Science.gov

Sample records for heterogeneous ice nucleation

  1. Note: Heterogeneous ice nucleation on silver-iodide-like surfaces

    NASA Astrophysics Data System (ADS)

    Fraux, Guillaume; Doye, Jonathan P. K.

    2014-12-01

    We attempt to simulate the heterogeneous nucleation of ice at model silver-iodide surfaces and find relatively facile ice nucleation and growth at the Ag+ terminated basal face, but never see nucleation at the I- terminated basal face or the prism and normal faces. Water molecules strongly adsorb onto the Ag+ terminated face to give a well-ordered hexagonal ice-like bilayer that then acts as a template for further ice growth.

  2. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    SciTech Connect

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  3. Heterogeneous nucleation of ice on model carbon surfaces

    NASA Astrophysics Data System (ADS)

    Molinero, V.; Lupi, L.; Hudait, A.

    2014-12-01

    Carbonaceous particles account for 10% of the particulate matter in the atmosphere. The experimental investigation of heterogeneous freezing of water droplets by carbonaceous particles reveals widespread ice freezing temperatures. The origin of the soot and its oxidation and aging modulate its ice nucleation ability, however, it is not known which structural and chemical characteristics of soot account for the variability in ice nucleation efficiency. We find that atomically flat carbon surfaces promote heterogeneous nucleation of ice, while molecularly rough surfaces with the same hydrophobicity do not. We investigate a large set of graphitic surfaces of various dimensions and radii of curvature consistent with those of soot in experiments, and find that variations in nanostructures alone could account for the spread in the freezing temperatures of ice on soot in experiments. A characterization of the nanostructure of soot is needed to predict its ice nucleation efficiency. Atmospheric oxidation and aging of soot modulates its ice nucleation ability. It has been suggested that an increase in the ice nucleation ability of aged soot results from an increase in the hydrophilicity of the surfaces upon oxidation. Oxidation, however, also impacts the nanostructure of soot, making it difficult to assess the separate effects of soot nanostructure and hydrophilicity in experiments. We investigate the effect of changes in hydrophilicity of model graphitic surfaces on the freezing temperature of ice. Our results indicate that the hydrophilicity of the surface is not in general a good predictor of ice nucleation ability. We find a correlation between the ability of a surface to promote nucleation of ice and the layering of liquid water at the surface. The results of this work suggest that ordering of liquid water in contact with the surface plays an important role in the heterogeneous ice nucleation mechanism. References: L. Lupi, A. Hudait and V. Molinero, J. Am. Chem. Soc

  4. Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation.

    PubMed

    Cabriolu, Raffaela; Li, Tianshu

    2015-05-01

    The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model (mW), we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor, which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the quantitative power of the theory and allows understanding ice nucleation behaviors under the most relevant freezing conditions. PMID:26066178

  5. Alteration of Heterogeneous Ice Nucleation Properties Induced by Particle Aging

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Polen, M.; Beydoun, H.; Lawlis, E.; Ahern, A.; Jahn, L.; Hill, T. C. J.

    2015-12-01

    Aerosol particles that can serve as ice nuclei frequently experience rapid and extensive chemical aging during atmospheric transport. This is known to significantly alter some ice nucleation modes of the few types of ice nucleation particle systems where aging effects have been simulated, such as for mineral dust. Yet much of our understanding of atmospheric particle freezing properties is derived from measurements of fresh or unaged particles. We know almost nothing regarding how atmospheric aging might alter the freezing properties of biomass burning aerosol or biological particle nucleants. We have investigated the effects of simulated aging using a chamber reactor on the heterogeneous ice nucleation properties of biomass burning aerosol (BBA) and ice-active bacteria particles. Some types of aging were found to enhance the freezing ability of BBA, exhibited as a shift in a portion of the droplet freezing curve to warmer temperatures by a few °C. Ice-active bacteria were found to consistently loose their most ice-active nucleants after repeated aging cycles. The bacterial systems always retained significantly efficient ice active sites that still allowed them to induce freezing at mild/warm temperatures, despite this decrease in freezing ability. A comprehensive series of online single-particle mass spectrometry and offline spectromicroscopic analysis of individual particles was used to determine how the aging altered the aerosol's composition, and gain mechanistic insights into how this in turn altered the freezing properties. Our new ice nucleation framework that uses a continuous distribution of ice active site ability (contact angle) was used to interpret the droplet freezing spectra and understand how aging alters the internal and external variability, and rigidity, of the ice active sites.

  6. Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior

    NASA Astrophysics Data System (ADS)

    Niedermeier, D.; Shaw, R. A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.

    2011-08-01

    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized, conceptual model to explore the transition between stochastic and singular ice nucleation. This "soccer ball" model treats particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. Even with ice nucleation treated fundamentally as a stochastic process this process can be masked by the heterogeneity of surface properties, as might be typical for realistic atmospheric particle populations. Full evaluation of the model findings will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.

  7. Heterogeneous ice nucleation on particles composed of humic-like substances impacted by O3

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Knopf, Daniel A.

    2011-02-01

    Heterogeneous ice nucleation plays important roles in cirrus and mixed-phase cloud formation, but the efficiency of organic particles to act as ice nuclei (IN) is still not well understood. Furthermore, the effect of particle oxidation by O3 on corresponding IN efficiencies has not yet been sufficiently assessed. We present heterogeneous ice nucleation on kaolinite, Suwannee River standard fulvic acid (SRFA), and leonardite standard humic acid particles as a function of particle temperature (Tp), relative humidity with respect to ice (RHice), nucleation mode, and O3 exposure. Ice nucleation and water uptake were studied for Tp >203 K and RHice up to water saturation using a novel ice nucleation apparatus. This study shows that SRFA, leonardite, and corresponding O3-exposed particles can nucleate ice via different modes at relevant atmospheric conditions. These particles nucleated ice via deposition mode at Tp ≤ 231 K, and for higher Tp water was taken up or ice was nucleated via deposition or immersion mode. Oxidation of leonardite and SRFA particles by O3 led to a decrease in deposition nucleation efficiency and to water uptake at lower temperatures for the former and to an increase in the lowest temperature at which deposition nucleation was observed for the latter. Activated IN fractions and heterogeneous ice nucleation rate coefficients (Jhet) were derived, and corresponding contact angles (θ) were calculated. A parameterization of θ as a function of RHice is presented which allows derivation of Jhet for various deposition IN and corresponding ice crystal production rates for application in cloud-resolving models.

  8. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Möhler, O.

    2012-10-01

    A small subset of the atmospheric aerosol population has the ability to induce ice formation at conditions under which ice would not form without them (heterogeneous ice nucleation). While no closed theoretical description of this process and the requirements for good ice nuclei is available, numerous studies have attempted to quantify the ice nucleation ability of different particles empirically in laboratory experiments. In this article, an overview of these results is provided. Ice nucleation "onset" conditions for various mineral dust, soot, biological, organic and ammonium sulfate particles are summarized. Typical temperature-supersaturation regions can be identified for the "onset" of ice nucleation of these different particle types, but the various particle sizes and activated fractions reported in different studies have to be taken into account when comparing results obtained with different methodologies. When intercomparing only data obtained under the same conditions, it is found that dust mineralogy is not a consistent predictor of higher or lower ice nucleation ability. However, the broad majority of studies agrees on a reduction of deposition nucleation by various coatings on mineral dust. The ice nucleation active surface site (INAS) density is discussed as a simple and empirical normalized measure for ice nucleation activity. For most immersion and condensation freezing measurements on mineral dust, estimates of the temperature-dependent INAS density agree within about two orders of magnitude. For deposition nucleation on dust, the spread is significantly larger, but a general trend of increasing INAS densities with increasing supersaturation is found. For soot, the presently available results are divergent. Estimated average INAS densities are high for ice-nucleation active bacteria at high subzero temperatures. At the same time, it is shown that INAS densities of some other biological aerosols, like certain pollen grains, fungal spores and diatoms

  9. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  10. Heterogeneous nucleation of ice particles on glassy aerosols modifies TTL cirrus

    NASA Astrophysics Data System (ADS)

    Wilson, T. W.; Murray, B. J.; Dobbie, S.; Al-Jumur, S. M.; Cui, Z.; Wagner, R.; Moehler, O.; Schnaiter, M.; Benz, S.; Niemand, M.; Saathoff, H.; Skrotzki, J.; Ebert, V.; Wagner, S.; Karcher, B.

    2010-12-01

    Experiments at the AIDA chamber, Karlsruhe Institute of Technology, have shown that glassy aqueous citric acid aerosol can nucleate ice at temperatures relevant to the tropical tropopause layer (TTL)(1). Modelling suggests this new route to the formation of TTL cirrus can provide an explanation for the very low ice particle number density observed in cirrus clouds in this region and may lead to high in-cloud supersaturations(1). Nucleation of ice on glassy aerosol is consistent with the absence of traditional ice nuclei in sampled TTL cirrus residue(2). In addition, we will present new data from experiments performed in July 2010 at the AIDA chamber using glassy aerosols composed of other atmospherically relevant compounds (levoglucosan, raffinose) and an internal mixture of five dicarboxylic acids and ammonium sulphate (raffinose/M5AS)(3). All four systems tested nucleate ice when in a glassy state. This indicates that heterogeneous ice nucleation is a general property of glassy aerosols and that natural aerosols which are composed of similar molecules will also nucleate ice if glassy. Glassy aqueous levoglucosan and raffinose/M5AS aerosol nucleated ice at temperatures similar to those found for glassy aqueous citric acid aerosol (<202 K). Whereas raffinose, which forms a glass at much higher temperatures, nucleated ice heterogeneously at up to ~220 K. This activity at higher temperatures suggests that ice nucleation by glassy aerosol may also play a role in the formation of warmer ice clouds. (1)B. J. Murray et al., Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions, Nature Geosci, 2010, 3, 233-237. (2)K. D. Froyd et al., Aerosols that form subvisible cirrus at the tropical tropopause, Atmos. Chem. Phys., 2010, 10, 209-218. (3)B. Zobrist et al., Do atmospheric aerosols form glasses?, Atmos. Chem. Phys., 2008, 8, 5221-5244.

  11. Molecular Simulations of Heterogeneous Ice Nucleation. II. Peeling back the Layers

    SciTech Connect

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Coarse grained molecular dynamics simulations are presented in which the sensitivity of the ice nucleation rate to the hydrophilicity of a graphene nanoflake is investigated. We find that an optimal interaction strength for promoting ice nucleation exists, which coincides with that found previously for a face centered cubic (111) surface. We further investigate the role that the layering of interfacial water plays in heterogeneous ice nucleation and demonstrate that the extent of layering is not a good indicator of ice nucleating ability for all surfaces. Our results suggest that to be an efficient ice nucleating agent, a surface should not bind water too strongly if it is able to accommodate high coverages of water.

  12. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Möhler, O.

    2012-05-01

    A small subset of the atmospheric aerosol population has the ability to induce ice formation at conditions under which ice would not form without them (heterogeneous ice nucleation). While no closed theoretical description of this process and the requirements for good ice nuclei is available, numerous studies have attempted to quantify the ice nucleation ability of different particles empirically in laboratory experiments. In this article, an overview of these results is provided. Ice nucleation onset conditions for various mineral dust, soot, biological, organic and ammonium sulphate particles are summarized. Typical temperature-supersaturation regions can be identified for the onset of ice nucleation of these different particle types, but the various particle sizes and activated fractions reported in different studies have to be taken into account when comparing results obtained with different methodologies. When intercomparing only data obtained under the same conditions, it is found that dust mineralogy is not a consistent predictor of higher or lower ice nucleation ability. However, the broad majority of studies agrees on a reduction of deposition nucleation by various coatings on mineral dust. The ice nucleation active surface site (INAS) density is discussed as a normalized measure for ice nucleation activity. For most immersion and condensation freezing measurements on mineral dust, estimates of the temperature-dependent INAS density agree within about two orders of magnitude. For deposition nucleation on dust, the spread is significantly larger, but a general trend of increasing INAS densities with increasing supersaturation is found. For soot, the presently available results are divergent. Estimated average INAS densities are high for ice-nucleation active bacteria at high subzero temperatures. At the same time, it is shown that some other biological aerosols, like certain pollen grains and fungal spores, are not intrinsically better ice nuclei than dust

  13. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    PubMed

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed. PMID:18363389

  14. Heterogeneous nucleation of ice from supercooled NaCl solution confined in porous cement paste

    NASA Astrophysics Data System (ADS)

    Zeng, Qiang; Li, Kefei; Fen-Chong, Teddy

    2015-01-01

    Clarifying the nucleation process of chloride-based deicing salt solution (e.g., NaCl solution) confined in cement-based porous materials remains an important issue to understand its detrimental effects on material substrates. In this study, the pore structures of hardened cement pastes were characterized by mercury-intrusion and nitrogen-sorption porosimetry. The ice nucleation temperature of NaCl solution of different concentrations confined in the hardened cement pastes was measured and analyzed by classical heterogeneous nucleation theory. The kinetic factor, contact-angle factor including the contact angle between ice and the substrate were evaluated. The results revealed that the contact angle between ice and the substrate showed the minimum value when adding 3% NaCl into water. The heterogeneous ice nucleation rates were found to be proportional to the water activity shifts.

  15. Heterogeneous Nucleation of Ice on Anthropogenic Organic Particles Collected in Mexico City

    SciTech Connect

    Knopf, Daniel A.; Wang, BingBing; Laskin, Alexander; Moffet, Ryan C.; Gilles, Marry K.

    2010-06-05

    This study reports on heterogeneous ice nucleation activity of predominantly organic or coated with organic material anthropogenic particles sampled within and around the polluted environment of Mexico City. The onset of heterogeneous ice nucleation was observed as a function of particle temperature (Tp), relative humidity (RH), nucleation mode, and chemical composition of particles influenced by their photochemical atmospheric aging. Particle analyses was conducted using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). In contrast to the majority of laboratory studies employing proxies of organic aerosol, we show that anthropogenic organic particles collected in Mexico City have can potentially induce ice nucleation at experimental conditions relevant to cirrus formation. The reported results suggest a new paradigm for the potential impact of organic particles on ice cloud formation and climate.

  16. Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City

    SciTech Connect

    Knopf, D.A.; Wang, B.; Laskin, A.; Moffet, R.C.; Gilles, M.K.

    2010-06-20

    This study reports on heterogeneous ice nucleation activity of predominantly organic (or coated with organic material) anthropogenic particles sampled within and around the polluted environment of Mexico City. The onset of heterogeneous ice nucleation was observed as a function of particle temperature (Tp), relative humidity (RH), nucleation mode, and particle chemical composition which is influenced by photochemical atmospheric aging. Particle analyses included computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). In contrast to most laboratory studies employing proxies of organic aerosol, we show that anthropogenic organic particles collected in Mexico City can potentially induce ice nucleation at experimental conditions relevant to cirrus formation. The results suggest a new precedent for the potential impact of organic particles on ice cloud formation and climate.

  17. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  18. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2011-11-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  19. A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; O'Sullivan, D.; Umo, N. S.; Baustian, K. J.; Atkinson, J. D.; Morris, G. J.

    2014-09-01

    The ice content of mixed phase clouds, which contain both supercooled water and ice, affects both their lifetime and radiative properties. In many clouds, the formation of ice requires the presence of particles capable of nucleating ice. One of the most important features of ice nucleating particles (INPs) is that they are rare in comparison to cloud condensation nuclei. However, the fact that only a small fraction of aerosol particles can nucleate ice means that detection and quantification of INPs is challenging. This is particularly true at temperatures above about -20 °C since the population of particles capable of serving as INPs decreases dramatically with increasing temperature. In this paper, we describe an experimental technique in which droplets of microlitre volume containing ice nucleating material are cooled down at a controlled rate and their freezing temperatures recorded. The advantage of using large droplet volumes is that the surface area per droplet is vastly larger than in experiments focused on single aerosol particles or cloud-sized droplets. This increases the probability of observing the effect of less common, but important, high temperature INPs and therefore allows the quantification of their ice nucleation efficiency. The potential artefacts which could influence data from this experiment, and other similar experiments, are mitigated and discussed. Experimentally determined heterogeneous ice nucleation efficiencies for K-feldspar (microcline), kaolinite, chlorite, Snomax®, and silver iodide are presented.

  20. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-05-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -39.0 and -37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.

  1. A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; O'Sullivan, D.; Wilson, T. W.; Umo, N. S.; Baustian, K. J.; Atkinson, J. D.; Workneh, D. A.; Morris, G. J.

    2015-06-01

    In many clouds, the formation of ice requires the presence of particles capable of nucleating ice. Ice-nucleating particles (INPs) are rare in comparison to cloud condensation nuclei. However, the fact that only a small fraction of aerosol particles can nucleate ice means that detection and quantification of INPs is challenging. This is particularly true at temperatures above about -20 °C since the population of particles capable of serving as INPs decreases dramatically with increasing temperature. In this paper, we describe an experimental technique in which droplets of microlitre volume containing ice-nucleating material are cooled down at a controlled rate and their freezing temperatures recorded. The advantage of using large droplet volumes is that the surface area per droplet is vastly larger than in experiments focused on single aerosol particles or cloud-sized droplets. This increases the probability of observing the effect of less common, but important, high-temperature INPs and therefore allows the quantification of their ice nucleation efficiency. The potential artefacts which could influence data from this experiment, and other similar experiments, are mitigated and discussed. Experimentally determined heterogeneous ice nucleation efficiencies for K-feldspar (microcline), kaolinite, chlorite, NX-illite, Snomax® and silver iodide are presented.

  2. On the heterogeneous nucleation of mesospheric ice on meteoric smoke particles: Microphysical modeling

    NASA Astrophysics Data System (ADS)

    Asmus, Heiner; Wilms, Henrike; Strelnikov, Boris; Rapp, Markus

    2014-10-01

    Meteor smoke particles (MSP), which are thought to be the nucleation germs for mesospheric ice, are currently discussed to consist of highly absorbing materials such as magnesiowüstite, hematite or magnesium-iron-silicates and may therefore be warmer than the ambient atmosphere. In order to quantify the temperature difference between MSP and the atmosphere we developed a model to calculate the MSP equilibrium temperature in radiational and collisional balance. The temperature difference between MSP and the surrounding atmosphere strongly depends on the composition of the MSP, especially on the relative iron content, where a higher iron content leads to warmer MSP. We then derive an expression of the nucleation rate of mesospheric ice particles which explicitly accounts for this temperature difference. We find that the nucleation rate is strongly reduced by several orders of magnitude if the germ temperature is increased by only a few Kelvin. Implementing this nucleation rate depending on the germ temperature into CARMA, the Community Aerosol and Radiation Model for Atmospheres, we find that fewer but larger ice particles are formed compared to a reference scenario with no temperature difference between MSP and ambient atmosphere. This may indicate that iron-rich MSP are not ideal ice nuclei and that either other MSP-types or other nucleation pathways (e.g. wave induced heterogeneous nucleation or even homogeneous nucleation) are responsible for ice formation at the mesopause.

  3. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Ignatius, K.; Kristensen, T. B.; Järvinen, E.; Nichman, L.; Fuchs, C.; Gordon, H.; Herenz, P.; Hoyle, C. R.; Duplissy, J.; Garimella, S.; Dias, A.; Frege, C.; Höppel, N.; Tröstl, J.; Wagner, R.; Yan, C.; Amorim, A.; Baltensperger, U.; Curtius, J.; Donahue, N. M.; Gallagher, M. W.; Kirkby, J.; Kulmala, M.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Tomé, A.; Virtanen, A.; Worsnop, D.; Stratmann, F.

    2015-12-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -36.5 and -38.3 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nuclei (IN) budget.

  4. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-04-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  5. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  6. A theory-based parameterization for heterogeneous ice nucleation and implications for the simulation of ice processes in atmospheric models

    NASA Astrophysics Data System (ADS)

    Savre, J.; Ekman, A. M. L.

    2015-05-01

    A new parameterization for heterogeneous ice nucleation constrained by laboratory data and based on classical nucleation theory is introduced. Key features of the parameterization include the following: a consistent and modular modeling framework for treating condensation/immersion and deposition freezing, the possibility to consider various potential ice nucleating particle types (e.g., dust, black carbon, and bacteria), and the possibility to account for an aerosol size distribution. The ice nucleating ability of each aerosol type is described using a contact angle (θ) probability density function (PDF). A new modeling strategy is described to allow the θ PDF to evolve in time so that the most efficient ice nuclei (associated with the lowest θ values) are progressively removed as they nucleate ice. A computationally efficient quasi Monte Carlo method is used to integrate the computed ice nucleation rates over both size and contact angle distributions. The parameterization is employed in a parcel model, forced by an ensemble of Lagrangian trajectories extracted from a three-dimensional simulation of a springtime low-level Arctic mixed-phase cloud, in order to evaluate the accuracy and convergence of the method using different settings. The same model setup is then employed to examine the importance of various parameters for the simulated ice production. Modeling the time evolution of the θ PDF is found to be particularly crucial; assuming a time-independent θ PDF significantly overestimates the ice nucleation rates. It is stressed that the capacity of black carbon (BC) to form ice in the condensation/immersion freezing mode is highly uncertain, in particular at temperatures warmer than -20°C. In its current version, the parameterization most likely overestimates ice initiation by BC.

  7. Heterogeneous ice nucleation and phase transition of viscous α-pinene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Virtanen, Annele; Stratmann, Frank

    2016-04-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. Global model simulations of monoterpene SOA particles suggest that viscous biogenic SOA are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle (INP) budget. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (Ignatius et al., 2015, Järvinen et al., 2015). In the CLOUD chamber, the SOA particles were produced from the ozone initiated oxidation of α-pinene at temperatures in the range from -38 to -10° C at 5-15 % relative humidity with respect to water (RHw) to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. As the RHw was increased to between 35 % at -10° C and 80 % at -38° C, a transition to spherical shape was observed with a new in-situ optical method. This transition confirms previous modelling of the viscosity transition conditions. The ice nucleation ability of SOA particles was investigated with a new continuous flow diffusion chamber SPIN (Spectrometer for Ice Nuclei) for different SOA particle sizes. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4, significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -36.5 and -38.3° C ranged from 6 to 20 % and did not depend on the particle surface area. References Ignatius, K. et al., Heterogeneous ice

  8. AIDA experiments on heterogeneous ice nucleation in warm mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Möhler, Ottmar; Benz, Stefan; Leisner, Thomas; Niemand, Monika; Oehm, Caroline; Saathoff, Harald; Schnaiter, Martin; Wagner, Robert

    2010-05-01

    Clouds are important regulators of the Earth's temperature, because they scatter shortwave radiation from the sun back to space (cooling effect) and absorb long wave terrestrial radiation from the Earth surface (warming effect). About 60% of the Earth's surface is covered with clouds at any time. The response of cloud characteristics and precipitation processes to changing natural and anthropogenic aerosol sources is one of the largest uncertainties in the current understanding of climate change. Cloud development and precipitation are related to a complex chain of microphysical processes which in many cases starts with the formation of the ice phase. The occurrence and abundance of the ice phase in tropospheric clouds is strongly linked to the freezing properties of cloud droplets and aerosol solution particles as well as the abundance and properties of insoluble aerosol particles which selectively act as heterogeneous ice nuclei. Field and laboratory work have demonstrated that in particular mineral dust and bological particles can act as heterogeneous ice nuclei in mixed-phase clouds. Little is known however about the ice nucleation impact of organic matter, which has been found as a prominent compound of tropospheric aerosol particles and has the potential to form surface coatings to other aerosol particles during their transport through the atmosphere. The AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility at the Karlsruhe Institute of Technology has been used to investigate the heterogeneous ice nucleation efficiency of various dust and biological particles. The temperature, pressure and humidity conditions in the cloud chamber can be varied in a wide range of natural cloud systems. This is achieved by expansion cooling induced by strong pumping to the chamber volume. This talk will summarise AIDA experiments and results on the ice nucleation behaviour of bacteria, mineral dust particles, and dust particles coated with sulphuric acid and

  9. On the Ice Nucleation Spectrum

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  10. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-10-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at -5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an ice nucleation (IN) active fraction of the order of 10-4. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around -8°C.

  11. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGESBeta

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  12. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGESBeta

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  13. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  14. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank

    2015-04-01

    The formation of ice in atmospheric clouds has a substantial influence on the radiative properties of clouds as well as on the formation of precipitation. Therefore much effort has been made to understand and quantify the major ice formation processes in clouds. Immersion freezing has been suggested to be a dominant primary ice formation process in low and mid-level clouds (mixed-phase cloud conditions). It also has been shown that mineral dust particles are the most abundant ice nucleating particles in the atmosphere and thus may play an important role for atmospheric ice nucleation (Murray et al., 2012). Additionally, biological particles like bacteria and pollen are suggested to be potentially involved in atmospheric ice formation, at least on a regional scale (Murray et al., 2012). In recent studies for biological particles (SNOMAX and birch pollen), it has been demonstrated that freezing is induced by ice nucleating macromolecules and that an asymptotic value for the mass density of these ice nucleating macromolecules can be determined (Hartmann et al., 2013; Augustin et al., 2013, Wex et al., 2014). The question arises whether such an asymptotic value can also be determined for the ice active surface site density ns, a parameter which is commonly used to describe the ice nucleation activity of e.g., mineral dust. Such an asymptotic value for ns could be an important input parameter for atmospheric modeling applications. In the presented study, we therefore investigated the immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). For all particle sizes considered in the experiments, we observed a leveling off of the frozen droplet fraction reaching a plateau within the heterogeneous freezing temperature regime (T > -38°C) which was proportional to the particle surface area. Based on these findings, we could determine an asymptotic value for the ice

  15. Heterogeneous Ice Nucleation During Ozonolysis of Organic Thin Films on Aqueous Solution Droplets

    NASA Astrophysics Data System (ADS)

    Wicks, G.; Cantrell, W.

    2005-12-01

    The mechanism by which ice is created affects cloud properties and processes. Although homogeneous ice nucleation is reasonably well understood, both experimentally and theoretically, heterogeneous ice nucleation is not. Since deep convection in the tropics lofts organic materials high into the atmosphere, it is important to achieve an understanding of heterogeneous nucleation by these materials and how it affects cirrus cloud formation. Sources of atmospheric organic compounds include combustion, biomass burning, emissions from vegetation, and sea spray which contains organic material from the ocean's surface. Fatty acids such as stearic acid and oleic acid are common organic constituents. The reaction of oleic acid with atmospheric ozone has recently become a model for understanding how atmospheric oxidation processes affect organic particles. Over the past six years, more than twenty publications have described reactive uptake coefficients, primary products, secondary reactions, mechanisms, and other aspects of this oxidation. With this background information in mind, we built an ozonolysis apparatus in tandem with a solution drop freezer to study the freezing point of 10-microliter, 0.25 M sodium chloride solution droplets coated with thin layers of 18-carbon fatty acids or alcohols. We determined the freezing points before and after ozonolysis for solution droplets coated with stearic acid, oleic acid, cis-13-octadecenoic acid, oleyl alcohol, and 1-octadecanol. During the experiments, temperature cycling was controlled by a computer-driven temperature controller. Results showed little change in mean freezing temperature before and after ozonolysis for all of the organic compounds studied except oleyl alcohol. The lack of a significant temperature change for oleic acid may be good news for atmospheric modelers since the well-studied reaction of ozone with oleic acid is known to give a complex mixture of products.

  16. Parameterization of heterogeneous ice nucleation on mineral dust particles: An application in a regional scale model

    NASA Astrophysics Data System (ADS)

    Niemand, M.; Vogel, B.; Vogel, H.; Connolly, P.; Klein, H.; Bingemer, H.; Hoose, C.; Moehler, O.; Leisner, T.

    2010-12-01

    In climate and weather models, the quantitative description of aerosol and cloud processes relies on simplified assumptions. This contributes major uncertainties to the prediction of global and regional climate change. The parameterization of heterogeneous ice nucleation is a step towards improving our current knowledge of the importance of the cloud ice phase in weather and climate models and can aid in the theoretical understanding of such processes. This contribution presents a new parameterization derived from a large number of experiments carried out at the aerosol and cloud chamber facility AIDA [1] of Karlsruhe Institute of Technology. AIDA is especially suitable to study ice nucleation processes at tropospheric and stratospheric cloud conditions covering a wide range of temperature and pressure. During pumping expansion, cooling rates between -0.3 and -5.0 K/min, equating to vertical wind velocities of 0.5 to 8 m/s, and a relative humidity range of up to more than 200% with respect to ice can be reached. The parameterization is valid for the temperature range -35°C to -15°C. In order to derive and test the parameterization a parameter called the ice-active surface site density was calculated for a number of different experiments with mineral dust acting as ice nuclei in the immersion and/or deposition mode. An exponential function was fitted to this data of ice-active surface site density vs. temperature. The curve fit was then used within the bin microphysical model ACPIM [2] to simulate the ice formation rates from the experiments. The major dust outbreak over the Sahara in May 2008 which was followed by a dust transport over the Mediterranean and Western Europe was simulated using the regional scale online coupled model system COSMO-ART (Vogel et al., 2009). Based on the model results the exponential curve fit was used to calculate the ice nuclei number concentration at Kleiner Feldberg (Germany). The results will be compared to measurements from

  17. Heterogeneous nucleation or homogeneous nucleation?

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.

    2000-06-01

    The generic heterogeneous effect of foreign particles on three dimensional nucleation was examined both theoretically and experimentally. It shows that the nucleation observed under normal conditions includes a sequence of progressive heterogeneous processes, characterized by different interfacial correlation function f(m,x)s. At low supersaturations, nucleation will be controlled by the process with a small interfacial correlation function f(m,x), which results from a strong interaction and good structural match between the foreign bodies and the crystallizing phase. At high supersaturations, nucleation on foreign particles having a weak interaction and poor structural match with the crystallizing phase (f(m,x)→1) will govern the kinetics. This frequently leads to the false identification of homogeneous nucleation. Genuine homogeneous nucleation, which is the up-limit of heterogeneous nucleation, may not be easily achievable under gravity. In order to check these results, the prediction is confronted with nucleation experiments of some organic and inorganic crystals. The results are in excellent agreement with the theory.

  18. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    SciTech Connect

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, M. A.; Pratt, Kerri; Kulkarni, Gourihar R.; Hallar, Anna G.; Tolbert, Margaret A.

    2012-03-30

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  19. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    NASA Astrophysics Data System (ADS)

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, Matthew E.; Pratt, Kerri A.; Kulkarni, Gourihar; Hallar, A. Gannet; Tolbert, Margaret A.

    2012-03-01

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  20. Climate Impacts of Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  1. Climate Impacts of Ice Nucleation

    SciTech Connect

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-19

    [1] Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (-0.06 Wm-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm-2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 ± 0.10 Wm-2 (1σ uncertainty). Finally, this represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of -1.6 Wm-2.

  2. Laboratory Experiments on Heterogeneous CO2 Ice Nucleation and Growth Rates on Meteor Smoke Particle Analogues in the Martian Mesosphere

    NASA Astrophysics Data System (ADS)

    Nachbar, M.; Duft, D.; Mangan, T.; Gomez Martin, J. C.; Plane, J. M. C.; Leisner, T.

    2014-12-01

    CO2 ice particles with radii of about 100 nm have been detected in the Martian mesosphere region at heights between 80 km and 100 km. Gravity waves propagating upward cause a cooling of this region leading to temporary supersaturated conditions during which heterogeneous nucleation of CO2 can take place. Large uncertainties in describing the nucleation processes at the extreme conditions of the Martian mesopause region state the need of laboratory measurements. Sub-3 nanometer radius meteor smoke particle (MSP) analogues are created in a microwave plasma and stored in an electrodynamic trap for examining CO2 ice nucleation as well as growth rates at low particle temperatures between 60 K and 75 K and CO2 concentrations up to 1017 m-3 which are reasonably close to conditions present in the Martian mesosphere. Ice nucleation and growth processes of the particles are examined by analyzing the mass distribution of the particles with a time of flight spectrometer as a function of the residence time under supersaturated conditions. In this paper, first measurements of CO2 ice nucleation and growth on iron oxide and silicate particles will be presented. These results are extrapolated to realistic Martian conditions reducing the large uncertainty in dealing with CO2 ice nucleation on MSPs.

  3. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  4. Heterogeneous Ice Nucleation on Kaolinite Particles, Particle Surrogates of HUmic-Like Substances (HULIS), and Organics-Containing Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Wang, B.; Knopf, D. A.

    2009-12-01

    Aerosol particles can affect the global radiation budget through aerosol-cloud interactions by acting as cloud condensation nuclei and ice nuclei (IN) thereby inducing new clouds and/or modifying the radiative properties of existing clouds. This study presents heterogeneous ice nucleation data as a function of particle temperature and relative humidity with respect to ice (RHice) for laboratory generated kaolinite particles, leonardite and fulvic acid particles serving as surrogates for aerosols composed of HULIS, and organics-containing urban aerosols collected during the MILAGRO (Mexico City) campaign. These experiments are conducted using an improved version of a previously developed ice nucleation cell coupled to an optical microscope which allows to control particle temperatures between 200-300 K and corresponding atmospherically relevant RHice. Micrometer-sized particles are deposited onto a hydrophobic substrate and are placed in the nucleation cell. To validate the experimental approach and quality of substrates, ice nucleation experiments were performed 1. on plain sample substrates and 2. using a well studied IN: kaolinite particles. The results corroborate that kaolinite particles are efficient IN inducing ice nucleation at 102-120% RHice via deposition mode at temperatures between 200 and 245 K, in agreement with previous studies. The ice nucleation efficiency of leonardite and fulvic acid particles with median diameters of 2-3 µm is determined. Leonardite particles nucleate ice via deposition mode at 120-140% RHice for temperatures between 200 and 240 K with the minimum RHice threshold observed at 220 K. Fulvic acid particles nucleate ice via deposition mode at 135-150% RHice for temperatures between 200 and 230 K with the minimum RHice threshold determined at 216 K. The fulvic acid particles take up water at RH>95% for temperatures between 235 and 250 K. The contact angle derived from experimentally determined heterogeneous ice nucleation rate

  5. Ice Nucleation Properties of Oxidized Carbon Nanomaterials.

    PubMed

    Whale, Thomas F; Rosillo-Lopez, Martin; Murray, Benjamin J; Salzmann, Christoph G

    2015-08-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  6. Ice Nucleation Properties of Oxidized Carbon Nanomaterials

    PubMed Central

    2015-01-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  7. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation.

    PubMed

    Kobayashi, Atsuko; Golash, Harry N; Kirschvink, Joseph L

    2016-06-01

    An outstanding biophysical puzzle is focused on the apparent ability of weak, extremely low-frequency oscillating magnetic fields to enhance cryopreservation of many biological tissues. A recent theory holds that these weak magnetic fields could be inhibiting ice-crystal nucleation on the nanocrystals of biological magnetite (Fe3O4, an inverse cubic spinel) that are present in many plant and animal tissues by causing them to oscillate. In this theory, magnetically-induced mechanical oscillations disrupt the ability of water molecules to nucleate on the surface of the magnetite nanocrystals. However, the ability of the magnetite crystal lattice to serve as a template for heterogeneous ice crystal nucleation is as yet unknown, particularly for particles in the 10-100 nm size range. Here we report that the addition of trace-amounts of finely-dispersed magnetite into ultrapure water samples reduces strongly the incidence of supercooling, as measured in experiments conducted using a controlled freezing apparatus with multiple thermocouples. SQUID magnetometry was used to quantify nanogram levels of magnetite in the water samples. We also report a relationship between the volume change of ice, and the degree of supercooling, that may indicate lower degassing during the crystallization of supercooled water. In addition to supporting the role of ice-crystal nucleation by biogenic magnetite in many tissues, magnetite nanocrystals could provide inexpensive, non-toxic, and non-pathogenic ice nucleating agents needed in a variety of industrial processes, as well as influencing the dynamics of ice crystal nucleation in many natural environments. PMID:27087604

  8. Laboratory measurements of heterogeneous CO2 ice nucleation on nanoparticles under conditions relevant to the Martian mesosphere

    NASA Astrophysics Data System (ADS)

    Nachbar, Mario; Duft, Denis; Mangan, Thomas Peter; Martin, Juan Carlos Gomez; Plane, John M. C.; Leisner, Thomas

    2016-05-01

    Clouds of CO2 ice particles have been observed in the Martian mesosphere. These clouds are believed to be formed through heterogeneous nucleation of CO2 on nanometer-sized meteoric smoke particles (MSPs) or upward propagated Martian dust particles (MDPs). Large uncertainties still exist in parameterizing the microphysical formation process of these clouds as key physicochemical parameters are not well known. We present measurements on the nucleation and growth of CO2 ice on sub-4 nm radius iron oxide and silica particles representing MSPs at conditions close to the mesosphere of Mars. For both particle materials we determine the desorption energy of CO2 to be ΔFdes = (18.5 ± 0.2) kJ mol-1 corresponding to ΔFdes = (0.192 ± 0.002) eV and obtain m = 0.78 ± 0.02 for the contact parameter that governs heterogeneous nucleation by analyzing the measurements using classical heterogeneous nucleation theory. We did not find any temperature dependence for the contact parameter in the temperature range examined (64 K to 73 K). By applying these values for MSPs in the Martian mesosphere, we derive characteristic temperatures for the onset of CO2 ice nucleation, which are 8-18 K below the CO2 frost point temperature, depending on particle size. This is in line with the occurrence of highly supersaturated conditions extending to 20 K below frost point temperature without the observation of clouds. Moreover, the sticking coefficient of CO2 on solid CO2 was determined to be near unity. We further argue that the same parameters can be applied to CO2 nucleation on upward propagated MDPs.

  9. Ice Nucleation in Deep Convection

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  10. On the feasibility of cirrus cloud thinning: Dependence of homo- and heterogeneous ice nucleation on latitude and season

    NASA Astrophysics Data System (ADS)

    Mitchell, David; Garnier, Anne; Avery, Melody

    2015-04-01

    While GCM testing of cirrus cloud climate engineering (CE) reveals some advantages over stratospheric aerosol injection, cirrus CE will not work when ice is primarily formed through heterogeneous nucleation for T < -38°C. Field campaigns have shown that ice in cold cirrus is generally produced heterogeneously, but these campaigns have not addressed the cirrus at high latitudes that would determine the effectiveness of cirrus CE. This presentation introduces a new understanding of the satellite retrieved "effective absorption optical depth ratio", or βeff, based on the 12.05 and 10.60 μm channels of the imaging infrared radiometer (IIR) aboard the CALIPSO satellite. Using βeff calculations from in situ data, it is found that βeff is tightly related to the N/IWC ratio, where N = ice particle number concentration and IWC = ice water content. This is because N is primarily determined by the smallest ice particles, and βeff is primarily due to differences in wave resonance (i.e. photon tunneling) absorption, a process that is only significant when ice particle maximum dimension D < ~ 60 μm (i.e. when wavelength and effective particle size are comparable). Thus βeff is a measure of the concentration of small (D < 60 μm) ice crystals relative to the concentration of larger ice particles. Since homogeneous ice nucleation generally results in N > 500 liter-1, with a relatively high concentration of small ice crystals, βeff may be used to determine when homogeneous nucleation dominates in a region for T < -38°C. Satellite retrievals of βeff from anvil cirrus having N > 500 liter-1 (based on co-located/coincident in situ measurements) suggest that homogeneous nucleation dominates when βeff > 1.15 ± 0.05. A global analysis of βeff was conducted for the boreal summer (July-Aug.) and winter (Jan.-Feb.) of 2007 and 2008, respectively. Using βeff to discriminate between regions of homo- and heterogeneous ice nucleation for cirrus clouds having emissivities between

  11. Ice nucleation terminology

    NASA Astrophysics Data System (ADS)

    Vali, G.; DeMott, P.; Möhler, O.; Whale, T. F.

    2014-08-01

    Progress in the understanding of ice nucleation is being hampered by the lack of uniformity in how some terms are used in the literature. This even extends to some ambiguity of meanings attached to some terms. Suggestions are put forward here for common use of terms. Some are already well established and clear of ambiguities. Others are less engrained and will need a conscious effort in adoption. Evolution in the range of systems where ice nucleation is being studied enhances the need for a clear nomenclature. The ultimate limit in the clarity of definitions is, of course, the limited degree to which ice nucleation processes are understood.

  12. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-04-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of SnomaxTM were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly spray into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°. At this temperature, about 1% of the SnomaxTM cells induced freezing of the spray droplets before they evaporated in the cloud chamber. The other suspensions of living cells didn't induce any measurable ice concentration during spray formation at -5.7°. The remaining aerosol was exposed to typical cloud activation conditions in subsequent experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets and then eventually acted as ice nuclei to freeze the droplets. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an INA fraction of the order of 10-4. The ice nucleation efficiency of SnomaxTM cells was much larger with an INA fraction of 0.2 at temperatures around -8°C.

  13. New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the deposition nucleation and immersion freezing modes

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Wagner, R.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-12-01

    crystallised from less supersaturated solution droplets and exposed to slow growth conditions in a supersaturated environment in the AIDA camber over a time period of several hours, were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles were found to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Experimental methods, results, and atmospheric implications will be presented and discussed at the conference. [1] Kerminen et al., Atmos. Env., 33, 2089-2100, 1999. [2] Kerminen et al., J. Aerosol Sci., 31, 349-362, 2000. [3] Kawamura et al., Atmos. Env., 30, 1709-1722, 1996. [4] Marcolli et al., J. Phys. Chem. A, 108, 2216-2224, 2004. [5] Zobrist et al., Atmos. Chem. Phys., 6, 3115-3129, 2006. [6] Wagner et al., Atmos. Chem. Phys., 10, 7617-7641, 2010.

  14. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  15. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    PubMed

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  16. Nucleation of Ice

    NASA Astrophysics Data System (ADS)

    Molinero, Valeria

    2009-03-01

    The freezing of water into ice is a ubiquitous transformation in nature, yet the microscopic mechanism of homogeneous nucleation of ice has not yet been elucidated. One of the reasons is that nucleation happens in time scales that are too fast for an experimental characterization and two slow for a systematic study with atomistic simulations. In this work we use coarse-grained molecular dynamics simulations with the monatomic model of water mW[1] to shed light into the mechanism of homogeneous nucleation of ice and its relationship to the thermodynamics of supercooled water. Cooling of bulk water produces either crystalline ice or low- density amorphous ice (LDA) depending on the quenching rate. We find that ice crystallization occurs faster at temperatures close to the liquid-liquid transition, defined as the point of maximum inflection of the density with respect to the temperature. At the liquid-liquid transition, the time scale of nucleation becomes comparable to the time scale of relaxation within the liquid phase, determining --effectively- the end of the metastable liquid state. Our results imply that no ultraviscous liquid water can exist at temperatures just above the much disputed glass transition of water. We discuss how the scenario is changed when water is in confinement, and the relationship of the mechanism of ice nucleation to that of other liquids that present the same phase behavior, silicon [2] and germanium [3]. [4pt] [1] Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. Journal of Physical Chemistry B (2008). Online at http://pubs.acs.org/cgi- bin/abstract.cgi/jpcbfk/asap/abs/jp805227c.html [0pt] [2] Molinero, V., Sastry, S. & Angell, C. A. Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Physical Review Letters 97, 075701 (2006).

  17. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    SciTech Connect

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of ice supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on

  18. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    DOE PAGESBeta

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the

  19. A Comprehensive Parameterization of Heterogeneous Ice Nucleation of Dust Surrogate: Laboratory Study with Hematite Particles and Its Application to Atmospheric Models

    SciTech Connect

    Hiranuma, Naruki; Paukert, Marco; Steinke, Isabelle; Zhang, Kai; Kulkarni, Gourihar R.; Hoose, Corinna; Schnaiter, Martin; Saathoff, Harald; Mohler, Ottmar

    2014-12-10

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 °C to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T colder than -60 °C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than -50 °C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.

  20. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank

    2015-05-01

    The immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles was investigated. For all particle sizes investigated, a leveling off of the frozen droplet fraction was observed reaching a plateau within the heterogeneous freezing temperature regime (T >- 38°C). The frozen fraction in the plateau region was proportional to the particle surface area. Based on these findings, an asymptotic value for ice active surface site density ns, which we named ns⋆, could be determined for the investigated feldspar sample. The comparison of these results with those of other studies not only elucidates the general feasibility of determining such an asymptotic value but also shows that the value of ns⋆ strongly depends on the method of the particle surface area determination. However, such an asymptotic value might be an important input parameter for atmospheric modeling applications. At least it shows that care should be taken when ns is extrapolated to lower or higher temperature.

  1. A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Paukert, M.; Steinke, I.; Zhang, K.; Kulkarni, G.; Hoose, C.; Schnaiter, M.; Saathoff, H.; Möhler, O.

    2014-12-01

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T lower than -60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than -50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have a stronger influence on cloud

  2. Experimental Studies in Ice Nucleation

    NASA Astrophysics Data System (ADS)

    Wright, Timothy Peter

    Ice nuclei play a critical role in the formation of precipitation in mixed phase clouds. Modification of IN concentrations can lead to changes in cloud lifetimes and precipitation size. Presented in this study are experimental investigations into ice nuclei in an ongoing effort to reduce the uncertainties that ice nuclei have on cloud processes and climate. This research presents a new version of the cold stage drop freezing assay to investigate the time-dependence of heterogeneous nucleation. The temperature range for the instrument spans from the melting point of water to the homogeneous freezing limit of ˜-38 deg C. Temperature stability for the instrument allowed for experimental operation for up to four days while interrogating the same sample. Up to a one hundred fold increase in the number of analyzed drops was accomplished through an in-house written automated drop freezing detection software package. Combined instrument design improvements allow for the analysis of IN concentrations down to ˜10-8 ice nuclei per picoliter of sample water. A new variant of the multiple-component stochastic model for heterogeneous ice nucleation was used to investigate the time dependence of heterogeneous freezing processes. This was accomplished by analyzing how the changes in the cooling rate can impact the observed nucleation rate. The model employed four material-dependent parameters to accurately capture the observed freezing of water drops containing Arizona Test Dust. The parameters were then used to accurately predict the freezing behavior of the drops in time dependent experiments. The time dependence freezing of a wide range of materials was then investigated. These materials included the minerals montmorillonite and kaolinite, the biological proxy ice nuclei contained within the product Icemax, and flame soot generated from the incomplete combustion of ethylene gas. The time dependence for ice nuclei collected from rainwater samples was also investigated. The

  3. Molecular Ice Nucleation Activity of Birch Pollen

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Häusler, Thomas; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation plays a major part in ecosystem and climate. Due to the triggering of ice cloud formation it influences the radiation balance of the earth, but also on the ground it can be found to be important in many processes of nature. So far the process of heterogeneous ice nucleation is not fully understood and many questions remain to be answered. Biological ice nucleation is hereby from great interest, because it shows the highest freezing temperatures. Several bacteria and fungi act as ice nuclei. A famous example is Pseudomonas syringae, a bacterium in commercial use (Snomax®), which increases the freezing from homogeneous freezing temperatures of approx. -40° C (for small volumes as in cloud droplets) to temperatures up to -2° C. In 2001 it was found that birch pollen can trigger ice nucleation (Diehl et al. 2001; Diehl et al. 2002). For a long time it was believed that this is due to macroscopic features of the pollen surface. Recent findings of Bernhard Pummer (2012) show a different picture. The ice nuclei are not attached on the pollen surface directly, but on surface material which can be easily washed off. This shows that not only the surface morphology, but also specific molecules or molecular structures are responsible for the ice nucleation activity of birch pollen. With various analytic methods we work on elucidating the structure of these molecules as well as the mechanism with which they trigger ice nucleation. To solve this we use various instrumental analytic techniques like Nuclear Magnetic Resonance spectroscopy (NMR), Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), and Gas-phase Electrophoretic Mobility Molecular Analysis (GEMMA). Also standard techniques like various chromatographic separation techniques and solvent extraction are in use. We state here that this feature might be due to the aggregation of small molecules, with agglomerates showing a specific surface structure. Our results

  4. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  5. Surface area controlled heterogeneous nucleation

    NASA Astrophysics Data System (ADS)

    Steer, Brian; Gorbunov, Boris; Rowles, Jonathan; Green, David

    2012-02-01

    Heterogeneous nucleation of liquid from a gas phase on nanoparticles has been studied under various saturation ratios and nuclei size. The probability of liquid droplet nucleation, especially at a low degree of deviation from equilibrium, was measured for both atmospheric aerosol particles and engineered nanoparticles Cr2O3. The concept of a critical saturation ratio and the validity of the one-to-one relationship between the nuclei number and the number of droplets were examined. A transient zone between no nucleation and established nucleation termed the surface area controlled nucleation was observed. In this zone, the probability of stable phase formation is determined by the surface area of nuclei. There are two distinctive features of the surface area controlled nucleation: the nucleation probability is much less than 1 and is proportional to the surface area of nuclei. For condensation particle counters (CPCs) counting nanoparticles, these features mean that counts measured are proportional to the surface area of nanoparticles and, therefore, the CPCs counts can be calibrated to measure the surface area.

  6. Ice nucleation properties of agricultural soil dusts

    NASA Astrophysics Data System (ADS)

    Steinke, Isabelle; Funk, Roger; Busse, Jacqueline; Iturri, Antonela; Kirchen, Silke; Leue, Martin; Möhler, Ottmar; Schwartz, Thomas; Sierau, Berko; Toprak, Emre; Ulrich, Andreas; Hoose, Corinna; Leisner, Thomas

    2015-04-01

    Soil dust particles emitted from agricultural areas contain large amounts of organic material such as fungi, bacteria and plant debris. Being carrier for potentially highly ice-active biological particles, agricultural soil dusts are candidates for being very ice-active as well. In this work, we present ice nucleation experiments conducted in the AIDA cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. Results are presented for the immersion freezing and the deposition nucleation mode: all soil dusts show higher ice nucleation efficiencies than desert dusts, especially at temperatures above 254 K. For one soil dust sample, the effect of heat treatments was investigated. Heat treatments did not affect the ice nucleation efficiency which presumably excludes primary biological particles as the only source of the increased ice nucleation efficiency. Therefore, organo-mineral complexes or organic compounds may contribute substantially to the high ice nucleation activity of agricultural soil dusts.

  7. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance

  8. Parameterizations for ice nucleation in biological and atmospheric systems.

    PubMed

    Koop, Thomas; Zobrist, Bernhard

    2009-12-14

    Ice nucleation is an important process in numerous environmental systems such as atmospheric aerosol droplets or biological tissues. Here we analyze two widely used approaches for describing homogeneous ice nucleation in aqueous solutions with respect to their applicability to heterogeneous ice nucleation processes: the lambda approach and the water-activity-based approach. We study experimentally the heterogeneous ice nucleation behaviour of mineral dust particles and biological ice nuclei (Snomax; Pseudomonas syringae) in aqueous solutions as a function of solute concentration for various solutes (sulfuric acid, ammonium sulfate, glucose, and poly(ethylene glycol) with two different molar masses of 400 and 6000 g mol(-1)). We show that the ice nucleation temperature and the corresponding lambda values depend on both the type of ice nucleus and the type of solute, while the water-activity-based approach depends only on the type of ice nucleus when the solution water activity is known. Finally, we employ both approaches to the study of ice nucleation in biological systems such as the supercooling point of living larvae and insects. We show that the behaviour of freeze tolerant and freeze avoiding species can be described using the two approaches and we discuss how the analysis can be used to interpret experimental results of the freezing behaviour of living species. PMID:19924318

  9. Dynamics of ice nucleation on water repellent surfaces.

    PubMed

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications. PMID:22235939

  10. Effect of solute on the nucleation and propagation of ice.

    PubMed

    Charoenrein, S; Goddard, M; Reid, D S

    1991-01-01

    Using the emulsion technique, we have studied nucleation of ice in aqueous solutions containing silver iodide or Pseudomonas syringae. Using a Differential Scanning Calorimeter (DSC), we determined characteristic temperatures of nucleation, and also rates of nucleation at selected temperatures. The freezing point depression induced by added solute is linearly related to the lowering of both homogeneous and heterogeneous nucleation temperature. Nucleation kinetics depend on a fifth power function of the temperature. Solute is found to affect the parameters of this relationship in different ways, dependent upon the nature of the catalytic site for ice nucleation. We have also studied the effect of composition on the linear propagation velocity (LPV) of ice in undercooled solutions contained in a U-tube. We have determined velocities in a range of concentrations of sugar solution at the same undercooling, and also as a function of undercooling. The role of added polymer has also been investigated. It is affected by the sugar concentration. PMID:1746327

  11. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and Γ, in the context of classical nucleation theory. From the extracted J{sub 0} and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  12. Immersion freezing of ice nucleation active protein complexes

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Wex, H.; Šantl-Temkiv, T.; Voigtländer, J.; Niedermeier, D.; Stratmann, F.

    2013-06-01

    Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS), the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between -5 °C to -38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA) bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about -6 °C to about -10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei) which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a) the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b) the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice nucleation are attached

  13. Ice Nucleation by High Molecular Weight Organic Compounds

    NASA Astrophysics Data System (ADS)

    Cantrell, W.

    2003-12-01

    Deep convection in the tropics is frequently associated with biomass burning. Recent work has suggested that the size of ice crystals in the anvils of tropical cumulonimbus clouds may be affected by biomass burning, though the mechanism for such an effect is uncertain (Sherwood, 2002). We will present results of an investigation of the role that high molecular weight organic compounds, known to be produced in biomass burning (Elias et al., 1999), may play in tropical cirrus anvils through heterogeneous nucleation of ice. In particular, we examine the mechanisms underlying heterogeneous nucleation of ice by films of long chain alcohols by studying the interaction of the alcohols and water/ice using temperature controlled, Attenuated Total Reflection - Fourier Transform Infrared spectroscopy. The mechanisms are interpreted in the context of recent criticisms of some aspects of classical nucleation theory (Seeley and Seidler, 2001; Oxtoby, 1998). References V. Elias, B. Simoneit, A. Pereira, J. Cabral, and J. Cardoso, Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry. Environ. Sci. Tecnol., 33, 2369-2376, 1999. D. Oxtoby, Nucleation of first-order phase transitions. Acc. Chem. Res., 31, 91-97, 1998. L. Seeley and G. Seidler, Preactivation in the nucleation of ice by Langmuir films of aliphatic alcohols. J. Chem. Phys., 114, 10464-10470, 2001. S. Sherwood, Aerosols and ice particle size in tropical cumulonimbus. J. Climate, 15, 1051-1063, 2002.

  14. Immersion freezing of ice nucleating active protein complexes

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Voigtländer, J.; Niedermeier, D.; Wex, H.; Stratmann, F.

    2012-08-01

    Biological particles, e.g. bacteria and their Ice Nucleating Active (INA) protein complexes, might play an important role for the ice formation in atmospheric mixed-phase clouds. Therefore, the immersion freezing behavior of INA protein complexes generated from a SnomaxTM solution/suspension was investigated as function of temperature in a range of -5 °C to -38 °C at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). The immersion freezing of droplets containing small numbers of INA protein complexes occurs in a temperature range of -7 °C and -10 °C. The experiments performed in the lower temperature range, where all droplets freeze which contain at least one INA protein complex, are used to determine the average number of INA protein complexes present, assuming that the INA protein complexes are Poisson distributed over the droplet ensemble. Knowing the average number of INA protein complexes, the heterogeneous ice nucleation rate and rate coefficient of a single INA protein complex is determined by using the newly-developed CHESS model (stoCHastic model of idEntical poiSSon distributed ice nuclei). Therefore, we assume the ice nucleation process to be of stochastic nature, and a parameterization of the INA protein complex's nucleation rate. Analyzing the results of immersion freezing experiments from literature (SnomaxTM and Pseudomonas syringae bacteria), to results gained in this study, demonstrates that first, a similar temperature dependence of the heterogeneous ice nucleation rate for a single INA protein complex was found in all experiments, second, the shift of the ice fraction curves to higher temperatures can be explained consistently by a higher average number of INA protein complexes being present in the droplet ensemble, and finally the heterogeneous ice nucleation rate of one single INA protein complex might be also applicable for intact Pseudomonas syringae bacteria cells. The results obtained in this study allow a new perspective on the

  15. Ice nucleation by water-soluble macromolecules

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Pöschl, U.; Koop, T.; Fröhlich-Nowoisky, J.

    2015-04-01

    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.

  16. Heterogeneous nucleation in hypermonotectic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Ratke, L.; Kaban, I.; Hoyer, W.

    2012-01-01

    Simple casting experiments were set up to solve the question, if heterogeneous nucleation of the liquid-liquid decomposition in monotectic systems is possible. Al-Pb alloys with different inoculants were solidified, and the resulting microstructure was analysed by SEM and X-ray microtomography. Pronounced changes in the distribution of the lead precipitations indicate that it is possible to trigger the nucleation.

  17. The Ice Nucleation Ability of Selected Atmospherically Abundant Fungal Spores

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Chernoff, D. I.; Bertram, A. K.

    2010-12-01

    Ice clouds are widely recognized for their roles in the earth’s radiation budget and climate systems. However, their formation mechanisms are poorly understood thus constituting an uncertainty in the evaluation of the global radiation budget. An important mechanism of ice cloud formation is heterogeneous nucleation on aerosol particles. The surface properties of these particles, called ice nuclei (IN), directly affect the temperature at which ice nucleation occurs. There is a growing emphasis on the study of bioaerosols (e.g., bacteria, fungi, pollen) as IN since they are ubiquitous in the atmosphere. The focus of the current study is to determine the ice nucleation properties of spores obtained from a variety of fungi. Aerosolized spores were impacted onto a hydrophobic glass substrate and immersed in ultrapure water. A technique involving an optical light microscope coupled to a flow cell was used to precisely control temperature and humidity within the cell. A digital camera captured high-resolution video of the particles undergoing ice nucleation, allowing for the analyses of freezing events and particle sizes. The first experimental results using spores obtained from the fungal genera Cladosporium and Penicillium reveal an average temperature increase of ~1-5 K in the ice nucleation temperature compared to homogeneous nucleation (i.e., freezing of pure liquid water). Furthermore, there appears to be a relationship between the amount of spores present per droplet and the freezing temperature of water. These results are presented and discussed, and the potential contribution of these data to further the understanding of heterogeneous nucleation in the atmosphere is provided. Box plot summarizing freezing data for homogeneous nucleation experiments (leftmost box) and binned data from heterogeneous nucleation experiments involving spores of Cladosporium. Freezing data are distributed into 200 µm2 bins that represent the total area of all observable inclusions

  18. New Findings on Ice Nucleation in Mid-latitude Cirrus

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Mitchell, D. L.; Lawson, P.; Baker, B. A.

    2011-12-01

    Recent GCM simulations (CESM1) show a global aerosol indirect effect of -1.39 W m-2 with -2.02 W m-2 from shortwave and +0.63 W m-2 from longwave cloud forcing, the longwave being due to homogeneous nucleation of ice crystals. However, the extent of homogeneous nucleation in ice clouds is poorly understood. This study uses results from a recent field campaign, SPARTICUS (Small PARTicles In CirrUS), to evaluate the impact of homogeneous nucleation on the ice particle size distribution (PSD) shape, as well as ice particle concentration, shape, PSD effective size and fall speed. While earlier measurements were difficult to evaluate for ice nucleation effects due to the problem of ice particle shattering, recent in-situ measurements using the 2 dimensional-stereo (2D-S) probe have greatly reduced this problem resulting in provocative findings for both synoptic and anvil cirrus sampled during SPARTICUS. For mid-latitude synoptic and anvil cirrus around -40°C, these new measurements show that clear changes in the ice PSD and its properties occur regarding (1) PSD shape, (2) total number concentration-to-ice water content ratio (N/IWC), (3) PSD mean size, (4) PSD mean area ratio and (5) the mass-weighted fall velocity (Vm). These changes are consistent with a change in ice nucleation mechanism, with heterogeneous nucleation processes active at temperatures warmer than -40°C and homogeneous freezing nucleation at temperatures colder than -40°C. The change in Vm implies that cirrus colder than -40°C will have longer lifetimes and greater cloud coverage than warmer cirrus clouds, all other relevant factors remaining equal. The increase in N/IWC with colder temperatures (T < -40°C) appears consistent with homogeneous nucleation theory. Figure 1 shows normalized frequency distribution of PSD area ratios for temperatures above and below -40°C. Area ratios (ice particle projected area/area of circle defined by particle maximum dimension) are a measure of ice particle shape

  19. Simulations of Ice Nucleation by Kaolinite (001) with Rigid and Flexible Surfaces.

    PubMed

    Zielke, Stephen A; Bertram, Allan K; Patey, G N

    2016-03-01

    Nucleation of ice by airborne particles is a process vital to weather and climate, yet our understanding of the mechanisms underlying this process is limited. Kaolinite is a clay that is a significant component of airborne particles and is an effective ice nucleus. Despite receiving considerable attention, the microscopic mechanism(s) by which kaolinite nucleates ice is not known. We report molecular dynamics simulations of heterogeneous ice nucleation by kaolinite (001) surfaces. Both the Al-surface and the Si-surface nucleate ice. For the Al-surface, reorientation of the surface hydroxyl groups is essential for ice nucleation. This flexibility allows the Al-surface to adopt a structure which is compatible with hexagonal ice, Ih, at the atomic level. On the rigid Si-surface, ice nucleates via an unusual structure that consists of an ordered arrangement of hexagonal and cubic ice layers, joined at their basal planes where the interfacial energy cost is low. This ice structure provides a good match to the atomistic structure of the Si-surface. This example is important and may have far-reaching implications because it demonstrates that potential ice nuclei need not be good atomic-level matches to particular planes of ice Ih or cubic ice, Ic. It suggests that surfaces can act as effective ice nuclei by matching one of the much larger set of planes that can be constructed by regular arrangements of hexagonal and cubic ice. PMID:26524230

  20. Ice Nucleation and Droplet Formation by Bare and Coated Soot Particles

    SciTech Connect

    Friedman, Beth J.; Kulkarni, Gourihar R.; Beranek, Josef; Zelenyuk, Alla; Thornton, Joel A.; Cziczo, Daniel J.

    2011-09-13

    We have studied ice formation at temperatures relevant to homogeneous and heterogeneous ice nucleation, as well as droplet activation and hygroscopicity, of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied to span an atmospherically relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation, with a comparison to a mineral dust particle that acts as an efficient ice nucleus, and particle hygroscopicity. At 253K and 243K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, only droplet formation was observed. At 233K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles, but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude that both uncoated and coated soot particles representative of those generated in our studies are unlikely to significantly contribute to the global budget of heterogeneous ice nuclei at temperatures between 233K and 253K.

  1. Ice nucleation of bioaerosols - a resumee

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Atanasova, Lea; Bauer, Heidi; Bernardi, Johannes; Chazallon, Bertrand; Druzhinina, Irina S.; Grothe, Hinrich

    2013-04-01

    The role of biological particles for ice nucleation (IN) is still debated. Here, we present a summary of investigation and comparison of different ice nuclei. Apart from the bacterial ice nucleation proteins in Snomax, we further investigated a broad spectrum of pollen and fungal spores in the search for ice nucleation activity. Apart from Snomax, only few samples showed vital IN activity, like Fusarium avenaceum spores and Betula pendula pollen. Chemical characterization accentuated the differences between bacterial and pollen ice nuclei. Exposure to natural stresses, like UV and NOx, led to a significant decrease in IN activity. Furthermore, the releasable fraction of the pollen material, which includes the ice nuclei, was extracted with water and dried up. These residues were investigated with Raman spectroscopy and compared with the spectra of whole pollen grains. Measurements clearly demonstrated that the aqueous fraction contained mainly saccharides, lipids and proteins, but no sporopollenin, which is the bulk material of the outer pollen wall. Fungal spores of ecologically, economically or otherwise relevant species were also investigated. Most species showed no significant IN activity at all. A few species showed a slight increase in freezing temperature, but still significantly below the activity of the most active pollen or mineral dusts. Only Fusarium avenaceum showed strong IN activity. Cultivation of Fusarium and Trichoderma (close relatives of Fusarium) at different temperatures showed changes in total protein expression, but no impact on the IN activity.

  2. Homogeneous ice nucleation at moderate supercooling from molecular simulation.

    PubMed

    Sanz, E; Vega, C; Espinosa, J R; Caballero-Bernal, R; Abascal, J L F; Valeriani, C

    2013-10-01

    Among all of the freezing transitions, that of water into ice is probably the most relevant to biology, physics, geology, or atmospheric science. In this work, we investigate homogeneous ice nucleation by means of computer simulations. We evaluate the size of the critical cluster and the nucleation rate for temperatures ranging between 15 and 35 K below melting. We use the TIP4P/2005 and the TIP4P/ice water models. Both give similar results when compared at the same temperature difference with the model's melting temperature. The size of the critical cluster varies from ∼8000 molecules (radius = 4 nm) at 15 K below melting to ∼600 molecules (radius = 1.7 nm) at 35 K below melting. We use Classical Nucleation Theory (CNT) to estimate the ice-water interfacial free energy and the nucleation free-energy barrier. We obtain an interfacial free energy of 29(3) mN/m from an extrapolation of our results to the melting temperature. This value is in good agreement both with experimental measurements and with previous estimates from computer simulations of TIP4P-like models. Moreover, we obtain estimates of the nucleation rate from simulations of the critical cluster at the barrier top. The values we get for both models agree within statistical error with experimental measurements. At temperatures higher than 20 K below melting, we get nucleation rates slower than the appearance of a critical cluster in all water of the hydrosphere during the age of the universe. Therefore, our simulations predict that water freezing above this temperature must necessarily be heterogeneous. PMID:24010583

  3. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    SciTech Connect

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-08-26

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or ‘interstitial’ aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation.

  4. The SPectrometer for Ice Nuclei (SPIN): an instrument to investigate ice nucleation

    NASA Astrophysics Data System (ADS)

    Garimella, Sarvesh; Bjerring Kristensen, Thomas; Ignatius, Karolina; Welti, Andre; Voigtländer, Jens; Kulkarni, Gourihar R.; Sagan, Frank; Kok, Gregory Lee; Dorsey, James; Nichman, Leonid; Rothenberg, Daniel Alexander; Rösch, Michael; Kirchgäßner, Amélie Catharina Ruth; Ladkin, Russell; Wex, Heike; Wilson, Theodore W.; Ladino, Luis Antonio; Abbatt, Jon P. D.; Stetzer, Olaf; Lohmann, Ulrike; Stratmann, Frank; Cziczo, Daniel James

    2016-07-01

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigate homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Overall, we report that the SPIN is able to reproduce previous INP counter measurements.

  5. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.

    PubMed

    Parody-Morreale, A; Murphy, K P; Di Cera, E; Fall, R; DeVries, A L; Gill, S J

    1988-06-23

    Certain bacteria promote the formation of ice in super-cooled water by means of ice nucleators which contain a unique protein associated with the cell membrane. Ice nucleators in general are believed to act by mimicking the structure of an ice crystal surface, thus imposing an ice-like arrangement on the water molecules in contact with the nucleating surface and lowering the energy necessary for the initiation of ice formation. Quantitative investigation of the bacterial ice-nucleating process has recently been made possible by the discovery of certain bacteria that shed stable membrane vesicles with ice nucleating activity. The opposite effect, inhibition of ice formation, has been described for a group of glycoproteins found in different fish and insect species. This group of substances, termed antifreeze glycoproteins (AFGPs), promotes the supercooling of water with no appreciable effect on the equilibrium freezing point or melting temperature. Substantial evidence now indicates that AFGPs act by binding to a growing ice crystal and slowing crystal growth. As the ice-nucleating protein surface is believed to have a structure similar to an embryonic ice crystal, AFGPs might be predicted to interact directly with a bacterial ice-nucleating site. We report here that AFGPs from the antarctic fish Dissostichus mawsoni inhibit the ice-nucleating activity of membrane vesicles from the bacterium Erwinia herbicola. The inhibition effect shows saturation at high concentration of AFGP and conforms to a simple binding reaction between the AFGP and the nucleation centre. PMID:3386720

  6. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  7. Heterogeneous nucleation of aspartame from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji

    1990-03-01

    Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.

  8. Ice Nucleation and Droplet Formation by Bare and Coated Black Carbon Particles

    SciTech Connect

    Friedman, Beth J.; Kulkarni, Gourihar R.; Beranek, Josef; Zelenyuk, Alla; Thornton, Joel A.; Cziczo, Daniel J.

    2011-10-13

    We have studied the ice formation at heterogeneous and homogeneous temperatures, as well as droplet activation and hygroscopicity of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied to span a relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation with a comparison to a well characterized mineral dust particle that acts as an efficient ice nucleus, as well as particle hygroscopicity. At 253K and 243K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, droplet formation was observed. At 233K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles, but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude from our studies that both uncoated and coated soot particles are unlikely to contribute to the global budget of heterogeneous ice nuclei at temperatures between 233K and 253K.

  9. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    SciTech Connect

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-12-31

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation.

  10. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  11. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE PAGESBeta

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  12. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    NASA Astrophysics Data System (ADS)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the

  13. Physiological and ecological significance of biological ice nucleators.

    PubMed Central

    Lundheim, Rolv

    2002-01-01

    When a pure water sample is cooled it can remain in the liquid state at temperatures well below its melting point (0 degrees C). The initiation of the transition from the liquid state to ice is called nucleation. Substances that facilitate this transition so that it takes place at a relatively high sub-zero temperature are called ice nucleators. Many living organisms produce ice nucleators. In some cases, plausible reasons for their production have been suggested. In bacteria, they could induce frost damage to their hosts, giving the bacteria access to nutrients. In freeze-tolerant animals, it has been suggested that ice nucleators help to control the ice formation so that it is tolerable to the animal. Such ice nucleators can be called adaptive ice nucleators. There are, however, also examples of ice nucleators in living organisms where the adaptive value is difficult to understand. These ice nucleators might be structures with functions other than facilitating ice formation. These structures might be called incidental ice nucleators. PMID:12171657

  14. Identification & Characterization of Fungal Ice Nucleation Proteins

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  15. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  16. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces.

    PubMed

    He, Zhiyuan; Xie, Wen Jun; Liu, Zhenqi; Liu, Guangming; Wang, Zuowei; Gao, Yi Qin; Wang, Jianjun

    2016-06-01

    Heterogeneous ice nucleation (HIN) on ionic surfaces is ubiquitous in a wide range of atmospheric aerosols and at biological interfaces. Despite its great importance in cirrus cloud formation and cryopreservation of cells, organs, and tissues, it remains unclear whether the ion-specific effect on ice nucleation exists. Benefiting from the fact that ions at the polyelectrolyte brush (PB)/water interface can be reversibly exchanged, we report the effect of ions on HIN on the PB surface, and we discover that the distinct efficiency of ions in tuning HIN follows the Hofmeister series. Moreover, a large HIN temperature window of up to 7.8°C is demonstrated. By establishing a correlation between the fraction of ice-like water molecules and the kinetics of structural transformation from liquid- to ice-like water molecules at the PB/water interface with different counterions, we show that our molecular dynamics simulation analysis is consistent with the experimental observation of the ion-specific effect on HIN. PMID:27386581

  17. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces

    PubMed Central

    He, Zhiyuan; Xie, Wen Jun; Liu, Zhenqi; Liu, Guangming; Wang, Zuowei; Gao, Yi Qin; Wang, Jianjun

    2016-01-01

    Heterogeneous ice nucleation (HIN) on ionic surfaces is ubiquitous in a wide range of atmospheric aerosols and at biological interfaces. Despite its great importance in cirrus cloud formation and cryopreservation of cells, organs, and tissues, it remains unclear whether the ion-specific effect on ice nucleation exists. Benefiting from the fact that ions at the polyelectrolyte brush (PB)/water interface can be reversibly exchanged, we report the effect of ions on HIN on the PB surface, and we discover that the distinct efficiency of ions in tuning HIN follows the Hofmeister series. Moreover, a large HIN temperature window of up to 7.8°C is demonstrated. By establishing a correlation between the fraction of ice-like water molecules and the kinetics of structural transformation from liquid- to ice-like water molecules at the PB/water interface with different counterions, we show that our molecular dynamics simulation analysis is consistent with the experimental observation of the ion-specific effect on HIN. PMID:27386581

  18. Observations on the nucleation of ice VII in shock compressed water

    NASA Astrophysics Data System (ADS)

    Stafford, Samuel J. P.; Chapman, David J.; Eakins, Daniel E.; Bland, Simon N.

    2015-06-01

    The ability of water to freeze into the ice VII phase under dynamic compression is a good example of a liquid to solid phase change. The ice VII is thought to nucleate and grow from the window surfaces in a relatively slow process (on the order of 100ns) that can be seen in wave profiles and a visible darkening of the sample. On silica windows the process is evident but from sapphire surfaces the heterogeneous nucleation appears to be entirely absent and the water remains metastable. To investigate the influence of silica, and under what conditions sapphire might heterogeneously nucleate ice VII, we present an experimental technique incorporating multiple liquid targets diagnosed with PDV and high speed imaging of the nucleation process from a variety of surfaces and additives. The Institute of Shock Physics acknowledges the continued support of AWE and Imperial College London.

  19. Modelling ice nucleation due to dust

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan; Petkovic, Slavko; Pejanovic, Goran; Madonna, Fabio

    2015-04-01

    Formation of cold clouds is enhanced if ice nuclei (IN) are available. Cold clouds contribute at global scale with 60% in average in precipitation and their presence significantly affects the atmospheric radiation properties. It is expected that better description of the IN process should substantially improve cloud parameterization in climate and numerical weather prediction models. Observations show that mineral dust particles are the dominant residuals found in cloud ice. In this study we employ the regional dust DREAM model based on high horizontal and vertical grid resolution to parameterize IN caused by mineral dust. DREAM has been already deployed in a study related to IN process (Klein et al, 2010), also in model experiments using several IN parameterization schemes in support of the IN field experiment CALIMA over Canaries. The model has been also extended by adding the major dust mineral fractions as tracers in order to facilitate staying a role of dust mineralogy in ice nucleation. This study will present parameterization of IN using the simulated dust concentration, water moisture and temperature. Preliminary results of simulated IN will be shown, as well as IN validation against lidar aerosol profiles and ice cloud water profiles observed by cloud radar in the Potenza EARLINET site. This study is an initial step in improving a cloud physics parameterization using IN as an input variable in an integrated dust-atmospheric modelling system.

  20. Study on Ice Formation in Still Supercooled Water with Ice Nucleating Substance

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Takeya, Kengo; Asano, Takaya

    Relating to the problem of supercooling phenomenon for ice storage system, the effect of ice nucleating substances (Xanthan gum, Silver iodide, Copper sulfide, Cholesterole and Ice nucleating bacteria) in still bulk supercooled water was investigated. In the experiment, the test water sample containing the ice nucleating substance was cooled below the equilibrium freezing point temperature in low-temperature room maintained at -40 °C, and its freezing temperature was measured for various mass ratios of ice nucleating substance to water. The supercooling degree for the test water sample decreased with an increase in the mass ratio. It was found that the supercooling degree for the test sample with the insoluble ice nucleating substance was smaller than that for the soluble one. Among test ice nucleating substances, Cholesterole had a pronounced effect on the ice nucleation of supercooled water. However, it was clarified that the supercooling degree for each test sample increased by repeating the process of freezing and melting.

  1. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Smith, Kyle; Edd, Jon F; Stott, Shannon L; Toner, Mehmet

    2016-09-13

    Ice nucleation is of fundamental significance in many areas, including atmospheric science, food technology, and cryobiology. In this study, we investigated the ice-nucleation characteristics of picoliter-sized drops consisting of different D2O and H2O mixtures with and without the ice-nucleating bacteria Pseudomonas syringae. We also studied the effects of commonly used cryoprotectants such as ethylene glycol, propylene glycol, and trehalose on the nucleation characteristics of D2O and H2O mixtures. The results show that the median freezing temperature of the suspension containing 1 mg/mL of a lyophilized preparation of P. syringae is as high as -4.6 °C for 100% D2O, compared to -8.9 °C for 100% H2O. As the D2O concentration increases every 25% (v/v), the profile of the ice-nucleation kinetics of D2O + H2O mixtures containing 1 mg/mL Snomax shifts by about 1 °C, suggesting an ideal mixing behavior of D2O and H2O. Furthermore, all of the cryoprotectants investigated in this study are found to depress the freezing phenomenon. Both the homogeneous and heterogeneous freezing temperatures of these aqueous solutions depend on the water activity and are independent of the nature of the solute. These findings enrich our fundamental knowledge of D2O-related ice nucleation and suggest that the combination of D2O and ice-nucleating agents could be a potential self-ice-nucleating formulation. The implications of self-nucleation include a higher, precisely controlled ice seeding temperature for slow freezing that would significantly improve the viability of many ice-assisted cryopreservation protocols. PMID:27495973

  2. A marine biogenic source of atmospheric ice-nucleating particles.

    PubMed

    Wilson, Theodore W; Ladino, Luis A; Alpert, Peter A; Breckels, Mark N; Brooks, Ian M; Browse, Jo; Burrows, Susannah M; Carslaw, Kenneth S; Huffman, J Alex; Judd, Christopher; Kilthau, Wendy P; Mason, Ryan H; McFiggans, Gordon; Miller, Lisa A; Nájera, Juan J; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L; Si, Meng; Temprado, Jesús Vergara; Whale, Thomas F; Wong, Jenny P S; Wurl, Oliver; Yakobi-Hancock, Jacqueline D; Abbatt, Jonathan P D; Aller, Josephine Y; Bertram, Allan K; Knopf, Daniel A; Murray, Benjamin J

    2015-09-10

    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean. PMID:26354482

  3. Measurements of Ice Nuclei properties at the Jungfraujoch using the Portable Ice Nucleation Chamber (PINC)

    NASA Astrophysics Data System (ADS)

    Chou, Cédric

    2010-05-01

    Ice clouds and mixed-phase clouds have different microphysical properties. Both affect the climate in various ways. Ice phase present in these clouds have the ability to scatter the incoming solar radiation and absorb terrestrial radiation differently from water droplets. Ice is also responsible for most of the precipitation in the mid-latitudes. Ice crystals can be formed via two main processes: homogeneous and heterogeneous ice nucleation. Investigation of thermodynamic conditions at which ice nuclei (IN) trigger nucleation and their number concentrations is necessary in order to understand the formation of the ice phase in the atmosphere. In order to investigate the presence of IN in the free troposphere, the Institute for Atmospheric and Climate Sciences of the ETH Zurich has recently designed a new chamber: the Portable Ice Nucleation Chamber (PINC), which is the field version of the Zurich Ice Nucleation Chamber (Stetzer et al., 2008). Both chambers follow the principle of a "continuous flow diffusion chamber" (Rogers, 1988) and can measure the number concentration of IN at different temperatures and relative humidities. Aerosols are collected through an inlet where an impactor removes larger particles that could be counted as ice crystals. The aerosol load is layered between two dry sheath air flows as it enters the main chamber. Both walls of the chamber are covered with a thin layer of ice and maintained at two different temperatures in order to create supersaturation with respect to ice (and with respect to water in case of a larger temperature difference between the walls). At the exit of the main chamber, the sample goes throught the evaporation part that is kept saturated with respect to ice. There, water droplets evaporate and only ice crystals and smaller aerosol particles are counted by the Optical Particle Counter (OPC) at the bottom of the chamber. The high alpine research station Jungfraujoch is located at 3580 m a.s.l. It is mainly in

  4. Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2014-07-01

    In cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have studied a preactivation mechanism that markedly enhances the particles' heterogeneous ice nucleation ability. First cloud expansion experiments were performed at a high temperature (267-244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the preactivated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and from 4 to 20%, respectively. Preactivation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  5. Particle Characterization and Ice Nucleation Efficiency of Field-Collected Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Wang, B.; Gilles, M. K.; Laskin, A.; Moffet, R.; Nizkorodov, S.; Roedel, T.; Sterckx, L.; Tivanski, A.; Knopf, D. A.

    2011-12-01

    Atmospheric ice formation by heterogeneous nucleation is one of the least understood processes resulting in cirrus and mixed-phase clouds which affect the global radiation budget, the hydrological cycle, and water vapor distribution. In particular, how organic aerosol affect ice nucleation is not well understood. Here we report on heterogeneous ice nucleation from particles collected during the CalNex campaign at the Caltech campus site, Pasadena, on May 19, 2010 at 6am-12pm (A2) and 12pm-6pm (A3) and May 23 at 6am-12pm (B2) and 6pm-12am (B4). The ice nucleation onsets and water uptake were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). The ice nucleation efficiency was related to the particle chemical composition. Single particle characterization was provided by using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The STXM/NEXAFS analysis indicates that the morning sample (A2) constitutes organic particles and organic particles with soot and inorganic inclusions. The afternoon sample (A3) is dominated by organic particles with a potentially higher degree of oxidation associated with soot. The B2 sample shows a higher number fraction of magnesium-containing particle indicative of a marine source and ~93% of the particles contained sulfur besides oxygen and carbon as derived from CCSEM/EDX analysis. The B4 sample lacks the strong marine influence and shows higher organic content. Above 230 K, we observed water uptake followed by condensation freezing at mean RH of 93-100% and 89-95% for A2 and A3, respectively. This indicates that the aged A3 particles are efficient ice nuclei (IN) for condensation freezing. Below 230 K A2 and A3 induced deposition ice nucleation between 125-155% RHice (at mean values of 134-150% RHice). The B2 and B4

  6. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  7. How important is biological ice nucleation in clouds on a global scale?

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Kristjánsson, J. E.; Burrows, S. M.

    2010-04-01

    The high ice nucleating ability of some biological particles has led to speculations about living and dead organisms being involved in cloud ice and precipitation formation, exerting a possibly significant influence on weather and climate. In the present study, the role of primary biological aerosol particles (PBAPs) as heterogeneous ice nuclei is investigated with a global model. Emission parametrizations for bacteria, fungal spores and pollen based on recent literature are introduced, as well as an immersion freezing parametrization based on classical nucleation theory and laboratory measurements. The simulated contribution of PBAPs to the global average ice nucleation rate is only 10 - 5%, with an uppermost estimate of 0.6%. At the same time, observed PBAP concentrations in air and biological ice nucleus concentrations in snow are reasonably well captured by the model. This implies that 'bioprecipitation' processes (snow and rain initiated by PBAPs) are of minor importance on the global scale.

  8. Re-evaluating the Frankfurt isothermal static diffusion chamber for ice nucleation

    NASA Astrophysics Data System (ADS)

    Schrod, Jann; Danielczok, Anja; Weber, Daniel; Ebert, Martin; Thomson, Erik S.; Bingemer, Heinz G.

    2016-03-01

    Recently significant advances have been made in the collection, detection and characterization of ice nucleating particles (INPs). Ice nuclei are particles that facilitate the heterogeneous formation of ice within the atmospheric aerosol by lowering the free energy barrier to spontaneous nucleation and growth of ice from atmospheric water and/or vapor. The Frankfurt isostatic diffusion chamber (FRankfurt Ice nucleation Deposition freezinG Experiment: FRIDGE) is an INP collection and offline detection system that has become widely deployed and shows additional potential for ambient measurements. Since its initial development FRIDGE has gone through several iterations and improvements. Here we describe improvements that have been made in the collection and analysis techniques. We detail the uncertainties inherent in the measurement method and suggest a systematic method of error analysis for FRIDGE measurements. Thus what is presented herein should serve as a foundation for the dissemination of all current and future measurements using FRIDGE instrumentation.

  9. Advances in Understanding the Role of Aerosols on Ice Clouds from the Fifth International Ice Nucleation (FIN) Workshops

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Moehler, O.; DeMott, P. J.

    2015-12-01

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding climate. This is due to several poorly understood processes including the microphysics of how particles nucleate ice, the number of effective heterogeneous ice nuclei and their atmospheric distribution, the role of anthropogenic activities in producing or changing the behavior of ice forming particles and the interplay between effective heterogeneous ice nuclei and homogeneous ice formation. Our team recently completed a three-part international workshop to improve our understanding of atmospheric ice formation. Termed the Fifth International Ice Nucleation (FIN) Workshops, our motivation was the limited number of measurements and a lack of understanding of how to compare data acquired by different groups. The first activity, termed FIN1, addressed the characterization of ice nucleating particle size, number and chemical composition. FIN2 addressed the determination of ice nucleating particle number density. Groups modeling ice nucleation joined FIN2 to provide insight on measurements critically needed to model atmospheric ice nucleation and to understand the performance of ice chambers. FIN1 and FIN2 took place at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber at the Karlsruhe Institute of Technology. A particular emphasis of FIN1 and FIN2 was the use of 'blind' intercomparisons using a highly characterized, but unknown to the instrument operators, aerosol sample. The third activity, FIN3, took place at the Desert Research Institute's Storm Peak Laboratory (SPL). A high elevation site not subject to local emissions, SPL allowed for a comparison of ice chambers and subsequent analysis of the ice residuals under the challenging conditions of low particle loading, temperature and pressure found in the atmosphere. The presentation focuses on the improvement in understanding how mass spectra from different

  10. A marine biogenic source of atmospheric ice-nucleating particles

    SciTech Connect

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  11. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    NASA Astrophysics Data System (ADS)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, Hugh; Somerville, Richard C. J.; Zhang, Kai; Liu, Xiaohong; Li, Jui-Lin F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme has been implemented in an aerosol-enabled Multiscale Modeling Framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10-100/L) at cirrus temperatures. The new model simulates the observed shift of the ice supersaturation PDF toward higher values at low temperatures following the homogeneous nucleation threshold. The MMF model predicts a higher frequency of midlatitude supersaturation in the Southern Hemisphere and winter hemisphere, which is consistent with previous satellite and in situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to simulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation scheme and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement with the satellite-retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  12. Investigations of organic and microbiological atmospheric ice nucleating particles (Invited)

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Hill, T. C.; Tobo, Y.; Prenni, A. J.; McMeeking, G. R.; Levin, E. J.; McCluskey, C.; Huffman, J. A.; Mason, R.; Bertram, A. K.; Kreidenweis, S. M.

    2013-12-01

    Measurements in a number of laboratory and field campaigns have offered the opportunity to compare and contrast ice nucleation by soil-and plant-based inorganic, organic, and microbiological particles versus ice nucleating particles (INP) actually sampled in the atmosphere. This presentation reviews these recent studies. Plants support sometimes prodigious populations of INA bacteria as well as fungi and other potential biological ice nucleating particles, such as fragments of plant tissues themselves. The means of release of plant-sourced INP to the atmosphere is not fully documented, but our recent studies have found clear cases of release of ice nuclei from disturbances such as rain, both in forests and over grasslands, and harvesting. Composition of such ice nuclei in air has been inferred at these times based on simultaneous measurements of ice nuclei and biological aerosols. At quiescent times, measurements of the labile fraction of ice nucleating particles in air over agricultural regions suggest that organic and possibly microbiological organisms dominate ice nuclei populations, but INA bacteria are only selective and modest contributors at the warmest activation temperatures. Our results therefore suggest the presence of a spectrum of biological and organic ice nucleating particles over land regions. The ice nucleating activity of mineral soils is well documented and the presence of these particles in air is certain on the basis of many measurement campaigns which identified mineral particles to represent up to half or more of ice nuclei sampled in parts of the free troposphere. Our recent measurements have also documented a clear organic ice nucleating particle source within arable, sagebrush, grassland and forest soils, a source that may dominate over the mineral ice nuclei in such soils. Investigations of their compositions will be described. These ice nuclei are strongly resistant to heat, and may represent a separate population and source compared to

  13. Role of the electric double layer in the ice nucleation of water droplets under an electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Xiong; Li, Xin-Hao; Chen, Min

    2016-09-01

    Figuring out the mechanism of ice nucleation on charged aerosols or in thunderstorms is of fundamental importance in atmospheric science. However, findings on whether the electric field promotes or suppresses heterogeneous ice nucleation are conflicting. In this work, we design an apparatus and test the influence of the electric field on ice nucleation by freezing a series of deionized water droplets resting on solid surfaces with an electric field perpendicular to the substrates. Results show that ice nucleation is obviously promoted under the electric field and is independent of the field direction. Theoretic analyses show that the promotion is due to the reduction of Gibbs free energy which can be partially rationalized by the electric field sustained in the electric double layer at the solid-water interface, with strength about two orders higher than that of the external electric field. Moreover, water-droplet deformation under the electric field is not expected to be the cause of the ice-nucleation promotion.

  14. Competition between water uptake and ice nucleation by glassy organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Berkemeier, T.; Shiraiwa, M.; Pöschl, U.; Koop, T.

    2014-11-01

    Organic aerosol particles play a key role in climate by serving as nuclei for clouds and precipitation. Their sources and composition are highly variable, and their phase state ranges from liquid to solid under atmospheric conditions, affecting the pathway of activation to cloud droplets and ice crystals. Due to slow diffusion of water in the particle phase, organic particles may deviate in phase and morphology from their thermodynamic equilibrium state, hampering the prediction of their influence on cloud formation. We overcome this problem by combining a novel semi-empirical method for estimation of water diffusivity with a kinetic flux model that explicitly treats water diffusion. We estimate timescales for particle deliquescence as well as various ice nucleation pathways for a wide variety of organic substances, including secondary organic aerosol (SOA) from the oxidation of isoprene, α-pinene, naphthalene, and dodecane. The simulations show that, in typical atmospheric updrafts, glassy states and solid/liquid core-shell morphologies can persist for long enough that heterogeneous ice nucleation in the deposition and immersion mode can dominate over homogeneous ice nucleation. Such competition depends strongly on ambient temperature and relative humidity as well as humidification rate and particle size. Due to differences in glass transition temperature, hygroscopicity and atomic O / C ratio of the different SOA, naphthalene SOA particles have the highest potential to act as heterogeneous ice nuclei. Our findings demonstrate that kinetic limitations of water diffusion into organic aerosol particles are likely to be encountered under atmospheric conditions and can strongly affect ice nucleation pathways. For the incorporation of ice nucleation by organic aerosol particles into atmospheric models, our results demonstrate a demand for model formalisms that account for the effects of molecular diffusion and not only describe ice nucleation onsets as a function of

  15. A nanoscale temperature-dependent heterogeneous nucleation theory

    SciTech Connect

    Cao, Y. Y.; Yang, G. W.

    2015-06-14

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale.

  16. Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Kiselev, Alexei; Möhler, Ottmar; Saathoff, Harald; Steinke, Isabelle

    2016-02-01

    In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270-271 K. Pre-activation was achieved under ice-subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice-subsaturated conditions. This range is set by a combination of requirements from the negative Kelvin effect for condensation and a critical size of ice embryos for ice nucleation and melting. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  17. Ultrasonic emissions during ice nucleation and propagation in plant xylem.

    PubMed

    Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan

    2015-08-01

    Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. PMID:25756189

  18. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James; Webb, Michael E.

    2016-04-01

    The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. However, the identities, sources and abundances of airborne particles capable of efficiently nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. Recently, several studies have suggested that unidentified biogenic residues in soil dusts are likely to be an important source of these efficient atmospheric INPs. While it has been shown that cell-free proteins produced by common soil-borne fungi are exceptional INPs, whether these fungi are a source of ice-nucleating biogenic residues in soils has yet to be shown. In particular, it is unclear whether upon adsorption to soil mineral particles, the activity of fungal ice-nucleating proteins is retained or is reduced, as observed for other soil enzymes. Here we show that proteins from a common soil fungus (Fusarium avenaceum) do in fact preferentially bind to and impart their ice-nucleating properties to the common clay mineral kaolinite. The ice-nucleating activity of the proteinaceous INPs is found to be unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of their activity even after multiple washings with pure water. The atmospheric implications of the finding that nanoscale fungal INPs can effectively determine the nucleating abilities of lofted soil dusts are discussed.

  19. High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus

    NASA Astrophysics Data System (ADS)

    Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard; Bui, Theopaul V.; Alexander, M. Joan; Podglajen, Aurélien; Hertzog, Albert; Woods, Sarah; Lawson, R. Paul; Kim, Ji-Eun; Schoeberl, Mark R.

    2016-06-01

    The impact of high-frequency gravity waves on homogeneous-freezing ice nucleation in cold cirrus clouds is examined using parcel model simulations driven by superpressure balloon measurements of temperature variability experienced by air parcels in the tropical tropopause region. We find that the primary influence of high-frequency waves is to generate rapid cooling events that drive production of numerous ice crystals. Quenching of ice nucleation events by temperature tendency reversal in the highest-frequency waves does occasionally produce low ice concentrations, but the overall impact of high-frequency waves is to increase the occurrence of high ice concentrations. The simulated ice concentrations are considerably higher than indicated by in situ measurements of cirrus in the tropical tropopause region. One-dimensional simulations suggest that although sedimentation reduces mean ice concentrations, a discrepancy of about a factor of 3 with observed ice concentrations remains. Reconciliation of numerical simulations with the observed ice concentrations will require inclusion of physical processes such as heterogeneous nucleation and entrainment.

  20. Modeling Studying the Role of Bacteria on ice Nucleation Processes

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2006-12-01

    Certain air-borne bacteria have been recognized as active ice nuclei at the temperatures warm than - 10°C. Ice nucleating bacteria commonly found in plants and ocean surface. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds and hailstones, and their importance in cloud formation process and precipitation, as well as causing diseases in plants and animal kingdom, have been considered for over two decades, but their significance in atmospheric processes are yet to be understood. A 1.5-D non-hydrostatic cumulus cloud model with bin-resolved microphysics is developed and is to used to examine the relative importance of sulphate aerosol concentrations on the evolution of cumulus cloud droplet spectra and ice multiplication process, as well as ice initiation process by ice nucleating bacteria in the growing stage of cumulus clouds and the key role of this process on the ice multiplication in the subsequent dissipating stage of cumulus clouds. In this paper, we will present some sensitivity test results of the evolution of cumulus cloud spectra, ice concentrations at various concentrations of sulfate aerosols, and at different ideal sounding profiles. We will discuss the implication of our results in understanding of ice nucleation processes.

  1. How important is biological ice nucleation in clouds on a global scale? (Invited)

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Kristjansson, J. E.; Burrows, S. M.; Chen, J.; Hazra, A.

    2010-12-01

    The high ice nucleating ability of some biological particles has led to speculations about living and dead organisms being involved in cloud ice and precipitation formation, exerting a possibly significant influence on weather and climate. In the present study, the role of primary biological aerosol particles (PBAPs) in competition with mineral dust and soot as heterogeneous ice nuclei is investigated with the global climate model CAM-Oslo. Emission parameterizations for bacteria, fungal spores and pollen based on recent literature are introduced, as well as heterogeneous ice nucleation parameterizations based on classical nucleation theory and laboratory measurements. The simulated PBAP number concentrations are compared to data from various locations. The agreement between measurements and observations is overall satisfactory for bacteria and fungal spore concentrations, but the model tends to underestimate total PBAP number. This likely indicates that either pollen or other (possibly submicron) PBAP that are not considered here contribute significantly to the total PBAP number at the measurement locations. The simulated contribution of PBAPs to the global average ice nucleation rate is only 10-5 %, with an uppermost estimate of 0.6% when the emission strengths and ice nucleation efficiencies are varied within the uncertainty ranges. At the same time, observed PBAP concentrations in air and biological ice nucleus concentrations in snow are reasonably well captured by the model. This implies that ‘bioprecipitation’ processes (snow and rain initiated by PBAPs) are of minor importance on the global scale. However, our results do not rule out local, regional or seasonal importance of biological ice nuclei. We will discuss the uncertainties in the underlying model assumptions, compare to results of previous modeling studies and suggest directions for future work.

  2. The Global Distribution of Atmospheric Ice Nucleating Particles

    NASA Astrophysics Data System (ADS)

    Vergara Temprado, J.; Wilson, T. W.; Burrows, S. M.; Murray, B. J.; Carslaw, K. S.

    2015-12-01

    Ice nucleating particles (INP) affect the amount of ice in clouds, changing many of their properties. However, the relevance of different aerosol species towards causing atmospheric ice nucleation in different contexts is not well-understood. In this presentation, I will show the simulated spatial and seasonal distributions of ice nucleating particles from K-feldspar (the ice-active component of desert dust), marine organics (from sea spray) and black carbon (from combustion). The global distribution of these materials is simulated using two global aerosol model (GLOMAP-mode and EMAC). The contribution of each aerosol species to the INP distribution is calculated using parameterizations of their ice nucleating ability developed from laboratory studies of the materials involved, founding good agreement with INP observations. We found that K-feldspar dominates the atmospheric distribution of ice nucleating particles; however, marine organic INPs and black carbon are important regionally in some seasons. This study advances our understanding of which aerosol species have to be included in order to adequately describe the global and regional distribution of INPs in models.

  3. Ice nucleation by cellulose and its potential contribution to ice formation in clouds

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Möhler, O.; Yamashita, K.; Tajiri, T.; Saito, A.; Kiselev, A.; Hoffmann, N.; Hoose, C.; Jantsch, E.; Koop, T.; Murakami, M.

    2015-04-01

    Ice particles in the atmosphere influence clouds, precipitation and climate, and often form with help from aerosols that serve as ice-nucleating particles. Biological particles, including non-proteinaceous ones, contribute to the diverse spectrum of ice-nucleating particles. However, little is known about their atmospheric abundance and ice nucleation efficiency, and their role in clouds and the climate system is poorly constrained. One biological particle type, cellulose, has been shown to exist in an airborne form that is prevalent throughout the year even at remote and elevated locations. Here we report experiments in a cloud simulation chamber to demonstrate that microcrystalline cellulose particles can act as efficient ice-nucleating particles in simulated supercooled clouds. In six immersion mode freezing experiments, we measured the ice nucleation active surface-site densities of aerosolized cellulose across a range of temperatures. Using these active surface-site densities, we developed parameters describing the ice nucleation ability of these particles and applied them to observed atmospheric cellulose and plant debris concentrations in a global aerosol model. We find that ice nucleation by cellulose becomes significant (>0.1 l-1) below about -21 °C, temperatures relevant to mixed-phase clouds. We conclude that the ability of cellulose to act as ice-nucleating particles requires a revised quantification of their role in cloud formation and precipitation.

  4. Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators.

    PubMed

    Shi, Ke; Yu, Hailong; Lee, Tung-Ching; Huang, Qingrong

    2013-11-13

    Zein protein has been of scientific interest in the development of biodegradable functional food packaging. This study aimed at developing a novel zein-based biopolymer film with ice nucleation activity through layer-by-layer deposition of biogenic ice nucleators, that is, extracellular ice nucleators (ECINs) isolated from Erwinia herbicola , onto zein film surface. The adsorption behaviors and mechanisms were investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). On unmodified zein surface, the highest ECINs adsorption occurred at pH 5.0; on UV/ozone treated zein surface followed by deposition of poly(diallyldimethylammonium chloride) (PDADMAC) layer, the optimum condition for ECINs adsorption occurred at pH 7.0 and I 0.05 M, where the amount of ECINs adsorbed was also higher than that on unmodified zein surface. QCM-D analyses further revealed a two-step adsorption process on unmodified zein surfaces, compared to a one-step adsorption process on PDADMAC-modified zein surface. Also, significantly, in order to quantify the ice nucleation activity of ECINs-coated zein films, an empirical method was developed to correlate the number of ice nucleators with the ice nucleation temperature measured by differential scanning calorimetry. Calculated using this empirical method, the highest ice nucleation activity of ECINs on ECINs-modified zein film reached 64.1 units/mm(2), which was able to elevate the ice nucleation temperature of distilled water from -15.5 °C to -7.3 °C. PMID:24106783

  5. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  6. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James F.; Webb, Michael E.

    2016-06-01

    The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. To date, the identities, sources and abundances of particles capable of nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. While biomolecules such as proteins and carbohydrates have been implicated as important high-temperature INPs, the lack of knowledge on the environmental fates of these species makes it difficult to assess their potential atmospheric impacts. Here we show that such nanoscale ice-nucleating proteins from a common soil-borne fungus (Fusarium avenaceum) preferentially bind to and confer their ice-nucleating properties to kaolinite. The ice-nucleating activity of the proteinaceous INPs is unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of the activity even after multiple washings with pure water. The atmospheric implications of the finding that biological residues can confer their ice-nucleating ability to dust particles are discussed.

  7. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf.

    PubMed

    Searles, J A; Carpenter, J F; Randolph, T W

    2001-07-01

    The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production. PMID:11458335

  8. Impacts of Ice Nucleation Parameterizations and Dust on Deep Convective C louds and Precipitation

    NASA Astrophysics Data System (ADS)

    Lim, K. S. S.; Fan, J.; Leung, L. Y.; Zhao, C.; Zhang, K.; Ma, P. L.; Phillips, V. T.; Liu, X.; Yang, Q.

    2014-12-01

    Ice nucleation plays a critical role in the formation of ice clouds and converting liquid to ice in mixed-phase clouds. Many past heterogeneous ice nucleation parameterizations (INPs) were developed based on field measurements with the artifacts of shattering, and also not connected with aerosol particles. Recent laboratory and field measurements have led to a few new ice nucleation parameterizations connecting with aerosols, which should be implemented to models and evaluated by observations. In this study, we evaluated three very recently developed heterogeneous INPs linked with dust particles: Niemand et al. (2012), DeMott et al. (2013), and Phillips et al. (2013), using the Weather Research and Forecasting (WRF) model coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). Results from the three new schemes and the default scheme by Meyers et al. (1992) are compared with available observations including aircraft measurements of cloud anvil properties of a storm case from the Deep Convective Clouds and Chemistry (DC3) field campaign. The Meyers scheme simulates higher ice number concentrations (Ni), while the Phillips scheme simulates lower Ni and shows the best agreement with aircraft measurements in the anvil area. Although the total precipitation amount and evolution of convection are not sensitive to different INPs, the probability density functions of both precipitation and reflectivity are considerably affected by the selected INPs. Simulation with the Phillips scheme shows higher ice nucleation rate at the warmer temperatures of the mixed-phase clouds regime, leading to much smaller ice formation in the upper levels. Reduced ice formation in the upper levels is caused by changes in droplet freezing, which is affected by convection and cloud morphology. Given relatively high dust concentration in the simulated case, sensitivity experiment is performed to examine dust impact with different INPs by reducing dust

  9. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2

  10. Effects of preexisting ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.; Zhang, K.

    2014-07-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is obviously less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W

  11. Inferred Differences in Ice Crystal Nucleation Rates between Continental and Maritime Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Avery, M. A.; Garnier, A.

    2014-12-01

    We present in situ and remotely sensed evidence for the following working hypothesis: Heterogeneous nucleation dominates during deep continental convection until ice nuclei in the updraft cannot prevent supersaturation from increasing. As it increases, homogeneous nucleation eventually occurs near cloud top (T < -60°C), with much faster ice crystal production rates. This is not the case in maritime anvil cirrus, where updrafts associated with deep convection are slower, promoting heterogeneous nucleation. We hypothesize that differences in updraft velocities and their effect on supersaturation might create a difference in the N/IWC ratios. Based on In situ measurements of the ice particle size distribution (PSD) from two aircraft field campaigns (SPARTICUS & TC4) and MODIS satellite retrievals of the temperature dependence of the 12/11 μm effective absorption optical depth ratio or βeff, ice crystal nucleation rates appear to be anomalously high near the tops of continental thunderstorms relative to maritime thunderstorms. The ice crystal nucleation rate, having units of g-1 s-1, is more related to the ratio of ice particle number concentration/ice water content (or N/IWC, with units of g-1) than to N. A surprisingly tight relationship was discovered between βeff and N/IWC, allowing N/IWC to be estimated from satellite retrievals of βeff. These retrievals verified that deep convection during TC4 over water did not produce the much higher N/IWC ratios observed during SPARTICUS in continental anvil cirrus. The imaging infrared radiometer (IIR) aboard CALIPSO has channels at 8, 10 and 12 μm and provides a data record of βeff dating back to 2006, as well as vertical profiles of IWC, extinction, depolarization and 1064/532 nm backscatter ratio from the CALIOP lidar. We will compare the MODIS-derived βeff and N/IWC relationship with that derived using the IIR data. We will also investigate the relationship between N/IWC, βeff and the vertically-resolved lidar

  12. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  13. The Leipzig Ice Nucleation chamber Comparison (LINC): An overview of ice nucleation measurements observed with four on-line ice nucleation devices

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Wex, Heike; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, André; Stratmann, Frank; Lohmann, Ulrike; Kanji, Zamin A.

    2016-04-01

    Mixed-phase clouds (MPCs) are found to be the most relevant cloud type leading to precipitation in mid-latitudes. The formation of ice crystals in MPCs is not completely understood. To estimate the effect of aerosol particles on the radiative properties of clouds and to describe ice nucleation in models, the specific properties of aerosol particles acting as ice nucleating particles (INPs) still need to be identified. A number of devices are able to measure INPs in the lab and in the field. However, methods can be very different and need to be tested under controlled conditions with respect to aerosol generation and properties in order to standardize measurement and data analysis approaches for subsequent ambient measurements. Here, we present an overview of the LINC campaign hosted at TROPOS in September 2015. We compare four ice nucleation devices: PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) and SPIN (SPectrometer for Ice Nuclei) are operated in deposition nucleation and condensation freezing mode. LACIS (Leipzig Aerosol Cloud Interaction Simulator, Hartmann et al., 2011) and PIMCA (Portable Immersion Mode Cooling chamber) measure in the immersion freezing mode. PIMCA is used as a vertical extension to PINC and allows activation and droplet growth prior to exposure to the investigated ice nucleation temperature. Size-resolved measurements of multiple aerosol types were performed including pure mineral dust (K-feldspar, kaolinite) and biological particles (Birch pollen washing waters) as well as some of them after treatment with sulfuric or nitric acid prior to experiments. LACIS and PIMCA-PINC operated in the immersion freezing mode showed very good agreement in the measured frozen fraction (FF). For the comparison between PINC and SPIN, which were scanning relative humidity from below to above water vapor saturation, an agreement was found for the obtained INP concentration. However, some differences were observed, which may result from ice

  14. Neutrons for probing the ice nucleation on atmospheric soot particles

    NASA Astrophysics Data System (ADS)

    Demirdjian, B.; Tishkova, V.; Ferry, D.

    2012-11-01

    Soot resulting from combustion of kerosene in aircraft engines can act as condensation nuclei for water/ice in the atmosphere and promote the formation of contrails that turn into artificial cirrus clouds and affect the climate. The mechanisms of nucleation of water/ice particles are not well identified. Studies "in situ" are difficult to realize, so we try to determine by neutron diffraction the nucleation of water/ice adsorbed on soot collected at the outlet of an aircraft engine combustor within the conditions of the upper troposphere. The results are compared with those obtained on model laboratory soot. The comparison highlights the role of chemical impurities and structural defects of original aircraft engine soot on the nucleation of water/ice in atmospheric conditions.

  15. Urediospores of Puccinia spp. and other rusts are warm-temperature ice nucleators and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2012-10-01

    In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the

  16. Surface structure, crystallographic and ice-nucleating properties of cellulose

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest

  17. Re-evaluating the Frankfurt isothermal static diffusion chamber for ice nucleation

    NASA Astrophysics Data System (ADS)

    Schrod, J.; Danielczok, A.; Weber, D.; Ebert, M.; Thomson, E. S.; Bingemer, H. G.

    2015-12-01

    Recently significant advances have been made in the collection, detection, and characterization of ice nucleating particles (INP). Ice nuclei are particles that facilitate the heterogeneous formation of ice within the atmospheric aerosol by lowering the free energy barrier to spontaneous nucleation and growth of ice from atmospheric water and/or vapor. The Frankfurt isostatic diffusion chamber (FRIDGE) is an INP collection and offline detection system that has become widely deployed and shows additional potential for ambient measurements. Since its initial development FRIDGE has gone through several iterations and improvements. Here we describe improvements that have been made in the collection and analysis techniques. We detail the uncertainties inherent in the measurement method, and suggest a systematic method of error analysis for FRIDGE measurements. Thus what is presented herein should serve as a foundation for the dissemination of all current and future measurements using FRIDGE instrumentation.

  18. Effect of gravity wave temperature variations on homogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Podglajen, Aurélien; Hertzog, Albert; Legras, Bernard; Plougonven, Riwal

    2015-04-01

    Observations of cirrus clouds in the tropical tropopause layer (TTL) have shown various ice number concentrations (INC) (e.g., Jensen et al. 2013), which has lead to a puzzle regarding their formation. In particular, the frequently observed low numbers of ice crystals seemed hard to reconcile with homogeneous nucleation knowing the ubuquity of gravity waves with vertical velocity of the order of 0.1 m/s. Using artificial time series, Spichtinger and Krämer (2013) have illustrated that the variation of vertical velocity during a nucleation event could terminate it and limit the INC. However, their study was limited to constructed temperature time series. Here, we carry out numerical simulations of homogeneous ice nucleation forced by temperature time series data collected by isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency (30 s), so gravity wave signals are well resolved in the temperature time series. With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentrations (INC) as previously observed in the tropical upper troposphere. The simulations confirm that the dynamical time scale of temperature variations (as seen from observations) can be shorter than the nucleation time scale. They show the existence of two regimes for homogeneous ice nucleation : one limited by the depletion of water vapor by the nucleated ice crystals (those we name vapor events) and one limited by the reincrease of temperature after its initial decrease (temperature events). Low INC may thus be obtained for temperature events when the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result for temperature events is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This

  19. New Instrument INKA for Ice Nucleation and Growth Experiments

    NASA Astrophysics Data System (ADS)

    Schmitt, Thea; Levin, Ezra; Höhler, Kristina; Nadolny, Jens; Möhler, Ottmar; DeMott, Paul

    2015-04-01

    Microphysical processes in clouds, such as the formation and growth of ice crystals, significantly influence the weather and the climate. Particularly the transition from the supercooled water to the solid ice phase is of great relevance since ice formation initiates the formation of precipitation and thereby strongly affects the cloud structure and life time. However, the formulation and parameterization of these processes and further laboratory studies are needed to obtain quantitative information on the ice activity of various atmospheric aerosol species. Therefore, we have constructed and built a new continuous flow diffusion chamber (CFDC) called INKA (Ice Nucleation Instrument of the KArlsruhe Institut of Technology) to be used both in the AIDA laboratory for detailed studies of ice nucleation and growth processes and in field applications for measuring the temperature-dependent abundance of ice nucleating particles (INPs). The CFDC design was originally developed and theoretically described by Rogers et al. (1988). The main part of the new INKA instrument, the chamber, consists of two vertically-oriented, concentric tubes with a total length of 150 cm. Together with particle-free, dry sheath air, the sampled aerosol particles flow through the annular space between these two cylinders. The wall temperatures of the cylinders can be adjusted and the walls of the annular gap are coated with thin ice layers. The bottom part (about 50 cm) of the outer cylinder of INKA is separately cooled, which allows operation in two different modes: In the ice nucleation mode, the CFDC is operated with a nucleation and growth section, covering the upper 100 cm of its length, which exposes the aerosol particles to a defined temperature and supersaturation. The bottom part is the so called droplet evaporation section which allows the ice particles to grow to a detectable size on the expense of present droplets. In the ice growth mode, the full length of the cylinders is operated

  20. Thermokinetics of heterogeneous droplet nucleation on conically textured substrates

    NASA Astrophysics Data System (ADS)

    Singha, Sanat K.; Das, Prasanta K.; Maiti, Biswajit

    2015-11-01

    Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.

  1. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.

    PubMed

    Kasuga, Jun; Mizuno, Kaoru; Arakawa, Keita; Fujikawa, Seizo

    2007-12-01

    Boreal hardwood species, including Japanese white birch (Betula platyphylla Sukat. var. japonica Hara), Japanese chestnut (Castanea crenata Sieb. et Zucc.), katsura tree (Cercidiphyllum japonicum Sieb. et Zucc.), Siebold's beech (Fagus crenata Blume), mulberry (Morus bombycis Koidz.), and Japanese rowan (Sorbus commixta Hedl.), had xylem parenchyma cells (XPCs) that adapt to subfreezing temperatures by deep supercooling. Crude extracts from xylem in all these trees were found to have anti-ice nucleation activity that promoted supercooling capability of water as measured by a droplet freezing assay. The magnitude of increase in supercooling capability of water droplets in the presence of ice-nucleation bacteria, Erwinia ananas, was higher in the ranges from 0.1 to 1.7 degrees C on addition of crude xylem extracts than freezing temperature of water droplets on addition of glucose in the same concentration (100 mosmol/kg). Crude xylem extracts from C. japonicum provided the highest supercooling capability of water droplets. Our additional examination showed that crude xylem extracts from C. japonicum exhibited anti-ice nucleation activity toward water droplets containing a variety of heterogeneous ice nucleators, including ice-nucleation bacteria, not only E. ananas but also Pseudomonas syringae (NBRC3310) or Xanthomonas campestris, silver iodide or airborne impurities. However, crude xylem extracts from C. japonicum did not affect homogeneous ice nucleation temperature as analyzed by emulsified micro-water droplets. The possible role of such anti-ice nucleation activity in crude xylem extracts in deep supercooling of XPCs is discussed. PMID:17936742

  2. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  3. Probing ice-nucleation processes on the molecular level using second harmonic generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdelmonem, A.; Lützenkirchen, J.; Leisner, T.

    2015-08-01

    We present and characterize a novel setup to apply second harmonic generation (SHG) spectroscopy in total internal reflection geometry (TIR) to heterogeneous freezing research. It allows to monitor the evolution of water structuring at solid surfaces at low temperatures prior to heterogeneous ice nucleation. Apart from the possibility of investigating temperature dependence, a major novelty in our setup is the ability of measuring sheet-like samples in TIR geometry in a direct way. As a main experimental result, we find that our method can discriminate between good and poor ice nucleating surfaces. While at the sapphire basal plane, which is known to be a poor ice nucleator, no structural rearrangement of the water molecules is found prior to freezing, the basal plane surface of mica, an analogue to ice active mineral dust surfaces, exhibits a strong change in the nonlinear optical properties at temperatures well above the freezing transition. This is interpreted as a pre-activation, i.e. an increase in the local ordering of the interfacial water which is expected to facilitate the crystallization of ice at the surface. The results are in line with recent predictions by molecular dynamics simulations on a similar system.

  4. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.; Zhang, K.

    2015-02-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

  5. Pre-activation of ice nucleating particles by the pore condensation and freezing mechanism

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Kiselev, A.; Möhler, O.; Saathoff, H.; Steinke, I.

    2015-10-01

    In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Already fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270-271 K. Pre-activation was achieved under ice subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice subsaturated conditions. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  6. Heterogeneous nucleation on surfaces of the ellipsoid of rotation

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Ming; Liu, Qing-Hui

    2016-08-01

    This paper focusses on the heterogeneous nucleation on the surface with the non-constant curvature. The formation of a spherical nucleus on the ellipsoid of rotation is considered. Following the classical nucleation theory, the work of formation of a critical nucleus on the ellipsoid of rotation has been given, and the effects of geometry sizes and the material properties of the ellipsoid of rotation on the work of formation of a critical nucleus have been obtained. When the geometry size of the substrate is about value of the critical nucleus radius, there may exist twice nucleation on the ellipsoid of rotation for the case of the smaller value of λ and ϕ < π / 2. As the work of formation of a nucleus has only one extremum (the maximum), the nucleation on the oblate rotational ellipsoid is more easy than on the spherical surface, while nucleation on the prolate ellipsoid of rotation is more difficult than on the spherical surface. Furthermore, if the particles of the ellipsoid are added into the parent phase as nucleation agents or catalysts, for some geometry sizes, they would not have the effects on the heterogeneous nucleation.

  7. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  8. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    PubMed

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  9. Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds

    SciTech Connect

    Spichtinger, Peter; Cziczo, Daniel J.

    2010-07-29

    The influence of initial heterogeneous nucleation on subsequent homogeneous nucleation events in cirrus clouds is investigated using a box model which includes the explicit impact of aerosols on the nucleation of ice crystals and sedimentation. Different effects are discussed, namely the impact of external mixtures of heterogeneous ice nuclei and the influence of size-dependent freezing thresholds. Several idealized experiments are carried out, which show that the treatment of external mixtures of ice nuclei can strongly change later homogeneous nucleation events (i.e., the ice crystal number densities) in different matters. The use of size-dependent freezing thresholds can also change the cloud prop erties when compared to more simple parameterizations. This size effect is most important for large IN concentrations. Based upon these findings, recommendations for future modeling and measurement efforts are presented.

  10. Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in trees.

    PubMed

    Kuwabara, Chikako; Kasuga, Jun; Wang, Donghui; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2011-12-01

    Deep supercooling xylem parenchyma cells (XPCs) in Katsura tree contain flavonol glycosides with high supercooling-facilitating capability in solutions containing the ice nucleation bacterium (INB) Erwinia ananas, which is thought to have an important role in deep supercooling of XPCs. The present study, in order to further clarify the roles of these flavonol glycosides in deep supercooling of XPCs, the effects of these supercooling-facilitating (anti-ice nucleating) flavonol glycosides, kaempferol 3-O-β-D-glucopyranoside (K3Glc), kaempferol 7-O-β-D-glucopyranoside (K7Glc) and quercetin 3-O-β-D-glucopyranoside (Q3Glc), in buffered Milli-Q water (BMQW) containing different kinds of ice nucleators, including INB Xanthomonas campestris, silver iodide and phloroglucinol, were examined by a droplet freezing assay. The results showed that all of the flavonol glycosides promoted supercooling in all solutions containing different kinds of ice nucleators, although the magnitudes of supercooling capability of each flavonol glycoside changed in solutions containing different kinds of ice nucleators. On the other hand, these flavonol glycosides exhibited complicated nucleating reactions in BMQW, which did not contain identified ice nucleators but contained only unidentified airborne impurities. Q3Glc exhibited both supercooling-facilitating and ice nucleating capabilities depending on the concentrations in such water. Both K3Glc and K7Glc exhibited only ice nucleation capability in such water. It was also shown by an emulsion freezing assay in BMQW that K3Glc and Q3Glc had no effect on homogeneous ice nucleation temperature, whereas K7Glc increased ice nucleation temperature. The results indicated that each flavonol glycoside affected ice nucleation by very complicated and varied reactions. More studies are necessary to determine the exact roles of these flavonol glycosides in deep supercooling of XPCs in which unidentified heterogeneous ice nucleators may exist. PMID

  11. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    NASA Astrophysics Data System (ADS)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; Rudich, Y.; Marcolli, C.; Luo, B. P.; Bones, D. L.; Reid, J. P.; Lambe, A. T.; Canagaratna, M. R.; Davidovits, P.; Onasch, T. B.; Worsnop, D. R.; Steimer, S. S.; Koop, T.; Peter, T.

    2015-09-01

    New measurements of water diffusion in aerosol particles produced from secondary organic aerosol (SOA) material and from a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA droplets suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  12. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    NASA Astrophysics Data System (ADS)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; Rudich, Y.; Marcolli, C.; Luo, B. P.; Bones, D. L.; Reid, J. P.; Lambe, A. T.; Canagaratna, M. R.; Davidovits, P.; Onasch, T. B.; Worsnop, D. R.; Steimer, S. S.; Koop, T.; Peter, T.

    2015-12-01

    New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  13. Ice Nucleation in the Contact Mode by Size Selected Mineral Dusts

    NASA Astrophysics Data System (ADS)

    Bunker, K. W.; Jacobson, D.; China`, S.; Mazzoleni, C.; Cantrell, W. H.

    2011-12-01

    There is ample evidence of ice initiation in clouds in the temperature range -15 to -20 C (Rangno and Hobbs, 2001). Laboratory studies, however, show that mineral dusts, the most prevalent natural ice nuclei, are not effective in the immersion/condensation mode for temperatures above ~ -25 C (Luond et al., 2010; Niedermeier et al., 2010, Murray et al., 2011) Ice nucleation in the contact mode has been hypothesized as a possible mechanism for ice initiation at relatively high temperatures. We present measurements of ice nucleation in the contact mode by size selected mineral dusts. For example, less than one in a thousand Arizona Test Dust particles catalyzes freezing of water in the contact mode at -17 C. The data for Arizona Test Dust suggest that smaller particles are less efficient in the contact mode than are larger ones. F. Luond, O. Stetzer, A. Welti, and U. Lohmann, Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, doi:10.1029/2009JD012959, 2010. B. Murray, S. Broadley, T. Wilson, J. Atkinson, and R. Wills, Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 4191-4207, 2011. D. Niedermeier, S. Hartmann, R. Shaw, D. Covert, T. Mentel, J. Schneider, L. Poulain, P. Reitz, C. Spindler, T. Clauss, A. Kiselev, E. Hallbauer, H. Wex, K. Mildenberger, and F. Stratmann, Heterogeneous freezing of droplets with immersed mineral dust particles - measurements and parameterization. Atmos. Chem. Phys., 10, 3601-3614, 2010. A. Rangno and P. Hobbs, Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106, doi:200110.1029/2000JD900286, 2001.

  14. Biological residues define the ice nucleation properties of soil dust

    NASA Astrophysics Data System (ADS)

    Conen, F.; Morris, C. E.; Leifeld, J.; Yakutin, M. V.; Alewell, C.

    2011-06-01

    Soil dust is a major driver of ice nucleation in clouds leading to precipitation. It consists largely of mineral particles with a small fraction of organic matter constituted mainly of remains of micro-organisms that participated in degrading plant debris before their own decay. Some micro-organisms have been shown to be much better ice nuclei than the most efficient soil mineral. Yet, current aerosol schemes in global climate models do not consider a difference between soil dust and mineral dust in terms of ice nucleation activity. Here, we show that particles from the clay and silt size fraction of four different soils naturally associated with 0.7 to 11.8 % organic carbon (w/w) can have up to four orders of magnitude more ice nuclei per unit mass active in the immersion freezing mode at -12 °C than montmorillonite, the most efficient pure clay mineral. Most of this activity was lost after heat treatment. Removal of biological residues reduced ice nucleation activity to, or below that of montmorillonite. Desert soils, inherently low in organic content, are a large natural source of dust in the atmosphere. In contrast, agricultural land use is concentrated on fertile soils with much larger organic matter contents than found in deserts. It is currently estimated that the contribution of agricultural soils to the global dust burden is less than 20 %. Yet, these disturbed soils can contribute ice nuclei to the atmosphere of a very different and much more potent kind than mineral dusts.

  15. Biological residues define the ice nucleation properties of soil dust

    NASA Astrophysics Data System (ADS)

    Conen, F.; Morris, C. E.; Leifeld, J.; Yakutin, M. V.; Alewell, C.

    2011-09-01

    Soil dust is a major driver of ice nucleation in clouds leading to precipitation. It consists largely of mineral particles with a small fraction of organic matter constituted mainly of remains of micro-organisms that participated in degrading plant debris before their own decay. Some micro-organisms have been shown to be much better ice nuclei than the most efficient soil mineral. Yet, current aerosol schemes in global climate models do not consider a difference between soil dust and mineral dust in terms of ice nucleation activity. Here, we show that particles from the clay and silt size fraction of four different soils naturally associated with 0.7 to 11.8 % organic carbon (w/w) can have up to four orders of magnitude more ice nucleation sites per unit mass active in the immersion freezing mode at -12 °C than montmorillonite, the nucleation properties of which are often used to represent those of mineral dusts in modelling studies. Most of this activity was lost after heat treatment. Removal of biological residues reduced ice nucleation activity to, or below that of montmorillonite. Desert soils, inherently low in organic content, are a large natural source of dust in the atmosphere. In contrast, agricultural land use is concentrated on fertile soils with much larger organic matter contents than found in deserts. It is currently estimated that the contribution of agricultural soils to the global dust burden is less than 20 %. Yet, these disturbed soils can contribute ice nuclei to the atmosphere of a very different and much more potent kind than mineral dusts.

  16. Ice Nucleation Properties of Amospherically Aged Biomass Burning Aerosol

    NASA Astrophysics Data System (ADS)

    Polen, M.; Lawlis, E.; Sullivan, R. C.

    2015-12-01

    Biomass burning can sometimes emit surprisingly active ice nucleating particles, though these emissions are not at all consistent between biomass fuel sources and burns. Soot from biomass combustion has been attributed to some but not all of the ice nucleating potential of biomass burning aerosol (BBA), while fossil fuel combustion soot emits very weak ice nucleants. The causes of the sometimes significant but variable ice nucleating ability of BBA are still largely unknown. BBA experiences significant atmospheric aging as the plume evolves and mixes with background air, yet almost no reports exploring the effects of atmospheric aging on the freezing properties of BBA have been made. We have performed some of the first experiments to determine the effects of simulated atmospheric aging on these ice nucleation properties, using a chamber reactor. The fresh and aged BBA was collected for subsequent droplet freezing array analysis using an impinger sampler to collect aerosol in water, and by deposition onto substrates in a MOUDI sampler. Droplets containing the chamber particles were then suspended in oil on a cold plate for freezing temperature spectrum measurement. Aging of Sawgrass flaming-phase combustion BBA by exposure to hydroxyl radicals (from H2O2 photolysis) enhanced the ice nucleation ability, observed by a shift to warmer droplet freezing temperatures by ~2-3°C. The changes in the aerosol's chemical composition during aging were observed using a laser ablation single-particle mass spectrometer and a soot-particle aerosol mass spectrometer. We will report our observations of the effects of other types of simulated aging (including photochemistry under high and low NOx conditions, dark ozonolysis, and nitric acid exposure) on Sawgrass and BBA from other grass and palm fuels.

  17. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  18. Dimple-assisted dewetting: heterogeneous nucleation in undercooled wetting films

    NASA Astrophysics Data System (ADS)

    Blossey, Ralf

    2001-09-01

    Undercooled wetting films near a first-order wetting transition exhibit an unusually long lifetime: the thermal nucleation barrier for formation of a critical hole in a film of thickness F diverges according to exp (c/kBT) where the excess free energy c F with ≥ 2. Localized perturbations of the liquid-vapor interface (dimples) are shown to be a useful tool in reducing in a controlled way: they act as heterogeneous nucleation centers for thermal critical nuclei. For 4He wetting films on weak-binding alkali substrates (Cs, Rb) dimples can be generated either by vortices in a superfluid film or by surface electrons. The theory of the heterogeneous nucleation process initiated by the presence of surface dimples (dimple-assisted dewetting) is developed, accompanied by quantitative predictions for experiment.

  19. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  20. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    NASA Technical Reports Server (NTRS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  1. Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-09-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  2. Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-03-01

    Satellite based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarisation (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled the thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed PSCs very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  3. Understanding ice nucleation characteristics of selective mineral dusts suspended in solution

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Introduction & Objectives Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Kaufmann (PhD Thesis 2015, ETHZ) with Hoggar Mountain dust suspensions in various solutes (ammonium sulfate, PEG, malonic acid and glucose) showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear of how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust samples. In view of these results we run freezing experiments using a differential scanning calorimeter (DSC) with the following mineral dust particles suspended in pure water and ammonium sulfate solutions: Arizona Test Dust (ATD), microcline, and kaolinite (KGa-2, Clay Mineral Society). Methodology Suspensions of mineral dust samples (ATD: 2 weight%, microcline: 5% weight, KGa-2: 5% weight) are prepared in pure water with varying solute concentrations (ammonium sulfate: 0 - 10% weight). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a

  4. State transformations and ice nucleation in amorphous (semi-)solid organic aerosol

    NASA Astrophysics Data System (ADS)

    Baustian, K. J.; Wise, M. E.; Jensen, E. J.; Schill, G. P.; Freedman, M. A.; Tolbert, M. A.

    2013-06-01

    Amorphous (semi-)solid organic aerosol particles have the potential to serve as surfaces for heterogeneous ice nucleation in cirrus clouds. Raman spectroscopy and optical microscopy have been used in conjunction with a cold stage to examine water uptake and ice nucleation on individual amorphous (semi-)solid particles at atmospherically relevant temperatures (200-273 K). Three organic compounds considered proxies for atmospheric secondary organic aerosol (SOA) were used in this investigation: sucrose, citric acid and glucose. Internally mixed particles consisting of each organic and ammonium sulfate were also investigated. Results from water uptake experiments followed the shape of a humidity-induced glass transition (Tg(RH)) curve and were used to construct state diagrams for each organic and corresponding mixture. Experimentally derived Tg(RH) curves are in good agreement with theoretical predictions of Tg(RH) following the approach of Koop et al. (2011). A unique humidity-induced glass transition point on each state diagram, Tg'(RH), was used to quantify and compare results from this study to previous works. Values of Tg'(RH) determined for sucrose, glucose and citric acid glasses were 236, 230 and 220 K, respectively. Values of Tg'(RH) for internally mixed organic/sulfate particles were always significantly lower; 210, 207 and 215 K for sucrose/sulfate, glucose/sulfate and citric acid/sulfate, respectively. All investigated SOA proxies were observed to act as heterogeneous ice nuclei at tropospheric temperatures. Heterogeneous ice nucleation on pure organic particles occurred at Sice = 1.1-1.4 for temperatures below 235 K. Particles consisting of 1:1 organic-sulfate mixtures took up water over a greater range of conditions but were in some cases also observed to heterogeneously nucleate ice at temperatures below 202 K (Sice= 1.25-1.38). Polynomial curves were fitted to experimental water uptake data and then incorporated into the Community Aerosol Radiation

  5. First Principles Simulations of Ice Nucleation at Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Michaelides, Angelos

    2005-03-01

    Ice nucleation at solid surfaces is of relevance to countless scientific and technological processes. In particular the nucleation of ice nano-crystals on metal surfaces is often a key first step in cloud formation and corrosion [1]. Yet unfortunately this remains one of the most poorly understood natural phenomena; severely lacking in atomic level understanding. Here, we discuss detailed density functional theory studies aimed at putting our understanding of ice nucleation at metals on a much firmer footing. Specifically the properties of H2O hexamers - the smallest `building blocks' of ice - adsorbed on a number of close-packed transition metal surfaces have been examined. We find that the competing influences of substrate reactivity and hexamer-substrate epitaxial mismatch conspire to yield a rich variety of (novel) hexameric ice structures, some of which have been observed by recent scanning tunnelling microscopy experiments [2]. [1] H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, (Kluwer, Dordrecht, 2003). [2] K. Morgenstern, et al., (To be published).

  6. Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles

    SciTech Connect

    Hiranuma, N.; Hoffmann, N.; Kiselev, A.; Dreyer, A.; Zhang, K.; Kulkarni, G.; Koop, T.; Möhler, O.

    2014-01-01

    In this paper, the effect of the morphological modification of aerosol particles with respect to heterogeneous ice nucleation is comprehensively investigated for laboratory-generated hematite particles as a model substrate for atmospheric dust particles. The surface-area-scaled ice nucleation efficiencies of monodisperse cubic hematite particles and milled hematite particles were measured with a series of expansion cooling experiments using the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber. Complementary offline characterization of physico-chemical properties of both hematite subsets were also carried out with scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, dynamic light scattering (DLS), and an electro-kinetic particle charge detector to further constrain droplet-freezing measurements of hematite particles. Additionally, an empirical parameterization derived from our laboratory measurements was implemented in the single-column version of the Community Atmospheric Model version 5 (CAM5) to investigate the model sensitivity in simulated ice crystal number concentration on different ice nucleation efficiencies. From an experimental perspective, our results show that the immersion mode ice nucleation efficiency of milled hematite particles is almost an order of magnitude higher at -35.2 °C < T < -33.5 °C than that of the cubic hematite particles, indicating a substantial effect of morphological irregularities on immersion mode freezing. Our modeling results similarly show that the increased droplet-freezing rates of milled hematite particles lead to about one order magnitude higher ice crystal number in the upper troposphere than cubic hematite particles. Finally and overall, our results suggest that the surface irregularities and associated active sites lead to greater ice activation through droplet freezing.

  7. Heterogeneous Ice Nuclei Measurements in Monte Cimone, Italy

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Reicher, N.; Schrod, J.; Bingemer, H. G.

    2013-12-01

    Supercooled liquid droplets may coexist with ice crystals below the freezing point in mixed phase clouds. Although pure liquid droplets will not freeze spontaneously until the homogeneous freezing temperature -38°C, ice crystals exist at warmer temperatures due to the presence of ice nuclei (IN), that allow heterogeneous freezing on their surface. Only a small portion of the natural and anthropogenic aerosols serve as ice nuclei. Each aerosol type has its own ability to create and grow ice. IN ability varies with chemical and physical properties and with the environmental characteristics, as temperature and humidity. In this study, samples of aerosol particles were collected on a daily basis over a period of two weeks, on top of Monte Cimone in Italy (44.18°N, 10.70°E, 2165m asl), as part of the PEGASOS (Pan-European Gas-AeroSOl-climate interaction Study) project. The aerosols precipitated electrostatically onto a silicon wafer for an offline measurement of the ice nucleation ability, using the FRankfurt Ice Nuclei Deposition FreezinG Experiment (FRIDGE). The FRIDGE is a vacuum diffusion chamber that generates the sub-freezing temperatures and the supersaturations above ice, simulating conditions that exist inside a mixed phase cloud. On top of the chamber, a camera monitors the formation of ice crystals and a new counting algorithm reports the number concentration of ice crystals. During this campaign, a Saharan dust storm reached the sampling area and the ice nuclei concentrations were higher compared to the daily ice nuclei concentrations for the rest of the campaign. This result supports the previous findings that dust particles are among the most effective and important natural sources of ice nuclei.

  8. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles

    PubMed Central

    2015-01-01

    Mineral dusts originating from Earth’s crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. K-feldspar showed by far the highest ice nucleation activity. Finally, we give a potential explanation of this effect, finding alkali-metal ions having different hydration shells and thus an influence on the ice nucleation activity of feldspar surfaces. PMID:25584435

  9. Cellulose and Their Characteristic Ice Nucleation Activity- Freezing on a Chip

    NASA Astrophysics Data System (ADS)

    Häusler, Thomas; Felgitsch, Laura; Grothe, Hinrich

    2016-04-01

    The influence of clouds on the Earth's climate system is well known (IPCC, 2013). Cloud microphysics determines for example cloud lifetime and precipitation properties. Clouds are cooling the climate system by reflecting incoming solar radiation and warm its surface by trapping outgoing infrared radiation (Baker and Peter, 2008). In all these processes, aerosol particles play a crucial role by acting as cloud condensation nuclei (CCN) for liquid droplets and as an ice nucleation particle (INP) for the formation of ice particles. Freezing processes at higher temperatures than -38°C occur heterogeneously (Pruppacher and Klett 1997). Therefore aerosol particles act like a catalyst, which reduces the energy barrier for nucleation. The nucleation mechanisms, especially the theory of functional sites are not entirely understood. It remains unclear which class of compound nucleates ice. Here we present a unique technique to perform drop- freezing experiments in a more efficient way. A self-made freezing- chip will be presented. Measurements done to proof the efficiency of our setup as well as advantages compared with other setups will be discussed. Furthermore we present a proxy for biological INPs, microcrystalline cellulose. Cellulose is the main component of herbal cell walls (about 50 wt%). It is a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose can contribute to the diverse spectrum of ice nucleation particles. We present results of the nucleation activity measurements of MCCs as well as the influence of concentration, preparation or chemical modification.

  10. Ice nucleation efficiency of soot from biomass combustion

    NASA Astrophysics Data System (ADS)

    Umo, N. S.; Murray, B. J.; O'Sullivan, D.; Baeza-Romero, M. T.; Plane, J. C.

    2013-05-01

    Do Soot aerosols in the atmosphere indirectly influence the radiative budget of the Earth by modifying cloud properties, either by acting as cloud condensation nuclei (CCN) or as ice nuclei (IN). The ice nucleation activity of soot remains poorly quantified and there is a need to parameterise its impact for use in cloud-aerosol models. Here, we investigate the ice nucleation activity of eugenol soot in the immersion mode at conditions relevant to mixed-phase clouds. Eugenol is used as a proxy for a biomass combustion source. The efficiency of soot as an IN was quantified using droplet freezing techniques with droplet volumes ranging from nanolitre (˜100 μm diameter) to microliter (˜1 mm diameter). We show that soot nucleates ice in our experiments at temperatures up to -14°C, although the efficiency with which it does so is less than for mineral dust on a per surface area basis. An estimation of the IN number concentration that could result from our eugenol soot showed that, on a global average basis, IN from soot is secondary in importance to mineral dust below about -20°C. However, it may be important as IN in some locations which are deficient in dust, but rich in soot particles. We conclude that its overall impact can be significant considering its relative regional and global abundance.

  11. Ice Nucleation Activity in the Widespread Soil Fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Franc, G. D.; Pöschl, U.

    2014-08-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. M. alpina is known to be saprobic, widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic-elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, <300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  12. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Hill, T. C. J.; Pummer, B. G.; Yordanova, P.; Franc, G. D.; Pöschl, U.

    2015-02-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nuclei (IN). So far, however, the abundance, diversity, sources, seasonality, and role of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in southeast Wyoming, we found ice-nucleation-active (INA) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. Across all investigated soils, 8% of fungal isolates were INA. All INA isolates initiated freezing at -5 to -6 °C, and belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). To our knowledge this is the first report of ice nucleation activity in a zygomycotic fungi because the few known INA fungi all belong to the phyla Ascomycota and Basidiomycota. M. alpina is known to be saprobic and widespread in soil, and Mortierella spores are present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be proteinaceous, < 300 kDa in size, and can be easily washed off the mycelium. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, their contribution might accumulate over time, perhaps to be transported with soil dust and influencing its ice nucleating properties.

  13. A marine biogenic source of atmospherically relevant ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Wilson, Theodore W.; Ladino, Luis A.; Alpert, Peter A.; Chance, Rosie; Whale, Thomas F.; Vergara Temprado, Jesús; Burrows, Susannah M.; Breckels, Mark N.; Kilthau, Wendy P.; Browse, Jo; Bertram, Allan K.; Miller, Lisa A.; Carpenter, Lucy J.; Hamilton, Jacqui F.; Carslaw, Kenneth S.; Brooks, Ian M.; Abbatt, Jonathan P. D.; Aller, Josephine Y.; Knopf, Daniel A.; Murray, Benjamin J.

    2016-04-01

    There are limited observations describing marine sources of ice nucleating particles (INPs), despite sea spray aerosol being one of the dominant sources of atmospheric particles globally. Evidence indicates that some marine aerosol particles act as INPs, but the source of these particles is unclear. The sea surface microlayer is enriched in surface active organic material representative of that found in sub-micron sea-spray aerosol. We show that the sea surface microlayer is enriched in INPs that nucleate ice under conditions pertinent to both high-altitude ice clouds and low to mid-altitude mixed-phase clouds. The INPs pass through 0.2 μm pore filters, are heat sensitive and spectroscopic analysis indicates the presence of material consistent with phytoplankton exudates. Mass spectrometric analysis of solid phase extracted dissolved organic material from microlayer and sub-surface water samples showed that the relative abundance of certain ions correlated with microlayer ice nucleation activity. However, these ions were not themselves directly responsible for ice nucleation. We propose that material associated with phytoplankton exudates is a candidate for the observed activity of the microlayer samples. We show that laboratory produced exudate from a ubiquitous marine diatom contains INPs despite its separation from diatom cells. Finally we use a parameterisation of our field data to estimate the atmospheric INP contribution from primary marine organic emissions using a global model and test the model against existing INP measurements in the remote oceans. We find that biogenic marine INPs can be dominant in remote marine environments, such as the Southern Ocean.

  14. Ice Nucleation properties of Air-Plane Soot Surrogates Using Vibrational Micro-spectroscopy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Ismael; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand

    2015-04-01

    Aircraft emissions have been studied extensively since the late 1960s and the interest was mainly driven by their direct and indirect effects on climate and the generation of contrails [1-4]. Emissions of solid-state particles (soots) from engine exhausts due to incomplete fuel combustion are considered to influence ice and liquid water cloud droplet activation [4]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation by promoting ice formation above water homogeneous freezing point. While some experiments focused on ice nucleation on soot particles did not yet reach definitive conclusions, soot are reported to be generally worse ice nuclei than mineral dust, nucleating at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing. However, there are still numerous opened questions on the ice nucleation properties of soot particles [5], most likely due to the lack of information on the abundance, on the physico-chemical properties (structure and chemical compositions) of these aerosols, competition between different ice nucleation modes and dynamical factors that affect ice nucleation. Furthermore, the soot emitted from aircraft may be associated with soluble components like sulphate that can act as heterogeneous ice nuclei and initiate freezing at supersaturation of only 120-130% [6]. Therefore, more detailed studies of aerosol nucleation activity combined with throughout structural and compositional analyzes are needed in order to establish any association between the particles' hygroscopicity and their physico-chemical properties. In the present preliminary work, nucleation activity of air-plane soot particle surrogates is monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a

  15. Characterization of ice nucleation on different natural dust samples

    NASA Astrophysics Data System (ADS)

    Kaufmann, Lukas; Hofer, Julian; Marcolli, Claudia; Pinti, Valeria; Hoyle, Christopher; Peter, Thomas

    2014-05-01

    The impact of aerosols on Earth's climate is still uncertain. Therefore a better understanding of direct and indirect effects of aerosols is essential to improve models and the ability to predict future climate change. A natural source of aerosols is desert dust. Laboratory measurements investigating the influence of dust on heterogeneous freezing of water droplets are presented. We performed measurements with seven dust samples collected in the Etosha pan in Namibia, in the Makgadikgadi pan in Botswana (from three different locations), on the Altiplano in Bolivia, in Qatar and in the Hoggar mountains in Algeria. After sieving, the particle diameters of these dusts were < 32 μm. The mineralogical composition of the dusts was determined by X-ray diffraction. For the investigation of the ice nucleation ability of these dusts, emulsion as well as bulk freezing measurements were performed with a differential scanning calorimeter (DSC). For the emulsion measurements a suspension of a dust was mixed with water. Mixed with a mineral oil/lanolin mixture, the water droplets in the emulsion had mean diameters of around 2 μm. Heterogeneous freezing of dusts was characterized by three temperatures for frozen fractions of 0.1, 0.25, and 0.5, respectively. Heterogeneous freezing temperatures for all 7 samples were quite similar, namely 245 - 246.5 K (for frozen fractions of 0.1), 243 - 244.5 K (for 0.25) and 240 - 241.5 K (for 0.5). Emulsions consisting of pure water suspensions froze with onset temperatures of around 237 K. Emulsion measurements with Hoggar mountain dust were also performed with an additional solute such as ammonium sulfate, malonic acid, glucose or PEG 300. Immersion freezing was found to be suppressed in the presence of solutes. For the bulk measurements dusts were suspended in pure water and droplets with radii of about 1 mm were subjected to repeated freezing cycles. Freezing temperatures in the range of 253 - 265 K were found for cooling rates of 10 K

  16. Observation of ice nucleation in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2005-10-01

    The supercooling and nucleation of acoustically levitated water drops were investigated at two different sound pressure levels (SPL). These water drops were supercooled by 13to16K at the low SPL of 160.6dB, whereas their supercoolings varied from 5to11K at the high SPL of 164.4dB. The maximum supercooling obtained in the experiments is 32K. Statistical analyses based on the classical nucleation theory reveal that the occurrence of ice nucleation in water drops is mainly confined to the surface region under acoustic levitation conditions and the enlargement of drop surface area caused by the acoustic radiation pressure reduces water supercoolability remarkably. A comparison of the nucleation rates at the two SPLs indicates that the sound pressure can strengthen the surface-dominated nucleation of water drops. The acoustic stream around levitated water drops and the cavitation effect associated with ultrasonic field are the main factors that induce surface-dominated nucleation.

  17. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    PubMed

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  18. Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate

    SciTech Connect

    Jensen, E.J.; Toon, O.B.

    1994-09-01

    We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.

  19. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas

    NASA Astrophysics Data System (ADS)

    Attard, E.; Yang, H.; Delort, A.-M.; Amato, P.; Pöschl, U.; Glaux, C.; Koop, T.; Morris, C. E.

    2012-11-01

    Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.

  20. Effects of atmospheric conditions on ice nucleation activity of Pseudomonas

    NASA Astrophysics Data System (ADS)

    Attard, E.; Yang, H.; Delort, A.-M.; Amato, P.; Pöschl, U.; Glaux, C.; Koop, T.; Morris, C. E.

    2012-04-01

    Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.

  1. An adsorption model of the heterogeneous nucleation of solidification

    SciTech Connect

    Kim, W.T.; Cantor, B. . Oxford Centre for Advanced Materials and Composites)

    1994-09-01

    An adsorption model has been developed to describe the heterogeneous nucleation of solidification in an A-B eutectic or monotectic alloy system. The interface between A-rich [alpha] solid and B-rich liquid is treated as a mixture of A solid, B solid, A liquid and B liquid atoms, randomly distributed as a monolayer between the two phases. The interfacial energy is calculated by summing pairwise bonding energies, and is then minimized to determine the equilibrium interface solid fraction and composition. With decreasing temperature, the interface monolayer changes sharply from liquid to solid, with a composition close to pure B. This sharp onset of interface adsorption of solid B atoms corresponds to [alpha] acting as a catalyst for the heterogeneous nucleation of B-rich [beta] solid. Adsorption close to the eutectic temperature and therefore efficient nucleation catalysis is promoted by a large difference between the melting points of A and B, and a small difference between the solid and liquid immiscibilities of A and B. Predicted undercoolings for the onset of adsorption and nucleation catalysis can be obtained directly from simple phase diagram data, and give good agreement with previous measurements in the Ag-Pb and Al-Sn alloy systems.

  2. Ice nucleation by soil dust compared to desert dust aerosols

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.

    2015-12-01

    A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we

  3. Ice nucleation and overseeding of ice in volcanic clouds

    NASA Astrophysics Data System (ADS)

    Durant, A. J.; Shaw, R. A.; Rose, W. I.; Mi, Y.; Ernst, G. G. J.

    2008-05-01

    Water is the dominant component of volcanic gas emissions, and water phase transformations, including the formation of ice, can be significant in the dynamics of volcanic clouds. The effectiveness of volcanic ash particles as ice-forming nuclei (IN) is poorly understood and the sparse data that exist for volcanic ash IN have been interpreted in the context of meteorological, rather than volcanic clouds. In this study, single-particle freezing experiments were carried out to investigate the effect of ash particle composition and surface area on water drop freezing temperature. Measured freezing temperatures show only weak correlations with ash IN composition and surface area. Our measurements, together with a review of previous volcanic ash IN measurements, suggest that fine-ash particles (equivalent diameters between approximately 1 and 1000 μm) from the majority of volcanoes will exhibit an onset of freezing between ˜250-260 K. In the context of explosive eruptions where super-micron particles are plentiful, this result implies that volcanic clouds are IN-rich relative to meteorological clouds, which typically are IN-limited, and therefore should exhibit distinct microphysics. We can expect that such "overseeded" volcanic clouds will exhibit enhanced ice crystal concentrations and smaller average ice crystal size, relative to dynamically similar meteorological clouds, and that glaciation will tend to occur over a relatively narrow altitude range.

  4. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  5. Ice nucleating particles in the Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Sierau, Berko; García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés; Linke, Claudia; Schnaiter, Martin; Kupiszewski, Piotr; Kanji, Zamin A.; Lohmann, Ulrike

    2016-07-01

    This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L-1 in the deposition mode and up to 2500 std L-1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43-0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient

  6. Freezing activities of flavonoids in solutions containing different ice nucleators.

    PubMed

    Kuwabara, Chikako; Wang, Donghui; Kasuga, Jun; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2012-06-01

    In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 μL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT(50)) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT(50) were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT(50) between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p<0.05) in the range of 1.4-4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0-7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4-3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9-2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many

  7. Rocket effluent: Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.

  8. Rocket effluent - Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager I and II launches. The aerosol's morphology, concentration and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a subfreezing thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei. Their consequences for potential inadvertant weather modification demand additional study.

  9. Analysis of isothermal and cooling rate dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.

    2015-05-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature (T) and relative humidity (RH) at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling rate dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nuclei (IN) all have the same IN surface area (ISA), however the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses physically observable parameters including the total number of droplets (Ntot) and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets, droplets in a continuous flow diffusion chamber (CFDC), the Leipzig aerosol cloud interaction simulator (LACIS), and the aerosol interaction and dynamics in the atmosphere (AIDA) cloud chamber. Observed time dependent isothermal frozen fractions exhibiting non-exponential behavior with time can be readily explained by this model considering varying ISA. An

  10. Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide.

    PubMed Central

    Rall, W F; Mazur, P; McGrath, J J

    1983-01-01

    The temperature at which ice formation occurs in supercooled cytoplasm is an important element in predicting the likelihood of intracellular freezing of cells cooled by various procedures to subzero temperatures. We have confirmed and extended prior indications that permeating cryoprotective additives decrease the ice nucleation temperature of cells, and have determined some possible mechanisms for the decrease. Our experiments were carried out on eight-cell mouse embryos equilibrated with various concentrations (0-2.0 M) of dimethyl sulfoxide or glycerol and then cooled rapidly. Two methods were used to assess the nucleation temperature. The first, indirect, method was to determine the in vitro survival of the rapidly cooled embryos as a function of temperature. The temperatures over which an abrupt drop in survival occurs are generally diagnostic of the temperature range for intracellular freezing. The second, direct, method was to observe the microscopic appearance during rapid cooling and note the temperature at which nucleation occurred. Both methods showed that the nucleation temperature decreased from - 10 to - 15 degrees C in saline alone to between - 38 degrees and - 44 degrees C in 1.0-2.0 M glycerol and dimethyl sulfoxide. The latter two temperatures are close to the homogeneous nucleation temperatures of the solutions in the embryo cytoplasm, and suggest that embryos equilibrated in these solutions do not contain heterogeneous nucleating agents and are not accessible to any extracellular nucleating agents, such as extracellular ice. The much higher freezing temperatures of cells in saline or in low concentrations of additive indicate that they are being nucleated by heterogeneous agents or, more likely, by extracellular ice. Images FIGURE 5 FIGURE 6 PMID:6824748

  11. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Yordanova, Petya; Franc, Gary D.; Pöschl, Ulrich

    2015-04-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nucleators (IN). However, the sources and characteristics of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA, i.e., inducing ice formation in the probed range of temperature and concentration) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. For example, in harvested and ploughed sugar beet and potato fields, and in the organic horizon beneath Lodgepole pine forest, their relative abundances and concentrations among the cultivable fungi were 25% (8 x 103 CFU g-1), 17% (4.8 x 103 CFU g-1) and 17% (4 x 103 CFU g-1), respectively. Across all investigated soils, 8% (2.9 x 103 CFU g-1) of fungal isolates were INA. All INA isolates initiated freezing at -5° C to -6° C and all belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. Mortierella alpina is known to be saprobic (utilizing non-living organic matter), widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be extracellular proteins of 100-300 kDa in size which are not anchored in the fungal cell wall. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, these small cell-free IN might contribute to the as yet uncharacterized pool of atmospheric IN released by soils as dusts.

  12. Elastic and plastic effects on heterogeneous nucleation and nanowire formation

    NASA Astrophysics Data System (ADS)

    Boussinot, G.; Schulz, R.; Hüter, C.; Brener, E. A.; Spatschek, R.

    2014-02-01

    We investigate theoretically the effects of elastic and plastic deformations on heterogeneous nucleation and nanowire formation. In the first case, the influence of the confinement of the critical nucleus between two parallel misfitting substrates is investigated using scaling arguments. We present phase diagrams giving the nature of the nucleation regime as a function of the driving force and the degree of confinement. We complement this analytical study by amplitude equations simulations. In the second case, the influence of a screw dislocation inside a nanowire on the development of the morphological surface instability of the wire, related to the Rayleigh-Plateau instability, is examined. Here the screw dislocation provokes a torsion of the wire known as Eshelby twist. Numerical calculations using the finite element method and the amplitude equations are performed to support analytical investigations. It is shown that the screw dislocation promotes the Rayleigh-Plateau instability.

  13. Determining the necessary conditions for Martian cloud formation: Ice nucleation in an electrodynamic balance (EDB)

    NASA Astrophysics Data System (ADS)

    Berlin, S.; Bauer, A. J.; Cziczo, D. J.

    2013-12-01

    The Martian atmosphere contains water ice clouds similar to Earth's cirrus clouds. These clouds influence the atmospheric temperature profile, alter the balance of incoming and outgoing radiation, and vertically redistribute water and mineral dust. Extrapolations of classical heterogeneous nucleation theory from Earth-like conditions to colder temperature and lower pressure regimes present in extraterrestrial atmospheres may be inaccurate, and thus hydrological models describing these regimes could lack physical meaning. In this project, we use an electrodynamic balance (EDB) to levitate individual aerosol particles and study their freezing properties. We test previously characterized aerosols such as Arizona Test Dust (ATD) and sodium chloride (NaCl). Then, we examine the less well-studied Mojave Mars Simulant (MMS) dust, which mimics the composition and size of dust particles found in the Martian atmosphere. A relative humidity, temperature, and inert atmosphere are utilized to emulate conditions found in the Martian atmosphere. We will discuss the supersaturations under which heterogeneous ice nucleation occurs on surrogate Martian ice nuclei at various temperatures.

  14. Ice nucleation of Snomax® particles below water vapor saturation: immersion freezing in concentrated solution droplets

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Kanji, Zamin A.; Boose, Yvonne; Beyer, Alexander; Henning, Silvia; Augustin-Bauditz, Stefanie

    2015-04-01

    Heterogeneous ice nucleation has received an increasing amount of interest in the past years, as it initiates the ice phase in mixed phase clouds (MPCs) and, to some extent, also in cirrus clouds. The presence of ice influences cloud radiative properties and, for mixed phase clouds, also the formation of precipitation. Immersion freezing is thought to be the most important mechanism through which ice formation could take place in MPCs. Here, we examine the ice nucleation activity of biological ice nucleating particles (INP) derived from bacteria, namely, particles generated from Snomax® suspensions, both above and below water vapor saturation. During a measurement campaign in Leipzig, ice nucleation measurements were conducted with PINC (Portable Ice Nucleus Counter, Chou et al., 2011) and LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014a). Immersion freezing measurements from PINC and LACIS were in agreement in the temperature regime for which both instruments operate reliably. Here, we will show that measurements done below water vapour saturation and above the deliquescence relative humidity of the Snomax® particles follow what would be expected for immersion freezing in concentrated solutions, similar to what was suggested for coated kaolinite particles in Wex et al. (2014b). Additionally, some measurements reported in the literature that were done in the water vapour sub-saturated regime will be evaluated based on the assumption made above, showing that at least some of the ice nucleation which previously was ascribed to deposition ice nucleation rather follows the behavior of immersion freezing in concentrated solutions. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725-4738, doi:10.5194/acp-11-4725-2011. Wex, H. et al. (2014a) Intercomparing different devices

  15. Biological particles capable of triggering ice nucleation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Vogel, André; Häusler, Thomas; Grothe, Hinrich

    2016-04-01

    Ice-nucleating particles (INPs) have a huge impact on atmospheric processes, since they can trigger ice cloud formation. In general, ice clouds interfere with the radiation balance of planet Earth effectively at high altitudes. Since ambient matter of biological origin tends to have rather large aerodynamic diameters, it exhibits a fast sinking velocity and can only reach limited altitudes. Therefore, research focused on materials found in higher quantities in the upper atmosphere. However, recent findings indicate that the role of biological INPs has been underestimated in the past. In 2012 Pummer and colleagues found that the INPs from birch pollen can be washed off and constitute of macromolecules in the size-range of a few nanometres. With such a small diameter, they show a much longer life span in the upper atmosphere than expected. Further, Huffman and colleagues showed in 2013 a burst of biological INPs over woodlands triggered by rain events, which matches the finding of Pummer et al. well. Plants originating from the northern timberline experience harsh conditions with night frost even during the warm seasons. To prevent frost damages, those plants developed coping mechanisms. Many plant species, which are domestic in cold weather zones, exhibit ice nucleation activity. Therefore, it is important to examine those plants to understand the scale at which biological INPs can be emitted. For the presented results we focus on two types of samples: Berries and tree pollen. Both belong to plants domestic at the northern timberline. With our results we are able to show that INPs are spread vastly throughout different species. Furthermore, all those INPs show certain similarities to each other, most importantly, all of the found INPs seem to be associated to macromolecules in the nano-particulate size range. We examined the INPs from birch pollen more closely. Results indicate that proteins play a major role. Pummer, B., Bauer, H., Bernardi, J., Bleicher, S

  16. A differential scanning calorimeter for ice nucleation distribution studies--application to bacterial nucleators.

    PubMed

    Parody-Morreale, A; Bishop, G; Fall, R; Gill, S J

    1986-05-01

    A differential scanning calorimeter has been developed for the automatic detection and measurement of dropwise freezing within a sample of 100-200 water drops. A typical drop size of 1 microliter is employed. The sample is distributed on flat, square (4-cm) thermoelectric sensors and the temperature is scanned downward by conductive cooling to a liquid nitrogen bath. The rate of cooling, typically 1 degree C/min, is set by the choice of a heat conduction rod between the calorimeter and the liquid nitrogen bath. The voltages from the thermopiles along with a system temperature-measuring thermocouple are continuously monitored by digital voltmeters and recorded every half-second in a computer memory. A freezing event in a drop is detected by a characteristic voltage signal whose integral with time is proportional to the size of the drop and its heat of fusion. The half-life of a freezing event signal is 10 s for a 1-microliter drop. The integrated signal produced from multiple freezing events is shown to provide a direct measure of the number of drops frozen at a given temperature. A distribution curve and its smoothed derivative can be constructed directly from these measurements. The instrument, which is termed an "ice nucleometer," is illustrated in determining the ice nucleation distribution in a population of Escherichia coli harboring cloned ice nucleation genes. PMID:3524313

  17. Characterization of Ice Nucleating Particles at the Western US Coast

    NASA Astrophysics Data System (ADS)

    Rocci, K.; McCluskey, C. S.; Hill, T. C. J.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    In temperate climates, ice nucleating particles (INPs) are vital for precipitation initiation. Because INPs may affect precipitation efficiency, and thereby the supply of water resources, it is paramount to have a clear understanding of both natural and anthropogenic sources of INPs. This is especially important to understand in California where drought continues to be a major problem. The CalWater 2015 field campaign, which took place in California from January 15 - March 9, 2015, included comprehensive characterizations of aerosols and their ice nucleating ability via ground-, air-, and ship-based measurements. As part of this campaign, we characterized and analyzed the intra-air mass differences of INPs at a coastal site (Bodega Bay) using immersion freezing measurements of particles collected on filters. Aerosol filters collected throughout the campaign were characterized by their loading and dominant type using meteorology, aerosol size distributions, aerosol composition, and trace gas concentration data. Samples contained a variety of aerosol influences, including biomass burning, nitrogen pollution, sulfur pollution, and sea spray. This study had a particular focus on the INP activity spectra of sea spray aerosol (SSA). We used the online aerosol data to infer variations in SSA types and heat-treated specific samples to look for the presence of heat-labile biological INPs. Furthermore, we ran the NOAA HYSPLIT model to obtain back trajectories for samples dominated by SSA. We found that air masses dominated by distinct terrestrial source types are not well distinguished by their INP number concentrations. However, we did see significantly higher (up to 5000-fold) INP number concentrations in SSA samples taken at the coast compared with number concentrations in samples obtained over open ocean. This difference could be attributable to differences in overall aerosol abundance, which will be evaluated in future studies. Overall, our findings suggest that an

  18. Heterogeneous Nucleation of Naphthalene Vapor on Water Surface

    PubMed

    Smolík; Schwarz

    1997-01-15

    The evaporation of a water drop into a ternary gaseous mixture of air, steam, and naphthalene vapor was investigated. The experimental results were compared with a theoretical prediction based on a numerical solution of coupled boundary layer equations for heat and mass transfer from a drop moving in ternary gas. In the experiments the naphthalene vapor condensed on the water drop as a supercooled liquid even at temperatures far below the melting point of naphthalene. The condensation on drop surface is discussed in terms of classical theory of heterogeneous nucleation on smooth surfaces. PMID:9028892

  19. Sources of organic ice nucleating particles in soils

    NASA Astrophysics Data System (ADS)

    Hill, Tom C. J.; DeMott, Paul J.; Tobo, Yutaka; Fröhlich-Nowoisky, Janine; Moffett, Bruce F.; Franc, Gary D.; Kreidenweis, Sonia M.

    2016-06-01

    Soil organic matter (SOM) may be a significant source of atmospheric ice nucleating particles (INPs), especially of those active > -15 °C. However, due to both a lack of investigations and the complexity of the SOM itself, the identities of these INPs remain unknown. To more comprehensively characterize organic INPs we tested locally representative soils in Wyoming and Colorado for total organic INPs, INPs in the heat-labile fraction, ice nucleating (IN) bacteria, IN fungi, IN fulvic and humic acids, IN plant tissue, and ice nucleation by monolayers of aliphatic alcohols. All soils contained ≈ 106 to ≈ 5 × 107 INPs g-1 dry soil active at -10 °C. Removal of SOM with H2O2 removed ≥ 99 % of INPs active > -18 °C (the limit of testing), while heating of soil suspensions to 105 °C showed that labile INPs increasingly predominated > -12 °C and comprised ≥ 90 % of INPs active > -9 °C. Papain protease, which inactivates IN proteins produced by the fungus Mortierella alpina, common in the region's soils, lowered INPs active at ≥ -11 °C by ≥ 75 % in two arable soils and in sagebrush shrubland soil. By contrast, lysozyme, which digests bacterial cell walls, only reduced INPs active at ≥ -7.5 or ≥ -6 °C, depending on the soil. The known IN bacteria were not detected in any soil, using PCR for the ina gene that codes for the active protein. We directly isolated and photographed two INPs from soil, using repeated cycles of freeze testing and subdivision of droplets of dilute soil suspensions; they were complex and apparently organic entities. Ice nucleation activity was not affected by digestion of Proteinase K-susceptible proteins or the removal of entities composed of fulvic and humic acids, sterols, or aliphatic alcohol monolayers. Organic INPs active colder than -10 to -12 °C were resistant to all investigations other than heat, oxidation with H2O2, and, for some, digestion with papain. They may originate from decomposing plant material, microbial

  20. Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?

    SciTech Connect

    Prenni, Anthony J.; Harrington, Jerry Y.; Tjernstrom, Michael; DeMott, Paul J.; Avramov, Alexander; Long, Charles N.; Kreidenweis, Sonia M.; Olsson, Peter Q.; Verlinde, J.

    2007-04-01

    To date, climate and regional models have generally proven unsuccessful at simulating Arctic cloudiness, particularly during the colder months. Models tend to underpredict the amount of liquid water in mixed-phase clouds, which are ubiquitous in this region. This is problematic because cloud coverage and phase can greatly impact the Arctic radiative budget. Using recent measurements of ice nucleating aerosol, we show that incorrect, or nonexistent, parameterizations of aerosol-cloud interactions are at least partially responsible for the poor model predictions. Moreover, we show that this can lead to errors in the modeled surface radiative energy budget of 10-100 W m-2.

  1. Biological Ice Nucleation Activity in Cloud Water (Invited)

    NASA Astrophysics Data System (ADS)

    Delort, A.

    2013-12-01

    Ice nucleation active (INA) biological particles, in particular microorganisms, were studied in cloud water. Twelve cloud samples were collected over a period of 16 months from the puy de Dôme summit (1465 m, France) using sterile cloud droplet impactors. The samples were characterized through biological (cultures, cell counts) and physico-chemical measurements (pH, ion concentrations, carbon content...), and biological ice nuclei were investigated by droplet-freezing assays from -3°C to -13°C. The concentration of total INA particles within this temperature range typically varied from ~1 to ~100 per mL of cloud water; the concentrations of biological IN were several orders of magnitude higher than the values previously reported for precipitations. At -12°C, at least 76% of the IN were biological in origin, i.e. they were inactivated by heating at 95°C, and at temperatures above -8°C only biological material could induce ice. By culture, 44 Pseudomonas-like strains of bacteria were isolated from cloud water samples; 16% of them were found INA at the temperature of -8°C and they were identified as Pseudomonas syringae, Xanthomonas sp. and Pseudoxanthomonas sp.. Two strains induced freezing at as warm as -2°C, positioning them among the most active ice nucleators described so far. We estimated that, in average, 0.18% and more than 1%.of the bacterial cells present in clouds (~104 mL-1) are INA at the temperatures of -8°C and -12°C, respectively.

  2. Studies of Ice Nucleating Aerosol Particles in Arctic Cloud Systems

    NASA Technical Reports Server (NTRS)

    Rogers, David C.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2001-01-01

    The focus of this research is to improve the understanding of ice nucleating aerosol particles (IN) and the role they play in ice formation in Arctic clouds. IN are important for global climate issues in a variety of ways. The primary effect is their role in determining the phase (liquid or solid) of cloud particles. The microscale impact is on cloud particle size, growth rate, shape, fall speed, concentration, radiative properties, and scavenging of gases and aerosols. On a larger scale, ice formation affects the development of precipitation (rate, amount, type, and distribution), latent heat release (rate and altitude), ambient humidity, the persistence of clouds, and cloud albedo. The overall goals of our FIRE 3 research are to characterize the concentrations and variability of Arctic IN during the winter-spring transition, to compare IN measurements with ice concentrations in Arctic clouds, and to examine selected IN samples for particle morphology and chemical there are distinguishable chemical signatures. The results can be combined with other measurements of aerosols, gaseous species, and cloud characteristics in order to understand the processes that determine the phase and concentration of cloud particles.

  3. Vanillin, Cis-Terpin Hydrate, and Cis-Terpin as Ice Nucleators.

    PubMed

    Power, B A; Power, R F

    1965-05-21

    Vanillin, cis-terpin hydrate, and cis-terpin cause ice nucleation at relatively high threshold temperatures. Trace quantities of these substances should exist in the natural atmosphere and may act as ice nuclei. PMID:17820113

  4. Ice nucleation active particles are efficiently removed by precipitating clouds

    PubMed Central

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ18O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ −10 °C (INPs−10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space. PMID:26553559

  5. New species of ice nucleating fungi in soil and air

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gray D.; Pöschl, Ulrich

    2014-05-01

    Primary biological aerosol particles (PBAP) are ubiquitous in the atmosphere (1,2). Several types of PBAP have been identified as ice nuclei (IN) that can initiate the formation of ice at relatively high temperatures (3, 4). The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is due to a surface protein on the outer cell membrane that catalyses ice formation, for which the corresponding gene has been identified and detected by DNA analysis (3). Fungal spores or hyphae can also act as IN, but the biological structures responsible for their IN activity have not yet been elucidated. Furthermore, the abundance, diversity, sources, seasonality, properties, and effects of fungal IN in the atmosphere have neither been characterized nor quantified. Recent studies have shown that airborne fungi are highly diverse (1), and that atmospheric transport leads to efficient exchange of species among different ecosystems (5, 6). The results presented in Fröhlich-Nowoisky et al. 2012 (7) clearly demonstrate the presence of geographic boundaries in the global distribution of microbial taxa in air, and indicate that regional differences may be important for the effects of microorganisms on climate and public health. DNA analyses of aerosol samples collected during rain events showed higher diversity and frequency of occurrence for fungi belonging to the Sordariomycetes, than samples that were collected under dry conditions (8). Sordariomycetes is the class that comprises known ice nucleation active species (Fusarium spp.). By determination of freezing ability of fungal colonies isolated from air samples two species of ice nucleation active fungi that were not previously known as biological ice nucleators were found. By DNA-analysis they were identified as Isaria farinosa and Acremonium implicatum. Both fungi belong to the phylum Ascomycota, produce fluorescent spores in the range of 1-4 µm in diameter, and induced freezing at -4 and

  6. Unprecedented Evidence for Large Scale Heterogeneous Nucleation of Polar Stratospheric Clouds, Likely by Nanometer-Sized Meteoritic Particles

    NASA Astrophysics Data System (ADS)

    Engel, I.; Pitts, M. C.; Luo, B.; Hoyle, C. R.; Zobrist, B.; Jacot, L.; Poole, L. R.; Grooss, J.; Weigel, R.; Borrmann, S.; Ebert, M.; Duprat, J.; Peter, T.

    2012-12-01

    Recent observations cast serious doubts on our understanding of the processes responsible for polar stratospheric cloud (PSC) formation. PSCs play crucial roles in polar ozone chemistry by hosting heterogeneous reactions and by removal of reactive nitrogen through sedimenting nitric acid trihydrate (NAT) particles. An extensive field campaign took place in the Arctic during the winter 2009/2010 within the European Union project RECONCILE, complemented by measurements from the spaceborne CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) instrument. Through trajectory and microphysical box model calculations, we analyzed CALIOP data from the RECONCILE winter to investigate the nucleation of PSC particles in detail. One significant finding was that liquid/NAT mixture PSCs were prevalent in late December 2009, a period during which no ice PSCs were observed, and temperatures were higher by 6 K than required for homogeneous ice freezing at the onset of PSC formation. These NAT particles must have formed through some non-ice nucleation mechanism, which runs counter to the widely held view that the only efficient NAT nuclei were ice crystals formed by homogeneous freezing of STS droplets. Furthermore, in mid-January 2010, a large region of the Arctic vortex cooled below the frost point, leading to widespread synoptic-scale ice PSCs, unusual for the Arctic. Our modeling studies indicate that a match with the CALIOP data calls for new heterogeneous nucleation mechanisms for both NAT and ice particles, namely freezing on nanometer-sized, solid nuclei immersed in the liquid stratospheric aerosols. Number concentrations of non-volatile particles were measured in situ during RECONCILE by means of the heated channel of the condensation nuclei (CN) counter COPAS on board of the high-flying aircraft Geophysica. 60-80 % of all CN survived heating to 250 °C. Offline Environmental Scanning Electron Microscopy and Energy Dispersive X-Ray Analysis of RECONCILE impactor samples

  7. Dynamic Recrystallization in Ice : In-Situ Observation of the Strain Field during Grain Nucleation.

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Tommasi, A.; Vacher, P.

    2014-12-01

    Dynamic recrystallization (DRX) occurs in minerals, metals, ice and impact on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy and deformation heterogeneities, which are precursors of the recrystallization. During creep deformation at high temperature, DRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior, and it is expected to modify the strain field at the grain and/or the sample scale. Creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analysis with an Automatic Ice Texture Analyzer (AITA) and with EBSD (Geoscience Montpellier) were used to investigate DRX impact on texture and microstructure, at different scales. With increasing strain texture evolves to a strong concentrated girdle with a preferential orientation of c-axis close to 35° from the compression axis. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the strain field measured by DIC. We will present an overview of the impact of DRX on the texture and microstructure, from the 3D configuration down to a

  8. textbf{Mesoscale simulations of pollen and agricultural soil dust containing bacteria as ice nucleators}

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Steinke, I.; Jäger, S.; Oehm, C.; Möhler, O.; Vogel, H.; Schurgers, G.

    2012-04-01

    One of the greatest uncertainties in climate impacts is the one caused by atmospheric aerosols. This is because of the variety in aerosols as well as in their influences. Little is known about the contribution of primary biological aerosol particles (PBAP). This project focuses on PBAP influences on mixed phase clouds simulated with the regional atmospheric model COSMO-ART. PBAPs are directly emitted into the atmosphere from different sources and are pollen grains, fungal spores, bacteria or leaf fragments for example. A suggested influence of PBAPs on clouds consists in their ability to act as ice nuclei, which are required to initiate freezing of atmospheric cloud droplets at temperatures above homogeneous nucleation. In laboratory experiments some PBAPs have been identified as efficient ice nuclei at relatively warm temperatures. Here we present simulations including birch and pine pollen grains as well as agricultural soil dust containing bacteria. The emission fluxes are weighed with the individual coverage of birch or pine trees or cropland, respectively. For soil dust all cropland area is assumed to lie follow and is allowed to contribute to the emissions. Thus, this simulation is a sensitivity study to estimate the maximum possible contribution of dust particles from agricultural areas. The model domain includes most part of Europe with a horizontal resolution of 13.4 km and terrain-following model layers. The selected time period, beginning of April 2008, falls into the birch pollen season as determined from observed pollen counts. An empirical ice nucleation parameterization is implemented into the model, assuming that heterogeneous freezing follows the singular hypothesis. This implies that each particle has a distribution of actives sites depending on temperature. The ice active surface site densities are based on measurements for ice nucleation on soil dust and different pollen at the local AIDA chamber. In our simulations diagnostic ice nuclei from

  9. Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation

    NASA Astrophysics Data System (ADS)

    Savre, J.; Ekman, A. M. L.

    2015-08-01

    A Classical-Nucleation-Theory-based parameterization for heterogenous ice nucleation, including explicit dependencies of the nucleation rates on the number concentration, size, and composition of the ambient aerosol population, is implemented in a cloud-scale, large-eddy simulation model and evaluated against Arctic mixed-phase cloud events observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC). An important feature of the parameterization is that the ice nucleation efficiency of each considered aerosol type is described using a contact angle distribution which evolves with time so that the model accounts for the inhibition of ice nucleation as the most efficient ice-forming particles are nucleated and scavenged. The model gives a reasonable representation of first-order (ice water paths) and second-order (ice crystal size distributions) ice microphysical properties. The production of new ice crystals in the upper part of the cloud, essential to guarantee sustained mixed-phase conditions, is found to be controlled mostly by the competition between radiative cooling (resulting in more aerosol particles becoming efficient ice nuclei as the temperature decreases), cloud-top entrainment (entraining fresh particles into the cloud), and nucleation scavenging of the ice+forming aerosol particles. The relative contribution of each process is mostly determined by the cloud-top temperature and the entrainment rates. Accounting for the evolution of the contact angle probability density function with time seems to be essential to capture the persistence of in-cloud ice production without having to, for example, increase the free tropospheric aerosol concentration. Although limited to only three cases and despite important limitations of the parameterization (e.g., the present version only considers dust and black carbon as potential ice nuclei), the results suggest that modeling the time evolution of the ice nuclei population ability to form ice is required to

  10. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    DOE PAGESBeta

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-24

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimentalmore » data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically

  11. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Knopf, Daniel A.

    2016-02-01

    Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature) and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs) all have the same INP surface area (ISA); however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T). This model is applied to address if (i) a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii) the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and acoustically levitated droplets

  12. ACID-CATALYZED REACTIONS IN SULFURIC ACID AEROSOLS: CHARACTERIZATION AND IMPACT ON ICE NUCLEATION

    EPA Science Inventory

    Several different experimental results are possible. It may be that as long as the water content of the aerosol is known, ice nucleation conditions can be predicted using an accepted model for homogeneous ice nucleation. However, in aerosol systems where larger organics form...

  13. Simulations of Ice Nucleation by Model AgI Disks and Plates.

    PubMed

    Zielke, Stephen A; Bertram, Allan K; Patey, G N

    2016-03-10

    Silver iodide is one of the most effective ice nuclei known. We use molecular dynamics simulations to investigate ice nucleation by AgI disks and plates with radii ranging from 1.15 to 2.99 nm. It is shown that disks and plates in this size range are effective ice nuclei, nucleating bulk ice at temperatures as warm as 14 K below the equilibrium freezing temperature, on simulation time scales (up to a few hundred nanoseconds). Ice nucleated on the Ag exposed surface of AgI disks and plates. Shortly after supercooling an ice cluster forms on the AgI surface. The AgI-stabilized ice cluster fluctuates in size as time progresses, but, once formed, it is constantly present. Eventually, depending on the disk or plate size and the degree of supercooling, a cluster fluctuation achieves critical size, and ice nucleates and rapidly grows to fill the simulation cell. Larger AgI disks and plates support larger ice clusters and hence can nucleate ice at warmer temperatures. This work may be useful for understanding the mechanism of ice nucleation on nanoparticles and active sites of larger atmospheric particles. PMID:26878341

  14. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  15. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  16. Enhanced production of extracellular ice nucleators from Erwinia herbicola.

    PubMed

    Li, Jingkun; Lee, Tung-Ching

    1998-12-01

    The effects of growth conditions and chemical or physical treatments on the production of extracellular ice nucleators (ECINs) by Erwinia herbicola cells were investigated. The spontaneous release of ECINs, active at temperatures higher than -4 degrees C, into the environment depended on culture conditions, with optimal production when cells were grown in yeast extract to an early stationary phase at temperatures below 22 degrees C. ECINs were vesicular, released from cell surfaces with sizes ranging from 0.1 to 0.3 &mgr;m as determined by ultrafiltration and transmission electron microscopy. Protein profiles of ECIN fractions during bacterial growth were examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and Ina proteins were detected by Western blotting. ECIN production was enhanced 5-fold when cells were treated with EDTA and 20- to 30-fold when subjected to sonication. These conditions provide a means for large-scale preparationage> ECINs by E. herbicola. PMID:12501408

  17. Application of Ice Nucleation - Active Bacteria to Food

    NASA Astrophysics Data System (ADS)

    Arai, Soichi; Watanabe, Michiko

    Ice nucleation-active bacteria act as nuclei and are able to freeze water without supercooling to a great degree. They are known as a major cause of the frost damage to crops. We have been trying with success to positively apply these bacteria to freeze texturing of food materials, freeze concentration of fresh liquid foods, formation of new physical properties of foods by freezing, and so forth. The most useful species for these applications is Xanthomonas campestris which has recently been designated as a food additive by the Japan Ministry of Health and Welfare and produced on an industrial scale. This paper reviews these topics, with some practical examples quoted primarily from our studies.

  18. Technical Note: A proposal for ice nucleation terminology

    NASA Astrophysics Data System (ADS)

    Vali, G.; DeMott, P. J.; Möhler, O.; Whale, T. F.

    2015-09-01

    Terminology dealing with ice nucleation in the atmosphere, in biological systems, and in other areas has not kept pace with the growth of empirical evidence and the development of new ideas over recent decades. Ambiguities and misinterpretations could be seen in the literature. This paper offers a set of definitions for various terms in common use, adds some qualifications, and introduces some new ones. Input has been received on the interpretation of various terms from a fair number of researchers; diverse views have been accommodated with some success. It is anticipated that the terminology proposed here will be helpful both to those who adopt it and to those who wish to explain a different perspective.

  19. Anti-ice nucleating activity of polyphenol compounds against silver iodide.

    PubMed

    Koyama, Toshie; Inada, Takaaki; Kuwabara, Chikako; Arakawa, Keita; Fujikawa, Seizo

    2014-10-01

    Freeze-avoiding organisms survive sub-zero temperatures without freezing in several ways, such as removal of ice nucleating agents (INAs), production of polyols, and dehydration. Another way is production of anti-ice nucleating agents (anti-INAs), such as has been reported for several antifreeze proteins (AFPs) and polyphenols, that inhibit ice nucleation by inactivating INAs. In this study, the anti-ice nucleating activity of five polyphenol compounds, including flavonoid and tannin compounds of both biological and synthetic origin, against silver iodide (AgI) was examined by measuring the ice nucleation temperature in emulsified polyphenol solutions containing AgI particles. The emulsified solutions eliminated the influence of contamination by unidentified INAs, thus enabling examination of the anti-ice nucleating activity of the polyphenols against AgI alone. Results showed that all five polyphenol compounds used here have anti-ice nucleating activities that are unique compared with other known anti-INAs, such as fish AFPs (type I and III) and synthetic polymers (poly(vinyl alcohol), poly(vinylpyrrolidone) and poly(ethylene glycol)). All five polyphenols completely inactivated the ice nucleating activity of AgI even at relatively low temperatures, and the first ice nucleation event was observed at temperatures between -14.1 and -19.4°C, compared with between -8.6 and -11.8°C for the fish AFPs and three synthetic polymers. These anti-ice nucleating activities of the polyphenols at such low temperatures are promising properties for practical applications where freezing should be prevented. PMID:25086201

  20. Laboratory investigations of mixed organic/inorganic particles: Ice nucleation and optical hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Beaver, Melinda R.

    The interactions of ambient aerosol particles with the atmosphere influence global climate and local visibility. Many of these atmospheric interactions are determined by the chemical composition of the aerosol particles. Ice nucleation in the upper troposphere is influenced and modified by the presence of anthropogenic aerosol particles. Also, interactions between particles and solar radiation are influenced by hygroscopic growth upon humidification. This thesis contains laboratory investigations into the role organic compounds play in ice nucleation and optical hygroscopic growth. Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10) and ketones (C 3 and C9) on ice nucleation in sulfuric acid aerosols. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. The physical properties of the organic compounds (primarily the solubility and melting point) were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous) and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures) nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Light extinction by atmospheric particles is strongly dependent on the size, chemical composition, and water content of the aerosol. Since light extinction by particles directly impacts climate and visibility, measurements of

  1. Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds

    SciTech Connect

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2014-07-28

    Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.

  2. Ice nucleation efficiency of AgI: review and new insights

    NASA Astrophysics Data System (ADS)

    Marcolli, Claudia; Nagare, Baban; Welti, André; Lohmann, Ulrike

    2016-07-01

    AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times.

  3. Deposition-mode ice nucleation reexamined at temperatures below 200 K

    NASA Astrophysics Data System (ADS)

    Thomson, E. S.; Kong, X.; Papagiannakopoulos, P.; Pettersson, J. B. C.

    2015-02-01

    The environmental chamber of a molecular beam apparatus is used to study deposition nucleation of ice on graphite, alcohols and acetic and nitric acids at temperatures between 155 and 200 K. The critical supersaturations necessary to spontaneously nucleate water ice on six different substrate materials are observed to occur at higher supersaturations than are theoretically predicted. This contradictory result motivates more careful examination of the experimental conditions and the underlying basis of the current theories. An analysis based on classical nucleation theory supports the view that at these temperatures nucleation is primarily controlled by the rarification of the vapor and the strength of water's interaction with the substrate surface. The technique enables a careful probing of the underlying processes of ice nucleation and the substrate materials of study. The findings are relevant to atmospheric nucleation processes that are intrinsically linked to cold cloud formation and lifetime.

  4. A case of type I polar stratospheric cloud formation by heterogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Ferry, G. V.; Snetsinger, K. G.; Goodman, J.; Dye, J. E.; Baumgardner, D.; Gandrud, B. W.

    1992-01-01

    The NASA ER-2 aircraft flew on January 24, 1989, from Stavanger to Spitsbergen, Norway, at the 430-440 K potential temperature surface (19.2-19.8 km pressure altitude). Aerosols were sampled continuously by an optical particle counter (PMS-FSSP300) for concentration and size analyses, and during five 10-min intervals by four wire and one replicator impactor for concentration, size, composition, and phase analysis. During sampling, the air saturation of H2O with respect to ice changed from 20 to 100 percent, and of HNO3 with respect to nitric acid trihydrate (NAT) from subsaturation to supersaturation. Data from both instruments indicate a condensation of hydrochloric acid and, later, nitric acid on the background aerosol particles as the ambient temperature decreases along the flight track. This heterogeneous nucleation mechanism generates type I polar stratospheric cloud particles of 10-fold enhanced optical depth, which could play a role in stratospheric ozone depletion.

  5. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    PubMed Central

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  6. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-05-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions.

  7. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.

    PubMed

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  8. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    NASA Astrophysics Data System (ADS)

    Chou, C.; Kanji, Z. A.; Stetzer, O.; Tritscher, T.; Chirico, R.; Heringa, M. F.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.; Lohmann, U.

    2013-01-01

    A measurement campaign (IMBALANCE) conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, -30 °C, -35 °C and -40 °C. Freshly emitted diesel particles showed ice formation only at -40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi) and 92% relative humidity with respect to water (RHw), and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at -35 °C. Wood burning particles also act as ice nuclei (IN) at -40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at -35 °C whereas no ice nucleation was observed at -30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below -40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  9. Effect of photochemical aging on the ice nucleation properties of diesel and wood burning particles

    NASA Astrophysics Data System (ADS)

    Chou, C.; Stetzer, O.; Tritscher, T.; Chirico, R.; Heringa, M. F.; Kanji, Z. A.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.; Lohmann, U.

    2012-06-01

    A measurement campaign (IMBALANCE) was conducted in 2009 and aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro with no emission after-treatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, -30 °C, -35 °C and -40 °C. Freshly emitted diesel particles showed ice formation only at -40 °C in the deposition mode at 137% relative humidity with respect to ice (RHi) and 92% relative humidity with respect to water (RHw), and photochemical aging did not play a role in modifying their ice nucleation behavior. Only one diesel experiment where α-pinene was added, showed an ice nucleation enhancement after the aging at -35 °C. Wood burning particles also act as ice nuclei (IN) at -40 °C in the deposition mode at the same conditions as for diesel particles and photochemical aging did also not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at -35 °C with no ice nucleation observed at -30 °C for wood burning particles. Photochemical aging did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below -30 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical aging on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds.

  10. Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Umo, N. S.; Murray, B. J.; Baeza-Romero, M. T.; Jones, J. M.; Lea-Langton, A. R.; Malkin, T. L.; O'Sullivan, D.; Plane, J. M. C.; Williams, A.

    2014-11-01

    Ice nucleating particles can modify cloud properties with implications for climate and the hydrological cycle; hence, it is important to understand which aerosol particle types nucleate ice and how efficiently they do so. It has been shown that aerosol particles such as natural dusts, volcanic ash, bacteria and pollen can act as ice nucleating particles, but the ice nucleating ability of combustion ashes has not been studied. Combustion ashes are major by-products released during the combustion of solid fuels and a significant amount of these ashes are emitted into the atmosphere either during combustion or via aerosolization of bottom ashes. Here, we show that combustion ashes (coal fly ash, wood bottom ash, domestic bottom ash, and coal bottom ash) nucleate ice in the immersion mode at conditions relevant to mixed-phase clouds. Hence, combustion ashes could play an important role in primary ice formation in mixed-phase clouds, especially in clouds that are formed near the emission source of these aerosol particles. In order to quantitatively assess the impact of combustion ashes on mixed-phase clouds, we propose that the atmospheric abundance of combustion ashes should be quantified since up to now they have mostly been classified together with mineral dust particles. Also, in reporting ice residue compositions, a distinction should be made between natural mineral dusts and combustion ashes in order to quantify the contribution of combustion ashes to atmospheric ice nucleation.

  11. Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Umo, N. S.; Murray, B. J.; Baeza-Romero, M. T.; Jones, J. M.; Lea-Langton, A. R.; Malkin, T. L.; O'Sullivan, D.; Neve, L.; Plane, J. M. C.; Williams, A.

    2015-05-01

    Ice-nucleating particles can modify cloud properties with implications for climate and the hydrological cycle; hence, it is important to understand which aerosol particle types nucleate ice and how efficiently they do so. It has been shown that aerosol particles such as natural dusts, volcanic ash, bacteria and pollen can act as ice-nucleating particles, but the ice-nucleating ability of combustion ashes has not been studied. Combustion ashes are major by-products released during the combustion of solid fuels and a significant amount of these ashes are emitted into the atmosphere either during combustion or via aerosolization of bottom ashes. Here, we show that combustion ashes (coal fly ash, wood bottom ash, domestic bottom ash, and coal bottom ash) nucleate ice in the immersion mode at conditions relevant to mixed-phase clouds. Hence, combustion ashes could play an important role in primary ice formation in mixed-phase clouds, especially in clouds that are formed near the emission source of these aerosol particles. In order to quantitatively assess the impact of combustion ashes on mixed-phase clouds, we propose that the atmospheric abundance of combustion ashes should be quantified since up to now they have mostly been classified together with mineral dust particles. Also, in reporting ice residue compositions, a distinction should be made between natural mineral dusts and combustion ashes in order to quantify the contribution of combustion ashes to atmospheric ice nucleation.

  12. Ice nucleation of an insect lipoprotein ice nucleator (LPIN) correlates with retardation of the hydrogen bond dynamics at the myo-inositol ring.

    PubMed

    Bäumer, Alexander; Duman, John G; Havenith, Martina

    2016-07-28

    Remarkably little is known about the mechanism of action of ice nucleation proteins (INPs), although their ability to trigger ice nucleation could be used in a broad variety of applications. We present CD measurements of an insect lipoprotein ice nucleator (LPIN) which show that the lipoproteins consist of a high amount of β-structures (35%). Terahertz absorption spectroscopy is used to probe the influence of the LPIN on the H-bond network dynamics. We observe a small, but significant THz excess, as an indication of an influence on the H-bond network dynamics. When adding the ice nucleation inhibitor sodium borate, this effect is considerably reduced, similar to that observed before for antifreeze glycoproteins (AFGPs). We propose that myo-inositol, the functional group of phosphatidylinositols, is crucial for the observed change of the H-bond network dynamics of hydration water. This hypothesis is confirmed by additional THz experiments which revealed that the influence of myo-inositol on the hydrogen bond network can be blocked by sodium borate, similar to the case of LPINs. Interestingly, we find a less significant effect when myo-inositol is replaced for chiro- and allo-inositol which underlines the importance of the exact positioning of the OH groups for the interaction with the H-bond network. We propose that a local ordering of water molecules is supporting ice nucleation activity for the LPIN in a similar way to that found for AFP activity in the case of hyperactive insect AFPs. PMID:27373225

  13. Impurity-stimulated heterogeneous nucleation of supercooled H2 clusters.

    PubMed

    Knuth, Eldon; Schaper, Sven; Toennies, J Peter

    2004-01-01

    The sizes and mass spectra of large (N=1900-13,700 molecules) cold (approximately 3.1 K) H2 clusters have been measured after scattering from CO molecules. Cluster-size measurements after between 2 and 8 collisions indicate that 7% of the H2 molecules are evaporated. This loss agrees with calculations for the number of H2 molecules evaporated by the heat released in the transition from an initial liquid state to a final solid state. Even though heterogeneous nucleation is initiated after only a few collisions with CO molecules, the mass spectra show that additional captured CO molecules coagulate to form large CO clusters with up to n=11 molecules, suggesting that the outer layer is sufficiently liquidlike to facilitate mobility of the CO molecules. Since the calculated H2 cluster temperature (approximately 3.1 K) is below the superfluid transition temperature predicted for pH2 with density between 40% and 80% of the triple-point density, a shell-like region of low density near the cluster surface can be expected to be superfluid. PMID:15267283

  14. A new temperature- and humidity-dependent surface site density approach for deposition ice nucleation

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.

    2015-04-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.

  15. Nucleation and scattering properties of ice cloud due to seeding of sodium chloride as aqueous solution and dust

    NASA Astrophysics Data System (ADS)

    Paul, Sahana; Biswas, L. N.; De, U. K.; Goswami, K.

    Sodium chloride in three forms, as aqueous solution and as dust of two size ranges are seeded in a cold room for heterogeneous ice nucleation in the temperature range between -24 °C and 0 °C. Maximum nucleation for all the three seeding agents occurs at -21.2 °C, which is the eutectic temperature of sodium chloride and water mixture. However, the number density of ice nucleation at the eutectic temperature is highest for the finer variety of dust and lowest for the solution. On the other hand, largest size crystals are produced by the solution and smallest size crystals are produced by the finer variety of dust, at the same temperature. It is observed that the optical properties of ice cloud depends more on the crystal size. The variation of scattering co-efficient, extinction co-efficient and optical depth with temperature are noted for the scattering angles of 30°, 36°, 144° and 150°. The duration of growth of crystals and the same for the subsequent falling down of crystals can be estimated from the time variation of scattering intensity. It is observed that ice crystals due to the solution take maximum time to grow and minimum time to fall down.

  16. Microbial ice nucleators are scavenged from the atmosphere during artificial rain events

    NASA Astrophysics Data System (ADS)

    Hanlon, Regina; Powers, Craig; Failor, Kevin; Vinatzer, Boris; Schmale, David

    2016-04-01

    Some microorganisms associated with rain may catalyze the nucleation of ice crystals at significantly warmer temperatures than would normally be required for ice formation, suggesting that they may play an important role in the onset of precipitation. Rain samples collected near the surface of the earth contain an array of microbial ice nucleators, but the little is known about their source(s) and life history. We conducted a series of field experiments to test the hypothesis that microbial ice nucleators are scavenged from the atmosphere by rainfall. Thirty three artificial rain events were conducted over four months (Nov 2014, Dec 2014, April 2015, and June 2015) off the side of the Smart Road Bridge in Blacksburg, VA, USA. In each event, sterile water was dispensed over the side of the bridge and recovered in sterile containers following gravitational settling from the bridge to an open fallow agricultural field below (a distance of ~55m). Microbes scavenged from the artificial rain events were cultured on six different types of agar media (R2A, TSA, CA; +/-cycloheximide), and the ice nucleation activity was examined for colonies cultured from the different media types. Mean CFUs scavenged by artificial rain ranged from 2 to 267 CFUs/mL. Microbial ice nucleators were cultured from 94% (31/33) of the simulated rain events, and represented 1.4% (121/8871) of the total number of colonies assayed. This percentage is similar to the percentage of culturable microbial ice nucleators occurring in about half of the natural rain events studied in Blacksburg, VA. Sequence-assisted identification of the repeatable microbial ice nucleators that were scavenged from the atmosphere showed a number of unique prokaryotic and eukaryotic taxa. This work expands our knowledge of the scavenging properties of rainfall, and suggests that at least some ice nucleators in natural precipitation events may have been scrubbed from the atmosphere during rainfall, and thus are not likely to be

  17. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  18. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-08-25

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  19. Direct calculation of ice homogeneous nucleation rate for a molecular model of water

    PubMed Central

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  20. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    PubMed

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate. PMID:27410458

  1. Ice-nucleating bacteria control the order and dynamics of interfacial water.

    PubMed

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A; Fischer, Sean A; Pfaendtner, Jim; Backus, Ellen H G; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F; Knopf, Daniel A; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  2. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  3. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.

    PubMed

    Tomalty, Heather E; Walker, Virginia K

    2014-09-26

    Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria. PMID:25193694

  4. Ice nucleation at the contact line triggered by transient electrowetting fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shaw, Raymond A.; Gurganus, Colin W.; Chong, Su Kong; Yap, Yoke Khin

    2015-12-01

    Supercooled water is found to have a significantly enhanced freezing temperature during transient electrowetting with electric fields of order 1 V/μm. High speed imaging reveals that the nucleation occurs randomly at the three-phase contact line (droplet perimeter) and can occur at multiple points during one freezing event. Possible nucleation mechanisms are explored by testing various substrate geometries and materials. Results demonstrate that electric field alone has no detectable effect on ice nucleation, but the moving boundary of the droplet on the substrate due to electrowetting is associated with the triggering of nucleation at a much higher temperature.

  5. Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles

    SciTech Connect

    Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla; Beranek, Josef; Madaan, Nitesh; Devaraj, Arun; Shutthanandan, V.; Thevuthasan, Suntharampillai; Varga, Tamas

    2015-04-28

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples were different.

  6. Nucleation in Synoptically Forced Cirrostratus

    NASA Technical Reports Server (NTRS)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  7. Line-tension effects on heterogeneous nucleation on a spherical substrate and in a spherical cavity.

    PubMed

    Iwamatsu, Masao

    2015-04-01

    The line-tension effects on heterogeneous nucleation are considered when a spherical lens-shaped nucleus is nucleated on top of a spherical substrate and on the bottom of the wall of a spherical cavity. The effect of line tension on the nucleation barrier can be separated from the usual volume term. As the radius of the substrate increases, the nucleation barrier decreases and approaches that of a flat substrate. However, as the radius of the cavity increases, the nucleation barrier increases and approaches that of a flat substrate. A small spherical substrate is a less active nucleation site than a flat substrate, and a small spherical cavity is a more active nucleation site than a flat substrate. In contrast, the line-tension effect on the nucleation barrier is maximum when the radii of the nucleus and the substrate or cavity become comparable. Therefore, by tuning the size of the spherical substrate or spherical cavity, the effect of the line tension can be optimized. These results will be useful in broad range of applications from material processing to understanding of global climate, where the heterogeneous nucleation plays a vital role. PMID:25775383

  8. Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Phebus, Bruce D.; Johnson, Alexandria V.; Mar, Brendan; Stone, Bradley M.; Colaprete, Anthony; Iraci, Laura T.

    2011-04-01

    Water ice clouds in the Martian atmosphere are governed by parameters such as number density and particle size distribution that in turn affect how they influence the climate. With some of the underlying properties of cloud formation well known only for Earth, extrapolations to Mars are potentially misleading. We report here continued laboratory experiments to identify critical onset conditions for water ice formation under Martian cloud forming temperatures and water partial pressures (155-182 K, 7.6 × 10-5 to 7.7 × 10-3 Pa H2O). By observing the 3 μm infrared band to monitor nucleation and growth, we observe significant temperature dependence in the nucleation of ice on JSC Mars-1 regolith simulant, with critical saturation ratios, Scrit, as high as 3.8 at 155 K. At temperatures below ˜180 K, ice nucleation on JSC Mars-1 requires significant supersaturation, potentially impacting the Martian hydrological cycle.

  9. An Improved Model for Nucleation-Limited Ice Formation in Living Cells during Freezing

    PubMed Central

    Zhao, Gang; He, Xiaoming

    2014-01-01

    Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF) in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF), our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1). We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN) and volume-catalyzed nucleation (VCN). Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications. PMID:24852166

  10. Insights Into Ice Nucleation From Real-Time, Single-Particle Aircraft-Based Measurements of Ice Crystal Residues

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Demott, P. J.; Twohy, C. H.; Prather, K. A.

    2008-12-01

    The overall impacts of aerosol particles on cloud formation and properties represent the largest single source of uncertainty in predicting future climate change. In particular, the ability of aerosols to act as ice nuclei (IN) has large consequences on the hydrological cycle since much precipitation derives from the ice phase. During the flight-based 2007 Ice in Clouds Experiment - Layer Clouds (ICE-L) on the NSF/NCAR C- 130, individual cloud droplets and ice crystals were directly sampled and characterized in real-time using a counterflow virtual impactor (CVI) in series with the aircraft aerosol time-of-flight mass spectrometer (A- ATOFMS) and continuous-flow diffusion chamber (CFDC). Parallel measurements by the A-ATOFMS and CFDC allowed the size-resolved chemistry of cloud residues, including both refractory and non-refractory species, to be examined and correlated with the ice nucleation properties of the clouds. Through comparison with cloud probes, the mixing state of liquid, mixed, and ice phase residues were examined separately. During the study, orographic wave clouds were sampled over Wyoming; mineral dust, biological material, biomass burning particles, soot, and organic carbon were all found within the studied clouds. A comparison of the aerosol chemistry associated with periods of differing quantities of ice nuclei present are being examined to further increase our understanding of ice nucleation relation to aerosol composition.