a third fragment of HHV-8 DNA encoding a viral thymidylate synthetase (TS) gene. Use of this viral TS fragment as a probe led to the identification and mapping of a cluster of overlapping phage lambda clones from a BCBL tumor DNA genomic library that spanned 48 kb on the left-hand side of the HHV-8 genome between the equivalents of open reading frame 6 (ORF6) and ORF31 of herpesvirus saimiri (HVS). DNA sequencing of a 17-kb segment encompassing a gammaherpesvirus divergent locus (DL-B) between ORF11 and ORF17 revealed the presence of nine viral ORFs with predicted gene products related to cellular proteins. These include the complete TS gene and a dihydrofolate reductase (DHFR) gene, four novel cytokine genes (encoding viral interleukin-6, viral MIP-1A, viral MIP-1B, and BCK) that have not previously been found to be encoded by a virus, and a bcl-2 homolog. This region in HHV-8 also contains the T1.1 abundant lytic cycle nuclear RNA gene and encompasses two genes (or exons) encoding proteins with C4HC3 zinc finger domains of the PHD/leukemia-associated protein subtype. The latter are related to the spliced immediate-early IE1 protein of the gamma-2 class herpesvirus bovine herpesvirus type 4 and a similar motif found in HVS ORF12. Although genes for TS and DHFR enzymes are also encoded by HVS (ORF70 and ORF2), both occur at different genomic loci than in HHV-8, and the HHV-8 DHFR protein is much farther diverged from human DHFR than is the HVS version, implying that they were probably acquired as host cell cDNAs by independent evolutionary events. Transcripts from the IE1-A, IE1-B, DHFR, and MIP-1B

  18. Substrate specificity of three viral thymidine kinases (TK): vaccinia virus TK, feline herpesvirus TK, and canine herpesvirus TK.

    PubMed

    Solaroli, N; Johansson, M; Balzarini, J; Karlsson, A

    2006-01-01

    In search of novel suicide gene candidates we have cloned and characterized thymidine kinases from three viruses; vaccinia virus TK (VVTK), feline herpesvirus TK (FHV-TK), and canine herpesvirus TK (CHV-TK). Our studies showed that VVTK primarily is a thymidine kinase, with a substrate specificity mainly restricted to dThd and only minor affinity for dCyd. VVTK also is related closely to mammalian thymidine kinase 1 (TK1), with 66% identity and 75% general homology. Although CHV-TK and FHV-TK are sequence related to herpes simplex virus types 1 thymidine kinase (HSV1-TK), with 31% and 35% identity and a general similarity of 54%, the substrate specificity of these enzymes was restricted to dThd and thymidine analogs. PMID:17065088

  19. Modulation of Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Function by Hypoxia-Upregulated Protein 1

    PubMed Central

    Giffin, Louise; Yan, Feng; Major, M. Ben

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV, also called human herpesvirus 8) is linked to the development of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). KSHV expresses several proteins that modulate host cell signaling pathways. One of these proteins is viral interleukin-6 (vIL-6), which is a homolog of human IL-6 (hIL-6). vIL-6 is able to prevent apoptosis and promote proinflammatory signaling, angiogenesis, and cell proliferation. Although it can be secreted, vIL-6 is mainly an intracellular protein that is retained in the endoplasmic reticulum (ER). We performed affinity purification and mass spectrometry to identify novel vIL-6 binding partners and found that a cellular ER chaperone, hypoxia-upregulated protein 1 (HYOU1), interacts with vIL-6. Immunohistochemical staining reveals that both PEL and KS tumor tissues express significant amounts of HYOU1. We also show that HYOU1 increases endogenous vIL-6 protein levels and that HYOU1 facilitates vIL-6-induced JAK/STAT signaling, migration, and survival in endothelial cells. Furthermore, our data suggest that HYOU1 also modulates vIL-6's ability to induce CCL2, a chemokine involved in cell migration. Finally, we investigated the impact of HYOU1 on cellular hIL-6 signaling. Collectively, our data indicate that HYOU1 is important for vIL-6 function and may play a role in the pathogenesis of KSHV-associated cancers. IMPORTANCE KSHV vIL-6 is detectable in all KSHV-associated malignancies and promotes tumorigenesis and inflammation. We identified a cellular protein, called hypoxia-upregulated protein 1 (HYOU1), that interacts with KSHV vIL-6 and is present in KSHV-infected tumors. Our data suggest that HYOU1 facilitates the vIL-6-induced signaling, migration, and survival of endothelial cells. PMID:24920810

  20. Kaposi's sarcoma-associated herpesvirus K-Rta exhibits SUMO-targeting ubiquitin ligase (STUbL) like activity and is essential for viral reactivation.

    PubMed

    Izumiya, Yoshihiro; Kobayashi, Keisuke; Kim, Kevin Y; Pochampalli, Mamata; Izumiya, Chie; Shevchenko, Bogdan; Wang, Don-Hong; Huerta, Steve B; Martinez, Anthony; Campbell, Mel; Kung, Hsing-Jien

    2013-01-01

    The small ubiquitin-like modifier (SUMO) is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL) which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif) and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML) and K-bZIP. PML-NBs (nuclear bodies) or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate unique gene

  1. Kaposi's Sarcoma-Associated Herpesvirus K-Rta Exhibits SUMO-Targeting Ubiquitin Ligase (STUbL) Like Activity and Is Essential for Viral Reactivation

    PubMed Central

    Izumiya, Yoshihiro; Kobayashi, Keisuke; Kim, Kevin Y.; Pochampalli, Mamata; Izumiya, Chie; Shevchenko, Bogdan; Wang, Don-Hong; Huerta, Steve B.; Martinez, Anthony; Campbell, Mel; Kung, Hsing-Jien

    2013-01-01

    The small ubiquitin-like modifier (SUMO) is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL) which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif) and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML) and K-bZIP. PML-NBs (nuclear bodies) or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate unique gene

  2. A Single Herpesvirus Protein Can Mediate Vesicle Formation in the Nuclear Envelope*

    PubMed Central

    Lorenz, Michael; Vollmer, Benjamin; Unsay, Joseph D.; Klupp, Barbara G.; García-Sáez, Ana J.; Mettenleiter, Thomas C.; Antonin, Wolfram

    2015-01-01

    Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission. PMID:25605719

  3. A bovine herpesvirus 1 pUL51 deletion mutant shows impaired viral growth in vitro and reduced virulence in rabbits

    PubMed Central

    Raza, Sohail; Deng, Mingliang; Shahin, Farzana; Yang, Kui; Hu, Changmin; Chen, Yingyu; Chen, Huanchun; Guo, Aizhen

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) UL51 protein (pUL51) is a tegument protein of BoHV-1 whose function is currently unknown. Here, we aimed to illustrate the specific role of pUL51 in virion morphogenesis and its importance in BoHV-1 virulence. To do so, we constructed a BoHV-1 bacterial artificial chromosome (BAC). We used recombinant BAC and transgenic techniques to delete a major part of the UL51 open reading frame. Deletion of pUL51 resulted in severe viral growth defects, as evidenced by lower single and multi-step growth kinetics, reduced plaque size, and the accumulation of non-enveloped capsids in the cytoplasm of infected cells. Using tagged BoHV-1 recombinant viruses, it was determined that the pUL51 protein completely co-localized with the cis-Golgi marker protein GM-130. Taken altogether, pUL51 was demonstrated to play a critical role in BoHV-1 growth and it is involved in viral maturation and egress. Moreover, an in vivo analysis showed that the pUL51 mutant exhibited reduced virulence in rabbits, with no clinical signs, no nasal shedding of the virus, and no detectable serum neutralizing antibodies. Therefore, we conclude that the BoHV-1 pUL51 is indispensable for efficient viral growth in vitro and is essential for virulence in vivo. PMID:26934330

  4. Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis.

    PubMed

    Dong, Xiaonan; Cheng, Adam; Zou, Zhongju; Yang, Yih-Sheng; Sumpter, Rhea M; Huang, Chou-Long; Bhagat, Govind; Virgin, Herbert W; Lira, Sergio A; Levine, Beth

    2016-03-15

    The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi's sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling. PMID:26929373

  5. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells.

    PubMed

    Sun, Xiaoping; Bristol, Jillian A; Iwahori, Satoko; Hagemeier, Stacy R; Meng, Qiao; Barlow, Elizabeth A; Fingeroth, Joyce D; Tarakanova, Vera L; Kalejta, Robert F; Kenney, Shannon C

    2013-09-01

    All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses. PMID:23843639

  6. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity

    PubMed Central

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V.

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses. PMID:25309527

  7. Structural proteins of Kaposi's sarcoma-associated herpesvirus antagonize p53-mediated apoptosis.

    PubMed

    Chudasama, P; Konrad, A; Jochmann, R; Lausen, B; Holz, P; Naschberger, E; Neipel, F; Britzen-Laurent, N; Stürzl, M

    2015-01-29

    The tumor suppressor p53 is a central regulatory molecule of apoptosis and is commonly mutated in tumors. Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies express wild-type p53. Accordingly, KSHV encodes proteins that counteract the cell death-inducing effects of p53. Here, the effects of all KSHV genes on the p53 signaling pathway were systematically analyzed using the reversely transfected cell microarray technology. With this approach we detected eight KSHV-encoded genes with potent p53 inhibiting activity in addition to the previously described inhibitory effects of KSHV genes ORF50, K10 and K10.5. Interestingly, the three most potent newly identified inhibitors were KSHV structural proteins, namely ORF22 (glycoprotein H), ORF25 (major capsid protein) and ORF64 (tegument protein). Validation of these results with a classical transfection approach showed that these proteins inhibited p53 signaling in a dose-dependent manner and that this effect could be reversed by small interfering RNA-mediated knockdown of the respective viral gene. All three genes inhibited p53-mediated apoptosis in response to Nutlin-3 treatment in non-infected and KSHV-infected cells. Addressing putative mechanisms, we could show that these proteins could also inhibit the transactivation of the promoters of apoptotic mediators of p53 such as BAX and PIG3. Altogether, we demonstrate for the first time that structural proteins of KSHV can counteract p53-induced apoptosis. These proteins are expressed in the late lytic phase of the viral life cycle and are incorporated into the KSHV virion. Accordingly, these genes may inhibit cell death in the productive and in the early entrance phase of KSHV infection. PMID:24469037

  8. Human herpesvirus 6 (HHV-6) alters E2F1/Rb pathways and utilizes the E2F1 transcription factor to express viral genes

    PubMed Central

    Sharon, Eyal; Volchek, Ludmila; Frenkel, Niza

    2014-01-01

    E2F transcription factors play pivotal roles in controlling the expression of genes involved in cell-cycle progression. Different viruses affect E2F1/retinoblastoma (Rb) interactions by diverse mechanisms releasing E2F1 from its suppressor Rb, enabling viral replication. We show that in T cells infected with human herpesvirus 6A (HHV-6A), the E2F1 protein and its cofactor DP1 increased, whereas the Rb protein underwent massive degradation without hyperphosphorylation at three sites known to control E2F/Rb association. Although E2F1 and DP1 increased without Rb suppression, the E2F1 target genes—including cyclin A, cyclin E, and dihydrofolate reductase—were not up-regulated. To test whether the E2F1/DP1 complexes were used for viral transcription, we scanned the viral genome for genes containing the E2F binding site in their promoters. In the present work, we concentrated on the U27 and U79 genes known to act in viral DNA synthesis. We constructed amplicon-6 vectors containing a GFP reporter gene driven by WT viral promoter or by promoter mutated in the E2F binding site. We found that the expression of the fusion U27 promoter was dependent on the presence of the E2F binding site. Test of the WT U79 promoter yielded >10-fold higher expression of the GFP reporter gene than the mutant U79 promoter with abrogated E2F binding site. Moreover, by using siRNA to E2F1, we found that E2F1 was essential for the activity of the U79 promoter. These findings revealed a unique pathway in HHV-6 replication: The virus causes Rb degradation and uses the increased E2F1 and DP1 factors to transcribe viral genes. PMID:24335704

  9. The superantigen-homologous viral immediate-early gene ie14/vsag in herpesvirus saimiri-transformed human T cells.

    PubMed Central

    Knappe, A; Hiller, C; Thurau, M; Wittmann, S; Hofmann, H; Fleckenstein, B; Fickenscher, H

    1997-01-01

    Herpesvirus saimiri C488 transforms human T lymphocytes to stable growth in culture. The growth-transformed human T cells harbor the viral genome in a nonintegrated episomal form without production of virus particles. In these cells, virus gene expression was previously found to be confined to the transforming genes stpC and tip. In order to analyze virus gene expression in more detail, we applied a subtractive hybridization technique and compared stimulated virus-transformed cells with uninfected parental T cells of the same donor. A number of known T-cell activation genes were isolated. Viral stpC/tip cDNAs were enriched after subtraction. In addition, the viral immediate-early, superantigen-homologous gene ie14/vsag was represented by numerous cDNA clones that comprised the entire spliced transcript. Whereas a weak basal expression of ie14/vsag was detected by reverse transcription-PCR only, the phorbol ester-induced transcripts were readily shown by Northern blotting. ie14/vsag, which before had been classified as a major immediate-early gene of herpesvirus saimiri, is localized within a highly conserved region with extensive homologies to the cellular genome. Mutant viruses without the ie14/vsag gene are replication competent and fully capable of transforming human and marmoset T cells. Since ie14/vsag is transiently expressed after stimulation, it may increase T-cell proliferation in an activation-dependent and superantigen-like but apparently Vbeta-independent way. PMID:9371569

  10. Microarray chip based identification of a mixed infection of bovine herpesvirus 1 and bovine viral diarrhea 2 from Indian cattle.

    PubMed

    Ratta, Barkha; Yadav, Brijesh Singh; Pokhriyal, Mayank; Saxena, Meeta; Sharma, Bhaskar

    2014-01-01

    Bovine herpesvirus 1 (BHV1) and bovine viral diarrhea virus 2 (BVD2) are endemic in India although no mixed infection with these viruses has been reported from India. We report first mixed infection of these viruses in cattle during routine screening with a microarray chip. 62 of the 69 probes of BHV1 and 42 of the 57 BVD2 probes in the chip gave positive signals for the virus. The virus infections were subsequently confirmed by RT-PCR. We also discuss the implications of these findings. PMID:24026447

  11. Kaposi's sarcoma-associated herpesvirus ORF6 gene is essential in viral lytic replication.

    PubMed

    Peng, Can; Chen, Jungang; Tang, Wei; Liu, Chunlan; Chen, Xulin

    2014-01-01

    Kaposi's sarcoma associated herpesvirus (KSHV) is associated with Kaposis's sarcoma (KS), primary effusion lymphoma and multicentric Castleman's disease. KSHV encodes at least 8 open reading frames (ORFs) that play important roles in its lytic DNA replication. Among which, ORF6 of KSHV encodes an ssDNA binding protein that has been proved to participate in origin-dependent DNA replication in transient assays. To define further the function of ORF6 in the virus life cycle, we constructed a recombinant virus genome with a large deletion within the ORF6 locus by using a bacterial artificial chromosome (BAC) system. Stable 293T cells carrying the BAC36 (wild type) and BACΔ6 genomes were generated. When monolayers of 293T-BAC36 and 293T-BACΔ6 cells were induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate, infectious virus was detected from the 293T-BAC36 cell supernatants only and not from the 293T- BACΔ6 cell supernatants. DNA synthesis was defective in 293T-BACΔ6 cells. Expression of ORF6 in trans in BACΔ6-containing cells was able to rescue both defects. Our results provide genetic evidence that ORF6 is essential for KSHV lytic replication. The stable 293T cells carrying the BAC36 and BACΔ6 genomes could be used as tools to investigate the detailed functions of ORF6 in the lytic replication of KSHV. PMID:24911362

  12. Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases.

    PubMed

    Kuny, Chad V; Chinchilla, Karen; Culbertson, Michael R; Kalejta, Robert F

    2010-01-01

    The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5)), is a kinase that phosphorylates the cellular retinoblastoma (Rb) tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks). A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97. These UL97-homologous proteins have been termed the conserved herpesvirus protein kinases (CHPKs) to distinguish them from other human herpesvirus-encoded kinases. To determine if the Cdk-like activities of UL97 were shared by all of the CHPKs, we individually expressed epitope-tagged alleles of each protein in human Saos-2 cells to test for Rb phosphorylation, human U-2 OS cells to monitor nuclear lamina disruption and lamin A phosphorylation, or S. cerevisiae cdc28-13 mutant cells to directly assay for Cdk function. We found that the ability to phosphorylate Rb and lamin A, and to disrupt the nuclear lamina, was shared by all CHPKs from the beta- and gamma-herpesvirus families, but not by their alpha-herpesvirus homologs. Similarly, all but one of the beta and gamma CHPKs displayed bona fide Cdk activity in S. cerevisiae, while the alpha proteins did not. Thus, we have identified novel virally-encoded Cdk-like kinases, a nomenclature we abbreviate as v-Cdks. Interestingly, we found that other, non-Cdk-related activities reported for UL97 (dispersion of promyelocytic leukemia protein nuclear bodies (PML-NBs) and disruption of cytoplasmic or nuclear aggresomes) showed weak conservation among the CHPKs that, in general, did not segregate to specific viral families. Therefore, the genomic and evolutionary conservation of these kinases has not been fully maintained at the functional level. Our data indicate that these related kinases, some of which are targets of approved or developmental antiviral drugs, are likely to

  13. Kaposi΄s sarcoma-associated herpesvirus ORF36 protein induces chromosome condensation and phosphorylation of histone H3.

    PubMed

    Kim, Sunmi; Cha, Seho; Jang, Jun Hyeong; Kim, Yejin; Seo, Taegun

    2013-01-01

    Kaposi΄s sarcoma-associated herpesvirus (KSHV) has been known as an agent causing Kaposi΄s sarcoma, primary effusion lymphoma, and multicentric Castleman΄s disease. In the lytic phase of the virus cycle, various viral genes are expressed, which causes host cell dysregulation. Among the lytic genes, viral protein kinase (vPK) encoded by ORF36 is a member of serine/threonine protein kinase (CHPK) family, which is involved in viral gene expression, viral DNA replication and encapsidation, and nuclear egress of virions. Recent studies have shown that the BGLF4 protein of Epstein-Barr virus (EBV), a member of the CHPK family, alters the host cell chromatin structure through phosphorylation of its key regulators. The role of KSHV ORF36 in cellular mitotic events, however, is not yet understood. In the current study, we showed that KSHV ORF36 induced chromosome condensation and phosphorylation of histone H3 on Ser 10, which are known as cellular mitosis markers. These processes have occurred in a kinase activity-dependent manner. PMID:23530827

  14. Interaction of Gamma-Herpesvirus Genome Maintenance Proteins with Cellular Chromatin

    PubMed Central

    Callegari, Simone; Gastaldello, Stefano; Masucci, Maria G.

    2013-01-01

    The capacity of gamma-herpesviruses to establish lifelong infections is dependent on the expression of genome maintenance proteins (GMPs) that tether the viral episomes to cellular chromatin and allow their persistence in latently infected proliferating cells. Here we have characterized the chromatin interaction of GMPs encoded by viruses belonging to the genera Lymphocryptovirus (LCV) and Rhadinovirus (RHV). We found that, in addition to a similar diffuse nuclear localization and comparable detergent resistant interaction with chromatin in transfected cells, all GMPs shared the capacity to promote the decondensation of heterochromatin in the A03-1 reporter cell line. They differed, however, in their mobility measured by fluorescence recovery after photobleaching (FRAP), and in the capacity to recruit accessory molecules required for the chromatin remodeling function. While the AT-hook containing GMPs of LCVs were highly mobile, a great variability was observed among GMPs encoded by RHV, ranging from virtually immobile to significantly reduced mobility compared to LCV GMPs. Only the RHV GMPs recruited the bromo- and extra terminal domain (BET) proteins BRD2 and BRD4 to the site of chromatin remodeling. These findings suggest that differences in the mode of interaction with cellular chromatin may underlie different strategies adopted by these viruses for reprogramming of the host cells during latency. PMID:23667520

  15. Modulation of Cellular and Viral Gene Expression by the Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    Renne, Rolf; Barry, Chris; Dittmer, Dirk; Compitello, Nicole; Brown, Patrick O.; Ganem, Don

    2001-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is the likely etiological agent of Kaposi's sarcoma and primary effusion lymphoma. Common to these malignancies is that tumor cells are latently infected with KSHV. Viral gene expression is limited to a few genes, one of which is the latency-associated nuclear antigen (LANA), the product of ORF73. Examination of the primary sequence of LANA reveals some structural features reminiscent of transcription factors, leading us to hypothesize that LANA may regulate viral and cellular transcription during latency. In reporter gene-based transient transfection assays, we found that LANA can have either positive or negative effects on gene expression. While expression of a reporter gene from several synthetic promoters was increased in the presence of LANA, expression from the human immunodeficiency virus (HIV) long terminal repeat (LTR)—and from NF-κB-dependent reporter genes—was reduced by LANA expression. In addition, the promoter of KSHV ORF73 itself is activated up to 5.5-fold by LANA. This autoregulation may be important in tumorigenesis, because two other genes (v-cyclin and v-FLIP) with likely roles in cell growth and survival are also controlled by this element. To identify cellular genes influenced by LANA, we employed cDNA array-based expression profiling. Six known genes (and nine expressed sequence tags) were found to be upregulated in LANA-expressing cell lines. One of these, Staf-50, is known to inhibit expression from the HIV LTR; most of the other known genes are interferon inducible, although the interferon genes themselves were not induced by LANA. These data demonstrate that LANA expression has effects on cellular and viral gene expression. We suggest that, whether direct or indirect in origin, these effects may play important roles in the pathobiology of KSHV infection. PMID:11119614

  16. Evaluation of a Viral Microarray Based on Simultaneous Extraction and Amplification of Viral Nucleotide Acid for Detecting Human Herpesviruses and Enteroviruses

    PubMed Central

    Zhang, Chunxiu; Yang, Xiaomeng; Zhao, Yan; Dong, Rui; Zhou, Jiajing; Gai, Zhongtao

    2015-01-01

    In this study, a viral microarray based assay was developed to detect the human herpesviruses and enteroviruses associated with central nervous system infections, including herpes simplex virus type 1, type 2 (HSV1 and HSV2), Epstein-Barr virus (EBV), cytomegalovirus (CMV), enterovirus 71 (EV71), coxsackievirus A 16 (CA16) and B 5(CB5). The DNA polymerase gene of human herpesviruses and 5’-untranslated region of enteroviruses were selected as the targets to design primers and probes. Human herpesviruses DNA and enteroviruses RNA were extracted simultaneously by using a guanidinium thiocyanate acid buffer, and were subsequently amplified through a biotinylated asymmetry multiplex RT-PCR with the specific primer of enteroviruses. In total, 90 blood samples and 49 cerebrospinal fluids samples with suspected systemic or neurological virus infections were investigated. Out of 139 samples, 66 were identified as positive. The specificities of this multiplex RT-PCR microarray assay were over 96% but the sensitivities were various from 100% for HSV1, HSV2, EV71 and CB5, 95.83% for CMV, 80% for EBV to 71.43% for CA16 in comparison with reference standards of TaqMan qPCR/qRT-PCR. The high Kappa values (>0.90) from HSV1, HSV2, CMV, EV71 and CB5 were obtained, indicating almost perfect agreement in term of the 5 viruses detection. But lower Kappa values for EBV (0.63) and CA16 (0.74) displayed a moderate to substantial agreement. This study provides an innovation of simultaneous extraction, amplification, hybridization and detection of DNA viruses and RNA viruses with simplicity and specificity, and demonstrates a potential clinical utility for a variety of viruses’ detection. PMID:25774509

  17. Effects of Preinfection With Bovine Viral Diarrhea Virus on Immune Cells From the Lungs of Calves Inoculated With Bovine Herpesvirus 1.1.

    PubMed

    Risalde, M A; Molina, V; Sánchez-Cordón, P J; Romero-Palomo, F; Pedrera, M; Gómez-Villamandos, J C

    2015-07-01

    The aim of this work was to study the interstitial aggregates of immune cells observed in pulmonary parenchyma of calves preinfected with bovine viral diarrhea virus and challenged later with bovine herpesvirus 1. In addition, the intent of this research was to clarify the role of bovine viral diarrhea virus in local cell-mediated immunity and potentially in predisposing animals to bovine respiratory disease complex. Twelve Friesian calves, aged 8 to 9 months, were inoculated with noncytopathic bovine viral diarrhea virus genotype 1. Ten were subsequently challenged with bovine herpesvirus 1 and euthanized at 1, 2, 4, 7, or 14 days postinoculation. The other 2 calves were euthanized prior to the second inoculation. Another cohort of 10 calves was inoculated only with bovine herpesvirus 1 and then were euthanized at the same time points. Two calves were not inoculated with any agent and were used as negative controls. Pulmonary lesions were evaluated in all animals, while quantitative and biosynthetic changes in immune cells were concurrently examined immunohistochemically to compare coinfected calves and calves challenged only with bovine herpesvirus 1. Calves preinfected with bovine viral diarrhea virus demonstrated moderate respiratory clinical signs and histopathologic evidence of interstitial pneumonia with aggregates of mononuclear cells, which predominated at 4 days postinoculation. Furthermore, this group of animals was noted to have a suppression of interleukin-10 and associated alterations in the Th1-driven cytokine response in the lungs, as well as inhibition of the response of CD8+ and CD4+ T lymphocytes against bovine herpesvirus 1. These findings suggest that bovine viral diarrhea virus preinfection could affect the regulation of the immune response as modulated by regulatory T cells, as well as impair local cell-mediated immunity to secondary respiratory pathogens. PMID:25322747

  18. Structure of a herpesvirus nuclear egress complex subunit reveals an interaction groove that is essential for viral replication

    PubMed Central

    Leigh, Kendra E.; Sharma, Mayuri; Mansueto, My Sam; Boeszoermenyi, Andras; Filman, David J.; Hogle, James M.; Wagner, Gerhard; Coen, Donald M.; Arthanari, Haribabu

    2015-01-01

    Herpesviruses require a nuclear egress complex (NEC) for efficient transit of nucleocapsids from the nucleus to the cytoplasm. The NEC orchestrates multiple steps during herpesvirus nuclear egress, including disruption of nuclear lamina and particle budding through the inner nuclear membrane. In the important human pathogen human cytomegalovirus (HCMV), this complex consists of nuclear membrane protein UL50, and nucleoplasmic protein UL53, which is recruited to the nuclear membrane through its interaction with UL50. Here, we present an NMR-determined solution-state structure of the murine CMV homolog of UL50 (M50; residues 1–168) with a strikingly intricate protein fold that is matched by no other known protein folds in its entirety. Using NMR methods, we mapped the interaction of M50 with a highly conserved UL53-derived peptide, corresponding to a segment that is required for heterodimerization. The UL53 peptide binding site mapped onto an M50 surface groove, which harbors a large cavity. Point mutations of UL50 residues corresponding to surface residues in the characterized M50 heterodimerization interface substantially decreased UL50–UL53 binding in vitro, eliminated UL50–UL53 colocalization, prevented disruption of nuclear lamina, and halted productive virus replication in HCMV-infected cells. Our results provide detailed structural information on a key protein–protein interaction involved in nuclear egress and suggest that NEC subunit interactions can be an attractive drug target. PMID:26150520

  19. Activation of p90 Ribosomal S6 Kinase by ORF45 of Kaposi's Sarcoma-Associated Herpesvirus and Its Role in Viral Lytic Replication▿

    PubMed Central

    Kuang, Ersheng; Tang, Qiyi; Maul, Gerd G.; Zhu, Fanxiu

    2008-01-01

    The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway is essential for infection by a variety of viruses. The p90 ribosomal S6 kinases (RSKs) are direct substrates of ERK and functional mediators of ERK MAPK signaling, but their roles in viral infection have never been examined. We demonstrate that ORF45 of Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with RSK1 and RSK2 and strongly stimulates their kinase activities. The activation of RSK by ORF45 is correlated with ERK activation but does not require MEK. We further demonstrate that RSK1/RSK2 is activated during KSHV primary infection and reactivation from latency; a subset of RSK1/RSK2 is present in the viral replication compartment in the nucleus. Depletion of RSK1/RSK2 by small interfering RNA or the specific inhibitor BI-D1870 suppresses KSHV lytic gene expression and progeny virion production, suggesting an essential role of RSK1/RSK2 in KSHV lytic replication. PMID:18057234

  20. Bovine Herpesvirus 4 in Parana State, Brazil: case report, viral isolation, and molecular identification.

    PubMed

    Kruger, Ernesto Renato; Penha, Tania Regina; Stoffelo, Daura Regina Eira; Roehe, Paulo Michel; Ribeiro, Magda Costa; Soccol, Vanete Thomaz

    2015-03-01

    Bovine Herpesvirus 4 (BoHV-4) is a member of Gammaherpesvirinae sub-family and belongs to genus Rhadinovirus . This virus has been associated with different clinical manifestations and research activity has put forward a strong correlation among virus infection, postpartum metritis, and abortion. The goal of this work was to characterize a virus strain isolate from a cow's uterine outflow. From swabs drawn of uterine secretion, a virus strain was isolated and characterized by its cytopathology, morphology, and molecular biology approaches. In culture there was CPE development, characterized mainly by long strands with several small balloons along them, radiated from infected cells. Electron microscopy analysis revealed virus particles that had icosahedrical capsid symmetry surrounded by a loose envelope, typical of a herpesvirus. A 2,571 bp PCR product after Hind III digestion generated four fragments, whose base pair composition were 403, 420, 535, and 1,125 bp. Restriction enzymes Hind III and Bam HI generated the expected diagnostic bands as well as a 2,350 bp hypermolar fragment as a result of Bam HI treatment to demonstrate that agent was a bovine herpesvirus 4, appertaining to DN-599 group. PMID:26221118

  1. Bovine Herpesvirus 4 in Parana State, Brazil: case report, viral isolation, and molecular identification

    PubMed Central

    Kruger, Ernesto Renato; Penha, Tania Regina; Stoffelo, Daura Regina Eira; Roehe, Paulo Michel; Ribeiro, Magda Costa; Soccol, Vanete Thomaz

    2015-01-01

    Bovine Herpesvirus 4 (BoHV-4) is a member of Gammaherpesvirinae sub-family and belongs to genus Rhadinovirus . This virus has been associated with different clinical manifestations and research activity has put forward a strong correlation among virus infection, postpartum metritis, and abortion. The goal of this work was to characterize a virus strain isolate from a cow’s uterine outflow. From swabs drawn of uterine secretion, a virus strain was isolated and characterized by its cytopathology, morphology, and molecular biology approaches. In culture there was CPE development, characterized mainly by long strands with several small balloons along them, radiated from infected cells. Electron microscopy analysis revealed virus particles that had icosahedrical capsid symmetry surrounded by a loose envelope, typical of a herpesvirus. A 2,571 bp PCR product after Hind III digestion generated four fragments, whose base pair composition were 403, 420, 535, and 1,125 bp. Restriction enzymes Hind III and Bam HI generated the expected diagnostic bands as well as a 2,350 bp hypermolar fragment as a result of Bam HI treatment to demonstrate that agent was a bovine herpesvirus 4, appertaining to DN-599 group. PMID:26221118

  2. Functional characterization of viral tumor necrosis factor receptors encoded by cyprinid herpesvirus 3 (CyHV3) genome.

    PubMed

    Yi, Yang; Qi, Hemei; Yuan, Jimin; Wang, Rui; Weng, Shaoping; He, Jianguo; Dong, Chuanfu

    2015-08-01

    Cyprinid herpesvirus 3 (CyHV3) is a large double-stranded DNA virus of Alloherpesviridae family in the order Herpesvirales. It causes significant morbidity and mortality in common carp and its ornamental koi variety, and threatens the aquaculture industries worldwide. Mimicry of cytokines and cytokine receptors is a particular strategy for large DNA viruses in modulating the host immune response. Here, we report the identification and characterization of two novel viral homologues of tumor necrosis factor receptor (TNFR) encoded by CyHV3-ORF4 and -ORF12, respectively. CyHV3-ORF4 was identified as a homologue of HVEM and CyHV3-ORF12 as a homologue of TNFRSF1. Overexpression of ORF4 and ORF12 in zebrafish embryos results in embryonic lethality, morphological defects and increased apoptosis. Although we failed to identify any interaction between the two vTNFRs and their potential ligands in zebrafish TNF superfamily by yeast two-hybrid system, the expression of some genes in TNF superfamily or TNFR superfamily were mis-regulated in ORF4 or ORF12-overexpressing embryos, especially the death receptor zHDR and its cognate ligand DL1b. Further studies showed that the apoptosis induced by the both CyHV3 vTNFRs is mainly activated through the intrinsic apoptotic pathway and requires the crosstalk between the intrinsic and extrinsic apoptotic pathway. Additionally, using RT-qPCR and Western blot assays, the expression patterns of the both vTNFRs were also analyzed during CyHV3 productive infection. Collectively, this is the first functional study of two unique vTNFRs encoded by a herpesvirus infecting non-mammalian vertebrates, which may provide novel insights into viral immune regulation mechanism and the pathogenesis of CyHV3 infection. PMID:26052019

  3. Herpesviruses and the microbiome.

    PubMed

    Dreyfus, David H

    2013-12-01

    The focus of this article will be to examine the role of common herpesviruses as a component of the microbiome of atopic patients and to review clinical observations suggesting that atopic patients might be predisposed to more severe and atypical herpes-related illness because their immune response is biased toward a TH2 cytokine profile. Human populations are infected with 8 herpesviruses, including herpes simplex virus HSV1 and HSV2 (also termed HHV1 and HHV2), varicella zoster virus (VZV or HHV3), EBV (HHV4), cytomegalovirus (HHV5), HHV6, HHV7, and Kaposi sarcoma-associated herpesvirus (termed KSV or HHV8). Herpesviruses are highly adapted to lifelong infection of their human hosts and thus can be considered a component of the human "microbiome" in addition to their role in illness triggered by primary infection. HSV1 and HSV2 infection and reactivation can present with more severe cutaneous symptoms termed eczema herpeticum in the atopic population, similar to the more severe eczema vaccinatum, and drug reaction with eosinophilia and systemic symptoms syndrome (DRESS) is associated with reactivation of HSV6 and possibly other herpesviruses in both atopic and nonatopic patients. In this review evidence is reviewed that primary infection with herpesviruses may have an atypical presentation in the atopic patient and conversely that childhood infection might alter the atopic phenotype. Reactivation of latent herpesviruses can directly alter host cytokine profiles through viral expression of cytokine-like proteins, such as IL-10 (EBV) or IL-6 (cytomegalovirus and HHV8), viral encoded and secreted siRNA and microRNAs, and modulation of expression of host transcription pathways, such as nuclear factor κB. Physicians caring for allergic and atopic populations should be aware of common and uncommon presentations of herpes-related disease in atopic patients to provide accurate diagnosis and avoid unnecessary laboratory testing or incorrect diagnosis of other conditions

  4. Identification and characterization of the genomic termini and cleavage/packaging signals of gallid herpesvirus 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herpesvirus replication within infected host cells results in concatameric head-to-tail genomes which are cleaved at specific sites and packaged into the viral capsid by a complex of proteins. The sites of cleavage have been characterized for a number of herpesviruses and conserved signaling sequenc...

  5. The serum and glucocorticoid-regulated protein kinases (SGK) stimulate bovine herpesvirus 1 and herpes simplex virus 1 productive infection.

    PubMed

    Kook, Insun; Jones, Clinton

    2016-08-15

    Serum and glucocorticoid-regulated protein kinases (SGK) are serine/threonine protein kinases that contain a catalytic domain resembling other protein kinases: AKT/protein kinase B, protein kinase A, and protein kinase C-Zeta for example. Unlike these constitutively expressed protein kinases, SGK1 RNA and protein levels are increased by growth factors and corticosteroids. Stress can directly stimulate SGK1 levels as well as stimulate bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) productive infection and reactivation from latency suggesting SGK1 can stimulate productive infection. For the first time, we provide evidence that a specific SGK inhibitor (GSK650394) significantly reduced BoHV-1 and HSV-1 replication in cultured cells. Proteins encoded by the three BoHV-1 immediate early genes (bICP0, bICP4, and bICP22) and two late proteins (VP16 and gE) were consistently reduced by GSK650394 during early stages of productive infection. In summary, these studies suggest SGK may stimulate viral replication following stressful stimuli. PMID:27297663

  6. An Important Role for Mitochondrial Antiviral Signaling Protein in the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle

    PubMed Central

    West, John A.; Wicks, Megan; Gregory, Sean M.; Chugh, Pauline; Jacobs, Sarah R.; Zhang, Zhigang; Host, Kurtis M.; Dittmer, Dirk P.

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) has been shown to be recognized by two families of pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and NOD-like receptors (NLRs). Here we show that MAVS and RIG-I (retinoic acid-inducible gene 1), an RLR family member, also have a role in suppressing KSHV replication and production. In the context of primary infection, we show that in cells with depleted levels of MAVS or RIG-I, KSHV transcription is increased, while beta interferon (IFN-β) induction is attenuated. We also observed that MAVS and RIG-I are critical during the process of reactivation. Depletion of MAVS and RIG-I prior to reactivation led to increased viral load and production of infectious virus. Finally, MAVS depletion in latent KSHV-infected B cells leads to increased viral gene transcription. Overall, this study suggests a role for MAVS and RIG-I signaling during different stages of the KSHV life cycle. IMPORTANCE We show that RIG-I and its adaptor protein, MAVS, can sense KSHV infection and that these proteins can suppress KSHV replication following primary infection and/or viral reactivation. PMID:24623417

  7. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes.

    PubMed

    You, Jianxin; Srinivasan, Viswanathan; Denis, Gerald V; Harrington, William J; Ballestas, Mary E; Kaye, Kenneth M; Howley, Peter M

    2006-09-01

    The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is required for viral episome maintenance in host cells during latent infection. Two regions of the protein have been implicated in tethering LANA/viral episomes to the host mitotic chromosomes, and LANA chromosome-binding sites are subjects of high interest. Because previous studies had identified bromodomain protein Brd4 as the mitotic chromosome anchor for the bovine papillomavirus E2 protein, which tethers the viral episomes to host mitotic chromosomes (J. You, J. L. Croyle, A. Nishimura, K. Ozato, and P. M. Howley, Cell 117:349-360, 2004, and J. You, M. R. Schweiger, and P. M. Howley, J. Virol. 79:14956-14961, 2005), we examined whether KSHV LANA interacts with Brd4. We found that LANA binds Brd4 in vivo and in vitro and that the binding is mediated by a direct protein-protein interaction between the ET (extraterminal) domain of Brd4 and a carboxyl-terminal region of LANA previously implicated in chromosome binding. Brd4 associates with mitotic chromosomes throughout mitosis and demonstrates a strong colocalization with LANA and the KSHV episomes on host mitotic chromosomes. Although another bromodomain protein, RING3/Brd2, binds to LANA in a similar fashion in vitro, it is largely excluded from the mitotic chromosomes in KSHV-uninfected cells and is partially recruited to the chromosomes in KSHV-infected cells. These data identify Brd4 as an interacting protein for the carboxyl terminus of LANA on mitotic chromosomes and suggest distinct functional roles for the two bromodomain proteins RING3/Brd2 and Brd4 in LANA binding. Additionally, because Brd4 has recently been shown to have a role in transcription, we examined whether Brd4 can regulate the CDK2 promoter, which can be transactivated by LANA. PMID:16940503

  8. KINETICS OF VIRAL LOADS AND GENOTYPIC ANALYSIS OF ELEPHANT ENDOTHELIOTROPIC HERPESVIRUS-1 INFECTION IN CAPTIVE ASIAN ELEPHANTS (ELEPHAS MAXIMUS)

    PubMed Central

    Stanton, Jeffrey J.; Zong, Jian-Chao; Eng, Crystal; Howard, Lauren; Flanagan, Joe; Stevens, Martina; Schmitt, Dennis; Wiedner, Ellen; Graham, Danielle; Junge, Randall E.; Weber, Martha A.; Fischer, Martha; Mejia, Alicia; Tan, Jie; Latimer, Erin; Herron, Alan; Hayward, Gary S.; Ling, Paul D.

    2013-01-01

    Elephant endotheliotropic herpesviruses (EEHVs) can cause fatal hemorrhagic disease in juvenile Asian elephants (Elephas maximus); however, sporadic shedding of virus in trunk washes collected from healthy elephants also has been detected. Data regarding the relationship of viral loads in blood compared with trunk washes are lacking, and questions about whether elephants can undergo multiple infections with EEHVs have not been addressed previously. Real-time quantitative polymerase chain reaction was used to determine the kinetics of EEHV1 loads, and genotypic analysis was performed on EEHV1 DNA detected in various fluid samples obtained from five Asian elephants that survived detectable EEHV1 DNAemia on at least two separate occasions. In three elephants displaying clinical signs of illness, preclinical EEHV1 DNAemia was detectable, and peak whole-blood viral loads occurred 3–8 days after the onset of clinical signs. In two elephants with EEHV1 DNAemia that persisted for 7–21 days, no clinical signs of illness were observed. Detection of EEHV1 DNA in trunk washes peaked approximately 21 days after DNAemia, and viral genotypes detected during DNAemia matched those detected in subsequent trunk washes from the same elephant. In each of the five elephants, two distinct EEHV1 genotypes were identified in whole blood and trunk washes at different time points. In each case, these genotypes represented both an EEHV1A and an EEHV1B subtype. These data suggest that knowledge of viral loads could be useful for the management of elephants before or during clinical illness. Furthermore, sequential infection with both EEHV1 subtypes occurs in Asian elephants, suggesting that they do not elicit cross-protective sterilizing immunity. These data will be useful to individuals involved in the husbandry and clinical care of Asian elephants. PMID:23505702

  9. IFITM Proteins Restrict Viral Membrane Hemifusion

    PubMed Central

    Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C.; Gratton, Enrico; Cohen, Fredric S.; Liu, Shan-Lu

    2013-01-01

    The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous

  10. Poly(A) Binding Protein 1 Enhances Cap-Independent Translation Initiation of Neurovirulence Factor from Avian Herpesvirus

    PubMed Central

    Tahiri-Alaoui, Abdessamad; Zhao, Yuguang; Sadigh, Yashar; Popplestone, James; Kgosana, Lydia; Smith, Lorraine P.; Nair, Venugopal

    2014-01-01

    Poly(A) binding protein 1 (PABP1) plays a central role in mRNA translation and stability and is a target by many viruses in diverse manners. We report a novel viral translational control strategy involving the recruitment of PABP1 to the 5' leader internal ribosome entry site (5L IRES) of an immediate-early (IE) bicistronic mRNA that encodes the neurovirulence protein (pp14) from the avian herpesvirus Marek’s disease virus serotype 1 (MDV1). We provide evidence for the interaction between an internal poly(A) sequence within the 5L IRES and PABP1 which may occur concomitantly with the recruitment of PABP1 to the poly(A) tail. RNA interference and reverse genetic mutagenesis results show that a subset of virally encoded-microRNAs (miRNAs) targets the inhibitor of PABP1, known as paip2, and therefore plays an indirect role in PABP1 recruitment strategy by increasing the available pool of active PABP1. We propose a model that may offer a mechanistic explanation for the cap-independent enhancement of the activity of the 5L IRES by recruitment of a bona fide initiation protein to the 5' end of the message and that is, from the affinity binding data, still compatible with the formation of ‘closed loop’ structure of mRNA. PMID:25503397

  11. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 1 Interacts with a Member of the Interferon-Stimulated Gene 15 Pathway

    PubMed Central

    Jacobs, Sarah R.; Stopford, Charles M.; West, John A.; Bennett, Christopher L.; Giffin, Louise

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus known to establish lifelong latency in the human host. We and others have previously shown that three KSHV homologs of cellular interferon regulatory factors (IRFs), known as viral IRFs (vIRFs), participate in evasion of the host interferon (IFN) response. We report that vIRF1 interacts with the cellular interferon-stimulated gene 15 (ISG15) E3 ligase, HERC5, in the context of Toll-like receptor 3 (TLR3) activation and IFN induction. The ISG15 protein is covalently conjugated to target proteins upon activation of the interferon response. Interaction between vIRF1 and HERC5 was confirmed by immunoprecipitation, and the region between amino acids 224 and 349 of vIRF1 was required for interaction with HERC5. We further report that expression of vIRF1 in the context of TLR3 activation results in decreased ISG15 conjugation of proteins. Specifically, TLR3-induced ISG15 conjugation and protein levels of cellular IRF3, a known ISG15 target, were decreased in the presence of vIRF1 compared to the control. vIRF1 itself was also identified as a target of ISG15 conjugation. KSHV-infected cells exhibited increased ISG15 conjugation upon reactivation from latency in coordination with increased IFN. Furthermore, knockdown of ISG15 in latently infected cells resulted in a higher level of KSHV reactivation and an increase in infectious virus. These data suggest that the KSHV vIRF1 protein affects ISG15 conjugation and interferon responses and may contribute to effective KSHV replication. IMPORTANCE The KSHV vIRF1 protein can inhibit interferon activation in response to viral infection. We identified a cellular protein named HERC5, which is the major ligase for ISG15, as a vIRF1 binding partner. vIRF1 association with HERC5 altered ISG15 modification of cellular proteins, and knockdown of ISG15 augmented reactivation of KSHV from latency. PMID:26355087

  12. Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis

    PubMed Central

    Dong, Xiaonan; Cheng, Adam; Zou, Zhongju; Yang, Yih-Sheng; Sumpter, Rhea M.; Huang, Chou-Long; Bhagat, Govind; Virgin, Herbert W.; Lira, Sergio A.; Levine, Beth

    2016-01-01

    The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi’s sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling. PMID:26929373

  13. Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico

    PubMed Central

    Segura-Correa, J.C.; Zapata-Campos, C.C.; Jasso-Obregón, J.O.; Martinez-Burnes, J.; López-Zavala, R.

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and the principal exporter of calf and heifer to the United States. The objectives of this study were to estimate the seroprevalence of BoHV-1 and of BVDV, and to determine the effects of risk factors on these infections. Blood samples of cattle from 57 farms from rural districts of Tamaulipas were collected. The samples were tested for antibodies against BoHV-1 and BVDV using commercial ELISA kits. Data on potential risk factors were obtained using a questionnaire administered to the farmer at the time the blood samples were taken. The seroprevalences for BoHV-1 and BVDV were 64.4% and 47.8%, respectively. In the logistic regression analysis, the significant risk factors were rural district, herd size and cattle introduced to the farm. This study confirms the high seroprevalence of BoHV-1 and BVDV in unvaccinated cattle in Tamaulipas, Mexico. The results of this study could be used for the development of BoHV-1 and BVDV prevention and control program in North-Eastern, Mexico. PMID:27622156

  14. Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico.

    PubMed

    Segura-Correa, J C; Zapata-Campos, C C; Jasso-Obregón, J O; Martinez-Burnes, J; López-Zavala, R

    2016-01-01

    Bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) are well known etiological agents of cattle that produce important economic losses due to reproductive failures and calf mortality, as well as enteric and respiratory disease. Tamaulipas is located northeast of Mexico, an important cattle production and the principal exporter of calf and heifer to the United States. The objectives of this study were to estimate the seroprevalence of BoHV-1 and of BVDV, and to determine the effects of risk factors on these infections. Blood samples of cattle from 57 farms from rural districts of Tamaulipas were collected. The samples were tested for antibodies against BoHV-1 and BVDV using commercial ELISA kits. Data on potential risk factors were obtained using a questionnaire administered to the farmer at the time the blood samples were taken. The seroprevalences for BoHV-1 and BVDV were 64.4% and 47.8%, respectively. In the logistic regression analysis, the significant risk factors were rural district, herd size and cattle introduced to the farm. This study confirms the high seroprevalence of BoHV-1 and BVDV in unvaccinated cattle in Tamaulipas, Mexico. The results of this study could be used for the development of BoHV-1 and BVDV prevention and control program in North-Eastern, Mexico. PMID:27622156

  15. Trapping mammalian protein complexes in viral particles

    PubMed Central

    Eyckerman, Sven; Titeca, Kevin; Van Quickelberghe, Emmy; Cloots, Eva; Verhee, Annick; Samyn, Noortje; De Ceuninck, Leentje; Timmerman, Evy; De Sutter, Delphine; Lievens, Sam; Van Calenbergh, Serge; Gevaert, Kris; Tavernier, Jan

    2016-01-01

    Cell lysis is an inevitable step in classical mass spectrometry–based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes. PMID:27122307

  16. K1 and K15 of Kaposi's Sarcoma-Associated Herpesvirus Are Partial Functional Homologues of Latent Membrane Protein 2A of Epstein-Barr Virus

    PubMed Central

    Steinbrück, Lisa; Gustems, Montse; Medele, Stephanie; Schulz, Thomas F.; Lutter, Dominik

    2015-01-01

    ABSTRACT The human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are associated with Hodgkin's lymphoma (HL) and Primary effusion lymphomas (PEL), respectively, which are B cell malignancies that originate from germinal center B cells. PEL cells but also a quarter of EBV-positive HL tumor cells do not express the genuine B cell receptor (BCR), a situation incompatible with survival of normal B cells. EBV encodes LMP2A, one of EBV's viral latent membrane proteins, which likely replaces the BCR's survival signaling in HL. Whether KSHV encodes a viral BCR mimic that contributes to oncogenesis is not known because an experimental model of KSHV-mediated B cell transformation is lacking. We addressed this uncertainty with mutant EBVs encoding the KSHV genes K1 or K15 in lieu of LMP2A and infected primary BCR-negative (BCR−) human B cells with them. We confirmed that the survival of BCR– B cells and their proliferation depended on an active LMP2A signal. Like LMP2A, the expression of K1 and K15 led to the survival of BCR− B cells prone to apoptosis, supported their proliferation, and regulated a similar set of cellular target genes. K1 and K15 encoded proteins appear to have noncomplementing, redundant functions in this model, but our findings suggest that both KSHV proteins can replace LMP2A's key activities contributing to the survival, activation and proliferation of BCR– PEL cells in vivo. IMPORTANCE Several herpesviruses encode oncogenes that are receptor-like proteins. Often, they are constitutively active providing important functions to the latently infected cells. LMP2A of Epstein-Barr virus (EBV) is such a receptor that mimics an activated B cell receptor, BCR. K1 and K15, related receptors of Kaposi's sarcoma-associated herpesvirus (KSHV) expressed in virus-associated tumors, have less obvious functions. We found in infection experiments that both viral receptors of KSHV can replace LMP2A and deliver functions

  17. Differential Reovirus-Specific and Herpesvirus-Specific Activator Protein 1 Activation of Secretogranin II Leads to Altered Virus Secretion

    PubMed Central

    Berard, Alicia R.; Severini, Alberto

    2015-01-01

    ABSTRACT Viruses utilize host cell machinery for propagation and manage to evade cellular host defense mechanisms in the process. Much remains unknown regarding how the host responds to viral infection. We recently performed global proteomic screens of mammalian reovirus TIL- and T3D-infected and herpesvirus (herpes simplex virus 1 [HSV-1])-infected HEK293 cells. The nonenveloped RNA reoviruses caused an upregulation, whereas the enveloped DNA HSV-1 caused a downregulation, of cellular secretogranin II (SCG2). SCG2, a member of the granin family that functions in hormonal peptide sorting into secretory vesicles, has not been linked to virus infections previously. We confirmed SCG2 upregulation and found SCG2 phosphorylation by 18 h postinfection (hpi) in reovirus-infected cells. We also found a decrease in the amount of reovirus secretion from SCG2 knockdown cells. Similar analyses of cells infected with HSV-1 showed an increase in the amount of secreted virus. Analysis of the stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) pathway indicated that each virus activates different pathways leading to activator protein 1 (AP-1) activation, which is the known SCG2 transcription activator. We conclude from these experiments that the negative correlation between SCG2 quantity and virus secretion for both viruses indicates a virus-specific role for SCG2 during infection. IMPORTANCE Mammalian reoviruses affect the gastrointestinal system or cause respiratory infections in humans. Recent work has shown that all mammalian reovirus strains (most specifically T3D) may be useful oncolytic agents. The ubiquitous herpes simplex viruses cause common sores in mucosal areas of their host and have coevolved with hosts over many years. Both of these virus species are prototypical representatives of their viral families, and investigation of these viruses can lead to further knowledge of how they and the other more pathogenic members of their respective

  18. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 (vIRF4/K10) Is a Novel Interaction Partner of CSL/CBF1, the Major Downstream Effector of Notch Signaling▿

    PubMed Central

    Heinzelmann, Katharina; Scholz, Barbara A.; Nowak, Agnes; Fossum, Even; Kremmer, Elisabeth; Haas, Juergen; Frank, Ronald; Kempkes, Bettina

    2010-01-01

    In cells infected with the Kaposi's sarcoma-associated herpesvirus (KSHV), CSL/CBF1 signaling is essential for viral replication and promotes the survival of KSHV-infected cells. CSL/CBF1 is a DNA adaptor molecule which recruits coactivator and corepressor complexes to regulate viral and cellular gene transcription and which is a major downstream effector molecule of activated Notch. The interaction of KSHV RTA and LANA with CSL/CBF1 has been shown to balance the lytic and latent viral life cycle. Here we report that a third KSHV protein, viral interferon regulatory factor 4 (vIRF4/K10), but none of the three other KSHV-encoded vIRFs, interacts with CSL/CBF1. Two regions of vIRF4 with dissimilar affinities contribute to CSL/CBF1 binding. Similar to Notch, vIRF4 targets the hydrophobic pocket in the beta trefoil domain of CSL/CBF1 through a short peptide motif which closely resembles a motif found in Notch but does not strictly follow the ΦWΦP consensus conserved in human and mouse Notch proteins. Our results suggest that vIRF4 might compete with Notch for CSL/CBF1 binding and signaling. PMID:20861242

  19. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4/K10) is a novel interaction partner of CSL/CBF1, the major downstream effector of Notch signaling.

    PubMed

    Heinzelmann, Katharina; Scholz, Barbara A; Nowak, Agnes; Fossum, Even; Kremmer, Elisabeth; Haas, Juergen; Frank, Ronald; Kempkes, Bettina

    2010-12-01

    In cells infected with the Kaposi's sarcoma-associated herpesvirus (KSHV), CSL/CBF1 signaling is essential for viral replication and promotes the survival of KSHV-infected cells. CSL/CBF1 is a DNA adaptor molecule which recruits coactivator and corepressor complexes to regulate viral and cellular gene transcription and which is a major downstream effector molecule of activated Notch. The interaction of KSHV RTA and LANA with CSL/CBF1 has been shown to balance the lytic and latent viral life cycle. Here we report that a third KSHV protein, viral interferon regulatory factor 4 (vIRF4/K10), but none of the three other KSHV-encoded vIRFs, interacts with CSL/CBF1. Two regions of vIRF4 with dissimilar affinities contribute to CSL/CBF1 binding. Similar to Notch, vIRF4 targets the hydrophobic pocket in the beta trefoil domain of CSL/CBF1 through a short peptide motif which closely resembles a motif found in Notch but does not strictly follow the ΦWΦP consensus conserved in human and mouse Notch proteins. Our results suggest that vIRF4 might compete with Notch for CSL/CBF1 binding and signaling. PMID:20861242

  20. Progress toward the development of polyvalent vaccination strategies against multiple viral infections in chickens using herpesvirus of turkeys as vector

    PubMed Central

    Iqbal, Munir

    2012-01-01

    Vaccination is the most cost effective strategy for the control and prevention of the plethora of viral diseases affecting poultry production. The major challenge for poultry vaccination is the design of vaccines that will protect against multiple pathogens via a single protective dose, delivered by mass vaccination. The Marek disease virus and the highly pathogenic avian influenza virus cause severe disease outbreaks in chickens. Vaccination with live herpesvirus of turkeys protects chickens from Marek disease and inactivated influenza viruses are used as antigens to protect chickens against influenza virus infections. We developed herpesvirus of turkeys (HVT) as a vaccine vector that can act as a dual vaccine against avian influenza and Marek disease. The HVT vector was developed using reverse genetics based on an infectious bacterial artificial chromosome (BAC) clone of HVT. The BAC carrying the HVT genome was genetically modified to express the haemagglutinin (HA) gene of a highly pathogenic H7N1 virus. The resultant recombinant BAC construct containing the modified HVT sequence was transfected into chicken embryo fibroblast (CEF) cells and HVT recombinants (rHVT-H7HA) harbouring the H7N1 HA were recovered. Analysis of cultured CEF cells infected with the rHVT-H7HA showed that HA was expressed and that the rescued rHVT-H7HA stocks were stable during several in vitro passages with no difference in growth kinetics compared with the parent HVT. Immunization of one-day-old chicks with rHVT-H7HA induced H7-specific antibodies and protected chickens challenged with homologous H7N1 virus against virus shedding, clinical disease and death. The rHVT-H7HA vaccine also induced strong and long-lasting antibody titers against H7HA in chickens that were vaccinated in ovo 3 d before hatching. This vaccine supports differentiation between infected and vaccinated animals (DIVA), because no influenza virus nucleoprotein-specific antibodies were detected in the rHVT-H7HA

  1. Equine Herpesvirus Type 1 Enhances Viral Replication in CD172a+ Monocytic Cells upon Adhesion to Endothelial Cells

    PubMed Central

    Laval, Kathlyn; Favoreel, Herman W.; Poelaert, Katrien C. K.; Van Cleemput, Jolien

    2015-01-01

    ABSTRACT Equine herpesvirus type 1 (EHV-1) is a main cause of respiratory disease, abortion, and encephalomyelopathy in horses. Monocytic cells (CD172a+) are the main carrier cells of EHV-1 during primary infection and are proposed to serve as a “Trojan horse” to facilitate the dissemination of EHV-1 to target organs. However, the mechanism by which EHV-1 is transferred from CD172a+ cells to endothelial cells (EC) remains unclear. The aim of this study was to investigate EHV-1 transmission between these two cell types. We hypothesized that EHV-1 employs specific strategies to promote the adhesion of infected CD172a+ cells to EC to facilitate EHV-1 spread. Here, we demonstrated that EHV-1 infection of CD172a+ cells resulted in a 3- to 5-fold increase in adhesion to EC. Antibody blocking experiments indicated that α4β1, αLβ2, and αVβ3 integrins mediated adhesion of infected CD172a+ cells to EC. We showed that integrin-mediated phosphatidylinositol 3-kinase (PI3K) and ERK/MAPK signaling pathways were involved in EHV-1-induced CD172a+ cell adhesion at early times of infection. EHV-1 replication was enhanced in adherent CD172a+ cells, which correlates with the production of tumor necrosis factor alpha (TNF-α). In the presence of neutralizing antibodies, approximately 20% of infected CD172a+ cells transferred cytoplasmic material to uninfected EC and 0.01% of infected CD172a+ cells transmitted infectious virus to neighboring cells. Our results demonstrated that EHV-1 infection induces adhesion of CD172a+ cells to EC, which enhances viral replication, but that transfer of viral material from CD172a+ cells to EC is a very specific and rare event. These findings give new insights into the complex pathogenesis of EHV-1. IMPORTANCE Equine herpesvirus type 1 (EHV-1) is a highly prevalent pathogen worldwide, causing frequent outbreaks of abortion and myeloencephalopathy, even in vaccinated horses. After primary replication in the respiratory tract, EHV-1 disseminates

  2. Herpesviruses: interfering innate immunity by targeting viral sensing and interferon pathways.

    PubMed

    Kumari, Puja; Narayanan, Sathish; Kumar, Himanshu

    2015-05-01

    Type I-interferon (IFN-I) induction pathway is one of the most commonly stimulated signaling pathways in response to viral infection. During viral infection this pathway is stimulated by various pattern-recognition receptors, which recognize different pathogen-associated molecular patterns. The pathways stimulated by different pattern-recognition receptors merge into common transcription factors IRF3 and IRF7, lead to the production of IFN-I. The secreted IFN-I stimulates JAK-STAT pathway leading to induction of interferon-stimulated genes (ISGs). The ISGs along with IFN-I create antiviral state to eliminate the virus from host. HHV infection enhances IFN-I-mediated innate antiviral response during both de novo infection and lytic reactivation from latency. However, HHV developed various molecular strategies to evade the sudden upsurge of the IFN-I and IFN-I-mediated antiviral response to establish a successful infection. Here, we focus on IFN-I induction and signaling pathways induced by three representative HHVs from each sub-family of HHV and strategies acquired by these HHVs to subvert the induction of IFN-I and ISGs to evade the host innate immunity. These fundamental understanding provides the clue for viral targets for pharmacological manipulation to develop potential therapeutics for broad subtypes of HHVs. PMID:25847408

  3. Regulation and Function of Phosphorylation on VP8, the Major Tegument Protein of Bovine Herpesvirus 1

    PubMed Central

    Zhang, Kuan; Afroz, Sharmin; Brownlie, Robert; Snider, Marlene

    2015-01-01

    ABSTRACT The major tegument protein of bovine herpesvirus 1 (BoHV-1), VP8, is essential for virus replication in cattle. VP8 is phosphorylated in vitro by casein kinase 2 (CK2) and BoHV-1 unique short protein 3 (US3). In this study, VP8 was found to be phosphorylated in both transfected and infected cells but was detected as a nonphosphorylated form in mature virions. This suggests that phosphorylation of VP8 is strictly controlled during different stages of the viral life cycle. The regulation and function of VP8 phosphorylation by US3 and CK2 were further analyzed. An in vitro kinase assay, site-directed mutagenesis, and liquid chromatography-mass spectrometry were used to identify the active sites for US3 and CK2. The two kinases phosphorylate VP8 at different sites, resulting in distinct phosphopeptide patterns. S16 is a primary phosphoreceptor for US3, and it subsequently triggers phosphorylation at S32. CK2 has multiple active sites, among which T107 appears to be the preferred residue. Additionally, CK2 consensus motifs in the N terminus of VP8 are essential for phosphorylation. Based on these results, a nonphosphorylated VP8 mutant was constructed and used for further studies. In transfected cells phosphorylation was not required for nuclear localization of VP8. Phosphorylated VP8 appeared to recruit promyelocytic leukemia (PML) protein and to remodel the distribution of PML in the nucleus; however, PML protein did not show an association with nonphosphorylated VP8. This suggests that VP8 plays a role in resisting PML-related host antiviral defenses by redistributing PML protein and that this function depends on the phosphorylation of VP8. IMPORTANCE The progression of VP8 phosphorylation over time and its function in BoHV-1 replication have not been characterized. This study demonstrates that activation of S16 initiates further phosphorylation at S32 by US3. Additionally, VP8 is phosphorylated by CK2 at several residues, with T107 having the highest level

  4. Whole-Genome Sequencing of Kaposi's Sarcoma-Associated Herpesvirus from Zambian Kaposi's Sarcoma Biopsy Specimens Reveals Unique Viral Diversity

    PubMed Central

    Olp, Landon N.; Jeanniard, Adrien; Marimo, Clemence; West, John T.

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent for Kaposi's sarcoma (KS). Both KSHV and KS are endemic in sub-Saharan Africa where approximately 84% of global KS cases occur. Nevertheless, whole-genome sequencing of KSHV has only been completed using isolates from Western countries—where KS is not endemic. The lack of whole-genome KSHV sequence data from the most clinically important geographical region, sub-Saharan Africa, represents an important gap since it remains unclear whether genomic diversity has a role on KSHV pathogenesis. We hypothesized that distinct KSHV genotypes might be present in sub-Saharan Africa compared to Western countries. Using a KSHV-targeted enrichment protocol followed by Illumina deep-sequencing, we generated and analyzed 16 unique Zambian, KS-derived, KSHV genomes. We enriched KSHV DNA over cellular DNA 1,851 to 18,235-fold. Enrichment provided coverage levels up to 24,740-fold; therefore, supporting highly confident polymorphism analysis. Multiple alignment of the 16 newly sequenced KSHV genomes showed low level variability across the entire central conserved region. This variability resulted in distinct phylogenetic clustering between Zambian KSHV genomic sequences and those derived from Western countries. Importantly, the phylogenetic segregation of Zambian from Western sequences occurred irrespective of inclusion of the highly variable genes K1 and K15. We also show that four genes within the more conserved region of the KSHV genome contained polymorphisms that partially, but not fully, contributed to the unique Zambian KSHV whole-genome phylogenetic structure. Taken together, our data suggest that the whole KSHV genome should be taken into consideration for accurate viral characterization. IMPORTANCE Our results represent the largest number of KSHV whole-genomic sequences published to date and the first time that multiple genomes have been sequenced from sub-Saharan Africa, a geographic area

  5. Interaction of Kaposi's Sarcoma-Associated Herpesvirus ORF6 Protein with Single-Stranded DNA

    PubMed Central

    Ozgur, Sezgin

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) ORF6 is homologous to the herpes simplex virus 1 (HSV-1) ICP8 and Epstein-Barr virus (EBV) BALF2 proteins. Here, we describe its single-stranded DNA (ssDNA) binding properties. Based on previous findings with ICP8 and BALF2, a 60-amino-acid C-terminal deletion mutant of Orf6 was generated, and the protein was purified to explore the function of the C terminus in ssDNA binding. We showed that full-length ORF6 binds cooperatively to M13 ssDNA, disrupting its secondary structure and extending it to a length equivalent to that of duplex M13 DNA. The width of the ORF6-ssDNA filament is 9 nm, and a 7.3-nm repeat can be distinguished along the filament axis. Fluorescence polarization analysis revealed that the wild-type and C-terminal mutant ORF6 proteins bind equally well to short ssDNA substrates, with dissociation constant (Kd) values of 2.2 × 10−7M and 1.5 × 10−7M, respectively. These values were confirmed by electrophoretic mobility shift assay (EMSA) analysis, which also suggested that binding by the full-length protein may involve both monomers and small multimers. While no significant difference in affinities of binding between full-length ORF6 and the C-terminal deletion mutant were observed with the short DNAs, binding of the C-terminal mutant protein to M13 ssDNA showed a clear lack of cooperativity as seen by electron microscopy (EM). Incubation of a duplex DNA containing a long single-stranded tail with double-helical ORF6 protein filaments revealed that the ssDNA segment can be enveloped within the protein filament without disrupting the filament structure. IMPORTANCE This work describes the biochemical characterization of the single-stranded DNA binding protein of KSHV, ORF6, central to viral DNA replication in infected cells. A C-terminal deletion mutant protein was generated to aid in understanding the role of the C terminus in DNA binding. Here we analyze the binding of the wild-type and

  6. A Structural Basis for BRD2/4-Mediated Host Chromatin Interaction and Oligomer Assembly of Kaposi Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus LANA Proteins

    PubMed Central

    Krausze, Joern; Richter, Ulrike; Adler, Heiko; Fedorov, Roman; Pietrek, Marcel; Rückert, Jessica; Ritter, Christiane; Schulz, Thomas F.; Lührs, Thorsten

    2013-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence. PMID:24146614

  7. Structure of the infected cell protein 0 gene of canine herpesvirus.

    PubMed

    Miyoshi, M; Takiguchi, M; Yasuda, J; Hashimoto, A; Takada, A; Okazaki, K; Kida, H

    2000-01-01

    The canine herpesvirus infected cell protein 0 (CICP0) gene was sequenced. The CICP0 gene was transcribed as a 1.4 kb mRNA from the end of the unique long region nearby the internal repeat during early phase of productive infection of the virus. An open reading frame of the gene encodes a polypeptide of 333 amino acids. The RING finger domain and acidic transcriptional activation domain were found at the N-terminus and within the middle region in the deduced amino acid sequence, respectively, suggesting that the CICP0, like the ICP0 of herpes simplex virus 1, is a transactivating protein. PMID:11003479

  8. Molecular piracy of Kaposi's sarcoma associated herpesvirus.

    PubMed

    Choi, J; Means, R E; Damania, B; Jung, J U

    2001-01-01

    Kaposi's Sarcoma associated Herpesvirus (KSHV) is the most recently discovered human tumor virus and is associated with the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma, and Multicentric Casttleman's disease. KSHV contains numerous open reading frames with striking homology to cellular genes. These viral gene products play a variety of roles in KSHV-associated pathogenesis by disrupting cellular signal transduction pathways, which include interferon-mediated anti-viral responses, cytokine-regulated cell growth, apoptosis, and cell cycle control. In this review, we will attempt to cover our understanding of how viral proteins deregulate cellular signaling pathways, which ultimately contribute to the conversion of normal cells to cancerous cells. PMID:11325605

  9. Viral and host proteins involved in picornavirus life cycle.

    PubMed

    Lin, Jing-Yi; Chen, Tzu-Chun; Weng, Kuo-Feng; Chang, Shih-Cheng; Chen, Li-Lien; Shih, Shin-Ru

    2009-01-01

    Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions. PMID:19925687

  10. Cooperation between Viral Interferon Regulatory Factor 4 and RTA To Activate a Subset of Kaposi's Sarcoma-Associated Herpesvirus Lytic Promoters

    PubMed Central

    Xi, Xiangmei; Persson, Linda M.; O'Brien, Michael W.; Mohr, Ian

    2012-01-01

    The four Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded interferon (IFN) regulatory factor homologues (vIRF1 to vIRF4) are used to counter innate immune defenses and suppress p53. The vIRF genes are arranged in tandem but differ in function and expression. In KSHV-infected effusion lymphoma lines, K10.5/vIRF3 and K11/vIRF2 mRNAs are readily detected during latency, whereas K9/vIRF1 and K10/vIRF4 mRNAs are upregulated during reactivation. Here we show that the K10/vIRF4 promoter responds to the lytic switch protein RTA in KSHV-infected cells but is essentially unresponsive in uninfected cells. Coexpression of RTA with vIRF4 is sufficient to restore regulation, a property not shared by other vIRFs. The K9/vIRF1 promoter behaves similarly, and production of infectious virus is enhanced by the presence of vIRF4. Synergy requires the DNA-binding domain (DBD) and C-terminal IRF homology regions of vIRF4. Mutations of arginine residues within the putative DNA recognition helix of vIRF4 or the invariant cysteines of the adjacent CxxC motif abolish cooperation with RTA, in the latter case by preventing self-association. The oligomerization and transactivation functions of RTA are also essential for synergy. The K10/vIRF4 promoter contains two transcription start sites (TSSs), and a 105-bp fragment containing the proximal promoter is responsive to vIRF4/RTA. Binding of a cellular factor(s) to this fragment is altered when both viral proteins are present, suggesting a possible mechanism for transcriptional synergy. Reliance on coregulators encoded by either the host or viral genome provides an elegant strategy for expanding the regulatory potential of a master regulator, such as RTA. PMID:22090118

  11. Viral DNA tethering domains complement replication-defective mutations in the p12 protein of MuLV Gag.

    PubMed

    Schneider, William M; Brzezinski, Jonathon D; Aiyer, Sriram; Malani, Nirav; Gyuricza, Mercedes; Bushman, Frederic D; Roth, Monica J

    2013-06-01

    The p12 protein of murine leukemia virus (MuLV) group-specific antigen (Gag) is associated with the preintegration complex, and mutants of p12 (PM14) show defects in nuclear entry or retention. Here we show that p12 proteins engineered to encode peptide sequences derived from known viral tethering proteins can direct chromatin binding during the early phase of viral replication and rescue a lethal p12-PM14 mutant. Peptides studied included segments of Kaposi sarcoma herpesvirus latency-associated nuclear antigen (LANA)(1-23), human papillomavirus 8 E2, and prototype foamy virus chromatin-binding sequences. Amino acid substitutions in Kaposi sarcoma herpesvirus LANA and prototype foamy virus chromatin-binding sequences that blocked nucleosome association failed to rescue MuLV p12-PM14. Rescue by a larger LANA peptide, LANA(1-32), required second-site mutations that are predicted to reduce peptide binding affinity to chromosomes, suggesting that excessively high binding affinity interfered with Gag/p12 function. This is supported by confocal microscopy of chimeric p12-GFP fusion constructs showing the reverted proteins had weaker association to condensed mitotic chromosomes. Analysis of the integration-site selection of these chimeric viruses showed no significant change in integration profile compared with wild-type MuLV, suggesting release of the tethered p12 post mitosis, before viral integration. PMID:23661057

  12. HCMV gB shares structural and functional properties with gB proteins from other herpesviruses

    SciTech Connect

    Sharma, Sapna; Wisner, Todd W.; Johnson, David C.; Heldwein, Ekaterina E.

    2013-01-20

    Glycoprotein B (gB) facilitates HCMV entry into cells by binding receptors and mediating membrane fusion. The crystal structures of gB ectodomains from HSV-1 and EBV are available, but little is known about the HCMV gB structure. Using multiangle light scattering and electron microscopy, we show here that HCMV gB ectodomain is a trimer with the overall shape similar to HSV-1 and EBV gB ectodomains. HCMV gB ectodomain forms rosettes similar to rosettes formed by EBV gB and the postfusion forms of other viral fusogens. Substitution of several bulky hydrophobic residues within the putative fusion loops with more hydrophilic residues reduced rosette formation and abolished cell fusion. We propose that like gB proteins from HSV-1 and EBV, HCMV gB has two internal hydrophobic fusion loops that likely interact with target membranes. Our work establishes structural and functional similarities between gB proteins from three subfamilies of herpesviruses.

  13. Curvature Sensing by a Viral Scission Protein.

    PubMed

    Martyna, Agnieszka; Gómez-Llobregat, Jordi; Lindén, Martin; Rossman, Jeremy S

    2016-06-28

    Membrane scission is the final step in all budding processes wherein a membrane neck is sufficiently constricted so as to allow for fission and the release of the budded particle. For influenza viruses, membrane scission is mediated by an amphipathic helix (AH) domain in the viral M2 protein. While it is known that the M2AH alters membrane curvature, it is not known how the protein is localized to the center neck of budding virions where it would be able to cause membrane scission. Here, we use molecular dynamics simulations on buckled lipid bilayers to show that the M2AH senses membrane curvature and preferentially localizes to regions of high membrane curvature, comparable to that seen at the center neck of budding influenza viruses. These results were then validated using in vitro binding assays to show that the M2AH senses membrane curvature by detecting lipid packing defects in the membrane. Our results show that the M2AH senses membrane curvature and suggest that the AH domain may localize the protein at the viral neck where it can then mediate membrane scission and the release of budding viruses. PMID:27299375

  14. Herpesvirus-dependent amplification and inversion of cell-associated viral thymidine kinase gene flanked by viral a sequences and linked to an origin of viral DNA replication.

    PubMed Central

    Mocarski, E S; Roizman, B

    1982-01-01

    The genome of herpes simplex virus 1 or 2 consists of two components, L and S, which invert relative to each other during infection. As a result, viral DNA consists of four equimolar populations of molecules differing solely in the relative orientations of the L and S components. Previous studies have shown that the a sequences, located in the same orientation at the genomic termini and in inverted orientation at the L-S junction, play a key role in the inversion of L and S components. In this report we describe a virus-dependent system designed to allow identification of the viral genes capable of acting in trans to invert DNA flanked by inverted copies of a sequences. In this system, cells are converted to the thymidine kinase-positive phenotype with a chimeric plasmid carrying the thymidine kinase gene flanked by inverted copies of the a sequence and linked to an origin of viral DNA replication derived from the S component. The DNA introduced into the cells is retained and propagated in its original sequence arrangement as head-to-tail concatemers. Infection of these cells with herpes simplex virus 1 or 2 results in as much as 100-fold amplification of the plasmid sequences and inversion of the DNA flanked by copies of the a sequence. In infected cells, the amplified resident DNA accumulates in head-to-tail concatemers and no rearrangement other than the inversions could be detected. These results suggest that the a sequence-dependent inversions required trans-acting viral gene products. Images PMID:6291055

  15. Superresolution imaging of viral protein trafficking

    PubMed Central

    Salka, Kyle; Bhuvanendran, Shivaprasad; Yang, David

    2015-01-01

    The endoplasmic reticulum (ER) membrane is closely apposed to the outer mitochondrial membrane (OMM), which facilitates communication between these organelles. These contacts, known as mitochondria-associated membranes (MAM), facilitate calcium signaling, lipid transfer, as well as antiviral and stress responses. How cellular proteins traffic to the MAM, are distributed therein, and interact with ER and mitochondrial proteins are subject of great interest. The human cytomegalovirus UL37 exon 1 protein or viral mitochondria-localized inhibitor of apoptosis (vMIA) is crucial for viral growth. Upon synthesis at the ER, vMIA traffics to the MAM and OMM, where it reprograms the organization and function of these compartments. vMIA significantly changes the abundance of cellular proteins at the MAM and OMM, including proteins that regulate calcium homeostasis and cell death. Through the use of superresolution imaging, we have shown that vMIA is distributed at the OMM in nanometer scale clusters. This is similar to the clusters reported for the mitochondrial calcium channel, VDAC, as well as electron transport chain, translocase of the OMM complex, and mitochondrial inner membrane organizing system components. Thus, aside from addressing how vMIA targets the MAM and regulates survival of infected cells, biochemical studies and superresolution imaging of vMIA offer insights into the formation, organization, and functioning of MAM. Here, we discuss these insights into trafficking, function, and organization of vMIA at the MAM and OMM and discuss how the use of superresolution imaging is contributing to the study of the formation and trafficking of viruses. PMID:25724304

  16. Selective killing of Kaposi's sarcoma-associated herpesvirus lytically infected cells with a recombinant immunotoxin targeting the viral gpK8.1A envelope glycoprotein.

    PubMed

    Chatterjee, Deboeeta; Chandran, Bala; Berger, Edward A

    2012-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is etiologically associated with three neoplastic syndromes: Kaposi sarcoma and the uncommon HIV-associated B-cell lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. The incidence of the latter B-cell pathology has been increasing in spite of antiretroviral therapy; its association with lytic virus replication has prompted interest in therapeutic strategies aimed at this phase of the virus life cycle. We designed and expressed a recombinant immunotoxin (2014-PE38) targeting the gpK8.1A viral glycoprotein expressed on the surface of the virion and infected cells. We show that this immunotoxin selectively kills KSHV-infected cells in dose-dependent fashion, resulting in major reductions of infectious virus release. The immunotoxin and ganciclovir, an inhibitor of viral DNA replication, showed marked reciprocal potentiation of antiviral activities. These results suggest that the immunotoxin, alone or in combination, may represent a new approach to treat diseases associated with KSHV lytic replication. PMID:22377676

  17. Equine herpesvirus type 4 UL56 and UL49.5 proteins downregulate cell surface major histocompatibility complex class I expression independently of each other.

    PubMed

    Said, Abdelrahman; Azab, Walid; Damiani, Armando; Osterrieder, Nikolaus

    2012-08-01

    Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER. PMID:22623773

  18. Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins down regulate both DC-SIGN and DC-SIGNR.

    PubMed

    Lang, Sabine M; Bynoe, Meisha O F; Karki, Roshan; Tartell, Michael A; Means, Robert E

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman's disease, primary effusion lymphoma and Kaposi's sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins. PMID:23460925

  19. The Role of PI3K/Akt in Human Herpesvirus Infection: from the Bench to the Bedside

    PubMed Central

    Liu, XueQiao; Cohen, Jeffrey I.

    2015-01-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  20. The role of PI3K/Akt in human herpesvirus infection: From the bench to the bedside.

    PubMed

    Liu, XueQiao; Cohen, Jeffrey I

    2015-05-01

    The phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway regulates several key cellular functions including protein synthesis, cell growth, glucose metabolism, and inflammation. Many viruses have evolved mechanisms to manipulate this signaling pathway to ensure successful virus replication. The human herpesviruses undergo both latent and lytic infection, but differ in cell tropism, growth kinetics, and disease manifestations. Herpesviruses express multiple proteins that target the PI3K/Akt cell signaling pathway during the course of their life cycle to facilitate viral infection, replication, latency, and reactivation. Rare human genetic disorders with mutations in either the catalytic or regulatory subunit of PI3K that result in constitutive activation of the protein predispose to severe herpesvirus infections as well as to virus-associated malignancies. Inhibiting the PI3K/Akt pathway or its downstream proteins using drugs already approved for other diseases can block herpesvirus lytic infection and may reduce malignancies associated with latent herpesvirus infections. PMID:25798530

  1. Detection of cyprinid herpesvirus 2 in peripheral blood cells of silver crucian carp, Carassius auratus gibelio (Bloch), suggests its potential in viral diagnosis.

    PubMed

    Wang, H; Xu, Lj; Lu, Lq

    2016-02-01

    Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection. PMID:25630360

  2. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    PubMed Central

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  3. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription.

    PubMed

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  4. Detection of Human Herpesvirus-6 Variants in Pediatric Brain Tumors: Association of Viral Antigen in Low Grade Gliomas

    PubMed Central

    Crawford, John R.; Santi, Maria R.; Thorarinsdottir, Halldora K.; Cornelison, Robert; Rushing, Elisabeth J.; Zhang, Huizhen; Yao, Karen; Jacobson, Steven; MacDonald, Tobey J.

    2009-01-01

    Background Human Herpesvirus-6 (HHV-6) has been associated with a diverse spectrum of central nervous system (CNS) diseases and reported glial tropism. Objective To determine if HHV-6 is present in a series of pediatric brain tumors. Study Design Pediatric gliomas from 88 untreated patients represented in a tissue microarray (TMA) were screened for HHV-6 by nested polymerase chain reaction (PCR), in situ hybridization (ISH), and immunohistochemistry (IHC) and compared to non glial tumors (N=22) and control brain (N=32). Results were correlated with tumor grade and overall survival. Results HHV-6 U57 was detected by nested PCR in 68/120 (57%) tumors and 7/32 (22%) age-matched non-tumor brain (P=0.001). HHV-6 U31 was positive in 73/120 (61%) tumors and 11/32 (34%) controls (P=0.019). Seventy-two percent (43/60) of tumors were HHV-6 Variant A. HHV-6 U57 was confirmed by ISH in 83/150 (54%) tumors and 10/32 (31%) controls (P=0.021), revealing a non-lymphocytic origin of HHV-6. HHV-6A/B gp116/64/54 late antigen was detected by IHC in 50/124 (40%) tumors and 6/32 (18%) controls (P=0.013). Interestingly, 58% of low grade gliomas (N=67) were IHC positive compared to 19% of high grade gliomas (N=21, P=0.002) and 25% of non gliomas (N=36; P=0.001). HHV-6A/B gp116/64/54 antigen co-localized with glial fibrillary acidic protein, confirming the astrocytic origin of antigen. Overall, there was no primary association between HHV-6A/B gp116/64/54 antigen detection and survival (P=0.861). Conclusions We provide the first reported series of HHV-6 detection in pediatric brain tumors. The predominance of HHV-6 in glial tumors warrants further investigation into potential neurooncologic disease mechanisms. PMID:19505845

  5. Genome Sequence of Canine Herpesvirus

    PubMed Central

    Papageorgiou, Konstantinos V.; Suárez, Nicolás M.; Wilkie, Gavin S.; McDonald, Michael; Graham, Elizabeth M.; Davison, Andrew J.

    2016-01-01

    Canine herpesvirus is a widespread alphaherpesvirus that causes a fatal haemorrhagic disease of neonatal puppies. We have used high-throughput methods to determine the genome sequences of three viral strains (0194, V777 and V1154) isolated in the United Kingdom between 1985 and 2000. The sequences are very closely related to each other. The canine herpesvirus genome is estimated to be 125 kbp in size and consists of a unique long sequence (97.5 kbp) and a unique short sequence (7.7 kbp) that are each flanked by terminal and internal inverted repeats (38 bp and 10.0 kbp, respectively). The overall nucleotide composition is 31.6% G+C, which is the lowest among the completely sequenced alphaherpesviruses. The genome contains 76 open reading frames predicted to encode functional proteins, all of which have counterparts in other alphaherpesviruses. The availability of the sequences will facilitate future research on the diagnosis and treatment of canine herpesvirus-associated disease. PMID:27213534

  6. Recombinant bovine herpesvirus-1 expressing p23 protein of Cryptosporidium parvum induces neutralizing antibodies in rabbits.

    PubMed

    Takashima, Yasuhiro; Xuan, Xuenan; Kimata, Isao; Iseki, Motohiro; Kodama, Yoshikatsu; Nagane, Noriko; Nagasawa, Hideyuki; Matsumoto, Yasunobu; Mikami, Takeshi; Otsuka, Haruki

    2003-04-01

    In order to develop a vaccine against cryptosporidiosis in cattle, we constructed a recombinant bovine herpesvirus-1 (BHV-1) expressing an immunodominant surface protein, p23, of Cryptosporidium parvum sporozoites. In the recombinant virus, the p23 gene under the control of a CAG promoter and a gene coding for an enhanced green fluorescent protein were integrated into the gG gene of BHV-1. Despite a low frequency of homologous recombination, cloning of the recombinants was easy because of the specific fluorescence of the plaques formed by recombinants. These plaques were among the plaques of the nonfluorescent parental virus. All clones selected for fluorescence also contained the p23 gene. In MDBK cells infected with the recombinant BHV-1, the antibody against the p23 protein recognized the p23 protein as an approximately 23-kDa specific band in Western blotting analysis. Rabbits immunized with the recombinant produced IgG against the p23 protein. It was also demonstrated that the sera of immunized rabbits reduced infection of C. parvum sporozoites in HCT-8 cells. The serum of an immunized rabbit reduced infection compared with the normal rabbit serum control. These results indicate that the recombinant BHV-1 induces neutralizing antibodies in rabbits. PMID:12760641

  7. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait?

    PubMed

    James, Claire D; Roberts, Sally

    2016-01-01

    Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis. PMID:26797638

  8. Bovine herpesvirus 1 tegument protein VP22 interacts with histones, and the carboxyl terminus of VP22 is required for nuclear localization.

    PubMed

    Ren, X; Harms, J S; Splitter, G A

    2001-09-01

    The bovine herpesvirus 1 (BHV-1) UL49 gene encodes a viral tegument protein termed VP22. UL49 homologs are conserved among alphaherpesviruses. Interestingly, the BHV-1 VP22 deletion mutant virus is asymptomatic and avirulent in infected cattle but produces only a slight reduction in titer in vitro. Attenuation of the BHV-1 VP22 deletion mutant virus in vivo suggests that VP22 plays a functional role in BHV-1 replication. In herpes simplex virus type 1, the VP22 homolog was previously shown to interact with another tegument protein,VP16, the alpha-transinducing factor in vitro. In this report, we show that (i) the nuclear targeting of VP22 is independent of other viral factors, (ii) the carboxyl terminus of VP22 is required for its nuclear localization, (iii) VP22 associates with histones and nucleosomes, (iv) an antihistone monoclonal antibody cross-reacts with VP22, and (v) acetylation of histone H4 is decreased in VP22-expressing cells as well as virus-infected cells. Our data suggest that VP22 may have a modulatory function during BHV-1 infection. PMID:11483770

  9. Structures and Mechanisms of Viral Membrane Fusion Proteins

    PubMed Central

    White, Judith M.; Delos, Sue E.; Brecher, Matthew; Schornberg, Kathryn

    2009-01-01

    Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus. PMID:18568847

  10. Propranolol Decreases Proliferation of Endothelial Cells Transformed by Kaposi's Sarcoma-Associated Herpesvirus and Induces Lytic Viral Gene Expression

    PubMed Central

    Hanson, Ryan S.; Manion, Rory D.

    2015-01-01

    Kaposi's sarcoma (KS) is common in Africa, but economic constraints hinder successful treatment in most patients. Propranolol, a generic β-adrenergic antagonist, decreased proliferation of KS-associated herpesvirus (KSHV)-infected cells. Downregulation of cyclin A2 and cyclin-dependent kinase 1 (CDK1) recapitulated this phenotype. Additionally, propranolol induced lytic gene expression in association with downregulation of CDK6. Thus, propranolol has diverse effects on KSHV-infected cells, and this generic drug has potential as a therapeutic agent for KS. PMID:26269192

  11. Effect of viral dose on experimental pneumonia caused by aerosol exposure of calves to bovine herpesvirus 1 and Pasteurella haemolytica.

    PubMed Central

    Yates, W D; Jericho, K W; Doige, C E

    1983-01-01

    The effect of various aerosol doses of bovine herpesvirus 1, followed four days later by aerosol exposure to a constant level of Pasteurella haemolytica, was studied in 16 crossbred Hereford range calves. A Collision nebulizer was used to generate aerosols from virus suspensions with concentrations of 10(8.2) (high), 10(5.2) (moderate) or 10(2.2) (low) TCID50/mL. The bacterial suspension contained 10(7) colony forming units/mL. Control calves exposed only to P. haemolytica developed no pulmonary lesions. Calves in the low, moderate and high virus exposure groups developed lobular areas of atelectasis; in addition, one calf in the moderate and all four in the high virus exposure group developed fibrinous pneumonia. One of the latter calves died. The 50% effective dose for fibrinous pneumonia under these experimental conditions was 10(6.0) TCID50 bovine herpesvirus 1/mL of suspension in the nebulizer reservoir, and approximately 10(4.0) infectious units inhaled per calf. Images Fig. 2. Fig. 3. Fig. 4. PMID:6299485

  12. Identification and initial characterization of the IR6 protein of equine herpesvirus 1.

    PubMed Central

    O'Callaghan, D J; Colle, C F; Flowers, C C; Smith, R H; Benoit, J N; Bigger, C A

    1994-01-01

    The IR6 gene of equine herpesvirus 1 (EHV-1) is a novel gene that maps within each inverted repeat (IR), encodes a potential protein of 272 amino acids, and is expressed as a 1.2-kb RNA whose synthesis begins at very early times (1.5 h) after infection and continues throughout the infection cycle (C. A. Breeden, R. R. Yalamanchili, C.F. Colle, and D.J. O'Callaghan, Virology 191:649-660,1992). To identify the IR6 protein and ascertain its properties, we generated an IR6-specific polyclonal antiserum to a TrpE/IR6 fusion protein containing 129 amino acids (residues 134 to 262) of the IR6 protein. This antiserum immunoprecipitated a 33-kDa protein generated by in vitro translation of mRNA transcribed from a pGEM construct (IR6/pGEM-3Z) that contains the entire IR6 open reading frame. The anti-IR6 antibody also recognized an infected-cell protein of approximately 33 kDa that was expressed as early as 1 to 2 h postinfection and was synthesized throughout the infection cycle. A variety of biochemical analyses including radiolabeling the IR6 protein with oligosaccharide precursors, translation of IR6 mRNA in the presence of canine pancreatic microsomes, radiolabeling the IR6 protein in the presence of tunicamycin, and pulse-chase labeling experiments indicated that the two potential sites for N-linked glycosylation were not used and that the IR6 protein does not enter the secretory pathway. To address the possibility that the unique IR6 gene encodes a novel regulatory protein, we transiently transfected an IR6 expression construct into L-M fibroblasts alone or with an immediate-early gene expression construct along with a representative EHV-1 immediate-early, early, or late promoter-chloramphenicol acetyltransferase reporter construct. The results indicated that the IR6 protein does not affect the expression of these representative promoter constructs. Interestingly, the IR6 protein was shown to be phosphorylated and to associate with purified EHV-1 virions and

  13. Identification and initial characterization of the IR6 protein of equine herpesvirus 1.

    PubMed

    O'Callaghan, D J; Colle, C F; Flowers, C C; Smith, R H; Benoit, J N; Bigger, C A

    1994-09-01

    The IR6 gene of equine herpesvirus 1 (EHV-1) is a novel gene that maps within each inverted repeat (IR), encodes a potential protein of 272 amino acids, and is expressed as a 1.2-kb RNA whose synthesis begins at very early times (1.5 h) after infection and continues throughout the infection cycle (C. A. Breeden, R. R. Yalamanchili, C.F. Colle, and D.J. O'Callaghan, Virology 191:649-660,1992). To identify the IR6 protein and ascertain its properties, we generated an IR6-specific polyclonal antiserum to a TrpE/IR6 fusion protein containing 129 amino acids (residues 134 to 262) of the IR6 protein. This antiserum immunoprecipitated a 33-kDa protein generated by in vitro translation of mRNA transcribed from a pGEM construct (IR6/pGEM-3Z) that contains the entire IR6 open reading frame. The anti-IR6 antibody also recognized an infected-cell protein of approximately 33 kDa that was expressed as early as 1 to 2 h postinfection and was synthesized throughout the infection cycle. A variety of biochemical analyses including radiolabeling the IR6 protein with oligosaccharide precursors, translation of IR6 mRNA in the presence of canine pancreatic microsomes, radiolabeling the IR6 protein in the presence of tunicamycin, and pulse-chase labeling experiments indicated that the two potential sites for N-linked glycosylation were not used and that the IR6 protein does not enter the secretory pathway. To address the possibility that the unique IR6 gene encodes a novel regulatory protein, we transiently transfected an IR6 expression construct into L-M fibroblasts alone or with an immediate-early gene expression construct along with a representative EHV-1 immediate-early, early, or late promoter-chloramphenicol acetyltransferase reporter construct. The results indicated that the IR6 protein does not affect the expression of these representative promoter constructs. Interestingly, the IR6 protein was shown to be phosphorylated and to associate with purified EHV-1 virions and

  14. Viral and host control of cytomegalovirus maturation

    PubMed Central

    Tandon, Ritesh; Mocarski, Edward S.

    2012-01-01

    Maturation in herpesviruses initiates in the nucleus of the infected cell with encapsidation of viral DNA to form nucleocapsids and concludes with envelopment in the cytoplasm to form infectious virions that egress the cell. The entire process of virus maturation is orchestrated by protein-protein interactions and enzymatic activities of viral and host origin. Viral tegument proteins play important roles in maintaining the structural stability of capsids and directing the acquisition of virus envelope. Envelopment occurs at modified host membranes and exploits host vesicular trafficking. In this review, we summarize the current knowledge and concepts in human cytomegalovirus (HCMV) maturation and their parallels in other herpesviruses with an emphasis on viral and host factors regulating this process. PMID:22633075

  15. Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms

    PubMed Central

    Botto, Sara; Totonchy, Jennifer E.; Gustin, Jean K.

    2015-01-01

    ABSTRACT Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype. PMID:26045540

  16. Simultaneous Detection of Antibodies to five Simian Viruses in Nonhuman Primates using Recombinant Viral Protein Based Multiplex Microbead ImmunoAssays

    PubMed Central

    Liao, Qi; Guo, Huishan; Tang, Min; Touzjian, Neal; Lerche, Nicholas W.; Lu, Yichen; Yee, JoAnn L.

    2011-01-01

    Routine screening for infectious agents is critical in establishing and maintaining specific pathogen free (SPF) nonhuman primate (NHP) colonies. More efficient, higher throughput, less costly reagent, and reduced sample consumption multiplex microbead immunoassays (MMIAs) using purified viral lysates have been developed previously to address some disadvantages of the traditional individual enzyme-linked immunosorbent assay (ELISA) methods. To overcome some of the technical and biosafety difficulties in preparing antigens from live viruses for viral lysate protein based MMIAs, novel MMIAs using recombinant glycoprotein D precursor (gD) protein of herpesvirus B and four viral gag proteins of Simian Immunodeficiency Virus (SIV), Simian T Cell Lymphotropic Virus (STLV), Simian Foamy Virus (SFV) and Simian Betaretrovirus (SRV) as antigens have been developed in the current study. The data showed that the recombinant viral protein based MMIAs detected simultaneously antibodies to each of these five viruses with high sensitivity and specificity, and correlated well with viral lysate based MMIAs. Therefore, recombinant viral protein based MMIA is an effective and efficient routine screening method to determine the infection status of nonhuman primates. PMID:21945221

  17. Illuminating structural proteins in viral "dark matter" with metaproteomics.

    PubMed

    Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M; Roux, Simon; VerBerkmoes, Nathan C; Rich, Virginia I; Sullivan, Matthew B

    2016-03-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter. PMID:26884177

  18. Illuminating structural proteins in viral "dark matter" with metaproteomics

    DOE PAGESBeta

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun -Hae; Trubl, Gareth; Jones, Robert M.; Roux, Simon; Verberkmoes, Nathan C.; Rich, Virginia I.; Sullivan, Matthew B.

    2016-02-16

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional darkmatter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore,more » four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Altogether, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.« less

  19. The A, B, Cs of Herpesvirus Capsids

    PubMed Central

    Tandon, Ritesh; Mocarski, Edward S.; Conway, James F.

    2015-01-01

    Assembly of herpesvirus nucleocapsids shares significant similarities with the assembly of tailed dsDNA bacteriophages; however, important differences exist. A unique feature of herpesviruses is the presence of different mature capsid forms in the host cell nucleus during infection. These capsid forms, referred to as A-, B-, and C-capsids, represent empty capsids, scaffold containing capsids and viral DNA containing capsids, respectively. The C-capsids are the closest in form to those encapsidated into mature virions and are considered precursors to infectious virus. The evidence supporting A- and B-capsids as either abortive forms or assembly intermediates has been lacking. Interaction of specific capsid forms with viral tegument proteins has been proposed to be a mechanism for quality control at the point of nuclear egress of mature particles. Here, we will review the available literature on these capsid forms and present data to debate whether A- and B-capsids play an important or an extraneous role in the herpesvirus life cycle. PMID:25730559

  20. Herpesvirus BACs: Past, Present, and Future

    PubMed Central

    Warden, Charles; Tang, Qiyi; Zhu, Hua

    2011-01-01

    The herpesviridae are a large family of DNA viruses with large and complicated genomes. Genetic manipulation and the generation of recombinant viruses have been extremely difficult. However, herpesvirus bacterial artificial chromosomes (BACs) that were developed approximately 10 years ago have become useful and powerful genetic tools for generating recombinant viruses to study the biology and pathogenesis of herpesviruses. For example, BAC-directed deletion mutants are commonly used to determine the function and essentiality of viral genes. In this paper, we discuss the creation of herpesvirus BACs, functional analyses of herpesvirus mutants, and future applications for studies of herpesviruses. We describe commonly used methods to create and mutate herpesvirus BACs (such as site-directed mutagenesis and transposon mutagenesis). We also evaluate the potential future uses of viral BACs, including vaccine development and gene therapy. PMID:21048927

  1. New insights into an X-traordinary viral protein

    PubMed Central

    Schaller, Torsten; Bauby, Hélène; Hué, Stéphane; Malim, Michael H.; Goujon, Caroline

    2014-01-01

    Vpx is a protein encoded by members of the HIV-2/SIVsmm and SIVrcm/SIVmnd-2 lineages of primate lentiviruses, and is packaged into viral particles. Vpx plays a critical role during the early steps of the viral life cycle and has been shown to counteract SAMHD1, a restriction factor in myeloid and resting T cells. However, it is becoming evident that Vpx is a multifunctional protein in that SAMHD1 antagonism is likely not its sole role. This review summarizes the current knowledge on this X-traordinary protein. PMID:24782834

  2. Experimental infection of European flat oyster Ostrea edulis with ostreid herpesvirus 1 microvar (OsHV-1μvar): Mortality, viral load and detection of viral transcripts by in situ hybridization.

    PubMed

    López Sanmartín, Monserrat; Power, Deborah M; de la Herrán, Roberto; Navas, José I; Batista, Frederico M

    2016-06-01

    Ostreid herpesvirus 1 (OsHV-1) infections have been reported in several bivalve species. Mortality of Pacific oyster Crassostrea gigas spat has increased considerably in Europe since 2008 linked to the spread of a variant of OsHV-1 called μvar. In the present study we demonstrated that O. edulis juveniles can be infected by OsHV-1μvar when administered as an intramuscular injection. Mortality in the oysters injected with OsHV-1μvar was first detected 4 days after injection and reached 25% mortality at day 10. Moreover, the high viral load observed and the detection of viral transcripts by in situ hybridization in several tissues of dying oysters suggested that OsHV-1μvar was the cause of mortality in the O. edulis juveniles. This is therefore the first study to provide evidence about the pathogenicity of OsHV-1μvar in a species that does not belong to the Crassostrea genus. Additionally, we present a novel method to detect OsHV-1 transcripts in infected individuals' using in situ hybridization. PMID:26945849

  3. The Equine Herpesvirus 2 E1 Open Reading Frame Encodes a Functional Chemokine Receptor

    PubMed Central

    Camarda, Grazia; Spinetti, Gaia; Bernardini, Giovanni; Mair, Catherine; Davis-Poynter, Nick; Capogrossi, Maurizio C.; Napolitano, Monica

    1999-01-01

    Several herpesviruses contain open reading frames (ORFs) that encode potential homologs of eucaryotic genes. Equine herpesvirus 2 (EHV-2) is a gammaherpesvirus related to other lymphotropic herpesviruses such as herpesvirus saimiri and Epstein-Barr virus. The E1 ORF of EHV-2, a G protein-coupled receptor homolog, shows 31 to 47% amino acid identity with known CC chemokine receptors. To investigate whether E1 may encode a functional receptor, we cloned the E1 ORF and expressed it in stably transfected cell lines. We report here the identification of the CC chemokine eotaxin as a functional ligand for the EHV-2 E1 receptor. Chemokines are likely to play a role in the regulation of immune functions in equine hosts during EHV-2 infection and, via interaction with E1, may affect viral replication and/or escape from immune responses. PMID:10559296

  4. Aquareovirus NS80 Initiates Efficient Viral Replication by Retaining Core Proteins within Replication-Associated Viral Inclusion Bodies

    PubMed Central

    Yan, Liming; Zhang, Jie; Guo, Hong; Yan, Shicui; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2015-01-01

    Viral inclusion bodies (VIBs) are specific intracellular compartments for reoviruses replication and assembly. Aquareovirus nonstructural protein NS80 has been identified to be the major constituent for forming globular VIBs in our previous study. In this study, we investigated the role of NS80 in viral structural proteins expression and viral replication. Immunofluorescence assays showed that NS80 could retain five core proteins or inner-capsid proteins (VP1-VP4 and VP6), but not outer-capsid proteins (VP5 and VP7), within VIBs in co-transfected or infected cells. Further co-immunoprecipitation analysis confirmed that NS80 could interact with each core protein respectively. In addition, we found that newly synthesized viral RNAs co-localized with VIBs. Furthermore, time-course analysis of viral structural proteins expression showed that the expression of NS80 was detected first, followed by the detection of inner shell protein VP3, and then of other inner-capsid proteins, suggesting that VIBs were essential for the formation of viral core frame or progeny virion. Moreover, knockdown of NS80 by shRNA not only inhibited the expression of aquareovirus structural proteins, but also inhibited viral infection. These results indicated that NS80-based VIBs were formed at earlier stage of infection, and NS80 was able to coordinate the expression of viral structural proteins and viral replication. PMID:25938226

  5. Development of a duplex quantitative polymerase chain reaction assay for detection of bovine herpesvirus 1 and bovine viral diarrhea virus in bovine follicular fluid.

    PubMed

    Marley, Mylissa S D; Givens, M Daniel; Galik, Patricia K; Riddell, Kay P; Stringfellow, David A

    2008-07-15

    The objective of this study was to develop a duplex quantitative polymerase chain reaction (qPCR) assay for simultaneous detection of bovine herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV) type I and type II. Follicular fluid was collected from a BoHV-1 acutely infected heifer, a BVDV I persistently infected heifer, and from 10 ovaries recovered from an abattoir. Both the BoHV-1 and BVDV contaminated follicular fluid were diluted 1:5 to 1:10(7) using the pooled, abattoir-origin follicular fluid. Each dilution sample was analyzed using the duplex qPCR, virus isolation, reverse transcription-nested PCR (RT-nPCR), and BoHV-1 qPCR. The duplex qPCR was able to simultaneously detect BoHV-1 and BVDV I in the fluid diluted to 1:100 and 1:1000, respectively. These results corresponded with the reverse transcription-nested PCR and BoHV-1 qPCR. Therefore, the duplex qPCR might be used for quality assurance testing to identify these two viruses in cells, fluids and tissues collected from donor animals and used in reproductive technologies. PMID:18452983

  6. Human Oncogenic Herpesvirus and Post-translational Modifications – Phosphorylation and SUMOylation

    PubMed Central

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S.

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  7. Human Oncogenic Herpesvirus and Post-translational Modifications - Phosphorylation and SUMOylation.

    PubMed

    Chang, Pei-Ching; Campbell, Mel; Robertson, Erle S

    2016-01-01

    Pathogens, especially viruses, evolve abilities to utilize cellular machineries to facilitate their survival and propagation. Post-translational modifications (PTMs), especially phosphorylation and SUMOylation, that reversibly modulate the function and interactions of target proteins are among the most important features in cell signaling pathways. PTM-dependent events also serve as one of the favorite targets for viruses. Among the seven unambiguous human oncogenic viruses, hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), Human T lymphotrophic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV), two are herpesviruses. The life cycle of herpesviruses consists of latent and lytic phases and the rapid switch between these states includes global remodeling of the viral genome from heterochromatin-to-euchromatin. The balance between lytic replication and latency is essential for herpesvirus to maintain a persistent infection through a combination of viral propagation and evasion of the host immune response, which consequently may contribute to tumorigenesis. It is no surprise that the swift reversibility of PTMs, especially SUMOylation, a modification that epigenetically regulates chromatin structure, is a major hijack target of the host for oncogenic herpesviruses. In this brief review, we summarize the varied ways in which herpesviruses engage the host immune components through PTMs, focusing on phosphorylation and SUMOylation. PMID:27379086

  8. Studies on viral respiratory disease in laboratory cats. I. Isolation of feline herpesvirus and choice of proper disinfectant.

    PubMed

    Yagami, K; Ando, S; Omata, Y; Furukawa, T; Fukui, M

    1982-01-01

    In the laboratory cat colony consisted of 14 Korats and 8 Japanese native cats, the disease characterized by upper respiratory signs occurred. Seven cytopathogenic agents were isolated from the oropharyngeal swabs and necropsy materials of affected cats by means of inoculation to primary feline kidney cell cultures. One of the isolates (KS-1 strain) was identical with feline herpesvirus (FHV), and appeared to be a causal agent of the trouble. Properties of the KS-1 strain were in general agreement with the known strains of FHV. Serologic examination and clinical analysis suggested that Japanese native cats became carriers, re-excreted the virus and spread it to susceptible cats. Virucidal activities of several disinfectants against FHV, comparing with a feline calicivirus (FCV), were studied and the following conclusions reached: 1) Sodium hypochlorite, iodine complex, benzethonium chloride and chlorhexidine were effective against FHV at commonly used concentrations. 2) Among chemicals tested sodium hypochlorite was most effective against FCV and followed by iodine complex. 3) Benzethonium chloride and chlorhexidine had little efficacy against FCV at commonly used doses. PMID:6281040

  9. Alpha-herpesvirus infection induces the formation of nuclear actin filaments.

    PubMed

    Feierbach, Becket; Piccinotti, Silvia; Bisher, Margaret; Denk, Winfried; Enquist, Lynn W

    2006-08-01

    Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process. PMID:16933992

  10. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 3 Inhibits Gamma Interferon and Major Histocompatibility Complex Class II Expression▿†

    PubMed Central

    Schmidt, Katharina; Wies, Effi; Neipel, Frank

    2011-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) carries four genes with homology to human interferon regulatory factors (IRFs). One of these IRFs, the viral interferon regulatory factor 3 (vIRF-3), is expressed in latently infected primary effusion lymphoma (PEL) cells and required for their continuous proliferation. Moreover, vIRF-3 is known to be involved in modulation of the type I interferon (IFN) response. We now show that vIRF-3 also interferes with the type II interferon system and antigen presentation to the adaptive immune system. Starting with an analysis of the transcriptome, we show that vIRF-3 inhibits expression of major histocompatibility complex class II (MHC II) molecules: small interfering RNA (siRNA)-mediated knockdown of vIRF-3 in KSHV-infected PEL cell lines resulted in increased MHC II levels; overexpression of vIRF-3 in KSHV-negative B cells leads to downmodulation of MHC II. This regulation could be traced back to inhibition of class II transactivator (CIITA) transcription by vIRF-3. Reporter assays revealed that the gamma interferon (IFN-γ)-sensitive CIITA promoters PIV and PIII were inhibited by vIRF-3. Consistently, IFN-γ levels increased upon vIRF-3 knockdown in PEL cells. IFN-γ regulation by vIRF-3 was confirmed in reporter assays as well as by upregulation of typical IFN-γ target genes upon knockdown of vIRF-3 in PEL cells. In summary, we conclude that vIRF-3 contributes to the viral immunoevasion by downregulation of IFN-γ and CIITA and thus MHC II expression. PMID:21345951

  11. Genomewide mapping and screening of Kaposi's sarcoma-associated herpesvirus (KSHV) 3' untranslated regions identify bicistronic and polycistronic viral transcripts as frequent targets of KSHV microRNAs.

    PubMed

    Bai, Zhiqiang; Huang, Yufei; Li, Wan; Zhu, Ying; Jung, Jae U; Lu, Chun; Gao, Shou-Jiang

    2014-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes over 90 genes and 25 microRNAs (miRNAs). The KSHV life cycle is tightly regulated to ensure persistent infection in the host. In particular, miRNAs, which primarily exert their effects by binding to the 3' untranslated regions (3'UTRs) of target transcripts, have recently emerged as key regulators of KSHV life cycle. Although studies with RNA cross-linking immunoprecipitation approach have identified numerous targets of KSHV miRNAs, few of these targets are of viral origin because most KSHV 3'UTRs have not been characterized. Thus, the extents of viral genes targeted by KSHV miRNAs remain elusive. Here, we report the mapping of the 3'UTRs of 74 KSHV genes and the effects of KSHV miRNAs on the control of these 3'UTR-mediated gene expressions. This analysis reveals new bicistronic and polycistronic transcripts of KSHV genes. Due to the 5'-distal open reading frames (ORFs), KSHV bicistronic or polycistronic transcripts have significantly longer 3'UTRs than do KSHV monocistronic transcripts. Furthermore, screening of the 3'UTR reporters has identified 28 potential new targets of KSHV miRNAs, of which 11 (39%) are bicistronic or polycistronic transcripts. Reporter mutagenesis demonstrates that miR-K3 specifically targets ORF31-33 transcripts at the lytic locus via two binding sites in the ORF33 coding region, whereas miR-K10a-3p and miR-K10b-3p and their variants target ORF71-73 transcripts at the latent locus through distinct binding sites in both 5'-distal ORFs and intergenic regions. Our results indicate that KSHV miRNAs frequently target the 5'-distal coding regions of bicistronic or polycistronic transcripts and highlight the unique features of KSHV miRNAs in regulating gene expression and life cycle. PMID:24155407

  12. Anti-Viral Antibody Profiling by High Density Protein Arrays

    PubMed Central

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  13. Discovery of host-viral protein complexes during infection

    PubMed Central

    Rowles, Daniell L.; Terhune, Scott S.; Cristea, Ileana M.

    2014-01-01

    Summary Viruses have co-evolved with their hosts, developing effective approaches for hijacking and manipulating host cellular processes. Therefore, for their efficient replication and spread, viruses depend on dynamic and temporally-regulated interactions with host proteins. The rapid identification of host proteins targeted by viral proteins during infection provides significant insights into mechanisms of viral protein function. The resulting discoveries often lead to unique and innovative hypotheses on viral protein function. Here, we describe a robust method for identifying virus-host protein interactions and protein complexes, which we have successfully utilized to characterize spatial-temporal protein interactions during infections with either DNA or RNA viruses, including human cytomegalovirus (HCMV), herpes simplex virus type 1 (HSV-1), pseudorabies virus (PRV), human immunodeficiency virus (HIV-1), Sindbis, and West Nile virus (WNV). This approach involves cryogenic cell lysis, rapid immunoaffinity purification targeting a virus or host protein, followed by identification of associated proteins using mass spectrometry. Like most proteomic approaches, this methodology has evolved over the past few years and continues to evolve. We are presenting here the updated approaches for each step, and discuss alternative strategies allowing for the protocol to be optimized for different biological systems. PMID:23996249

  14. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses. PMID:10774221

  15. Actin in Herpesvirus Infection

    PubMed Central

    Roberts, Kari L.; Baines, Joel D.

    2011-01-01

    Actin is important for a variety of cellular processes, including uptake of extracellular material and intracellular transport. Several emerging lines of evidence indicate that herpesviruses exploit actin and actin-associated myosin motors for viral entry, intranuclear transport of capsids, and virion egress. The goal of this review is to explore these processes and to highlight potential future directions for this area of research. PMID:21994736

  16. Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation.

    PubMed

    Rossetto, Cyprian C; Pari, Gregory S

    2011-12-01

    During lytic infection, Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a polyadenylated nuclear RNA (PAN RNA). This noncoding RNA (ncRNA) is localized to the nucleus and is the most abundant viral RNA during lytic infection; however, to date, the role of PAN RNA in the virus life cycle is unknown. Many examples exist where ncRNAs have a defined key regulatory function controlling gene expression by various mechanisms. Our goal for this study was to identify putative binding partners for PAN RNA in an effort to elucidate a possible function for the transcript in KSHV infection. We employed an in vitro affinity protocol where PAN RNA was used as bait for factors present in BCBL-1 cell nuclear extract to show that PAN RNA interacts with several virus- and host cell-encoded factors, including histones H1 and H2A, mitochondrial and cellular single-stranded binding proteins (SSBPs), and interferon regulatory factor 4 (IRF4). RNA chromatin immunoprecipitation (ChIP) assays confirmed that PAN RNA interacted with these factors in the infected cell environment. A luciferase reporter assay showed that PAN RNA expression interfered with the ability of IRF4/PU.1 to activate the interleukin-4 (IL-4) promoter, strongly suggesting a role for PAN RNA in immune modulation. Since the proteomic screen and functional data suggested a role in immune responses, we investigated if constitutive PAN RNA expression could affect other genes involved in immune responses. PAN RNA expression decreased expression of gamma interferon, interleukin-18, alpha interferon 16, and RNase L. These data strongly suggest that PAN RNA interacts with viral and cellular proteins and can function as an immune modulator. PMID:21957289

  17. Animal models of tumorigenic herpesviruses--an update.

    PubMed

    Dittmer, Dirk P; Damania, Blossom; Sin, Sang-Hoon

    2015-10-01

    Any one model system, be it culture or animal, only recapitulates one aspect of the viral life cycle in the human host. By providing recent examples of animal models for Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, we would argue that multiple animal models are needed to gain a comprehensive understanding of the pathogenesis associated with human oncogenic herpesviruses. Transgenic mice, homologous animal herpesviruses, and tumorgraft and humanized mouse models all complement each other in the study of viral pathogenesis. The use of animal model systems facilitates the exploration of novel anti-viral and anti-cancer treatment modalities for diseases associated with oncogenic herpesviruses. PMID:26476352

  18. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis.

    PubMed

    Cornaby, Caleb; Tanner, Anne; Stutz, Eric W; Poole, Brian D; Berges, Bradford K

    2016-03-01

    Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection. PMID:26669819

  19. Equine Herpesvirus 1 Multiply Inserted Transmembrane Protein pUL43 Cooperates with pUL56 in Downregulation of Cell Surface Major Histocompatibility Complex Class I

    PubMed Central

    Huang, Teng; Ma, Guanggang

    2015-01-01

    ABSTRACT Herpesviruses have evolved an array of strategies to counteract antigen presentation by major histocompatibility complex class I (MHC-I). Previously, we identified pUL56 of equine herpesvirus 1 (EHV-1) as one major determinant of the downregulation of cell surface MHC-I (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554–3563, 2012, http://dx.doi.org/10.1128/JVI.06994-11; T. Huang, M. J. Lehmann, A. Said, G. Ma, and N. Osterrieder, J. Virol. 88:12802–12815, 2014, http://dx.doi.org/10.1128/JVI.02079-14). Since pUL56 was able to exert its function only in the context of virus infection, we hypothesized that pUL56 cooperates with another viral protein. Here, we generated and screened a series of EHV-1 single-gene deletion mutants and found that the pUL43 orthologue was required for downregulation of cell surface MHC-I expression at the same time of infection as when pUL56 exerts its function. We demonstrate that the absence of pUL43 was not deleterious to virus growth and that expression of pUL43 was detectable from 2 h postinfection (p.i.) but decreased after 8 h p.i. due to lysosomal degradation. pUL43 localized within Golgi vesicles and required a unique hydrophilic N-terminal domain to function properly. Finally, coexpression of pUL43 and pUL56 in transfected cells reduced the cell surface expression of MHC-I. This process was dependent on PPxY motifs present in pUL56, suggesting that late domains are required for pUL43- and pUL56-dependent sorting of MHC class I for lysosomal degradation. IMPORTANCE We describe here that the poorly characterized herpesviral protein pUL43 is involved in downregulation of cell surface MHC-I. pUL43 is an early protein and degraded in lysosomes. pUL43 resides in the Golgi vesicles and needs an intact N terminus to induce MHC-I downregulation in infected cells. Importantly, pUL43 and pUL56 cooperate to reduce MHC-I expression on the surface of transfected cells. Our results suggest a model for

  20. Theoretical studies of viral capsid proteins.

    PubMed

    Phelps, D K; Speelman, B; Post, C B

    2000-04-01

    Recent results in structural biology and increases in computer power have prompted initial theoretical studies on capsids of nonenveloped icosahedral viruses. The macromolecular assembly of 60 to 180 protein copies into a protein shell results in a structure of considerable size for molecular dynamics simulations. Nonetheless, progress has been made in examining these capsid assemblies from molecular dynamics calculations and kinetic models. The goals of these studies are to understand capsid function and structural properties, including quarternary structural stability, effects of antiviral compounds that bind the capsid and the self-assembly process. The insight that can be gained from the detailed information provided by simulations is demonstrated in studies of human rhinovirus; an entropic basis for the antiviral activity of hydrophobic compounds, predicted from calculated compressibility values, has been corroborated by experimental measurements on poliovirus. PMID:10753813

  1. Epstein-Barr Viral BNLF2a Protein Hijacks the Tail-anchored Protein Insertion Machinery to Block Antigen Processing by the Transport Complex TAP*

    PubMed Central

    Wycisk, Agnes I.; Lin, Jiacheng; Loch, Sandra; Hobohm, Kathleen; Funke, Jessica; Wieneke, Ralph; Koch, Joachim; Skach, William R.; Mayerhofer, Peter U.; Tampé, Robert

    2011-01-01

    Virus-infected cells are eliminated by cytotoxic T lymphocytes, which recognize viral epitopes displayed on major histocompatibility complex class I molecules at the cell surface. Herpesviruses have evolved sophisticated strategies to escape this immune surveillance. During the lytic phase of EBV infection, the viral factor BNLF2a interferes with antigen processing by preventing peptide loading of major histocompatibility complex class I molecules. Here we reveal details of the inhibition mechanism of this EBV protein. We demonstrate that BNLF2a acts as a tail-anchored protein, exploiting the mammalian Asna-1/WRB (Get3/Get1) machinery for posttranslational insertion into the endoplasmic reticulum membrane, where it subsequently blocks antigen translocation by the transporter associated with antigen processing (TAP). BNLF2a binds directly to the core TAP complex arresting the ATP-binding cassette transporter in a transport-incompetent conformation. The inhibition mechanism of EBV BNLF2a is distinct and mutually exclusive of other viral TAP inhibitors. PMID:21984826

  2. Structural Proteomics of Herpesviruses.

    PubMed

    Leroy, Baptiste; Gillet, Laurent; Vanderplasschen, Alain; Wattiez, Ruddy

    2016-02-01

    Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections. PMID:26907323

  3. Structural Proteomics of Herpesviruses

    PubMed Central

    Leroy, Baptiste; Gillet, Laurent; Vanderplasschen, Alain; Wattiez, Ruddy

    2016-01-01

    Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections. PMID:26907323

  4. Viral and host proteins that modulate filovirus budding

    PubMed Central

    Liu, Yuliang; Harty, Ronald N

    2010-01-01

    The filoviruses, Ebola and Marburg, utilize a multifaceted mechanism for assembly and budding of infectious virions from mammalian cells. Growing evidence not only demonstrates the importance of multiple viral proteins for efficient assembly and budding, but also the exploitation of various host proteins/pathways by the virus during this late stage of filovirus replication, including endocytic compartments, vacuolar protein sorting pathways, ubiquitination machinery, lipid rafts and cytoskeletal components. Continued elucidation of these complex and orchestrated virus-host interactions will provide a fundamental understanding of the molecular mechanisms of filovirus assembly/budding and ultimately lead to the development of novel viral- and/or host-oriented therapeutics to inhibit filovirus egress and spread. This article will focus on the most recent studies on host interactions and modulation of filovirus budding and summarize the key findings from these investigations. PMID:20730024

  5. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 (vIRF4) Perturbs the G1-S Cell Cycle Progression via Deregulation of the cyclin D1 Gene.

    PubMed

    Lee, Hye-Ra; Mitra, Jaba; Lee, Stacy; Gao, Shou-Jiang; Oh, Tae-Kwang; Kim, Myung Hee; Ha, Taekjip; Jung, Jae U

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates the host cell cycle to create an environment optimal for its viral-DNA replication during the lytic life cycle. We report here that KSHV vIRF4 targets the β-catenin/CBP cofactor and blocks its occupancy on the cyclin D1 promoter, suppressing the G1-S cell cycle progression and enhancing KSHV replication. This shows that KSHV vIRF4 suppresses host G1-S transition, possibly providing an intracellular milieu favorable for its replication. PMID:26491150

  6. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication

    PubMed Central

    Zhang, Jie; Guo, Hong; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2016-01-01

    Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1–471) of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection. PMID:26871941

  7. Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies.

    PubMed

    Clément, Nathalie; Knop, David R; Byrne, Barry J

    2009-08-01

    The ability of recombinant adeno-associated viral (rAAV) vectors to exhibit minimal immunogenicity and little to no toxicity or inflammation while eliciting robust, multiyear gene expression in vivo are only a few of the salient features that make them ideally suited for many gene therapy applications. A major hurdle for the use of rAAV in sizeable research and clinical applications is the lack of efficient and versatile large-scale production systems. Continued progression toward flexible, scalable production techniques is a prerequisite to support human clinical evaluation of these novel biotherapeutics. This review examines the current state of large-scale production methods that employ the herpes simplex virus type 1 (HSV) platform to produce rAAV vectors for gene delivery. Improvements have substantially advanced the HSV/AAV hybrid method for large-scale rAAV manufacture, facilitating the generation of highly potent, clinical-grade purity rAAV vector stocks. At least one human clinical trial employing rAAV generated via rHSV helper-assisted replication is poised to commence, highlighting the advances and relevance of this production method. PMID:19569968

  8. Broad-Spectrum Allosteric Inhibition of Herpesvirus Proteases

    PubMed Central

    2015-01-01

    Herpesviruses rely on a homodimeric protease for viral capsid maturation. A small molecule, DD2, previously shown to disrupt dimerization of Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr) by trapping an inactive monomeric conformation and two analogues generated through carboxylate bioisosteric replacement (compounds 2 and 3) were shown to inhibit the associated proteases of all three human herpesvirus (HHV) subfamilies (α, β, and γ). Inhibition data reveal that compound 2 has potency comparable to or better than that of DD2 against the tested proteases. Nuclear magnetic resonance spectroscopy and a new application of the kinetic analysis developed by Zhang and Poorman [Zhang, Z. Y., Poorman, R. A., et al. (1991) J. Biol. Chem. 266, 15591–15594] show DD2, compound 2, and compound 3 inhibit HHV proteases by dimer disruption. All three compounds bind the dimer interface of other HHV proteases in a manner analogous to binding of DD2 to KSHV protease. The determination and analysis of cocrystal structures of both analogues with the KSHV Pr monomer verify and elaborate on the mode of binding for this chemical scaffold, explaining a newly observed critical structure–activity relationship. These results reveal a prototypical chemical scaffold for broad-spectrum allosteric inhibition of human herpesvirus proteases and an approach for the identification of small molecules that allosterically regulate protein activity by targeting protein–protein interactions. PMID:24977643

  9. Post-Translational Modifications of Kaposi’s Sarcoma-Associated Herpesvirus Regulatory Proteins – SUMO and KSHV

    PubMed Central

    Campbell, Mel; Izumiya, Yoshihiro

    2011-01-01

    KSHV latency can be envisioned as an outcome that is balanced between factors that promote viral gene expression and lytic replication against those that facilitate gene silencing and establish or maintain latency. A large body of work has focused on the activities of the key viral regulatory proteins involved in KSHV latent or lytic states. Moreover, recent studies have also begun to document the importance of epigenetic landscape evolution of the KSHV viral genome during latency and reactivation. However, one area of KSHV molecular virology that remains largely unanswered is the precise role of post-translational modifications on the activities of viral factors that function during latency and reactivation. In this review, we will summarize the post-translational modifications associated with three viral factors whose activities contribute to the viral state. The viral proteins discussed are the two major KSHV encoded transcription factors, K-Rta (KSHV replication and transcriptional activator) and K-bZIP (KSHV basic leucine zipper) and the viral latency-associated nuclear antigen (LANA). A special emphasis will be placed on the role of the sumoylation pathway in the modulation of the KSHV lifecycle. Newly uncovered small ubiquitin-like modifier (SUMO)-associated properties of LANA and K-Rta will also be presented, namely LANA histone targeting SUMO E3 ligase activity and K-Rta SUMO-targeted ubiquitin ligase function. PMID:22347876

  10. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    PubMed Central

    Loureiro, Maria Eugenia; D’Antuono, Alejandra; Levingston Macleod, Jesica M.; López, Nora

    2012-01-01

    The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article. PMID:23170177

  11. Uncovering viral protein-protein interactions and their role in arenavirus life cycle.

    PubMed

    Loureiro, Maria Eugenia; D'Antuono, Alejandra; Levingston Macleod, Jesica M; López, Nora

    2012-09-01

    The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article. PMID:23170177

  12. The Tegument Protein pp65 of Human Cytomegalovirus Acts as an Optional Scaffold Protein That Optimizes Protein Uploading into Viral Particles

    PubMed Central

    Reyda, Sabine; Tenzer, Stefan; Navarro, Pedro; Gebauer, Wolfgang; Saur, Michael; Krauter, Steffi; Büscher, Nicole

    2014-01-01

    ABSTRACT The mechanisms that lead to the tegumentation of herpesviral particles are only poorly defined. The phosphoprotein 65 (pp65) is the most abundant constituent of the virion tegument of human cytomegalovirus (HCMV). It is, however, nonessential for virion formation. This seeming discrepancy has not met with a satisfactory explanation regarding the role of pp65 in HCMV particle morphogenesis. Here, we addressed the question of how the overall tegument composition of the HCMV virion depended on pp65 and how the lack of pp65 influenced the packaging of particular tegument proteins. To investigate this, we analyzed the proteomes of pp65-positive (pp65pos) and pp65-negative (pp65neg) virions by label-free quantitative mass spectrometry and determined the relative abundances of tegument proteins. Surprisingly, only pUL35 was elevated in pp65neg virions. As the abundance of pUL35 in the HCMV tegument is low, it is unlikely that it replaced pp65 as a structural component in pp65neg virions. A subset of proteins, including the third most abundant tegument protein, pUL25, as well as pUL43, pUL45, and pUL71, were reduced in pp65neg or pp65low virions, indicating that the packaging of these proteins was related to pp65. The levels of tegument components, like pp28 and the capsid-associated tegument proteins pp150, pUL48, and pUL47, were unaffected by the lack of pp65. Our analyses demonstrate that deletion of pp65 is not compensated for by other viral proteins in the process of virion tegumentation. The results are concordant with a model of pp65 serving as an optional scaffold protein that facilitates protein upload into the outer tegument of HCMV particles. IMPORTANCE The assembly of the tegument of herpesviruses is only poorly understood. Particular proteins, like HCMV pp65, are abundant tegument constituents. pp65 is thus considered to play a major role in tegument assembly in the process of virion morphogenesis. We show here that deletion of the pp65 gene leads to

  13. Molecular piracy: manipulation of the ubiquitin system by Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Fujimuro, Masahiro; Hayward, S Diane; Yokosawa, Hideyoshi

    2007-01-01

    Ubiquitination, one of several post-translational protein modifications, plays a key role in the regulation of cellular events, including protein degradation, signal transduction, endocytosis, protein trafficking, apoptosis and immune responses. Ubiquitin attachment at the lysine residue of cellular factors acts as a signal for endocytosis and rapid degradation by the 26S proteasome. It has recently been observed that viruses, especially oncogenic herpesviruses, utilise molecular piracy by encoding their own proteins to interfere with regulation of cell signalling. Kaposi's sarcoma- associated herpesvirus (KSHV) manipulates the ubiquitin system to facilitate cell proliferation, anti-apoptosis and evasion from immunity. In this review, we will describe the strategies used by KSHV at distinct stages of the viral life-cycle to control the ubiquitin system and promote oncogenesis and viral persistence. PMID:17688306

  14. The Varicella-Zoster Virus Portal Protein Is Essential for Cleavage and Packaging of Viral DNA

    PubMed Central

    Visalli, Melissa A.; House, Brittany L.; Selariu, Anca; Zhu, Hua

    2014-01-01

    ABSTRACT The varicella-zoster virus (VZV) open reading frame 54 (ORF54) gene encodes an 87-kDa monomer that oligomerizes to form the VZV portal protein, pORF54. pORF54 was hypothesized to perform a function similar to that of a previously described herpes simplex virus 1 (HSV-1) homolog, pUL6. pUL6 and the associated viral terminase are required for processing of concatemeric viral DNA and packaging of individual viral genomes into preformed capsids. In this report, we describe two VZV bacterial artificial chromosome (BAC) constructs with ORF54 gene deletions, Δ54L (full ORF deletion) and Δ54S (partial internal deletion). The full deletion of ORF54 likely disrupted essential adjacent genes (ORF53 and ORF55) and therefore could not be complemented on an ORF54-expressing cell line (ARPE54). In contrast, Δ54S was successfully propagated in ARPE54 cells but failed to replicate in parental, noncomplementing ARPE19 cells. Transmission electron microscopy confirmed the presence of only empty VZV capsids in Δ54S-infected ARPE19 cell nuclei. Similar to the HSV-1 genome, the VZV genome is composed of a unique long region (UL) and a unique short region (US) flanked by inverted repeats. DNA from cells infected with parental VZV (VZVLUC strain) contained the predicted UL and US termini, whereas cells infected with Δ54S contained neither. This result demonstrates that Δ54S is not able to process and package viral DNA, thus making pORF54 an excellent chemotherapeutic target. In addition, the utility of BAC constructs Δ54L and Δ54S as tools for the isolation of site-directed ORF54 mutants was demonstrated by recombineering single-nucleotide changes within ORF54 that conferred resistance to VZV-specific portal protein inhibitors. IMPORTANCE Antivirals with novel mechanisms of action would provide additional therapeutic options to treat human herpesvirus infections. Proteins involved in the herpesviral DNA encapsidation process have become promising antiviral targets

  15. A Gateway recombination herpesvirus cloning system with negative selection that produces vectorless progeny.

    PubMed

    Kunec, Dusan; van Haren, Sandra; Burgess, Shane C; Hanson, Larry A

    2009-01-01

    Crossover recombination based on the lambda phage integration/excision functions enables insertion of a gene of interest into a specific locus by a simple one-step in vitro recombination reaction. Recently, a highly efficient recombination system for targeted mutagenesis, which utilizes lambda phage crossover recombination cloning, has been described for a human herpesvirus 2 bacterial artificial chromosome (BAC). The disadvantages of the system are that it allows only neutral selection (loss of green fluorescent protein) of desired recombinants and that it regenerates herpesvirus progeny containing the BAC sequence inserted in the herpesvirus genome. In this study, the existing channel catfish herpesvirus (CCV) infectious clone (in the form of overlapping fragments) was modified to allow introduction of foreign genes by modified lambda phage crossover recombination cloning. This novel system enables negative and neutral selection and regenerates vectorless herpesvirus progeny. Construction of two CCV mutants expressing lacZ, one from the native CCV ORF5 promoter and the other from the immediate-early cytomegalovirus promoter, demonstrated the efficiency and reliability of this system. This novel cloning system enables rapid incorporation, direct delivery and high-level expression of foreign genes by a herpesvirus. This system has broad utility and could be used to facilitate development of recombinant viruses, viral vectors and better vaccines. PMID:18948138

  16. Serum amyloid A protein in acute viral infections.

    PubMed Central

    Miwata, H; Yamada, T; Okada, M; Kudo, T; Kimura, H; Morishima, T

    1993-01-01

    Concentrations of serum amyloid A protein (SAA) were measured in 254 children with viral diseases, including measles, varicella, rubella, mumps, echo-30 meningitis, chronic hepatitis B and C, and in eight with Kawasaki disease. Latex agglutination nephelometric immunoassay was used for assaying SAA. In 191 out of 195 patients (98%), SAA concentrations became markedly raised in the acute phase of the viral disease: measles (97%), varicella (100%), mumps (95%), and echo-30 meningitis (99%) with mean titres of 82.4, 80.5, 60.2, 75.2, and 101.1 micrograms/ml respectively. This increase in SAA was followed by a rapid return to normal concentrations (< 5 micrograms/ml) during convalescence. Remarkably higher concentrations of SAA (mean 1630 micrograms/ml) were detected in the acute phase of patients with Kawasaki disease, but in most of the children with chronic hepatitis B or C, the titres of SAA remained normal. There was no close correlation between SAA and serum concentrations for alpha 1-acid glycoprotein, beta 2-microglobulin, transferrin, and IgG. There was a clear correlation between SAA and C reactive protein concentrations, although SAA showed a greater incremental change than C reactive protein in the acute phase. In the acute phase of these viral diseases, 56% of the patients had raised SAA concentrations (> or = 5 micrograms/ml) with normal C reactive protein concentrations (< 5 micrograms/ml). These results indicate that SAA could be useful as an inflammatory marker in children with acute viral infections. PMID:8481043

  17. Controlled Assembly of Viral Surface Proteins into Biological Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakatani-Webster, Eri

    In recent years, therapeutic use of engineered particles on the 1-1,000 nm scale has gained popularity; these nanoparticles have been developed for use in drug delivery, gene therapy, vaccine preparation, and diagnostics. Often, viral proteins are utilized in the design of such species, and outlined here are completed studies on the in vitro assembly of nanoparticles derived from two very different viral systems. The incorporation of the human immunodeficiency virus (HIV) envelope glycoprotein precursor gp160 into phospholipid bilayer nanodiscs is discussed as a potential platform for vaccine design; efforts were successful, however yield currently limits the practical application of this approach. The utility of bacteriophage lambda procapsids and virus-like particles in therapeutic nanoparticle design is also outlined, as are efforts toward the structural and thermodynamic characterization of a urea-triggered capsid maturation event. It is demonstrated that lambda virus-like particles can be assembled from purified capsid and scaffolding proteins, and that these particles undergo urea-triggered maturation and in vitro decoration protein addition similar to that seen in lambda procapsids. The studies on lambda provided materials for the further development of nanoparticles potentially useful in a clinical setting, as well as shedding light on critical viral assembly and maturation events as they may take place in vivo.

  18. TDP-43 regulates endogenous retrovirus-K viral protein accumulation.

    PubMed

    Manghera, Mamneet; Ferguson-Parry, Jennifer; Douville, Renée N

    2016-10-01

    The concomitant expression of neuronal TAR DNA binding protein 43 (TDP-43) and human endogenous retrovirus-K (ERVK) is a hallmark of ALS. Since the involvement of TDP-43 in retrovirus replication remains controversial, we sought to evaluate whether TDP-43 exerts an effect on ERVK expression. In this study, TDP-43 bound the ERVK promoter in the context of inflammation or proteasome inhibition, with no effect on ERVK transcription. However, over-expression of ALS-associated aggregating forms of TDP-43, but not wild-type TDP-43, significantly enhanced ERVK viral protein accumulation. Human astrocytes and neurons further demonstrated cell-type specific differences in their ability to express and clear ERVK proteins during inflammation and proteasome inhibition. Astrocytes, but not neurons, were able to clear excess ERVK proteins through stress granule formation and autophagy. In vitro findings were validated in autopsy motor cortex tissue from patients with ALS and neuro-normal controls. We further confirmed marked enhancement of ERVK in cortical neurons of patients with ALS. Despite evidence of enhanced stress granule and autophagic response in ALS cortical neurons, these cells failed to clear excess ERVK protein accumulation. This highlights how multiple cellular pathways, in conjunction with disease-associated mutations, can converge to modulate the expression and clearance of viral gene products from genomic elements such as ERVK. In ALS, ERVK protein aggregation is a novel aspect of TDP-43 misregulation contributing towards the pathology of this neurodegenerative disease. PMID:27370226

  19. Cementing proteins provide extra mechanical stabilization to viral cages

    NASA Astrophysics Data System (ADS)

    Hernando-Pérez, M.; Lambert, S.; Nakatani-Webster, E.; Catalano, C. E.; de Pablo, P. J.

    2014-07-01

    The study of virus shell stability is key not only for gaining insights into viral biological cycles but also for using viral capsids in materials science. The strength of viral particles depends profoundly on their structural changes occurring during maturation, whose final step often requires the specific binding of ‘decoration’ proteins (such as gpD in bacteriophage lambda) to the viral shell. Here we characterize the mechanical stability of gpD-free and gpD-decorated bacteriophage lambda capsids. The incorporation of gpD into the lambda shell imparts a major mechanical reinforcement that resists punctual deformations. We further interrogate lambda particle stability with molecular fatigue experiments that resemble the sub-lethal Brownian collisions of virus shells with macromolecules in crowded environments. Decorated particles are especially robust against collisions of a few kBT (where kB is the Boltzmann’s constant and T is the temperature ~300 K), which approximate those anticipated from molecular insults in the environment.

  20. Cementing proteins provide extra mechanical stabilization to viral cages.

    PubMed

    Hernando-Pérez, M; Lambert, S; Nakatani-Webster, E; Catalano, C E; de Pablo, P J

    2014-01-01

    The study of virus shell stability is key not only for gaining insights into viral biological cycles but also for using viral capsids in materials science. The strength of viral particles depends profoundly on their structural changes occurring during maturation, whose final step often requires the specific binding of 'decoration' proteins (such as gpD in bacteriophage lambda) to the viral shell. Here we characterize the mechanical stability of gpD-free and gpD-decorated bacteriophage lambda capsids. The incorporation of gpD into the lambda shell imparts a major mechanical reinforcement that resists punctual deformations. We further interrogate lambda particle stability with molecular fatigue experiments that resemble the sub-lethal Brownian collisions of virus shells with macromolecules in crowded environments. Decorated particles are especially robust against collisions of a few kBT (where kB is the Boltzmann's constant and T is the temperature ~300 K), which approximate those anticipated from molecular insults in the environment. PMID:25072871

  1. Detection of human herpesvirus-6 in adult central nervous system tumors: predominance of early and late viral antigens in glial tumors.

    PubMed

    Crawford, John R; Santi, Maria Rita; Cornelison, Robbie; Sallinen, Satu-Leena; Haapasalo, Hannu; MacDonald, Tobey J

    2009-10-01

    The purpose is to determine the incidence of active and latent human herpesvirus-6 (HHV-6) infection in a large cohort of adult primary and recurrent CNS tumors. We screened a tissue microarray (TMA) containing more than 200 adult primary and recurrent CNS tumors with known clinical information for the presence of HHV-6 DNA by in situ hybridization (ISH) and protein by immunohistochemistry (IHC). One hundred six of 224 (47%) CNS tumors were positive for HHV-6 U57 Major Capsid Protein (MCP) gene by ISH compared to 0/25 non tumor control brain (P = 0.001). Fourteen of 30 (47%) tumors were HHV-6 MCP positive by nested PCR compared to 0/25 non-tumor brain controls (P = 0.001), revealing HHV-6 Variant A in 6 of 14 samples. HHV-6A/B early (p41) and late (gp116/64/54) antigens were detected by IHC in 66 of 277 (24%) (P = 0.003) and 84 of 282 (35%) (P = 0.002) tumors, respectively, suggesting active infection. HHV-6 p41 (P = 0.645) and gp116/64/54 (P = 0.198) antigen detection was independent of recurrent disease. Glial tumors were 3 times more positive by IHC compared to non glial tumors for both HHV-6 gp116/64/54 (P = 0.0002) and HHV-6 p41 (P = 0.004). Kaplan Meier survival analysis showed no effect of HHV-6 gp116/64/54 (P = 0.852) or HHV-6 p41 (P = 0.817) antigen detection on survival. HHV-6 early and late antigens are detected in adult primary and recurrent CNS tumors more frequently in glial tumors. We hypothesize that the glial-tropic features of HHV-6 may play an important modifying role in tumor biology that warrants further investigation. PMID:19424665

  2. Psychosocial modulation of antibody to Epstein-Barr viral capsid antigen and human herpesvirus type-6 in HIV-1-infected and at-risk gay men.

    PubMed

    Esterling, B A; Antoni, M H; Schneiderman, N; Carver, C S; LaPerriere, A; Ironson, G; Klimas, N G; Fletcher, M A

    1992-01-01

    We investigated the effects of two behavioral interventions--aerobic exercise and cognitive behavioral stress management (CBSM)--on Epstein-Barr virus viral capsid antigen (EBV-VCA) and human herpesvirus type-6 (HHV-6) antibody modulation in 65 asymptomatic gay men measured at several time points in the 5 weeks preceding and following notification of their human immunodeficiency virus-type 1 (HIV-1) serostatus. After accounting for potential immunomodulatory confounds, we found that HIV-1 seropositive men had higher EBV-VCA antibody titers than those diagnosed as seronegative at every time point during the study; however, no significant differences were found with respect to HHV-6. Among HIV-1 seropositive and seronegative subjects, respectively, those randomized to either behavioral intervention had significant decreases in both EBV-VCA and HHV-6 antibody titers over the course of the intervention as compared with assessment-only controls (of HIV-1 seropositive and seronegative status) whose antibody titers did not significantly change and which remained consistently higher than either serostatus-matched intervention group over subsequent time points, independent of total immunoglobulin G levels and degree of polyclonal B cell activation. In attempting to explain serostatus differences in EBV and HHV-6 values, it was found that HIV-1 seropositive men had significantly lower CD4 cells, CD4:CD8 ratio, and blastogenic response to phytohemagglutinin (PHA), as well as significantly higher CD8 cells at baseline. No significant differences were found between the HIV-1 seropositive and seronegative men with respect to anxiety and depression at baseline. Since the greatest changes in EBV and HHV-6 occurred between baseline and week 10, we correlated changes in immune (CD4, CD8, CD4:CD8 ratio, PHA stimulation) and distress-related markers (state depression and anxiety) with EBV and HHV-6 change scores over this time period. No significant correlations were found between any

  3. Transactivation of programmed ribosomal frameshifting by a viral protein.

    PubMed

    Li, Yanhua; Treffers, Emmely E; Napthine, Sawsan; Tas, Ali; Zhu, Longchao; Sun, Zhi; Bell, Susanne; Mark, Brian L; van Veelen, Peter A; van Hemert, Martijn J; Firth, Andrew E; Brierley, Ian; Snijder, Eric J; Fang, Ying

    2014-05-27

    Programmed -1 ribosomal frameshifting (-1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes -1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual -2 frameshifting (-2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of -1 PRF, yielding a third, truncated nsp2 variant named "nsp2N." Remarkably, we now show that both -2 and -1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β's papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection. PMID:24825891

  4. Structural basis of the herpesvirus M3-chemokine interaction.

    PubMed

    Alcami, Antonio

    2003-05-01

    Viruses have been fighting the immune systems of their hosts for millions of years and have evolved evasion strategies to ensure their survival. Viruses can teach us efficient mechanisms to control the immune system, and this information can be used to design new strategies of immune modulation that we might apply to diminish immunopathological responses that cause human diseases. Large DNA viruses, such as poxviruses and herpesviruses, encode proteins that are secreted from infected cells, bind cytokines and neutralize their activity. A subgroup of these viral proteins binds chemokines, a complex family of cytokines that control the recruitment of cells to sites of infection and inflammation. One of the major unresolved questions in the field was to understand how these viral secreted proteins bind chemokines with high affinity, despite having no amino acid sequence similarity to the host chemokine receptors, which are seven-transmembrane-domain proteins that cannot be engineered as soluble proteins. PMID:12781515

  5. Chemokine binding proteins: An immunomodulatory strategy going viral.

    PubMed

    González-Motos, Víctor; Kropp, Kai A; Viejo-Borbolla, Abel

    2016-08-01

    Chemokines are chemotactic cytokines whose main function is to direct cell migration. The chemokine network is highly complex and its deregulation is linked to several diseases including immunopathology, cancer and chronic pain. Chemokines also play essential roles in the antiviral immune response. Viruses have therefore developed several counter strategies to modulate chemokine activity. One of these is the expression of type I transmembrane or secreted proteins with the ability to bind chemokines and modulate their activity. These proteins, termed viral chemokine binding proteins (vCKBP), do not share sequence homology with host proteins and are immunomodulatory in vivo. In this review we describe the discovery and characterization of vCKBP, explain their role in the context of infection in vivo and discuss relevant novel findings. PMID:26987612

  6. Bovine Herpesvirus 1 Regulatory Proteins bICP0 and VP16 Are Readily Detected in Trigeminal Ganglionic Neurons Expressing the Glucocorticoid Receptor during the Early Stages of Reactivation from Latency

    PubMed Central

    Frizzo da Silva, Leticia; Kook, Insun; Doster, Alan

    2013-01-01

    Bovine herpesvirus 1 (BHV-1) establishes a lifelong latent infection in sensory neurons following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Within minutes, corticosteroids activate the glucocorticoid receptor and transcription of promoters containing a glucocorticoid receptor element. A single intravenous injection of the synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. Lytic cycle viral gene expression is detected within 6 h after dexamethasone treatment of calves latently infected with BHV-1. Cellular transcription factors are induced by dexamethasone in trigeminal ganglionic neurons within 1.5 h after dexamethasone treatment, suggesting they promote viral gene expression during the early phases of reactivation from latency, which we operationally defined as the escape from latency. In this study, immunohistochemistry was utilized to examine viral protein expression during the escape from latency. Within 1.5 h after dexamethasone treatment, bICP0 and a late protein (VP16) were consistently detected in a subset of trigeminal ganglionic neurons. Most neurons expressing bICP0 also expressed VP16. Additional studies revealed that neurons expressing the glucocorticoid receptor also expressed bICP0 or VP16 at 1.5 h after dexamethasone treatment. Two other late proteins, glycoprotein C and D, were not detected until 6 h after dexamethasone treatment and were detected in only a few neurons. These studies provide evidence that VP16 and the promiscuous viral trans-activator (bICP0) are expressed during the escape from latency, suggesting they promote the production of infectious virus in a small subset of latently infected neurons. PMID:23926348

  7. Bovine herpesvirus 1 regulatory proteins bICP0 and VP16 are readily detected in trigeminal ganglionic neurons expressing the glucocorticoid receptor during the early stages of reactivation from latency.

    PubMed

    Frizzo da Silva, Leticia; Kook, Insun; Doster, Alan; Jones, Clinton

    2013-10-01

    Bovine herpesvirus 1 (BHV-1) establishes a lifelong latent infection in sensory neurons following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Within minutes, corticosteroids activate the glucocorticoid receptor and transcription of promoters containing a glucocorticoid receptor element. A single intravenous injection of the synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. Lytic cycle viral gene expression is detected within 6 h after dexamethasone treatment of calves latently infected with BHV-1. Cellular transcription factors are induced by dexamethasone in trigeminal ganglionic neurons within 1.5 h after dexamethasone treatment, suggesting they promote viral gene expression during the early phases of reactivation from latency, which we operationally defined as the escape from latency. In this study, immunohistochemistry was utilized to examine viral protein expression during the escape from latency. Within 1.5 h after dexamethasone treatment, bICP0 and a late protein (VP16) were consistently detected in a subset of trigeminal ganglionic neurons. Most neurons expressing bICP0 also expressed VP16. Additional studies revealed that neurons expressing the glucocorticoid receptor also expressed bICP0 or VP16 at 1.5 h after dexamethasone treatment. Two other late proteins, glycoprotein C and D, were not detected until 6 h after dexamethasone treatment and were detected in only a few neurons. These studies provide evidence that VP16 and the promiscuous viral trans-activator (bICP0) are expressed during the escape from latency, suggesting they promote the production of infectious virus in a small subset of latently infected neurons. PMID:23926348

  8. Herpesvirus systematics.

    PubMed

    Davison, Andrew J

    2010-06-16

    This paper is about the taxonomy and genomics of herpesviruses. Each theme is presented as a digest of current information flanked by commentaries on past activities and future directions. The International Committee on Taxonomy of Viruses recently instituted a major update of herpesvirus classification. The former family Herpesviridae was elevated to a new order, the Herpesvirales, which now accommodates 3 families, 3 subfamilies, 17 genera and 90 species. Future developments will include revisiting the herpesvirus species definition and the criteria used for taxonomic assignment, particularly in regard to the possibilities of classifying the large number of herpesviruses detected only as DNA sequences by polymerase chain reaction. Nucleotide sequence accessions in primary databases, such as GenBank, consist of the sequences plus annotations of the genetic features. The quality of these accessions is important because they provide a knowledge base that is used widely by the research community. However, updating the accessions to take account of improved knowledge is essentially reserved to the original depositors, and this activity is rarely undertaken. Thus, the primary databases are likely to become antiquated. In contrast, secondary databases are open to curation by experts other than the original depositors, thus increasing the likelihood that they will remain up to date. One of the most promising secondary databases is RefSeq, which aims to furnish the best available annotations for complete genome sequences. Progress in regard to improving the RefSeq herpesvirus accessions is discussed, and insights into particular aspects of herpesvirus genomics arising from this work are reported. PMID:20346601

  9. Cholesterol-binding viral proteins in virus entry and morphogenesis.

    PubMed

    Schroeder, Cornelia

    2010-01-01

    Up to now less than a handful of viral cholesterol-binding proteins have been characterized, in HIV, influenza virus and Semliki Forest virus. These are proteins with roles in virus entry or morphogenesis. In the case of the HIV fusion protein gp41 cholesterol binding is attributed to a cholesterol recognition consensus (CRAC) motif in a flexible domain of the ectodomain preceding the trans-membrane segment. This specific CRAC sequence mediates gp41 binding to a cholesterol affinity column. Mutations in this motif arrest virus fusion at the hemifusion stage and modify the ability of the isolated CRAC peptide to induce segregation of cholesterol in artificial membranes.Influenza A virus M2 protein co-purifies with cholesterol. Its proton translocation activity, responsible for virus uncoating, is not cholesterol-dependent, and the transmembrane channel appears too short for integral raft insertion. Cholesterol binding may be mediated by CRAC motifs in the flexible post-TM domain, which harbours three determinants of binding to membrane rafts. Mutation of the CRAC motif of the WSN strain attenuates virulence for mice. Its affinity to the raft-non-raft interface is predicted to target M2 protein to the periphery of lipid raft microdomains, the sites of virus assembly. Its influence on the morphology of budding virus implicates M2 as factor in virus fission at the raft boundary. Moreover, M2 is an essential factor in sorting the segmented genome into virus particles, indicating that M2 also has a role in priming the outgrowth of virus buds.SFV E1 protein is the first viral type-II fusion protein demonstrated to directly bind cholesterol when the fusion peptide loop locks into the target membrane. Cholesterol binding is modulated by another, proximal loop, which is also important during virus budding and as a host range determinant, as shown by mutational studies. PMID:20213541

  10. Protective immunity in gibel carp, Carassius gibelio of the truncated proteins of cyprinid herpesvirus 2 expressed in Pichia pastoris.

    PubMed

    Zhou, Yong; Jiang, Nan; Ma, Jie; Fan, Yuding; Zhang, Linlin; Xu, Jin; Zeng, Lingbing

    2015-12-01

    Cyprinid herpesvirus 2 (CyHV-2) infection is a newly emerged infectious disease of farmed gibel carp (Carassius gibelio) in China and causes huge economic losses to the aquaculture industry. In this study, the three membrane proteins encoded by genes ORF25, ORF25C, and ORF25D of CyHV-2 were truncated and expressed in yeast, Pichia pastoris. Screening of the recombinant yeasts was done by detecting the truncated proteins using Western blot. Through immunogold labeling, it was shown that proteins binding the colloidal gold were presented on the surface of cells. In the experiment of inhibition of virus binding by the recombinant truncated proteins, the TCID50 of the tORF25 group (10(4.1)/ml) was lower than that of tORF25C (10(4.6)/ml) or tORF25D groups (10(5)/ml). These results suggested that the proteins may be involved in attachment of the virus to the cell surface. Healthy gibel carp were immunized with 20 μg of tORF25, tORF25C, and tORF25D proteins, and the control group received PBS. Interleukin 11 (IL-11) expression in the spleens of the immunized fish peaked at day 4 and the complement component C3 (C3) genes were significantly up-regulated at day 7 post-immunization. Specific antibodies were measured in the three immunized groups and the titer detected in the tORF25 group reached 327, that was significantly higher than the tORF25C (247) or tORF25D (228) groups. When the immunized fish were challenged with live CyHV-2 by intraperitoneal injection the relative percent survival (RPS) of the tORF25, tORF25C, and tORF25D immunized groups was 75%, 63%, and 54%, respectively. The feasibility of the P. pastoris yeast expression system for the production of the recombinant truncated proteins and their apparent bioactivity suggests that tORF25, tORF25C, and tORF25D are potential candidate vaccines against Cyprinid herpesvirus 2 infection in gibel carp. PMID:26564473

  11. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.

    PubMed

    Nicola, Anthony V

    2016-09-01

    Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. PMID:27126894

  12. Human cytomegalovirus RL13 protein interacts with host NUDT14 protein affecting viral DNA replication.

    PubMed

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanping; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-03-01

    The interaction between the host and human cytomegalovirus (HCMV) is important in determining the outcome of a viral infection. The HCMV RL13 gene product exerts independent, inhibitory effects on viral growth in fibroblasts and epithelial cells. At present, there are few reports on the interactions between the HCMV RL13 protein and human host proteins. The present study provided direct evidence for the specific interaction between HCMV RL13 and host nucleoside diphosphate linked moiety X (nudix)‑type motif 14 (NUDT14), a UDP‑glucose pyrophosphatase, using two‑hybrid screening, an in vitro glutathione S‑transferase pull‑down assay, and co‑immunoprecipitation in human embryonic kidney HEK293 cells. Additionally, the RL13 protein was shown to co‑localize with the NUDT14 protein in the HEK293 cell membrane and cytoplasm, demonstrated using fluorescence confocal microscopy. Decreasing the expression level of NUDT14 via NUDT14‑specific small interfering RNAs increased the number of viral DNA copies in the HCMV‑infected cells. However, the overexpression of NUDT14 in a stably expressing cell line did not affect viral DNA levels significantly in the HCMV infected cells. Based on the known functions of NUDT14, the results of the present study suggested that the interaction between the RL13 protein and NUDT14 protein may be involved in HCMV DNA replication, and that NUDT14 may offer potential in the modulation of viral infection. PMID:26781650

  13. Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus.

    PubMed

    Romanutti, Carina; D'Antuono, Alejandra; Palacios, Carlos; Quattrocchi, Valeria; Zamorano, Patricia; La Torre, Jose; Mattion, Nora

    2013-08-30

    The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines. The highest antibody titers were found in the group that received two doses of adjuvanted KV (P<0.002). Antibody titers were higher in those groups receiving a mixed regimen of vectors, compared to immunization with either vector alone (P<0.0001). Priming with any of the viral vectors induced a shift of the cytokine balance toward a Th1 type immune response regardless of the delivery system used for boosting. The highest IgG1 titer was induced by two doses of adjuvanted KV (P=0.0002) and the highest IgG2a titer corresponded to the group primed with Ad and boosted with KV (P=0.01). Re-stimulation of all groups of mice with 0.5 μg of inactivated virus five months later resulted in a fast increase of antibody titers in all the groups tested. After virus stimulation, antibody titers in the groups that received KV alone or Ad prime-KV boost, were indistinguishable (P=0.800). Protection from challenge was similar (75%) in the groups of animals that received Ad prime-Hs boost or Ad prime-KV boost, or two doses of oil-adjuvanted KV. The data presented in this study suggest that sequential immunization with viral vectors-based vaccines combined with protein-based vaccines have the potential to enhance the quality of the immune response against FMDV. PMID:23683999

  14. In situ localization and tissue distribution of ostreid herpesvirus 1 proteins in infected Pacific oyster, Crassostrea gigas.

    PubMed

    Martenot, Claire; Segarra, Amélie; Baillon, Laury; Faury, Nicole; Houssin, Maryline; Renault, Tristan

    2016-05-01

    Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the

  15. The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies.

    PubMed

    Sarkari, Feroz; Wang, Xueqi; Nguyen, Tin; Frappier, Lori

    2011-01-01

    The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity. PMID:21305000

  16. Functional dissection of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated herpesvirus involved in latent DNA replication and transcription of terminal repeats of the viral genome.

    PubMed

    Lim, Chunghun; Sohn, Hekwang; Lee, Daeyoup; Gwack, Yousang; Choe, Joonho

    2002-10-01

    Latency-associated nuclear antigen 1 (LANA1) of Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated in the maintenance of the viral genome during latent infection. LANA1 colocalizes with KSHV episomes on the host chromosome and mediates their maintenance by attaching these viral structures to host chromosomes. Data from long-term selection of drug resistance in cells conferred by plasmids containing the terminal repeat (TR) sequence of KSHV revealed that KSHV TRs and LANA1 act as cis and trans elements of viral latent replication, respectively. In this study, we further characterized the cis- and trans-acting elements of KSHV latent replication by using a transient replication assay with a methylation-sensitive restriction enzyme, DpnI. Transient reporter and replication assays disclosed that the orientation and basal transcriptional activity of TR constructs did not significantly affect the efficiency of replication. However, at least two TR units were necessary for efficient replication. The N-terminal 90 amino acids comprising the chromosome-binding domain of LANA1 were required for the mediation of LANA1 C-terminal DNA-binding and dimerization domains to support the transient replication of KSHV TRs. LANA1 interacted with components of the origin recognition complexes (ORCs), similar to Epstein-Barr virus nuclear antigen 1. Our data suggest that LANA1 recruits ORCs to KSHV TRs for latent replication of the viral genome. PMID:12239308

  17. Use of Amplicon-6 Vectors Derived from Human Herpesvirus 6 for Efficient Expression of Membrane-Associated and -Secreted Proteins in T Cells

    PubMed Central

    Borenstein, Ronen; Singer, Oded; Moseri, Adi; Frenkel, Niza

    2004-01-01

    The composite amplicon-6 vectors, which are derived from human herpesvirus 6 (HHV-6), can target hematopoietic cells. In the presence of the respective helper viruses, the amplicons are replicated by the rolling circle mechanism, yielding defective genomes of overall size 135 to 150 kb, composed of multiple repeats of units, containing the viral DNA replication origin, packaging signals, and the selected transgene(s). We report the use of amplicon-6 vectors designed for transgene expression in T cells. The selected transgenes included the green fluorescent protein marker, the herpes simplex virus type 1 glycoprotein D (gD), and the gD gene deleted in the transmembrane region (gDsec). The vectors were tested after electroporation and passage in T cells with or without helper HHV-6A superinfections. The results were as follows. (i)The vectors could be passaged both as cell-associated and as cell-free secreted virions infectious to new cells. (ii)The intact gD accumulated at the cell surface, whereas the gDsec was dispersed at internal locations of the cells or was secreted into the medium. (iii)Analyses of amplicon-6-gD expression by flow cytometry have shown significant expression in cultures with reiterated amplicons and helper viruses. The vector has spread to >60% of the cells, and the efficiency of expression per cell increased 15-fold, most likely due to the presence of concatemeric amplicon repeats. Current studies are designed to test whether amplicon-6 vectors can be used for gene therapy in lymphocytes and whether amplicon-6 vectors expressed in T cells and dendritic cells can induce strong cellular and humoral immune responses. PMID:15078955

  18. Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses.

    PubMed

    Stevenson, P G; Efstathiou, S; Doherty, P C; Lehner, P J

    2000-07-18

    The gamma-herpesviruses, in contrast to the alpha- and beta-herpesviruses, are not known to inhibit antigen presentation to CD8(+) cytotoxic T lymphocytes (CTLs) during lytic cycle replication. However, murine gamma-herpesvirus 68 causes a chronic lytic infection in CD4(+) T cell-deficient mice despite the persistence of a substantial CTL response, suggesting that CTL evasion occurs. Here we show that, distinct from host protein synthesis shutoff, gamma-herpesvirus 68 down-regulates surface MHC class I expression on lytically infected fibroblasts and inhibits their recognition by antigen-specific CTLs. The viral K3 gene, encoding a zinc-finger-containing protein, dramatically reduced the half-life of nascent class I molecules and the level of surface MHC class I expression and was by itself sufficient to block antigen presentation. The homologous K3 and K5 genes of the related Kaposi's sarcoma-associated virus also inhibited antigen presentation and decreased cell surface expression of HLA class I antigens. Thus it appears that an immune evasion strategy shared by at least two gamma-herpesviruses allows continued lytic infection in the face of strong CTL immunity. PMID:10890918

  19. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly.

    PubMed

    Capuano, Christopher M; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N; Desai, Keshal V; Coombs, Gavin; McCaffery, J Michael; Desai, Prashant J

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction. PMID:24824860

  20. A hydrophobic domain within the small capsid protein of Kaposi’s sarcoma-associated herpesvirus is required for assembly

    PubMed Central

    Capuano, Christopher M.; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N.; Desai, Keshal V.; Coombs, Gavin; McCaffery, J. Michael

    2014-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP–GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present – indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP–GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP–His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP–GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP–GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP–MCP interaction. PMID:24824860

  1. Autophagy and immunity - insights from human herpesviruses.

    PubMed

    Williams, Luke R; Taylor, Graham S

    2012-01-01

    The herpesviruses are a family of double-stranded DNA viruses that infect a wide variety of organisms. Having co-evolved with their hosts over millennia, herpesviruses have developed a large repertoire of mechanisms to manipulate normal cellular processes for their own benefit. Consequently, studies on these viruses have made important contributions to our understanding of fundamental biological processes. Here we describe recent research on the human herpesviruses that has contributed to our understanding of, and interactions between, viruses, autophagy, and the immune system. The ability of autophagy to degrade proteins located within the nucleus, the site of herpesvirus latency and replication, is also considered. PMID:22783253

  2. Hsp90 Inhibitors Are Efficacious against Kaposi Sarcoma by Enhancing the Degradation of the Essential Viral Gene LANA, of the Viral Co-Receptor EphA2 as well as Other Client Proteins

    PubMed Central

    Chen, Wuguo; Sin, Sang-Hoon; Wen, Kwun Wah; Damania, Blossom; Dittmer, Dirk P.

    2012-01-01

    Heat-shock protein 90 (Hsp90) inhibitors exhibit activity against human cancers. We evaluated a series of new, oral bioavailable, chemically diverse Hsp90 inhibitors (PU-H71, AUY922, BIIB021, NVP-BEP800) against Kaposi sarcoma (KS). All Hsp90 inhibitors exhibited nanomolar EC50 in culture and AUY922 reduced tumor burden in a xenograft model of KS. KS is associated with KS-associated herpesvirus (KSHV). We identified the viral latency associated nuclear antigen (LANA) as a novel client protein of Hsp90 and demonstrate that the Hsp90 inhibitors diminish the level of LANA through proteasomal degradation. These Hsp90 inhibitors also downregulated EphA2 and ephrin-B2 protein levels. LANA is essential for viral maintenance and EphA2 has recently been shown to facilitate KSHV infection; which in turn feeds latent persistence. Further, both molecules are required for KS tumor formation and both were downregulated in response to Hsp90 inhibitors. This provides a rationale for clinical testing of Hsp90 inhibitors in KSHV-associated cancers and in the eradication of latent KSHV reservoirs. PMID:23209418

  3. Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF

    PubMed Central

    Tunnicliffe, Richard B.; Hautbergue, Guillaume M.; Wilson, Stuart A.; Kalra, Priti; Golovanov, Alexander P.

    2014-01-01

    The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions. PMID:24550725

  4. Activated Nrf2 Interacts with Kaposi's Sarcoma-Associated Herpesvirus Latency Protein LANA-1 and Host Protein KAP1 To Mediate Global Lytic Gene Repression

    PubMed Central

    Gjyshi, Olsi; Roy, Arunava; Dutta, Sujoy; Veettil, Mohanan Valiya; Dutta, Dipanjan

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. We have previously shown that KSHV utilizes the host transcription factor Nrf2 to aid in infection of endothelial cells and oncogenesis. Here, we investigate the role of Nrf2 in PEL and PEL-derived cell lines and show that KSHV latency induces Nrf2 protein levels and transcriptional activity through the COX-2/PGE2/EP4/PKCζ axis. Next-generation sequencing of KSHV transcripts in the PEL-derived BCBL-1 cell line revealed that knockdown of this activated Nrf2 results in global elevation of lytic genes. Nrf2 inhibition by the chemical brusatol also induces lytic gene expression. Both Nrf2 knockdown and brusatol-mediated inhibition induced KSHV lytic reactivation in BCBL-1 cells. In a series of follow-up experiments, we characterized the mechanism of Nrf2-mediated regulation of KSHV lytic repression during latency. Biochemical assays showed that Nrf2 interacted with KSHV latency-associated nuclear antigen 1 (LANA-1) and the host transcriptional repressor KAP1, which together have been shown to repress lytic gene expression. Promoter studies showed that although Nrf2 alone induces the open reading frame 50 (ORF50) promoter, its association with LANA-1 and KAP1 abrogates this effect. Interestingly, LANA-1 is crucial for efficient KAP1/Nrf2 association, while Nrf2 is essential for LANA-1 and KAP1 recruitment to the ORF50 promoter and its repression. Overall, these results suggest that activated Nrf2, LANA-1, and KAP1 assemble on the ORF50 promoter in a temporal fashion. Initially, Nrf2 binds to and activates the ORF50 promoter during early de novo infection, an effect that is exploited during latency by LANA-1-mediated recruitment of the host transcriptional repressor KAP1 on Nrf2. Cell death assays further showed that Nrf2 and KAP1 knockdown induce significant cell death in PEL cell lines

  5. Molecular Features Contributing to Virus-Independent Intracellular Localization and Dynamic Behavior of the Herpesvirus Transport Protein US9

    PubMed Central

    Pedrazzi, Manuela; Nash, Bradley; Meucci, Olimpia; Brandimarti, Renato

    2014-01-01

    Reaching the right destination is of vital importance for molecules, proteins, organelles, and cargoes. Thus, intracellular traffic is continuously controlled and regulated by several proteins taking part in the process. Viruses exploit this machinery, and viral proteins regulating intracellular transport have been identified as they represent valuable tools to understand and possibly direct molecules targeting and delivery. Deciphering the molecular features of viral proteins contributing to (or determining) this dynamic phenotype can eventually lead to a virus-independent approach to control cellular transport and delivery. From this virus-independent perspective we looked at US9, a virion component of Herpes Simplex Virus involved in anterograde transport of the virus inside neurons of the infected host. As the natural cargo of US9-related vesicles is the virus (or its parts), defining its autonomous, virus-independent role in vesicles transport represents a prerequisite to make US9 a valuable molecular tool to study and possibly direct cellular transport. To assess the extent of this autonomous role in vesicles transport, we analyzed US9 behavior in the absence of viral infection. Based on our studies, Us9 behavior appears similar in different cell types; however, as expected, the data we obtained in neurons best represent the virus-independent properties of US9. In these primary cells, transfected US9 mostly recapitulates the behavior of US9 expressed from the viral genome. Additionally, ablation of two major phosphorylation sites (i.e. Y32Y33 and S34ES36) have no effect on protein incorporation on vesicles and on its localization on both proximal and distal regions of the cells. These results support the idea that, while US9 post-translational modification may be important to regulate cargo loading and, consequently, virion export and delivery, no additional viral functions are required for US9 role in intracellular transport. PMID:25133647

  6. WSV399, a viral tegument protein, interacts with the shrimp protein PmVRP15 to facilitate viral trafficking and assembly.

    PubMed

    Jaree, Phattarunda; Senapin, Saengchan; Hirono, Ikuo; Lo, Chu-Fang; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-06-01

    Viral responsive protein 15 (PmVRP15) has been identified as a highly up-regulated gene in the hemocyte of white spot syndrome virus (WSSV)-infected shrimp Penaeus monodon. However, the function of PmVRP15 in host-viral interaction was still unclear. To elucidate PmVRP15 function, the interacting partner of PmVRP15 from WSSV was screened by yeast two-hybrid assay and then confirmed by co-immunoprecipitation (Co-IP). Only WSV399 protein was identified as a PmVRP15 binding protein; however, the function of WSV399 has not been characterized. Localization of WSV399 on the WSSV virion was revealed by immunoblotting analysis (in vitro) and immunoelectron microscopy (in vivo). The results showed that WSV399 is a structural protein of the WSSV virion and is particularly located on the tegument. Gene silencing of wsv399 in WSSV-infected shrimp reduced the percentage of cumulative mortality by 74%, although the expression level of a viral replication marker gene, vp28, was not changed suggesting that WSV399 might not involved in viral replication but viral assembly. Because it has already been known that tegument proteins function in capsid transport during viral trafficking and assembly, interaction between PmVRP15 on hemocyte nuclear membrane and the WSV399 viral tegument protein suggests that PmVRP15 might be required for trafficking and assembly of WSSV during infection. PMID:26828390

  7. Rodent models of HAND and drug abuse: exogenous administration of viral protein(s) and cocaine.

    PubMed

    Yao, Honghong; Buch, Shilpa

    2012-06-01

    Humans and chimpanzees are the natural hosts for HIV. Non-human primate models of SIV/SHIV infection in rhesus, cynomologus and pigtail macaques have been used extensively as excellent model systems for pathogenesis and vaccine studies. However, owing to the variability of disease progression in infected macaques, a phenomenon identical to humans, coupled with their prohibitive costs, there exists a critical need for the development of small-animal models in which to study the untoward effects of HIV-1 infection. Owing to the fact that rodents are not the natural permissive hosts for lentiviral infection, development of small animal models for studying virus infection has used strategies that circumvent the steps of viral entry and infection. Such strategies involve overexpression of toxic viral proteins, SCID mice engrafted with the human PBLs or macrophages, and EcoHIV chimeric virus wherein the gp120 of HIV-1 was replaced with the gp80 of the ecotropic murine leukemia virus. Additional strategy that is often used by investigators to study the toxic effect of viral proteins involves direct stereotactic injection of the viral protein(s) into specific brain regions. The present report is a compilation of the applications of direct administration of Tat into the striatum to mimic the effects of the viral neurotoxin in the CNS. Added advantage of this model is that it is also amenable to repeated intraperitoneal cocaine injections, thereby allowing the study of the additive/synergistic effects of both the viral protein and cocaine. Such a model system recapitulates aspects of HAND in the context of drug abuse. PMID:22447295

  8. Kaposi's Sarcoma-Associated Herpesvirus Latent Gene vFLIP Inhibits Viral Lytic Replication through NF-κB-Mediated Suppression of the AP-1 Pathway: a Novel Mechanism of Virus Control of Latency▿

    PubMed Central

    Ye, Feng-Chun; Zhou, Fu-Chun; Xie, Jian-Ping; Kang, Tao; Greene, Whitney; Kuhne, Kurt; Lei, Xiu-Fen; Li, Qui-Hua; Gao, Shou-Jiang

    2008-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) latency is central to the evasion of host immune surveillances and induction of KSHV-related malignancies. The mechanism of KSHV latency remains unclear. Here, we show that the KSHV latent gene vFLIP promotes viral latency by inhibiting viral lytic replication. vFLIP suppresses the AP-1 pathway, which is essential for KSHV lytic replication, by activating the NF-κB pathway. Thus, by manipulating two convergent cellular pathways, vFLIP regulates both cell survival and KSHV lytic replication to promote viral latency. These results also indicate that the effect of the NF-κB pathway on KSHV replication is determined by the status of the AP-1 pathway and hence provide a mechanistic explanation for the contradictory role of the NF-κB pathway in KSHV replication. Since the NF-κB pathway is commonly activated during infection of gammaherpesviruses, these findings might have general implications for the control of gammaherpesviral latency. PMID:18305042

  9. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein

    PubMed Central

    King, Cason R.; Cohen, Michael J.; Fonseca, Gregory J.; Dirk, Brennan S.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2016-01-01

    The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP). E1A interacts with and relocalizes protein kinase A (PKA) to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A’s role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs. PMID:27137912

  10. Systematic Identification of Cellular Signals Reactivating Kaposi Sarcoma–Associated Herpesvirus

    PubMed Central

    Yu, Fuqu; Harada, Josephine N; Brown, Helen J; Deng, Hongyu; Song, Moon Jung; Wu, Ting-Ting; Kato-Stankiewicz, Juran; Nelson, Christian G; Vieira, Jeffrey; Tamanoi, Fuyuhiko; Chanda, Sumit K; Sun, Ren

    2007-01-01

    The herpesvirus life cycle has two distinct phases: latency and lytic replication. The balance between these two phases is critical for viral pathogenesis. It is believed that cellular signals regulate the switch from latency to lytic replication. To systematically evaluate the cellular signals regulating this reactivation process in Kaposi sarcoma–associated herpesvirus, the effects of 26,000 full-length cDNA expression constructs on viral reactivation were individually assessed in primary effusion lymphoma–derived cells that harbor the latent virus. A group of diverse cellular signaling proteins were identified and validated in their effect of inducing viral lytic gene expression from the latent viral genome. The results suggest that multiple cellular signaling pathways can reactivate the virus in a genetically homogeneous cell population. Further analysis revealed that the Raf/MEK/ERK/Ets-1 pathway mediates Ras-induced reactivation. The same pathway also mediates spontaneous reactivation, which sets the first example to our knowledge of a specific cellular pathway being studied in the spontaneous reactivation process. Our study provides a functional genomic approach to systematically identify the cellular signals regulating the herpesvirus life cycle, thus facilitating better understanding of a fundamental issue in virology and identifying novel therapeutic targets. PMID:17397260

  11. Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease.

    PubMed

    Gable, Jonathan E; Lee, Gregory M; Acker, Timothy M; Hulce, Kaitlin R; Gonzalez, Eric R; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J; Craik, Charles S

    2016-04-19

    Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. PMID:26822284

  12. Isolation and characterization of a herpesvirus from feral pigeons in China.

    PubMed

    Zhao, Panpan; Ma, Jian; Guo, Ying; Tian, Li; Guo, Guangyang; Zhang, Kexin; Xing, Mingwei

    2015-12-01

    A herpesvirus was isolated during a diagnostic investigation of severe cases of conjunctivitis in feral pigeons (Columba livia f. domestica). Isolates of the virus were recovered from throat swabs of the pigeons followed by inoculation of the swab samples in chicken embryo fibroblasts. Pigeons inoculated with the isolated virus had similar clinical signs to those observed in naturally infected birds. Transmission electron microscopy revealed viral structures with typical herpesvirus morphology. Polymerase chain reaction amplification, using herpesvirus-identifying primers resulted in an amplicon of the expected size for herpesvirus. Sequencing of these amplicons and database comparisons identified the herpesvirus UL30 homologue. Phylogenetic reconstructions suggested that the isolated herpesvirus belongs to the Mardivirus genus of Alphaherpesvirinae. Using the current herpesvirus nomenclature conventions, the authors propose that the herpesvirus be named Columbid herpesvirus-1 Heilongjiang. PMID:26542366

  13. Hijacking GPCRs by viral pathogens and tumor.

    PubMed

    Zhang, Junjie; Feng, Hao; Xu, Simin; Feng, Pinghui

    2016-08-15

    G protein-coupled receptors (GPCRs) constitute the largest family of molecules that transduce signals across the plasma membrane. Herpesviruses are successful pathogens that evolved diverse mechanisms to benefit their infection. Several human herpesviruses express GPCRs to exploit cellular signaling cascades during infection. These viral GPCRs demonstrate distinct biochemical and biophysical properties that result in the activation of a broad spectrum of signaling pathways. In immune-deficient individuals, human herpesvirus infection and the expression of their GPCRs are implicated in virus-associated diseases and pathologies. Emerging studies also uncover diverse mutations in components, particularly GPCRs and small G proteins, of GPCR signaling pathways that render the constitutive activation of proliferative and survival signal, which contributes to the oncogenesis of various human cancers. Hijacking GPCR-mediated signaling is a signature shared by diseases associated with constitutively active viral GPCRs and cellular mutations activating GPCR signaling, exposing key molecules that can be targeted for anti-viral and anti-tumor therapy. PMID:27060663

  14. Toll-like receptor sensing of human herpesvirus infection

    PubMed Central

    West, John A.; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell responds to viral infection. This report will summarize the activation and modulation of TLR signaling in the context of human herpesvirus infections. PMID:23061052

  15. Sequence and Genomic Analysis of a Rhesus Macaque Rhadinovirus with Similarity to Kaposi’s Sarcoma-Associated Herpesvirus/Human Herpesvirus 8

    PubMed Central

    Searles, Robert P.; Bergquam, Eric P.; Axthelm, Michael K.; Wong, Scott W.

    1999-01-01

    We have sequenced the long unique region (LUR) and characterized the terminal repeats of the genome of a rhesus rhadinovirus (RRV), strain 17577. The LUR as sequenced is 131,364 bp in length, with a G+C content of 52.2% and a CpG ratio of 1.11. The genome codes for 79 open reading frames (ORFs), with 67 of these ORFs similar to genes found in both Kaposi’s sarcoma-associated herpesvirus (KSHV) (formal name, human herpesvirus 8) and herpesvirus saimiri. Eight of the 12 unique genes show similarity to genes found in KSHV, including genes for viral interleukin-6, viral macrophage inflammatory protein, and a family of viral interferon regulatory factors (vIRFs). Genomic organization is essentially colinear with KSHV, the primary differences being the number of cytokine and IRF genes and the location of the gene for dihydrofolate reductase. Highly repetitive sequences are located in positions corresponding to repetitive sequences found in KSHV. Phylogenetic analysis of several ORFs supports the similarity between RRV and KSHV. Overall, the sequence, structural, and phylogenetic data combine to provide strong evidence that RRV 17577 is the rhesus macaque homolog of KSHV. PMID:10074154

  16. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    PubMed

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and

  17. Anguillid herpesvirus 1 transcriptome.

    PubMed

    van Beurden, Steven J; Gatherer, Derek; Kerr, Karen; Galbraith, Julie; Herzyk, Pawel; Peeters, Ben P H; Rottier, Peter J M; Engelsma, Marc Y; Davison, Andrew J

    2012-09-01

    We used deep sequencing of poly(A) RNA to characterize the transcriptome of an economically important eel virus, anguillid herpesvirus 1 (AngHV1), at a stage during the lytic life cycle when infectious virus was being produced. In contrast to the transcription of mammalian herpesviruses, the overall level of antisense transcription from the 248,526-bp genome was low, amounting to only 1.5% of transcription in predicted protein-coding regions, and no abundant, nonoverlapping, noncoding RNAs were identified. RNA splicing was found to be more common than had been anticipated previously. Counting the 10,634-bp terminal direct repeat once, 100 splice junctions were identified, of which 58 were considered likely to be involved in the expression of functional proteins because they represent splicing between protein-coding exons or between 5' untranslated regions and protein-coding exons. Each of the 30 most highly represented of these 58 splice junctions was confirmed by RT-PCR. We also used deep sequencing to identify numerous putative 5' and 3' ends of AngHV1 transcripts, confirming some and adding others by rapid amplification of cDNA ends (RACE). The findings prompted a revision of the AngHV1 genome map to include a total of 129 protein-coding genes, 5 of which are duplicated in the terminal direct repeat. Not counting duplicates, 11 genes contain integral, spliced protein-coding exons, and 9 contain 5' untranslated exons or, because of alternative splicing, 5' untranslated and 5' translated exons. The results of this study sharpen our understanding of AngHV1 genomics and provide the first detailed view of a fish herpesvirus transcriptome. PMID:22787220

  18. HUMORAL ANTIBODY RESPONSE TO INDIVIDUAL VIRAL PROTEINS AFTER MURINE CYTOMEGALOVIRUS INFECTION

    EPA Science Inventory

    The purpose of this study was to identify viral proteins that played an important role in the humoral immune response to murine cytomegalovirus (MCMV). Viral proteins were separated from a purified virus preparation on polyacrylamide gels, were blotted onto nitrocellulose strips,...

  19. The 6-Aminoquinolone WC5 Inhibits Human Cytomegalovirus Replication at an Early Stage by Interfering with the Transactivating Activity of Viral Immediate-Early 2 Protein ▿ †

    PubMed Central

    Loregian, Arianna; Mercorelli, Beatrice; Muratore, Giulia; Sinigalia, Elisa; Pagni, Silvana; Massari, Serena; Gribaudo, Giorgio; Gatto, Barbara; Palumbo, Manlio; Tabarrini, Oriana; Cecchetti, Violetta; Palù, Giorgio

    2010-01-01

    WC5 is a 6-aminoquinolone that potently inhibits the replication of human cytomegalovirus (HCMV) but has no activity, or significantly less activity, against other herpesviruses. Here we investigated the nature of its specific anti-HCMV activity. Structure-activity relationship studies on a small series of analogues showed that WC5 possesses the most suitable pattern of substitutions around the quinolone scaffold to give potent and selective anti-HCMV activity. Studies performed to identify the possible target of WC5 indicated that it prevents viral DNA synthesis but does not significantly affect DNA polymerase activity. In yield reduction experiments with different multiplicities of infection, the anti-HCMV activity of WC5 appeared to be highly dependent on the viral inoculum, suggesting that WC5 may act at an initial stage of virus replication. Consistently, time-of-addition and time-of-removal studies demonstrated that WC5 affects a phase of the HCMV replicative cycle that precedes viral DNA synthesis. Experiments to monitor the effects of the compound on virus attachment and entry showed that it does not inhibit either process. Evaluation of viral mRNA and protein expression revealed that WC5 targets an event of the HCMV replicative cycle that follows the transcription and translation of immediate-early genes and precedes those of early and late genes. In cell-based assays to test the effects of WC5 on the transactivating activity of the HCMV immediate-early 2 (IE2) protein, WC5 markedly interfered with IE2-mediated transactivation of viral early promoters. Finally, WC5 combined with ganciclovir in checkerboard experiments exhibited highly synergistic activity. These findings suggest that WC5 deserves further investigation as a candidate anti-HCMV drug with a novel mechanism of action. PMID:20194695

  20. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  1. Viral Inhibition of the Transporter Associated with Antigen Processing (TAP): A Striking Example of Functional Convergent Evolution

    PubMed Central

    Verweij, Marieke C.; Horst, Daniëlle; Griffin, Bryan D.; Luteijn, Rutger D.; Davison, Andrew J.; Ressing, Maaike E.; Wiertz, Emmanuel J. H. J.

    2015-01-01

    Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution

  2. Herpesvirus sylvilagus infects both B and T lymphocytes in vivo.

    PubMed

    Kramp, W J; Medveczky, P; Mulder, C; Hinze, H C; Sullivan, J L

    1985-10-01

    Herpesvirus sylvilagus infection of cottontail rabbits (Sylvilagus floridanus) was studied as a model of herpesvirus-induced lymphoproliferative disorders. Leukocytosis, splenomegaly, proliferation of T cells and virus production by lymphocytes characterized this infectious mononucleosis-like disease. Approximately two copies of circular herpesvirus sylvilagus genomes per cell were detected in spleen cells at 2 weeks postinfection, and circular genomes could still be observed after 4 months. Circular viral genomes were found in both B and T lymphocytes. Small amounts of linear viral DNA (0.1 to 0.3 copies per cell) were also detected in both B and T cells. These results indicated that the virus did not replicate in the majority of lymphocytes in vivo. Herpesvirus sylvilagus infection in cottontail rabbits could be useful as a model for studying the complex virus-host relationships of lymphotropic herpesviruses and perhaps as an animal model for Epstein-Barr virus infection in humans. PMID:2993667

  3. Herpesvirus sylvilagus infects both B and T lymphocytes in vivo.

    PubMed Central

    Kramp, W J; Medveczky, P; Mulder, C; Hinze, H C; Sullivan, J L

    1985-01-01

    Herpesvirus sylvilagus infection of cottontail rabbits (Sylvilagus floridanus) was studied as a model of herpesvirus-induced lymphoproliferative disorders. Leukocytosis, splenomegaly, proliferation of T cells and virus production by lymphocytes characterized this infectious mononucleosis-like disease. Approximately two copies of circular herpesvirus sylvilagus genomes per cell were detected in spleen cells at 2 weeks postinfection, and circular genomes could still be observed after 4 months. Circular viral genomes were found in both B and T lymphocytes. Small amounts of linear viral DNA (0.1 to 0.3 copies per cell) were also detected in both B and T cells. These results indicated that the virus did not replicate in the majority of lymphocytes in vivo. Herpesvirus sylvilagus infection in cottontail rabbits could be useful as a model for studying the complex virus-host relationships of lymphotropic herpesviruses and perhaps as an animal model for Epstein-Barr virus infection in humans. Images PMID:2993667

  4. Genome-Wide Mapping of the Binding Sites and Structural Analysis of Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2 Reveal that It Is a DNA-Binding Transcription Factor

    PubMed Central

    Hu, Haidai; Dong, Jiazhen; Liang, Deguang; Gao, Zengqiang; Bai, Lei; Sun, Rui; Hu, Hao; Zhang, Heng

    2015-01-01

    ABSTRACT The oncogenic herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is known to encode four viral interferon regulatory factors (vIRF1 to -4) to subvert the host antiviral immune response, but their detailed DNA-binding profiles as transcription factors in the host remain uncharacterized. Here, we first performed genome-wide vIRF2-binding site mapping in the human genome using chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq). vIRF2 was capable of binding to the promoter regions of 100 putative target genes. Importantly, we confirmed that vIRF2 can specifically interact with the promoters of the genes encoding PIK3C3, HMGCR, and HMGCL, which are associated with autophagosome formation or tumor progression and metastasis, and regulate their transcription in vivo. The crystal structure of the vIRF2 DNA-binding domain (DBD) (referred to here as vIRF2DBD) showed variable loop conformations and positive-charge distributions different from those of vIRF1 and cellular IRFs that are associated with DNA-binding specificities. Structure-based mutagenesis revealed that Arg82 and Arg85 are required for the in vitro DNA-binding activity of vIRF2DBD and can abolish the transcription regulation function of vIRF2 on the promoter reporter activity of PIK3C3, HMGCR, and HMGCL. Collectively, our study provided unique insights into the DNA-binding potency of vIRF2 and suggested that vIRF2 could act as a transcription factor of its target genes in the host antiviral immune response. IMPORTANCE The oncogenic herpesvirus KSHV is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV has developed a unique mechanism to subvert the host antiviral immune responses by encoding four homologues of cellular interferon regulatory factors (vIRF1 to -4). However, none of their DNA-binding profiles in the human genome have been characterized until now, and the structural basis for their diverse

  5. A core viral protein binds host nucleosomes to sequester immune danger signals.

    PubMed

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  6. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  7. Exploitation of Lipid Components by Viral and Host Proteins for Hepatitis C Virus Infection

    PubMed Central

    Moriishi, Kohji; Matsuura, Yashiharu

    2012-01-01

    Hepatitis C virus (HCV), which is a major causative agent of blood-borne hepatitis, has chronically infected about 170 million individuals worldwide and leads to chronic infection, resulting in development of steatosis, cirrhosis, and eventually hepatocellular carcinoma. Hepatocellular carcinoma associated with HCV infection is not only caused by chronic inflammation, but also by the biological activity of HCV proteins. HCV core protein is known as a main component of the viral nucleocapsid. It cooperates with host factors and possesses biological activity causing lipid alteration, oxidative stress, and progression of cell growth, while other viral proteins also interact with host proteins including molecular chaperones, membrane-anchoring proteins, and enzymes associated with lipid metabolism to maintain the efficiency of viral replication and production. HCV core protein is localized on the surface of lipid droplets in infected cells. However, the role of lipid droplets in HCV infection has not yet been elucidated. Several groups recently reported that other viral proteins also support viral infection by regulation of lipid droplets and core localization in infected cells. Furthermore, lipid components are required for modification of host factors and the intracellular membrane to maintain or up-regulate viral replication. In this review, we summarize the current status of knowledge regarding the exploitation of lipid components by viral and host proteins in HCV infection. PMID:22347882

  8. KSHV Rta Promoter Specification and Viral Reactivation.

    PubMed

    Guito, Jonathan; Lukac, David M

    2012-01-01

    Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent Kaposi's sarcoma-associated herpesvirus (KSHV) into the lytic infection cycle is called K-Rta. K-Rta is a transcriptional activator that specifies promoters by binding DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic "CANT DNA repeats" in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta's role as the switch is inefficient. Many factors modulate K-Rta's function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV

  9. Membrane Requirements for Uridylylation of the Poliovirus VPg Protein and Viral RNA Synthesis In Vitro

    PubMed Central

    Fogg, Mark H.; Teterina, Natalya L.; Ehrenfeld, Ellie

    2003-01-01

    Efficient translation of poliovirus (PV) RNA in uninfected HeLa cell extracts generates all of the viral proteins required to carry out viral RNA replication and encapsidation and to produce infectious virus in vitro. In infected cells, viral RNA replication occurs in ribonucleoprotein complexes associated with clusters of vesicles that are formed from preexisting intracellular organelles, which serve as a scaffold for the viral RNA replication complex. In this study, we have examined the role of membranes in viral RNA replication in vitro. Electron microscopic and biochemical examination of extracts actively engaged in viral RNA replication failed to reveal a significant increase in vesicular membrane structures or the protective aggregation of vesicles observed in PV-infected cells. Viral, nonstructural replication proteins, however, bind to heterogeneous membrane fragments in the extract. Treatment of the extracts with nonionic detergents, a membrane-altering inhibitor of fatty acid synthesis (cerulenin), or an inhibitor of intracellular membrane trafficking (brefeldin A) prevents the formation of active replication complexes in vitro, under conditions in which polyprotein synthesis and processing occur normally. Under all three of these conditions, synthesis of uridylylated VPg to form the primer for initiation of viral RNA synthesis, as well as subsequent viral RNA replication, was inhibited. Thus, although organized membranous structures morphologically similar to the vesicles observed in infected cells do not appear to form in vitro, intact membranes are required for viral RNA synthesis, including the first step of forming the uridylylated VPg primer for RNA chain elongation. PMID:14557626

  10. [The use of a dried protein mixture in treating patients with viral hepatitis].

    PubMed

    Dunaevskiĭ, G A; Karpenko, P A; Denisiako, E I; Tsimbal, A E; Iurkovskaia, N B

    1989-07-01

    The authors studied the effect of a dry protein mixture on the clinical course and protein and pigmentary metabolism, functional tests of the liver in 223 patients with viral hepatitis. It was found that this mixture favours reduction of the icteric period, more rapid restoration of the liver function and improves prognosis. The dry protein mixture is recommended to be included in dietotherapy of patients with viral hepatitis. PMID:2800480

  11. STAT3 Regulates Lytic Activation of Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    Li, Xiaofan; Barbachano-Guerrero, Arturo

    2015-01-01

    ABSTRACT Lytic activation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency is a critical contributor to pathogenesis and progression of KSHV-mediated disease. Development of targeted treatment strategies and improvement of lytic-phase-directed oncolytic therapies, therefore, hinge on gaining a better understanding of latency-to-lytic-phase transition. A key observation in that regard, also common to other herpesviruses, is the partial permissiveness of latently infected cells to lytic-cycle-inducing agents. Here, we address the molecular basis of why only some KSHV-infected cells respond to lytic stimuli. Since cellular signal transducer and activator of transcription 3 (STAT3) is constitutively active in KSHV-associated cancers, KSHV activates STAT3, and STAT3 has been found to regulate lytic activation of Epstein-Barr virus (EBV)-infected cells, we asked if STAT3 contributes similarly to the life cycle of KSHV. We found that high levels of STAT3 correlate with the refractory state at the single-cell level under conditions of both spontaneous and induced lytic activation; importantly, STAT3 also regulates lytic susceptibility. Further, knockdown of STAT3 suppresses the cellular transcriptional corepressor Krüppel-associated box domain-associated protein 1 (KAP1; also known as TRIM28), and suppression of KAP1 activates lytic genes, including the viral lytic switch RTA, thereby linking STAT3 via KAP1 to regulation of the balance between lytic and latent cells. These findings, taken together with those from EBV-infected and, more recently, herpes simplex virus 1 (HSV-1)-infected cells, cement the contribution of host STAT3 to persistence of herpesviruses and simultaneously reveal an important lead to devise strategies to improve lytic-phase-directed therapies for herpesviruses. IMPORTANCE Lytic activation of the cancer-causing Kaposi's sarcoma-associated herpesvirus (KSHV) is vital to its life cycle and causation of disease. Like other herpesviruses

  12. The Viral G Protein-Coupled Receptor ORF74 Hijacks β-Arrestins for Endocytic Trafficking in Response to Human Chemokines

    PubMed Central

    de Munnik, Sabrina M.; Kooistra, Albert J.; van Offenbeek, Jody; Nijmeijer, Saskia; de Graaf, Chris; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus-infected cells express the virally encoded G protein-coupled receptor ORF74. Although ORF74 is constitutively active, it binds human CXC chemokines that modulate this basal activity. ORF74-induced signaling has been demonstrated to underlie the development of the angioproliferative tumor Kaposi’s sarcoma. Whereas G protein-dependent signaling of ORF74 has been the subject of several studies, the interaction of this viral GPCR with β-arrestins has hitherto not been investigated. Bioluminescence resonance energy transfer experiments demonstrate that ORF74 recruits β-arrestins and subsequently internalizes in response to human CXCL1 and CXCL8, but not CXCL10. Internalized ORF74 traffics via early endosomes to recycling and late endosomes. Site-directed mutagenesis and homology modeling identified four serine and threonine residues at the distal end of the intracellular carboxyl-terminal of ORF74 that are required for β-arrestin recruitment and subsequent endocytic trafficking. Hijacking of the human endocytic trafficking machinery is a previously unrecognized action of ORF74. PMID:25894435

  13. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    SciTech Connect

    Sathish, Narayanan; Yuan Yan

    2010-11-25

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-{Delta}65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  14. HSV Usurps Eukaryotic Initiation Factor 3 Subunit M for Viral Protein Translation: Novel Prevention Target

    PubMed Central

    Cheshenko, Natalia; Trepanier, Janie B.; Segarra, Theodore J.; Fuller, A. Oveta; Herold, Betsy C.

    2010-01-01

    Prevention of genital herpes is a global health priority. B5, a recently identified ubiquitous human protein, was proposed as a candidate HSV entry receptor. The current studies explored its role in HSV infection. Viral plaque formation was reduced by ∼90% in human cells transfected with small interfering RNA targeting B5 or nectin-1, an established entry receptor. However, the mechanisms were distinct. Silencing of nectin-1 prevented intracellular delivery of viral capsids, nuclear transport of a viral tegument protein, and release of calcium stores required for entry. In contrast, B5 silencing had no effect on these markers of entry, but inhibited viral protein translation. Specifically, viral immediate early genes, ICP0 and ICP4, were transcribed, polyadenylated and transported from the nucleus to the cytoplasm, but the viral transcripts did not associate with ribosomes or polysomes in B5-silenced cells. In contrast, immediate early gene viral transcripts were detected in polysome fractions isolated from control cells. These findings are consistent with sequencing studies demonstrating that B5 is eukaryotic initiation factor 3 subunit m (eIF3m). Although B5 silencing altered the polysome profile of cells, silencing had little effect on cellular RNA or protein expression and was not cytotoxic, suggesting that this subunit is not essential for host cellular protein synthesis. Together these results demonstrate that B5 plays a major role in the initiation of HSV protein translation and could provide a novel target for strategies to prevent primary and recurrent herpetic disease. PMID:20676407

  15. Antigenic and protein sequence homology between VP13/14, a herpes simplex virus type 1 tegument protein, and gp10, a glycoprotein of equine herpesvirus 1 and 4.

    PubMed Central

    Whittaker, G R; Riggio, M P; Halliburton, I W; Killington, R A; Allen, G P; Meredith, D M

    1991-01-01

    Monospecific polyclonal antisera raised against VP13/14, a major tegument protein of herpes simplex virus type 1 cross-reacted with structural equine herpesvirus 1 and 4 proteins of Mr 120,000 and 123,000, respectively; these proteins are identical in molecular weight to the corresponding glycoprotein 10 (gp10) of each virus. Using a combination of immune precipitation and Western immunoblotting techniques, we confirmed that anti-VP13/14 and a monoclonal antibody to gp10 reacted with the same protein. Sequence analysis of a lambda gt11 insert of equine herpesvirus 1 gp10 identified an open reading frame in equine herpesvirus 4 with which it showed strong homology; this open reading frame also shared homology with gene UL47 of herpes simplex virus type 1 and gene 11 of varicella-zoster virus. This showed that, in addition to immunological cross-reactivity, VP13/14 and gp10 have protein sequence homology; it also allowed identification of VP13/14 as the gene product of UL47. Images PMID:1850013

  16. Multivalent display of proteins on viral nanoparticles using molecular recognition and chemical ligation strategies.

    PubMed

    Venter, P Arno; Dirksen, Anouk; Thomas, Diane; Manchester, Marianne; Dawson, Philip E; Schneemann, Anette

    2011-06-13

    Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery, and tissue-specific bioimaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to display covalently a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development. PMID:21545187

  17. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  18. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  19. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  20. Generation of Recombinant Viral Hemorrhagic Septicemia Virus (rVHSV) Expressing Two Foreign Proteins and Effect of Lengthened Viral Genome on Viral Growth and In Vivo Virulence.

    PubMed

    Kim, Min Sun; Lee, Su Jin; Kim, Dong Soo; Kim, Ki Hong

    2016-04-01

    In this study, a new recombinant VHSV (rVHSV-Arfp-Bgfp) was generated by insertion of a red fluorescent protein (RFP) gene between N and P genes, a green fluorescent protein (GFP) gene between P and M genes of VHSV genome, the expression of each heterologous gene in infected cells, and effects of the lengthened recombinant VHSV's genome on the replication ability and in vivo virulence to olive flounder (Paralichthys olivaceus) fingerlings were compared with previously generated rVHSVs (rVHSV-wild, rVHSV-Arfp, and rVHSV-Brfp). The expression of RFP and GFP in cells infected with rVHSV-Arfp-Bgfp was verified through fluorescent microscopy and FACS analysis. In the viral growth analysis, rVHSV-Arfp and rVHSV-Brfp showed significantly lower viral titers than rVHSV-wild, and the replication of rVHSV-Arfp-Bgfp was significantly decreased compared to that of even rVHSV-Arfp or rVHSV-Brfp. These results suggest that the genome length is a critical factor for the determination of rVHSVs replication efficiency. In the in vivo virulence experiment, the cumulative mortalities of olive flounder fingerlings infected with each rVHSV were inversely proportional to the length of the viral genome, suggesting that decreased viral growth rate due to the lengthened viral genome is accompanied with the decrease of in vivo virulence of rVHSVs. Recombinant viruses expressing multiple foreign antigens can be used for the development of combined vaccines. However, as the present rVHSV-Arfp-Bgfp still possesses an ability to kill hosts (although very weakened), researches on the producing more attenuated viruses or propagation-deficient replicon particles are needed to solve safety-related problems. PMID:26921191

  1. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    SciTech Connect

    Chen, Lei

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  2. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    SciTech Connect

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  3. Bioactive activities of natural products against herpesvirus infection.

    PubMed

    Son, Myoungki; Lee, Minjung; Sung, Gi-Ho; Lee, Taeho; Shin, Yu Su; Cho, Hyosun; Lieberman, Paul M; Kang, Hyojeung

    2013-10-01

    More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies. PMID:24173639

  4. Human herpesvirus 7: antigenic properties and prevalence in children and adults.

    PubMed Central

    Wyatt, L S; Rodriguez, W J; Balachandran, N; Frenkel, N

    1991-01-01

    The recent isolation of human herpesvirus 7 (HHV-7) from activated CD4+ T lymphocytes of a healthy individual raises questions regarding the prevalence of this virus in humans and its immunological relationship to previously characterized human herpesviruses. We report that HHV-7 is a ubiquitous virus which is immunologically distinct from the highly prevalent T-lymphotropic HHV-6. Thus, (i) only two of six monoclonal antibodies to HHV-6 cross-reacted with HHV-7-infected cells, (ii) Western immunoblot analyses of viral proteins revealed different patterns for HHV-6- and HHV-7-infected cells, (iii) tests of sequential serum samples from children revealed seroconversion to HHV-6 without concomitant seroconversion to HHV-7, and (iv) in some instances HHV-7 infection occurred in the presence of high titers of HHV-6 antibodies, suggesting the lack of apparent protection of children seropositive for HHV-6 against subsequent infection with HHV-7. On the basis of the analyses of sera from children and adults it can be concluded that HHV-7 is a prevalent human herpesvirus which, like other human herpesviruses, infects during childhood. The age of infection appears to be somewhat later than the very early age documented for HHV-6. Images PMID:1656093

  5. One year duration of immunity of the modified live bovine viral diarrhea virus type 1 and type 2 and bovine herpesvirus-1 fractions of Vista® Once SQ vaccine.

    PubMed

    Purtle, Lisa; Mattick, Debra; Schneider, Corey; Smith, Linda; Xue, Wenzhi; Trigo, Emilio

    2016-03-18

    Three studies were performed to determine the duration of immunity of the bovine viral diarrhea virus type 1 and type 2 (BVDV-1 and BVDV-2) and bovine herpesvirus-1 (BHV-1) fractions of a commercially prepared modified-live vaccine. Vista® Once SQ (Vista®) vaccine contains five modified-live viruses, BVDV-1, BVDV-2, BHV-1, bovine respiratory syncytial virus, and bovine parainfluenza 3 virus, and two modified-live bacteria, Pasteurella multocida and Mannheimia haemolytica. For all three studies, calves were administered a single dose of vaccine or placebo vaccine subcutaneously, and were challenged with one of the three virulent viruses at least one year following vaccination. Calves were evaluated daily following challenge for clinical signs of disease associated with viral infection, nasal swab samples were evaluated for virus shedding, and serum was tested for neutralizing antibodies. Following the BVDV-1 and BVDV-2 challenges, whole blood was evaluated for white blood cell counts, and for the BVDV-2 study, whole blood was also evaluated for platelet counts. Calves vaccinated with BVDV type 1a, were protected from challenge with BVDV type 1b, and had significant reductions in clinical disease, fever, leukopenia, and virus shedding compared to control calves. Vaccinated calves in the BVDV-2 study were protected from clinical disease, mortality, fever, leukopenia, thrombocytopenia, and virus shedding compared to controls. Vaccinated calves in the BHV-1 study were protected from clinical disease and fever, and had significantly reduced duration of nasal virus shedding. These three studies demonstrated that a single administration of the Vista® vaccine to healthy calves induces protective immunity against BVDV-1, BVDV-2 and BHV-1 that lasts at least one year following vaccination. PMID:26859238

  6. Characterization of bovine herpesviruses isolated from six sheep and four goats by restriction endonuclease analysis and radioimmunoprecipitation.

    PubMed

    Whetstone, C A; Evermann, J F

    1988-06-01

    Viral DNA from 10 herpesviruses isolated from 6 sheep and 4 goats were examined by restriction endonuclease analysis with respect to their relatedness to one another; to bovine herpesvirus type 6 (BHV-6), also known as caprine herpesvirus; and to 2 strains of bovine herpesvirus type 1 (BHV-1), known as infectious bovine rhinotracheitis virus (IBRV) and infectious pustular vulvovaginitis virus (IPVV). Viral proteins from the isolates were examined by radioimmunoprecipitation with anti-BHV-1/IBRV gnotobiotic calf (bovine) serum, anti-BHV-1/IBRV bovine hyperimmune serum, and anti-BHV-6 rabbit serum to evaluate their antigenic relatedness to each other. The goat isolates were obtained from animals with various disease conditions including respiratory tract disorders, vulvovaginitis, and wart-like lesions on the eyelid. The other isolates were from domestic sheep and came from aborted fetuses or from sheep with fatal pneumonia or proliferative lesions around lips and nose. All of the goats and 4 of the sheep from which the viral isolates were obtained had comingled with cattle. Purified DNA from each of the 10 field isolates and from BHV-1/IBRV, BHV-1/IPVV, and BHV-6 caprine herpesvirus was cleaved with restriction endonuclease Pst I. Five of 6 sheep isolates and 3 of 4 goat isolates yielded unique restriction patterns, ie, patterns that differed from each other by one or more bands. Sheep isolate DNA patterns were different from goat isolate patterns, and all restriction endonuclease analysis patterns were similar to the pattern for BHV-1/IBRV, but different from that for BHV-1/IPVV or for BHV-6.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2840840

  7. Herpesviruses that Infect Fish

    PubMed Central

    Hanson, Larry; Dishon, Arnon; Kotler, Moshe

    2011-01-01

    Herpesviruses are host specific pathogens that are widespread among vertebrates. Genome sequence data demonstrate that most herpesviruses of fish and amphibians are grouped together (family Alloherpesviridae) and are distantly related to herpesviruses of reptiles, birds and mammals (family Herpesviridae). Yet, many of the biological processes of members of the order Herpesvirales are similar. Among the conserved characteristics are the virion structure, replication process, the ability to establish long term latency and the manipulation of the host immune response. Many of the similar processes may be due to convergent evolution. This overview of identified herpesviruses of fish discusses the diseases that alloherpesviruses cause, the biology of these viruses and the host-pathogen interactions. Much of our knowledge on the biology of Alloherpesvirdae is derived from research with two species: Ictalurid herpesvirus 1 (channel catfish virus) and Cyprinid herpesvirus 3 (koi herpesvirus). PMID:22163339

  8. Computational analysis reveal inhibitory action of nimbin against dengue viral envelope protein.

    PubMed

    Lavanya, P; Ramaiah, Sudha; Anbarasu, Anand

    2015-12-01

    Dengue has emerged to be global health problem worldwide. Hence there is an immediate need to adopt new strategies in the development of effective anti-dengue drugs. Extracts from the leaves of Azadirachta indica has been traditionally used in folk medicine for viral infections. In the present study we report the anti-viral potency of nimbin, the active compound from the neem leaf extract against the envelope protein of dengue virus. Progression of viral entry into the host cell is facilitated by the envelope protein of dengue virus, suggesting; it as an effective anti-viral target. Nimbin is found to be effective against the envelope protein of all four types of dengue virus (dengue 1-4), which is evident from our in silico analysis. Our findings suggest the clinical importance of nimbin, which can serve as effective lead compound for further analysis. PMID:26645034

  9. Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins.

    PubMed

    Zhao, Chen; Sridharan, Haripriya; Chen, Ran; Baker, Darren P; Wang, Shanshan; Krug, Robert M

    2016-01-01

    The ubiquitin-like protein ISG15 and its conjugation to proteins (ISGylation) are strongly induced by type I interferon. Influenza B virus encodes non-structural protein 1 (NS1B) that binds human ISG15 and provides an appropriate model for determining how ISGylation affects virus replication in human cells. Here using a recombinant virus encoding a NS1B protein defective in ISG15 binding, we show that NS1B counteracts ISGylation-mediated antiviral activity by binding and sequestering ISGylated viral proteins, primarily ISGylated viral nucleoprotein (NP), in infected cells. ISGylated NP that is not sequestered by mutant NS1B acts as a dominant-negative inhibitor of oligomerization of the more abundant unconjugated NP. Consequently formation of viral ribonucleoproteins that catalyse viral RNA synthesis is inhibited, causing decreased viral protein synthesis and virus replication. We verify that ISGylated NP is largely responsible for inhibition of viral RNA synthesis by generating recombinant viruses that lack known ISGylation sites in NP. PMID:27587337

  10. Formation of a stable complex between the human immunodeficiency virus integrase protein and viral DNA.

    PubMed Central

    Vink, C; Lutzke, R A; Plasterk, R H

    1994-01-01

    The integrase (IN) protein of the human immunodeficiency virus (HIV) mediates two distinct reactions: (i) specific removal of two nucleotides from the 3' ends of the viral DNA and (ii) integration of the viral DNA into target DNA. Although IN discriminates between specific (viral) DNA and nonspecific DNA in physical in vitro assays, a sequence-specific DNA-binding domain could not be identified in the protein. A nonspecific DNA-binding domain, however, was found at the C terminus of the protein. We examined the DNA-binding characteristics of HIV-1 IN, and found that a stable complex of IN and viral DNA is formed in the presence of Mn2+. The IN-viral DNA complex is resistant to challenge by an excess of competitor DNA. Stable binding of IN to the viral DNA requires that the protein contains an intact N-terminal domain and active site (in the central region of the protein), in addition to the C-terminal DNA-binding domain. Images PMID:7937134

  11. Andes Virus Nucleocapsid Protein Interrupts Protein Kinase R Dimerization To Counteract Host Interference in Viral Protein Synthesis

    PubMed Central

    Wang, Zekun

    2014-01-01

    ABSTRACT Pathogenic hantaviruses delay the type I interferon response during early stages of viral infection. However, the robust interferon response and induction of interferon-stimulated genes observed during later stages of hantavirus infection fail to combat the virus replication in infected cells. Protein kinase R (PKR), a classical interferon-stimulated gene product, phosphorylates the eukaryotic translation initiation factor eIF2α and causes translational shutdown to create roadblocks for the synthesis of viral proteins. The PKR-induced translational shutdown helps host cells to establish an antiviral state to interrupt virus replication. However, hantavirus-infected cells do not undergo translational shutdown and fail to establish an antiviral state during the course of viral infection. In this study, we showed for the first time that Andes virus infection induced PKR overexpression. However, the overexpressed PKR was not active due to a significant inhibition of autophosphorylation. Further studies revealed that Andes virus nucleocapsid protein inhibited PKR dimerization, a critical step required for PKR autophosphorylation to attain activity. The studies reported here establish a hantavirus nucleocapsid protein as a new PKR inhibitor. These studies provide mechanistic insights into hantavirus resistance to the host interferon response and solve the puzzle of the lack of translational shutdown observed in hantavirus-infected cells. The sensitivity of hantavirus replication to PKR has likely imposed a selective evolutionary pressure on hantaviruses to evade the PKR antiviral response for survival. We envision that evasion of the PKR antiviral response by NP has likely helped hantaviruses to exist during evolution and to survive in infected hosts with a multifaceted antiviral defense. IMPORTANCE Protein kinase R (PKR), a versatile antiviral host factor, shuts down the translation machinery upon activation in virus-infected cells to create hurdles for the

  12. Effects of ER stress on unfolded protein responses, cell survival, and viral replication in primary effusion lymphoma.

    PubMed

    Shigemi, Zenpei; Baba, Yusuke; Hara, Naoko; Matsuhiro, Jumpei; Kagawa, Hiroki; Watanabe, Tadashi; Fujimuro, Masahiro

    2016-01-15

    Primary effusion lymphoma (PEL), a subtype of non-Hodgkin's B-lymphoma, is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. Endoplasmic reticulum (ER) stress induces activation of the unfolded protein response (UPR), which induces expression of ER chaperones, which in turn decrease ER stress, leading to ER homeostasis. The UPR is necessary for not only ER homeostasis but also persistent infection by, and replication of, many viruses. However, the precise roles and regulation of the UPR in KSHV infection remain poorly understood. Here, we found that IRE1α and PERK were significantly downregulated in PEL cells cultured under normal conditions, compared with KSHV-uninfected B-lymphoma cells. IRE1α and PERK mRNA levels were decreased in PEL cells, and KSHV-encoded LANA and v-cyclin D led to suppressed IRE1α transcription. Thapsigargin-induced ER stress activated the UPR and increased the mRNA levels of UPR-related molecules, including IRE1α and PERK, in PEL cells. However the IRE1α and PERK mRNA levels in PEL cells were lower than those in KSHV-uninfected cells. Furthermore, ER stress induced by brefeldin A and thapsigargin dramatically reduced the viability of PEL cells, compared with KSHV-uninfected cells, and induced apoptosis of PEL cells via the pro-apoptotic UPR through expression of CHOP and activation of caspase-9. In addition to the pro-apoptotic UPR, thapsigargin-induced ER stress enhanced transcription of lytic genes, including RTA, K-bZIP and K8.1, and viral production in PEL cells resulted in induction of the lytic cycle. Thus, we demonstrated downregulation of IRE1α and PERK in PEL cells, transcriptional suppression of IRE1α by LANA and v-cyclin D, apoptosis induction in PEL cells by ER stress, and potentiation of lytic replication by ER stress. PMID:26692493

  13. Illuminating structural proteins in viral “dark matter” with metaproteomics

    PubMed Central

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M.; Roux, Simon; VerBerkmoes, Nathan C.; Rich, Virginia I.; Sullivan, Matthew B.

    2016-01-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional “viral dark matter.” Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world’s oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter. PMID:26884177

  14. The protective antigens of equine herpesvirus type 1.

    PubMed

    Papp-Vid, G; Derbyshire, J B

    1978-04-01

    Equine herpesvirus type 1 was cultivated in swine testis cell cultures and partially purified by differential centrifugation and centrifugation in a linear sucrose density gradient. The viral envelope was separated from the nucleocapsid by treatment with Rexol 25J followed by sucrose gradient centrifugation. The envelope and nucleocapsid preparations were then electrophoresed in polyacrylamide gel after solubilization with sodium dodecyl sulphate. Hamsters were immunized with various preparations of the partially purified virus, including live or inactivated equine herpesvirus type 1 and viral envelope and nucleocapsid, all derived from the Kentucky D strain of the virus. Challenge of the immunized hamsters, with a hamster-adapted strain of equine herpesvirus type 1 demonstrated protection only in those animals which had been vaccinated with envelope-containing materials. When vaccination was carried out with fractions of electrophoresed envelope or nucleocapsid, protection was induced only by polypeptides of high molecular weight containing a glycoprotein component of the envelope of equine herpesvirus type 1. PMID:208736

  15. Analysis of HSV viral reactivation in explants of sensory neurons

    PubMed Central

    Turner, Anne-Marie W.; Kristie, Thomas M.

    2014-01-01

    As with all Herpesviruses, Herpes simplex virus (HSV) has both a lytic replication phase and a latency-reactivation cycle. During lytic replication, there is an ordered cascade of viral gene expression that leads to the synthesis of infectious viral progeny. In contrast, latency is characterized by the lack of significant lytic gene expression and the absence of infectious virus. Reactivation from latency is characterized by the re-entry of the virus into the lytic replication cycle and the production of recurrent disease. This unit describes the establishment of the mouse sensory neuron model of HSV-1 latency-reactivation as a useful in vivo system for the analysis of mechanisms involved in latency and reactivation. Assays including the determination of viral yields, immunohistochemical/immunofluorescent detection of viral antigens, and mRNA quantitation are used in experiments designed to investigate the network of cellular and viral proteins regulating HSV-1 lytic infection, latency, and reactivation. PMID:25367271

  16. MSLVP: prediction of multiple subcellular localization of viral proteins using a support vector machine.

    PubMed

    Thakur, Anamika; Rajput, Akanksha; Kumar, Manoj

    2016-07-19

    Knowledge of the subcellular location (SCL) of viral proteins in the host cell is important for understanding their function in depth. Therefore, we have developed "MSLVP", a two-tier prediction algorithm for predicting multiple SCLs of viral proteins. For this study, data sets of comprehensive viral proteins with experimentally validated SCL annotation were collected from UniProt. Non-redundant (90%) data sets of 3480 viral proteins that belonged to single (2715), double (391) and multiple (374) sites were employed. Additionally, 1687 (30% sequence identity) viral proteins were categorised into single (1366), double (167) and multiple (154) sites. Single, double and multiple locations further comprised of eight, four and six categories, respectively. Viral protein locations include the nucleus, cytoplasm, endoplasmic reticulum, extracellular, single-pass membrane, multi-pass membrane, capsid, remaining others and combinations thereof. Support vector machine based models were developed using sequence features like amino acid composition, dipeptide composition, physicochemical properties and their hybrids. We have employed "one-versus-one" as well as "one-versus-other" strategies for multiclass classification. The performance of "one-versus-one" is better than the "one-versus-other" approach during 10-fold cross-validation. For the 90% data set, we achieved an accuracy, a Matthew's correlation coefficient (MCC) and a receiver operating characteristic (ROC) of 99.99%, 1.00, 1.00; 100.00%, 1.00, 1.00 and 99.90%; 1.00, 1.00 for single, double and multiple locations, respectively. Similar results were achieved for a 30% sequence identity data set. Predictive models for each SCL performed equally well on the independent dataset. The MSLVP web server () can predict subcellular locations i.e. single (8; including single and multi-pass membrane), double (4) and multiple (6). This would be helpful for elucidating the functional annotation of viral proteins and potential drug

  17. Comparative Genomics of Carp Herpesviruses

    PubMed Central

    Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P.; Waltzek, Thomas B.

    2013-01-01

    Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803

  18. Comparative genomics of carp herpesviruses.

    PubMed

    Davison, Andrew J; Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P; Waltzek, Thomas B

    2013-03-01

    Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803

  19. The Unfolded Protein Response Is Triggered by a Plant Viral Movement Protein1[W][OA

    PubMed Central

    Ye, Changming; Dickman, Martin B.; Whitham, Steven A.; Payton, Mark; Verchot, Jeanmarie

    2011-01-01

    Infection with Potato virus X (PVX) in Nicotiana benthamiana plants leads to increased transcript levels of several stress-related host genes, including basic-region leucine zipper 60 (bZIP60), SKP1, ER luminal binding protein (BiP), protein disulfide isomerase (PDI), calreticulin (CRT), and calmodulin (CAM). bZIP60 is a key transcription factor that responds to endoplasmic reticulum (ER) stress and induces the expression of ER-resident chaperones (BiP, PDI, CRT, and CAM). SKP1 is a component of SCF (for SKP1-Cullin-F box protein) ubiquitin ligase complexes that target proteins for proteasomal degradation. Expression of PVX TGBp3 from a heterologous vector induces the same set of genes in N. benthamiana and Arabidopsis (Arabidopsis thaliana) leaves. Virus-induced gene silencing was employed to knock down the expression of bZIP60 and SKP1, and the number of infection foci on inoculated leaves was reduced and systemic PVX accumulation was altered. Silencing bZIP60 led to the suppression of BiP and SKP1 transcript levels, suggesting that bZIP60 might be an upstream signal transducer. Overexpression of TGBp3 led to localized necrosis, but coexpression of TGBp3 with BiP abrogated necrosis, demonstrating that the unfolded protein response alleviates ER stress-related cell death. Steady-state levels of PVX replicase and TGBp2 (which reside in the ER) proteins were unaltered by the presence of TGBp3, suggesting that TGBp3 does not contribute to their turnover. Taken together, PVX TGBp3-induced ER stress leads to up-regulation of bZIP60 and unfolded protein response-related gene expression, which may be important to regulate cellular cytotoxicity that could otherwise lead to cell death if viral proteins reach high levels in the ER. PMID:21474436

  20. Columbid herpesvirus-1 mortality in great horned owls (Bubo virginianus) from Calgary, Alberta.

    PubMed

    Rose, Nicole; Warren, Amy L; Whiteside, Douglas; Bidulka, Julie; Robinson, John H; Illanes, Oscar; Brookfield, Caroline

    2012-03-01

    Four cases of Columbid herpesvirus-1 infection in great horned owls (Bubo virginianus) were identified in Calgary, Alberta. Necropsy findings included severe multifocal hepatic and splenic necrosis, pharyngeal ulceration and necrosis, and gastrointestinal necrosis. Occasional eosinophilic intranuclear viral inclusion bodies were associated with the foci of necrosis and polymerase chain reaction (PCR) testing confirmed a diagnosis of herpesvirus-induced disease. The sequence of a PCR amplicon had 99.7% homology to Columbid herpesvirus-1. PMID:22942441

  1. Columbid herpesvirus-1 mortality in great horned owls (Bubo virginianus) from Calgary, Alberta

    PubMed Central

    Rose, Nicole; Warren, Amy L.; Whiteside, Douglas; Bidulka, Julie; Robinson, John H.; Illanes, Oscar; Brookfield, Caroline

    2012-01-01

    Four cases of Columbid herpesvirus-1 infection in great horned owls (Bubo virginianus) were identified in Calgary, Alberta. Necropsy findings included severe multifocal hepatic and splenic necrosis, pharyngeal ulceration and necrosis, and gastrointestinal necrosis. Occasional eosinophilic intranuclear viral inclusion bodies were associated with the foci of necrosis and polymerase chain reaction (PCR) testing confirmed a diagnosis of herpesvirus-induced disease. The sequence of a PCR amplicon had 99.7% homology to Columbid herpesvirus-1. PMID:22942441

  2. At the crossroads of autophagy and infection: Noncanonical roles for ATG proteins in viral replication.

    PubMed

    Solvik, Tina; Debnath, Jayanta

    2016-08-29

    Autophagy-related (ATG) proteins have increasingly demonstrated functions other than cellular self-eating. In this issue, Mauthe et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201602046) conduct an unbiased RNA interference screen of the ATG proteome to reveal numerous noncanonical roles for ATG proteins during viral infection. PMID:27573461

  3. Dynamics of virus shedding and in situ confirmation of chelonid herpesvirus 5 in Hawaiian green turtles with Fibropapillomatosis

    USGS Publications Warehouse

    Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schettle, Nelli; Ackermann, Mathias

    2015-01-01

    Cancers in humans and animals can be caused by viruses, but virus-induced tumors are considered to be poor sites for replication of intact virions (lytic replication). Fibropapillomatosis (FP) is a neoplastic disease associated with a herpesvirus, chelonid herpesvirus 5 (ChHV5), that affects green turtles globally. ChHV5 probably replicates in epidermal cells of tumors, because epidermal intranuclear inclusions (EIIs) contain herpesvirus-like particles. However, although EIIs are a sign of herpesvirus replication, they have not yet been firmly linked to ChHV5. Moreover, the dynamics of viral shedding in turtles are unknown, and there are no serological reagents to confirm actual presence of the specific ChHV5 virus in tissues. The investigators analyzed 381 FP tumors for the presence of EIIs and found that overall, about 35% of green turtles had lytic replication in skin tumors with 7% of tumors showing lytic replication. A few (11%) turtles accounted for more than 30% cases having lytic viral replication, and lytic replication was more likely in smaller tumors. To confirm that turtles were actively replicating ChHV5, a prerequisite for shedding, the investigators used antiserum raised against F-VP26, a predicted capsid protein of ChHV5 that localizes to the host cell nucleus during viral replication. This antiserum revealed F-VP26 in EIIs of tumors, thus confirming the presence of replicating ChHV5. In this light, it is proposed that unlike other virus-induced neoplastic diseases, FP is a disease that may depend on superspreaders, a few highly infectious individuals growing numerous small tumors permissive to viral production, for transmission of ChHV5.

  4. Hsp70 Isoforms Are Essential for the Formation of Kaposi’s Sarcoma-Associated Herpesvirus Replication and Transcription Compartments

    PubMed Central

    Baquero-Pérez, Belinda; Whitehouse, Adrian

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs). Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII) relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents. PMID:26587836

  5. Phosphorylation of human respiratory syncytial virus P protein at serine 54 regulates viral uncoating

    SciTech Connect

    Asenjo, Ana; Gonzalez-Armas, Juan C.; Villanueva, Nieves

    2008-10-10

    The human respiratory syncytial virus (HRSV) structural P protein, phosphorylated at serine (S) and threonine (T) residues, is a co-factor of viral RNA polymerase. The phosphorylation of S54 is controlled by the coordinated action of two cellular enzymes: a lithium-sensitive kinase, probably glycogen synthetase kinase (GSK-3) {beta} and protein phosphatase 2A (PP2A). Inhibition of lithium-sensitive kinase, soon after infection, blocks the viral growth cycle by inhibiting synthesis and/or accumulation of viral RNAs, proteins and extracellular particles. P protein phosphorylation at S54 is required to liberate viral ribonucleoproteins (RNPs) from M protein, during the uncoating process. Kinase inhibition, late in infection, produces a decrease in genomic RNA and infectious viral particles. LiCl, intranasally applied to mice infected with HRSV A2 strain, reduces the number of mice with virus in their lungs and the virus titre. Administration of LiCl to humans via aerosol should prevent HRSV infection, without secondary effects.

  6. HMGB1 Protein Binds to Influenza Virus Nucleoprotein and Promotes Viral Replication

    PubMed Central

    Moisy, Dorothée; Avilov, Sergiy V.; Jacob, Yves; Laoide, Brid M.; Ge, Xingyi; Baudin, Florence; Jestin, Jean-Luc

    2012-01-01

    Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses. PMID:22696656

  7. Broad-spectrum non-nucleoside inhibitors of human herpesviruses

    PubMed Central

    McClain, Lora; Zhi, Yun; Cheng, Hoyee; Ghosh, Ayantika; Piazza, Paolo; Yee, Michael B.; Kumar, Santosh; Milosevic, Jadranka; Bloom, David C.; Arav-Boger, Ravit; Kinchington, Paul R.; Yolken, Robert; Nimgaonkar, Vishwajit; D’Aiuto, Leonardo

    2015-01-01

    Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of ‘quiescent’ HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo. PMID:26079681

  8. Broad-spectrum non-nucleoside inhibitors of human herpesviruses.

    PubMed

    McClain, Lora; Zhi, Yun; Cheng, Hoyee; Ghosh, Ayantika; Piazza, Paolo; Yee, Michael B; Kumar, Santosh; Milosevic, Jadranka; Bloom, David C; Arav-Boger, Ravit; Kinchington, Paul R; Yolken, Robert; Nimgaonkar, Vishwajit; D'Aiuto, Leonardo

    2015-09-01

    Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of 'quiescent' HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo. PMID:26079681

  9. Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7

    PubMed Central

    Capar, Adam; Zheng, Hong; Frappier, Lori; Saridakis, Vivian

    2015-01-01

    Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity. PMID:26046769

  10. Involvement of SSRP1 in Latent Replication of Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    Hu, Jianhong; Liu, Eugene; Renne, Rolf

    2009-01-01

    Kaposi's sarcoma-associated herpesvirus (also named human herpesvirus 8) is a γ-herpesvirus that undergoes both lytic and latent infection. During latent infection, two viral elements are required: latency-associated nuclear antigen (LANA), which functions as an origin binding protein, and the latent origin, which resides within the terminal repeats (TRs) of the viral genome. Previously, we identified two cis-elements within the TRs which are required for latent DNA replication: two LANA binding sites (LBS1 and LBS2 [LBS1/2]) and a GC-rich replication element (RE) upstream of LBS1/2. To further characterize the RE, we constructed a 71-bp minimal replicon (MR) and performed a detailed mutational analysis. Our data indicate that the first 8 nucleotides within the RE are critical for replication. Moreover, both the position and the distance between the RE and LBS1/2 can affect origin replication activity, suggesting that the RE may function as a loading pad for cellular proteins involved in replication. Using biotinylated DNA fragments of wild-type or mutant MRs as probes, we identified 30 proteins that preferentially bind to the origin. Among these proteins, structure-specific recognition protein 1 (SSRP1), a subunit of the FACT complex, and telomeric repeat binding factor 2 (TRF2) formed complexes with LANA at the MR region. Furthermore, the small interfering RNA-based knockdown of SSRP1, but not the dominant-negative-based knockdown of TRF2, significantly decreased the efficiency of LANA-dependent DNA replication. These results indicate that SSRP1 is a novel cellular protein involved in LANA-dependent DNA replication. PMID:19710137