Science.gov

Sample records for heterogeneous sensor networks

  1. Bridge monitoring using heterogeneous wireless sensor network

    NASA Astrophysics Data System (ADS)

    Haran, Shivan; Kher, Shubhalaxmi; Mehndiratta, Vandana

    2010-03-01

    Wireless sensor networks (WSN) are proving to be a good fit where real time monitoring of multiple physical parameters is required. In many applications such as structural health monitoring, patient data monitoring, traffic accident monitoring and analysis, sensor networks may involve interface with conventional P2P systems and it is challenging to handle heterogeneous network systems. Heterogeneous deployments will become increasingly prevalent as it allows for systems to seamlessly integrate and interoperate especially when it comes to applications involving monitoring of large infrastructures. Such networks may have wireless sensor network overlaid on a conventional computer network to pick up data from one distant location and carry out the analysis after relaying it over to another distant location. This paper discusses monitoring of bridges using WSN. As a test bed, a heterogeneous network of WSN and conventional P2P together with a combination of sensing devices (including vibration and strain) is to be used on a bridge model. Issues related to condition assessment of the bridge for situations including faults, overloads, etc., as well as analysis of network and system performance will be discussed. When conducted under controlled conditions, this is an important step towards fine tuning the monitoring system for recommendation of permanent mounting of sensors and collecting data that can help in the development of new methods for inspection and evaluation of bridges. The proposed model, design, and issues therein will be discussed, along with its implementation and results.

  2. Target tracking for heterogeneous smart sensor networks

    NASA Astrophysics Data System (ADS)

    Bevington, James E.; McDonnell, Timothy X.

    2001-08-01

    Distributed sensor networks will play a key role in the network centric warfighting environments of the future. We envision a ubiquitous sensing `fabric,' comprising sensors distributed over the terrain and carried on manned and unmanned, terrestrial and airborne vehicles. As a complex `system of systems,' this fabric will need to adapt and self-organize to perform a variety of higher-level tasks such as surveillance and target acquisition. The topology and availability of the sensors will be constantly changing, as will the needs of users as dictated by evolving missions and operational environments. In this work, focusing on the task of target tracking, we address approaches for locating and organizing sensing and processing resources and present algorithms for suitably fusing the observations obtained from a varied and changing set of sensors. Run-time discovery and access of new sensing resources are obtained through the use of Java Jini, treating sensing resources as `services' and viewing higher-level processes such as tracking as clients. Algorithms for fusing generic sensor observations for target tracking are based on the extended Kalman filter, while detection and track initiation are based on a new likelihood projection technique. We present results from an implementation of these concepts in a real- time sensor testbed and discuss lessons learned.

  3. A wireless medical monitoring over a heterogeneous sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Lee, Chin K; Khan, Jamil Y; Liu, Wentai

    2007-01-01

    This paper presents a heterogeneous sensor network system that has the capability to monitor physiological parameters from multiple patient bodies by means of different communication standards. The system uses the recently opened medical band called MICS (Medical Implant Communication Service) between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested by incorporating temperature and pulse rate sensors on nodes. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication. PMID:18003355

  4. Data fusion on a distributed heterogeneous sensor network.

    SciTech Connect

    Lamborn, Peter; Williams, Pamela J.

    2006-02-01

    Alarm-based sensor systems are being explored as a tool to expand perimeter security for facilities and force protection. However, the collection of increased sensor data has resulted in an insufficient solution that includes faulty data points. Data analysis is needed to reduce nuisance and false alarms, which will improve officials decision making and confidence levels in the system's alarms. Moreover, operational costs can be allayed and losses mitigated if authorities are alerted only when a real threat is detected. In the current system, heuristics such as persistence of alarm and type of sensor that detected an event are used to guide officials responses. We hypothesize that fusing data from heterogeneous sensors in the sensor field can provide more complete situational awareness than looking at individual sensor data. We propose a two stage approach to reduce false alarms. First, we use self organizing maps to cluster sensors based on global positioning coordinates and then train classifiers on the within cluster data to obtain a local view of the event. Next, we train a classifier on the local results to compute a global solution. We investigate the use of machine learning techniques, such as k-nearest neighbor, neural networks, and support vector machines to improve alarm accuracy. On simulated sensor data, the proposed approach identifies false alarms with greater accuracy than a weighted voting algorithm.

  5. Data fusion on a distributed heterogeneous sensor network

    NASA Astrophysics Data System (ADS)

    Lamborn, Peter; Williams, Pamela J.

    2006-04-01

    Alarm-based sensor systems are being explored as a tool to expand perimeter security for facilities and force protection. However, the collection of increased sensor data has resulted in an insufficient solution that includes faulty data points. Data analysis is needed to reduce nuisance and false alarms, which will improve officials' decision making and confidence levels in the system's alarms. Moreover, operational costs can be allayed and losses mitigated if authorities are alerted only when a real threat is detected. In the current system, heuristics such as persistence of alarm and type of sensor that detected an event are used to guide officials' responses. We hypothesize that fusing data from heterogeneous sensors in the sensor field can provide more complete situational awareness than looking at individual sensor data. We propose a two stage approach to reduce false alarms. First, we use self organizing maps to cluster sensors based on global positioning coordinates and then train classifiers on the within cluster data to obtain a local view of the event. Next, we train a classifier on the local results to compute a global solution. We investigate the use of machine learning techniques, such as k-nearest neighbor, neural networks, and support vector machines to improve alarm accuracy. On simulated sensor data, the proposed approach identifies false alarms with greater accuracy than a weighted voting algorithm.

  6. Network coding on heterogeneous multi-core processors for wireless sensor networks.

    PubMed

    Kim, Deokho; Park, Karam; Ro, Won W

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  7. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  8. Heterogeneous sensor networks: a bio-inspired overlay architecture

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Klein, Daniel; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2010-04-01

    Teledyne Scientific Company, the University of California at Santa Barbara (UCSB) and the Army Research Lab are developing technologies for automated data exfiltration from heterogeneous sensor networks through the Institute for Collaborative Biotechnologies (ICB). Unmanned air vehicles (UAV) provide an effective means to autonomously collect data from unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous data-driven collection routes. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data across heterogeneous sensors. A fast and accurate method has been developed for routing UAVs and localizing an event by fusing data from a sparse number of UGSs; it leverages a bio-inspired technique based on chemotaxis or the motion of bacteria seeking nutrients in their environment. The system was implemented and successfully tested using a high level simulation environment using a flight simulator to emulate a UAV. A field test was also conducted in November 2009 at Camp Roberts, CA using a UAV provided by AeroMech Engineering. The field test results showed that the system can detect and locate the source of an acoustic event with an accuracy of about 3 meters average circular error.

  9. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.

    PubMed

    Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications. PMID:27257964

  10. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks

    PubMed Central

    Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications. PMID:27257964

  11. Using Distributed Sensor Network Architecture to Link Heterogeneous Astronomical Assets

    NASA Astrophysics Data System (ADS)

    White, R.; Evans, S.; Pergande, J.; Vestrand, W.; Wozniak, P.; Wren, J.

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in this type of instrumentation. Here we present the Telescope ALert Operations Network System (TALONS), a network software suite that allows intercommunication between external and internal astronomical resources and controls the distribution of information to each of the resources. TALONS is an fundamental element of the Thinking Telescopes System, in operation at Los Alamos National Laboratory, and has been enabling great science for the past four years. The system allows a distributed network of telescopes to perform more efficiently in synchronous operation than as individual instruments. TALONS is designed as a merger between a standard server/client architecture and a Distributed Sensor Network (DSN). It can dynamically regulate its client base, allowing any number of heterogeneous resources to be linked together and communicate. TALONS couples that capability with collaborative analysis and maintenance modules so that it can respond quickly to external requests and changing network environments. TALONS clients connect via an intelligent agent, which acts in proxy for the scientist, allowing the telescope to analyze incoming information and respond autonomously. TALONS has a proven track record of effectively supporting the instruments at Los Alamos and other astronomical resources around the world.

  12. Managing heterogeneous networks of mobile and stationary sensors

    NASA Astrophysics Data System (ADS)

    Bürkle, Axel; Solbrig, Peter; Segor, Florian; Bulatov, Dimitri; Wernerus, Peter; Müller, Sven

    2011-11-01

    Protecting critical infrastructure against intrusion, sabotage or vandalism is a task that requires a comprehensive situation picture. Modern security systems should provide a total solution including sensors, software, hardware, and a "control unit" to ensure complete security. Incorporating unmanned mobile sensors can significantly help to close information gaps and gain an ad hoc picture of areas where no pre-installed supervision infrastructure is available or damaged after an incident. Fraunhofer IOSB has developed the generic ground control station AMFIS which is capable of managing sensor data acquisition with all kinds of unattended stationary sensors, mobile ad hoc sensor networks, and mobile sensor platforms. The system is highly mobile and able to control various mobile platforms such as small UAVs (Unmanned Aerial Vehicles) and UGVs (Unmanned Ground Vehicles). In order to establish a real-time situation picture, also an image exploitation process is used. In this process, video frames from different sources (mainly from small UAVs) are georeferenced by means of a system of image registration methods. Relevant information can be obtained by a motion detection module. Thus, the image exploitation process can accelerate the situation assessment significantly.

  13. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  14. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    PubMed

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  15. A Secure Scheme for Distributed Consensus Estimation against Data Falsification in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping

    2016-01-01

    Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS. PMID:26907275

  16. A Secure Scheme for Distributed Consensus Estimation against Data Falsification in Heterogeneous Wireless Sensor Networks.

    PubMed

    Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping

    2016-01-01

    Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS. PMID:26907275

  17. A Complete Hierarchical Key Management Scheme for Heterogeneous Wireless Sensor Networks

    PubMed Central

    Zheng, Xinying

    2014-01-01

    Heterogeneous cluster-based wireless sensor networks (WSN) attracted increasing attention recently. Obviously, the clustering makes the entire networks hierarchical; thus, several kinds of keys are required for hierarchical network topology. However, most existing key management schemes for it place more emphasis on pairwise key management schemes or key predistribution schemes and neglect the property of hierarchy. In this paper, we propose a complete hierarchical key management scheme which only utilizes symmetric cryptographic algorithms and low cost operations for heterogeneous cluster-based WSN. Our scheme considers four kinds of keys, which are an individual key, a cluster key, a master key, and pairwise keys, for each sensor node. Finally, the analysis and experiments demonstrate that the proposed scheme is secure and efficient; thus, it is suitable for heterogeneous cluster-based WSN. PMID:24983001

  18. Multifunctional optical system-on-a-chip for heterogeneous fiber optic sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Pang, Cheng; Gupta, Ashwani

    2015-08-01

    In this article, we review our recent progress on the development of a multifunctional optical system-on-a-chip platform, which can be used for achieving heterogeneous wireless fiber optical sensor networks. A multifunctional optical sensor platform based on the micro-electromechanical systems (MEMS) technology is developed. The key component of the multifunctional optical sensor platform is a MEMS based tunable Fabry-Pérot (FP) filter, which can be used as a phase modulator or a wavelength tuning device in a multifunctional optical sensing system. Mechanics model of the FP filter and optics model of the multifunctional optical sensing system are developed to facilitate the design of the filter. The MEMS FP filter is implemented in a multifunctional optical sensing system including both Fabry-Perot interferometer based sensors and Fiber Bragg grating sensors. The experimental results indicate that this large dynamic range tunable filter can enable high performance heterogeneous optical sensing for many applications.

  19. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  20. Obtaining Robust Wireless Sensor Networks through Self-Organization of Heterogeneous Connectivity

    NASA Astrophysics Data System (ADS)

    Venuturumilli, Abhinay; Minai, Ali

    A Wireless Sensor Network (WSN) is a set of sensor nodes that can communicate wirelessly with each other across an extended environment. Sensor networks are being used for various military, environmental, human-centric and robotic applications [Arampatzis 2005]. Most of the research on WSNs is focused on networks with identical nodes that have the same transmission range. This creates a homogeneous network whose connectivity can be modeled as an undirected graph. Homogenous networks are simple to analyze, but are well-known to be suboptimal with regard to efficiency, longevity and robustness [Yarvis 2005]. The random deployment of homogeneous nodes results in an uneven connectivity with critical nodes, making the network non-robust to node failure. A simple solution to overcome this problem would be to increase the transmission range of all nodes, but, this creates undue congestion in other parts of the network. In a heterogeneous network, in contrast, nodes can individually select their transmission range and tune their connectivity locally without creating congestion. This effectively reduces the number of hops between nodes without increasing bandwidth needs and energy. Though the resulting networks are more efficient and robust than homogeneous ones, they are difficult to analyze (see Duarte-Melo et al. [Duarte-Melo 2002] for some analysis).

  1. Architecture and methods for UAV-based heterogeneous sensor network applications

    NASA Astrophysics Data System (ADS)

    Antonio, Pedro; Caputo, Davide; Gandelli, Alessandro; Grimaccia, Francesco; Mussetta, Marco

    2012-09-01

    Wireless sensor netwoks (WSN) employ miniaturized devices which integrate sensing, processing, and communication capabilities. In this paper an innovative mobile platform for heterogeneous sensor networks is presented, combined with adaptive methods to optimize the communication architecture for novel potential applications even in coastal and marine environment monitoring. In fact, in the near future, WSN data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. This procedure is here applied to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based remote sensing of the ocean, sea ice, coastal waters, and large water regions.

  2. On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.

    PubMed

    Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen

    2016-01-01

    Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs. PMID:26784201

  3. On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen

    2016-01-01

    Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTCk) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTCk) and a distributed connected target k-coverage algorithm (DCTCk) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs. PMID:26784201

  4. Using heterogeneous wireless sensor networks in a telemonitoring system for healthcare.

    PubMed

    Corchado, Juan M; Bajo, Javier; Tapia, Dante I; Abraham, Ajith

    2010-03-01

    Ambient intelligence has acquired great importance in recent years and requires the development of new innovative solutions. This paper presents a distributed telemonitoring system, aimed at improving healthcare and assistance to dependent people at their homes. The system implements a service-oriented architecture based platform, which allows heterogeneous wireless sensor networks to communicate in a distributed way independent of time and location restrictions. This approach provides the system with a higher ability to recover from errors and a better flexibility to change their behavior at execution time. Preliminary results are presented in this paper. PMID:19858034

  5. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    PubMed Central

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  6. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    PubMed

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  7. Impact of Heterogeneity and Secrecy on theCapacity of Wireless Sensor Networks

    PubMed Central

    Liu, Qiuming; Yu, Li; Liu, Zuhao; Zheng, Jun

    2015-01-01

    This paper investigates the achievable secrecy throughput of an inhomogeneous wireless sensor network. We consider the impact of topology heterogeneity and the secrecy constraint on the throughput. For the topology heterogeneity, by virtue of percolation theory, a set of connected highways and information pipelines is established; while for the secrecy constraint, the concept of secrecy zone is adopted to ensure secrecy transmission. The secrecy zone means there is no eavesdropper around the legitimate node. The results demonstrate that, if the eavesdropper’s intensity is λe=ologn-3δ-4δ-2, a per-node secrecy rate of Ω1n1-v(1-v)logn can be achieved on the highways, where δ is the exponent of heterogeneity, n and nv represent the number of nodes and clusters in the network, respectively. It is also shown that, with the density of the eavesdropper λe=olognΦ̲-2, the per-node secrecy rate of ΩΦ̲n can be obtained in the information pipelines, where Φ̲ denotes the minimum node density in the network. PMID:26690430

  8. A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment

    PubMed Central

    Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong

    2015-01-01

    In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440

  9. Heterogeneous collaborative sensor network for electrical management of an automated house with PV energy.

    PubMed

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier

    2011-01-01

    In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency. PMID:22247680

  10. Heterogeneous Collaborative Sensor Network for Electrical Management of an Automated House with PV Energy

    PubMed Central

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Álvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier

    2011-01-01

    In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency. PMID:22247680

  11. A Reinforcement Sensor Embedded Vertical Handoff Controller for Vehicular Heterogeneous Wireless Networks

    PubMed Central

    Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin

    2013-01-01

    Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience. PMID:24193101

  12. A reinforcement sensor embedded vertical handoff controller for vehicular heterogeneous wireless networks.

    PubMed

    Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin

    2013-01-01

    Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience. PMID:24193101

  13. A comparative study of routing protocols of heterogeneous wireless sensor networks.

    PubMed

    Han, Guangjie; Jiang, Xu; Qian, Aihua; Rodrigues, Joel J P C; Cheng, Long

    2014-01-01

    Recently, heterogeneous wireless sensor network (HWSN) routing protocols have drawn more and more attention. Various HWSN routing protocols have been proposed to improve the performance of HWSNs. Among these protocols, hierarchical HWSN routing protocols can improve the performance of the network significantly. In this paper, we will evaluate three hierarchical HWSN protocols proposed recently--EDFCM, MCR, and EEPCA--together with two previous classical routing protocols--LEACH and SEP. We mainly focus on the round of the first node dies (also called the stable period) and the number of packets sent to sink, which is an important aspect to evaluate the monitoring ability of a protocol. We conduct a lot of experiments and simulations on Matlab to analyze the performance of the five routing protocols. PMID:25050393

  14. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks

    PubMed Central

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-01-01

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162

  15. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE PAGESBeta

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster headsmore » to minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less

  16. A local-world heterogeneous model of wireless sensor networks with node and link diversity

    NASA Astrophysics Data System (ADS)

    Li, Shudong; Li, Lixiang; Yang, Yixian

    2011-03-01

    In this paper, we present a novel local-world model of wireless sensor networks (WSN) with two kinds of nodes: sensor nodes and sink nodes, which is different from other models with identical nodes and links. The model balances energy consumption by limiting the connectivity of sink nodes to prolong the life of the network. How the proportion of sink nodes, different energy distribution and the local-world scale would affect the topological structure and network performance are investigated. We find that, using mean-field theory, the degree distribution is obtained as an integral with respect to the proportion of sink nodes and energy distribution. We also show that, the model exhibits a mixed connectivity correlation which is greatly distinct from general networks. Moreover, from the perspective of the efficiency and the average hops for data processing, we find some suitable range of the proportion p of sink nodes would make the network model have optimal performance for data processing.

  17. Fast Decision Algorithms in Low-Power Embedded Processors for Quality-of-Service Based Connectivity of Mobile Sensors in Heterogeneous Wireless Sensor Networks

    PubMed Central

    Jaraíz-Simón, María D.; Gómez-Pulido, Juan A.; Vega-Rodríguez, Miguel A.; Sánchez-Pérez, Juan M.

    2012-01-01

    When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration. PMID:22438728

  18. A data management and publication workflow for a large-scale, heterogeneous sensor network.

    PubMed

    Jones, Amber Spackman; Horsburgh, Jeffery S; Reeder, Stephanie L; Ramírez, Maurier; Caraballo, Juan

    2015-06-01

    It is common for hydrology researchers to collect data using in situ sensors at high frequencies, for extended durations, and with spatial distributions that produce data volumes requiring infrastructure for data storage, management, and sharing. The availability and utility of these data in addressing scientific questions related to water availability, water quality, and natural disasters relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into usable data products. It also depends on the ability of researchers to share and access the data in useable formats. In this paper, we describe a data management and publication workflow and software tools for research groups and sites conducting long-term monitoring using in situ sensors. Functionality includes the ability to track monitoring equipment inventory and events related to field maintenance. Linking this information to the observational data is imperative in ensuring the quality of sensor-based data products. We present these tools in the context of a case study for the innovative Urban Transitions and Aridregion Hydrosustainability (iUTAH) sensor network. The iUTAH monitoring network includes sensors at aquatic and terrestrial sites for continuous monitoring of common meteorological variables, snow accumulation and melt, soil moisture, surface water flow, and surface water quality. We present the overall workflow we have developed for effectively transferring data from field monitoring sites to ultimate end-users and describe the software tools we have deployed for storing, managing, and sharing the sensor data. These tools are all open source and available for others to use. PMID:25968554

  19. Evaporation over a Heterogeneous Mixed Savanna-Agricultural Catchment using a Distributed Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.

    2010-12-01

    Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the

  20. Socially Aware Heterogeneous Wireless Networks.

    PubMed

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  1. Socially Aware Heterogeneous Wireless Networks

    PubMed Central

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  2. Heterogeneous broadband network

    NASA Astrophysics Data System (ADS)

    Dittmann, Lars

    1995-11-01

    Although the vision for the future Integrated Broadband Communication Network (IBCN) is an all optical network, it is certain that for a long period to come, the network will remain very heterogeneous, with a mixture of different physical media (fiber, coax and twisted pair), transmission systems (PDH, SDH, ADSL) and transport protocols (TCP/IP, AAL/ATM, frame relay). In the current work towards the IBCN, the ATM concept is considered the generic network protocol for both public and private network, with the ability to use different underlying transmission protocols and, through adaptation protocols, provide the appropriate services (old as well as new) to the customer. One of the major difficulties of heterogeneous network is the restriction that is usually given by the lowest common denominator, e.g. in terms of single channel capacity. A possible way to overcome these limitations is by extending the ATM concept with a multilink capability, that allows us to use separate resources as one common. The improved flexibility obtained by this protocol extension further allows a real time optimization of network and call configuration, without any impact on the quality of service seen from the user. This paper describes an example of an ATM based multilink protocol that has been experimentally implemented within the RACE project 'STRATOSPHERIC'. The paper outlines the complexity of introducing an extra network functionality compared with the added value, such as an improved ability to recover an error due to a malfunctioning network component.

  3. Optimized sampling strategy of Wireless sensor network for validation of remote sensing products over heterogeneous coarse-resolution pixel

    NASA Astrophysics Data System (ADS)

    Peng, J.; Liu, Q.; Wen, J.; Fan, W.; Dou, B.

    2015-12-01

    Coarse-resolution satellite albedo products are increasingly applied in geographical researches because of their capability to characterize the spatio-temporal patterns of land surface parameters. In the long-term validation of coarse-resolution satellite products with ground measurements, the scale effect, i.e., the mismatch between point measurement and pixel observation becomes the main challenge, particularly over heterogeneous land surfaces. Recent advances in Wireless Sensor Networks (WSN) technologies offer an opportunity for validation using multi-point observations instead of single-point observation. The difficulty is to ensure the representativeness of the WSN in heterogeneous areas with limited nodes. In this study, the objective is to develop a ground-based spatial sampling strategy through consideration of the historical prior knowledge and avoidance of the information redundancy between different sensor nodes. Taking albedo as an example. First, we derive monthly local maps of albedo from 30-m HJ CCD images a 3-year period. Second, we pick out candidate points from the areas with higher temporal stability which helps to avoid the transition or boundary areas. Then, the representativeness (r) of each candidate point is evaluated through the correlational analysis between the point-specific and area-average time sequence albedo vector. The point with the highest r was noted as the new sensor point. Before electing a new point, the vector component of the selected points should be taken out from the vectors in the following correlational analysis. The selection procedure would be ceased once if the integral representativeness (R) meets the accuracy requirement. Here, the sampling method is adapted to both single-parameter and multi-parameter situations. Finally, it is shown that this sampling method has been effectively worked in the optimized layout of Huailai remote sensing station in China. The coarse resolution pixel covering this station could be

  4. Maintaining robust connectivity in heterogeneous robotic networks

    NASA Astrophysics Data System (ADS)

    Cruz, P.; Fierro, R.; Lu, W.; Ferrari, S.

    2013-05-01

    In this paper, we are interested in exploiting the heterogeneity of a robotic network made of ground and aerial agents to sense multiple targets in a cluttered environment. Maintaining wireless communication on this type of networks is fundamentally important specially for cooperative purposes. The proposed heterogeneous network consists of ground sensors, e.g., OctoRoACHes, and aerial routers, e.g., quadrotors. Adaptive potential field methods are used to coordinate the ground mobile sensors. Moreover, a reward function for the aerial mobile wireless routers is formulated to guarantee communication coverage among the ground sensors and a fixed base station. A sub-optimal controller is proposed based on an approximate control policy iteration technique. Simulation results of a case study are presented to illustrate the proposed methodology.

  5. Application of wireless sensor networks to study flow over heterogeneous surfaces: flow over an isolated mountain in the marine atmosphere

    NASA Astrophysics Data System (ADS)

    Kleissl, J.; Dziobak, M. P.; Honrath, R. E.

    2004-12-01

    A combination of standard meteorological equipment (3d sonic anemometer, energy balance sensors) and Crossbow MPR400 (Mica2) wireless motes and sensorboards were deployed along the slope of Pico mountain in the Azores, Portugal, between z = 1200 m and z = 2300 m MSL. The isolated location and uniform, conic shape make Pico mountain an ideal location to study orographic effects. This experiment focuses on upslope and downslope flow. Cost effective wireless sensor technology allows for high density of observations in time and space as necessary for characterization of flows over heterogeneous surfaces. Thus the features of upslope and downslope flows (speed, location and duration) and their effect on atmospheric physics and chemistry (temperature, relative humidity) can be studied in great detail. Synchronous measurements of O3, CO, NOx, NOy and NMHC at the PICO-NARE observatory (Honrath et al. 2004) situated at the mountaintop give further clues on airmass origin and dispersion. Findings regarding the occurrence and impacts of upslope and downslope flow and the advantages and disadvantages of wireless sensors relative to standard meteorological instruments will be presented. In particular, practical issues of wireless sensor deployment, such as durability in harsh conditions, power management, accuracy, and cost will be discussed.

  6. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    PubMed Central

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  7. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    PubMed

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  8. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  9. Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Tang, Ming; Gross, Thilo

    2015-08-01

    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.

  10. MQ-MAC: A Multi-Constrained QoS-Aware Duty Cycle MAC for Heterogeneous Traffic in Wireless Sensor Networks

    PubMed Central

    Monowar, Muhammad Mostafa; Rahman, Md. Obaidur; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    Energy conservation is one of the striking research issues now-a-days for power constrained wireless sensor networks (WSNs) and hence, several duty-cycle based MAC protocols have been devised for WSNs in the last few years. However, assimilation of diverse applications with different QoS requirements (i.e., delay and reliability) within the same network also necessitates in devising a generic duty-cycle based MAC protocol that can achieve both the delay and reliability guarantee, termed as multi-constrained QoS, while preserving the energy efficiency. To address this, in this paper, we propose a Multi-constrained QoS-aware duty-cycle MAC for heterogeneous traffic in WSNs (MQ-MAC). MQ-MAC classifies the traffic based on their multi-constrained QoS demands. Through extensive simulation using ns-2 we evaluate the performance of MQ-MAC. MQ-MAC provides the desired delay and reliability guarantee according to the nature of the traffic classes as well as achieves energy efficiency. PMID:22163439

  11. Sensor Authentication in Collaborating Sensor Networks

    SciTech Connect

    Bielefeldt, Jake Uriah

    2014-11-01

    In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator Oi of Sensor Network Si to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks.

  12. Wireless Sensor Networks Approach

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  13. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick; Kyker, Ronald Dean

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  14. Cognitive Sensor Networks

    NASA Astrophysics Data System (ADS)

    Henderson, Thomas C.

    Our overall goal is to develop a cognitive architecture which will allow autonomous and robust operation of sensor-actuator networks. To achieve this, the perception, concept formation, action cycle will be informed by domain theories of signal analysis, physical phenomena, and behavior. Example scenarios include cognitive vehicles and buildings in which the system understands itself and the activities in and around it by means of distributed video and other sensors. This includes discovery of the cognitive system's own sensing and actuation capabilities.

  15. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  16. Operating a heterogeneous telescope network

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair; Bischoff, Karsten; Burgdorf, Martin; Cavanagh, Brad; Christian, Damien; Clay, Neil; Dickens, Rob; Economou, Frossie; Fadavi, Mehri; Frazer, Stephen; Granzer, Thomas; Grosvenor, Sandy; Hessman, Frederic V.; Jenness, Tim; Koratkar, Anuradha; Lehner, Matthew; Mottram, Chris; Naylor, Tim; Saunders, Eric S.; Solomos, Nikolaos; Steele, Iain A.; Tuparev, Georg; Vestrand, W. Thomas; White, Robert R.; Yost, Sarah

    2006-06-01

    In the last few years the ubiquitous availability of high bandwidth networks has changed the way both robotic and non-robotic telescopes operate, with single isolated telescopes being integrated into expanding "smart" telescope networks that can span continents and respond to transient events in seconds. The Heterogeneous Telescope Networks (HTN)* Consortium represents a number of major research groups in the field of robotic telescopes, and together we are proposing a standards based approach to providing interoperability between the existing proprietary telescope networks. We further propose standards for interoperability, and integration with, the emerging Virtual Observatory. We present the results of the first interoperability meeting held last year and discuss the protocol and transport standards agreed at the meeting, which deals with the complex issue of how to optimally schedule observations on geographically distributed resources. We discuss a free market approach to this scheduling problem, which must initially be based on ad-hoc agreements between the participants in the network, but which may eventually expand into a electronic market for the exchange of telescope time.

  17. Impact of high power interference sources in planning and deployment of wireless sensor networks and devices in the 2.4 GHz frequency band in heterogeneous environments.

    PubMed

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven’s power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  18. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    PubMed Central

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  19. Model-driven SOA for sensor networks

    NASA Astrophysics Data System (ADS)

    Ibbotson, John; Gibson, Christopher; Geyik, Sahin; Szymanski, Boleslaw K.; Mott, David; Braines, David; Klapiscak, Tom; Bergamaschi, Flavio

    2011-06-01

    Our previous work has explored the application of enterprise middleware techniques at the edge of the network to address the challenges of delivering complex sensor network solutions over heterogeneous communications infrastructures. In this paper, we develop this approach further into a practicable, semantically rich, model-based design and analysis approach that considers the sensor network and its contained services as a service-oriented architecture. The proposed model enables a systematic approach to service composition, analysis (using domain-specific techniques), and deployment. It also enables cross intelligence domain integration to simplify intelligence gathering, allowing users to express queries in structured natural language (Controlled English).

  20. Environmental Monitoring Using Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.

    2008-12-01

    Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired

  1. Wide area sensor network

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Nix, Tricia; Junker, Robert; Brentano, Josef; Khona, Dhiren

    2006-05-01

    The technical concept for this project has existed since the Chernobyl accident in 1986. A host of Eastern European nations have developed countrywide grid of sensors to monitor airborne radiation. The objective is to build a radiological sensor network for real-time monitoring of environmental radiation levels in order to provide data for warning, and consequentially the assessment of a nuclear event. A network of radiation measuring equipment consisting of gamma, neutron, alpha, and beta counters would be distributed over a large area (preferably on fire station roof tops) and connected by a wireless network to the emergency response center. The networks would be deployed in urban environments and would supply first responders and federal augmentation teams (including those from the U.S. Departments of Energy, Defense, Justice, and Homeland Security) with detailed, accurate information regarding the transport of radioactive environmental contaminants, so the agencies can provide a safe and effective response. A networked sensor capability would be developed, with fixed sensors deployed at key locations and in sufficient numbers, to provide adequate coverage for early warning, and input to post-event emergency response. An overall system description and specification will be provided, including detector characteristics, communication protocols, infrastructure and maintenance requirements, and operation procedures. The system/network can be designed for a specifically identified urban area, or for a general urban area scalable to cities of specified size. Data collected via the network will be transmitted directly to the appropriate emergency response center and shared with multiple agencies via the Internet or an Intranet. The data collected will be managed using commercial off - the - shelf Geographical Information System (GIS). The data will be stored in a database and the GIS software will aid in analysis and management of the data. Unique features of the

  2. Management of coalition sensor networks

    NASA Astrophysics Data System (ADS)

    Verma, Dinesh Chandra; Brown, Theodore; Ortega, Carolyn

    2010-04-01

    The management of sensor networks in coalition settings has been treated in a piecemeal fashion in the current literature without taking a comprehensive look at the complete life cycle of coalition networks, and determining the different aspects of network management that need to be taken into account for the management of sensor networks in those contexts. In this paper, we provide a holistic approach towards managing sensor networks encountered in the context of coalition operations. We describe how the sensor networks in a coalition ought to be managed at various stages of the life cycle, and the different operations that need to be taken into account for managing various aspects of the networks. In particular, we look at the FCAPS model for network management, and assess the applicability of the FCAPS model to the different aspects of sensor network management in a coalition setting.

  3. Establishing trust in decentralized smart sensor networks

    NASA Astrophysics Data System (ADS)

    Vagts, H.; Cosar, T.; Beyerer, J.

    2011-06-01

    Smart sensors can gather all kind of information and process it. Cameras are still dominating and smart cameras can offer services for face recognition or person tracking. Operators are building collaborations to cover a larger area, to save costs and to add more and different sensors. Cryptographic methods may achieve integrity and confidentiality between operators, but not trust. Even if a partner or one of his sensors is authenticated, no statements can be made about the quality of the sensor data. Hence, trust must be established between the partners and their sensors. Trust can be built based on past experience. A reputation system collects opinions of operators about the behavior of sensors and calculates trust based on these opinions. Many reputation systems have been proposed, e.g., for authentication of files in peer-topeer networks. This work presents a new reputation system, which is designed to calculate the trustworthiness of smart sensors and smart sensor systems. A new trust model, including functions to calculate and update trust on past experiences, is proposed. When fusing information of multiple sensors, it cannot always be reconstructed, which information led to a bad result. Hence, an approach for fair rating is shown. The proposed system has been realized in a Service-Oriented Architecture for easy integration in existing smart sensor systems, e.g., smart surveillance systems. The model itself can be used in every decentralized heterogeneous smart sensor network.

  4. Improvement of optical and acoustical technologies for the protection: Project IMOTEP: Network of heterogeneous sensor types for the protection of camps or mobile troops

    NASA Astrophysics Data System (ADS)

    Hengy, Sébastien; Laurenzis, Martin; Zimpfer, Véronique; Schneider, Armin

    2014-10-01

    Snipers have emerged as a major threat to troops in recent conflicts. To reduce this menace, the objective of the French- German Research Institute of Saint Louis (ISL) research project "IMOTEP" is to improve the detection of snipers on the battlefield. Our basic approach is to combine several sources of information for a fast and appropriate reaction when an unusual signal (e.g. a flash or a shot) is detected. The project includes several technologies developed at ISL: acoustical detection, fusion of distributed sensor network data, active imaging and 3D audio communication. The protection of camps, convoys or dismounted soldiers rests on a distributed acoustical sensor network that detects and localizes sniper attacks. An early estimation of the threat position is transmitted through a network to an active imaging system in order to confirm and refine this position by 3D imaging. The refined position is then sent to the control center which generates an alert message that displays the threat position using two formats: a tactical map and a 3D audio signal. In addition, the camp is protected by an ad-hoc sensor network used for intruder detection.

  5. remote sensor network

    NASA Astrophysics Data System (ADS)

    von Unold, Georg; Junker, Astrid; Altmann, Thomas

    2016-04-01

    High-throughput (HT) plant phenotyping systems enable the quantitative analysis of a variety of plant features in a fully automated fashion. The comprehensive phenomics infrastructure at IPK comprises three LemnaTec conveyor belt-based (plant-to-sensor) systems for the simultaneous analysis of large numbers of individual plants of different sizes. For monitoring of environmental conditions within the plant growth area and soil conditions in individual pots, highly modular and flexible remote sensing devices are required. We present the architecture of a wireless sensor network implemented in the HT plant phenotyping systems at IPK in the frame of the German Plant Phenotyping Network (DPPN). This system comprises 350 soil monitoring modules, each measuring water content, water matrix potential, temperature and electric conductivity. Furthermore small and large sensor platforms enable the continuous monitoring of environmental parameters such as incident photosynthetic active radiation, total radiation balance, relative humidity and CO2 concentration and more. Finally we present an introduction into data management and maintenance."

  6. Underwater Sensor Nodes and Networks

    PubMed Central

    Lloret, Jaime

    2013-01-01

    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489

  7. Mesh networked unattended ground sensors

    NASA Astrophysics Data System (ADS)

    Colling, Kent; Calcutt, Wade; Winston, Mark; Jones, Barry

    2006-05-01

    McQ has developed a family of low cost unattended ground sensors that utilize self-configured, mesh network communications for wireless sensing. Intended for use in an urban environment, the area monitored by the sensor system poses a communication challenge. A discussion into the sensor's communication performance and how it affects sensor installation and the operation of the system once deployed is presented.

  8. Communications for unattended sensor networks

    NASA Astrophysics Data System (ADS)

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  9. SNM-DAT: Simulation of a heterogeneous network for nuclear border security

    NASA Astrophysics Data System (ADS)

    Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D. M.; Priedhorsky, W.; Raby, E. Y.

    2007-08-01

    We approach the problem of detecting Special Nuclear Material (SNM) smuggling across open borders by modeling a heterogeneous sensor network using an agent-based simulation. Our simulation SNM Data Analysis Tool (SNM-DAT) combines fixed seismic, metal, and radiation detectors with a mobile gamma spectrometer. Decision making within the simulation determines threat levels by combined signatures. The spectrometer is a limited-availability asset, and is only deployed for substantial threats. "Crossers" can be benign or carrying shielded SNM. Signatures and sensors are physics based, allowing us to model realistic sensor networks. The heterogeneous network provides great gains in detection efficiency compared to a radiation-only system. We can improve the simulation through better sensor and terrain models, additional signatures, and crossers that mimic actual trans-border traffic. We expect further gains in our ability to design sensor networks as we learn the emergent properties of heterogeneous detection, and potential adversary responses.

  10. Self-attracting walk on heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Kim, Kanghun; Kyoung, Jaegu; Lee, D.-S.

    2016-05-01

    Understanding human mobility in cyberspace becomes increasingly important in this information era. While human mobility, memory-dependent and subdiffusive, is well understood in Euclidean space, it remains elusive in random heterogeneous networks like the World Wide Web. Here we study the diffusion characteristics of self-attracting walks, in which a walker is more likely to move to the locations visited previously than to unvisited ones, on scale-free networks. Under strong attraction, the number of distinct visited nodes grows linearly in time with larger coefficients in more heterogeneous networks. More interestingly, crossovers to sublinear growths occur in strongly heterogeneous networks. To understand these phenomena, we investigate the characteristic volumes and topology of the cluster of visited nodes and find that the reinforced attraction to hubs results in expediting exploration first but delaying later, as characterized by the scaling exponents that we derive. Our findings and analysis method can be useful for understanding various diffusion processes mediated by human.

  11. Self-attracting walk on heterogeneous networks.

    PubMed

    Kim, Kanghun; Kyoung, Jaegu; Lee, D-S

    2016-05-01

    Understanding human mobility in cyberspace becomes increasingly important in this information era. While human mobility, memory-dependent and subdiffusive, is well understood in Euclidean space, it remains elusive in random heterogeneous networks like the World Wide Web. Here we study the diffusion characteristics of self-attracting walks, in which a walker is more likely to move to the locations visited previously than to unvisited ones, on scale-free networks. Under strong attraction, the number of distinct visited nodes grows linearly in time with larger coefficients in more heterogeneous networks. More interestingly, crossovers to sublinear growths occur in strongly heterogeneous networks. To understand these phenomena, we investigate the characteristic volumes and topology of the cluster of visited nodes and find that the reinforced attraction to hubs results in expediting exploration first but delaying later, as characterized by the scaling exponents that we derive. Our findings and analysis method can be useful for understanding various diffusion processes mediated by human. PMID:27300913

  12. An ontology for sensor networks

    NASA Astrophysics Data System (ADS)

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon

    2010-05-01

    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility

  13. Geometric algorithms for sensor networks.

    PubMed

    Gao, Jie; Guibas, Leonidas

    2012-01-13

    This paper surveys the use of geometric methods for wireless sensor networks. The close relationship of sensor nodes with their embedded physical space imposes a unique geometric character on such systems. The physical locations of the sensor nodes greatly impact on system design in all aspects, from low-level networking and organization to high-level information processing and applications. This paper reviews work in the past 10 years on topics such as network localization, geometric routing, information discovery, data-centric routing and topology discovery. PMID:22124080

  14. Environmental Sensor Networks: A revolution in the earth system science?

    NASA Astrophysics Data System (ADS)

    Hart, Jane K.; Martinez, Kirk

    2006-10-01

    Environmental Sensor Networks (ESNs) facilitate the study of fundamental processes and the development of hazard response systems. They have evolved from passive logging systems that require manual downloading, into 'intelligent' sensor networks that comprise a network of automatic sensor nodes and communications systems which actively communicate their data to a Sensor Network Server (SNS) where these data can be integrated with other environmental datasets. The sensor nodes can be fixed or mobile and range in scale appropriate to the environment being sensed. ESNs range in scale and function and we have reviewed over 50 representative examples. Large Scale Single Function Networks tend to use large single purpose nodes to cover a wide geographical area. Localised Multifunction Sensor Networks typically monitor a small area in more detail, often with wireless ad-hoc systems. Biosensor Networks use emerging biotechnologies to monitor environmental processes as well as developing proxies for immediate use. In the future, sensor networks will integrate these three elements ( Heterogeneous Sensor Networks). The communications system and data storage and integration (cyberinfrastructure) aspects of ESNs are discussed, along with current challenges which need to be addressed. We argue that Environmental Sensor Networks will become a standard research tool for future Earth System and Environmental Science. Not only do they provide a 'virtual' connection with the environment, they allow new field and conceptual approaches to the study of environmental processes to be developed. We suggest that although technological advances have facilitated these changes, it is vital that Earth Systems and Environmental Scientists utilise them.

  15. An Overview of the Sensor Networks

    NASA Astrophysics Data System (ADS)

    Ikegami, Tetsushi

    Recently, the sensor network technology attracts a great deal of attention achieving a safe and comfortable ubiquitous society. The sensor networks are already used in environment and disaster monitoring, medical care, logistics and transportation. This paper aimed to understand the outline of the sensor network technology centering on the wireless sensor network technology.

  16. Networked Sensor Arrays

    SciTech Connect

    R. J. Tighe

    2002-10-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical.

  17. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  18. Network compensation for missing sensors

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.

    1991-01-01

    A network learning translation invariance algorithm to compute interpolation functions is presented. This algorithm with one fixed receptive field can construct a linear transformation compensating for gain changes, sensor position jitter, and sensor loss when there are enough remaining sensors to adequately sample the input images. However, when the images are undersampled and complete compensation is not possible, the algorithm need to be modified. For moderate sensor losses, the algorithm works if the transformation weight adjustment is restricted to the weights to output units affected by the loss.

  19. Environmental Sensor Networks: A revolution in Earth System Science?

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Hart, J. K.

    2007-12-01

    Environmental Sensor Networks (ESNs) facilitate the study of fundamental processes and the development of hazard response systems. They have evolved from passive logging systems that require manual downloading, into 'intelligent' sensor networks that comprise a network of automatic sensor nodes and communications systems which actively communicate their data to a Sensor Network Server (SNS) where these data can be integrated with other environmental datasets. At present ESN's can be classified into three types: Large Scale Single Function Networks (which use large single purpose nodes to cover a wide geographical area), Localised Multifunction Sensor Networks (typically monitor a small area in more detail, often with wireless ad-hoc systems), and Biosensor Networks (which use emerging biotechnologies to monitor environmental processes as well as developing proxies for immediate use). In the future, sensor networks will integrate these three elements (Heterogeneous Sensor Networks). We describe the development of a glacial ESN (Glacsweb) to monitor subglacial processes in order to understand glacier response to climate change. We discuss the advantages of the new system, and research highlights, as well as the problems of real world ESNs. We argue that Environmental Sensor Networks will become a standard research tool for future Earth System and Environmental Science. Not only do they provide a 'virtual' connection with the environment, they allow new field and conceptual approaches to the study of environmental processes to be developed. We suggest that although technological advances have facilitated these changes, it is vital that Earth Systems and Environmental Scientists utilise them.

  20. Blind and myopic ants in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Lee, D.-S.; Kahng, B.

    2014-11-01

    The diffusion processes on complex networks may be described by different Laplacian matrices due to heterogeneous connectivity. Here we investigate the random walks of blind ants and myopic ants on heterogeneous networks: While a myopic ant hops to a neighbor node every step, a blind ant may stay or hop with probabilities that depend on node connectivity. By analyzing the trajectories of blind ants, we show that the asymptotic behaviors of both random walks are related by rescaling time and probability with node connectivity. Using this result, we show how the small eigenvalues of the Laplacian matrices generating the two random walks are related. As an application, we show how the return-to-origin probability of a myopic ant can be used to compute the scaling behaviors of the Edwards-Wilkinson model, a representative model of load balancing on networks.

  1. Modeling heterogeneous polymer-grafted nanoparticle networks

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Mbanga, Badel; Yashin, Victor; Balazs, Anna

    Via a dynamic 3D computational approach, we simulate the heterogeneous polymer-grafted nanoparticle networks. The nanoparticles rigid cores are decorated with a corona of grafted polymers, which contain reactive functional groups at the chain ends. With the overlap of grafted polymers, these reactive groups can form weak labile bonds, which can reform after breakage, or stronger bonds, which rupture irreversibly and thus, the nanoparticles are interconnected by dual cross-links. Previous work has been done on homogeneous networks, while we introduce the heterogeneity by considering two types of particles having different reactive functional groups, so that the labile bond energy varies depending on types of the two end reactive groups. We study the effect of tensile and rotational deformations on the network morphology, and observe, in particular, the phase separation of two types of particles. Our results will provide guidelines for designing transformable material that can controllably change structure under mechanical action.

  2. Blind and myopic ants in heterogeneous networks.

    PubMed

    Hwang, S; Lee, D-S; Kahng, B

    2014-11-01

    The diffusion processes on complex networks may be described by different Laplacian matrices due to heterogeneous connectivity. Here we investigate the random walks of blind ants and myopic ants on heterogeneous networks: While a myopic ant hops to a neighbor node every step, a blind ant may stay or hop with probabilities that depend on node connectivity. By analyzing the trajectories of blind ants, we show that the asymptotic behaviors of both random walks are related by rescaling time and probability with node connectivity. Using this result, we show how the small eigenvalues of the Laplacian matrices generating the two random walks are related. As an application, we show how the return-to-origin probability of a myopic ant can be used to compute the scaling behaviors of the Edwards-Wilkinson model, a representative model of load balancing on networks. PMID:25493841

  3. A Wireless Sensor Network For Soil Monitoring

    NASA Astrophysics Data System (ADS)

    Szlavecz, K.; Cogan, J.; Musaloiu-Elefteri, R.; Small, S.; Terzis, A.; Szalay, A.

    2005-12-01

    The most spatially complex stratum of a terrestrial ecosystem is its soil. Among the major challenges of studying the soil ecosystem are the diversity and the cryptic nature of biota, and the enormous heterogeneity of the soil substrate. Often this patchiness drives spatial distribution of soil organisms, yet our knowledge on the spatio-temporal patterns of soil conditions is limited. To monitor the environmental conditions at biologically meaningful spatial scales we have developed and deployed a wireless sensor network of thirty nodes. Each node is based on a MICAz mote connected to a custom-built sensor suite that includes a Watermark soil moisture sensor, an Irrometer soil temperature sensor, and sensors capable of recording ambient temperature and light intensity. To assess CO2 production at the ground level a subset of the nodes is equipped with Telaire 6004 CO2 sensor. We developed the software running on the motes from scratch, using the TinyOS development environment. Each mote collects measurements every minute, and stores them persistently in a non-volatile memory. The decision to store data locally at each node enables us to reliably retrieve the data in the face of network losses and premature node failures due to power depletion. Collected measurements are retrieved over the wireless network through a PC-class computer acting as a gateway between the sensor network and the Internet. Considering that motes are battery powered, the largest obstacle hindering long-term sensor network deployments is power consumption. To address this problem, our software powers down sensors between sampling cycles and turns off the radio (the most energy prohibitive mote component) when not in use. By doing so we were able to increase node lifetime by a factor of ten. We collected field data over several weeks. The data was ingested into a SQL Server database, which provides data access through a .NET web services interface. The database provides functions for spatial

  4. A Survey on Virtualization of Wireless Sensor Networks

    PubMed Central

    Islam, Md. Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  5. A survey on virtualization of Wireless Sensor Networks.

    PubMed

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  6. Detectability of communities in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo

    2013-07-01

    Communities are fundamental entities for the characterization of the structure of real networks. The standard approach to the identification of communities in networks is based on the optimization of a quality function known as modularity. Although modularity has been at the center of an intense research activity and many methods for its maximization have been proposed, not much is yet known about the necessary conditions that communities need to satisfy in order to be detectable with modularity maximization methods. Here, we develop a simple theory to establish these conditions, and we successfully apply it to various classes of network models. Our main result is that heterogeneity in the degree distribution helps modularity to correctly recover the community structure of a network and that, in the realistic case of scale-free networks with degree exponent γ<2.5, modularity is always able to detect the presence of communities.

  7. Detectability of communities in heterogeneous networks.

    PubMed

    Radicchi, Filippo

    2013-07-01

    Communities are fundamental entities for the characterization of the structure of real networks. The standard approach to the identification of communities in networks is based on the optimization of a quality function known as modularity. Although modularity has been at the center of an intense research activity and many methods for its maximization have been proposed, not much is yet known about the necessary conditions that communities need to satisfy in order to be detectable with modularity maximization methods. Here, we develop a simple theory to establish these conditions, and we successfully apply it to various classes of network models. Our main result is that heterogeneity in the degree distribution helps modularity to correctly recover the community structure of a network and that, in the realistic case of scale-free networks with degree exponent γ<2.5, modularity is always able to detect the presence of communities. PMID:23944399

  8. Energy efficient sensor network implementations

    SciTech Connect

    Frigo, Janette R; Raby, Eric Y; Brennan, Sean M; Kulathumani, Vinod; Rosten, Ed; Wolinski, Christophe; Wagner, Charles; Charot, Francois

    2009-01-01

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  9. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  10. Energy management in sensor networks.

    PubMed

    Stankovic, John A; He, Tian

    2012-01-13

    This paper presents a holistic view of energy management in sensor networks. We first discuss hardware designs that support the life cycle of energy, namely: (i) energy harvesting, (ii) energy storage and (iii) energy consumption and control. Then, we discuss individual software designs that manage energy consumption in sensor networks. These energy-aware designs include media access control, routing, localization and time-synchronization. At the end of this paper, we present a case study of the VigilNet system to explain how to integrate various types of energy management techniques to achieve collaborative energy savings in a large-scale deployed military surveillance system. PMID:22124081

  11. Distributed policy based access to networked heterogeneous ISR data sources

    NASA Astrophysics Data System (ADS)

    Bent, G.; Vyvyan, D.; Wood, David; Zerfos, Petros; Calo, Seraphin

    2010-04-01

    Within a coalition environment, ad hoc Communities of Interest (CoI's) come together, perhaps for only a short time, with different sensors, sensor platforms, data fusion elements, and networks to conduct a task (or set of tasks) with different coalition members taking different roles. In such a coalition, each organization will have its own inherent restrictions on how it will interact with the others. These are usually stated as a set of policies, including security and privacy policies. The capability that we want to enable for a coalition operation is to provide access to information from any coalition partner in conformance with the policies of all. One of the challenges in supporting such ad-hoc coalition operations is that of providing efficient access to distributed sources of data, where the applications requiring the data do not have knowledge of the location of the data within the network. To address this challenge the International Technology Alliance (ITA) program has been developing the concept of a Dynamic Distributed Federated Database (DDFD), also know as a Gaian Database. This type of database provides a means for accessing data across a network of distributed heterogeneous data sources where access to the information is controlled by a mixture of local and global policies. We describe how a network of disparate ISR elements can be expressed as a DDFD and how this approach enables sensor and other information sources to be discovered autonomously or semi-autonomously and/or combined, fused formally defined local and global policies.

  12. Features and heterogeneities in growing network models

    NASA Astrophysics Data System (ADS)

    Ferretti, Luca; Cortelezzi, Michele; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra

    2012-06-01

    Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an “effective fitness” for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.

  13. Dynamics on modular networks with heterogeneous correlations

    SciTech Connect

    Melnik, Sergey; Porter, Mason A.; Mucha, Peter J.; Gleeson, James P.

    2014-06-15

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  14. Epidemic Extinction and Control in Heterogeneous Networks

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Schwartz, Ira B.

    2016-07-01

    We consider epidemic extinction in finite networks with a broad variation in local connectivity. Generalizing the theory of large fluctuations to random networks with a given degree distribution, we are able to predict the most probable, or optimal, paths to extinction in various configurations, including truncated power laws. We find that paths for heterogeneous networks follow a limiting form in which infection first decreases in low-degree nodes, which triggers a rapid extinction in high-degree nodes, and finishes with a residual low-degree extinction. The usefulness of our approach is further demonstrated through optimal control strategies that leverage the dependence of finite-size fluctuations on network topology. Interestingly, we find that the optimal control is a mix of treating both high- and low-degree nodes based on theoretical predictions, in contrast to methods that ignore dynamical fluctuations.

  15. Reliability of wireless sensor networks.

    PubMed

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo

    2014-01-01

    Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553

  16. The implementation of a standards based heterogeneous network

    SciTech Connect

    Eldridge, J.M.; Tolendino, L.F.

    1991-08-05

    Computer networks, supporting an organization's activities, are prevalent and very important to the organization's mission. Implementing a heterogenous organizational network allows the staff to select the computing environment that best supports their job requirements. This paper outlines the lessons learned implementing a heterogenous computer network based on networking standards such as TCP/IP and Ethernet. Such a network is a viable alternative to a proprietary, vendor supported network and can provide all the functionality customers expect in a computer network. 2 figs.

  17. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  18. RESTFul based heterogeneous Geoprocessing workflow interoperation for Sensor Web Service

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Chen, Nengcheng; Di, Liping

    2012-10-01

    Advanced sensors on board satellites offer detailed Earth observations. A workflow is one approach for designing, implementing and constructing a flexible and live link between these sensors' resources and users. It can coordinate, organize and aggregate the distributed sensor Web services to meet the requirement of a complex Earth observation scenario. A RESTFul based workflow interoperation method is proposed to integrate heterogeneous workflows into an interoperable unit. The Atom protocols are applied to describe and manage workflow resources. The XML Process Definition Language (XPDL) and Business Process Execution Language (BPEL) workflow standards are applied to structure a workflow that accesses sensor information and one that processes it separately. Then, a scenario for nitrogen dioxide (NO2) from a volcanic eruption is used to investigate the feasibility of the proposed method. The RESTFul based workflows interoperation system can describe, publish, discover, access and coordinate heterogeneous Geoprocessing workflows.

  19. Heterogeneous Force Chains in Cellularized Biopolymer Network

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher Allen Rucksack; Sun, Bo; Jiao, Yang

    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the focal adhesion sites. A force-based stochastic relaxation method is employed to obtain force-balanced network under cell contraction. We find that the majority of the forces are carried by a small number of heterogeneous force chains emerged from the contracting cells. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to the reorientation induced by cell contraction. Large fluctuations of the forces along different force chains are observed. Importantly, the decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure could support long-range mechanical signaling between cells.

  20. Training neural networks with heterogeneous data.

    PubMed

    Drakopoulos, John A; Abdulkader, Ahmad

    2005-01-01

    Data pruning and ordered training are two methods and the results of a small theory that attempts to formalize neural network training with heterogeneous data. Data pruning is a simple process that attempts to remove noisy data. Ordered training is a more complex method that partitions the data into a number of categories and assigns training times to those assuming that data size and training time have a polynomial relation. Both methods derive from a set of premises that form the 'axiomatic' basis of our theory. Both methods have been applied to a time-delay neural network-which is one of the main learners in Microsoft's Tablet PC handwriting recognition system. Their effect is presented in this paper along with a rough estimate of their effect on the overall multi-learner system. The handwriting data and the chosen language are Italian. PMID:16095874

  1. Hybrid architecture for building secure sensor networks

    NASA Astrophysics Data System (ADS)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  2. Computational drug repositioning through heterogeneous network clustering

    PubMed Central

    2013-01-01

    Background Given the costly and time consuming process and high attrition rates in drug discovery and development, drug repositioning or drug repurposing is considered as a viable strategy both to replenish the drying out drug pipelines and to surmount the innovation gap. Although there is a growing recognition that mechanistic relationships from molecular to systems level should be integrated into drug discovery paradigms, relatively few studies have integrated information about heterogeneous networks into computational drug-repositioning candidate discovery platforms. Results Using known disease-gene and drug-target relationships from the KEGG database, we built a weighted disease and drug heterogeneous network. The nodes represent drugs or diseases while the edges represent shared gene, biological process, pathway, phenotype or a combination of these features. We clustered this weighted network to identify modules and then assembled all possible drug-disease pairs (putative drug repositioning candidates) from these modules. We validated our predictions by testing their robustness and evaluated them by their overlap with drug indications that were either reported in published literature or investigated in clinical trials. Conclusions Previous computational approaches for drug repositioning focused either on drug-drug and disease-disease similarity approaches whereas we have taken a more holistic approach by considering drug-disease relationships also. Further, we considered not only gene but also other features to build the disease drug networks. Despite the relative simplicity of our approach, based on the robustness analyses and the overlap of some of our predictions with drug indications that are under investigation, we believe our approach could complement the current computational approaches for drug repositioning candidate discovery. PMID:24564976

  3. Availability Issues in Wireless Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  4. Mobile sensor network noise reduction and recalibration using a Bayesian network

    NASA Astrophysics Data System (ADS)

    Xiang, Y.; Tang, Y.; Zhu, W.

    2016-02-01

    People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potential for atmospheric research. However, systems based on low-cost air quality sensors often suffer from sensor noise and drift. For the sensing systems to operate stably and reliably in real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and recalibrate the drifted sensors simultaneously. Our method improves upon the state-of-art Bayesian belief network techniques by incorporating the virtual evidence and adjusting the sensor calibration functions recursively.Specifically, we have (1) designed a system based on the Bayesian belief network to detect and recover the abnormal readings, (2) developed methods to update the sensor calibration functions infield without requirement of ground truth, and (3) extended the Bayesian network with virtual evidence for infield sensor recalibration. To validate our technique, we have tested our technique with metal oxide sensors measuring NO2, CO, and O3 in a real-world deployment. Compared with the existing Bayesian belief network techniques, results based on our experiment setup demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.

  5. An energy-aware routing protocol in wireless sensor networks.

    PubMed

    Liu, Ming; Cao, Jiannong; Chen, Guihai; Wang, Xiaomin

    2009-01-01

    The most important issue that must be solved in designing a data gathering algorithm for wireless sensor networks (WSNS) is how to save sensor node energy while meeting the needs of applications/users. In this paper, we propose a novel energy-aware routing protocol (EAP) for a long-lived sensor network. EAP achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes. EAP introduces a new clustering parameter for cluster head election, which can better handle the heterogeneous energy capacities. Furthermore, it also introduces a simple but efficient approach, namely, intra-cluster coverage to cope with the area coverage problem. We use a simple temperature sensing application to evaluate the performance of EAP and results show that our protocol significantly outperforms LEACH and HEED in terms of network lifetime and the amount of data gathered. PMID:22389610

  6. Autonomic and Coevolutionary Sensor Networking

    NASA Astrophysics Data System (ADS)

    Boonma, Pruet; Suzuki, Junichi

    (WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.

  7. Smart border: ad-hoc wireless sensor networks for border surveillance

    NASA Astrophysics Data System (ADS)

    He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser

    2011-06-01

    Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.

  8. Sensor networks and microsystems: get smarter!

    NASA Astrophysics Data System (ADS)

    Thiel, David V.; Lisner, Peter C.

    2005-02-01

    The ultimate goal of micro-systems is ad hoc arrays of wireless, self powered intelligent sensors which self-assemble on installation and adjust to a changing number of sensors and/or changing sensor location. The sensors and the network infrastructure must be low cost, disposable (recyclable), unobtrusive and these ultimate goals impact on all aspects of sensor design and network protocols. In this paper, a number of strategies employed to achieve these goals are outlined. In particular, some recent technological developments have facilitated more efficient sensor networks. These include smart antennas, low power electronics and sensors, creative methods of data reduction and "tipping bucket" data streaming. Sensor networks with lifetimes of more than one year are now possible.

  9. Social Trust Prediction Using Heterogeneous Networks

    PubMed Central

    HUANG, JIN; NIE, FEIPING; HUANG, HENG; TU, YI-CHENG; LEI, YU

    2014-01-01

    Along with increasing popularity of social websites, online users rely more on the trustworthiness information to make decisions, extract and filter information, and tag and build connections with other users. However, such social network data often suffer from severe data sparsity and are not able to provide users with enough information. Therefore, trust prediction has emerged as an important topic in social network research. Traditional approaches are primarily based on exploring trust graph topology itself. However, research in sociology and our life experience suggest that people who are in the same social circle often exhibit similar behaviors and tastes. To take advantage of the ancillary information for trust prediction, the challenge then becomes what to transfer and how to transfer. In this article, we address this problem by aggregating heterogeneous social networks and propose a novel joint social networks mining (JSNM) method. Our new joint learning model explores the user-group-level similarity between correlated graphs and simultaneously learns the individual graph structure; therefore, the shared structures and patterns from multiple social networks can be utilized to enhance the prediction tasks. As a result, we not only improve the trust prediction in the target graph but also facilitate other information retrieval tasks in the auxiliary graphs. To optimize the proposed objective function, we use the alternative technique to break down the objective function into several manageable subproblems. We further introduce the auxiliary function to solve the optimization problems with rigorously proved convergence. The extensive experiments have been conducted on both synthetic and real- world data. All empirical results demonstrate the effectiveness of our method. PMID:24729776

  10. Collaborative Clustering for Sensor Networks

    NASA Technical Reports Server (NTRS)

    Wagstaff. Loro :/; Green Jillian; Lane, Terran

    2011-01-01

    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events, as well as faster responses such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if individual nodes can communicate directly with their neighbors. Previously, a method was developed by which machine learning classification algorithms could collaborate to achieve high performance autonomously (without requiring human intervention). This method worked for supervised learning algorithms, in which labeled data is used to train models. The learners collaborated by exchanging labels describing the data. The new advance enables clustering algorithms, which do not use labeled data, to also collaborate. This is achieved by defining a new language for collaboration that uses pair-wise constraints to encode useful information for other learners. These constraints specify that two items must, or cannot, be placed into the same cluster. Previous work has shown that clustering with these constraints (in isolation) already improves performance. In the problem formulation, each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. Each learner clusters its data and then selects a pair of items about which it is uncertain and uses them to query its neighbors. The resulting feedback (a must and cannot constraint from each neighbor) is combined by the learner into a consensus constraint, and it then reclusters its data while incorporating the new constraint. A strategy was also proposed for cleaning the resulting constraint sets, which may contain conflicting constraints; this improves performance significantly. This approach has been applied to collaborative

  11. A Neural Network Approach to Smarter Sensor Networks for Water Quality Monitoring

    PubMed Central

    O'Connor, Edel; Smeaton, Alan F.; O'Connor, Noel E.; Regan, Fiona

    2012-01-01

    Environmental monitoring is evolving towards large-scale and low-cost sensor networks operating reliability and autonomously over extended periods of time. Sophisticated analytical instrumentation such as chemo-bio sensors present inherent limitations because of the number of samples that they can take. In order to maximize their deployment lifetime, we propose the coordination of multiple heterogeneous information sources. We use rainfall radar images and information from a water depth sensor as input to a neural network (NN) to dictate the sampling frequency of a phosphate analyzer at the River Lee in Cork, Ireland. This approach shows varied performance for different times of the year but overall produces output that is very satisfactory for the application context in question. Our study demonstrates that even with limited training data, a system for controlling the sampling rate of the nutrient sensor can be set up and can improve the efficiency of the more sophisticated nodes of the sensor network. PMID:22666048

  12. Orchestrated management of heterogeneous sensors incorporating feedback from intelligence assets

    NASA Astrophysics Data System (ADS)

    Sarkale, Yugandhar; Chong, Edwin K. P.

    2015-05-01

    We develop a method for autonomous management of multiple heterogeneous sensors mounted on unmanned aerial vehicles (UAVs) for multitarget tracking. The main contribution of the paper is incorporation of feedback received from intelligence assets (humans) on priorities assigned to specific targets. We formulate the problem as a partially observable Markov decision processes (POMDP) where information received from assets is captured as a penalty on the cost function. The resulting constrained optimization problem is solved using an augmented Lagrangian method. Information obtained from sensors and assets is fused centrally for guiding the UAVs to track these targets.

  13. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  14. Time to Revisit the Heterogeneous Telescope Network

    NASA Astrophysics Data System (ADS)

    Hessman, F. V.

    The "Heterogeneous Telescope Network" (HTN) was founded in 2005 as a loose collaboration of people somehow associated with robotic telescopes and/or projects interested in the transient universe. Other than being a very interesting forum for the exchange of ideas, the only lasting contribution of the HTN was a proposed protocol for the operation of a loose e-market for the exchange of telescope time (Allan et al. 2006; White & Allan 2007). Since the last formal meeting in 2007, the HTN has gone into a "Dornröschenschlaf" (a better word than "hibernation") : the players and interest are there, but the public visibility and activity is not. Although the participants knew and know that global networking is the way of the future for many types of science, various things have kept the HTN from taking the idea and actually implementing it: work on simply getting one's own system to work (e.g. myself), career paths of major players (e.g. Allan), dealing with the complexity of ones' own network (TALONS, RoboNet, LCO), and - most importantly - no common science driver big enough to push the participants to try it in earnest. Things have changed, however: robotic telescopes have become easier to create and operate, private networks have matured, large-scale consortia have become more common, event reporting using VOEvent has become the global standard and has a well-defined infrastructure, and large-scale sources of new objects and events are operating or will soon be operating (OGLE, CSS, Pan-STARRs, GAIA). I will review the scientific and sociological prospects for re-invigorating the HTN idea and invite discussion.

  15. 3D heterogeneous sensor system on a chip for defense and security applications

    NASA Astrophysics Data System (ADS)

    Bhansali, Shekhar; Chapman, Glenn H.; Friedman, Eby G.; Ismail, Yehea; Mukund, P. R.; Tebbe, Dennis; Jain, Vijay K.

    2004-09-01

    This paper describes a new concept for ultra-small, ultra-compact, unattended multi-phenomenological sensor systems for rapid deployment, with integrated classification-and-decision-information extraction capability from a sensed environment. We discuss a unique approach, namely a 3-D Heterogeneous System on a Chip (HSoC) in order to achieve a minimum 10X reduction in weight, volume, and power and a 10X or greater increase in capability and reliability -- over the alternative planar approaches. These gains will accrue from (a) the avoidance of long on-chip interconnects and chip-to-chip bonding wires, and (b) the cohabitation of sensors, preprocessing analog circuitry, digital logic and signal processing, and RF devices in the same compact volume. A specific scenario is discussed in detail wherein a set of four types of sensors, namely an array of acoustic and seismic sensors, an active pixel sensor array, and an uncooled IR imaging array are placed on a common sensor plane. The other planes include an analog plane consisting of transductors and A/D converters. The digital processing planes provide the necessary processing and intelligence capability. The remaining planes provide for wireless communications/networking capability. When appropriate, this processing and decision-making will be accomplished on a collaborative basis among the distributed sensor nodes through a wireless network.

  16. Modelling the Energy Efficient Sensor Nodes for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Dahiya, R.; Arora, A. K.; Singh, V. R.

    2015-09-01

    Energy is an important requirement of wireless sensor networks for better performance. A widely employed energy-saving technique is to place nodes in sleep mode, corresponding to low-power consumption as well as to reduce operational capabilities. In this paper, Markov model of a sensor network is developed. The node is considered to enter a sleep mode. This model is used to investigate the system performance in terms of energy consumption, network capacity and data delivery delay.

  17. Application of particle swarm techniques in sensor network configuration

    NASA Astrophysics Data System (ADS)

    Tillett, Jason; Yang, Shanchieh J.; Rao, Raghuveer; Sahin, Ferat

    2005-05-01

    A decentralized version of particle swarm optimization called the distributed particle swarm optimization (DPSO) approach is formulated and applied to the generation of sensor network configurations or topologies so that the deleterious effects of hidden nodes and asymmetric links on the performance of wireless sensor networks are minimized. Three different topology generation schemes, COMPOW, Cone-Based and the DPSO--based schemes are examined using ns-2. Simulations are executed by varying the node density and traffic rates. Results contrasting heterogeneous vs. homogeneous power reveal that an important metric for a sensor network topology may involve consideration of hidden nodes and asymmetric links, and demonstrate the effect of spatial reuse on the potency of topology generators.

  18. Spatially correlated heterogeneous aspirations to enhance network reciprocity

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun; Nakata, Makoto; Hagishima, Aya; Ikegaya, Naoki

    2012-02-01

    Perc & Wang demonstrated that aspiring to be the fittest under conditions of pairwise strategy updating enhances network reciprocity in structured populations playing 2×2 Prisoner's Dilemma games (Z. Wang, M. Perc, Aspiring to the fittest and promoted of cooperation in the Prisoner's Dilemma game, Physical Review E 82 (2010) 021115; M. Perc, Z. Wang, Heterogeneous aspiration promotes cooperation in the Prisoner's Dilemma game, PLOS one 5 (12) (2010) e15117). Through numerical simulations, this paper shows that network reciprocity is even greater if heterogeneous aspirations are imposed. We also suggest why heterogeneous aspiration fosters network reciprocity. It distributes strategy updating speed among agents in a manner that fortifies the initially allocated cooperators' clusters against invasion. This finding prompted us to further enhance the usual heterogeneous aspiration cases for heterogeneous network topologies. We find that a negative correlation between degree and aspiration level does extend cooperation among heterogeneously structured agents.

  19. Percolation and permeability of heterogeneous fracture networks

    NASA Astrophysics Data System (ADS)

    Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François

    2013-04-01

    Natural fracture fields are almost necessarily heterogeneous with a fracture density varying with space. Two classes of variations are quite frequent. In the first one, the fracture density is decreasing from a given surface; the fracture density is usually (but not always see [1]) an exponential function of depth as it has been shown by many measurements. Another important example of such an exponential decrease consists of the Excavated Damaged Zone (EDZ) which is created by the excavation process of a gallery [2,3]. In the second one, the fracture density undergoes some local random variations around an average value. This presentation is mostly focused on the first class and numerical samples are generated with an exponentially decreasing density from a given plane surface. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [4]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole fractured medium to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data

  20. Distributed sensor networks with collective computation

    SciTech Connect

    Lanman, D. R.

    2001-01-01

    Simulations of a network of N sensors have been performed. The simulation space contains a number of sound sources and a large number of sensors. Each sensor is equipped with an omni-directional microphone and is capable of measuring only the time of arrival of a signal. Sensors are able to wirelessly transmit and receive packets of information, and have some computing power. The sensors were programmed to merge all information (received packets as well as local measurements) into a 'world view' for that node. This world view is then transmitted. In this way, information can slowly diffuse across the network. One node was monitored in the network as a proxy for when information had diffused across the network. Simulations demonstrated that the energy expended per sensor per time step was approximately independent of N.

  1. A Survey of Middleware for Sensor and Network Virtualization

    PubMed Central

    Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd.

    2014-01-01

    Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization. PMID:25615737

  2. Energy optimization in mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while

  3. On computer vision in wireless sensor networks.

    SciTech Connect

    Berry, Nina M.; Ko, Teresa H.

    2004-09-01

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an image capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.

  4. Networked sensors for the combat forces

    NASA Astrophysics Data System (ADS)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details

  5. Distributed neural computations for embedded sensor networks

    NASA Astrophysics Data System (ADS)

    Peckens, Courtney A.; Lynch, Jerome P.; Pei, Jin-Song

    2011-04-01

    Wireless sensing technologies have recently emerged as an inexpensive and robust method of data collection in a variety of structural monitoring applications. In comparison with cabled monitoring systems, wireless systems offer low-cost and low-power communication between a network of sensing devices. Wireless sensing networks possess embedded data processing capabilities which allow for data processing directly at the sensor, thereby eliminating the need for the transmission of raw data. In this study, the Volterra/Weiner neural network (VWNN), a powerful modeling tool for nonlinear hysteretic behavior, is decentralized for embedment in a network of wireless sensors so as to take advantage of each sensor's processing capabilities. The VWNN was chosen for modeling nonlinear dynamic systems because its architecture is computationally efficient and allows computational tasks to be decomposed for parallel execution. In the algorithm, each sensor collects it own data and performs a series of calculations. It then shares its resulting calculations with every other sensor in the network, while the other sensors are simultaneously exchanging their information. Because resource conservation is important in embedded sensor design, the data is pruned wherever possible to eliminate excessive communication between sensors. Once a sensor has its required data, it continues its calculations and computes a prediction of the system acceleration. The VWNN is embedded in the computational core of the Narada wireless sensor node for on-line execution. Data generated by a steel framed structure excited by seismic ground motions is used for validation of the embedded VWNN model.

  6. Sustainable coastal sensor networks: technologies and challenges

    NASA Astrophysics Data System (ADS)

    Carapezza, Edward M.; Butman, Jerry; Babb, Ivar; Bucklin, Ann

    2008-04-01

    This paper describes a distributed sensor network for a coastal maritime security system. This concept incorporates a network of small passive and active multi-phenomenological unattended sensors and shore based optical sensors to detect, classify, and track submerged threat objects approaching high value coastal assets, such as ports, harbors, residential, commercial, and military facilities and areas. The network of unattended, in-water sensors perform the initial detection, classification, and coarse tracking and then queues shore based optical laser radar sensors. These shore-based sensors perform a queued sector search to develop a refined track on the submerged threat objects that were initially detected by the unattended sensor network. Potential threat objects include swimmers, small unmanned underwater vehicles (UUV's), small submarines, and submerged barges. All of these threats have the potential to transport threat objects such as explosives, chemical, biological, radiological, and nuclear materials. Reliable systems with low false alarm rates (FAR) are proposed. Tens to hundreds of low cost passive sensors are proposed to be deployed conjunctively with several active acoustic and optical sensors in threat and facility dependant patterns to maximize the detection, tracking and classification of submerged threat objects. The integrated command and control system and novel microbial fuel cells to power these sensor networks are also described.

  7. Time-domain fiber loop ringdown sensor and sensor network

    NASA Astrophysics Data System (ADS)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and

  8. OGC standards for end-to-end sensor network integration

    NASA Astrophysics Data System (ADS)

    Headley, K. L.; Broering, A.; O'Reilly, T. C.; Toma, D.; Del Rio, J.; Bermudez, L. E.; Zedlitz, J.; Johnson, G.; Edgington, D.

    2010-12-01

    Many sensor networks have been deployed to monitor Earth's environment, and more are planned for the future. Environmental sensors have continuously improved by becoming smaller, cheaper, more intelligent, and more reliable. But due to the large number of sensor manufacturers and accompanying protocols, integrating diverse sensors into observing systems is not straightforward, requiring development of driver software and manual tedious configuration. Use of standard protocols and formats can improve and automate the process of sensor installation, operation, and data processing. The Open Geospatial Consortium's Sensor Web Enablement (SWE) initiative defines standards which make sensors available over the Web through standardized formats and Web Service interfaces by hiding the heterogeneity of sensor protocols from the application layer. Current SWE standards do not deal with actual sensor protocols, and the connection between sensors and SWE services is usually established by manually adapting the internals of the SWE service implementation to the specific sensor interface. Such sensor "drivers" have to be built for each kind of sensor interface, which leads to extensive efforts in developing large-scale systems. To tackle this issue we have developed a model for Sensor Interface Descriptors (SID) which enables the declarative description of sensor interfaces, including the definition of the communication protocol, sensor commands, processing steps and metadata association. The model is designed as a profile and extension of OGC SWE's Sensor Model Language standard. In this model, a SID is defined in XML for each kind of sensor protocol. SID instances for particular sensor types can be reused in different scenarios and can be shared among user communities. A SID interpreter can be built which translates between various sensor protocols and SWE protocols, hence closing the described interoperability gap. The SID interpreter is independent of any particular sensor

  9. Networked sensors for the objective force

    NASA Astrophysics Data System (ADS)

    Howden, Ellen A.; Brendley, Keith

    2002-08-01

    The technical objectives of this effort are to develop low cost sensor packages optimized for three types of unmanned platforms: UGVs, SUAVs and UGS. Additional goals are to develop robust communications to network these sensor systems throughout complex terrain, develop command and control software tools to incldue mission planning, monitoring, dynamic re-planning, sensor planning and management functions; and to demonstrate a system-of-systems capability when fusing information from these various unmanned sensor systems. These capabilities provide the battlefield commander organic unmanned sensor network assets to compelte his Battlespace Situational Awareness picture for targeting, direct and indirect-fire weapons, and threat avoidance. The networked sensors will provide remote monitoring of areas of interest out to approximately 10km not covered by higher echelon surveillance assets and without placing soldiers in harm's way, will increase unit areas of coverage and will provide near real time BSA and targeting data for early warning to speed decision making and reaction time.

  10. Radiation detection and situation management by distributed sensor networks

    SciTech Connect

    Jan, Frigo; Mielke, Angela; Cai, D Michael

    2009-01-01

    Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class (e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node. Relevant information from each node is sent to a base station computer which is used to assess the movement of radioactive materials.

  11. Sensor Networks in the Low Lands

    PubMed Central

    Meratnia, Nirvana; van der Zwaag, Berend Jan; van Dijk, Hylke W.; Bijwaard, Dennis J. A.; Havinga, Paul J. M.

    2010-01-01

    This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation. PMID:22163669

  12. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  13. Networked sensor communications for the objective force

    NASA Astrophysics Data System (ADS)

    Nemeroff, Jay L.; Garcia, Luis; Hampel, Daniel; DiPierro, Stefano

    2002-08-01

    The US Army's Future Combat Systems (FCS) and Objective Force will rely heavily on the use of unattended sensor networks to detect, locate and identify enemy targets in order to survive with less armor protection on the future battlefield. Successful implementation of these critical communication networks will require the collection of the sensor data, processing and collating it with available intelligence, then transporting it in a format conducive to make quick and accurate command decisions based on the latest tactical situational awareness. The networked communications must support both static deployed and mobile ground and air robotic sensors with secure, stealthy, and jam resistant links for sensor fusion and command and control. It is envisioned for broadest application that sensor networks can be deployed in a two-tiered architecture. The architecture includes a lower sensor sub- layer consisting of mixes of acoustic, magnetic and seismic detectors and an upper sub-layer consisting of infrared or visual imagers. The upper sub-layer can be cued by the lower sub-layer and provides a gateway link to the higher echelon tactical maneuver layer networks such as the Tactical Internet. The sensor deployments, networking constraints and reach back distances to Command and Control (C2) nodes will be mission scenario specific, however, the architecture will also apply to tactical unattended sensor, munition and robotic application. Technologies from the Army Research Laboratory, Defense Research Projects Agency (DARPA), and commercial will be leveraged for this effort.

  14. Networked sensor communications for the objective force

    NASA Astrophysics Data System (ADS)

    Nemeroff, Jay L.; Garcia, Luis; Hampel, Daniel; Di Pierro, Stefano

    2002-08-01

    The US Army's Future Combat Systems (FCS) and Objective Force will rely heavily on the use of unattended sensor networks to detect, locate and identify enemy targets in order to survive with less armor protection on the future battlefield. Successful implementation of these critical communication networks will require the collection of the sensor data, processing and collating it with available intelligence, then transporting it in a format conducive to make quick and accurate command decisions based on the latest tactical situational awareness. The networked communications must support both static deployed and mobile ground and air robotic sensors with secure, stealthy, and jam resistant links for sensor fusion and command and control. It is envisioned for broadest application that sensor networks can be deployed in a two-tiered architecture. The architecture includes a lower sensor sub-layer consisting of mixes of acoustic, magnetic and seismic detectors and an upper sub-layer consisting of infrared or visual imagers. The upper sub-layer can be cued by the lower sub-layer and provides a gateway link to the higher echelon tactical maneuver layer networks such as the Tactical Internet. The sensor deployments, networking constraints and reach back distances to Command and Control (C2) nodes will be mission scenario specific, however, the architecture will also apply to tactical unattended sensor, munition and robotic applications. Technologies from the Army Research Laboratory, Defense Advance Research Projects Agency (DARPA), and commercial will be leveraged for this effort.

  15. A Multi-Agent System Architecture for Sensor Networks

    PubMed Central

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172

  16. A multi-agent system architecture for sensor networks.

    PubMed

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172

  17. Secured network sensor-based defense system

    NASA Astrophysics Data System (ADS)

    Wei, Sixiao; Shen, Dan; Ge, Linqiang; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Network sensor-based defense (NSD) systems have been widely used to defend against cyber threats. Nonetheless, if the adversary finds ways to identify the location of monitor sensors, the effectiveness of NSD systems can be reduced. In this paper, we propose both temporal and spatial perturbation based defense mechanisms to secure NSD systems and make the monitor sensor invisible to the adversary. The temporal-perturbation based defense manipulates the timing information of published data so that the probability of successfully recognizing monitor sensors can be reduced. The spatial-perturbation based defense dynamically redeploys monitor sensors in the network so that the adversary cannot obtain the complete information to recognize all of the monitor sensors. We carried out experiments using real-world traffic traces to evaluate the effectiveness of our proposed defense mechanisms. Our data shows that our proposed defense mechanisms can reduce the attack accuracy of recognizing detection sensors.

  18. Tier-Based Scalable and Secure Routing for Wireless Sensor Networks with Mobile Sinks

    NASA Astrophysics Data System (ADS)

    Tang, Feilong; Guo, Minyi; Guo, Song

    Multiple hop based routing in homogeneous sensor networks with a single sink suffers performance degradation and severe security threats with the increase of the size of sensor networks. Large-scale sensor networks need to be deployed with multiple powerful nodes as sinks and they should be scheduled to move to different places during the lifetime of the networks. Existing routing mechanisms lack of such supports for large-scale sensor networks. In this paper, we propose a heterogeneous network model where multiple mesh nodes are deployed in a sensor network, and sensed data are collected through two tiers: firstly from a source sensor node to the closest mesh node in a multiple-hop fashion (called sensor routing), and then from the mesh node to the base station through long-distance mesh routing (called mesh routing). Based on this network model, we propose an energy-efficient and secure protocol for the sensor routing that can work well in large-scale sensor networks and resist most of attacks. Experiments demonstrate that our routing protocol significantly reduces average hops for data transmission. Our lightweight security mechanism enables the routing protocol to defend most attacks against sensor networks.

  19. Minimum energy information fusion in sensor networks

    SciTech Connect

    Chapline, G

    1999-05-11

    In this paper we consider how to organize the sharing of information in a distributed network of sensors and data processors so as to provide explanations for sensor readings with minimal expenditure of energy. We point out that the Minimum Description Length principle provides an approach to information fusion that is more naturally suited to energy minimization than traditional Bayesian approaches. In addition we show that for networks consisting of a large number of identical sensors Kohonen self-organization provides an exact solution to the problem of combing the sensor outputs into minimal description length explanations.

  20. Securing radars using secure wireless sensor networking

    NASA Astrophysics Data System (ADS)

    Tahmoush, David

    2014-06-01

    Radar sensors can be viewed as a limited wireless sensor network consisting of radar transmitter nodes, target nodes, and radar receiver nodes. The radar transmitter node sends a communication signal to the target node which then reflects it in a known pattern to the radar receiver nodes. This type of wireless sensor network is susceptible to the same types of attacks as a traditional wireless sensor network, but there is less opportunity for defense. The target nodes in the network are unable to validate the return signal, and they are often uncooperative. This leads to ample opportunities for spoofing and man-in-the-middle attacks. This paper explores some of the fundamental techniques that can be used against a limited wireless network system as well as explores the techniques that can be used to counter them.

  1. Managing RFID sensors networks with a general purpose RFID middleware.

    PubMed

    Abad, Ismael; Cerrada, Carlos; Cerrada, Jose A; Heradio, Rubén; Valero, Enrique

    2012-01-01

    RFID middleware is anticipated to one of the main research areas in the field of RFID applications in the near future. The Data EPC Acquisition System (DEPCAS) is an original proposal designed by our group to transfer and apply fundamental ideas from System and Data Acquisition (SCADA) systems into the areas of RFID acquisition, processing and distribution systems. In this paper we focus on how to organize and manage generic RFID sensors (edge readers, readers, PLCs, etc…) inside the DEPCAS middleware. We denote by RFID Sensors Networks Management (RSNM) this part of DEPCAS, which is built on top of two new concepts introduced and developed in this work: MARC (Minimum Access Reader Command) and RRTL (RFID Reader Topology Language). MARC is an abstraction layer used to hide heterogeneous devices inside a homogeneous acquisition network. RRTL is a language to define RFID Reader networks and to describe the relationship between them (concentrator, peer to peer, master/submaster). PMID:22969370

  2. Managing RFID Sensors Networks with a General Purpose RFID Middleware

    PubMed Central

    Abad, Ismael; Cerrada, Carlos; Cerrada, Jose A.; Heradio, Rubén; Valero, Enrique

    2012-01-01

    RFID middleware is anticipated to one of the main research areas in the field of RFID applications in the near future. The Data EPC Acquisition System (DEPCAS) is an original proposal designed by our group to transfer and apply fundamental ideas from System and Data Acquisition (SCADA) systems into the areas of RFID acquisition, processing and distribution systems. In this paper we focus on how to organize and manage generic RFID sensors (edge readers, readers, PLCs, etc…) inside the DEPCAS middleware. We denote by RFID Sensors Networks Management (RSNM) this part of DEPCAS, which is built on top of two new concepts introduced and developed in this work: MARC (Minimum Access Reader Command) and RRTL (RFID Reader Topology Language). MARC is an abstraction layer used to hide heterogeneous devices inside a homogeneous acquisition network. RRTL is a language to define RFID Reader networks and to describe the relationship between them (concentrator, peer to peer, master/submaster). PMID:22969370

  3. Link-Quality Measurement and Reporting in Wireless Sensor Networks

    PubMed Central

    Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo

    2013-01-01

    Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios. PMID:23459389

  4. Link-quality measurement and reporting in wireless sensor networks.

    PubMed

    Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo

    2013-01-01

    Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios. PMID:23459389

  5. Mobile sensor network noise reduction and re-calibration using Bayesian network

    NASA Astrophysics Data System (ADS)

    Xiang, Y.; Tang, Y.; Zhu, W.

    2015-08-01

    People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potentials in atmosphere researches. However, such system usually suffers from the problem of sensor noises and drift. For the sensing systems to operate stably and reliably in the real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and re-calibrate the drifted sensors simultaneously. Specifically, we have (1) designed a Bayesian belief network based system to detect and recover the abnormal readings; (2) developed methods to update the sensor calibration functions in-field without requirement of ground truth; and (3) deployed a real-world mobile sensor network using the custom-built M-Pods to verify our assumptions and technique. Compared with the existing Bayesian belief network technique, the experiment results on the real-world data demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.

  6. Scheduling Randomly-Deployed Heterogeneous Video Sensor Nodes for Reduced Intrusion Detection Time

    NASA Astrophysics Data System (ADS)

    Pham, Congduc

    This paper proposes to use video sensor nodes to provide an efficient intrusion detection system. We use a scheduling mechanism that takes into account the criticality of the surveillance application and present a performance study of various cover set construction strategies that take into account cameras with heterogeneous angle of view and those with very small angle of view. We show by simulation how a dynamic criticality management scheme can provide fast event detection for mission-critical surveillance applications by increasing the network lifetime and providing low stealth time of intrusions.

  7. Networked sensors: armor for the future force

    NASA Astrophysics Data System (ADS)

    Gowens, John W., II; Eicke, John

    2001-08-01

    The U.S. Army has embarked on an important campaign to field a lighter, more agile force, capable of being deployed in a fraction of the time currently required. The survivability of this force will depend more heavily on the use of integrated command and control capabilities with unsurpassed situational understanding for all levels of command. Arrays of small, low cost sensors will play a key role in detecting, locating, tracking, and identifying targets, particularly in areas where the terrain or other circumstances prevent traditional high performance sensors from providing critical information. Individual sensor types will provide modest performance but with a wide range of sensing modalities. When deployed in large numbers, the data fused from multiple sensing modalities will provide a detailed view of the battlespace over a wide area. A critical element necessary to deploy unattended ground sensor technology is the underlying communications and networking infrastructure. Communication networks will constitute the major challenge to making unattended ground sensors networks practical.

  8. Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks.

    PubMed

    Sun, Shiwen; Wu, Yafang; Ma, Yilin; Wang, Li; Gao, Zhongke; Xia, Chengyi

    2016-01-01

    The study of interdependent networks has become a new research focus in recent years. We focus on one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused on the impact of topological properties upon interdependent networks under random attacks, the effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and in particular degree heterogeneity, we construct an interdependent system model which consists of two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent networks after attack, is proposed. Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulnerability of both single and interdependent networks. Moreover, it is found that interdependent links between two networks make the entire system much more fragile to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks against targeted attacks, which is most evident under the case of max-max assortative coupling. Current results can help to deepen the understanding of structural complexity of complex real-world systems. PMID:27609483

  9. Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks

    PubMed Central

    Sun, Shiwen; Wu, Yafang; Ma, Yilin; Wang, Li; Gao, Zhongke; Xia, Chengyi

    2016-01-01

    The study of interdependent networks has become a new research focus in recent years. We focus on one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused on the impact of topological properties upon interdependent networks under random attacks, the effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and in particular degree heterogeneity, we construct an interdependent system model which consists of two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent networks after attack, is proposed. Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulnerability of both single and interdependent networks. Moreover, it is found that interdependent links between two networks make the entire system much more fragile to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks against targeted attacks, which is most evident under the case of max-max assortative coupling. Current results can help to deepen the understanding of structural complexity of complex real-world systems. PMID:27609483

  10. A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.

    PubMed

    de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  11. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  12. Network Management Framework for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Jaewoo; Jeon, Hahnearl; Lee, Jaiyong

    Network Management is the process of managing, monitoring, and controlling the network. Conventional network management was based on wired network which is heavy and unsuitable for resource constrained WSNs. WSNs can have large scale network and it is impossible to manage each node individually. Also, polling mechanism of Simple Network Management Protocol (SNMP) impose heavy management traffic overhead. Since management messages consume resources of WSNs, it can affect the performance of the network. Therefore, it is necessary for WSNs to perform energy efficient network management. In this paper, we will propose network management framework. We will introduce cluster-based network management architecture, and classify the Management Information Base (MIB) according to their characteristics. Then, we will define management messages and message exchange operation for each kind of MIB. The analysis result of the management overhead indicates that the proposed framework can reduce management traffic compared to polling mechanism.

  13. Graphical Model Theory for Wireless Sensor Networks

    SciTech Connect

    Davis, William B.

    2002-12-08

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.

  14. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    PubMed Central

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940

  15. Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity

    PubMed Central

    Knudstrup, Scott; Zochowski, Michal; Booth, Victoria

    2016-01-01

    The characteristics of neural network activity depend on intrinsic neural properties and synaptic connectivity in the network. In brain networks, both of these properties are critically affected by the type and levels of neuromodulators present. The expression of many of the most powerful neuromodulators, including acetylcholine (ACh), varies tonically and phasically with behavioural state, leading to dynamic, heterogeneous changes in intrinsic neural properties and synaptic connectivity properties. Namely, ACh significantly alters neural firing properties as measured by the phase response curve in a manner that has been shown to alter the propensity for network synchronization. The aim of this simulation study was to build an understanding of how heterogeneity in cholinergic modulation of neural firing properties and heterogeneity in synaptic connectivity affect the initiation and maintenance of synchronous network bursting in excitatory networks. We show that cells that display different levels of ACh modulation have differential roles in generating network activity: weakly modulated cells are necessary for burst initiation and provide synchronizing drive to the rest of the network, whereas strongly modulated cells provide the overall activity level necessary to sustain burst firing. By applying several quantitative measures of network activity, we further show that the existence of network bursting and its characteristics, such as burst duration and intraburst synchrony, are dependent on the fraction of cell types providing the synaptic connections in the network. These results suggest mechanisms underlying ACh modulation of brain oscillations and the modulation of seizure activity during sleep states. PMID:26869313

  16. Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity.

    PubMed

    Knudstrup, Scott; Zochowski, Michal; Booth, Victoria

    2016-05-01

    The characteristics of neural network activity depend on intrinsic neural properties and synaptic connectivity in the network. In brain networks, both of these properties are critically affected by the type and levels of neuromodulators present. The expression of many of the most powerful neuromodulators, including acetylcholine (ACh), varies tonically and phasically with behavioural state, leading to dynamic, heterogeneous changes in intrinsic neural properties and synaptic connectivity properties. Namely, ACh significantly alters neural firing properties as measured by the phase response curve in a manner that has been shown to alter the propensity for network synchronization. The aim of this simulation study was to build an understanding of how heterogeneity in cholinergic modulation of neural firing properties and heterogeneity in synaptic connectivity affect the initiation and maintenance of synchronous network bursting in excitatory networks. We show that cells that display different levels of ACh modulation have differential roles in generating network activity: weakly modulated cells are necessary for burst initiation and provide synchronizing drive to the rest of the network, whereas strongly modulated cells provide the overall activity level necessary to sustain burst firing. By applying several quantitative measures of network activity, we further show that the existence of network bursting and its characteristics, such as burst duration and intraburst synchrony, are dependent on the fraction of cell types providing the synaptic connections in the network. These results suggest mechanisms underlying ACh modulation of brain oscillations and the modulation of seizure activity during sleep states. PMID:26869313

  17. The tsunami service bus, an integration platform for heterogeneous sensor systems

    NASA Astrophysics Data System (ADS)

    Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.

    2009-04-01

    components remain unchanged, components can be maintained and evolved independently on each other and service functionality as a whole can be reused. In GITEWS the functional integration pattern was adopted by applying the principles of an Enterprise Service Bus (ESB) as a backbone. Four services provided by the so called Tsunami Service Bus (TSB) which are essential for early warning systems are realized compliant to services specified within the Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC). 3. ARCHITECTURE The integration platform was developed to access proprietary, heterogeneous sensor data and to provide them in a uniform manner for further use. Its core, the TSB provides both a messaging-backbone and -interfaces on the basis of a Java Messaging Service (JMS). The logical architecture of GITEWS consists of four independent layers: • A resource layer where physical or virtual sensors as well as data or model storages provide relevant measurement-, event- and analysis-data: Utilizable for the TSB are any kind of data. In addition to sensors databases, model data and processing applications are adopted. SWE specifies encoding both to access and to describe these data in a comprehensive way: 1. Sensor Model Language (SensorML): Standardized description of sensors and sensor data 2. Observations and Measurements (O&M): Model and encoding of sensor measurements • A service layer to collect and conduct data from heterogeneous and proprietary resources and provide them via standardized interfaces: The TSB enables interaction with sensors via the following services: 1. Sensor Observation Service (SOS): Standardized access to sensor data 2. Sensor Planning Service (SPS): Controlling of sensors and sensor networks 3. Sensor Alert Service (SAS): Active sending of data if defined events occur 4. Web Notification Service (WNS): Conduction of asynchronous dialogues between services • An orchestration layer where atomic services are composed and

  18. Potentials and Limitations of Wireless Sensor Networks for Environmental

    NASA Astrophysics Data System (ADS)

    Bumberger, J.; Remmler, P.; Hutschenreuther, T.; Toepfer, H.; Dietrich, P.

    2013-12-01

    Understanding and dealing with environmental challenges worldwide requires suitable interdisciplinary methods and a level of expertise to be able to implement these solutions, so that the lifestyles of future generations can be secured in the years to come. To characterize environmental systems it is necessary to identify and describe processes with suitable methods. Environmental systems are often characterized by their high heterogeneity, so individual measurements for their complete representation are often not sufficient. The application of wireless sensor networks in terrestrial and aquatic ecosystems offer significant benefits as a better consideration of the local test conditions becomes possible. This can be essential for the monitoring of heterogeneous environmental systems. Significant advantages in the application of wireless sensor networks are their self-organizing behaviour, resulting in a major reduction in installation and operation costs and time. In addition, a point measurement with a sensor is significantly improved by measuring at several points. It is also possible to perform analog and digital signal processing and computation on the basis of the measured data close to the sensor. Hence, a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of sensor nodes. Furthermore, their localization via satellite, the miniaturization of the nodes and long-term energy self-sufficiency are current topics under investigation. In this presentation, the possibilities and limitations of the applicability of wireless sensor networks for long-term environmental monitoring are presented. To underline the importance of this future technology, example concepts are given in the field of near-surface geothermics, groundwater observation, measurement of spatial radiation intensity and air humidity on soils, measurement of matter fluxes, greenhouse gas measurement, and landslide monitoring.

  19. Ultra-wideband radar sensors and networks

    DOEpatents

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  20. Performance Evaluation Modeling of Network Sensors

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Jennings, Esther H.; Gao, Jay L.

    2003-01-01

    Substantial benefits are promised by operating many spatially separated sensors collectively. Such systems are envisioned to consist of sensor nodes that are connected by a communications network. A simulation tool is being developed to evaluate the performance of networked sensor systems, incorporating such metrics as target detection probabilities, false alarms rates, and classification confusion probabilities. The tool will be used to determine configuration impacts associated with such aspects as spatial laydown, and mixture of different types of sensors (acoustic, seismic, imaging, magnetic, RF, etc.), and fusion architecture. The QualNet discrete-event simulation environment serves as the underlying basis for model development and execution. This platform is recognized for its capabilities in efficiently simulating networking among mobile entities that communicate via wireless media. We are extending QualNet's communications modeling constructs to capture the sensing aspects of multi-target sensing (analogous to multiple access communications), unimodal multi-sensing (broadcast), and multi-modal sensing (multiple channels and correlated transmissions). Methods are also being developed for modeling the sensor signal sources (transmitters), signal propagation through the media, and sensors (receivers) that are consistent with the discrete event paradigm needed for performance determination of sensor network systems. This work is supported under the Microsensors Technical Area of the Army Research Laboratory (ARL) Advanced Sensors Collaborative Technology Alliance.

  1. A lightweight sensor network management system design

    USGS Publications Warehouse

    Yuan, F.; Song, W.-Z.; Peterson, N.; Peng, Y.; Wang, L.; Shirazi, B.; LaHusen, R.

    2008-01-01

    In this paper, we propose a lightweight and transparent management framework for TinyOS sensor networks, called L-SNMS, which minimizes the overhead of management functions, including memory usage overhead, network traffic overhead, and integration overhead. We accomplish this by making L-SNMS virtually transparent to other applications hence requiring minimal integration. The proposed L-SNMS framework has been successfully tested on various sensor node platforms, including TelosB, MICAz and IMote2. ?? 2008 IEEE.

  2. Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks. PMID:22291515

  3. Test applications for heterogeneous real-time network testbed

    SciTech Connect

    Mines, R.F.; Knightly, E.W.

    1994-07-01

    This paper investigates several applications for a heterogeneous real-time network testbed. The network is heterogeneous in terms of network devices, technologies, protocols, and algorithms. The network is real-time in that its services can provide per-connection end-to-end performance guarantees. Although different parts of the network use different algorithms, all components have the necessary mechanisms to provide performance guarantees: admission control and priority scheduling. Three applications for this network are described in this paper: a video conferencing tool, a tool for combustion modeling using distributed computing, and an MPEG video archival system. Each has minimum performance requirements that must be provided by the network. By analyzing these applications, we provide insights to the traffic characteristics and performance requirements of practical real-time loads.

  4. Wireless sensor networks in a maritime environment

    NASA Astrophysics Data System (ADS)

    Kavelaars, W.; Maris, M.

    2005-10-01

    In the recent years, there has been a lot of research on sensor networks and their applications. In particular for monitoring large and potentially hostile areas these networks have proven to be very useful. The technique of land-based sensor networks can be extrapolated to sensing buoys at sea or in harbors. This is a novel and intriguing addition to existing maritime monitoring systems. At TNO, much research effort has gone into developing sensor networks. In this paper, the TNOdes sensor network is presented. Its practical employability is demonstrated in a surveillance application deploying 50 nodes. The system is capable of tracking persons in a field, as would be the situation around a military compound. A camera-system is triggered by the sensors and zooms into the detected moving objects. It is described how this system could be modified to create a wireless buoys network. Typical applications of a wireless (and potentially mobile) buoy network are bay-area surveillance, mine detection, identification and ship protection.

  5. Robust, Distributed Target Tracking Using Sensor Network

    NASA Astrophysics Data System (ADS)

    Neema, Kartavya

    Distributed target tracking using sensor networks is crucial for supporting a variety of applications such as battlefield monitoring, weather monitoring, and air traffic management. This dissertation presents a problem formulation and solution approach for distributed target tracking, comprising of sensor fusion and sensor target allocation problems, in the presence of faults in the sensor measurements. There are times when an architecture with central node is preferred but other times when distributed is necessary, we seek a distributed case that can approach the attractive features of centralized case. Therefore, we propose that the underlying two-fold goals of the distributed target tracking problem is to: (1) reach a consensus in the allocation decisions across the sensor network, and (2) achieve a consensus in the state estimates across all the sensors in the network. These goals ensure that each sensor node has the same information across the sensor network, and any node can behave as a central node. In the process of achieving our goals, we develop two new algorithms, one for distributed sensor-target allocation and another for distributed sensor fusion. The Dual Phase Consensus Algorithm (DPCA) for distributed sensor target allocation is a real time algorithm that works in two phases. The first phase of DPCA is similar to distributed sequential greedy search that combines the benefits of greedy and consensus algorithms to reach a feasible solution. The second phase iteratively improves the allocation eventually leading toward a global optimum. DPCA converges to a feasible solution at the order of number of sensors, and thus can be useful for implementation in real time systems. For distributed sensor fusion, we extend the state-of-art distributed Kalman filtering technique called Generalized Kalman Consensus Filter (GKCF), and make it robust against faults present in the sensor measurements. We particularly focus on two types of faults: (1) outliers in the

  6. Planning and Scheduling for Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Frank, J. D.

    2005-12-01

    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory

  7. JSC Wireless Sensor Network Update

    NASA Technical Reports Server (NTRS)

    Wagner, Robert

    2010-01-01

    Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.

  8. An Effective Mobile Sensor Control Method for Sparse Sensor Networks

    PubMed Central

    Treeprapin, Kriengsak; Kanzaki, Akimitsu; Hara, Takahiro; Nishio, Shojiro

    2009-01-01

    In this paper, we propose an effective mobile sensor control method, named DATFM (Data Acquisition and Transmission with Fixed and Mobile node) for sparse sensor networks. DATFM uses two types of sensor nodes, fixed node and mobile node. The data acquired by nodes are accumulated on a fixed node before being transferred to the sink node. In addition, DATFM transfers the accumulated data efficiently by constructing a communication route of multiple mobile nodes between fixed nodes. We also conduct simulation experiments to evaluate the performance of DATFM. PMID:22389602

  9. Data and Network Science for Noisy Heterogeneous Systems

    ERIC Educational Resources Information Center

    Rider, Andrew Kent

    2013-01-01

    Data in many growing fields has an underlying network structure that can be taken advantage of. In this dissertation we apply data and network science to problems in the domains of systems biology and healthcare. Data challenges in these fields include noisy, heterogeneous data, and a lack of ground truth. The primary thesis of this work is that…

  10. Message Efficient Checkpointing and Rollback Recovery in Heterogeneous Mobile Networks

    NASA Astrophysics Data System (ADS)

    Jaggi, Parmeet Kaur; Singh, Awadhesh Kumar

    2016-06-01

    Heterogeneous networks provide an appealing way of expanding the computing capability of mobile networks by combining infrastructure-less mobile ad-hoc networks with the infrastructure-based cellular mobile networks. The nodes in such a network range from low-power nodes to macro base stations and thus, vary greatly in their capabilities such as computation power and battery power. The nodes are susceptible to different types of transient and permanent failures and therefore, the algorithms designed for such networks need to be fault-tolerant. The article presents a checkpointing algorithm for the rollback recovery of mobile hosts in a heterogeneous mobile network. Checkpointing is a well established approach to provide fault tolerance in static and cellular mobile distributed systems. However, the use of checkpointing for fault tolerance in a heterogeneous environment remains to be explored. The proposed protocol is based on the results of zigzag paths and zigzag cycles by Netzer-Xu. Considering the heterogeneity prevalent in the network, an uncoordinated checkpointing technique is employed. Yet, useless checkpoints are avoided without causing a high message overhead.

  11. How memory generates heterogeneous dynamics in temporal networks.

    PubMed

    Vestergaard, Christian L; Génois, Mathieu; Barrat, Alain

    2014-10-01

    Empirical temporal networks display strong heterogeneities in their dynamics, which profoundly affect processes taking place on these networks, such as rumor and epidemic spreading. Despite the recent wealth of data on temporal networks, little work has been devoted to the understanding of how such heterogeneities can emerge from microscopic mechanisms at the level of nodes and links. Here we show that long-term memory effects are present in the creation and disappearance of links in empirical networks. We thus consider a simple generative modeling framework for temporal networks able to incorporate these memory mechanisms. This allows us to study separately the role of each of these mechanisms in the emergence of heterogeneous network dynamics. In particular, we show analytically and numerically how heterogeneous distributions of contact durations, of intercontact durations, and of numbers of contacts per link emerge. We also study the individual effect of heterogeneities on dynamical processes, such as the paradigmatic susceptible-infected epidemic spreading model. Our results confirm in particular the crucial role of the distributions of intercontact durations and of the numbers of contacts per link. PMID:25375547

  12. Simulating Operation of a Complex Sensor Network

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Clare, Loren; Woo, Simon

    2008-01-01

    Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.

  13. Soil specific re-calibration of water content sensors for a field-scale sensor network

    NASA Astrophysics Data System (ADS)

    Gasch, Caley K.; Brown, David J.; Anderson, Todd; Brooks, Erin S.; Yourek, Matt A.

    2015-04-01

    Obtaining accurate soil moisture data from a sensor network requires sensor calibration. Soil moisture sensors are factory calibrated, but multiple site specific factors may contribute to sensor inaccuracies. Thus, sensors should be calibrated for the specific soil type and conditions in which they will be installed. Lab calibration of a large number of sensors prior to installation in a heterogeneous setting may not be feasible, and it may not reflect the actual performance of the installed sensor. We investigated a multi-step approach to retroactively re-calibrate sensor water content data from the dielectric permittivity readings obtained by sensors in the field. We used water content data collected since 2009 from a sensor network installed at 42 locations and 5 depths (210 sensors total) within the 37-ha Cook Agronomy Farm with highly variable soils located in the Palouse region of the Northwest United States. First, volumetric water content was calculated from sensor dielectric readings using three equations: (1) a factory calibration using the Topp equation; (2) a custom calibration obtained empirically from an instrumented soil in the field; and (3) a hybrid equation that combines the Topp and custom equations. Second, we used soil physical properties (particle size and bulk density) and pedotransfer functions to estimate water content at saturation, field capacity, and wilting point for each installation location and depth. We also extracted the same reference points from the sensor readings, when available. Using these reference points, we re-scaled the sensor readings, such that water content was restricted to the range of values that we would expect given the physical properties of the soil. The re-calibration accuracy was assessed with volumetric water content measurements obtained from field-sampled cores taken on multiple dates. In general, the re-calibration was most accurate when all three reference points (saturation, field capacity, and wilting

  14. Activator-inhibitor systems on heterogeneous ecological networks

    NASA Astrophysics Data System (ADS)

    Nicolaides, C.; Cueto-Felgueroso, L.; Juanes, R.

    2012-12-01

    The consideration of activator-inhibitor systems as complex networks has broadened our knowledge of non-equilibrium reaction-diffusion processes in heterogeneous systems. For example, the Turing mechanism represents a classical model for the formation of self-organized spatial structures in non-equilibrium activator-inhibitor systems. The study of Turing patterns in networks with heterogeneous connectivity has revealed that, contrary to other models and systems, the segregation process takes place mainly in vertices of low degree. In this paper, we study the formation of vegetation patterns in semiarid ecosystems from the perspective of a heterogeneous interacting ecological network. The structure of ecological networks yields fundamental insight into the ecosystem self-organization. Using simple rules for the short-range activation and global inhibition, we reconstruct the observed power-law distribution of vegetation patch size that has been observed in semiarid ecosystems like the Kalahari transect.

  15. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  16. Agent routing algorithm in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqing; Yang, Shuqun

    2013-03-01

    Wireless sensor networks are a new technology of information acquisition and processing, so they are widely used in all kinds of fields. In the paper we introduce Agent technology into the wireless sensor network, conduct a in-depth research on the four routing schemes, and propose a new improved routing scheme, which considers the energy consumption of both nodes and path. Furthermore, The scheme we proposed has efficient routing function, can balance the energy consumption of nodes and extends the lifetime of the network in a more efficient way.

  17. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks.

    PubMed

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-01-01

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions. PMID:26151211

  18. Using Open Geographic Data to Generate Natural Language Descriptions for Hydrological Sensor Networks

    PubMed Central

    Molina, Martin; Sanchez-Soriano, Javier; Corcho, Oscar

    2015-01-01

    Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions. PMID:26151211

  19. An Integrated Testbed for Cooperative Perception with Heterogeneous Mobile and Static Sensors

    PubMed Central

    Jiménez-González, Adrián; Martínez-De Dios, José Ramiro; Ollero, Aníbal

    2011-01-01

    Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper. PMID:22247679

  20. An integrated testbed for cooperative perception with heterogeneous mobile and static sensors.

    PubMed

    Jiménez-González, Adrián; Martínez-De Dios, José Ramiro; Ollero, Aníbal

    2011-01-01

    Cooperation among devices with different sensing, computing and communication capabilities provides interesting possibilities in a growing number of problems and applications including domotics (domestic robotics), environmental monitoring or intelligent cities, among others. Despite the increasing interest in academic and industrial communities, experimental tools for evaluation and comparison of cooperative algorithms for such heterogeneous technologies are still very scarce. This paper presents a remote testbed with mobile robots and Wireless Sensor Networks (WSN) equipped with a set of low-cost off-the-shelf sensors, commonly used in cooperative perception research and applications, that present high degree of heterogeneity in their technology, sensed magnitudes, features, output bandwidth, interfaces and power consumption, among others. Its open and modular architecture allows tight integration and interoperability between mobile robots and WSN through a bidirectional protocol that enables full interaction. Moreover, the integration of standard tools and interfaces increases usability, allowing an easy extension to new hardware and software components and the reuse of code. Different levels of decentralization are considered, supporting from totally distributed to centralized approaches. Developed for the EU-funded Cooperating Objects Network of Excellence (CONET) and currently available at the School of Engineering of Seville (Spain), the testbed provides full remote control through the Internet. Numerous experiments have been performed, some of which are described in the paper. PMID:22247679

  1. Wireless Sensor Networks for Ambient Assisted Living

    PubMed Central

    Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe

    2013-01-01

    This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665

  2. Temporal and structural heterogeneities emerging in adaptive temporal networks

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Rocha, Luis E. C.; Gross, Thilo

    2016-04-01

    We introduce a model of adaptive temporal networks whose evolution is regulated by an interplay between node activity and dynamic exchange of information through links. We study the model by using a master equation approach. Starting from a homogeneous initial configuration, we show that temporal and structural heterogeneities, characteristic of real-world networks, spontaneously emerge. This theoretically tractable model thus contributes to the understanding of the dynamics of human activity and interaction networks.

  3. Erosion of synchronization: Coupling heterogeneity and network structure

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Taylor, Dane; Sun, Jie; Arenas, Alex

    2016-06-01

    We study the dynamics of network-coupled phase oscillators in the presence of coupling frustration. It was recently demonstrated that in heterogeneous network topologies, the presence of coupling frustration causes perfect phase synchronization to become unattainable even in the limit of infinite coupling strength. Here, we consider the important case of heterogeneous coupling functions and extend previous results by deriving analytical predictions for the total erosion of synchronization. Our analytical results are given in terms of basic quantities related to the network structure and coupling frustration. In addition to fully heterogeneous coupling, where each individual interaction is allowed to be distinct, we also consider partially heterogeneous coupling and homogeneous coupling in which the coupling functions are either unique to each oscillator or identical for all network interactions, respectively. We demonstrate the validity of our theory with numerical simulations of multiple network models, and highlight the interesting effects that various coupling choices and network models have on the total erosion of synchronization. Finally, we consider some special network structures with well-known spectral properties, which allows us to derive further analytical results.

  4. Neural network-based sensor signal accelerator.

    SciTech Connect

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  5. Energy-Saving Topology Control for Heterogeneous Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Xuehui

    Topology control with per-node transmission power adjustment in wireless ad hoc networks has been shown to be effective with respect to prolonging network lifetime and increasing network capacity. In this paper, we propose a fully distributed, asynchronous and localized energy-saving topology control algorithm for heterogeneous ad hoc networks with non-uniform transmission ranges. We prove the topology derived from the algorithm preserves the network connectivity and bi-directionality. It need not the position system support and dramatically reduces the communication overhead compared to other topology control algorithms. Simulation results show the effectiveness of our proposed algorithm.

  6. Mic Flocks in the Cloud: Harnessing Mobile Ubiquitous Sensor Networks

    NASA Astrophysics Data System (ADS)

    Garces, M. A.; Christe, A.

    2015-12-01

    Smartphones provide a commercial, off-the-shelf solution to capture, store, analyze, and distribute infrasound using on-board or external microphones (mics) as well as on-board barometers. Free iOS infrasound apps can be readily downloaded from the Apple App Store, and Android versions are in progress. Infrasound propagates for great distances, has low sample rates, and provides a tractable pilot study scenario for open distributed sensor networks at regional and global scales using one of the most ubiquitous sensors on Earth - microphones. Data collection is no longer limited to selected vendors at exclusive prices: anybody on Earth can record and stream infrasound, and the diversity of recording systems and environments is rapidly expanding. Global deployment may be fast and easy (www.redvox.io), but comes with the cost of increasing data volume, velocity, variety, and complexity. Flocking - the collective motion of mobile agents - is a natural human response to threats or events of interest. Anticipating, modeling and harnessing flocking sensor topologies will be necessary for adaptive array and network processing. The increasing data quantity and complexity will exceed the processing capacity of human analysts and most research servers. We anticipate practical real-time applications will require the on-demand adaptive scalability and resources of the Cloud. Cloud architectures for such heterogeneous sensor networks will consider eventual integration into the Global Earth Observation System of Systems (GEOSS).

  7. Vibrational resonance in a heterogeneous scale free network of neurons

    NASA Astrophysics Data System (ADS)

    Uzuntarla, Muhammet; Yilmaz, Ergin; Wagemakers, Alexandre; Ozer, Mahmut

    2015-05-01

    Vibrational resonance (VR) is a phenomenon whereby the response of some dynamical systems to a weak low-frequency signal can be maximized with the assistance of an optimal intensity of another high-frequency signal. In this paper, we study the VR in a heterogeneous neural system having a complex network topology. We consider a scale-free network of neurons where the heterogeneity is in the intrinsic excitability of the individual neurons. It is shown that emergence of VR in heterogeneous neuron population requires less energy than a homogeneous population. We also find that electrical coupling strength among neurons plays a key role in determining the weak signal processing capacity of the heterogeneous population. Lastly, we investigate the influence of interneuronal link density on the VR and demonstrate that the energy needed to obtain the resonance grows with the increase in average degree.

  8. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor

  9. An investigation of Sensor Network middleware alternatives

    NASA Astrophysics Data System (ADS)

    Hansen, T.; Tilak, S.; Cotofana, C.; Fountain, T.; Lindquist, K.; Foley, S.; McGregor, T.; Vernon, F.; Rajasekar, A.; Orcutt, J.

    2006-12-01

    Sensor network middleware is software that provides run-time services to computer programs supporting sensor networks. Most importantly, this body of software mediates communication between the traditional TCP/IP 'network stack' and the overlying sensor-network 'application' layers. Another critical role that middleware plays is to hide the complexities of low level components and provide high-level abstractions of the network to ease application development. Building, deploying, and managing a large-scale environmental observing system that comprises hundreds of sensors and thousands of data streams is a daunting task. To that end, middleware tools can ease sensor network application development by providing high-level abstractions and hiding network idiosyncrasies such as inevitable network and node outages. In this poster, we examine a variety of sensor network middleware alternatives. Given the richness of the available alternatives, the natural question is "What is the right middleware for your application?" This question demands an in-depth understanding of these tools in terms of their design and capabilities. A fair comparison of these alternatives would be invaluable to the sensor network community and can assist with observing system design and engineering. In this poster, we will briefly describe the capabilities of these tools in terms of buffered network architectures including distribution efficiency/timeliness. Included in the discussion topics will be several important architectural and design decisions and their implications such as push vs. pull architecture, ability to manage time series data, support for data abstraction and data types, ability to manage real-time stream or non-real time data, in-network data storage alternatives (disk/memory/database), system scalability, software procurement cost, software maintenance and support, availability of open interfaces, and support for third party hardware such as data loggers (e.g. A/D conversion

  10. Optical network of silicon micromachined sensors

    NASA Astrophysics Data System (ADS)

    Wilson, Mark L.; Burns, David W.; Zook, J. David

    1996-03-01

    The Honeywell Technology Center, in collaboration with the University of Wisconsin and the Mobil Corporation, and under funding from this ARPA sponsored program, are developing a new type of `hybrid' micromachined silicon/fiber optic sensor that utilizes the best attributes of each technology. Fiber optics provide a noise free method to read out the sensor without electrical power required at the measurement point. Micromachined silicon sensor techniques provide a method to design many different types of sensors such as temperature, pressure, acceleration, or magnetic field strength and report the sensor data using FDM methods. Our polysilicon resonant microbeam structures have a built in Fabry-Perot interferometer that offers significant advantages over other configurations described in the literature. Because the interferometer is an integral part of the structure, the placement of the fiber becomes non- critical, and packaging issues become considerably simpler. The interferometer spacing are determined by the thin-film fabrication processes and therefore can be extremely well controlled. The main advantage, however, is the integral vacuum cavity that ensures high Q values. Testing results have demonstrated relaxed alignment tolerances in packaging these devices, with an excellent Signal to Noise Ratio. Networks of 16 or more sensors are currently being developed. STORM (Strain Transduction by Optomechanical Resonant Microbeams) sensors can also provide functionality and self calibration information which can be used to improve the overall system reliability. Details of the sensor and network design, as well as test results, are presented.

  11. Declarative ad-hoc sensor networking

    NASA Astrophysics Data System (ADS)

    Coffin, Daniel A.; Van Hook, Daniel J.; McGarry, Stephen M.; Kolek, Stephen R.

    2000-11-01

    Networking protocols for distributed collaborative ad-hoc wireless sensing are constrained by requirements such as energy efficiency, scalability, and support for greater variations in topology than traditional fully wired or last- hop wireless (remote to base station) networks. In such a highly constrained and dynamic environment, conventional networking approaches are generally not adequate. A declarative approach to network configuration and organization appears to offer significant benefits. Declarative networking exploits application-supplied data descriptions to control network routing and resource allocation in such a way as to enhance energy efficiency and scalability. An implementation of this approach, called the Declarative Routing Protocol (DRP) has been developed as part of DARPA's Sensor Information Technology program. This paper introduces the concept of declarative networking and what distinguishes it from more conventional networking approaches, describes the Declarative Routing Protocol, and presents performance results from initial experiments.

  12. Target Coverage in Wireless Sensor Networks with Probabilistic Sensors.

    PubMed

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao

    2016-01-01

    Sensing coverage is a fundamental problem in wireless sensor networks (WSNs), which has attracted considerable attention. Conventional research on this topic focuses on the 0/1 coverage model, which is only a coarse approximation to the practical sensing model. In this paper, we study the target coverage problem, where the objective is to find the least number of sensor nodes in randomly-deployed WSNs based on the probabilistic sensing model. We analyze the joint detection probability of target with multiple sensors. Based on the theoretical analysis of the detection probability, we formulate the minimum ϵ-detection coverage problem. We prove that the minimum ϵ-detection coverage problem is NP-hard and present an approximation algorithm called the Probabilistic Sensor Coverage Algorithm (PSCA) with provable approximation ratios. To evaluate our design, we analyze the performance of PSCA theoretically and also perform extensive simulations to demonstrate the effectiveness of our proposed algorithm. PMID:27618902

  13. Query-Based Outlier Detection in Heterogeneous Information Networks

    PubMed Central

    Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei

    2015-01-01

    Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397

  14. Semantic Sensor Observation Networks in a Billion-Sensor World

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Bogden, P.; Creager, G.; Graybeal, J.

    2008-12-01

    In 2010, there will be 10,000 telemetric devices for every human in the planet (prediction by Ernest and Young). Some of these devices will be collecting data from coastal phenomena. Some will be connected to adaptive sampling systems, which allow observing a phenomenon, forecasting its advance, and triggering of other numerical models, new missions or changes to the sampling frequency of other sensors. These highly sophisticated autonomous and adaptive sensors will help improve the understating of coastal phenomena; however, collaborative arrangements among communities need to happen to be able to interoperate in a world of billions of sensors. Arrangements will allow discovery and sharing of sensor descriptions and understanding and usage of observed data. OOSTethys is an open source collaborative project that helps implement ocean observing system components. Some of these components include sensor interfaces, catalogs of services, and semantic mediators. The OOSTethys team seeks to speed up collaborative arrangements by studying the best standards available, creating easy-to-adopt toolkits, and publishing guides that facilitate the implementation of these components. The interaction of some observing system components, and lessons learned about developing Semantic Sensor Networks using OGC Sensor Observation Services and ontologies, will be discussed.

  15. Collaborative image transmission over wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Wu, Min; Chen, Chang W.

    2004-01-01

    The imaging sensors are able to provide intuitive visual information for quick recognition and decision. However, imaging sensors usually generate vast amount of data. Thus, processing of image data collected in the sensor network for the purpose of energy efficient transmission poses a significant technical challenge. In particular, when a cluster of imaging sensors is activated to track certain moving target, multiple sensors may be collecting similar visual information simultaneously. With correlated image data, we need to intelligently reduce the redundancy among the neighboring sensors so as to minimize the energy for transmission, the primary source of sensor energy consumption. We propose in this paper a novel collaborative image transmission scheme for wireless sensor networks. First, we apply a shape matching method to coarsely register images to find out maximal overlap in order to exploiting the spatial correlation between images acquired from neighboring sensors. A transformation is generated according to the matching results. We encode the original image and the difference between the transformed image and reference image. Then, we transmit the coded bit stream together with the transformation parameters. This will significantly reduce the transmission energy comparing with transmitting two individual images independently. To exploiting the temporal correlation among images in the same sensor, we assume that the imaging sensors and the background scenes remain stationary over the data acquisition period. For a given image sequence, we transmit background image only once. A simple background subtraction method is employed to detect targets. Whenever targets are detected, only the regions of target and their spatial locations are transmitted to the monitoring center. At the monitoring center, the whole image can be reconstructed by fusing the background and the target image as well as its spatial location to further reduce energy consumption

  16. Illicit material detector based on gas sensors and neural networks

    NASA Astrophysics Data System (ADS)

    Grimaldi, Vincent; Politano, Jean-Luc

    1997-02-01

    In accordance with its missions, le Centre de Recherches et d'Etudes de la Logistique de la Police Nationale francaise (CREL) has been conducting research for the past few years targeted at detecting drugs and explosives. We have focused our approach of the underlying physical and chemical detection principles on solid state gas sensors, in the hope of developing a hand-held drugs and explosives detector. The CREL and Laboratory and Scientific Services Directorate are research partners for this project. Using generic hydrocarbon, industrially available, metal oxide sensors as illicit material detectors, requires usage precautions. Indeed, neither the product's concentrations, nor even the products themselves, belong to the intended usage specifications. Therefore, the CREL is currently investigating two major research topics: controlling the sensor's environment: with environmental control we improve the detection of small product concentration; determining detection thresholds: both drugs and explosives disseminate low gas concentration. We are attempting to quantify the minimal concentration which triggers detection. In the long run, we foresee a computer-based tool likely to detect a target gas in a noisy atmosphere. A neural network is the suitable tool for interpreting the response of heterogeneous sensor matrix. This information processing structure, alongside with proper sensor environment control, will lessen the repercussions of common MOS sensor sensitivity characteristic dispersion.

  17. Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.

    PubMed

    Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup

    2011-10-01

    The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate. PMID:21766227

  18. Optical networks for wideband sensor array

    NASA Astrophysics Data System (ADS)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  19. Nanotechnology enabled sensors and wireless sensing networks

    NASA Astrophysics Data System (ADS)

    Tsui, Ray; Zhang, Ruth; Mastroianni, Sal; Díaz Aguilar, Alvaro; Forzani, Erica; Tao, Nongjian

    2009-05-01

    The capabilities of future mobile communication devices will extend beyond merely transmitting and receiving voice, data, and video information. For example, first responders such as firefighters and emergency workers will wear environmentally- aware devices that will warn them of combustible and toxic gases as well as communicate that information wirelessly to the Command and Control Center. Similar sensor systems could alert warfighters of the presence of explosives or biological weapons. These systems can function either in the form of an individual stand-alone detector or part of a wireless sensor network. Novel sensors whose functionality is enhanced via nanotechnology will play a key role in realizing such systems. Such sensors are important because of their high sensitivity, low power consumption, and small size. This talk will provide an overview of some of the advances made in sensors through the use of nanotechnology, including those that make use of carbon nanotubes and nanoparticles. Their applicability in mobile sensing and wireless sensor networks for use in national security and public safety will be described. Other technical challenges associated with the development of such systems and networks will also be discussed.

  20. NEURON: Enabling Autonomicity in Wireless Sensor Networks

    PubMed Central

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  1. NEURON: enabling autonomicity in wireless sensor networks.

    PubMed

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  2. Resilient networked sensor-processing implementation

    NASA Astrophysics Data System (ADS)

    Wada, Glen; Hansen, J. S.

    1996-05-01

    The spatial infrared imaging telescope (SPIRIT) III sensor data processing requirement for the calibrated conversion of data to engineering units at a rate of 8 gigabytes of input data per day necessitated a distributed processing solution. As the sensor's five-band scanning radiometer and six- channel Fourier-transform spectrometer characteristics became fully understood, the processing requirements were enhanced. Hardware and schedule constraints compounded the need for a simple and resilient distributed implementation. Sensor data processing was implemented as a loosely coupled, fiber distributed data interface network of Silicon Graphics computers under the IRIX Operating Systems. The software was written in ANSI C and incorporated exception processing. Interprocessor communications and control were done both by the native capabilities of the network and Parallel Virtual Machine (PVM) software. The implementation was limited to four software components. The data reformatter component reduced the data coupling among sensor data processing components by providing self-contained data sets. The distributed processing control and graphical user interface components encased the PVM aspect of the implementation and lessened the concern of the sensor data processing component developers for the distributed model. A loosely coupled solution that dissociated the sensor data processing from the distributed processing environment, a simplified error processing scheme using exception processing, and a limited software configuration have proven resilient and compatible with the dynamics of sensor data processing.

  3. Mining Heterogeneous Social Networks for Egocentric Information Abstraction

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Te; Lin, Shou-De

    Social network is a powerful data structure that allows the depiction of relationship information between entities. However, real-world social networks are sometimes too complex for human to pursue further analysis. In this work, an unsupervised mechanism is proposed for egocentric information abstraction in heterogeneous social networks. To achieve this goal, we propose a vector space representation for heterogeneous social networks to identify combination of relations as features and compute statistical dependencies as feature values. These features, either linear or eyelie, intend to capture the semantic information in the surrounding environment of the ego. Then we design three abstraction measures to distill representative and important information to construct the abstracted graphs for visual presentation. The evaluations conducted on a real world movie datasct and an artificial crime dataset demonstrate that the abstractions can indeed retain significant information and facilitate more accurate and efficient human analysis.

  4. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare

    PubMed Central

    Haque, Shah Ahsanul; Rahman, Mustafizur; Aziz, Syed Mahfuzul

    2015-01-01

    Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR) and low False Positive Rate (FPR). PMID:25884786

  5. Wireless sensors and sensor networks for homeland security applications

    PubMed Central

    Potyrailo, Radislav A.; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M.; Kelley-Loughnane, Nancy; Naik, Rajesh R.

    2012-01-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers. PMID:23175590

  6. EMMNet: sensor networking for electricity meter monitoring.

    PubMed

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters. PMID:22163551

  7. Geographical variation in the heterogeneity of mutualistic networks.

    PubMed

    Sakai, Shoko; Metelmann, Soeren; Toquenaga, Yukihiko; Telschow, Arndt

    2016-06-01

    Plant-animal mutualistic networks are characterized by highly heterogeneous degree distributions. The majority of species interact with few partner species, while a small number are highly connected to form network hubs that are proposed to play an important role in community stability. It has not been investigated, however, if or how the degree distributions vary among types of mutualisms or communities, or between plants and animals in the same network. Here, we evaluate the degree distributions of pollination and seed-dispersal networks, which are two major types of mutualistic networks that have often been discussed in parallel, using an index based on Pielou's evenness. Among 56 pollination networks we found strong negative correlation of the heterogeneity between plants and animals, and geographical shifts of network hubs from plants in temperate regions to animals in the tropics. For 28 seed-dispersal networks, by contrast, the correlation was positive, and there is no comparable geographical pattern. These results may be explained by evolution towards specialization in the presence of context-dependent costs that occur if plants share the animal species as interaction partner. How the identity of network hubs affects the stability and resilience of the community is an important question for future studies. PMID:27429761

  8. Geographical variation in the heterogeneity of mutualistic networks

    PubMed Central

    Sakai, Shoko; Metelmann, Soeren; Toquenaga, Yukihiko; Telschow, Arndt

    2016-01-01

    Plant–animal mutualistic networks are characterized by highly heterogeneous degree distributions. The majority of species interact with few partner species, while a small number are highly connected to form network hubs that are proposed to play an important role in community stability. It has not been investigated, however, if or how the degree distributions vary among types of mutualisms or communities, or between plants and animals in the same network. Here, we evaluate the degree distributions of pollination and seed-dispersal networks, which are two major types of mutualistic networks that have often been discussed in parallel, using an index based on Pielou's evenness. Among 56 pollination networks we found strong negative correlation of the heterogeneity between plants and animals, and geographical shifts of network hubs from plants in temperate regions to animals in the tropics. For 28 seed-dispersal networks, by contrast, the correlation was positive, and there is no comparable geographical pattern. These results may be explained by evolution towards specialization in the presence of context-dependent costs that occur if plants share the animal species as interaction partner. How the identity of network hubs affects the stability and resilience of the community is an important question for future studies. PMID:27429761

  9. Optimizing Retransmission Threshold in Wireless Sensor Networks

    PubMed Central

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  10. Optimizing Retransmission Threshold in Wireless Sensor Networks.

    PubMed

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is O n Δ · max 1 ≤ i ≤ n { u i } , where u i is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based ( 1 + p m i n ) -approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O ( 1 ) -approximation algorithm with time complexity O ( 1 ) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  11. Calibration and data validation of wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Jialin; Liu, Qiang; Li, Xiuhong; Niu, Hailin; Cai, Erli; Chang, Chongyan

    2015-12-01

    Soil moisture is an important parameter in the study of agriculture, ecology and carbon cycle. However, it has great difficulties to retrieve soil moisture content using remote sensing techniques. Even, field measurements can hardly reflect the spatial variation of soil moisture, due to the tremendous heterogeneity in its spatial distribution. Wireless Sensor Network (WSN), as a new technology for ground data collection, has been gradually applied to various fields. This novel technique has great advantages in monitoring soil moisture content, obtaining the soil moisture data in real time from multiple sites and different depths. Taking Huailai remote sensing comprehensive experimental station of Chinese Academy of Sciences for example, this paper introduces the calibration and data validation of soil moisture wireless sensor network. Oven drying method is used to calibrate the soil moisture sensor EC-5. The analysis indicates that the data measured by EC-5 had fairly well accuracy, so that the further calibration is not necessary. Data validation experiments had been taken from three aspects: data validity verification, temporal and spatial validation. It is clear to see that WSN data reveals the changes of soil moisture both in spatial domain and in different depths. Although the soil moisture data measured by WSN still do not have enough absolute accuracy, its continuous real-time data can clearly reflect the temporal and spatial relative variation, and the wide installation of sensors enables the data be obtained by the large amount, which was practically unavailable before.

  12. Group scheduling problems in directional sensor networks

    NASA Astrophysics Data System (ADS)

    Singh, Alok; Rossi, André

    2015-12-01

    This article addresses the problem of scheduling a set of groups of directional sensors arising as a result of applying an exact or a heuristic approach for solving a problem involving directional sensors. The problem seeks a schedule for these groups that minimizes the total energy consumed in switching from one group to the next group in the schedule. In practice, when switching from a group to the next one, active sensors in the new group have to rotate in order to face their working direction. These rotations consume energy, and the problem is to schedule the groups so as to minimize the total amount of energy consumed by all the sensor rotations, knowing the initial angular positions of all the sensors. In this article, it is assumed that energy consumption is proportional to the angular movement for all the sensors. Another problem version is also investigated that seeks to minimize the total time during which the sensor network cannot cover all the targets because active sensors are rotating. Both problems are proved to be ?-hard, and a lower bound for the first problem is presented. A greedy heuristic and a genetic algorithm are also proposed for addressing the problem of minimizing total rotation in the general case. Finally, a local search is also proposed to improve the solutions obtained through a genetic algorithm.

  13. HeNCE: A Heterogeneous Network Computing Environment

    DOE PAGESBeta

    Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; Manchek, Robert; Moore, Keith

    1994-01-01

    Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less

  14. Sensor networks for cabled ocean observatories

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; McGinnis, T.; Kirkham, H.

    2003-04-01

    This paper considers the development of a support infrastructure for subsea observatory sensors and networks. Some sensors will be self-contained individual items, others will be part of a sensor network using, for example, secondary cables and junction boxes to extend the horizontal reach 10s to 100s of km from backbone nodes, or using moorings to distribute observatory capabilities throughout the water column and (equivalently) down boreholes into the crust. Included in the support infrastructure could be acoustic navigation and communications systems, free-swimming AUVs, and bottom rovers that could carry sensors and could provide data and energy "tanker" service. Because of the likely long term observatory application of sensors, and the high cost of access, methods of self-calibration of sensors will also be useful. The sensor infrastructure would supplement the observatory infrastructure that is part of the NSF Ocean Observatories Initiative (OOI). This Initiative plans to provide junction box nodes on the seafloor that furnish power and communications, and distribute time. There are three elements of the OOI: a regional scale cabled observatory (such as NEPTUNE) with dozens of nodes; a sparse global array of buoys with seafloor nodes; and an expanded system of coastal observatories. Each of these observatories will depend on suites of sensors from a number of investigators, and it is likely that once the observatory infrastructure itself has been installed and commissioned, most of the physical interaction with an observatory will be for installing, operating, servicing, and recovering sensors. These activities will be supported by the proposed infrastructure, enabling the full potential of the observatory to be reached.

  15. Principles of E-network modelling of heterogeneous systems

    NASA Astrophysics Data System (ADS)

    Tarakanov, D.; Tsapko, I.; Tsapko, S.; Buldygin, R.

    2016-04-01

    The present article is concerned with the analytical and simulation modelling of heterogeneous technical systems using E-network mathematical apparatus (the expansion of Petri nets). The distinguishing feature of the given system is the presence of the module6 which identifies the parameters of the controlled object as well as the external environment.

  16. Cooperative UAV-Based Communications Backbone for Sensor Networks

    SciTech Connect

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  17. Spectral algorithms for heterogeneous biological networks.

    PubMed

    McDonald, Martin; Higham, Desmond J; Vass, J Keith

    2012-11-01

    Spectral methods, which use information relating to eigenvectors, singular vectors and generalized singular vectors, help us to visualize and summarize sets of pairwise interactions. In this work, we motivate and discuss the use of spectral methods by taking a matrix computation view and applying concepts from applied linear algebra. We show that this unified approach is sufficiently flexible to allow multiple sources of network information to be combined. We illustrate the methods on microarray data arising from a large population-based study in human adipose tissue, combined with related information concerning metabolic pathways. PMID:23117863

  18. Distributed estimation of sensors position in underwater wireless sensor network

    NASA Astrophysics Data System (ADS)

    Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi

    2016-05-01

    In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.

  19. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  20. Fiber-connected position localization sensor networks

    NASA Astrophysics Data System (ADS)

    Pan, Shilong; Zhu, Dan; Fu, Jianbin; Yao, Tingfeng

    2014-11-01

    Position localization has drawn great attention due to its wide applications in radars, sonars, electronic warfare, wireless communications and so on. Photonic approaches to realize position localization can achieve high-resolution, which also provides the possibility to move the signal processing from each sensor node to the central station, thanks to the low loss, immunity to electromagnetic interference (EMI) and broad bandwidth brought by the photonic technologies. In this paper, we present a review on the recent works of position localization based on photonic technologies. A fiber-connected ultra-wideband (UWB) sensor network using optical time-division multiplexing (OTDM) is proposed to realize high-resolution localization and moving the signal processing to the central station. A 3.9-cm high spatial resolution is achieved. A wavelength-division multiplexed (WDM) fiber-connected sensor network is also demonstrated to realize location which is independent of the received signal format.

  1. Sensor placement for municipal water networks.

    SciTech Connect

    Watson, Jean-Paul; Berry, Jonathan W.; Phillips, Cynthia Ann; Boman, Erik Gunnar; Hart, David Blaine; Carr, Robert D.; McKenna, Sean Andrew; Hart, William Eugene; Murray, Regan Elizabeth; Riesen, Lee Ann

    2010-12-01

    We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

  2. Intruder Activity Analysis under Unreliable Sensor Networks

    SciTech Connect

    Tae-Sic Yoo; Humberto E. Garcia

    2007-09-01

    This paper addresses the problem of counting intruder activities within a monitored domain by a sensor network. The deployed sensors are unreliable. We characterize imperfect sensors with misdetection and false-alarm probabilities. We model intruder activities with Markov Chains. A set of Hidden Markov Models (HMM) models the imperfect sensors and intruder activities to be monitored. A novel sequential change detection/isolation algorithm is developed to detect and isolate a change from an HMM representing no intruder activity to another HMM representing some intruder activities. Procedures for estimating the entry time and the trace of intruder activities are developed. A domain monitoring example is given to illustrate the presented concepts and computational procedures.

  3. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  4. Sensor data security level estimation scheme for wireless sensor networks.

    PubMed

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-01

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215

  5. Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks

    PubMed Central

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-01

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215

  6. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    PubMed Central

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045

  7. Synchronization failure caused by interplay between noise and network heterogeneity

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Kori, H.

    2016-09-01

    We investigate synchronization in complex networks of noisy phase oscillators. We find that, while too weak a coupling is not sufficient for the whole system to synchronize, too strong a coupling induces a nontrivial type of phase slip among oscillators, resulting in synchronization failure. Thus, an intermediate coupling range for synchronization exists, which becomes narrower when the network is more heterogeneous. Analyses of two noisy oscillators reveal that nontrivial phase slip is a generic phenomenon when noise is present and coupling is strong. Therefore, the low synchronizability of heterogeneous networks can be understood as a result of the difference in effective coupling strength among oscillators with different degrees; oscillators with high degrees tend to undergo phase slip while those with low degrees have weak coupling strengths that are insufficient for synchronization.

  8. Intelligent Data Rate Control in Cognitive Mobile Heterogeneous Networks

    NASA Astrophysics Data System (ADS)

    Mar, Jeich; Nien, Hsiao-Chen; Cheng, Jen-Chia

    An adaptive rate controller (ARC) based on an adaptive neural fuzzy inference system (ANFIS) is designed to autonomously adjust the data rate of a mobile heterogeneous network to adapt to the changing traffic load and the user speed for multimedia call services. The effect of user speed on the handoff rate is considered. Through simulations, it has been demonstrated that the ANFIS-ARC is able to maintain new call blocking probability and handoff failure probability of the mobile heterogeneous network below a prescribed low level over different user speeds and new call origination rates while optimizing the average throughput. It has also been shown that the mobile cognitive wireless network with the proposed CS-ANFIS-ARC protocol can support more traffic load than neural fuzzy call-admission and rate controller (NFCRC) protocol.

  9. Sensor Network in the Wireless UHF Band

    NASA Astrophysics Data System (ADS)

    Mariño, P.; Fontán, F. P.; Domínguez, M. A.; Otero, S.

    Biological research in agriculture needs a lot of specialized electronic sensors in order to fulfill different goals, like as: climate monitoring, soil and fruit assessment, control of insects and diseases, chemical pollutants, identification and control of weeds, crop tracking, and so on. That research must be supported by consistent biological models able to simulate diverse environmental conditions, in order to predict the right human actions before risky biological damage could be irreversible. In this paper an experimental distributed network based on climatic and biological wireless sensors is described, for providing real measurements in order to validate different biological models used for viticulture applications. Firstly the experimental network for field automatic data acquisition is presented, as a system based in a distributed process. Then, the design of the wireless network is explained in detail, with a previous discussion about the state-of-the-art, and some measurements for viticulture research are pointed out. Finally future developments and conclusions are stated.

  10. Cost optimization of a sky surveillance visual sensor network

    NASA Astrophysics Data System (ADS)

    Ahmad, Naeem; Khursheed, Khursheed; Imran, Muhammad; Lawal, Najeem; O'Nils, Mattias

    2012-06-01

    A Visual Sensor Network (VSN) is a network of spatially distributed cameras. The primary difference between VSN and other type of sensor networks is the nature and volume of information. A VSN generally consists of cameras, communication, storage and central computer, where image data from multiple cameras is processed and fused. In this paper, we use optimization techniques to reduce the cost as derived by a model of a VSN to track large birds, such as Golden Eagle, in the sky. The core idea is to divide a given monitoring range of altitudes into a number of sub-ranges of altitudes. The sub-ranges of altitudes are monitored by individual VSNs, VSN1 monitors lower range, VSN2 monitors next higher and so on, such that a minimum cost is used to monitor a given area. The VSNs may use similar or different types of cameras but different optical components, thus, forming a heterogeneous network. We have calculated the cost required to cover a given area by considering an altitudes range as single element and also by dividing it into sub-ranges. To cover a given area with given altitudes range, with a single VSN requires 694 camera nodes in comparison to dividing this range into sub-ranges of altitudes, which requires only 88 nodes, which is 87% reduction in the cost.

  11. LONG-TERM MONITORING SENSOR NETWORK

    SciTech Connect

    Stephen P. Farrington; John W. Haas; Neal Van Wyck

    2003-10-16

    Long-term monitoring (LTM) associated with subsurface contamination sites is a key element of Long Term Stewardship and Legacy Management across the Department of Energy (DOE) complex. However, both within the DOE and elsewhere, LTM is an expensive endeavor, often exceeding the costs of the remediation phase of a clean-up project. The primary contributors to LTM costs are associated with labor. Sample collection, storage, preparation, analysis, and reporting can add a significant financial burden to project expense when extended over many years. Development of unattended, in situ monitoring networks capable of providing quantitative data satisfactory to regulatory concerns has the potential to significantly reduce LTM costs. But survival and dependable operation in a difficult environment is a common obstacle to widespread use across the DOE complex or elsewhere. Deploying almost any sensor in the subsurface for extended periods of time will expose it to chemical and microbial degradation. Over the time-scales required for in situ LTM, even the most advanced sensor systems may be rendered useless. Frequent replacement or servicing (cleaning) of sensors is expensive and labor intensive, offsetting most, if not all, of the cost savings realized with unattended, in situ sensors. To enable facile, remote monitoring of contaminants and other subsurface parameters over prolonged periods, Applied Research Associates, Inc has been working to develop an advanced LTM sensor network consisting of three key elements: (1) an anti-fouling sensor chamber that can accommodate a variety of chemical and physical measurement devices based on electrochemical, optical and other techniques; (2) two rapid, cost effective, and gentle means of emplacing sensor packages either at precise locations directly in the subsurface or in pre-existing monitoring wells; and (3) a web browser-based data acquisition and control system (WebDACS) utilizing field-networked microprocessor-controlled smart

  12. IR sensors and imagers in networked operations

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Cabanski, Wolfgang

    2005-05-01

    "Network-centric Warfare" is a common slogan describing an overall concept of networked operation of sensors, information and weapons to gain command and control superiority. Referring to IR sensors, integration and fusion of different channels like day/night or SAR images or the ability to spread image data among various users are typical requirements. Looking for concrete implementations the German Army future infantryman IdZ is an example where a group of ten soldiers build a unit with every soldier equipped with a personal digital assistant (PDA) for information display, day photo camera and a high performance thermal imager for every unit. The challenge to allow networked operation among such a unit is bringing information together and distribution over a capable network. So also AIM's thermal reconnaissance and targeting sight HuntIR which was selected for the IdZ program provides this capabilities by an optional wireless interface. Besides the global approach of Network-centric Warfare network technology can also be an interesting solution for digital image data distribution and signal processing behind the FPA replacing analog video networks or specific point to point interfaces. The resulting architecture can provide capabilities of data fusion from e.g. IR dual-band or IR multicolor sensors. AIM has participated in a German/UK collaboration program to produce a demonstrator for day/IR video distribution via Gigabit Ethernet for vehicle applications. In this study Ethernet technology was chosen for network implementation and a set of electronics was developed for capturing video data of IR and day imagers and Gigabit Ethernet video distribution. The demonstrator setup follows the requirements of current and future vehicles having a set of day and night imager cameras and a crew station with several members. Replacing the analog video path by a digital video network also makes it easy to implement embedded training by simply feeding the network with

  13. Sensor Network Provides Environmental Data

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The National Biocomputation Center, a joint partnership between the Stanford University School of Medicine's Department of Surgery and NASA's Ames Research Center, is the test bed for much of NASA's research in telemedicine, the remote delivery of medical care. In early 2005, researchers at the National Biocomputation Center formed a spinoff company, Intelesense Technologies, to use the telemedicine sensors to provide integrated global monitoring systems. Intelesense uses the systems to better understand how environments and people are linked, monitor and protect natural resources, predict and adapt to environmental changes, provide for sustainable development, reduce the costs and impacts of natural disasters, and provide an effective and intelligent response to such disasters. Current projects range from protecting the environment to tracking emerging infectious diseases like avian influenza (bird flu) and helping people from around the world connect and interact with each other to better understand their environment and themselves.

  14. Serial FBG sensor network allowing overlapping spectra

    NASA Astrophysics Data System (ADS)

    Abbenseth, S.; Lochmann, S.; Ahrens, A.; Rehm, B.

    2016-05-01

    For structure or material monitoring low impact serial fiber Bragg grating (FBG) networks have attracted increasing research interest. Common sensor networks using wavelength division multiplexing (WDM) for FBG interrogation are limited in their efficiency by the spectral width of their light source, the FBG tuning range and the spectral guard bands. Overlapping spectra are strictly forbidden in this case. Applying time division multiplexing (TDM) or active resonator schemes may overcome these restrictions. However, they introduce other substantial disadvantages like signal roundtrip dependency or sophisticated control of active resonating structures. Code division multiplexing (CDM) as a means of FBG interrogation by simple autocorrelation of appropriate codes has been shown to be superior in this respect. However, it came at the cost of a second spectrometer introducing additional equalization efforts. We demonstrate a new serial FBG sensor network utilizing CDM signal processing for efficient sensor interrogation without the need of a second spectrometer and additional state of polarization (SOP) controlling components. It allows overlapping spectra even when all sensing FBGs are positioned at the same centre wavelength and it shows a high degree of insensitivity to SOP. Sequence inversed keyed (SIK) serial signal processing utilizing quasi-orthogonal balanced codes ensures simple and quick sensor interrogation with high signal-to-interference/noise ratio.

  15. A Survey of Body Sensor Networks

    PubMed Central

    Lai, Xiaochen; Liu, Quanli; Wei, Xin; Wang, Wei; Zhou, Guoqiao; Han, Guangyi

    2013-01-01

    The technology of sensor, pervasive computing, and intelligent information processing is widely used in Body Sensor Networks (BSNs), which are a branch of wireless sensor networks (WSNs). BSNs are playing an increasingly important role in the fields of medical treatment, social welfare and sports, and are changing the way humans use computers. Existing surveys have placed emphasis on the concept and architecture of BSNs, signal acquisition, context-aware sensing, and system technology, while this paper will focus on sensor, data fusion, and network communication. And we will introduce the research status of BSNs, the analysis of hotspots, and future development trends, the discussion of major challenges and technical problems facing currently. The typical research projects and practical application of BSNs are introduced as well. BSNs are progressing along the direction of multi-technology integration and intelligence. Although there are still many problems, the future of BSNs is fundamentally promising, profoundly changing the human-machine relationships and improving the quality of people's lives. PMID:23615581

  16. From network heterogeneities to familiarity detection and hippocampal memory management

    NASA Astrophysics Data System (ADS)

    Wang, Jane X.; Poe, Gina; Zochowski, Michal

    2008-10-01

    Hippocampal-neocortical interactions are key to the rapid formation of novel associative memories in the hippocampus and consolidation to long term storage sites in the neocortex. We investigated the role of network correlates during information processing in hippocampal-cortical networks. We found that changes in the intrinsic network dynamics due to the formation of structural network heterogeneities alone act as a dynamical and regulatory mechanism for stimulus novelty and familiarity detection, thereby controlling memory management in the context of memory consolidation. This network dynamic, coupled with an anatomically established feedback between the hippocampus and the neocortex, recovered heretofore unexplained properties of neural activity patterns during memory management tasks which we observed during sleep in multiunit recordings from behaving animals. Our simple dynamical mechanism shows an experimentally matched progressive shift of memory activation from the hippocampus to the neocortex and thus provides the means to achieve an autonomous off-line progression of memory consolidation.

  17. Dynamic Privacy Management in Pervasive Sensor Networks

    NASA Astrophysics Data System (ADS)

    Gong, Nan-Wei; Laibowitz, Mathew; Paradiso, Joseph A.

    This paper describes the design and implementation of a dynamic privacy management system aimed at enabling tangible privacy control and feedback in a pervasive sensor network. Our work began with the development of a potentially invasive sensor network (with high resolution video, audio, and motion tracking capabilities) featuring different interactive applications that created incentive for accepting this network as an extension of people's daily social space. A user study was then conducted to evaluate several privacy management approaches - an active badge system for both online and on-site control, on/off power switches for physically disabling the hardware, and touch screen input control. Results from a user study indicated that an active badge for on-site privacy control is the most preferable method among all provided options. We present a set of results that yield insight into the privacy/benefit tradeoff from various sensing capabilities in pervasive sensor networks and how privacy settings and user behavior relate in these environments.

  18. Optimal topologies for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Tillett, Jason C.; Yang, Shanchieh J.; Rao, Raghuveer M.; Sahin, Ferat

    2004-11-01

    Since untethered sensor nodes operate on battery, and because they must communicate through a multi-hop network, it is vital to optimally configure the transmit power of the nodes both to conserve power and optimize spatial reuse of a shared channel. Current topology control algorithms try to minimize radio power while ensuring connectivity of the network. We propose that another important metric for a sensor network topology will involve consideration of hidden nodes and asymmetric links. Minimizing the number of hidden nodes and asymmetric links at the expense of increasing the transmit power of a subset of the nodes may in fact increase the longevity of the sensor network. In this paper we explore a distributed evolutionary approach to optimizing this new metric. Inspiration from the Particle Swarm Optimization technique motivates a distributed version of the algorithm. We generate topologies with fewer hidden nodes and asymmetric links than a comparable algorithm and present some results that indicate that our topologies deliver more data and last longer.

  19. Man-portable networked sensor system

    NASA Astrophysics Data System (ADS)

    Bryan, W. D.; Nguyen, Hoa G.; Gage, Douglas W.

    1998-08-01

    The Man-Portable Networked Sensor System (MPNSS), with its baseline sensor suite of a pan/tilt unit with video and FLIR cameras and laser rangefinder, functions in a distributed network of remote sensing packages and control stations designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of security operations and other tactical missions. While first developed as a man-portable prototype, these sensor packages can also be deployed on UGVs and UAVs, and a copy of this package been demonstrated flying on the Sikorsky Cypher VTOL UAV in counterdrug and MOUNT scenarios. The system makes maximum use of COTS components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. This paper will discuss the technical issues involved in: (1) system integration using COTS components and emerging bus standards, (2) flexible networking for a scalable system, and (3) the human interface designed to maximize information presentation to the warfighter in battle situations.

  20. Impairment aware routing with service differentiation in heterogeneous WDM networks

    NASA Astrophysics Data System (ADS)

    Jirattigalachote, Amornrat; Wosinska, Lena; Monti, Paolo; Katrinis, Kostas; Tzanakaki, Anna

    2009-11-01

    In transparent Wavelength Division Multiplexing (WDM) networks, the signal is transported from source to destination in the optical domain through all-optical channels, or lightpaths. A lightpath may traverse several fiber segments and optical components that in general degrade the optical signal. This effect introduces the need for considering physical layer impairments during the connection-provisioning phase. Physical layer impairments can be divided into linear and non-linear. Both types of impairments are highly dependent on the fiber characteristics, which in turn are sensitive to length, temperature and age. A close look at the fiber infrastructure of today's network operators reveals a situation where old and newly deployed fibers coexist in the network. This heterogeneous fiber plant presents a challenge. A tradeoff should be found between the QoS requirements of connection requests and the use of the available (old and new) network resources. This calls for a provisioning mechanism able to adapt to the various fiber composition scenarios. In parallel, given the need for service differentiation, the authors recently proposed an Impairment Constraint Based Routing (ICBR) algorithm, referred to as ICBR-Diff, supporting differentiation of services at the BER (Bit Error Rate) level in a network with a homogeneous fiber infrastructure. In this paper the ICBR-Diff algorithm is extended to heterogeneous network; particularly, it is evaluated in WDM networks with fiber links having varying Polarization Mode Dispersion characteristics, i.e., with old and new fiber coexisting. Simulation results show that the ICBR-Diff algorithm exhibits high adaptability in a heterogeneous fiber composition scenario. This translates into improved performance in terms of blocking probability, when compared to traditional impairment aware routing algorithms.

  1. Statistical signal processing in sensor networks

    NASA Astrophysics Data System (ADS)

    Guerriero, Marco

    In this dissertation we focus on decentralized signal processing in Sensor Networks (SN). Four topics are studied: (i) Direction of Arrival (DOA) estimation using a Wireless Sensor network (WSN), (ii) multiple target tracking in large SN, (iii) decentralized target detection in SN and (iv) decentralized sequential detection in SN with communication constraints. The first topic of this thesis addresses the problem of estimating the DOA of an acoustic wavefront using a a WSN made of isotropic (hence individually useless) sensors. The WSN was designed according to the SENMA (SEnsor Network with Mobile Agents) architecture with a mobile agent (MA) that successively queries the sensors lying inside its field of view. We propose both fast/simple and optimal DOA-estimation schemes, and an optimization of the MAs observation management is also carried out, with the surprising finding that the MA ought to orient itself at an oblique angle to the expected DOA, rather than directly toward it. We also consider the extension to multiple sources; intriguingly, per-source DOA accuracy is higher when there is more than one source. In all cases, performance is investigated by simulation and compared, when appropriate, with asymptotic bounds; these latter are usually met after a moderate number of MA dwells. In the second topic, we study the problem of tracking multiple targets in large SN. While these networks hold significant potential for surveillance, it is of interest to address fundamental limitations in large-scale implementations. We first introduce a simple analytical tracker performance model. Analysis of this model suggests that scan-based tracking performance improves with increasing numbers of sensors, but only to a certain point beyond which degradation is observed. Correspondingly, we address model-based optimization of the local sensor detection threshold and the number of sensors. Next, we propose a two-stage tracking approach (fuse-before-track) as a possible

  2. Gas Main Sensor and Communications Network System

    SciTech Connect

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  3. Fluctuation-induced traffic congestion in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Stepanenko, A. S.; Yurkevich, I. V.; Constantinou, C. C.; Lerner, I. V.

    2012-11-01

    In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion —a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible.

  4. A smart indoor air quality sensor network

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  5. Spreading dynamics on heterogeneous populations: Multitype network approach

    NASA Astrophysics Data System (ADS)

    Vazquez, Alexei

    2006-12-01

    I study the spreading of infectious diseases in heterogeneous populations. The population structure is described by a contact graph where vertices represent agents and edges represent disease transmission channels among them. The population heterogeneity is taken into account by the agent’s subdivision in types and the mixing matrix among them. I introduce a type-network representation for the mixing matrix, allowing an intuitive understanding of the mixing patterns and the calculations. Using an iterative approach I obtain recursive equations for the probability distribution of the outbreak size as a function of time. I demonstrate that the expected outbreak size and its progression in time are determined by the largest eigenvalue of the reproductive number matrix and the characteristic distance between agents on the contact graph. Finally, I discuss the impact of intervention strategies to halt epidemic outbreaks. This work provides both a qualitative understanding and tools to obtain quantitative predictions for the spreading dynamics of heterogeneous populations.

  6. Achieving network level privacy in Wireless Sensor Networks.

    PubMed

    Shaikh, Riaz Ahmed; Jameel, Hassan; d'Auriol, Brian J; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks. PMID:22294881

  7. Wireless Sensor Network Handles Image Data

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  8. Tritium-powered radiation sensor network

    NASA Astrophysics Data System (ADS)

    Litz, Marc S.; Russo, Johnny A.; Katsis, Dimos

    2016-05-01

    Isotope power supplies offer long-lived (100 years using 63Ni), low-power energy sources, enabling sensors or communications nodes for the lifetime of infrastructure. A tritium beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial couples directly to a photovoltaic (PV) to generate a trickle current into an electrical load. An inexpensive design is described using commercial-of-the-shelf (COTS) components that generate 100 μWe for nextgeneration compact electronics/sensors. A matched radiation sensor has been built for long-duration missions utilizing microprocessor-controlled sleep modes, low-power electronic components, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network and isotope power source enables no-maintenance mission lifetimes.

  9. Wireless sensor network for mobile surveillance systems

    NASA Astrophysics Data System (ADS)

    van Dijk, Gert J. A.; Maris, Marinus G.

    2004-11-01

    Guarding safety and security within industrial, commercial and military areas is an important issue nowadays. A specific challenge lies in the design of portable surveillance systems that can be rapidly deployed, installed and easily operated. Conventional surveillance systems typically employ stand alone sensors that transmit their data to a central control station for data-processing. One of the disadvantages of these kinds of systems is that they generate a lot of data that may induce processing or storage problems. Moreover, data from the sensors must be constantly observed and assessed by human operators. In this paper, a surveillance concept based on distributed intelligence in wireless sensor networks is proposed. In this concept, surveillance is automatically performed by means of many small sensing devices including cameras. The requirements for such surveillance systems are investigated. Experiments with a demonstration system were conducted to verify some of the claims made throughout this paper.

  10. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    PubMed

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation. PMID:26694687